
Yes, No, Maybe ?
Error handling with gRPC examples

Agenda

Hello world with Protocol buffers and gRPC

What's done by "magic" ?

Error codes

Did it work ? yes, no, and maybe ?

Should I Retry ?

TL;DR guidelines

Protocol
buffers

and gRPC
In 5-ish mins...

Protocol Buffers

The Greeter Service

Client Greeter Translator

Translate("Hello", "de_DE")

"Guten Tag""Guten Tag Fred!"

SayHello("Fred", "de_DE")

1. define data structure schemas and programming interfaces
2. implementation code
3. remote procedure call (RPC) for the distributed client and server

1. The service definition .proto

Protocol Buffers is a simple language-neutral and platform-neutral
Interface Definition Language (IDL)

// Hello world

service Greeter {

 rpc SayHello (HelloRequest) returns (HelloReply) {}

}

// Who to greet ?

message HelloRequest {

 string name = 1;

 string locale = 2;

}

// The greeting.

message HelloReply {

 string greeting = 1;

}

a service method

a request message type

a response message type

Protocol
Buffers

The protocol buffer compiler generates codes that has

● remote interface stub for Client to call with the methods
● abstract interface for Server code to implement

Protocol buffer code will populate, serialize, and retrieve our request and
response message types.

1. The generated helper code Protocol
Buffers

2. The implementation code

greeter_server.cc

#include "greeter.grpc.pb.h" // generated by protoc

class GreeterServiceImpl final : public

Greeter::Service {

 grpc::Status SayHello(ServerContext* context, const

HelloRequest* request, HelloReply* reply) override {

 std::string prefix("Hello ");

 reply->set_message(prefix + request->name());

 return Status::OK;

 }

};

greeter_client.cc

#include "greeter.grpc.pb.h" // generated by protoc

 GreeterClient(std::shared_ptr<Channel> channel)

 : stub_(Greeter::NewStub(channel)) {}

 std::string SayHello(const std::string& user) {

 HelloRequest request;

 request.set_name(user);

 HelloReply reply;

 ClientContext context;

 stub_->SayHello(&context, request, &reply);

 return reply.message();

https://cs.corp.google.com/search/?q=package%3A%5E(piper)%24+file%3A(%5E%2F%2Fdepot%2Fgoogle3%2F%7C%5E%2F%2Fdepot%2Fgoogle3%2Fexperimental%2Fgrpc-at-srecon%2Fcpp%2F%7C%5E%2F%2Fdepot%2Fgoogle3%2Fthird_party%2Fstl%2Fgcc3%2F)greeter%5C.grpc%5C.(rosy%7Cproto(devel)%3F)%24&is_navigation=1
https://cs.corp.google.com/search/?q=package%3A%5E(piper)%24+file%3A(%5E%2F%2Fdepot%2Fgoogle3%2F%7C%5E%2F%2Fdepot%2Fgoogle3%2Fexperimental%2Fgrpc-at-srecon%2Fcpp%2F%7C%5E%2F%2Fdepot%2Fgoogle3%2Fthird_party%2Fstl%2Fgcc3%2F)greeter%5C.grpc%5C.(rosy%7Cproto(devel)%3F)%24&is_navigation=1

3. ...and the gRPC core

● Exposes core api to language api

● Filters

○ Implements RPC deadlines

○ Performs authentication

● Reconnect automatically with exponential
backoff

● Takes care of socket creation, timers etc.

Status OK

Client Server

SayHello

gRPC gRPCtransport

OKsetOK

Yes
It's done, ship it !

Status OK

Client Server

SayHello

gRPC gRPCtransport

OKsetOK

But..

what happens if something fails ?

OK

- It worked (as implemented)

Status Error : yes, no, maybe
gRPC Core Status Codes

- OK
- CANCELLED
- UNKNOWN
- INVALID_ARGUMENT
- DEADLINE_EXCEEDED
- NOT_FOUND
- ALREADY_EXISTS
- PERMISSION DENIED
- UNAUTHENTICATED
- RESOURCE_EXHAUSTED
- FAILED_PRECONDITION
- ABORTED
- OUT_OF_RANGE
- UNIMPLEMENTED
- INTERNAL
- UNAVAILABLE
- DATA_LOSS

 Status status = stub_->SayHello(&context, request, &reply);

 if (status.ok()) {

 return reply.message();

 } else {

 // do something useful and cheap

 LOG_EVERY_N(ERROR, 10)

 << "Error " << google::COUNTER << " with status "

 << status.error_code() << status.error_message();

 }

 return "no hello available";

Status Error : yes, no, maybe
greeter_client.cc

 stub_->SayHello(&context, request, &reply);

 return reply.message();

OK - It worked (as implemented)

It wasn't gRPC library.

Status Error : yes, no, maybe
gRPC Core Status Codes

- OK
- CANCELLED
- UNKNOWN
- INVALID_ARGUMENT
- DEADLINE_EXCEEDED
- NOT_FOUND
- ALREADY_EXISTS
- PERMISSION DENIED
- UNAUTHENTICATED
- RESOURCE_EXHAUSTED
- FAILED_PRECONDITION
- ABORTED
- OUT_OF_RANGE
- UNIMPLEMENTED
- INTERNAL
- UNAVAILABLE
- DATA_LOSS

Maybe

Deadline exceeded… or did it ?

Status Error : yes, no, maybe
gRPC Core Status Codes

- OK
- CANCELLED
- UNKNOWN
- INVALID_ARGUMENT
- DEADLINE_EXCEEDED
- NOT_FOUND
- ALREADY_EXISTS
- PERMISSION DENIED
- UNAUTHENTICATED
- RESOURCE_EXHAUSTED
- FAILED_PRECONDITION
- ABORTED
- OUT_OF_RANGE
- UNIMPLEMENTED
- INTERNAL
- UNAVAILABLE
- DATA_LOSS

- DEADLINE_EXCEEDED - ??
- CANCELLED
- DEADLINE_EXCEEDED
- OK

Client Server

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork

Client is slow, the deadline expires
on the internal queues.

Do the client and server agree ?

no

D_E

set

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork
Network
☠

Transport flaps

Stubs re-connects automatically.

Like magic but not actually magic !

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork
Network
☠set

D_E

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork

Do the client and server agree ?

no

set

D_E

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork

Client's deadline reached before
the response from the server.

Do the client and server agree ?

no

- Server did wasted work.
- Client had already received

deadline_exceeded from gRPC

D_E set OK

set

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork

Client's deadline reached before
the response from the server.

Do the client and server agree ?

no

- Server did wasted work.
- Client had already received

deadline_exceeded from gRPC

D_E set OK

set

DEADLINE_EXCEEDED

CAN MEAN IT WORKED !

DEADLINE_EXCEEDED

Servers. Cascading outage happen
when servers spend resources
handling requests that will exceed
their deadlines on the client.

Clients. Think carefully about whether
your request is idempotent before
considering retries.

Servers can succeed and clients could
still be retrying the requests !

greeter_server.cc

// Check whether the client deadline has expired before processing.

if (context->IsCancelled()) {

 LOG(INFO) << "Deadline exceeded or Client cancelled, abandoning.";

 return Status::CANCELLED;

}

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork

Client's deadline reached before
the response from the server.

- Server did no wasted work.
- Client receives

deadline_exceeded

Do the client and server agree ?

no

D_E setCANCELLED

set

greeter_server.cc

// Avoid expensive backend calls for client who won't wait for results.

if (time_left < FLAGS_too_little_time_ms) {

 LOG(INFO) << "Don't call the backends, and set deadline exceeded.";

 return Status(grpc::DEADLINE_EXCEEDED, "Greeter service needs more time.");

}

The proto

// Hello world

service Greeter {

 // If request deadline < FLAGS_too_little_time_ms remains,

 // returns DEADLINE_EXCEEDED.

 rpc SayHello (HelloRequest) returns (HelloReply) {}

}

message HelloRequest {

 string name = 1;

 string locale = 2;

}

message HelloReply {

 string greeting = 1;

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork

Do the client and server agree ?

maybe !

set D_E

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork

Do the client and server agree ?

Yes, for the same reason.

set D_ED_E

DEADLINE_EXCEEDED

Client Server

SayHello

gRPC gRPCNetwork

Do the client and server agree ?

Yes, but for different reasons.

D_E

set

set D_E

Status Error : yes, no, maybe

gRPC gRPCNetwork

CLIENT
- CANCELLED
- UNKNOWN
- DEADLINE_EXCEEDED
- UNAUTHENTICATED
- RESOURCE_EXHAUSTED
- UNIMPLEMENTED
- INTERNAL
- UNAVAILABLE

SERVER
- CANCELLED
- UNKNOWN
- DEADLINE_EXCEEDED
- UNAUTHENTICATED
- RESOURCE_EXHAUSTED
- UNIMPLEMENTED
- INTERNAL
- UNAVAILABLE

gRPC Core Status Codes
- OK
- CANCELLED
- UNKNOWN
- INVALID_ARGUMENT
- DEADLINE_EXCEEDED
- NOT_FOUND
- ALREADY_EXISTS
- PERMISSION DENIED
- UNAUTHENTICATED
- RESOURCE_EXHAUSTED
- FAILED_PRECONDITION
- ABORTED
- OUT_OF_RANGE
- UNIMPLEMENTED
- INTERNAL
- UNAVAILABLE
- DATA_LOSS

OK - It worked (as implemented)

MAYBE - It _might_ have WORKED

NO - It _probably_ didn't WORK.

Status Error : yes, no, maybe
gRPC Core Status Codes

- OK
- CANCELLED
- UNKNOWN
- INVALID_ARGUMENT
- DEADLINE_EXCEEDED
- NOT_FOUND
- ALREADY_EXISTS
- PERMISSION DENIED
- UNAUTHENTICATED
- RESOURCE_EXHAUSTED
- FAILED_PRECONDITION
- ABORTED
- OUT_OF_RANGE
- UNIMPLEMENTED
- INTERNAL
- UNAVAILABLE
- DATA_LOSS

OK - It worked (as implemented)

MAYBE - It might have WORKED

NO - It probably didn't WORK.

Status Error : yes, no, maybe
gRPC Core Status Codes

- OK
- CANCELLED
- UNKNOWN
- INVALID_ARGUMENT
- DEADLINE_EXCEEDED
- NOT_FOUND
- ALREADY_EXISTS
- PERMISSION DENIED
- UNAUTHENTICATED
- RESOURCE_EXHAUSTED
- FAILED_PRECONDITION
- ABORTED
- OUT_OF_RANGE
- UNIMPLEMENTED
- INTERNAL
- UNAVAILABLE
- DATA_LOSS

Error codes

are conventions not rules !

Is there any

source of "truth" ?

No
But services can set expectations

google.rpc.Codes

Status Error : yes, no, maybe

Server errors
- DATA_LOSS
- UNKNOWN
- INTERNAL
- NOT_IMPLEMENTED
- UNAVAILABLE
- DEADLINE_EXCEEDED

Client errors
- INVALID_ARGUMENT
- FAILED_PRECONDITION
- OUT_OF_RANGE
- UNAUTHENTICATED
- PERMISSION DENIED
- NOT_FOUND
- ABORTED
- ALREADY_EXISTS
- RESOURCE_EXHAUSTED
- CANCELLED

https://cloud.google.com/apis/design/errors#error_retries

https://cloud.google.com/apis/design/errors#error_retries

google.rpc.Codes

Status Error : yes, no, maybe

Server errors
- DATA_LOSS
- UNKNOWN
- INTERNAL
- NOT_IMPLEMENTED
- UNAVAILABLE
- DEADLINE_EXCEEDED

Client errors
- INVALID_ARGUMENT
- FAILED_PRECONDITION
- OUT_OF_RANGE
- UNAUTHENTICATED
- PERMISSION DENIED
- NOT_FOUND
- ABORTED
- ALREADY_EXISTS
- RESOURCE_EXHAUSTED
- CANCELLED

Clients should retry on UNKNOWN and
UNAVAILABLE errors with exponential
backoff.

The minimum delay should be 1s unless it is
documented otherwise.

For RESOURCE_EXHAUSTED errors, the
client may retry with minimum 30s delay.

https://cloud.google.com/apis/design/errors#error_retries

https://cloud.google.com/apis/design/errors#error_retries

google.rpc.Codes

Status Error : yes, no, maybe

Server errors
- DATA_LOSS
-
- INTERNAL
- NOT_IMPLEMENTED
-
- DEADLINE_EXCEEDED

Client errors
- INVALID_ARGUMENT
- FAILED_PRECONDITION
- OUT_OF_RANGE
- UNAUTHENTICATED
- PERMISSION DENIED
- NOT_FOUND
- ABORTED
- ALREADY_EXISTS
-
- CANCELLED

For all other errors :

Retry may not be applicable - first ensure
your request is idempotent, and see the
error message for guidance.

The translator

// Hello world in most languages

service Translator {

 // If translate returns INTERNAL, this serious error is not retryable.

 // If translate returns UNAVAILABLE, is retryable after 1s & exponential backoff.

 rpc Translate (TranslationRequest) returns (TranslationReply) {}

}

Client Greeter Translator

Translate("Hello", "de_DE")

"Guten Tag""Guten Tag Fred!"

SayHello("Fred", "de_DE")

The greeter

// Hello world server

service Greeter {

 // If < FLAGS_too_little_time_ms remains, returns DEADLINE_EXCEEDED.

 // If locale not set, returns INVALID_ARGUEMENT. Not retryable.

 // INTERNAL is not retryable.

 // UNAVAILABLE, is retryable.

 rpc SayHello (HelloRequest) returns (HelloReply) {}

}

message HelloRequest {

 string name = 1;

 string locale = 2;

}

message HelloReply {

 string greeting = 1;

Status Error : yes, no, maybe
greeter_client.cc

// If locale not set, returns INVALID_ARGUEMENT. Not retryable.

DEFINE_string(user, "world", "Who to greet.");

DEFINE_string(locale, "gd_IE", "Locale for greeting, default to Irish.");

// We want to know how often the service is broken.

if (status.error_code() == grpc::StatusCode::INTERNAL) {

 ++num_broken;

…

// We want to know how often we're retrying.

if (status.error_code() == grpc::StatusCode::UNAVAILABLE) {

 ++num_retry;

…

TL;DR
There is no definitive answer
but maybe some guidelines ?

Status Error : yes, no, maybe

Tell clients which are temporary and which are permanent errors.

Invalid_argument will never work regardless of the state of the server.
Unavailable might work later if the server was down.

If more than one error code applies return the most specific.

Out of range versus failed precondition.
Permission denied < unauthenticated < resources exhausted.

Hide implementation, unless you want client decisions to depend on it.

Don't blindly propagate errors. They can contain confidential data.

More ?
@sre_grain

Or find me in the hallway

