

Achieving the Ultimate Performance with KVM

Boyan Krosnov SREcon20 Americas

About me

 Chief Product Officer & co-founder of StorPool

20+ years in ISPs, SDN, SDS

IT infrastructure with a focus on inventions, performance and efficiency

Boyan Krosnov

linkedin.com/in/krosnov/ @bkrosnov bk@storpool.com

About StorPool

- NVMe software-defined storage for VMs and containers
- Scale-out, HA, API-controlled
- Since 2011, in commercial production use since 2013
- Based in Sofia, Bulgaria; Profitable and growing
- Mostly virtual disks for KVM and bare metal Linux hosts
- Also used with VMWare, Hyper-V, XenServer
- Integrations into OpenStack/Cinder, Kubernetes Persistent Volumes,
 CloudStack, OpenNebula, OnApp
- Fully managed service; 24/7; monitoring and analytics; 1000s of servers in 100s of zones

Why performance

- Better application performance
 - e.g. time to load a page, time to rebuild, time to execute specific query
- Happier customers in cloud and multi-tenant environments
- ROI, TCO Lower cost per delivered resource (per VM) through higher density

- For public cloud win customers over from your competitors
- For private cloud do more with less; win applications / workloads / teams over from public cloud

Agenda

- 1. Hardware
- 2. Compute, Virtualization
- 3. Networking
- 4. Storage
- 5. Conclusion

Usual optimization goal

- lowest cost per delivered resource
- fixed performance target
- calculate all costs power, cooling, space, server, network, support/maintenance

Example: cost per VM with 4x dedicated 3 GHz cores and 16 GB RAM

Unusual

- Best single-thread performance I can get at any cost
- 4+ GHz cores, etc.

Brand ऱ	F Model ∓	release =	ark.inte I.com = status	release price = (\$)	Cores −	TDP =	All-Core Turbo = Clock (GHz)	Selected 1S or 2S = or 4S ?	Total \$ per ≂ core	Total \$/GHz
Gold	5220R	January 2020	Launched	\$1,555	24	150	2.9	2S	\$244	\$84
Gold	6230R	January 2020	Launched	\$1,894	26	150	3.0	2S	\$244	\$81
Gold	5218R	January 2020	Launched	\$1,273	20	125	2.9	2S	\$257	\$89
Gold	6238R	January 2020	Launched	\$2,612	28	165	3.0	2S	\$262	\$87
Gold	6222V	May 2019	Launched	\$1,600	20	115	2.4	2S	\$271	\$113
Gold	6240R	January 2020	Launched	\$2,200	24	165	3.2	2S	\$276	\$86
Silver	4216	April 2019	Launched	\$1,002	16	100	2.7	2S	\$277	\$103
Gold U	6212U	April 2019	Launched	\$1,450	24	165	3.1	1S	\$285	\$92
Gold	6230	April 2019	Launched	\$1,894	20	125	2.8	2S	\$290	\$103
Gold	6230T	May 2019	Launched	\$1,988	20	125	2.8	2S	\$294	\$105
Gold	5220	April 2019	Launched	\$1,555	18	125	2.7	2S	\$295	\$109
Gold	6230N	May 2019	Launched	\$2,046	20	125	2.9	2S	\$298	\$103
Gold	5220T	May 2019	Launched	\$1,727	18	105	2.7	2S	\$298	\$110
Gold	6262V	May 2019	Launched	\$2,900	24	135	2.5	2S	\$299	\$120
Gold	5218T	May 2019	Launched	\$1,349	16	105	2.7	2S	\$303	\$112

Intel

lowest cost per core:

- 2.9 GHz: Xeon Gold 5220R 24 cores (\$244/core)
- 3.2 GHz: Xeon Gold 6240R 24 cores (\$276/core)
- 3.6 GHz: Xeon Gold 6248R 24 cores (\$308/core)

lowest cost per GHz:

- Xeon Gold 6230R - 26 cores @ 3.0 GHz (\$81/GHz)

AMD

per core @2.5 GHz: AMD EPYC 7702P 1-socket 64 cores (\$210/core) per core @3.0 GHz: AMD EPYC 7502 2-socket 32 cores (\$251/core) per core @3.5 GHz: AMD EPYC 7F72 2-socket 24 cores (\$320/core)

per GHz: 7502, 7702P, 7742 tied for first place

Form factor

from

to

- firmware versions and BIOS settings
- Understand power management -- esp. C-states, P-states,
 HWP and "bias"
 - Different on AMD EPYC: "power-deterministic",
 "performance-deterministic"
- Think of rack level optimization how do we get the lowest total cost per delivered resource?

Agenda

- 1. Hardware
- 2. Compute, Virtualization
- 3. Networking
- 4. Storage
- 5. Conclusion

Tuning KVM

RHEL7 Virtualization_Tuning_and_Optimization_Guide link

https://pve.proxmox.com/wiki/Performance_Tweaks

https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen2013_Khoa_Huynh_v3.pdf

http://www.linux-kvm.org/images/f/f9/2012-forum-virtio-blk-performance-improvement.pdf

http://www.slideshare.net/janghoonsim/kvm-performance-optimization-for-ubuntu

... but don't trust everything you read. Perform your own benchmarking!

CPU and Memory

Recent Linux kernel, KVM and QEMU ... but beware of the bleeding edge E.g. qemu-kvm-ev from RHEV (repackaged by CentOS)

tuned-adm virtual-host tuned-adm virtual-guest

CPU

Typical

- (heavy) oversubscription, because VMs are mostly idling
- HT
- NUMA
- route IRQs of network and storage adapters to a core on the NUMA node they are on

Unusual

CPU Pinning

Understanding oversubscription and congestion

Linux scheduler statistics: /proc/schedstat (linux-stable/Documentation/scheduler/sched-stats.txt)

Next three are statistics describing scheduling latency:

- 7) sum of all time spent running by tasks on this processor (in ms)
- 8) sum of all time spent waiting to run by tasks on this processor (in ms)
- 9) # of tasks (not necessarily unique) given to the processor

20% CPU load with large wait time (bursty congestion) is possible 100% CPU load with no wait time, also possible

Measure CPU congestion!

^{*} In nanoseconds, not ms.

Understanding oversubscription and congestion

Memory

Typical

- Dedicated RAM
- huge pages, THP
- NUMA
- use local-node memory if you can

Unusual

- Oversubscribed RAM
- balloon
- KSM (RAM dedup)

Agenda

- 1. Hardware
- 2. Compute, Virtualization
- 3. Networking
- 4. Storage
- 5. Conclusion

Networking

Virtualized networking

- hardware emulation (rtl8139, e1000)
- paravirtualized drivers virtio-net

regular virtio vs vhost-net vs vhost-user

Linux Bridge vs OVS in-kernel vs OVS-DPDK

Pass-through networking SR-IOV (PCle pass-through)

virtio-net QEMU

- Multiple context switches:
- 1. virtio-net driver \rightarrow KVM
- KVM → qemu/virtio-net device
- 3. qemu \rightarrow TAP device
- 4. qemu → KVM (notification)
- KVM → virtio-net driver (interrupt)
- Much more efficient than emulated hardware
- shared memory with qemu process
- qemu thread process packets

virtio vhost-net

- Two context switches (optional):
- 1. virtio-net driver \rightarrow KVM
- KVM → virtio-net driver (interrupt)
- shared memory with the host kernel (vhost protocol)
- Allows Linux Bridge Zero Copy
- qemu / virtio-net device is on the control path only
- kernel thread [vhost] process packets

virtio vhost-usr / OVS-DPDK

- No context switches
- shared memory between the guest and the Open vSwitch (requres huge pages)
- Zero copy
- qemu / virtio-net device is on the control path only
- KVM not in the path
- ovs-vswitchd process packets.
- Poll-mode-driver (PMD) takes1 CPU core, 100%

PCI Passthrough

- No paravirtualized devices
- Direct access from the guest kernel to the PCI device
- Host, KVM and qemu are not on the data nor the control path.
- NIC driver in the guest
- No virtual networking
- No live migrations
- No filtering
- No control
- Shared devices via SR-IOV

Virtual Network Performance

All measurements are between two VMs on the same host # ping -f -c 100000 vm2

virtio-net QEMU


```
top - 01:01:31 up 15 days, 21:48, 2 users, load average: 7.28, 6.03, 5.98
Threads: 6 total, 2 running, 4 sleeping, 0 stopped, 0 zombie
%Cpu(s): 16.9 us, 9.5 sy, 0.0 ni, 73.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 13175620+total, 1550248 free, 12736860+used, 2837352 buff/cache
                             0 free, 0 used. 2975956 avail Mem
KiB Swap: 0 total,
 PID USER PR NI
                       VIRT
                              RES
                                    SHR S %CPU %MEM
                                                   TIME+ P COMMAND
                  0 2994152 64440 19700 S 0.0 0.0
14852 oneadmin 20
                                                   0:00.00 28 vnc_worker
                  0 2994152 64440 19700 R 40.0 0.0
14849 oneadmin 20
                                                    0:35.98 18 CPU 1/KVM
14847 oneadmin 20
                  0 2994152 64440
                                  19700 S 6.0
                                               0.0
                                                    0:09.50 31 CPU 0/KVM
14834 oneadmin 20
                  0 2994152 64440 19700 S
                                          0.0
                                               0.0
                                                    0:00.11 30 IO iothread1
14833 oneadmin 20
                  0 2994152 64440
                                 19700 S
                                          0.0
                                               0.0
                                                    0:00.01 9 gemu-kvm
14826 oneadmin 20
                  0 2994152 64440
                                  19700 R 99.9 0.0
                                                    1:09.07 12 gemu-kvm
```

virtio vhost-net

```
qemu vhost thread
top -H -p 18225 -p 18241
```



```
Threads: 7 total, 2 running, 5 sleeping, 0 stopped, 0 zombie
%Cpu(s): 17.0 us, 10.0 sy,  0.0 ni, 73.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem : 13175620+total,  1545220 free, 12737219+used,  2838800 buff/cache
KiB Swap:
              0 total,
                             0 free, 0 used. 2972400 avail Mem
 PID USER PR NI
                       VIRT RES
                                    SHR S %CPU %MEM TIME+ P COMMAND
18225 oneadmin 20
                  0 3000308 64260 19524 S 0.0 0.0
                                                    0:00.16 22 gemu-kvm
18232 oneadmin 20
                  0 3000308 64260 19524 S 0.0 0.0
                                                    0:00.00 12 gemu-kvm
                  0 3000308 64260 19524 S 0.0 0.0
                                                    0:00.13 22 IO iothread1
18234 oneadmin 20
                                      0 R 93.7
18241 root
              20
                                0
                                               0.0
                                                    1:09.34 30 vhost-18225
18248 oneadmin 20
                  0 3000308 64260 19524 S 0.7 0.0
                                                    0:10.92 23 CPU 0/KVM
18250 oneadmin 20
                  0 3000308 64260 19524 R 65.4 0.0
                                                    0:53.86 13 CPU 1/KVM
18253 oneadmin 20
                  0 3000308 64260 19524 S 0.0 0.0
                                                    0:00.00 21 vnc_worker
```

top - 01:09:50 up 15 days, 21:57, 2 users, load average: 7.84, 7.14, 6.62

virtio vhost-usr / OVS-DPDK


```
%Cpu(s): 8.8 us, 3.8 sy, 0.0 ni, 87.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 13175620+total, 1551636 free, 12736377+used, 2840804 buff/cache
KiB Swap:
               0 total,
                              0 free, 0 used. 2980800 avail Mem
 PID USER
              PR NT
                        VIRT
                               RES
                                      SHR S %CPU %MEM
                                                         TIME+ P COMMAND
27157 root
              10 -10 18.982g 151148 15868 S 0.0 0.1
                                                       0:01.61 5 ovs-vswitchd
                                   15868 S 0.0 0.1
27156 root
              10 -10 18.982g 151148
                                                       0:02.79 5 ovs-vswitchd
                                    15868 R 99.9 0.1
              10 -10 18.982q 151148
23318 root
                                                       2845:43 6 pmd21
                   0 3000308 64376
                                                       0:00.00 21 vnc_worker
18253 oneadmin 20
                                    19524 S 0.0 0.0
18250 oneadmin
              20
                   0 3000308 64376
                                    19524 S
                                           1.0 0.0
                                                       3:53.02 18 CPU 1/KVM
18248 oneadmin
                   0 3000308 64376
                                    19524 R 99.9 0.0
                                                       6:40.92 31 CPU 0/KVM
             20
18234 oneadmin
                                    19524 S 0.0
                                                       0:00.13 7 IO iothread1
             20
                   0 3000308 64376
                                                0.0
18232 oneadmin
             20
                   0 3000308
                             64376
                                    19524 S
                                            0.0 0.0
                                                       0:00.00 12 gemu-kvm
                                                       0:00.25 14 gemu-kvm
18225 oneadmin
             20
                   0 3000308 64376
                                   19524 S 0.0 0.0
```

top - 01:19:59 up 15 days, 22:07, 2 users, load average: 4.18, 5.42, 6.22

Threads: 17 total, 2 running, 15 sleeping, 0 stopped, 0 zombie

Additional reading

- Deep dive into Virtio-networking and vhost-net
 <a href="https://www.redhat.com/en/blog/deep-dive-virtio-networking-and-vhost-netwo
- Open vSwitch DPDK support
 https://docs.openvswitch.org/en/latest/topics/dpdk/

Agenda

- 1. Hardware
- 2. Compute, Virtualization
- 3. Networking
- 4. Storage
- 5. Conclusion

Storage - virtualization

Virtualized

live migration

thin provisioning, snapshots, etc.

vs. Full bypass

only speed

Storage - virtualization

Virtualized

cache=none -- direct IO, bypass host buffer cache

io=native -- use Linux Native AIO, not POSIX AIO (threads)

virtio-blk vs virtio-scsi

virtio-scsi multiqueue

iothread

vs. Full bypass

SR-IOV for NVMe devices

Storage - virtualization

Virtualized with io_uring

guest kernel -> qemu ----(Linux Native AIO)---> host kernel

guest kernel -> qemu ----(io_uring)---> host kernel

Virtualized with io_uring passthrough
guest kernel ----(io_uring)---> host kernel

Storage - vhost-user

Virtualized with qemu bypass

before:

guest kernel -> host kernel -> qemu -> host kernel -> storage client

with vhost-user:

guest kernel -> storage client

- Highly scalable and efficient architecture
- Scales up in each storage node & out with multiple nodes

Storage benchmarks

Beware: lots of snake oil out there!

- performance numbers from hardware configurations totally unlike what you'd use in production
- synthetic tests with high iodepth 10 nodes, 10 workloads * iodepth 256 each. (because why not)
- testing with ramdisk backend

synthetic workloads don't approximate real world (example)

Benchmarks

Real load

Agenda

- 1. Hardware
- 2. Compute, Virtualization
- 3. Networking
- 4. Storage
- 5. Conclusion

Conclusion

KVM has the right tools to get very good performance, but not by default.

These are complex systems so don't guess, measure! Measure what matters to your team/company.

Work with partners who understand performance, because you can gain a lot!

Follow StorPool Online

Cloud 28⁺

@storpool

StorPool Storage StorPool Storage StorPool Storage StorPool Storage StorPool Storage

Thank you!

Boyan Krosnov bk@storpool.com

www.storpool.com @storpool