| et's Build a Distributed File System

Sanket Patel
Site Reliability Engineer

» Typical File Systems

o Reads

o Writes
» Distributed File Systems
Explore:

o Architecture

o Reads
o Writes

e Demo

sanket.plus

https://sanket.plus

- Individual File System (like ext3)
Won't EXp lore: » Answer to the Ultimate Question of

Life, the Universe, and Everything

sanket.plus

https://sanket.plus

File Systems

“A structure defined over raw

What S it7? storage space”

* Made of: metadata + data

sanket.plus

https://sanket.plus

My Own File System

0 100K 200K
a file Hers gifs yep, the
goes here S third file Tt
file
0 12K 100K
E a file : here goes
j BRI L 88K . A
+ goes here + second file
0 12K 100K
size: 12k a file goes size: 88K here goes
name: r‘.;e‘..:x:E here name: r‘.‘.ez.:x:E second file

sanket.plus

https://sanket.plus

An Inode

ring any bells?

Owner: bill
Group: admin

Type: regular file

Access: Jan 01 1970 1:23 PM
Modify: Jan 02 1970 10:02 PM
inode: Jan 01 1970 1:00 AM

Size: 4096 bytes
Disk Address: 20,53, 99, 102

sanket.plus

https://sanket.plus

Inode For a File And Dir

and what does the data looks like

N - N

— Owner: bill
Owner: bl“, Group: admin
Group: admin /
Type: dir / J
Type: regular file
LPEIRR Access: Jan 01 1970 1:23 PM v tmp
. : Modify: Jan 02 1970 10:02 PM tmp v
ACC?SS' Jan 011970 1:23 PM inode: Jan 01 1970 1:00 AM " a <o
Modify: Jan 02 1970 10:02 PM
inode: Jan 01 1970 1:00 AM Size: 937 bytes a v
Disk Address: 95 J b
Size: 937 bytes \ / b)
Disk Address: 99 Block: 95 | —
/ 25
34 ® ®
Hard linking Folders
Block: 99 29 Passwd
89 systemd
Example file that has some stuff in it...

89 users
inode name

sanket.plus

https://sanket.plus

The Raw Storage

and how it looks

Boot

Block Block block list list

Super I Free data IFree inode

inode table | data blocks

Total data segment size = 1,000,000 bytes
1 block size = 1000 bytes
Total number of blocks = 1000 blocks

Total number of files?

sanket.plus

https://sanket.plus

inode 2

Inode for /
data block: 98

Block: 98
2
2
> 23 etc

Let’s Read

and see how it goes

inode 23

Inode for etc

data block: 123

Block: 123

inode 45

Inode for passwd

data block: 155

Block: 155

root Ll 0 K
mysql > LA - 21

sanket.plus

https://sanket.plus

Let’s Write

1. Convert name to inode
o If file does not exist: alloc and init an inode
2. Get block address from offset
o Load the block in memory
o Block does not exist: allocate one
3. Modify block
o Not necessarily put it back on disk

Distributed] File Systems

\What? “‘Atile system, but distributed!”

sanket.plus

https://sanket.plus

* No single point of failure

\/\/hy Distributed? » Avoid bottleneck

» Scalable storage space

sanket.plus

https://sanket.plus

Looking Back...

... afilesystemis

I

Super
Block

Free data
block list

Free inode
list

data blocks

metadata

data

sanket.plus

https://sanket.plus

Making it Distributed

would look something like this

Host O
;" N
metadata
. /
Host 1 Host 2 Host 3
s - B 4 B
data data data
b, 3 J \ J

sanket.plus

https://sanket.plus

Host 1

blkO

would look something like this

Structure

Host O

f

o

/etc/passwd:

- blk0O: hostl, host2
- blkl: host2, host3

J

Host 2

plk0

blkl

Host 3

blkl

sanket.plus

https://sanket.plus

So When You Read...

... itwould go like

W Get meta: /etc/passwd

client

EN read blko0

E return block info

Host 1

W read blkl

blk0

Host 3

blkl

Host O
% ™
/etc/passwd:
- blk0O: hostl, host2
- blkl: host2, host3
- E
Host 2
s B
blk0
blkl
A
\ j

sanket.plus

https://sanket.plus

And When You Write...

... the following happens

client

Ef write blk0

m write blkl

Host 3

Host O
r 2
put file: /etc/passwd /etc/passwd:
- blk0O: hostl, host2
E return block allocations = blaxdn Desclyrhionto
' /
Host 1 Host 2
R relay / \
blk0 » blkO
relay
blkl
S
&/ &, Y,

blkl

sanket.plus

https://sanket.plus

| et’'s see it in action

https://github.com/sanketplus/PyDFS/tree/srecon

sanket.plus

https://github.com/sanketplus/PyDFS/tree/srecon
https://sanket.plus

PyDFS

The Greatest DFS Alive

1. Master:
O metadata storage
2. Minion
o stores blocks
3. Client
o to interact with above guys

About Data

...and how it will look

example file: /etc/passwd

file block = {"/etc/passwd": ["blockO", "blockl"]}
block minion = {"blockO": [minionl ,minionZ],
"blockl": [minionZ2, minion3]}
minions = {
"minionl": (hostl, portX),
"minion2": (host2, portY),
"minion3": (host3, portZ)

1. replication factor: how many copiesto make of a block
2. block size: whatshould be size of each block
3. block placement strategy: random

Master API

...and how it will serve you

Minion API

...and how it will obey

def put(block id, data, minions)
=> wriltes the block on local disk and forward to minions

def get(block id)
=> reads Tthe block and returns the contents

def forward(block id, data, minions)

=> calls put () on next minion with remalinling minions as

forward 1list

» HDFS
Check these out * HOpsFS

* Perkeep

sanket.plus

https://sanket.plus

Host 1

Problems

because, why not?

Host O

host?2
st3

blkO

Host 2

plk

blk

Host 3

blkl

sanket.plus

https://sanket.plus

Limitations

of course

1. Latency

2. Operational Complexity
3. Small Files

4. Usage Patterns

That’s all for today...

My home is @ https://sanket.plus

Linked [}

https://sanket.plus

