28

CLOUDFLARE

The definitive guide to make software fail
on ARM64

lgnat Korchagin @secumod

$ whoami

e Performance and security at Cloudflare
e Passionate about security and crypto

e Enjoy low level programming

LLLLLLLLLLL

Initial ARM64 integration

Initial integratlon in the DC
» © ©

LLLLLLLLLL

Consider your developers

CLOUDFLARE’

Building packages for ARM64

production arch != developer arch

LLLLLLLLLLL

Building packages for ARM64

CLOUDFLARE

Compiler

mysrc.c

~

CLOUDFLARE’

Compiler

mysrc.c

28

CLOUDFLARE’

Compiler

mysrc.c

28

CLOUDFLARE’

Compiler

mysrc.c

28

CLOUDFLARE’

Compiler

mysrc.c

28

CLOUDFLARE’

Compiler

mysrc.c

28

CLOUDFLARE’

Cross-compiler

mysrc.c

28

CLOUDFLARE’

Cross-compiler

mysrc.c

28

CLOUDFLARE’

Cross-compiler

mysrc.c

28

CLOUDFLARE’

Cross-compiler

mysrc.c

28

CLOUDFLARE’

Cross-compiler

mysrc.c

28

CLOUDFLARE’

Cross-compiler terminology

e host - architecture, where the compiler
runs

22

CLOUDFLARE’

Cross-compiler terminology

e host - architecture, where the compiler

runs
e target - architecture, for which the

compiler generates machine code

LLLLLLLLLLL

Cross-compiler terminology

e host - architecture, where the compiler
runs

e target - architecture, for which the
compiler generates machine code

e when host == target, it is “native”

compilation
o subset of a more general cross-compilation

22

CLOUDFLARE’

cross-compiling example

ignat@dev:~$ gcc -static -o mybin mysrc.c

22

CLOUDFLARE’

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c
ignat@dev:~$ readelf -h mybin | grep -i machine

Machine: Advanced Micro Devices X86-64

22

CLOUDFLARE’

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c
ignat@dev:~$ readelf -h mybin | grep -i machine
Machine: Advanced Micro Devices X86-64
ignat@dev:~$./mybin
Hello, world!

22

CLOUDFLARE’

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c
ignat@dev:~$ readelf -h mybin | grep -i machine
Machine: Advanced Micro Devices X86-64
ignat@dev:~$./mybin
Hello, world!

ignat@dev:~$ aarch64-linux-gnu-gcc -static -o mybin mysrc.c

22

CLOUDFLARE’

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c
ignat@dev:~$ readelf -h mybin | grep -i machine
Machine: Advanced Micro Devices X86-64
ignat@dev:~$./mybin
Hello, world!
ignat@dev:~$ aarch64-linux-gnu-gcc -static -o mybin mysrc.c
ignat@dev:~$ readelf -h mybin | grep -i machine

Machine: AArch64

22

CLOUDFLARE’

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c
ignat@dev:~$ readelf -h mybin | grep -i machine
Machine: Advanced Micro Devices X86-64
ignat@dev:~$./mybin
Hello, world!
ignat@dev:~$ aarch64-linux-gnu-gcc -static -o mybin mysrc.c
ignat@dev:~$ readelf -h mybin | grep -i machine
Machine: AArché64
ignat@dev:~$./mybin

bash: ./mybin: cannot execute binary file: Exec format error

22

CLOUDFLARE’

Compile time problems

Common misconception

ASSEMBLY

22

CLOUDFLARE’

CC: hardcoded architecture-specific flags

Symptom:
e broken both native and cross builds

22

CLOUDFLARE’

CC: hardcoded architecture-specific flags

Symptom:
e broken both native and cross builds

® gcc: error: unrecognized command line option ‘-msse2’

22

CLOUDFLARE’

CC: hardcoded architecture-specific flags

Symptom:

e broken both native and cross builds

® gcc: error: unrecognized command line option ‘-msse2’
Cause:

e hardcoded architecture-specific flags in the build
system

22

CLOUDFLARE’

CC: hardcoded architecture-specific flags

Symptom:
e broken both native and cross builds

® gcc: error: unrecognized command line option ‘-msse2’

Cause:

e hardcoded architecture-specific flags in the build
system

® CFLAGS := .. -msse2 .. O CFLAGS += -msee2 ..

22

CLOUDFLARE’

CC: hardcoded architecture-specific flags

Developers:

e put architecture-specific flags in a separate variable,
one for each architecture

22

CLOUDFLARE’

CC: hardcoded architecture-specific flags

Developers:

e put architecture-specific flags in a separate variable,
one for each architecture

Makefile

TARGET ARCH := .. # somehow identify the target architecture
CFLAGS x86 64 := -msse2 ..

CFLAGS aarch64 := -mabi=lp64 ..

TARGET CFLAGS += CFLAGS_$ (TARGET ARCH)

22

CLOUDFLARE’

CC: no separation between host and target flags

Symptom:
e broken cross build

22

CLOUDFLARE

CC: no separation between host and target flags

Symptom:
e broken cross build

e usually happens, when the compiler output needs
additional post-processing (ex. format conversion)

22

CLOUDFLARE’

CC: no separation between host and target flags

Symptom:
e broken cross build
e usually happens, when the compiler output needs

additional post-processing (ex. format conversion)
e post-processing tool source is part of the project

22

CLOUDFLARE’

CC: no separation between host and target flags

Symptom:

e broken cross build

e usually happens, when the compiler output needs
additional post-processing (ex. format conversion)

e post-processing tool source is part of the project

® gcc: error: unrecognized command line option ‘-msse2’

22

CLOUDFLARE’

CC: no separation between host and target flags

sources

-

CLOUDFLARE’

CC: no separation between host and target flags
@

$(TARGET_CFLAGS)
sources >

-

CLOUDFLARE’

CC: no separation between host and target flags

$(TARGET_CFLAGS) @ e
sources - | inte _ ediate
artifacts

8-

CLOUDFLARE’

CC: no separation between host and target flags

$(TARGET_CFLAGS) @ e
sources - | inte _ ediate
artifacts

tool
sources

8-

CLOUDFLARE’

CC: no separation between host and target flags

$(TARGET_CFLAGS) @ e
sources - | inte _ ediate
artifacts

9,

tool $(HOST_CFLAGS)
sources

-

CLOUDFLARE’

CC: no separation between host and target flags

$(TARGET_CFLAGS) @ e
sources - | inte _ ediate
artifacts
tool S(HOSTCFLAGS) | @ | additional
sources tools

-

CLOUDFLARE’

CC: no separation between host and target flags

$(TARGET_CFLAGS) @ e
sources - | inte _ ediate
artifacts

®

tool $(HOST_CFLAGS) (:) | additional
sources tools

-

CLOUDFLARE’

CC: no separation between host and target flags

$(TARGET_CFLAGS) @ . .
sources - N mterr_nedlate
artifacts

®

tool $(HOST_CFLAGS) (:) | additional
sources tools

®

final
artifacts

8-

CLOUDFLARE’

CC: no separation between host and target flags

Cause:

e $(CFLAGS) use instead of $ (TARGET CFLAGS) and
S (HOST CFLAGS)

22

CLOUDFLARE’

CC: no separation between host and target flags

Cause:

e $(CFLAGS) useinstead of $ (TARGET CFLAGS) and
S (HOST CFLAGS)

e use of some $ (ADDITIONAL CFLAGS) which are
based either only on the target or the host

o see the usage of $ (WORKAROUND CFLAGS) in the iPXE build
system: https://github.com/ipxe/ipxe

—

CLOUDFLARE’

CC: no separation between host and target flags

$(TARGET_CFLAGS) @ e
sources - | inte _ ediate
artifacts

®@

tool $(HOST_CFLAGS) @ | additional
sources tools

®

WORKAROUND CFLAGS := .. # based on target

TARGET CFLAGS += $ (WORKAROUND CFLAGS) LA

. final
HOST CFLAGS += $ (WORKAROUND CFLAGS) artifacts

-

CLOUDFLARE’

CC: no separation between host and target flags

Developers:

e put architecture-specific flags in a separate variable,
one for each architecture

22

CLOUDFLARE’

CC: no separation between host and target flags

Developers:

e put architecture-specific flags in a separate variable,
one for each architecture
e always prefix any compiler/linker options with

TARGET Of HOST

O SHHWORKARGHNB—EFEAGSY, S (TARGET WORKAROUND CFLAGS)
and $ (HOST WORKAROUND CFLAGS)

o use $(COMMON CFLAGS) if needed

22

CLOUDFLARE’

CC: no separation between host and target flags

DevOps:

e provide the tools/support to test cross-compilation in
the Cl

O x86 to arm64 is generally a good start

22

CLOUDFLARE’

CC: no separation between host and target flags

DevOps:

e provide the tools/support to test cross-compilation in
the Cl
O x86 to arm64 is generally a good start

e lint project build systems for non-prefixed variable
definitions

22

CLOUDFLARE’

Slower build

22

CLOUDFLARE’

times - it's a feature!

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

MY CODE'S COMPILING.

HEY! GET BACK
T0 \JORK'

\‘i

OH CARRY ON.

CC: reuse of host binaries in target artifacts

Symptom:
e broken artifacts

CC: reuse of host binaries in target artifacts

Symptom:
e broken artifacts

e usually happens, when the compiler output needs
additional post-processing (ex. format conversion)

22

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

Symptom:
e Dbroken artifacts
e usually happens, when the compiler output needs

additional post-processing (ex. format conversion)
e post-processing tool source is part of the project

22

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

Symptom:

e Dbroken artifacts

e usually happens, when the compiler output needs
additional post-processing (ex. format conversion)

e post-processing tool source is part of the project
e post-processing tool is also released as an artifact

22

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

Symptom:

e Dbroken artifacts

e usually happens, when the compiler output needs
additional post-processing (ex. format conversion)

e post-processing tool source is part of the project
e post-processing tool is also released as an artifact

® /fixdep: cannot execute binary file: Exec format error

22

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

Cause:
e incorrect usage of $ (HOST CC) VS $ (TARGET CC)

22

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

Cause:

e incorrect usage of $ (HOST CC) VS $ (TARGET CC)

e incorrect build dependency declaration
o “make” may consider the dependency, built with
$ (HOST ccC) already satisfied, when doing the target build
and not rebuild it with $ (TARGET cCC)

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

Cause:

e incorrect usage of $ (HOST CC) VS $ (TARGET CC)

e incorrect build dependency declaration
o “make” may consider the dependency, built with
$ (HOST ccC) already satisfied, when doing the target build
and not rebuild it with $ (TARGET cCC)

e example: vanilla Linux kernel Debian packaging
o broken “linux-headers” .deb package when cross-compiling

CLOUDFLARE

CC: reuse of host binaries in target artifacts

$(TARGET_CFLAGS) @ . .
sources - N mterr_nedlate
artifacts

®

tool $(HOST_CFLAGS) (:) | additional
sources tools

®

final
artifacts

8-

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

sources

tool
sources

|| intermediate

o -

-

CLOUDFLARE’

artifacts

®@

$(HOST_CFLAGS) - @

| additional
tools

® O,

final
artifacts

© g

CC: reuse of host binaries in target artifacts
@ ®

$(TARGET_CFLAGS)

.| intermediate

sources - target gcc artifacts
$(HOST_CFLAGS) @ iti
tool host goc additional
sources fools

example: tools to build modules in Linux

used on host, when doing the main build

packaged into “linux-headers” .deb package @ ‘
./fixdep: cannot execute binary file: final extra

Exec format error artifacts packaging

22

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

Developers:

e ensure all target artifacts are processed with
S (TARGET CC)

22

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

Developers:

e ensure all target artifacts are processed with

S (TARGET CC)
e put host and target output in different directories
o clearly shows which artifacts are not compiled either for
host or target architecture
o ensures “make” does not consider target dependency
satisfied, if only the host version was built, because of

different filesystem paths
-

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

DevOps:

e provide the tools/support to test cross-compilation in
the Cl

O x86 to arm64 is generally a good start

22

CLOUDFLARE’

CC: reuse of host binaries in target artifacts

DevOps:

e provide the tools/support to test cross-compilation in
the Cl

O x86 to arm64 is generally a good start

e inspect the final artifacts for anomalies
o for example, there should be no x86 executables in the
armé4 .deb package

22

CLOUDFLARE’

Runtime problems

Out of memory with plenty of memory

Symptom:
e the process complains about not being able to
allocate memory

22

CLOUDFLARE’

Out of memory with plenty of memory

Symptom:
e the process complains about not being able to

allocate memory
e thereis plenty of free memory in the system

22

CLOUDFLARE’

Out of memory with plenty of memory

Symptom:
e the process complains about not being able to
allocate memory

e thereis plenty of free memory in the system

e the process is using mmap syscall for file 1/0
o most database workloads

22

CLOUDFLARE’

Out of memory with plenty of memory

Symptom:
e the process complains about not being able to

allocate memory
e thereis plenty of free memory in the system

e the process is using mmap syscall for file 1/0
o most database workloads

® ENOMEM: Cannot allocate memory

22

CLOUDFLARE’

32-bit vs 64-bit

e 32-bit allows to address only up to 4GB

LLLLLLLLLLL

32-bit vs 64-bit

e 32-bit allows to address only up to 4GB

e 64-bit allows to address up to
17179869184GB

o or“more than enough...”

LLLLLLLLLLL

CLOUDFLARE’

Linux process virtual memory map (x86)

user-space
(0000000000000000-0x00007L£E££EL£Ef£EEL)

huge hole

kernel
(Oxf£££800000000000-Oxftfffffffffffffff)

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

22

CLOUDFLARE’

Linux process virtual memory map

e actually you can have only 47-bit

addresses in user-space on x86_64

o soitisonly 131072GB compared to promised
17179869184GB

22

CLOUDFLARE’

Linux process virtual memory map

e actually you can have only 47-bit

addresses in user-space on x86_64

o soitisonly 131072GB compared to promised
17179869184GB

e 0N arm64 you get only 39-bit addresses if

you take Linux defaults
o only 512GB addressable space

https://www.kernel.org/doc/Documentation/armé64/memory.txt

22

CLOUDFLARE’

Linux process virtual memory map

Developers:
e tryto avoid using unbounded memory mappings

22

CLOUDFLARE’

Linux process virtual memory map

Developers:

e tryto avoid using unbounded memory mappings
e tryto identify the upper bound of the user-space
addressable space and compare to the mapped file size

22

CLOUDFLARE’

Linux process virtual memory map

Developers:

e tryto avoid using unbounded memory mappings
e tryto identify the upper bound of the user-space
addressable space and compare to the mapped file size

DevOps:

e make sure to review your second architecture kernel

memory layout config
o you might need to recompile the kernel

22

CLOUDFLARE’

Linux process virtual memory map (cont.)

e recompiled the arm64 kernel with 48-bit
user-space addresses (256TB space)

LLLLLLLLLLL

Linux process virtual memory map (cont.)

e recompiled the arm64 kernel with 48-bit
user-space addresses (256TB space)

e some workloads started to crash
randomly

LLLLLLLLLLL

Linux process virtual memory map (cont.)

e recompiled the arm64 kernel with 48-bit
user-space addresses (256TB space)
e some workloads started to crash

randomly
e traced down to Lua code

LLLLLLLLLLL

Lua)IT lightuserdata

e simple “efficient” C-interface

LLLLLLLLLLL

Lua)IT lightuserdata

e simple “efficient” C-interface
e operates directly on C-pointers

LLLLLLLLLLL

Lua)IT lightuserdata

e simple “efficient” C-interface
e operates directly on C-pointers
e uses (supposedly unused) upper bits of

the address to store some metadata
O OxO00007ftffffffffft

https://github.com/LuajIT/LuajIT/blob/f5d424afe8b9395f0df05aba905e0e1f6a2262b8/src/lj_obj.h#L173-L193

22

CLOUDFLARE’

LuaJIT lightuserdata assumptions

8-

CLOUDFLARE’

173
174
175
176
178

179

ol el
O O O O
()

w N =

=

/%
Xk
k%
k%
k%
Xk
Xk
k%
k%
Xk
Xk
Xk
k%
k%
Xk
k%
Xk
k%
k%
Xk
*/

Internal object tags.

Internal tags overlap the MSW of a number object (must be a double).
Interpreted as a double these are special NaNs. The FPU only generates

one type of NaN (oxfff8_0000_0000_0000). So MSWs > 0xfff80000 are available
for use as internal tags. Small negative numbers are used to shorten the
encoding of type comparisons (reg/mem against sign-ext. 8 bit immediate).

——-MSW———. ——LSW——
primitive types | itype | |
lightuserdata | itype | wvoid x | (32 bit platforms)
lightuserdata |ffff| void * | (64 bit platforms, 47 bit pointers)
GC objects | itype | GCRef |
int (LJ_DUALNUM)| itype | int |
number double
ORDER LJ_T
Primitive types nil/false/true must be first, lightuserdata next.

GC objects are at the end, table/userdata must be lowest.
Also check lj_ir.h for similar ordering constraints.

Linux process virtual memory

Developers:

e state assumptions in code, not comments
o check assumptions early and error out with a meaningful
error message

22

CLOUDFLARE’

Linux process virtual memory

Developers:

e state assumptions in code, not comments
o check assumptions early and error out with a meaningful
error message
e don't over optimise
o provide a fallback (less optimal) generic implementation

22

CLOUDFLARE’

Linux process virtual memory

Developers:

e state assumptions in code, not comments
o check assumptions early and error out with a meaningful
error message
e don't over optimise
o provide a fallback (less optimal) generic implementation

DevOps:
e ditto

22

CLOUDFLARE’

Pagesize

WHEN YOU NEED
TO OPTIMISE SOMETHING

‘\
- & ‘
’ (.

- N ‘
Ll H

22

CLOUDFLARE’

Pagesize

e a minimum discrete block of volatile
memory

22

CLOUDFLARE’

Pagesize

e a minimum discrete block of volatile
memory

e many database-like workloads try to keep

track of allocated pages
o faster mMmemaory aCCcess

o avoid memory fragmentation
o efficient memory reuse

22

CLOUDFLARE’

Pagesize

Symptom:
e the process uses much more memory on secondary
architecture

22

CLOUDFLARE’

Pagesize

Symptom:
e the process uses much more memory on secondary

architecture

e otherwise, working as intended
o although it depends how aggressive the code is with
memory management

22

CLOUDFLARE’

Pagesize

Cause:
e the process has hardcoded page size in code

22

CLOUDFLARE’

Pagesize

Cause:

e the process has hardcoded page size in code

e the target architecture has a different page size
o arm64 may have 4k, 16k or 64k pages

https://www.kernel.org/doc/Documentation/armé64/memory.txt

22

CLOUDFLARE’

Pagesize 4k

——

page 1 [~ page 2 [t page 3

__

CLOUDFLARE’

Pagesize 16k

——

page 1 [~ page 2 [t page 3

__

CLOUDFLARE’

Pagesize

Developers:

+—Hdefirre—PAGE—STEE
o ~14k+ exact matches on GitHub

22

CLOUDFLARE’

Pagesize

Developers:
+—Hdefirre—PAGE—STEE
o ~14k+ exact matches on GitHub
® long page size = sysconf(SC PAGESIZE) ;

22

CLOUDFLARE’

Pagesize

Developers:
+—Hdefirre—PAGE—STEE
o ~14k+ exact matches on GitHub
® long page size = sysconf(SC PAGESIZE) ;

DevOps:

e monitor process memory usage on different architectures

22

CLOUDFLARE’

Filesystem block size

e like pagesize, but for files

Filesystem block size

e like pagesize, but for files
e Minimum amount any piece of data can occupy

on disk, so determines physical file size
o even 1 byte file will occupy at least “block” bytes

22

CLOUDFLARE’

Filesystem block size

e like pagesize, but for files

e minimum amount any piece of data can occupy
on disk, so determines physical file size
o even 1 byte file will occupy at least “block” bytes

e multiple of the underlying block device block size
o typical values are 512 bytes or 4k

22

CLOUDFLARE’

Filesystem block size

e like pagesize, but for files

e Minimum amount any piece of data can occupy
on disk, so determines physical file size
o even 1 byte file will occupy at least “block” bytes

e multiple of the underlying block device block size
o typical values are 512 bytes or 4k

e mostly useful for sparse files

https://en.wikipedia.org/wiki/Sparse_file

22

CLOUDFLARE’

Sparse files

Holes - Sparse Zeros
which don't occupy physical disk space

Areas with Real Data
which occupy physical disk space

Logical File Size

é Physical File Size

CLOUDFLARE’

Filesystem block size

Symptom:

e the sparse file test fails on arm64
o https://github.com/capnproto/capnproto

22

CLOUDFLARE’

https://github.com/capnproto/capnproto

Filesystem block size

Symptom:

e the sparse file test fails on arm64
o https://github.com/capnproto/capnproto

e the test fails only, when the test suite is run from
tmpfs

22

CLOUDFLARE’

https://github.com/capnproto/capnproto

Filesystem block size

Cause:
e the process has hardcoded block size in code

22

CLOUDFLARE’

Filesystem block size

Cause:

e the process has hardcoded block size in code

e on memory-backed filesystems block size == page
Size
o arm64 may have 4k, 16k or 64k pages

https://www.kernel.org/doc/Documentation/armé64/memory.txt

22

CLOUDFLARE’

Filesystem block size

Developers:
o—fctefirmre—BFOCK—STIZEE—406596

22

CLOUDFLARE’

Filesystem block size

Developers:

e fime—BHOCK—STEE—40656

O Stat(“/the/flle” &stats); blksize t
stats.st blksize;

block_51ze

22

CLOUDFLARE’

Conclusions

e even “portable” code with no assembly can fail in
many ways on a different architecture

e for developers:
o don't over optimise, provide falloack implementations
o don'trely on assumptions and test them in code if you have to
o provide meaningful error messages

e for devops:
o ensure the Cl environment can test diverse architectures and
configurations
o provide tools/linters to enforce best-practices in code and build
scripts

22

CLOUDFLARE’

ARM®64 in production

-

CLOUDFLARE’

Thank you!

