
The definitive guide to make software fail
on ARM64
Ignat Korchagin @secumod

$ whoami

● Performance and security at Cloudflare

● Passionate about security and crypto

● Enjoy low level programming

Initial ARM64 integration

Initial integration in the DC

Consider your developers

Building packages for ARM64

production arch != developer arch

Building packages for ARM64

Compiler

mysrc.c

Compiler
x86

mysrc.c

Compiler
x86

gccmysrc.c

Compiler
x86

gccmysrc.c

x86x86 x86

Compiler
x86

gccmysrc.c

x86

mybin

x86

mybin

x86

mybin

Compiler
x86

gccmysrc.c

x86

mybin

x86

mybin

x86

mybin

Cross-compiler
x86

mysrc.c

Cross-compiler
x86

cross-gccmysrc.c

Cross-compiler
x86

cross-gccmysrc.c

arm64arm64 arm64

Cross-compiler
x86

cross-gccmysrc.c

arm64

mybin

arm64

mybin

arm64

mybin

Cross-compiler
x86

cross-gccmysrc.c

arm64

mybin

arm64

mybin

arm64

mybin

Cross-compiler terminology

● host - architecture, where the compiler
runs

Cross-compiler terminology

● host - architecture, where the compiler
runs

● target - architecture, for which the
compiler generates machine code

Cross-compiler terminology

● host - architecture, where the compiler
runs

● target - architecture, for which the
compiler generates machine code

● when host == target, it is “native”
compilation
○ subset of a more general cross-compilation

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

 Machine: Advanced Micro Devices X86-64

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

 Machine: Advanced Micro Devices X86-64

ignat@dev:~$./mybin

Hello, world!

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

 Machine: Advanced Micro Devices X86-64

ignat@dev:~$./mybin

Hello, world!

ignat@dev:~$ aarch64-linux-gnu-gcc -static -o mybin mysrc.c

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

 Machine: Advanced Micro Devices X86-64

ignat@dev:~$./mybin

Hello, world!

ignat@dev:~$ aarch64-linux-gnu-gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

 Machine: AArch64

cross-compiling example
ignat@dev:~$ gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

 Machine: Advanced Micro Devices X86-64

ignat@dev:~$./mybin

Hello, world!

ignat@dev:~$ aarch64-linux-gnu-gcc -static -o mybin mysrc.c

ignat@dev:~$ readelf -h mybin | grep -i machine

 Machine: AArch64

ignat@dev:~$./mybin

bash: ./mybin: cannot execute binary file: Exec format error

Compile time problems

Common misconception

CC: hardcoded architecture-specific flags

Symptom:
● broken both native and cross builds

CC: hardcoded architecture-specific flags

Symptom:
● broken both native and cross builds
● gcc: error: unrecognized command line option ‘-msse2’

CC: hardcoded architecture-specific flags

Symptom:
● broken both native and cross builds
● gcc: error: unrecognized command line option ‘-msse2’

Cause:
● hardcoded architecture-specific flags in the build

system

CC: hardcoded architecture-specific flags

Symptom:
● broken both native and cross builds
● gcc: error: unrecognized command line option ‘-msse2’

Cause:
● hardcoded architecture-specific flags in the build

system
● CFLAGS := … -msse2 … or CFLAGS += -msee2 …

CC: hardcoded architecture-specific flags

Developers:
● put architecture-specific flags in a separate variable,

one for each architecture

CC: hardcoded architecture-specific flags

Developers:
● put architecture-specific flags in a separate variable,

one for each architecture
Makefile

TARGET_ARCH := … # somehow identify the target architecture

CFLAGS_x86_64 := -msse2 …

CFLAGS_aarch64 := -mabi=lp64 …

TARGET_CFLAGS += CFLAGS_$(TARGET_ARCH)

CC: no separation between host and target flags

Symptom:
● broken cross build

CC: no separation between host and target flags

Symptom:
● broken cross build
● usually happens, when the compiler output needs

additional post-processing (ex. format conversion)

CC: no separation between host and target flags

Symptom:
● broken cross build
● usually happens, when the compiler output needs

additional post-processing (ex. format conversion)
● post-processing tool source is part of the project

CC: no separation between host and target flags

Symptom:
● broken cross build
● usually happens, when the compiler output needs

additional post-processing (ex. format conversion)
● post-processing tool source is part of the project
● gcc: error: unrecognized command line option ‘-msse2’

CC: no separation between host and target flags

sources

CC: no separation between host and target flags

sources target gcc
$(TARGET_CFLAGS)

1

CC: no separation between host and target flags

sources target gcc intermediate
artifacts

$(TARGET_CFLAGS)
1

1

CC: no separation between host and target flags

tool
sources

sources target gcc intermediate
artifacts

$(TARGET_CFLAGS)
1

1

CC: no separation between host and target flags

host gcctool
sources

sources target gcc intermediate
artifacts

$(TARGET_CFLAGS)

$(HOST_CFLAGS)

2

1
1

CC: no separation between host and target flags

host gcctool
sources

sources target gcc intermediate
artifacts

additional
tools

$(TARGET_CFLAGS)

$(HOST_CFLAGS)

2
2

1
1

CC: no separation between host and target flags

host gcctool
sources

sources target gcc intermediate
artifacts

additional
tools

$(TARGET_CFLAGS)

$(HOST_CFLAGS)

2
2

1
1

3

CC: no separation between host and target flags

host gcctool
sources

sources target gcc intermediate
artifacts

additional
tools

final
artifacts

$(TARGET_CFLAGS)

$(HOST_CFLAGS)

2
2

1
1

3

3

CC: no separation between host and target flags

Cause:
● $(CFLAGS) use instead of $(TARGET_CFLAGS) and

$(HOST_CFLAGS)

CC: no separation between host and target flags

Cause:
● $(CFLAGS) use instead of $(TARGET_CFLAGS) and

$(HOST_CFLAGS)
● use of some $(ADDITIONAL_CFLAGS) which are

based either only on the target or the host
○ see the usage of $(WORKAROUND_CFLAGS)in the iPXE build

system: https://github.com/ipxe/ipxe

CC: no separation between host and target flags

host gcctool
sources

sources target gcc intermediate
artifacts

additional
tools

final
artifacts

$(TARGET_CFLAGS)

$(HOST_CFLAGS)

2
2

1
1

3

3
WORKAROUND_CFLAGS := … # based on target
...
TARGET_CFLAGS += $(WORKAROUND_CFLAGS)
...
HOST_CFLAGS += $(WORKAROUND_CFLAGS)

CC: no separation between host and target flags

Developers:
● put architecture-specific flags in a separate variable,

one for each architecture

CC: no separation between host and target flags

Developers:
● put architecture-specific flags in a separate variable,

one for each architecture
● always prefix any compiler/linker options with

TARGET_ or HOST_
○ $(WORKAROUND_CFLAGS), $(TARGET_WORKAROUND_CFLAGS)

and $(HOST_WORKAROUND_CFLAGS)
○ use $(COMMON_CFLAGS) if needed

CC: no separation between host and target flags

DevOps:
● provide the tools/support to test cross-compilation in

the CI
○ x86 to arm64 is generally a good start

CC: no separation between host and target flags

DevOps:
● provide the tools/support to test cross-compilation in

the CI
○ x86 to arm64 is generally a good start

● lint project build systems for non-prefixed variable
definitions

Slower build times - it’s a feature!

CC: reuse of host binaries in target artifacts

Symptom:
● broken artifacts

CC: reuse of host binaries in target artifacts

Symptom:
● broken artifacts
● usually happens, when the compiler output needs

additional post-processing (ex. format conversion)

CC: reuse of host binaries in target artifacts

Symptom:
● broken artifacts
● usually happens, when the compiler output needs

additional post-processing (ex. format conversion)
● post-processing tool source is part of the project

CC: reuse of host binaries in target artifacts

Symptom:
● broken artifacts
● usually happens, when the compiler output needs

additional post-processing (ex. format conversion)
● post-processing tool source is part of the project
● post-processing tool is also released as an artifact

CC: reuse of host binaries in target artifacts

Symptom:
● broken artifacts
● usually happens, when the compiler output needs

additional post-processing (ex. format conversion)
● post-processing tool source is part of the project
● post-processing tool is also released as an artifact
● ./fixdep: cannot execute binary file: Exec format error

Cause:
● incorrect usage of $(HOST_CC) vs $(TARGET_CC)

CC: reuse of host binaries in target artifacts

Cause:
● incorrect usage of $(HOST_CC) vs $(TARGET_CC)
● incorrect build dependency declaration

○ “make” may consider the dependency, built with
$(HOST_CC) already satisfied, when doing the target build
and not rebuild it with $(TARGET_CC)

CC: reuse of host binaries in target artifacts

Cause:
● incorrect usage of $(HOST_CC) vs $(TARGET_CC)
● incorrect build dependency declaration

○ “make” may consider the dependency, built with
$(HOST_CC) already satisfied, when doing the target build
and not rebuild it with $(TARGET_CC)

● example: vanilla Linux kernel Debian packaging
○ broken “linux-headers” .deb package when cross-compiling

CC: reuse of host binaries in target artifacts

host gcctool
sources

sources target gcc intermediate
artifacts

additional
tools

final
artifacts

$(TARGET_CFLAGS)

$(HOST_CFLAGS)

2
2

1
1

3

3

CC: reuse of host binaries in target artifacts

host gcctool
sources

sources target gcc intermediate
artifacts

additional
tools

final
artifacts

$(TARGET_CFLAGS)

$(HOST_CFLAGS)

2
2

1
1

3

3

CC: reuse of host binaries in target artifacts

extra
packaging

4

4

host gcctool
sources

sources target gcc intermediate
artifacts

additional
tools

final
artifacts

$(TARGET_CFLAGS)

$(HOST_CFLAGS)

2
2

1
1

3

3

CC: reuse of host binaries in target artifacts

extra
packaging

4

4
● example: tools to build modules in Linux
● used on host, when doing the main build
● packaged into “linux-headers” .deb package
● ./fixdep: cannot execute binary file:

Exec format error

Developers:
● ensure all target artifacts are processed with

$(TARGET_CC)

CC: reuse of host binaries in target artifacts

Developers:
● ensure all target artifacts are processed with

$(TARGET_CC)
● put host and target output in different directories

○ clearly shows which artifacts are not compiled either for
host or target architecture

○ ensures “make” does not consider target dependency
satisfied, if only the host version was built, because of
different filesystem paths

CC: reuse of host binaries in target artifacts

DevOps:
● provide the tools/support to test cross-compilation in

the CI
○ x86 to arm64 is generally a good start

CC: reuse of host binaries in target artifacts

DevOps:
● provide the tools/support to test cross-compilation in

the CI
○ x86 to arm64 is generally a good start

● inspect the final artifacts for anomalies
○ for example, there should be no x86 executables in the

arm64 .deb package

CC: reuse of host binaries in target artifacts

Runtime problems

Out of memory with plenty of memory

Symptom:
● the process complains about not being able to

allocate memory

Out of memory with plenty of memory

Symptom:
● the process complains about not being able to

allocate memory
● there is plenty of free memory in the system

Out of memory with plenty of memory

Symptom:
● the process complains about not being able to

allocate memory
● there is plenty of free memory in the system
● the process is using mmap syscall for file I/O

○ most database workloads

Out of memory with plenty of memory

Symptom:
● the process complains about not being able to

allocate memory
● there is plenty of free memory in the system
● the process is using mmap syscall for file I/O

○ most database workloads
● ENOMEM: Cannot allocate memory

32-bit vs 64-bit

● 32-bit allows to address only up to 4GB

32-bit vs 64-bit

● 32-bit allows to address only up to 4GB

● 64-bit allows to address up to
17179869184GB
○ or “more than enough…”

The cake is a lie

Linux process virtual memory map (x86)
user-space

(0000000000000000-0x00007fffffffffff)

huge hole

kernel
(0xffff800000000000-0xffffffffffffffff)

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

● actually you can have only 47-bit
addresses in user-space on x86_64
○ so it is only 131072GB compared to promised

17179869184GB

Linux process virtual memory map

● actually you can have only 47-bit
addresses in user-space on x86_64
○ so it is only 131072GB compared to promised

17179869184GB

● on arm64 you get only 39-bit addresses if
you take Linux defaults
○ only 512GB addressable space

Linux process virtual memory map

https://www.kernel.org/doc/Documentation/arm64/memory.txt

Developers:
● try to avoid using unbounded memory mappings

Linux process virtual memory map

Developers:
● try to avoid using unbounded memory mappings
● try to identify the upper bound of the user-space

addressable space and compare to the mapped file size

Linux process virtual memory map

Developers:
● try to avoid using unbounded memory mappings
● try to identify the upper bound of the user-space

addressable space and compare to the mapped file size

DevOps:
● make sure to review your second architecture kernel

memory layout config
○ you might need to recompile the kernel

Linux process virtual memory map

● recompiled the arm64 kernel with 48-bit
user-space addresses (256TB space)

Linux process virtual memory map (cont.)

● recompiled the arm64 kernel with 48-bit
user-space addresses (256TB space)

● some workloads started to crash
randomly

Linux process virtual memory map (cont.)

● recompiled the arm64 kernel with 48-bit
user-space addresses (256TB space)

● some workloads started to crash
randomly

● traced down to Lua code

Linux process virtual memory map (cont.)

● simple “efficient” C-interface

LuaJIT lightuserdata

● simple “efficient” C-interface
● operates directly on C-pointers

LuaJIT lightuserdata

● simple “efficient” C-interface
● operates directly on C-pointers
● uses (supposedly unused) upper bits of

the address to store some metadata
○ 0x00007fffffffffff

LuaJIT lightuserdata

https://github.com/LuaJIT/LuaJIT/blob/f5d424afe8b9395f0df05aba905e0e1f6a2262b8/src/lj_obj.h#L173-L193

LuaJIT lightuserdata assumptions

Developers:
● state assumptions in code, not comments

○ check assumptions early and error out with a meaningful
error message

Linux process virtual memory

Developers:
● state assumptions in code, not comments

○ check assumptions early and error out with a meaningful
error message

● don’t over optimise
○ provide a fallback (less optimal) generic implementation

Linux process virtual memory

Developers:
● state assumptions in code, not comments

○ check assumptions early and error out with a meaningful
error message

● don’t over optimise
○ provide a fallback (less optimal) generic implementation

DevOps:
● ditto

Linux process virtual memory

Pagesize

Pagesize

● a minimum discrete block of volatile
memory

Pagesize

● a minimum discrete block of volatile
memory

● many database-like workloads try to keep
track of allocated pages
○ faster memory access
○ avoid memory fragmentation
○ efficient memory reuse

Pagesize

Symptom:
● the process uses much more memory on secondary

architecture

Pagesize

Symptom:
● the process uses much more memory on secondary

architecture
● otherwise, working as intended

○ although it depends how aggressive the code is with
memory management

Pagesize

Cause:
● the process has hardcoded page size in code

Pagesize

Cause:
● the process has hardcoded page size in code
● the target architecture has a different page size

○ arm64 may have 4k, 16k or 64k pages

https://www.kernel.org/doc/Documentation/arm64/memory.txt

managed pages

Pagesize 4k

page 1 page 2 page 3

managed pages

Pagesize 16k

page 1 page 2 page 3

Developers:
● #define PAGE_SIZE 4096

○ ~14k+ exact matches on GitHub

Pagesize

Developers:
● #define PAGE_SIZE 4096

○ ~14k+ exact matches on GitHub
● long page_size = sysconf(_SC_PAGESIZE);

Pagesize

Developers:
● #define PAGE_SIZE 4096

○ ~14k+ exact matches on GitHub
● long page_size = sysconf(_SC_PAGESIZE);

DevOps:
● monitor process memory usage on different architectures

Pagesize

Filesystem block size

● like pagesize, but for files

Filesystem block size

● like pagesize, but for files
● minimum amount any piece of data can occupy

on disk, so determines physical file size
○ even 1 byte file will occupy at least “block” bytes

Filesystem block size

● like pagesize, but for files
● minimum amount any piece of data can occupy

on disk, so determines physical file size
○ even 1 byte file will occupy at least “block” bytes

● multiple of the underlying block device block size
○ typical values are 512 bytes or 4k

Filesystem block size

● like pagesize, but for files
● minimum amount any piece of data can occupy

on disk, so determines physical file size
○ even 1 byte file will occupy at least “block” bytes

● multiple of the underlying block device block size
○ typical values are 512 bytes or 4k

● mostly useful for sparse files

https://en.wikipedia.org/wiki/Sparse_file

Sparse files

Symptom:
● the sparse file test fails on arm64

○ https://github.com/capnproto/capnproto

Filesystem block size

https://github.com/capnproto/capnproto

Symptom:
● the sparse file test fails on arm64

○ https://github.com/capnproto/capnproto
● the test fails only, when the test suite is run from

tmpfs

Filesystem block size

https://github.com/capnproto/capnproto

Cause:
● the process has hardcoded block size in code

Filesystem block size

Cause:
● the process has hardcoded block size in code
● on memory-backed filesystems block size == page

size
○ arm64 may have 4k, 16k or 64k pages

https://www.kernel.org/doc/Documentation/arm64/memory.txt

Filesystem block size

Developers:
● #define BLOCK_SIZE 4096

Filesystem block size

Developers:
● #define BLOCK_SIZE 4096
● stat(“/the/file”, &stats); blksize_t

block_size = stats.st_blksize;

Filesystem block size

Conclusions
● even “portable” code with no assembly can fail in

many ways on a different architecture
● for developers:

○ don’t over optimise, provide fallback implementations
○ don’t rely on assumptions and test them in code if you have to
○ provide meaningful error messages

● for devops:
○ ensure the CI environment can test diverse architectures and

configurations
○ provide tools/linters to enforce best-practices in code and build

scripts

ARM64 in production

Thank you!

