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Espresso

Document store MySQL RDBMS & k-v 
Stores

Consistent & Partition 
tolerance



Espresso : Features

Multi-colo 
writes

Bulk import 
export

Secondary 
Indexing

Schema 
Evolution

Change data 
capture



Linkedin Profiles

Linkedin Invitations

Linkedin InMails, etc. 

Espresso : Use Cases
LINKEDIN



Espresso : Current Scale

O(100)
Clusters

O(10K)
Servers

O(100)
Databases

O(PB)
Data

O(M)
Peak QPS



Espresso : Basic Architecture

● Client/Application

● Router

● Helix

● Zookeeper

● Storage node



Espresso : Replication Requirements

Read Scaling BackupsHigh 
Availability

Disaster 
Recovery

Multi-colo 
writes



          Espresso : Local Replication

● MySQL Replication

● 3 Copies

● Per Node Replication

● Node Failure
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          Espresso : Cross Colo Replication (Legacy)

● Databus

● Data Replicator

● Colo failure
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Limitations : Per Instance Replication

Poor Resource 
Utilization

Cross Colo Replication (Legacy)



Limitations : Per Instance Replication
 

● Databus 

■ tightly coupled to storage node

■ operational complexity

■ Uses SSD,higher cost to serve

● Cluster expansion is painful

■ Lot of manual steps

■ Needs databus expansion

■ Requires downtime
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Limitations: Per Instance Replication

● Upon master failure, single 

node gets traffic

● Human intervention to 

bring up slaves

● Slave-less situation might 

lead to outage
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Espresso : Replication Using Kafka

● Per partition replication

● Flexible partition placement

● Every node serves traffic

● Data replicator uses kafka 

New architecture



Advantages: Per Partition Replication
 

Better resource 
utilization.

1



Advantages: Per Partition Replication
 

Better resource 
utilization.

Resource Utilization (Legacy)

Resource Utilization (                 )
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Advantages: Per Partition Replication
 

Better resource 
utilization.

1

Easy cluster 
expansion.
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Cluster Expansion

Initial cluster state with 12 partitions, 

3 storage nodes, replication factor=3



Cluster Expansion
 

Adding a node: Helix will send 

offline to Slave for new node



Cluster Expansion
 

Once partitions on new node 

are ready, transfer ownership 

and drop old



Cluster Expansion
 

Cluster state after expansion 

with 12 partitions, 4 storage 

nodes, r=3



Advantages : Per Partition Replication
 

Node failure

■ parallel mastership handoff 

■ parallel restore of slaves



Advantages: Per Partition Replication
 

Better resource 
utilization.

1

Easy cluster 
expansion.

2

No human 
intervention.

3



Advantages: Per Partition Replication
 

Single platform.

6

Cost savings.

5

Databus complexity 
eliminated.

4

Internal replication

Cross colo replication

Change capture for nearline



Requirements

1

Implementing Kafka based replication
 

● Broker and producer config

● Implement

2
Solution



Requirements

1

Implementing Kafka based replication
 

Guaranteed Delivery 

Exactly Once(sort of)

 In-Order



Implementing Kafka based replication
 

● Broker and producer config

● Implement

2
Solution

Broker config

● Kafka broker config
■ replication factor =3
■ min.isr = 2
■ Disabled unclean 

leader elections



Implementing Kafka based replication
 

● Broker and producer config

● Implement

2
Solution

Producer Config
● acks = “all”
● Infinite retries
● block.on.buffer.full = true

● max.in.flight.requests.per.connection = 1
● linger.ms = 0
● on non-retryable exception

■ destroy producer
■ create new producer
■ resume from last checkpoint



Global Transaction Identifier
 

● Global transaction identifier(GTID)
● Unique



Replication flow
 



Message protocol

MySQLMySQL



Message protocol - Mastership Handoff

MySQLMySQL



Message protocol - Mastership Handoff

MySQLMySQL



Message protocol - Mastership Handoff

MySQLMySQL



Checkpointing - Producer 

MySQLMySQL



Checkpointing - Producer ...

MySQLMySQL



Checkpointing - Consumer

MySQL MySQL

3:101@2



Producer Failure

MySQLMySQL

3:101@2



Producer Failure...

MySQLMySQL



Producer Failure...

MySQLMySQL



Producer Failure...

MySQL MySQL

3:103@6



Producer Failure...

MySQL

3:103@6

MySQL



Producer Failure...

MySQL MySQL

3:103@6



Producer Failure...

MySQL

3:103@6

MySQL



Zombie Writes

MySQLMySQL



Zombie Writes...

MySQLMySQL



Zombie Writes...

MySQLMySQL



Zombie Writes...

MySQL MySQL



Zombie Writes...

MySQL MySQL



Conclusion

● LinkedIn leveraged Kafka to scale Espresso
● Kafka helped to Unify data pipelines
● Reduced operational complexity
● Saved $$$
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