
Linux memory management at scale

Chris Down (github: cdown)
Kernel Engineering, Facebook



■ Give you the knowledge to make better use of memory
■ Be able to build more resilient systems through resource control
■ Bust some common misconceptions about memory management





server



Who uses cgroups?

cgroups

runc

Docker
(libcontainer) rkt

LXC

YARN (Hadoop)

OpenVZsystemd

Tupperware (FB)



Image: Spc. Christopher Hernandez, US Military Public Domain



Image: Simon Law on Flickr, CC-BY-SA







Image: Orion J on Wikimedia Commons, CC-BY

■ Memory is divided in to multiple “types”: anon, cache, buffers, sockets, etc
■ “Reclaimable” or “unreclaimable” is important, but not guaranteed
■ RSS is kinda bullshit, sorry



bit.ly/whyswap

■ Swap isn’t about emergency memory, in fact that’s probably harmful
■ Instead, it increases reclaim equality and reliability of forward progress of the system
■ Also promotes maintaining a small positive pressure (similar to make -j cores+1)



■ OOM killer is reactive, not proactive, based on reclaim failure
■ Hotness obscured by MMU (pte_young), we don’t know we’re OOMing ahead of time
■ Can be very, very late to the party, and sometimes go to the wrong party entirely



■ kswapd reclaim: background, started when resident pages goes above a threshold
■ Direct reclaim: blocks application when have no memory available to allocate frames
■ Tries to reclaim the coldest pages first
■ Some things might not be reclaimable. Swap can help here (bit.ly/whyswap)



“If I had more of this resource, I could probably run N% faster”

■ Find bottlenecks
■ Detect workload health issues before they become severe
■ Used for resource allocation, load shedding, pre-OOM detection

root@web # cat /sys/fs/cgroup/system.slice/memory.pressure
some avg10=0.21 avg60=0.22 avg300=0.19 total=4760988587
full avg10=0.21 avg60=0.22 avg300=0.19 total=4681731696



bit.ly/fboomd

■ Early-warning OOM detection and handling using new memory pressure metrics
■ Highly configurable policy/rule engine
■ Workload QoS and context-aware decisions





io.latency
■ Best-effort avg (or p90) completion latency guarantee
■ More work-conserving — can do as much IO as you like, if you don’t affect others
■ Supports do-first-pay-later “credit card” approach



Shift to “protection” mentality

■ Limits (eg. memory.{high,max}) really don’t compose well
■ Prefer protection (memory.{low,min}) if possible
■ Protections affect memory reclaim behaviour



fbtax2

■ Workload protection: Prevent non-critical services degrading main workload
■ Host protection: Degrade gracefully if machine cannot sustain workload
■ Usability: Avoid introducing performance or operational costs



fbtax2

Base OS

Filesystems

Swap

Kernel tunables
…

cgroup v2
Default hierarchy

Resource configuration

Applications
oomd

cgroup_stats



Base OS

■ btrfs as /
■ ext4 has priority inversions
■ All metadata is annotated

■ Swap
■ Yes, you really still want it (bit.ly/whyswap)
■ Allows memory pressure to build up gracefully
■ Usually disabled on main workload
■ btrfs swap file support to avoid tying to provisioning

■ Kernel tunables
■ vm.swappiness
■ Writeback throttling (wbt)



fbtax2 cgroup hierarchy: old

web

system.slice
memory.high: 8G
memory.max: 10G

Chef

hostcritical.slice
sshd

syslog

workload.slice

workload-container.slice HHVM (webserver/Hack VM)

workload-support.slice
Service discovery daemon

Configuration service



fbtax2 cgroup hierarchy

web

system.slice
io.latency: 75ms Chef

hostcritical.slice
memory.min: 352M
io.latency: 50ms

sshd

syslog

workload.slice
memory.low: 17G
io.latency: 50ms

workload-container.slice
memory.low: max HHVM (webserver/Hack VM)

workload-support.slice
memory.low: 2.5G

Service discovery daemon

Configuration service



webservers: protection against memory starvation





Try it out: bit.ly/fbtax2




	

