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What should the Transport layer do?  

• Applications send byte streams

• Underlying IP network is stateless

• Devices are of varied capabilities

• Multiple processes need reliable communication 

• Cannot control all the variables

Problems Requirements

• Ordered Segmentation

• Stateful Communication

• Flow Control

• Multiplexing

• Reliability and Congestion Control 



TCP – Architecture



TCP Core concepts

• Ordered Segmentation

• Stateful Communication

• Flow Control

• Multiplexing

• Reliability and Congestion Control 

Requirements How TCP addresses it

• Sequence Numbers

• Connections

• TCP Window Size

• Port Numbers

• Acknowledgements and Retransmissions



TCP Header
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TCP Segments

1011101010111101000010101010100010100100010001000100101010010101010101…

8080 22003

SEQ : 1103

ACK : 2203

Data : 101110101...

8080 22003

SEQ : 1102

ACK : 2202

Data : 101110101…

8080 22003

SEQ : 1101

ACK : 2201

Data : 101110101…



Connection Establishment – 3 way handshake

SYN

SYN, ACK

ACK



TCP Sockets

Application A Application B

TCP Send Buffer TCP Recv Buffer



Flow Control – Sliding Window

Image source : https://www.brianstorti.com/tcp-flow-control/ 



Retransmission
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Enhancements



Slow Start Phase

SEQ: 1101

SEQ: 1102

ACK: 1102

SEQ: 1104 , 1105,1006,1007

SEQ: 1103

ACK: 1103

ACK: 1104

SenderReceiver

cwnd = 1

cwnd = 2

Cwnd=4



Congestion Avoidance

SEQ: 1108 , 1109, 1010, 1011, 1012

SenderReceiver

Cwnd=5

SEQ: 1104 , 1105,1006,1007

Cwnd=4

ACK: 1105,  1106, 1107, 1008



Congestion Control Enhancements

• Slow Start

• Slow start when Congestion window (cwnd) < slow start threshold (ssthresh)

• Typically, ssthresh starts at 65535 bytes.

• cwnd += min (N, SMSS) SMSS – Sender Max Segment Size

• Congestion Avoidance

• Congestion avoidance when cwnd > ssthresh

• On ACK: cwnd += SMSS*SMSS/cwnd

• ssthresh = min(cwnd,rwnd) / 2 when congestion



TCP Slow Start



Fast Retransmission

Retransmission 
timer

SEQ: 1101

SEQ: 1102

ACK: 1102

SEQ: 1102

ACK: 1105

SEQ: 1103, SEQ : 1104

ACK: 1102

ACK: 1102



Fast Recovery

• Receiver sends duplicate ack à Segments have left the network 

• Artificially inflates the cwnd as segments sent are *assumed* to have left network

• cwnd = ssthresh + 3 * SMSS

• Every Additional ack : cwnd = cwnd + SMSS

• When a new segment is acknowledged –

• Cwnd = ssthresh



Loss Recovery Enhancements

• TCP Selective Acknowledgment Options

• Informs the sender about OOR segments received

• Uses the TCP options fields to acknowledge the received segments

• Partial acks

• Aims to reduce the number of duplicate acks needed for retransmit

• Specifically useful for cases of continuous packet loss

• Every partial ack in the gap triggers retransmit of next unacked segment



TCP Tuning



Bandwidth Delay Product

• The amount of data that can be in transit in the network

• Product of Bandwidth and Delay (RTT)

• 1 Mbps X 70ms = 0.88 MByte

• Buffer sizes can be appropriately tuned to gain max utilization of 
bandwidth



Buffers

• TCP Buffer sizes can be tuned for optimal use of Bandwidth

• net.core.rmem_max = 268435456 

• net.core.wmem_max = 268435456 

• net.ipv4.tcp_rmem = 4096 87380 134217728
net.ipv4.tcp_wmem = 4096 65536 134217728



Some more Parameters…

• Enable Selective Ack 
net.ipv4.tcp_sack = 1

• Enable Window Scaling -
net.ipv4.tcp_window_scaling = 1

• MTU probing 
net.ipv4.tcp_mtu_probing = 0



Test Setup



Initial Congestion Window

• Increasing initcwnd can reduce the number of Round Trips thus 
increasing performance



Congestion Control Algorithms

Algorithm What it does best

TCP-Hybla Built for networks with long round trip delays. Window update is based on a 
ratio of current RTT and a reference RTT0.

TCP-Scalable Built for performance on high-speed, wide area networks. Window updates use 
fixed increase and decrease parameters.

TCP-YeaH Built to be fair, efficient, and prevent Lossy-Link penalties. Switches between 
fast and slow modes, based on an estimate of queued packets.

HTCP Built for long distance, high-speed transmission. Window updates are based on 
time since last loss event. This is the default algorithm on our Linux machines.



Site Speed Improvements



The March Ahead



QUIC

• Intended to eventually replace TCP and TLS on the web

• Provides security features like authentication and encryption, that 
are typically handled by a higher layer protocol

• Establishes multiple connections over UDP

• Avoids head of line blocking by using multiple HTTP streams 
mapped to multiple QUIC connections 



SCTP

• TCP provides both reliable data transfer and strict transmission 
ordered delivery of data

• Head-of-line blocking in TCP causes delays

• SCTP is a message based reliable protocol

• Reliable transmission of both ordered and unordered data streams.

• Multihoming support and transparent fail over



Thank You




