Let's Build a Distributed File System

Sanket Patel

Site Reliability Engineer

Agenda

Explore:

- Typical File Systems
 - o Reads
 - o Writes
- Distributed File Systems
 - o Architecture
 - o Reads
 - o Writes
- Demo

Won't Explore:

- Individual File System (like ext3)
- Answer to the Ultimate Question of Life, the Universe, and Everything

File Systems

What is it?

"A structure defined over raw storage space"

• Made of: metadata + data

My Own File System

0	100K	200K	
a file goes here	here goes second file	yep, the third file	

0		12K		100K
11K	a file goes here	88K	here goes second file	* * * *

0		12K		100K
size: 11K a	file goes	size: 88K	here goes	
name: file1.txt	here	name: file2.txt	second file	

An Inode

ring any bells?

Owner: bill Group: admin

Type: regular file

Access: Jan 01 1970 1:23 PM Modify: Jan 02 1970 10:02 PM inode: Jan 01 1970 1:00 AM

Size: 4096 bytes

Disk Address: 20,53, 99, 102

Inode For a File And Dir

and what does the data looks like

Owner: bill Group: admin

Type: regular file

Access: Jan 01 1970 1:23 PM Modify: Jan 02 1970 10:02 PM inode: Jan 01 1970 1:00 AM

> Size: 937 bytes Disk Address: 99

> > Block: 99

Example file that has some stuff in it...

Owner: bill Group: admin

Type: dir

Access: Jan 01 1970 1:23 PM Modify: Jan 02 1970 10:02 PM inode: Jan 01 1970 1:00 AM

> Size: 937 bytes Disk Address: 95

> > Block: 95

Hard linking Folders

The Raw Storage

and how it looks

Boot Super Free data Free inode Block Block block list	inode table	data blocks
--	-------------	-------------

Total data segment size = 1,000,000 bytes

1 block size = 1000 bytes

Total number of blocks = 1000 blocks

Total number of files?

Let's Read

and see how it goes

Let's Write

- 1. Convert name to inode
 - o If file does not exist: alloc and init an inode
- 2. Get block address from offset
 - Load the block in memory
 - o Block does not exist: allocate one
- 3. Modify block
 - o Not necessarily put it back on disk

[Distributed] File Systems

What?

"A file system, but distributed!"

Why Distributed?

- No single point of failure
- Avoid bottleneck
- Scalable storage space

Looking Back...

... a file system is

metadata data

Making it Distributed

would look something like this

Host 1
data

Host 2

Host 3
data

Structure

would look something like this

So When You Read...

... it would go like

And When You Write...

... the following happens

Let's see it in action

https://github.com/sanketplus/PyDFS/tree/srecon

PyDFS

The Greatest DFS Alive

- 1. Master:
 - o metadata storage
- 2. Minion
 - o stores blocks
- 3. Client
 - o to interact with above guys

About Data

... and how it will look

- 1. replication factor: how many copies to make of a block
- 2. block_size: what should be size of each block
- 3. block placement strategy: random

Master API

... and how it will serve you

Minion API

... and how it will obey

def put(block_id, data, minions)

=> writes the block on local disk and forward to minions

def get(block id)

=> reads the block and returns the contents

def forward(block_id, data, minions)

=> calls put() on next minion with remaining minions as forward list

Onwards

Check these out

- HDFS
- HopsFS
- Perkeep

Problems

because, why not?

Limitations

of course

- 1. Latency
- 2. Operational Complexity
- 3. Small Files
- 4. Usage Patterns

That's all for today...

My home is @ https://sanket.plus

