
SDKs are not
services and
what this means
for SREs

Engineering Director, SRE

@jqcoffey

Justin Coffey <j.coffey@criteo.com>

2

Agenda
This talk covers work done by a data engineering team over a period of 7 years. It mixes
storytelling with “insights” and a few code examples. The structure is as follows:

Ø Introduction, context and motivation
Ø A feature team becomes a service team
Ø A missed delivery and its analysis
Ø Rebooting
Ø Closing thoughts

Introduction, context
and motivation

4

Who am I?
I’m the manager of what is now called SRE Data Processing. Over the years the teams I’ve
managed have had their hands in pretty much every aspect of data building, processing,
reporting and accessing.

Most all mistakes that I’ll highlight are my mine J.

5

Deep Thought #1: software engineering is about providing utility

e.g.:
ØThe Linux kernel provides utility to OS vendors
ØOS vendors provide utility to systems engineers
ØSystems provide utility to web app developers
ØWhich other people use to look at cats

User:Fir0002 [GFDL 1.2 (http://www.gnu.org/licenses/old-licenses/fdl-1.2.html)]

6

Deep Thought #2: not all software is destined for massive utility

e.g.:
ØWe help ourselves by writing “scripts” and libraries of “utilities”
ØWe take short cuts in making them, baking-in assumptions specific to our

local environment

User:Fir0002 [GFDL 1.2 (http://www.gnu.org/licenses/old-licenses/fdl-1.2.html)]

7

Criteo

You may not know us, but we know you (as the joke goes).

ØWe do personal recommendation in advertisements (aka “retargeting”)
ØWe observe a large portion of the Internet, reach 1B+ users per month
ØWe have ~1000 potential contributors to data production (600+ in R&D)

tl;dr, we’re not small.

8

Motivation

This talk has long been brewing inside my head. It’s a 7-year post mortem of
what a bunch of amazing engineers did together.

I’m obliged to say that, while I am here at the grace of Criteo, these are my thoughts and
analysis. Criteo is a large and diverse organization that encourages open and honest debate.
This talk is part of that process.

A feature team
becomes a service
team

10

The Early Wonder Years

The team in question was formed to fix failing ETL pipelines.

We made quick work of individual jobs, but deployment and
orchestration was not obvious.

Being UNIX-y, we scripted ourselves out of the problem.

It worked pretty well and we were happy J

The Early Years

11

We’re Popular

We start getting requests for help. Lot’s of them. We were flattered!

We still don’t
know who
this guy is.

12

Surprise!

We are victims of our own success and are now the proud owners of most of
Criteo’s batch data production.

Problem 1: We have very little monitoring and no user isolation

Problem 2: We don’t actually own most of the code that’s executing

13

Surprise! #2!

The legacy billing data pipeline, a hypercritical system is failing. We won the
no-bid contract to fix it.

New requirements: strict SLOs, SOX compliance, correctness

Old Problems: see previous slide

14

New Problems, New System

Our scripts will no longer cut it.

We need a real scheduler and
to redistribute ownership of jobs.

We decide to write a scheduler
library in Scala.

https://github.com/criteo/cuttle

import com.criteo.cuttle._
import com.criteo.cuttle.platforms.local._
import com.criteo.cuttle.timeseries._
import java.time.ZoneOffset.UTC
import java.time._
import scala.concurrent.duration._

object Scheduler {
def main(args: Array[String]): Unit = {
// define the start of our project to yesterday, UTC
val start = LocalDate.now.minusDays(1).atStartOfDay.toInstant(UTC)

// define simple jobs that will execute every hour
val hello = Job("hello", hourly(start)) { implicit e =>
// client code goes here...
e.streams.info(s"${e.context.start} - Hello,")

}

val world = Job("world", hourly(start)) { implicit e =>
// client code goes here...
e.streams.info(s"${e.context.start} - World!")

}

val project = CuttleProject("Hello World") {
// declare the order of operations
world dependsOn hello

}

// start the scheduler
project.start()

}
}

A missed delivery and
its analysis

16

The adoption rate is tepid at best

We slayed the billing data pipeline problem and reduced operational
headaches in the process. What gives?

What’s an
idempotent

job?

Why at
least

once?

Scala is
hard.

I just have
one job to

run.
Can you
just do it
for me?

Ribbit!

17

A first analysis
1. Folks don’t know the particulars of our domain
2. Scala is harder to pickup than we thought

After many rounds of training we were able to get new data pipelines on our
scheduler, but we couldn’t find takers for the legacy jobs.
This hybrid world establishes itself as the new norm.

18

Going further in our analysis
We start to see broad adoption of our scheduler, but many teams still seem
unhappy with it. Our toil, mostly from support, is high. Why?

Cuttle / Scheduler SDK

Hive
Queries Spark Jobs Sqoop

Imports
Forked

Processes

Mesos/Marathon Kerberos User Auth

YARN HiveServer2 Hive
Metastore

Spark Job
Server

HDFS Metrology SQL Server MySQL

Client Code

Services

MariaDB

19

It took 6 months to migrate from MySQL to MySQL MariaDB

Release lag when combined with fast moving infrastructure causes high toil for
SDK maintaining teams and their clients.

20

A mid-term post mortem

Our scheduler is everywhere, but the day to day is hard for everyone.

Mistake 1: We made incorrect assumptions about the level of understanding
our clients had in the domain in which we were experts.

Mistake 2: We chose a language with a steep learning curve that was overkill
for most tasks

Mistake 3: Our SDK approach blurred the lines between who was responsible
for what in the face of failures or infrastructure changes

Rebooting

22

This isn’t working, part deux
Gut instinct got us pretty far, but now we need to strategimize, er I mean, we
need some strategery. Turns out we didn’t need to look too far.

S Q L

23

The nice properties of SQL and the RDBMS model
Ø SQL is self describing and easily parsed
Ø It is a DSL that runs in a sandbox—the RDBMS—via RPC
Ø All of our users are already proficient in it and documentation abounds

Taken all together as platform this should provide high ease of use for clients
while reducing our operational burden.

24

Scheduling with SQL

SELECT
-- the schema is defined here
day,
foo,
count(1) as foos

FROM
-- the parent dependencies are here
bar

WHERE
-- the specific subset of the table (aka partition)
day = ?

GROUP BY
day, foo

-- give the dataset a name
CREATE DATASET fact_foo_daily AS

-- define a partitioning value enumeration
FOR t in TIMESERIES('@daily')

-- 'day' has been promoted to a partition value
INSERT CAST(t as DATE) as day

SELECT
-- the rest of the schema remains here
foo,
count(1) as foos

FROM
bar

WHERE
-- parameterize the parent with the partition value
day = CAST(t as DATE)

GROUP BY
foo

25

SQL vs SDK approaches

-- give the dataset a name
CREATE DATASET fact_foo_daily AS

-- define a partitioning value enumeration
FOR t in TIMESERIES('@daily’, RETENTION => 3 DAYS),

p in (‘AS’, ‘EU’, ‘US’)

-- partition values
INSERT CAST(t as DATE) as day, p as platform

SELECT
-- the rest of the schema remains here
foo,
count(1) as foos

FROM
bar

WHERE
-- parameterize the parent with partition values
day = CAST(t as DATE)
and platform = p

GROUP BY
foo

import com.criteo.cuttle._
import com.criteo.cuttle.platforms.local._
import com.criteo.cuttle.timeseries._
import java.time.ZoneOffset.UTC
import java.time._
import scala.concurrent.duration._

object Scheduler {
def main(args: Array[String]): Unit = {
val start = LocalDate.now.minusDays(1).atStartOfDay.toInstant(UTC)

val hws = for (p <- List(‘AS’, ‘EU’, ‘US’)) yield {

val hello = Job("hello", hourly(start)) { implicit e =>
e.streams.info(s"${e.context.start}/$p - Hello,")

}

val world = Job("world", hourly(start)) { implicit e =>
e.streams.info(s"${e.context.start}/$p - World!")

}

world dependsOn hello
}

val project = CuttleProject("Hello World") {
hws.reduce(_ and _)

}

project.start()
}

}

26

Executing non-SQL with SQL

CREATE DATASET fact_foo_daily AS
FOR t in TIMESERIES('@daily')

INSERT CAST(t as DATE) as day

SELECT
foo,
foos

FROM RUN_PYTHON(
-- the name and version of the Python artifact
'com.criteo:foos_py:12345',
-- this will determine the input data's location to pass via CLI arguments
DATA_FILES(SELECT *

FROM bar
WHERE day = CAST(t AS DATE)),

)
-- this declares the types for the schema
AS result (foo STRING, foos INTEGER)

With a Foreign Transformation Interface (FTI) extension, our system can
execute arbitrary code using the same scheduling language.

27

Exporting data with SQL

CREATE DATASET fact_foo_daily AS
FOR t in TIMESERIES('@daily')

INSERT CAST(t as DATE) as day

SELECT
foo,
count(1) as foos

FROM
bar

WHERE
day = CAST(t as DATE)

GROUP BY
foo

COPY VERTICA_EXPORT('vertica.criteo.com')

With a COPY extension we can also declare exports to some other system.

28

Research and over communicate
Before we launch full scale development, we practice high quality engineering
practices like:

Ø Read papers1

Ø Build a minimal prototype to flesh out our model and validate it
Ø Formalize and share our findings via an internal RFC
Ø Hold meetings with stakeholders to clarify finer points

Is this Agile? Waterfall? You decide.

[1] https://ai.google/research/pubs/pub47224

https://ai.google/research/pubs/pub47224

29

Planning delivery
It’s all well and good to build momentum around a project, but the trick is
always how to get it out the door.
Constraints: Fixed head count and lots of existing infrastructure to support
Methodology: Focus. Align. Negotiate. Reuse.

Closing thoughts

31

Summary findings
We need to be careful in extrapolating one
team’s work in a specific domain to the rest
of our industry.

Rabbit holes, and all.

Nevertheless…

32

Lesson 1

Listen!

33

Lesson 2

Be wary of state!

34

Lesson 3

Don’t over aggregate!

Thank you!

36

We’re hiring and have an
amazing rooftop.

Come see it at our free
conference, Nov 19

https://nabdconf.com/

