
Presentation title
ANDREY FALKO - October 2019

Fault Tree Analysis 
Applied to Apache 
Kafka®



Agenda

The Challenge: Quantify Kafka Reliability

Introduction to Fault Tree Analysis

Kafka Fault Trees

Availability

Data Durability

Conclusion



The Challenge: Quantify Kafka Reliability



Kafka is a “reliability tool”

Move data without lossiness

High stakes usage

What are we trying to do? 



Observability Data 



Event Streaming

DB



Change Data Capture

DB

DB

DB DB



Why Quantify?

Determine probability of success

Find opportunities to trim cost



Defining SLOs

Need to define Service Level Objectives

Availability

Durability 

Latency



Quantifying SLOs
Availability

What is the probability that writes or reads fail?

How long do we tolerate downtime?



Quantifying SLOs
Durability

What is the probability that we’ll lose data?

How much will we lose?



Quantifying SLOs

Latency

How long are transactions allowed to take?



Introduction to Fault Tree Analysis



What is Fault Tree Analysis?
Deductive Failure Analysis

Invented in 1962 for Minuteman I ICBM Launch Control System

Industry wide adoption

Aerospace

Military

Petrochemical

Et al.



Fault Tree Analysis: Event Symbols

Basic Intermediate

Transfer



Fault Tree Analysis: Gate Symbols

ANDOR



Fault Tree Analysis: OR Example 



Fault Tree Analysis: OR Example 

4% probability of failure



Fault Tree Analysis: OR Example 

4% probability of failure 
annualized



Fault Tree Analysis: OR Example 

p(A “or” B) = 
p(A) + p(B) - p(A) * p(B)

Almost always small



Fault Tree Analysis: OR Example 

12% chance of failure 
annualized



Fault Tree Analysis: AND Example 



Fault Tree Analysis: AND Example 

p(A and B) = p(A) * p(B)



Fault Tree Analysis: AND Example 

99.9936% chance of 
success annualized



Fault Tree Analysis: AND Example 

99.9936% chance of success 
annualized if we don’t 
remediate



Fault Tree Analysis: AND Example 

99.999999996% chance of 
success if we remediate within 
3 days



Fault Tree Analysis: AND Example 

99.99999% chance of 
success if we remediate 
within 3 days



Fault Tree Analysis: AND Example

p(A and B) =
p(A) * p(B) =
(1 - e-p(A)*t) * (1 - e-p(B)*t)
 

Where t = time to remediate

If p(A) and p(B) < .1, approximate to p(A)*p(B)*t2



Kafka Fault Trees



Can we write or read to a Kafka cluster?

Service Level Objective (SLO): 

99.99% success rate per year

Availability



4% 2% 1% 1%

?

Availability



Availability

4% 2% 1% 1%.8% 2% 1% 1%

4.8% failure chance 8% failure chance

12.8% failure chance



Availability - Two brokers, single ZK



Availability - Collapse Host Faults

.8%

2% 1% 1%

4%

98.4% success chance



Availability - Multiple ZKs
99.4% success chance



Availability - Three Brokers
99.95% success chance



Availability - Summary

Success Probability Cost Per Nine*

Standalone 87.2% n/a

Two brokers, ISR=1, One ZK 98.36% 2

Two brokers, ISR=1, Three ZKs 99.36% 2

Two brokers, ISR=1, Five ZKs 99.36% 3

Three brokers, ISR=1, Three ZKs 99.95% 1.5

Three brokers, ISR=2, Three ZKs 99.36% 2.25

* Cost is computed in “disk units” / “number of nines”: 
Kafka Broker Rotational Disk = .5
Zookeeper SSD Disk = 1
Lower is better



Availability - Four Brokers

Success Probability Cost Per Nine*

Three brokers, ISR=1, Three ZKs 99.95% 1.5

Three brokers, ISR=2, Three ZKs 99.36% 2.25

Four brokers, ISR=1, Three ZKs 99.995% 1.25

Four brokers, ISR=2, Three ZKs 99.95% 1.67

* Cost is computed in “disk units” / “number of nines”: 
Kafka Broker Rotational Disk = .5
Zookeeper SSD Disk = 1
Lower is better



Availability - Broker SSD

Success Probability Cost Per Nine*

Standalone 90.4% 1

Two brokers, ISR=1, One ZK 99.08% 1.5

Two brokers, ISR=1, Three ZKs 99.77% 2.5

Two brokers, ISR=1, Five ZKs 99.77% 3.5

Three brokers, ISR=1, Three ZKs 99.99% 1.5

Three brokers, ISR=2, Three ZKs 99.77% 3

* SSD Disk = 1



Availability - Broker EBS

Success Probability Cost Per Nine*

Standalone 91.6% 1.5

Two brokers, ISR=1, One ZK 99.29% 2

Two brokers, ISR=1, Three ZKs 99.82% 3.0

Two brokers, ISR=1, Five ZKs 99.82% 3.5

Three brokers, ISR=1, Three ZKs 99.99% 1.875

Three brokers, ISR=2, Three ZKs 99.82% 3.75

* EBS disk units: 
EBS SSD Disk = 1.5

Assumption that EBS fails at .2%



What are the chances of losing data?

Service Level Objective (SLO): 

99.99999% durability per year

Durability



We lose data when all hosts with replicas go down

Assumptions: 

6TB per broker (2TB per disk w/ RAID)

70MB/s replication rate

~24 hours to replicate full broker

We replace bad hosts almost immediately

Durability



Durability - Two brokers - One 6TB Disk

1 - e-p(A)*t * 1 - 
e-p(B)*t

99.999999% durability



Durability - Add Raid0
99.9999% durability



Durability - Three brokers
99.99999999% durability



Assumption: 

48TB per broker

70MB/s replication rate

~8 days to replicate full broker

We replace bad hosts almost immediately

Durability



Durability - Three brokers 24 disks
99.999% completeness

24 disks



Durability - Summary

Data completeness Cost Per Nine*

Standalone 99.99% .125

Two brokers 99.999999% .5

Two brokers RAID0 99.9999% .22

Three brokers RAID0 99.99999999% .15

Three brokers RAID0 - 48TB 99.999% 1

* Cost is computed in “disk units” / “number of nines”: 
Single non-raid disk = .5
Raid0 = .167
Zookeeper SSD Disk = 1
Lower is better



Latency

FTA focused on failures
Latency is not an inherent failure
Experiment with worst-case scenarios



Conclusion



Fault Tree Models: github.com/afalko/fta-kafka

OSS tool to draw and compute models: github.com/rakhimov/scram

How Not to Go Boom: Lessons for SREs from Oil Refineries by Emil Stolarsky

Fault Tree Analysis - A History by Clifton A. Ericson II

Fault Tree Handbook with Aerospace Applications by Dr. Michael Stamatelatos and Mr. José Caraballo

Failure Trends in a Large Disk Drive Population by Eduardo Pinheiro, Wolf-Dietrich Weber and Luiz Andre Barroso

Solving Data Loss in Massive Storage Systems by Jason Resch

Failures at Scale and How to Ride Through Them by James Hamilton

Tools and References

http://github.com/afalko/fta-kafka
https://scram-pra.org/
https://www.usenix.org/conference/srecon18americas/presentation/stolarsky
https://web.archive.org/web/20110723124816/http://www.fault-tree.net/papers/ericson-fta-history.pdf
https://elibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/25.%20NASA_Fault_Tree_Handbook_with_Aerospace_Applications%20-%20Copy.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/disk_failures.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2010_presentations/tuesday/JasonResch_%20Solving-Data-Loss.pdf
https://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_reInvent20121128.pdf


FTA can be applied to:
Kafka Availability and Durability SLOs
Find cost savings
Uncover decisions that reduce reliability

Takeaways



Kafka on Kubernetes analysis

KIP-500: Kafka Removing ZK Dependency

Improve scram-pra

Better FTA inputs via Distributed Tracing

Future Work

https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://scram-pra.org/


github.com/afalko/fta-kafka

Andrey Falko <afalko@lyft.com>

linkedin.com/in/andrey-falko/

Thank You

Thank you!

http://github.com/afalko/fta-kafka
mailto:afalko@lyft.com
https://www.linkedin.com/in/andrey-falko/

