

Invisible OS and Platform Upgrades

Adam McKenna, Site Reliability Engineer, Pinterest @deathtocss /in/admckenna Pronouns: He, his

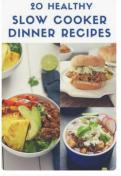
Q easy slow cooker recipes

All Pins 🗸

4 Ingredients

Chicken

Crockpot Meals


Hamburger

For Two


20 Cozy Dump Dinners That Basically Cook...

Korean beef

 ★ The Inspired Home 20 Healthy Slow Cooker Dinner Recipes

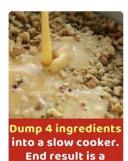
FETTUCCINE ALFREDO

→ Philadelphia Cream Cheese 30-Minute Spinach Artichoke Fettuccine Alfredo

Crock Pot Lemon Garlic Butter Chicken

Slow Cooker Buttery Bacon **Green Beans**

slow cooker honey glazed ham


THE BEST CROCKPOT

Slow Cooker BEEF CHILI

Slow Cooker Beef Chili Recipe ...

hearty, tasty

Slow Cooker Potato Soup 4.5 hours

Our mission

To bring everyone the inspiration to create a life they love.

Core SRE @ Pinterest

- Overall Uptime
- Internal Services
- Tech Debt / "Ownerless" services

- Linux user since 1993, Sysadmin since 1998
- DevOps practitioner since 2012

Defining our problem

Software goes out of date

- OS/ContainerRuntimes
 - Ubuntu
 - 12.04, 14.04 EOL
 - Docker
 - Quarterly Updates
 - Windows
 - Windows 7 EOL (Pinterest not affected)

- Language Runtimes
 - Python
 - 2.x to 3.x
 - Java
 - Oracle to OpenJDK
 - Java version updates
 - o Go
 - \circ C++

We Must Upgrade!

The business needs:

- Retain support
 - Security bug fixes
- Access to new features
 - New EC2 Instance Families/Generations
 - Hardware support
 - Performance
 - New storage technologies (Instance store -> EBS)
- "Containerization War Stories"
 https://www.usenix.org/conference/srecon18americas/presentation/wong

Developers want

- Access to new packages / features
 - Updated runtimes (Go, Python, Java, etc.)
 - GPU Drivers for Al/ML workloads
- Platform Efficiency
 - Desire to avoid supporting multiple OS or runtime versions

```
class java::params {
  case $::osfamily {
    'Debian': {
        case $::lsbdistrelease {
            '18.04': {
                $java_runtime_packa
                     'oracle-java8-
                $java_runtime_defau
            '16.04': {
                $java_runtime_packa
```

But we hates upgrading!

Complexity

 Hundreds of microservices across tens of thousands of hosts

Service owners

- Don't like downtime.
- Migration work is generally not a preferred task

Developers

- Consistent API/ABI
- Tests written for specific versions of language runtimes

Solution:

Automated Canary Analysis

Canary Analysis

Image credits: Michael Sonnabend (flickr) https://pxhere.com/en/photo/1412043

What is 'Canary Analysis'?

- Compare the behavior and performance of two clusters - a canary (test) cluster and a control cluster.
- Has inherent risk, but lower risk than full rollout of bad code.

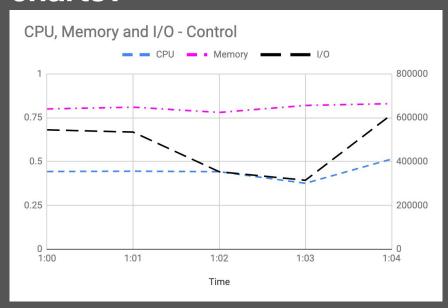
https://en.wikipedia.org/wiki/Risk matrix

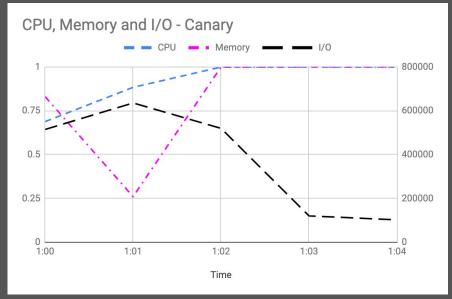
Canary Analysis

Requirements and Goals

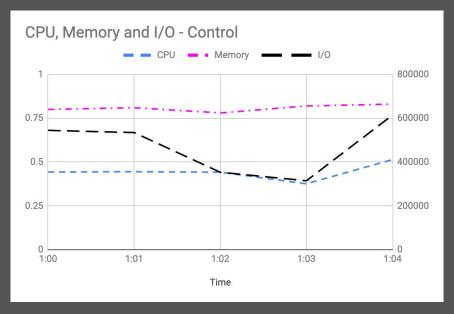
- Automate and normalize the most mundane migration tasks
 - Depend on successful integration and acceptance testing
 - Automate looking at charts, comparing metrics
 - Normalize Process can be applied to many similar systems.

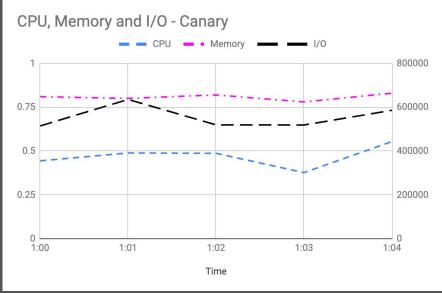
Make migrations 'invisible' to service owners


- o Address reliability concerns; Services are analyzed at the cluster level.
- Can be run by an operator, freeing up developer time
- No more 'finger crossing'


Typical migration 'toil' pattern

- 1. New Image is released
- 2. Service owner updates Image ID in deploy system
- 3. Operator triggers rolling cluster upgrade
- 4. Humans watch charts and cross fingers
- 5. Did things go OK? Good!
- 6. Did things not go OK? Bad! Rollback! Outage?


"Looks good to me!"

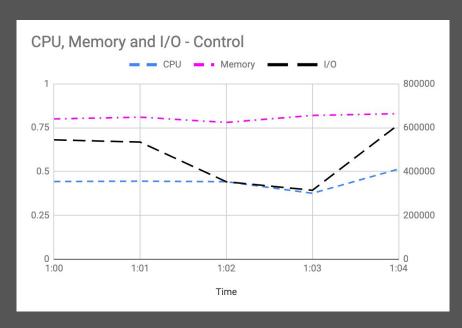

Can you make a Go / No-Go decision based on these two charts?

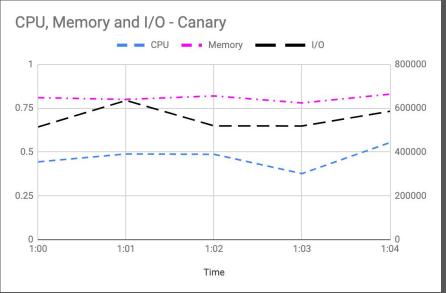
How about these?

Well, Let's ask the service owners!

The human factor

What might these Service Owners think?

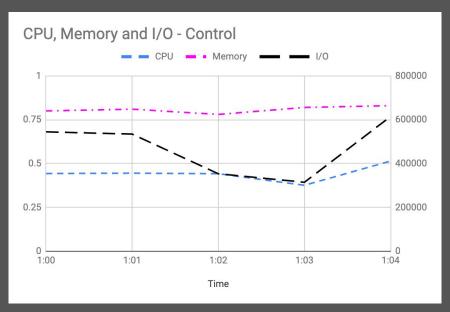


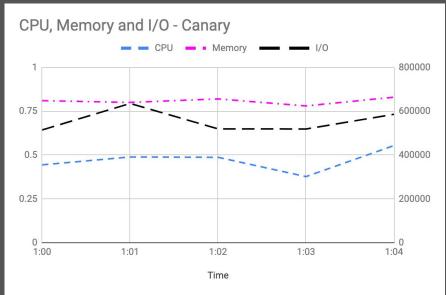

Gene

- Extremely Risk Averse
- Hates change
- His service has 99.999999% uptime, but runs on Ubuntu 10.04

Gene's call

"No way. Look at that I/O line! Let's meet on Monday and figure out what's going on."

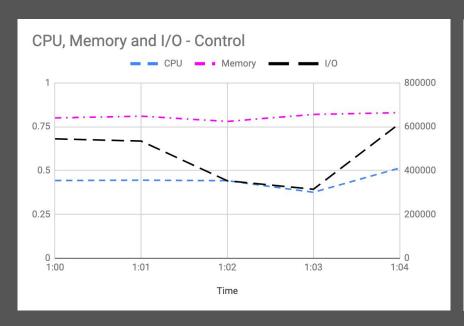


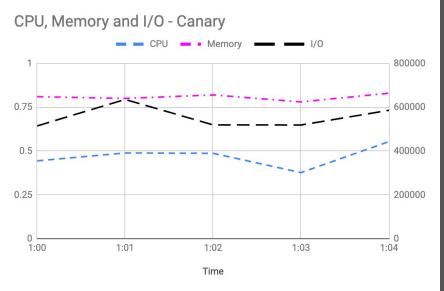


Angus

- Last job was at a Bitcoin startup
- Likes to "Move fast and break stuff"
- Yells "TONIGHT WE TEST IN PROD" at least once a day

Angus's call "LGTM. SHIP IT!"




Carol

- Has 100% test coverage on all her code
- Is researching statistical models to improve fault detection
- Analysis is her middle name

Carol's call

"I'll need a couple hours to run some additional tests against the new hosts. Stand by."

You are viewing the archives of a deactivated account

Close

Image credit: svgsilh.com

Karen

- The employee who left the company
- All of the knowledge they didn't write down about their service left with them!

A better way - Automate!

Benefits of automated Canary Analysis

- A software-defined, repeatable process for validation of new code
- Accumulated knowledge remains in the system as code, rather than leaving with employees
- Can be generalized/normalized with sane defaults
- (Optionally) continue to provide manual go/no-go approval (You know, for Gene)
- Bad results? Update the model! (In source control!)

How it works

Components

Spinnaker + Kayenta Docker

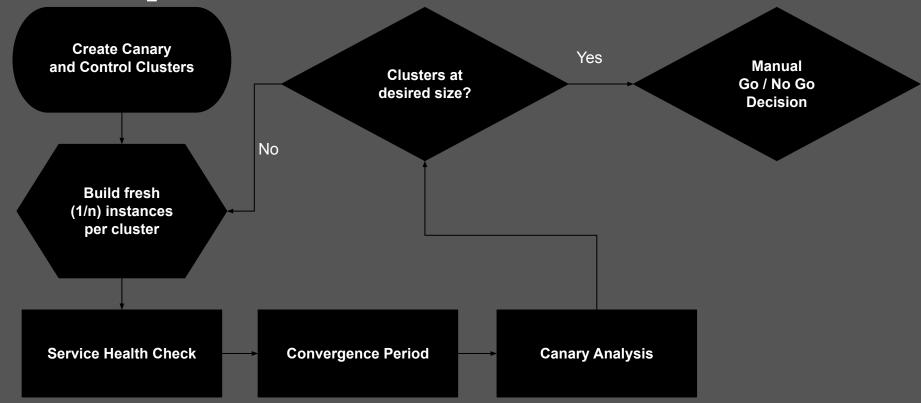
- Workflow orchestration
 - https://www.spinnaker.io/

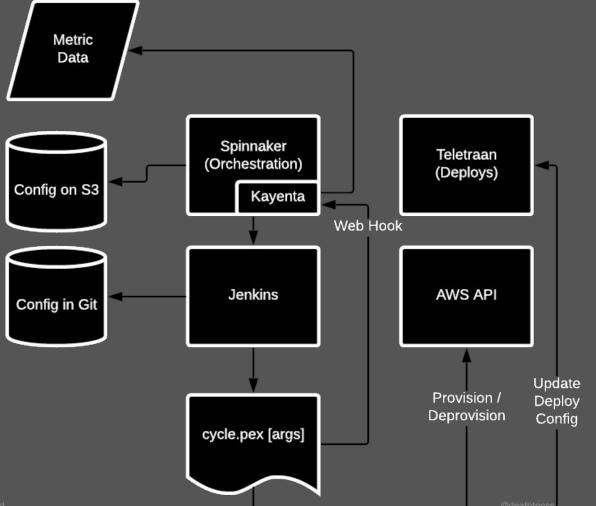
Jenkins

- Script execution
 - https://jenkins.io/

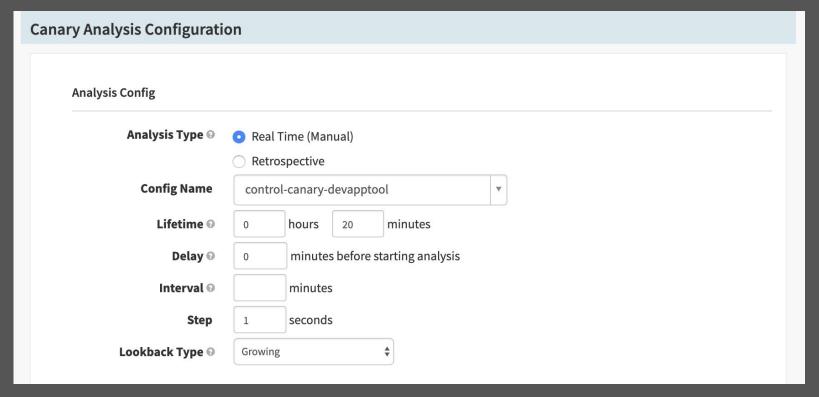
Teletraan

- Pinterest's deploy system
 - https://github.com/pinterest/teletraan

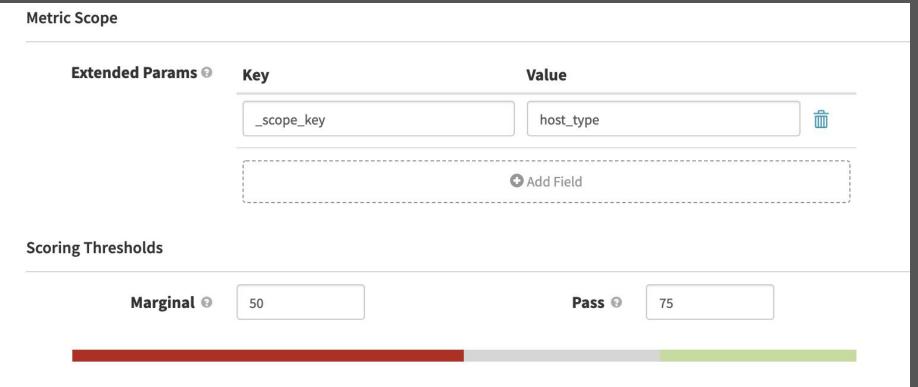

- Execution environment
 - https://www.docker.io



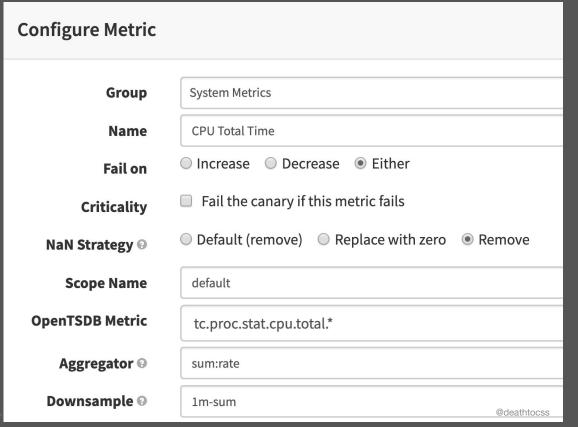
Python


- Script logic implementation
 - https://www.python.org

Simplified Process Flow



Configuring the Pipeline


Configuring Scoring

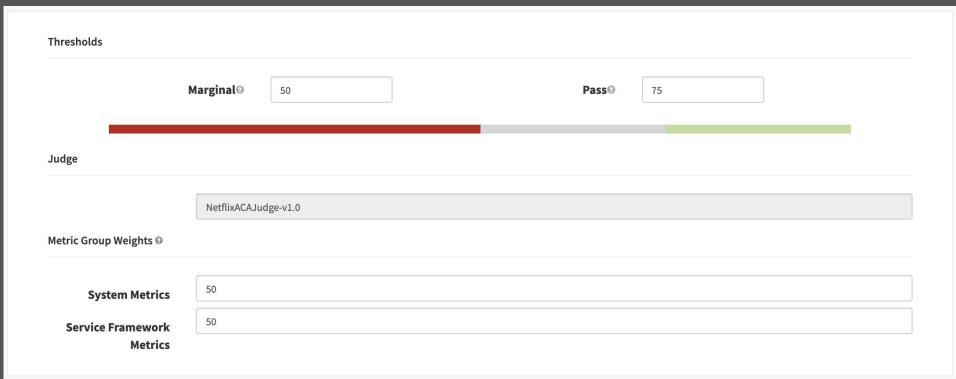
Execution Options

Execution Options				
If stage fails	o halt the entire pipeline			
	○ halt this branch of the pipeline ^②			
	○ halt this branch and fail the pipeline once other branches complete ^②			
	○ ignore the failure ❷			
Restrict execution to specific time windows				
☐ Fail stage on failed expressions ❷				
☐ Conditional on Expression ❷				
Notifications				
☐ Send notifications for this stage				

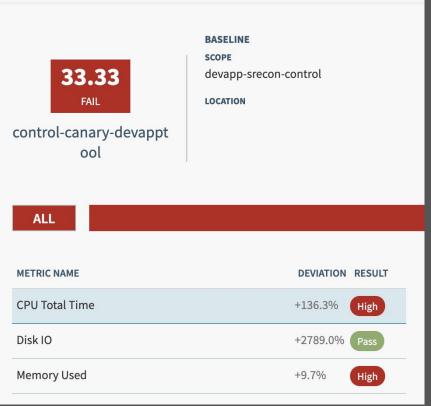
Adding a Metric

Metrics Groups

ALL

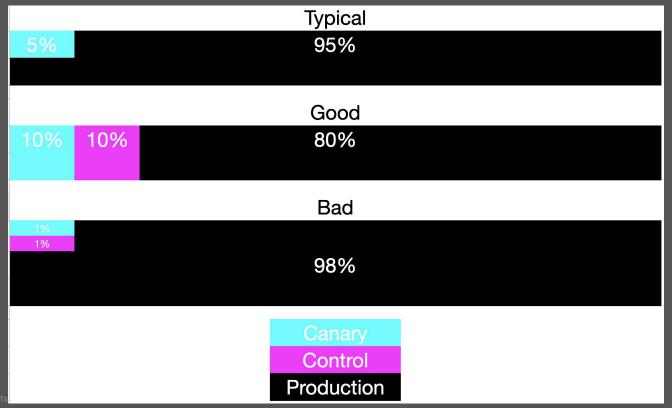

SYSTEM METRICS

Add Group


METRIC NAME	GROUPS				
CPU Total Time	System Metrics	Edit	Move Group	Сору	Delete
Memory Used	System Metrics	Edit	Move Group	Сору	Delete
Disk IO	System Metrics	Edit	Move Group	Сору	Delete

Add Metric

Metric Thresholds / Weights


Canary Output

Canary Output

Sizing your clusters

Overall Effort

- Originally planned as a six-month effort for 2-3 FTE
- Actual effort was ~1 year due to various delays
- Cycle.py ~700 lines of python
- Kayenta had to write our own OpenTSDB plugin

Future Plans

- Integration of additional Machine Learning to Canary process
- Direct integration into our build system
- Additional tooling to improve user experience

Additional Resources

- Kayenta:
 - https://cloud.google.com/blog/products/gcp/introducing-kayenta-an-open-automated-canary -analysis-tool-from-google-and-netflix
- Spinnaker Canary Analysis doc: https://www.spinnaker.io/setup/canary/
- Waze presentation on Canary Analysis: https://cloud.google.com/blog/products/devops-sre/canary-analysis-lessons-learned-and-be-st-practices-from-google-and-waze
- Netflix presentation: <u>https://medium.com/netflix-techblog/automated-canary-analysis-at-netflix-with-kayenta-3260</u> <u>bc7acc69</u>

We're hiring! Come work with us!

hiring-srecon@pinterest.com

Questions?

