
Aperture
An algorithm for non-cooperative, 
client-side load balancing.

Ruben Oanta
@rubenoanta

Bryce Anderson
@brycelanderson



TWITTERS CLIENT-SIDE LOAD BALANCER EVOLUTION



1. A simple and fair load balancer P2C

TWITTERS CLIENT-SIDE LOAD BALANCER EVOLUTION



1. A simple and fair load balancer
2. A scalable but unfair load balancer

Random Aperture

TWITTERS CLIENT-SIDE LOAD BALANCER EVOLUTION



1. A simple and fair load balancer
2. A scalable but unfair load balancer
3. A scalable and fair load balancer

Deterministic Aperture

TWITTERS CLIENT-SIDE LOAD BALANCER EVOLUTION



SERVICE-TO-SERVICE LOAD BALANCING

capacity utilization
safely make use of aggregate capacity of replicas

failure management
route around replicas when they inevitably fail



client-side
embedded within each replica of a service

load balancing
over sessions (OSI L5) and requests (OSI L7)

non-cooperative
multiple load balancers which make decisions independently

SERVICE-TO-SERVICE LOAD BALANCING



EXAMPLE SERVICE TOPOLOGY

All clients connect to all servers.



PER REQUEST: P2C

1. Select two instances 
uniformly and randomly. 

2. Of the two, select the ‘best’ 
instance.

M. Mitzenmacher, "The power of two choices in randomized load balancing", IEEE Transactions 
on Parallel and Distributed Systems, vol. 12, no. 10, pp. 1094-1104, October 2001.









PER REQUEST: P2C

fair request distribution
request load is even with homogenous replicas

efficient
fully concurrent, constant time for selection + comparison

decoupled selection + comparison 
allows for sophisticated definitions of load



PER SESSION: IT’S A MESH!

no isolation
independently discover the same problems

low concurrency
poor load metric performance without concurrent requests

wasted resources
everyone talks to everyone



How can we reduce the number of sessions?



RANDOM APERTURE

random
replicas selected within a random window

highly concurrent
aperture is smallest subset to satisfy concurrency

dynamic sizing
can grow or shrink based on feedback controller



RANDOM APERTURE



RPS PER SERVER / TIME

RANDOM APERTURE: UNFAIR

clients deployed 
random aperture



RANDOM IS STATISTICAL

Results in a load distribution 
that closely resembles a 
binomial distribution. 

Minimizing the “banding” 
requires tuning which can 
only be eliminated when the 
aperture is the size of all the 
backend replicas.



CONFIGURED RANDOM APERTURE



CONFIGURED RANDOM APERTURE

RPS PER SERVER / TIME



Distributing the configuration burden for core pieces 
of infrastructure will likely converge to poorly 
configured infrastructure.



How can we improve aperture?
distributedfairer

less config subset



DISCRETE COORDINATES



The replicas which are acting in 
concert to dispatch requests. 

Each instance in the peer ring only 
needs to know about its unique id 
and the number of peers. 

Domain: [0, 1)

PEER RING



The ring which will be receiving 
requests. 

Each peer computes this ring via 
metadata received from service 
discovery. 

Domain: [0, 1)

DESTINATION RING



COMPOSITE RINGS



SESSION HISTOGRAM



MULTIPLE SERVICE RINGS



CONTINUOUS COORDINATES

Services fully occupy the 
same domain. 

Load balancers can map 
from their respective range to 
discrete destinations.



P2C + FRACTIONAL LOAD

Each load balancer picks two 
coordinates randomly within 
its range and maps them to 
discrete destinations. 

This inherently respects the 
fractional boundary 
conditions.









MULTIPLE SERVICE RINGS



CONTINUOUS COORDINATE MODEL

fair request distribution
with distinct services talking to the same destination ring

distributed
light coordination around metadata to construct rings

fewer sessions
aperture size naturally falls out of representation



DYNAMIC APERTURE SIZE

The aperture can grow/shrink 
so long as the peer ring 
completes whole rotations 
around destination ring. 



RESILIENCY

Nodes are placed closer to 
their final position by inferring 
the size of the ring when 
receiving updates.

peer size heuristics



Changes are buffered and 
combined in order to avoid 
transient ring states.

coalesce updates

RESILIENCY



RESILIENCY

The destination ring is 
pseudo-randomized to avoid any 
synchronization across distinct 
peer rings.

entropy



Production Results



MIGRATION FROM RANDOM APERTURE TO D-APERTURE

RPS PER SERVER / TIME



MIGRATION FROM RANDOM APERTURE TO D-APERTURE

78% reduction in relative standard deviation request rate



MIGRATION FROM RANDOM APERTURE TO D-APERTURE

Drop from ~280K to ~25K aggregate connections (91%)



SECOND-ORDER RESULTS

20-25% less CPU used
Total garbage collection (GC) time cut in half
75% fewer failures
~20% reduction in latency at 99.9th percentile



REDUCTION IN REQUEST RETRIES



LIMITATIONS

bursty traffic
Bursts of traffic break the 
assumption that incoming load is 
‘smooth’.

unequal workloads
If different clients have unequal 
demands of the client we again get 
to unbalanced load on the backend.



FUTURE WORK

flexible node capacity
Some nodes will be better than 
others, heterogeneous 
hardware etc, and we can size 
serving units accordingly.



THIS IS FINE



THIS IS FINE - LOOK MA! I’M INSTANCE 100 OF 90!



As we re-deploy instance 1, instance 3 overflows around the ring.

THIS IS FINE - LOOK MA! I’M INSTANCE 100 OF 90!



THIS IS FINE – UPDATES, SMUPDATES...



Peer Instance 1 Everyone Else

THIS IS FINE – UPDATES, SMUPDATES...



code
github.com/twitter/finagle

We’re hiring – including in Singapore!

attribution
Billy Becker, Marius Eriksen, Daniel Furse, Steve Gury, Eugene 
Ma, Nick Matheson, Moses Nakamura, Kevin Oliver, Brian 
Rutkin, Daniel Schobel


