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Scenario 1: Web clients reach the same service
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Scenario 1: Problems
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- All web servers have the 
same resources

- CDN downtime affects all web 
clients

- Internal API services face 
needless latency

- Difficult root cause 
identification

- Specific faulty workloads can 
affect all clients



Recipe 1: Separate external/internal web clients

Customers

Partners

Internal 
Applications

Reverse proxy

Web
server(s)
Type A

Web
server(s)
Type B

Private Network



Recipe 1: Improvements
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- Better resource utilisation
- Separate public/internal traffic
- Faulty workloads are scoped
- Reverse proxy gives us faster 

levers



Scenario 2: Job worker processes multiple queues
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Scenario 2: Problems

High priority 
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- Must have one polling 
frequency

- Uniform resource 
allocation

- Difficult root cause 
identification



Recipe 2: Separate process per job queue
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Recipe 2: Improvements

High priority job 
queue
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job queue
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- Better resource 
allocation

- Queue-specific polling 
frequency

- Easier root cause 
identification

- Easier to have separate 
datastore per queue



Scenario 3: One datastore and one credential set

Datastore e.g. 
Relational database, 
NoSQL datastore, or 

Key-Value cache
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Scenario 3: Problems

Datastore

Web worker 1

Background job 
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Data extractor

- Read spikes can affect write 
performance and vice versa

- Upgrades are limited
- Datastore logs with login user 

are difficult to interpret
- Faulty deployments can 

exhaust connections



Recipe 3: Poolers, replicas, and multiple users
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Recipe 3: Improvements
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- Read/write affect each other 
less

- Connection exhaustion less 
likely

- Easier tracing query source 
through datastore logs with 
username

- Worker-specific data access 
level

Worker 
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User 4



Recipe 4:
Improve development 

workflows



Recipe 5:
Improve "Mean Time to 

Detect" (MTTD)



Recipe 6:
Actively know your 

vendor’s limits



Conclusion: You CAN tame the beast!



Questions?


