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$ whoami

● Performance and security at Cloudflare

● Passionate about security and crypto

● Enjoy low level programming
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Consider your developers
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Cross-compiler terminology

● host - architecture, where the compiler 
runs

● target - architecture, for which the 
compiler generates machine code

● when host == target, it is “native” 
compilation
○ subset of a more general cross-compilation
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cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

  Machine:                           Advanced Micro Devices X86-64

ignat@dev:~$ ./mybin

Hello, world!

ignat@dev:~$ aarch64-linux-gnu-gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

  Machine:                           AArch64

ignat@dev:~$ ./mybin

bash: ./mybin: cannot execute binary file: Exec format error



Compile time problems



Common misconception
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Symptom:
● broken both native and cross builds
● gcc: error: unrecognized command line option ‘-msse2’

Cause:
● hardcoded architecture-specific flags in the build 

system
● CFLAGS := … -msse2 … or CFLAGS += -msee2 …
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CC: hardcoded architecture-specific flags

Developers:
● put architecture-specific flags in a separate variable, 

one for each architecture
# Makefile

TARGET_ARCH := … # somehow identify the target architecture

CFLAGS_x86_64 := -msse2 …

CFLAGS_aarch64 := -mabi=lp64 …

TARGET_CFLAGS += CFLAGS_$(TARGET_ARCH)
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Symptom:
● broken cross build
● usually happens, when the compiler output needs 

additional post-processing (ex. format conversion)
● post-processing tool source is part of the project
● gcc: error: unrecognized command line option ‘-msse2’
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CC: no separation between host and target flags

Cause:
● $(CFLAGS) use instead of $(TARGET_CFLAGS) and 

$(HOST_CFLAGS)
● use of some $(ADDITIONAL_CFLAGS) which are 

based either only on the target or the host
○ see the usage of $(WORKAROUND_CFLAGS)in the iPXE build 

system: https://github.com/ipxe/ipxe
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WORKAROUND_CFLAGS := … # based on target
...
TARGET_CFLAGS += $(WORKAROUND_CFLAGS)
...
HOST_CFLAGS += $(WORKAROUND_CFLAGS)



CC: no separation between host and target flags

Developers:
● put architecture-specific flags in a separate variable, 

one for each architecture



CC: no separation between host and target flags

Developers:
● put architecture-specific flags in a separate variable, 

one for each architecture
● always prefix any compiler/linker options with 

TARGET_ or HOST_
○ $(WORKAROUND_CFLAGS), $(TARGET_WORKAROUND_CFLAGS) 

and $(HOST_WORKAROUND_CFLAGS)
○ use $(COMMON_CFLAGS) if needed
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CC: no separation between host and target flags

DevOps:
● provide the tools/support to test cross-compilation in 

the CI
○ x86 to arm64 is generally a good start

● lint project build systems for non-prefixed variable 
definitions



Slower build times - it’s a feature!
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CC: reuse of host binaries in target artifacts

Symptom:
● broken artifacts
● usually happens, when the compiler output needs 

additional post-processing (ex. format conversion)
● post-processing tool source is part of the project
● post-processing tool is also released as an artifact
● ./fixdep: cannot execute binary file: Exec format error
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Cause:
● incorrect usage of $(HOST_CC) vs $(TARGET_CC)
● incorrect build dependency declaration

○ “make” may consider the dependency, built with 
$(HOST_CC) already satisfied, when doing the target build 
and not rebuild it with $(TARGET_CC)

● example: vanilla Linux kernel Debian packaging
○ broken “linux-headers” .deb package when cross-compiling

CC: reuse of host binaries in target artifacts
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4
● example: tools to build modules in Linux
● used on host, when doing the main build
● packaged into “linux-headers” .deb package
● ./fixdep: cannot execute binary file: 

Exec format error



Developers:
● ensure all target artifacts are processed with 

$(TARGET_CC)
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Developers:
● ensure all target artifacts are processed with 

$(TARGET_CC)
● put host and target output in different directories

○ clearly shows which artifacts are not compiled either for 
host or target architecture

○ ensures “make” does not consider target dependency 
satisfied, if only the host version was built, because of 
different filesystem paths

CC: reuse of host binaries in target artifacts
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DevOps:
● provide the tools/support to test cross-compilation in 

the CI
○ x86 to arm64 is generally a good start

● inspect the final artifacts for anomalies
○ for example, there should be no x86 executables in the 

arm64 .deb package

CC: reuse of host binaries in target artifacts
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Out of memory with plenty of memory

Symptom:
● the process complains about not being able to 

allocate memory
● there is plenty of free memory in the system
● the process is using mmap syscall for file I/O

○ most database workloads
● ENOMEM: Cannot allocate memory
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32-bit vs 64-bit

● 32-bit allows to address only up to 4GB

● 64-bit allows to address up to 
17179869184GB
○ or “more than enough…”



The cake is a lie



Linux process virtual memory map (x86)
user-space

(0000000000000000-0x00007fffffffffff)

huge hole

kernel
(0xffff800000000000-0xffffffffffffffff)

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt



● actually you can have only 47-bit 
addresses in user-space on x86_64
○ so it is only 131072GB compared to promised 

17179869184GB
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● actually you can have only 47-bit 
addresses in user-space on x86_64
○ so it is only 131072GB compared to promised 

17179869184GB

● on arm64 you get only 39-bit addresses if 
you take Linux defaults
○ only 512GB addressable space

Linux process virtual memory map

https://www.kernel.org/doc/Documentation/arm64/memory.txt



Developers:
● try to avoid using unbounded memory mappings
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Developers:
● try to avoid using unbounded memory mappings
● try to identify the upper bound of the user-space 

addressable space and compare to the mapped file size

DevOps:
● make sure to review your second architecture kernel 

memory layout config
○ you might need to recompile the kernel

Linux process virtual memory map



● recompiled the arm64 kernel with 48-bit 
user-space addresses (256TB space)

Linux process virtual memory map (cont.)
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● recompiled the arm64 kernel with 48-bit 
user-space addresses (256TB space)

● some workloads started to crash 
randomly

● traced down to Lua code

Linux process virtual memory map (cont.)
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● simple “efficient” C-interface
● operates directly on C-pointers
● uses (supposedly unused) upper bits of 

the address to store some metadata
○ 0x00007fffffffffff

LuaJIT lightuserdata

https://github.com/LuaJIT/LuaJIT/blob/f5d424afe8b9395f0df05aba905e0e1f6a2262b8/src/lj_obj.h#L173-L193



LuaJIT lightuserdata assumptions
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Developers:
● state assumptions in code, not comments

○ check assumptions early and error out with a meaningful 
error message

● don’t over optimise
○ provide a fallback (less optimal) generic implementation

DevOps:
● ditto

Linux process virtual memory
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Pagesize

● a minimum discrete block of volatile 
memory

● many database-like workloads try to keep 
track of allocated pages
○ faster memory access
○ avoid memory fragmentation
○ efficient memory reuse
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Pagesize

Symptom:
● the process uses much more memory on secondary 

architecture
● otherwise, working as intended

○ although it depends how aggressive the code is with 
memory management
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Pagesize

Cause:
● the process has hardcoded page size in code
● the target architecture has a different page size

○ arm64 may have 4k, 16k or 64k pages

https://www.kernel.org/doc/Documentation/arm64/memory.txt
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managed pages

Pagesize 16k

page 1 page 2 page 3
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Developers:
● #define PAGE_SIZE 4096

○ ~14k+ exact matches on GitHub
● long page_size = sysconf(_SC_PAGESIZE);

DevOps:
● monitor process memory usage on different architectures

Pagesize
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Filesystem block size

● like pagesize, but for files
● minimum amount any piece of data can occupy 

on disk, so determines physical file size
○ even 1 byte file will occupy at least “block” bytes

● multiple of the underlying block device block size
○ typical values are 512 bytes or 4k

● mostly useful for sparse files

https://en.wikipedia.org/wiki/Sparse_file



Sparse files



Symptom:
● the sparse file test fails on arm64

○ https://github.com/capnproto/capnproto

Filesystem block size
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Symptom:
● the sparse file test fails on arm64

○ https://github.com/capnproto/capnproto
● the test fails only, when the test suite is run from 

tmpfs

Filesystem block size

https://github.com/capnproto/capnproto


Cause:
● the process has hardcoded block size in code
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Cause:
● the process has hardcoded block size in code
● on memory-backed filesystems block size == page 

size
○ arm64 may have 4k, 16k or 64k pages

https://www.kernel.org/doc/Documentation/arm64/memory.txt

Filesystem block size



Developers:
● #define BLOCK_SIZE 4096
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Developers:
● #define BLOCK_SIZE 4096
● stat(“/the/file”, &stats); blksize_t 

block_size = stats.st_blksize;

Filesystem block size



Conclusions
● even “portable” code with no assembly can fail in 

many ways on a different architecture
● for developers:

○ don’t over optimise, provide fallback implementations
○ don’t rely on assumptions and test them in code if you have to
○ provide meaningful error messages

● for devops:
○ ensure the CI environment can test diverse architectures and 

configurations
○ provide tools/linters to enforce best-practices in code and build 

scripts



ARM64 in production



Thank you!


