## facebook

# Using ML to Automate Dynamic Error Categorization

#### Antonio Davoli

Production Engineer, Servers Lifecycle Engineering

## Agenda

- Servers Lifecycle
- Clustering
- SQClusters
- Results and future work

Servers Lifecycle



## Servers Lifecycle

Distributed Jobs Orchestrator for handling server lifecycle stages (e.g. Provisioning)



## Suspended Jobs Queue be like:



## "if you torture the data long enough, it will confess"

#### Moar data!



## Inferring Similarities

Considered all the various data sources we can pull data from, why don't we try to **infer more similarities** that we can exploit to **fix the highest number of servers** in the shorter possible time?

## Clustering

Clustering is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups.

— Wikipedia



## Clustering Algorithms



## SQClusters

#### SQClusters

#### Applying DBSCAN to the Orchestrator Suspend Queue

DBSCAN is a density-based clustering algorithm.

Given a set of points in some space, it groups points that are closely packed together, marking as outliers points that lie alone in low-density regions.



Image Credit: Wikipedia, https://en.wikipedia.prg/DBSCAN

#### DBSCAN

#### Algorithm Internals

Doesn't require to specify the number of clusters, it does have a notion of noise which makes it robust to outliers.

- ε (eps): minimum distance between points in space,
- min\_points: minimum number of points required to form a dense region

#### K-means

#### dbscan



Code for synthetic data: https://scikit-learn.org/stable/auto\_examples/cluster/plot\_cluster\_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py

#### One-Hot Encoding for Categorical Features

Categorical features are substituted by their integer representation.

| Server | Datacenter |  |  |
|--------|------------|--|--|
| I      | Singapore  |  |  |
| 2      | Sweden     |  |  |
| 3      | Ireland    |  |  |



| Server | Datacenter_<br>Singapore | Datacenter_<br>Sweden | Datacenter<br>_Ireland |
|--------|--------------------------|-----------------------|------------------------|
| I      | 1                        | 0                     | 0                      |
| 2      | O                        | 1                     | O                      |
| 3      | O                        | O                     | 1                      |

#### Hash values for clusters identifiers



## SQClusters Pipeline



## Real example of clustering results

| Cluster | Size | Error Message                      | Hostname<br>Scheme | Model    | Datacenter |
|---------|------|------------------------------------|--------------------|----------|------------|
| abc     | 231  | chef_error_msg                     | hadoop             | Model #1 | SGP, SWE   |
| XyZ     | 91   | dhcp_error_msg, pxe_boot_error_msg | cache              | Model #2 | IRL        |

#### Lessons learned

- Structured logging helps (use it, it'll pay back!),
- Spend all the time you need in cleaning your data,
- When you do this sort of exploratory work, listen to your data and make them "confess",
- Using ML tooling is extremely easy to use: dbscan.fit(X)

#### What next?

- Experiments with more clustering algorithms, especially hierarchical approach based on density,
- Improve hashing techniques,
- Extract data on trends analysis and seasonality

## facebook

## Questions?

## facebook

## Thank You!

## Backup: DBSCAN Internals

- NearestNeighbors based (Pair-wise or KD-Tree)
- Depth-first search, very similar to the classic algorithm for computing connected

## Backup: k-means Internals

- Iterative approach (Expectation–Maximization), continues to compute centroids continuously
  - The "cluster center" is the arithmetic mean of all the points belonging to the cluster.