
Hello!

Connection Established!

TCP - Architecture, Enhancements &
Tuning

Dinesh Dhakal
Site Reliability Engineer

Today’s
agenda

11:00 Introductions

11:05 Core Functionality

11:15 Enhancements and Extensions

11:30 Tuning of TCP Parameters on Linux

11:40 The March Ahead

11:45 Q&A

Let’s Talk

Video.mp4
Sure, take

this!

The Network Stack

Data Link

Network

Transport

Session

Presentation

Application

PhysicalWire

TCP, UDP

IP, IPX

Ethernet

HTTP, Telnet,
FTP, etc.

What should the Transport layer do?

• Applications send byte streams

• Underlying IP network is stateless

• Devices are of varied capabilities

• Multiple processes need reliable communication

• Cannot control all the variables

Problems Requirements

• Ordered Segmentation

• Stateful Communication

• Flow Control

• Multiplexing

• Reliability and Congestion Control

TCP – Architecture

TCP Core concepts

• Ordered Segmentation

• Stateful Communication

• Flow Control

• Multiplexing

• Reliability and Congestion Control

Requirements How TCP addresses it

• Sequence Numbers

• Connections

• TCP Window Size

• Port Numbers

• Acknowledgements and Retransmissions

TCP Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

DATA OFFSET RESERVED
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

WINDOW

CHECKSUM URGENT POINTER

OPTIONS

TCP Segments

1011101010111101000010101010100010100100010001000100101010010101010101…

8080 22003

SEQ : 1103

ACK : 2203

Data : 101110101...

8080 22003

SEQ : 1102

ACK : 2202

Data : 101110101…

8080 22003

SEQ : 1101

ACK : 2201

Data : 101110101…

Connection Establishment – 3 way handshake

SYN

SYN, ACK

ACK

TCP Sockets

Application A Application B

TCP Send Buffer TCP Recv Buffer

Flow Control – Sliding Window

Image source : https://www.brianstorti.com/tcp-flow-control/

Retransmission

Retransmission
timer

SEQ: 1101

SEQ: 1102

ACK: 1101

SEQ: 1102

ACK: 1102

Enhancements

Slow Start Phase

SEQ: 1101

SEQ: 1102

ACK: 1102

SEQ: 1104 , 1105,1006,1007

SEQ: 1103

ACK: 1103

ACK: 1104

SenderReceiver

cwnd = 1

cwnd = 2

Cwnd=4

Congestion Avoidance

SEQ: 1108 , 1109, 1010, 1011, 1012

SenderReceiver

Cwnd=5

SEQ: 1104 , 1105,1006,1007

Cwnd=4

ACK: 1105, 1106, 1107, 1008

Congestion Control Enhancements

• Slow Start

• Slow start when Congestion window (cwnd) < slow start threshold (ssthresh)

• Typically, ssthresh starts at 65535 bytes.

• cwnd += min (N, SMSS) SMSS – Sender Max Segment Size

• Congestion Avoidance

• Congestion avoidance when cwnd > ssthresh

• On ACK: cwnd += SMSS*SMSS/cwnd

• ssthresh = min(cwnd,rwnd) / 2 when congestion

TCP Slow Start

Fast Retransmission

Retransmission
timer

SEQ: 1101

SEQ: 1102

ACK: 1102

SEQ: 1102

ACK: 1105

SEQ: 1103, SEQ : 1104

ACK: 1102

ACK: 1102

Fast Recovery

• Receiver sends duplicate ack à Segments have left the network

• Artificially inflates the cwnd as segments sent are *assumed* to have left network

• cwnd = ssthresh + 3 * SMSS

• Every Additional ack : cwnd = cwnd + SMSS

• When a new segment is acknowledged –

• Cwnd = ssthresh

Loss Recovery Enhancements

• TCP Selective Acknowledgment Options

• Informs the sender about OOR segments received

• Uses the TCP options fields to acknowledge the received segments

• Partial acks

• Aims to reduce the number of duplicate acks needed for retransmit

• Specifically useful for cases of continuous packet loss

• Every partial ack in the gap triggers retransmit of next unacked segment

TCP Tuning

Bandwidth Delay Product

• The amount of data that can be in transit in the network

• Product of Bandwidth and Delay (RTT)

• 1 Mbps X 70ms = 0.88 MByte

• Buffer sizes can be appropriately tuned to gain max utilization of
bandwidth

Buffers

• TCP Buffer sizes can be tuned for optimal use of Bandwidth

• net.core.rmem_max = 268435456

• net.core.wmem_max = 268435456

• net.ipv4.tcp_rmem = 4096 87380 134217728
net.ipv4.tcp_wmem = 4096 65536 134217728

Some more Parameters…

• Enable Selective Ack
net.ipv4.tcp_sack = 1

• Enable Window Scaling -
net.ipv4.tcp_window_scaling = 1

• MTU probing
net.ipv4.tcp_mtu_probing = 0

Test Setup

Initial Congestion Window

• Increasing initcwnd can reduce the number of Round Trips thus
increasing performance

Congestion Control Algorithms

Algorithm What it does best

TCP-Hybla Built for networks with long round trip delays. Window update is based on a
ratio of current RTT and a reference RTT0.

TCP-Scalable Built for performance on high-speed, wide area networks. Window updates use
fixed increase and decrease parameters.

TCP-YeaH Built to be fair, efficient, and prevent Lossy-Link penalties. Switches between
fast and slow modes, based on an estimate of queued packets.

HTCP Built for long distance, high-speed transmission. Window updates are based on
time since last loss event. This is the default algorithm on our Linux machines.

Site Speed Improvements

The March Ahead

QUIC

• Intended to eventually replace TCP and TLS on the web

• Provides security features like authentication and encryption, that
are typically handled by a higher layer protocol

• Establishes multiple connections over UDP

• Avoids head of line blocking by using multiple HTTP streams
mapped to multiple QUIC connections

SCTP

• TCP provides both reliable data transfer and strict transmission
ordered delivery of data

• Head-of-line blocking in TCP causes delays

• SCTP is a message based reliable protocol

• Reliable transmission of both ordered and unordered data streams.

• Multihoming support and transparent fail over

Thank You

