
Taming a beast
Improving the Reliability of a

Monolithic Web Service

Syed Humza Shah
Senior Software Engineer, Deliveroo
@shumzash , https://humza.sh/about

https://twitter.com/shumzash
https://humza.sh/about




Scenario 1: Web clients reach the same service

Web servers 
of the same 

kind

Customers

Partners

Internal 
Applications



Scenario 1: Problems

Web 
server(s)

Customers

Partners

Internal 
Applications

- All web servers have the 
same resources

- CDN downtime affects all web 
clients

- Internal API services face 
needless latency

- Difficult root cause 
identification

- Specific faulty workloads can 
affect all clients



Recipe 1: Separate external/internal web clients

Customers

Partners

Internal 
Applications

Reverse proxy

Web
server(s)
Type A

Web
server(s)
Type B

Private Network



Recipe 1: Improvements

Customers

Partners

Internal 
Applications

Reverse proxy

Web
server

(s)
Type 

A

Web
server

(s)
Type 

B

Private 
Network

- Better resource utilisation
- Separate public/internal traffic
- Faulty workloads are scoped
- Reverse proxy gives us faster 

levers



Scenario 2: Job worker processes multiple queues

High priority job queue

Medium priority job queue

Low priority job queue

Polling for jobs

Background job processor



Scenario 2: Problems

High priority 
job queue

Medium 
priority job 

queue

Low priority 
job queue

Polling 
for jobs

Background 
job processor

- Must have one polling 
frequency

- Uniform resource 
allocation

- Difficult root cause 
identification



Recipe 2: Separate process per job queue

High priority job queue Polling for jobs

Background job processor 1

Medium priority job queue Polling for jobs

Background job processor 2



Recipe 2: Improvements

High priority job 
queue

Polling 
for jobs

Background job 
processor 1

Medium priority 
job queue

Polling 
for jobs

Background job 
processor 2

- Better resource 
allocation

- Queue-specific polling 
frequency

- Easier root cause 
identification

- Easier to have separate 
datastore per queue



Scenario 3: One datastore and one credential set

Datastore e.g. 
Relational database, 
NoSQL datastore, or 

Key-Value cache

Web worker 1

Background job 
processor 1

Data extractor



Scenario 3: Problems

Datastore

Web worker 1

Background job 
processor 1

Data extractor

- Read spikes can affect write 
performance and vice versa

- Upgrades are limited
- Datastore logs with login user 

are difficult to interpret
- Faulty deployments can 

exhaust connections



Recipe 3: Poolers, replicas, and multiple users

Web worker 1

Datastore
(leader)

Connection
Pooler

Background job 
processor 1

Datastore
(replica/follower)

Data extractor Connection
Pooler

User 1

User 2

User 3



Recipe 3: Improvements

Worker 
1

Database
Leader

Pooler

Worker 
2

Database
Replica

Worker 
3

Pooler

User 1

User 2

User 3

- Read/write affect each other 
less

- Connection exhaustion less 
likely

- Easier tracing query source 
through datastore logs with 
username

- Worker-specific data access 
level

Worker 
4

User 4



Recipe 4:
Improve development 

workflows



Recipe 5:
Improve "Mean Time to 

Detect" (MTTD)



Recipe 6:
Actively know your 

vendor’s limits



Conclusion: You CAN tame the beast!



Questions?


