
Let's Build a Distributed File System

 Sanket Patel
 Site Reliability Engineer

Agenda

• Typical File Systems

○ Reads

○ Writes

• Distributed File Systems

○ Architecture

○ Reads

○ Writes

• Demo

Explore:

sanket.plus

https://sanket.plus

• Individual File System (like ext3)

• Answer to the Ultimate Question of
Life, the Universe, and Everything

Won’t Explore:

sanket.plus

https://sanket.plus

File Systems

What is it?
“A structure defined over raw
storage space”

• Made of: metadata + data

sanket.plus

https://sanket.plus

My Own File System

sanket.plus

https://sanket.plus

An Inode
 ring any bells?

sanket.plus

https://sanket.plus

Inode For a File And Dir
 and what does the data looks like

 85 users

/
↓

tmp
↓
a
↓
b

/
↓

tmp
↓
a
↓
b
↓
l

Hard linking Folders

sanket.plus

https://sanket.plus

The Raw Storage
 and how it looks

Total data segment size = 1,000,000 bytes
1 block size = 1000 bytes
Total number of blocks = 1000 blocks

Total number of files?

sanket.plus

https://sanket.plus

Let’s Read
 and see how it goes

sanket.plus

https://sanket.plus

Let’s Write

1. Convert name to inode
○ If file does not exist: alloc and init an inode

2. Get block address from offset
○ Load the block in memory

○ Block does not exist: allocate one
3. Modify block

○ Not necessarily put it back on disk

[Distributed] File Systems

What? “A file system, but distributed!”

sanket.plus

https://sanket.plus

• No single point of failure

• Avoid bottleneck

• Scalable storage space
Why Distributed?

sanket.plus

https://sanket.plus

Looking Back...
 … a file system is

diagram here from Raw Storage slide, which highlights metadata and data

metadata data

sanket.plus

https://sanket.plus

Making it Distributed
 would look something like this

sanket.plus

https://sanket.plus

Structure
 would look something like this

sanket.plus

https://sanket.plus

So When You Read...
 … it would go like

sanket.plus

https://sanket.plus

And When You Write...
 … the following happens

sanket.plus

https://sanket.plus

Let’s see it in action

https://github.com/sanketplus/PyDFS/tree/srecon

sanket.plus

https://github.com/sanketplus/PyDFS/tree/srecon
https://sanket.plus

PyDFS

1. Master:
○ metadata storage

2. Minion
○ stores blocks

3. Client
○ to interact with above guys

 The Greatest DFS Alive

About Data

example file: /etc/passwd

 file_block = {"/etc/passwd": ["block0", "block1"]}
 block_minion = {"block0": [minion1 ,minion2],
 "block1": [minion2, minion3]}
 minions = {
 "minion1": (host1, portX),
 "minion2": (host2, portY),
 "minion3": (host3, portZ)
 }

 … and how it will look

1. replication_factor: how many copies to make of a block
2. block_size: what should be size of each block
3. block placement strategy: random

Master API

 def read(file)
 returns: [
 {"block_id": "block1", "block_addr": [(host1,portX),...]},
 {"block_id": "block2", "block_addr: [(host2,portY),...]"}
]

 def write(file, size)
 returns: [
 {"block_id": "block1", "block_addr": [(host1,portX),...]},
 {"block_id": "block2", "block_addr: [(host2,portY),...]"}
]

 … and how it will serve you

Minion API

def put(block_id, data, minions)
=> writes the block on local disk and forward to minions

def get(block_id)
=> reads the block and returns the contents

def forward(block_id, data, minions)

=> calls put() on next minion with remaining minions as

forward list

 … and how it will obey

Onwards

• HDFS

• HopsFS

• Perkeep
Check these out

sanket.plus

https://sanket.plus

Problems
 because, why not?

sanket.plus

https://sanket.plus

Limitations

1. Latency

2. Operational Complexity

3. Small Files

4. Usage Patterns

 of course

 My home is @ https://sanket.plus

That’s all for today...

https://sanket.plus

