
Managing microservices with
Istio Service Mesh
Rafik Harabi, INNOVSQUARE

SRECon EMEA 2019

Quick survey before we start
- Who are already using kubernetes?

- Who are developing microservices ?

- Who are using client library approach to implement microservices common
concerns (Circuit Breaker, Retry...) ?

- Who are using Istio or any other service mesh technology?

Moving to microservices network challenges

Network Reliability

Fault tolerance and resiliency

Monitoring and Observability

Challenges deep-dive

Network Reliability

Service have to handle
the network facts:

● Network latency /
bandwidth

● Transport cost
● Topology and

administration

Fault Tolerance

Service have to be able
to handle outright failure
and timeouts:

● Avoid cascading
failure

● Retries
● Circuit breaking

Monitoring

We have to:

● monitor the
delivered
microservices and
their interactions

● Trace requests and
identify potential
hotspots

The evolution of microservices frameworks: from
NetFlix OSS to Istio

2011

NetFlix OSS

first microservices patterns
and libraries open-sourced

2013

Spring Cloud

Enterprise microservice framework
for Java

2014

Docker

Containerization

2015

Kubernetes

Workload orchestration

2018

Istio

Service mesh

Microservices challenges

Challenge 1 Challenge 2 Challenge 3
- N to N communications.
- Distributed software interconnection and troubleshooting is hard.
- Containers should stay thin and platform agnostic.
- Upgrade of polyglot microservices is hard at scale.

Microservices building blocks

Challenge 1 Challenge 3Configuration Service

Service Registry / Discovery

Circuit Breaker / Retry

Rate Limiting

API Gateway

Load Balancing / Intelligent Routing

Authentication & Authorization

Monitoring

Distributed tracingEvent Driven Messaging (Async)

Log AggregationAudit

Microservices building blocks

Challenge 3

Business Value

Configuration Service

Service Registry / DiscoveryCircuit Breaker / Retry

Rate Limiting

Event Driven Messaging (Async)

Audit

Load Balancing / Intelligent Routing

API Gateway

Authentication & Authorization Monitoring

Distributed tracing Log Aggregation

Code oriented frameworks
Challenge 3

Service A Service B

Business logic Business logic

Circuit Breaker

Rate limiting

Tracing

Metrics

Circuit Breaker

Rate limiting

Tracing

Metrics

Code oriented pattern

Challenge 1
Challenge 3

Configuration Service

Service Registry / Discovery

Circuit Breaker/Retry Rate Limiting

API Gateway

Load Balancing / Intelligent Routing

Authentication & Authorization

Monitoring

Distributed tracingEvent Driven Messaging (Async)

Log Aggregation

Audit

Business Service

Foundation

Monitoring and ObservabilityCommunication

Business Values

Code oriented solutions limits
- Language oriented.
- Error prone (implementation).
- Hard to upgrade each microservice when system grow.
- Add technical challenges and duties to development teams.
- Different teams in the same organization may have different

implementations.
- Each team should maintien his implementation.

Microservices challenges need to be solved uniformly

Desired state
- Keep microservice concerns separate from the business logic.
- The network should be transparent to applications.
- Developers should focus on delivering business capabilities and not

implementing microservices common concerns.
- Microservices interconnection should be language agnostic.
- Easy to upgrade solution.

Service Mesh
Definition

A service mesh is a dedicated
infrastructure layer for handling
service-to-service communication.
It’s responsible for the reliable
delivery of requests through the
complex topology of services that
comprise a modern, cloud native
application.

 buoyant.io

Service Mesh
The design

Each service will have its own proxy
service and all these proxy services
together form the “Service Mesh”.
All the requests to and from each
service will go through the mesh
proxies.

Proxies are also known as sidecars.

Sidecar pattern

Service A

Business logic

Circuit Breaker

Rate limiting

Tracing

Metrics

Proxy

Service B

Business logic

Circuit Breaker

Rate limiting

Tracing

Metrics

Proxy
Injected

Network concerns
become transparent

Service to service communication

History of Istio
- Envoy proxy (Istio data plane) created by Lyft and open-sourced in 2016.
- IBM and Google launch the project in May 2017.
- First major version released in July 2018.
- Current version: 1.3

Istio goal

Develop an open technology that provides a uniform way to
connect, secure, manage and monitor a network of

microservices regardless of the platform source or vendor.

Solution
Istio Promises

● Focus on business logic and
spent less time with common
concerns.

● No change in the service code.
● Central configuration

management.
● Easy to upgrade
● Security

Istio does:
- Service discovery
- Load Balancing & Intelligent

Routing
- Resiliency: Circuit Breaker &

Retry
- Rate Limiting
- Authentication and

Authorization
- Service to Service mTLS
- Policy enforcement
- Observability
- Monitoring metrics
- Distributed tracing

- Event Driven Asynchronous
communication

- Service Orchestration

Istio does not:

Sidecar pattern

Challenge 1

Challenge 3
Configuration Service

Service Registry / Discovery

Circuit Breaker/Retry

Rate Limiting

API Gateway

Authentication & Authorization

Monitoring Distributed tracingEvent Driven Messaging (Async)

Log Aggregation Audit

Business Service

Foundation

Monitoring and ObservabilityCommunication

Business Values

Load Balancing / Intelligent Routing

Business Service

Business Service

Service Discovery

Challenge 1 Challenge 2 Challenge 3
Kubernetes provide service discovery, why do I need an extra one ?

Istio supports:

- HTTP L7 filter
- HTTP L7 routing (based on http headers and cookies)
- First class HTTP/2
- gRPC support
- Fine-grained traffic splitting

Architecture

Challenge 1 Challenge 2 Challenge 3

Istio building blocks 1/2
Component Description

Pilot Responsible for service discovery and for configuring the Envoy
sidecar proxies

Citadel Automated key and certificate management

Mixer Istio-Policy: policy enforcement
Istio-Telemetry: gather telemetry data

Galley Configuration ingestion for istio components

Ingress Gateway manage inbound connection to the service mesh

Egress Gateway manage outbound connection from the service mesh

Sidecar injector Inside sidecar for enabled pods/namespaces

Istio building blocks 1/2

Component Description

Prometheus Metrics collection

Grafana Monitoring dashboard

Jaeger Distributed tracing

Kiali Observability dashboard

Challenge 1 Challenge 2 Challenge 3

https://www.istioworkshop.io/

https://www.istioworkshop.io/

