
Automatically Detect the Performance & Scalability Issues in Distributed Architectures

Andreas Grabner

DevOps Activist at Dynatrace

DevRel for Keptn
@grabnerandi, https://www.linkedin.com/in/grabnerandi

Star us @ https://github.com/keptn/keptn

Follow us @keptnProject

Slack Us @ https://slack.keptn.sh

“And integrate this in your delivery pipeline with ”

https://www.linkedin.com/in/grabnerandi

3

How distributed systems look like!

Or how they shouldn‘t ...

4

Distributed Trace Example from StepStone (AWS Summit Berlin 2019)

Legacy

Databases

Micro-services

AWS-ELB

3rd-party

Frontend LB

5

Dependencies in the infrastructure: 323 k8s Nodes

6

4229 k8s Pods

Dependencies in the infrastructure: 323 k8s Nodes

7

Click to edit Master title style
Lesson Learned: When moving to a more distributed architecture …

https://www.dynatrace.com/news/blog/monitoring-aws-fargate-with-dynatrace-testing-it-in-the-field/

8

Click to edit Master title style
…you also grow your dependencies …

https://www.dynatrace.com/news/blog/enterprise-cloud-ecs-microservices-and-dynatrace-at-neiman-marcus/

9

Click to edit Master title style
… and the potential impact of a failure grows!

https://www.dynatrace.com/news/blog/enterprise-cloud-ecs-microservices-and-dynatrace-at-neiman-marcus/

1 Bad Update

4 Impacted Services

Because of all
dependencies

10

In distributed architectures we need to answer:
Who is depending on me? What is the risk of change?

11

Common Distributed Architectural Patterns

Patterns I‘ve seen in > 90% of the problems I analyzed

12

There are more – and we only have time to cover some today

1. N+1 call

2. N+1 query

3. Payload flood

4. Granularity

5. Tight Coupling

6. Inefficient Service Flow

7. Timeouts, Retries, Backoff

8. Dependencies

More recorded presentations on problem patterns:
• Java and Performance: Biggest Mistake - https://www.youtube.com/watch?v=IBkxiWmjM-g (SFO Java Meetup)
• Top Performance Challenges: https://www.youtube.com/watch?v=QypHTQr2RXk (Confitura 2019)

https://www.youtube.com/watch?v=IBkxiWmjM-g
https://www.youtube.com/watch?v=QypHTQr2RXk

13

N + 1 Call Pattern

Or better: 1 + N

1 initial call + 1 Call per N results

14

N+1 Call Pattern

Monolithic Code
public double getTotalQuote(Products[] products) {

double quote=0;

for (Product product: products) {

quote += product.getQuote();

}

return quote;

}

“Works” well within
a single process

Extract into Service?

15

N+1 Call Pattern across distributed “Product Service”
Product Service Instances

Quote Service

1 call to Quote Service
=

44 calls to Product Service

1

14

17

13

16https://aws.amazon.com/solutions/case-studies/landbay/

17

X

Y

Z

Z

1

74

24

22 22

24 24

24 24

1

1 1

1

Subtotal: 243

18

N + 1 Query Pattern

Similiar to N +1 Call Pattern but focused on database queries

19

N+1 Query Pattern

1 call to Quote Service
=

87 calls to DB

Quote Service

1

87

Product Service Product DB

20

Cascading N+1 Query Pattern: This is a single End-2-End Distributed Trace

26k Database Calls

809
3956

4347

4773

3789

3915

4999

21

Payload Flood

AKA – sending useless information across the network

22

Payload Flood: “Doc Creation” sequential across distributed services

1

2 3

4

5

23

Payload Flood in numbers: Full DOC sent between distributed services

10MB 18MB

20MB

21MB

24

Refactor: Only send relevant data to specialized services

10MB

500kb

100kb
21MB

69MB

31.6MB
vs

25

Inefficient Service Flow

drawing parallels to Web Performance Optimization

26

SFPO (Service Flow&Performance Optimization)
has to teach us how to optimize (micro)service

dependencies through Service Flows

27

Especially useful to identify: inefficient 3rd party services, recursive
call chains, N+1 Query Patterns, loading too much data, no data

caching, … -> sounds very familiar to WPO

28

Classical cascading effect of recursive
service calls!

29

Common Distributed Architectural Patterns

Recap and overview of Metrics used for pattern detection!

30

Recap - Common Distributed Patterns + Metrics to look at

1. N+1 call: # same Service Invocations per Request

2. N+1 query: # same SQL Invocations per Request

3. Payload flood: Transfer Size!

4. Granularity: # of Service Invocations across End-2-End Transaction

5. Tight Coupling: Ratio between Service Invocations

6. Inefficient Service Flow: # of Involved Services, # of Calls to each Service

7. Timeouts, Retries, Backoff: Pool Utilization, …

8. Dependencies: # of Incoming & Outcoming Dependencies

More recorded presentations on problem patterns:
• Java and Performance: Biggest Mistake - https://www.youtube.com/watch?v=IBkxiWmjM-g (SFO Java Meetup)
• Top Performance Challenges: https://www.youtube.com/watch?v=QypHTQr2RXk (Confitura 2019)

https://www.youtube.com/watch?v=IBkxiWmjM-g
https://www.youtube.com/watch?v=QypHTQr2RXk

31

Can we automate pattern detection?

If we can detect them on a dashboard – we should be able to automate!

Confidential 32

Keptn automates analysis through SLIs/SLOs

Instead of manually detecting patterns and comparing metrics

1

2

3

4

1 2 3 4 x

1 2 3 4 x

automates that process based on SLIs & SLOs

X

Integrate in Testing, Delivery & Auto-Remediation

33

Introducing Keptn

Declarative, extensible automation of SLO-driven delivery, quality gates & remediation

https://github.com/keptn, www.keptn.sh

Confidential 34

Eventing

Keptn from 10000ft: Declarative Workflows + Event-Triggered Actions

Application Plane (=Process Definition)
Define overall process for delivery and operations

Control Plane
Follow application logic and communicate/configure required services

APISite Reliability
Engineer

DevOps

Developer

shipyard.yaml
- dev: direct, functional, SLO
- staging: B/G, perf, SLO
- prod: canary, real-user, SLA

uniform.yaml
config-change*: helm
deploy*: JMeter
deploy-finish: Lighthouse
problem*: Remediation
all: Slack, Dynatrace

Execution Plane (=Tool Definition)

Deploy Service
(Helm, Jenkins …)

Test Service
(JMeter, Neotys, ..)

Validation Service
(Keptn Lighthouse …)

Remediation Service
(Keptn Remediation, SNOW …)

Config Service
(Git, …)

Monitoring Service
(Prometheus,
Dynatrace, …)

Artifact /
Microservice

config.change: artifact:x.y deploy.finished: http://service1 tests.finished: OK evaluation.done: 98% Score problem.open: High Failure

remediation.yaml
- high-failure-rate:
- scaleup, rollback

- full-disk:
- cleandir;adjustlog-level

35

Use Case #1
Automated Architecture & Performance Validation

https://github.com/keptn, www.keptn.sh

Through event-based SLI/SLO-based Quality Gates

Confidential 36

Root Cause: Lengthy manual approval in existing delivery pipelines

Build
Deploy to

„Test“
Run Test
In „Test“ Manual Approval

Promote to
„Staging“~30-60min

Looking at all these dashboards and data points is time-consuming and slows down the process!

Identify / Optimize Architectural Patterns

Recursive Calls, N+1 Call Pattern, Chatty Interfaces, No Caching Layer …

Identify Performance Hotspots

CPU, Memory, I/O, …

37

Inspired by Dynatrace‘s internal „Performance Signature as Code“

“Performance Signature”
for Build Nov 16

“Performance Signature”
for Build Nov 17

“Performance Signature”
for every Build

“Multiple Metrics”
compared to prev

Timeframe

Simple Regression Detection
per Metric

https://www.neotys.com/performance-advisory-council/thomas_steinmaurer

Confidential 38

SLI/SLO-based evaluation implementation in Keptn

SLIs defined per SLI Provider as YAML
SLI Provider specific queries, e.g: Dynatrace Metrics Query

Quality Gates

...

Dynatrace Prometheus Neoload

Scores SLIs

Queries SLI
Providers with
SLI Definitions &
Timeframe

SLOs defined on Keptn Service Level as YAML
List of objectives with fixed or relative pass & warn criteria

indicators:
error_rate: "builtin:service.errors.total.count:merge(0):avg"
count_dbcalls: "calc:service.toptestdbcalls:merge(0):sum"
jvm_memory: "builtin:tech.jvm.memory.pool.committed:merge(0):sum"

objectives:
- sli: error_rate
pass:
- criteria:
- "<=1“ # We expect a max error rate of 1%

- sli: jvm_memory
- sli: count_dbcalls
pass:
- criteria:
- "=+2%" # We allow a 2% increase in DB Calls to previous runs

warning:
- criteria:
- "<=10" # We expect no more than 10 DB Calls per TX

total_score:
pass: "90%"
warning: "75%"

0.5 1.0 0.0 info

7/8
(87.5%)

4/8
(50%)

$ keptn start-evaluation 30m myservice sli.yaml slo.yaml

5 DB Calls 360MB 4.3% 123SLI Value:
SLI Score:

Total Score

2

3

4

Tool X

1

Confidential 39

Solution: Automate Approval through SLI/SLO-based Quality Gates

Build Deploy to
„Test“

Run Test
In „Test“

Manual Approval
Promote to
„Staging“

Deploy to
„Test“

Trigger
Quality Gate

Wait for
Result

SLI & SLO
Result: success, Score: 85/100

Run Test In „Test“
w Tagging

Rt(p95) < 500ms
#ofSQLs <= 5
cpu(max)< 80%
Java GC < 2%
...

T
a
g
g
i
n
g

Pull SLIs for Testing time frame

Validate
SLOs

Build Deploy to
„Test“

Promote to
„Staging“

Deploy to
„Test“~1min

~30-60min

Observability

Confidential 40

Demo: Automated SLI/SLO Validation based on Dynatrace Dashboards

You: Just build a dashboard! : Automates the analysis!

15.5/16
(97%)

8/16
(50%)

Confidential 41

User Example: Automating Build Approvals using Keptn‘s SLIs/SLOs in GitLab

Christian Heckelmann
Senior Systems Engineer

87.5%: passed

Automated SLI/SLO based Quality Gates

Trigger Evaluation

42

Use Case #2
Automated Remediation

https://github.com/keptn, www.keptn.sh

Through a closed loop event-driven remediation workflow

Confidential 43

Keptn – Closed-Loop Remediation with Keptn 0.7

version: 0.2.0
kind: Remediation
metadata:

name: remediation-ecommerce
spec:

remediations:
- problemType: Conversion Rate Dropped

actionsOnOpen:
- name: Scaling ReplicaSet by 1

action: scaling
values:

increment: +1
- name: Stop Ad Campaign

action: googleadtoggle
values:

enable: off
campaign: $campaignid

Problem: Conversion Rate Dropped

Root Cause: CPU Pressure

Get
remediation

action(s)

Execute
remediation

action(s)

Re-validate
SLO/BLO

Escalate

Scale Up Stop
Campaign

1 2

1 2

1

2

Confidential 44

Too risky? Start in Pre-Prod leveraging Chaos Engineering to define & test Auto-Remediation

version: 0.2.0
kind: Remediation
metadata:

name: remediation-ecommerce
spec:

remediations:
- problemType: High CPU on ReportGen

actionsOnOpen:
- name: Stop Traffic

action: configureLoadBalancer
values:

action: stopTraffic
ip: $problem.hostIp

- name: Restart Process
action: executeAnsible
values:

script: restartProcess
process: $problem.processID

Problem: Slow ReportGen Service

Root Cause: High CPU on host

Get
remediation

action(s)

Execute
remediation

action(s)

Re-validate
SLO/BLO

Escalate

Stop
Traffic

Restart
Process

1 2

1 2

1

2

45

To wrap it up …

What you should have learned today is that

Confidential 46

Automate Distributed Problem Detection & Remediation

#1 Understand your Patterns & Drive Metrics

#2 Derive and monitor your metrics (SLIs/SLOs)

#3 Let Keptn automate the analysis

#4 Integrate Keptn into Delivery & Operations

Automatically Detect the Performance & Scalability Issues in Distributed Architectures

Andreas Grabner

DevOps Activist at Dynatrace

DevRel for Keptn
@grabnerandi, https://www.linkedin.com/in/grabnerandi

Star us @ https://github.com/keptn/keptn

Follow us @keptnProject

Slack Us @ https://slack.keptn.sh

“And integrate this in your delivery pipeline with ”

THANK YOU!

https://www.linkedin.com/in/grabnerandi

48

More examples

49

907 Calls

41 sec

97 threads

104 Calls

21 sec

92 threads

AWS CloudWatch API

Single Fetch

Bulk Fetch

$$$$

$$

Example #1: Building Monitoring for AWS

$0.01 / 1000 Calls

50

Tight Coupling

51

Tightly coupled! Shall we really distribute/extract?

When “Breaking the Monolith” be aware …

1:1

https://www.dynatrace.com/news/blog/breaking-up-the-monolith-while-migrating-to-the-cloud-in-6-steps/

https://www.dynatrace.com/news/blog/breaking-up-the-monolith-while-migrating-to-the-cloud-in-6-steps/

52

Granularity

53

Granularity: Encryption carved out into separate service

Doc Processor Doc Transformer Doc Signer

Doc Encryption

Doc Shipment

Documents

316

1 1

2 6 6 6

118

54

Dependencies

55

Look beyond the “Tip of the Iceberg”:
Understanding Dependencies is critical!

56

Example from StepStone (AWS Summit Berlin 2019)

Legacy

Databases

Micro-services

AWS-ELB

3rd-party

57

Who is depending on me? What is the risk of change?

58

Timeouts, Retries & Backoff

Credits go to Adrian Hornsby (@adhorn)

59

Bad Timeout & Retry Settings

From Adrian Hornsby (@adhorn): https://speakerdeck.com/adhorn/resiliency-and-availability-design-patterns-3742b5ba-e013-4f50-8512-00a65775f478?slide=31

App
DB

Conn
Pool

INSERT

Timeout client side = 10s Timeout backend = default (e.g: 60s)

INSERT

INSERT

Retry

Retry

Retry

User 1

ERROR: Failed to get connection from pool

60

Backoff between Retries

From Adrian Hornsby (@adhorn): https://speakerdeck.com/adhorn/resiliency-and-availability-design-patterns-3742b5ba-e013-4f50-8512-00a65775f478?slide=33

App
DB

Conn
Poool

INSERT

Timeout client side = 10s Timeout backend = 10s – time elapsed

Wait 2s before Retry

User 1

Wait 4s before Retry

Wait 8s before Retry

Wait 16s before Retry

Backoff

61

Simple Exponential Backoff is not enough: Add Jitter

No jitter With jitter
From Adrian Hornsby (@adhorn): https://speakerdeck.com/adhorn/resiliency-and-availability-design-patterns-3742b5ba-e013-4f50-8512-00a65775f478?slide=34

