Advanced Napkin Math

Estimating System Performance from First Principles

Example: Why is my Cloud bill $100,000?

90%

10%

Main Money-Making Application Cost 7

10,000 RPS at 100ms => 1,000 CPU/seconds at
$10/CPU/month =>$10,000 / month

Base Rates: Cost

Loosely based off of https://cloud.google.com/products/calculator, similar for other Cloud providers.

e CPU:$10/ core/ month * Cloud-storage (S3): $0.01/ GB/
month
® Memory: $1/GB/ month
e Network: $0.01 / GB / month
® SSD: 50-1 / GB / month Between zones, egress, between regions

e Disk: $0.01 / GB / month

Base Rates: Application

It's important for you to remember the key numbers that are relevant to your business.

Median and P99 response time: Transactions: x RPS
XX ms

Customers: x
Throughput: x RPS

... and so on

Eratosthenes measurement of Earth's circumference

1/50 of a circle < 5000 stadia (~800 km)

" 1 circle <« 50 x 5000 stadia
=250 000 stadia (~40 000 km)

1/50 of
a circle
(~7°)
g Pole at
P> Alexandria

Parallel
sun rays

Alexandria

Center
of the e
Earth'..::: S

7))
=
v
0
O
—
al
=
-
v
LL

“How many piano tuners are there in Chicago?”

base rates
1 in Chicago's metro-area 4) Pianos are tuned a year
2 people per household in 5) Tuning a piano, including
the area driving, is

3 households has a piano s) Piano tuners work

“How many piano tuners are there in Chicago?”

Combine

(9,000,000 persons in Chicago) / (2
persons/household) x (1 piano/20 households) x (1

piano tuning per piano per year) =

(50 weeks/year) x (5 days/week) x (8 hours/day) + (2
hours to tune a piano) =

(225,000 piano tunings per year in Chicago) + (1000
piano tunings per year per piano tuner) =

You need less precision
than you think!

The objective of a napkin calculation is to provide a quick approximation within an order of
magnitude of the real answer.

Fermi Decomposition of Snapshot-Restore Failover

s it feasible to fail over a simple, 16 GiB in-memory database by dumping it to disk, sending it over the network,

and restoring itin the target?

Reading 1 GiB of sequential
memory takes

Writing 1 GiB to SSD takes

Transferring 1 GiB from one
Cloud Region (not zone) to
another takes

Reading 1 GiB from SSD takes

Writing 1 GiB of random
memory in 64-bit increments
takes

Not feasible to consider
doing this for 16 GiB. Need to
explore other options.

Big O Notation and Mechanical Sympathy

-1
O
O(n) algorithm doing O(n) algorithm reading from
random SSD seeks. memory.

Using napkin math for systems design was popularized by Jeff Dean and Peter Norvig

http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
https://norvig.com/21-days.html#answers
https://norvig.com/21-days.html#answers
https://norvig.com/21-days.html#answers

Base Rates: Performance

https://github.com/sirupsen/base-rates, contribute your own

e Sequential Memory Reads <64 bit>: 1 ns
@ 6 GiB/s (1MiB: 150 pus, 1 GiB: 150ms)

e Sequential Memory Writes <64 bit>: 5 ns
@ 1.5 GiB/s (1MiB: 600 ps, 1 GiB: 600ms)

e Random Memory Read <64 bit>: 25 ns @
300 MiB/s (1 MiB: 3.5ms, 1 GiB: 3.5s)

e Sequential SSD Read <8 KiB>:1 us @ 4
GiB/s (1 MiB: 200 ps, 1 GiB: 200 ms)

e Seqgential SSD Write <16 KiB>, No Fsync:
15 us @ 3.5 MiB/s (1 MiB: 250ms, 1 GiB: 5
min)

e TCP Echo Server, Localhost <64 bytes>:
15 us

¢ Random SSD Read <64 bits>: 100 ps @
0.5 MiB/s (1 MiB:1.5s, 1 GiB: 0.5 hour)

¢ Cloud Within-Zone Roundtrip: 250 ps

e Sequential SSD Write <16 KiB>, Fsync: 5
ms @ 10 KiB/s (1 MiB: 100s, 1GiB: 1 day)

Sign up for a monthly
napkin math
practice by email at
sirupsen.com/napkin

https://sirupsen.com/napkin
https://sirupsen.com/napkin
https://sirupsen.com/napkin

Debugging an existing system

Why did it once take 2-3 seconds to serve a response for some Australian merchants?

(1) Render time: ~100ms

(2) Round-trip time between Australia and D.C.:
~250ms

@ Request cycle round-trips: ~4.5 from DNS (1), TCP
(1), SSL (2), HTTP (1)

(4) => Expected response time: 4 * 250ms + 100ms =
1.1 second

How could it possibly take 2-3 seconds on fast connections as reported?!

TCP Window-Scaling

Initial window is 10 * 1,500 bytes, and each roundtrip (if no packets are lost) will double the window size.

Bytes transmitted on a TCP slow-start after x roundtrips
Bytes
250,000 bytes
200,000 bytes
150,000 bytes
100,000 bytes

50,000 bytes

0 bytes

Roundtrips

Base Rates: Networking

Rounded numbers from https://wondernetwork.com/pings to make them easier to remember.

e D.C.->Frankfurt: 100ms e D.C.->Kansas City: 40ms

e D.C.->{Singapore, Sydney}: e Singapore -> {Sydney, Tokyo}:
250ms 100ms

® D.C.->Los Angeles: 60ms e D.C.->Sao Paulo: 100ms

e D.C.->Tokyo: 150ms ¢ Frankfurt->Cape Town: 150ms

Example: Collection's Problem

EEEEEEEEEEEEEEE

ALDAS COMSORTIUM TORSHH COMP HAL

Merchant has products

Collection filters products by rules

Rules: contains, not-contains, starts-with, ends-with,
greater-than, less-than, equal-to, not-equal-to

Each product has fields rules can be applied to are
on average , and maximum
=> Serve queriesin (don't have to be SQL, just

here to illustrate):

Example: Collection's Database

Naive Solution

P* K* 64 bit=1GiB data per
merchant

Collection's
Database

Inverted
Index

(64 bits * (13 +27)
+5 bytes) * P =64
MiB

B-Trees

K intersections of
B-trees?

First-principle thinking is
to break out of iterative
Improvements and make order
of magnitude improvements.

How do you memorize and practice base rates?

4 (=) (%

Spaced Repetition Sign up for Periodic Develop your own base Apply them to your own
Anki. Communis.io Challenges rates problems
(Messenger-bot) sirupsen.com/napkin Contribute to Reconciling the difference
github.com/sirupsen/base-rates between your first-principle,
or start your own! napkin model and reality is

going to either present an
opportunity to improve the
system or fix your mental
model.

http://sirupsen.com/napkin
http://sirupsen.com/napkin
http://sirupsen.com/napkin
https://github.com/sirupsen/base-rates
https://github.com/sirupsen/base-rates
https://github.com/sirupsen/base-rates
https://github.com/sirupsen/base-rates

Thank You

Simon Eskildsen, sirupsen.com/napkin

@sirupsen

https://sirupsen.com/napkin
https://sirupsen.com/napkin
https://sirupsen.com/napkin
http://twitter.com/sirupsen
http://twitter.com/sirupsen

Resources

e Measure Anything (Book)

e What Every Programmer Should
Know About Memory

e Mechanical Sympathy Blog
e Wonder Network for Ping Times

e Latency Numbers Every
Programmer Should Know

e Computers are Fast Quiz

e Jeff Dean Presentation

¢ github.com/shopify/base-rates
e Guesstimate Spreadsheets

e Monthly Challenges

https://www.amazon.com/How-Measure-Anything-Intangibles-Business-ebook/dp/B00INUYS2U
https://www.amazon.com/How-Measure-Anything-Intangibles-Business-ebook/dp/B00INUYS2U
https://www.amazon.com/How-Measure-Anything-Intangibles-Business-ebook/dp/B00INUYS2U
https://www.amazon.com/How-Measure-Anything-Intangibles-Business-ebook/dp/B00INUYS2U
https://www.amazon.com/How-Measure-Anything-Intangibles-Business-ebook/dp/B00INUYS2U
https://www.amazon.com/How-Measure-Anything-Intangibles-Business-ebook/dp/B00INUYS2U
https://www.amazon.com/How-Measure-Anything-Intangibles-Business-ebook/dp/B00INUYS2U
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://mechanical-sympathy.blogspot.com/
https://mechanical-sympathy.blogspot.com/
https://mechanical-sympathy.blogspot.com/
https://mechanical-sympathy.blogspot.com/
https://mechanical-sympathy.blogspot.com/
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://computers-are-fast.github.io/
https://computers-are-fast.github.io/
https://computers-are-fast.github.io/
https://computers-are-fast.github.io/
https://computers-are-fast.github.io/
https://computers-are-fast.github.io/
https://computers-are-fast.github.io/
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://github.com/shopify/base-rates
http://github.com/shopify/base-rates
http://github.com/shopify/base-rates
https://www.getguesstimate.com/
https://www.getguesstimate.com/
https://www.getguesstimate.com/
https://sirupsen.com/napkin
https://sirupsen.com/napkin
https://sirupsen.com/napkin

