Aperture

An algorithm for non-cooperative,
client-side load balancing.

Ruben Oanta Bryce Anderson
@rubenoanta @brycelanderson

TWITTERS CLIENT-SIDE LOAD BALANCER EVOLUTION

TWITTERS CLIENT-SIDE LOAD BALANCER EVOLUTION

1. A simple and fair load balancer P2C

TWITTERS CLIENT-SIDE LOAD BALANCER EVOLUTION

Random Aperture
2. A scalable but unfair load balancer

TWITTERS CLIENT-SIDE LOAD BALANCER EVOLUTION

Deterministic Aperture

f

./

3. A scalable and fair load balancer

SERVICE-TO-SERVICE LOAD BALANCING
capacity utilization
safely make use of aggregate capacity of replicas

failure management
route around replicas when they inevitably fail

SERVICE-TO-SERVICE LOAD BALANCING

non-cooperative
multiple load balancers which make decisions independently

client-side
embedded within each replica of a service

load balancing
over sessions (OSI L5) and requests (0OSI L7)

[| Service A

EXAMPLE SERVICE TOPOLOGY] Service B

O 12

» » L)

N " NN

/ 857 5, 7 \
FIANS NV

/| |/\X/\¥/\X/\| VD
. // 5 /|/\ //\/r\/\\ /\!\) \\
All clients connect to all servers. M0 10 T P U

P2 P P (NS IR AN O NN

/// 2 A VR BV AR WA \\\

// / ’ X \ \\
/ /// A N R AN \\\ \
// / AN N
/ 1y 1/ VI A\ VN
/ / \ N\
Yy Ity |1/ \I/ \\I \\! QA
r ¥ Y | kY A

o 1 2 3 4 5 6

[] Service A

PER REQUEST: P2C "] Service B

1. Select two instances
uniformly and randomly.

2. Of the two, select the ‘best’
Instance.

M. Mitzenmacher, "The power of two choices in randomized load balancing", IEEE Transactions
on Parallel and Distributed Systems, vol. 12, no. 10, pp. 1094-1104, October 2001.

O 0o NO Ul pp WDN P

el sl el e =
Ul d WNBEPOS

16
7
18
b

// select two indices within “vec , uniformly
// and randomly, without replacement.

val a = rng.nextInt(vec.size)

var b = rng.nextInt(vec.size - 1)

if (b>=a) {b=b+ 11}

vec(a)
vec(b)

val nodeA
val nodeB

// If both nodes are in the same health status, we pick
// the least loaded one. Otherwise we pick the one
// that's healthier.
val aStatus = nodeA.status
val bStatus = nodeB.status
i1f (aStatus == bStatus) {
1f (nodeA.load <= nodeB.load) nodeA else nodeB
} else {
i1f (Status.best(aStatus, bStatus) == aStatus) nodeA else nodeB

}

co N O UL A WN B

// select two indices within “vec , uniformly
// and randomly, without replacement.

val a = rng.nextInt(vec.size)

var b = rng.nextInt(vec.size - 1)

if (b>=a) {b=b+ 11}

val nodeA
val nodeB

vec(a)
vec(b)

10 // If both nodes are in the same health status, we pick

11 // the least loaded one. Otherwise we pick the one

12 // that's healthier.

13 wval aStatus = nodeA.status

14 wval bStatus = nodeB.status

15 1if (aStatus == bStatus) {

16 1f (nodeA.load <= nodeB.load) nodeA else nodeB

17 } else {

18 i1f (Status.best(aStatus, bStatus) == aStatus) nodeA else nodeB
19 }

PER REQUEST: P2C

fair request distribution
request load is even with homogenous replicas

efficient
fully concurrent, constant time for selection + comparison

decoupled selection + comparison
allows for sophisticated definitions of load

PER SESSION: IT’S A MESH!

wasted resources
everyone talks to everyone

no isolation
independently discover the same problems

low concurrency |
poor load metric performance without concurrent requests

How can we reduce the number of sessions?

RANDOM APERTURE

random
replicas selected within a random window

dynamic sizing
can grow or shrink based on feedback controller

highly concurrent
aperture is smallest subset to satisfy concurrency

RANDOM APERTURE

[] Service A
| | Service B

RANDOM APERTURE: UNFAIR

RPS PER SERVER / TIME

>

PR
- _-' Av‘_ 3A~"‘&,‘\ R .o’-“-vw :.v.\r‘ %4/‘.\ ,‘.. JA\\' S = ——
: BN ’ 5
= -

Iy ey Wﬁw m..,- "

clients deployed
random aperture

[| Service A

RANDOM IS STATISTICAL "] Service B

Results in a load distribution

that closely resembles a ! /
binomial distribution. /

Minimizing the "banding’
requires tuning which can
only be eliminated when the
aperture is the size of all the
backend replicas.

Load

CONFIGURED RANDOM APERTURE

% WolframAlpha

binomial distribution(500000, 0.001) =]

500000
binomial distribution
0.001

More

mean 500
standard deviation = 22.3495
variance 499.5

0.0446542

200

CONFIGURED RANDOM APERTURE

RPS PER SERVER / TIME

0 Phage i b

S mm 1.:4 'MJN l&.u u.v..\nuw'

R (BAY

11:00 12:00 13:00 14:00 15:00
Nov 23 Nov 23 Nov 23 Nov 23 Nov 23
19:00Z 20:00Z 21:00Z 22:00Z 23:00Z

= AT~ —

T R R oe...._.»-_fw-

e
AT T T
o o

17:00
Nov 23
01:00Z

18:00
Nov 23
02:00Z

Distributing the configuration burden for core pieces
of infrastructure will likely converge to poorly
configured infrastructure.

How can we improve aperture?

fairer distributed
less config subset

[] Service A

DISCRETE COORDINATES 7] Service B

PEER RING

|] Service A

The replicas which are acting in
concert to dispatch requests.

Each instance in the peer ring only
needs to know about its unique id
and the number of peers.

Domain: [0, 1)

| | Service B

DESTINATION RING

The ring which will be receiving
requests.

Each peer computes this ring via
metadata received from service
discovery.

Domain: [0, 1)

[] Service A

COMPOSITE RINGS DServiceB

0:10,1,2,3,4,5,6
1:13,4,5,6,0,1, 2.
2:15,6,0,1, 2, 3,4

|] Service A

SESSION HISTOGRAM Bl service B
Service A
O: OI 1/ 2/ 3/ 4/ 5/ 6 2 2
1:13,4,5,6,0, 1, 2] O 0|0 |11 1]2
2:15,6,0,1,2, 3,4 0 1 2 3 4 5 6

|_|Service B
MULTIPLE SERVICE RINGS

|| Service A
0:10,1,2,3,4,5, 6]
1:13,4,5,6,0,1, 2]
2:15,6,0,1, 2, 3,4
| Service C

0:15,6,0,1,2,3,4
1:11,2,3,4,5,6, 0]
2:13,4,5,6,0,1, 2]

[] Service A
[] ServiceB

CONTINUOUS COORDINATES

Services fully occupy the
same domain.

Load balancers can map
from their respective range to
discrete destinations.

[] Service A

P2C + FRACTIONAL LOAD] Service B

Each load balancer picks two 6 0
coordinates randomly within

its range and maps them to

discrete destinations.

This inherently respects the
fractional boundary
conditions. «

O oo NOY UL B WN

N NNNNRRPRRPRRERRRRERRR
AR WNRPRPOCWOVWOKNOU A~ WNEROS

£9

// compute the offset and width of this balancer. D Sarvice &
val offset = coord.offset
val width = apertureWidth || ServiceB

// select two coordinates, randomly and uniformly,
// within our range [offset, offset + width) and map
// them to the destination ring.

val (a, b) = destRing.pick2(offset, width)

vdl nodeA
val nodeB

vector(a)
vector(b)

val aStatus = nodeA.status
val bStatus = nodeB.status
if (aStatus == bStatus) {
// what proportion of a and b, respectively,
// fall within [offset, offset + width)?
val aw = destRing.weight(a, offset, width) ”
val bw = destRing.weight(b, offset, width)
// weight the load w.r.t to the ring proportions
// to avoid biasing towards the node picked less often.
if (nhodeA.load / aw <= nodeB.load / bw) nodeA else nodeB

} else {
if (Status.best(aStatus, bStatus) == aStatus) nodeA else nodeB

Oﬁ%et, offset + W"d‘h\

O o NO Ul A WIN B

==
= o

// compute the offset and width of this balancer.
val offset = coord.offset
val width = apertureWidth

// select two coordinates, randomly and uniformly,
// within our range [offset, offset + width) and map
// them to the destination ring.

val (a, b) = destRing.pick2(offset, width)

vdl nodeA
val nodeB

vector(a)
vector(b)

[| Service A
| | Service B

16
17
18
19
20
21
22

// what proportion of a and b, respectively,

// fall within [offset, offset + width)?

val aw = destRing.weight(a, offset, width)

val bw = destRing.weight(b, offset, width)

// weight the load w.r.t to the ring proportions

// to avoid biasing towards the node picked less often.
if (nhodeA.load / aw <= nodeB.load / bw) nodeA else nodeB

[| Service A
| | Service B

[] Service A
MULTIPLE SERVICE RINGS Bl Service B

| Service C

O

CONTINUOUS COORDINATE MODEL

fair request distribution
with distinct services talking to the same destination ring

distributed
light coordination around metadata to construct rings

fewer sessions
aperture size naturally falls out of representation

| | Service A
|| ServiceB

DYNAMIC APERTURE SIZE

The aperture can grow/shrink
so long as the peer ring
completes whole rotations
around destination ring.

[] Service A

RESILIENCY] Service B

peer size heuristics

Nodes are placed closer to
their final position by inferring
the size of the ring when
receiving updates.

RESILIENCY

coalesce updates

Changes are buffered and
combined in order to avoid
transient ring states.

|] Service A
| | Service B
| Service C

RESILIENCY

entropy

The destination ring is
pseudo-randomized to avoid any
synchronization across distinct
peer rings.

Production Results

MIGRATION FROM RANDOM APERTURE TO D-APERTURE

RPS PER SERVER / TIME

10:30 11:00 11:30 12:00
Nov 01 Nov 01 Nov 01 Nov 01
16:30Z 17:00Z 17:30Z 18:00Z

MIGRATION FROM RANDOM APERTURE TO D-APERTURE

78% reduction in relative standard deviation request rate

MIGRATION FROM RANDOM APERTURE TO D-APERTURE

Drop from ~280K to ~25K aggregate connections (91%)

SECOND-ORDER RESULTS

20-25% less CPU used

Total garbage collection (GC) time cut in half
/5% fewer failures

~20% reduction in latency at 99.9th percentile

REDUCTION IN REQUEST RETRIES

00:00 00:00 00:00 00:00
Mar 25 Apr 01 Apr 08 Apr 15
06:00Z 06:00Z 06:00Z 06:00Z

LIMITATIONS

unequal workloads

If different clients have unequal
demands of the client we again get

to unbalanced load on the backend.

bursty traffic
Bursts of traffic break the

assumption that incoming load is
smooth’.

Load

[| Service A
FUTURE WORK

| | Service B

flexible node capacity

Some nodes will be better than
others, heterogeneous
hardware etc, and we can size
serving units accordingly.

THIS IS FINE

THIS IS FINe.

THIS IS FINE - LOOK MA! I’M INSTANCE 100 OF 90!

THIS IS FINE - LOOK MA! I’M INSTANCE 100 OF 90!

As we re-deploy instance 1, instance 3 overflows around the ring.

TR R
O

THIS IS FINE - UPDATES, SMUPDATES...

19:00 19:30 20:00 20:30

Oct 17 Oct 17 Oct 17 Oct 17
01:00Z 01:30Z2 02:00Z 02:30Z

THIS IS FINE - UPDATES, SMUPDATES...

Peer Instance 1 Everyone Else

attribution

Billy Becker, Marius Eriksen, Daniel Furse, Steve Gury, Eugene
Ma, Nick Matheson, Moses Nakamura, Kevin Oliver, Brian
Rutkin, Daniel Schobel

code
github.com/twitter/finagle

We're hiring — including in Singapore!

