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Background – Parallel Storages 

 Parallel File System in High Performance Computing 

 Distribute data on multiple storage nodes 

 Aggregate throughput from multiple, parallel storage nodes 

 Components 

 Server side: data & meta-data server daemon 

 Client side: MPI library, client daemon 
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Motivation (1) 

 Parallel storage is commonly shared 

 Applications have different I/O demands  

 Their I/Os interfere with each other 
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Background – vPFS 

 Enhanced distributed SFQ scheduler 

 Global bandwidth proportional sharing with low overhead 
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Motivation (2) 

 Two representative parallel application: BTIO[9]/IOR[8] 

 Limited performance improvement from vPFS[5] 

 Throughput alone is not enough to satisfy applications’ 

performance needs 
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Overview 

 Problem 

 HPC applications requiring throughput or latency (or both) 

guarantees interfere with each other on the parallel storage 

 vPFS enforcement on bandwidth sharing is NOT enough to 

satisfy different applications’ needs 

 Solution 

 Use vPFS to create a new scheduler to recognize and regulate 

I/Os with awareness of both throughput and latency needs 
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Outline 

 Background, Motivation & Overview 

 Two-Level Parallel I/O Scheduler 

 Architecture 

 Algorithm 

 Experimental Evaluation 

 Conclusions and Future Work 
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Two-Level QoS 

 (T, D): A tuple for both Throughput and Latency 

 T is the agreed throughput upper bound limit from the 

application 

 D is the guaranteed the latency (deadline) upper bound 

from the storage 

 When T is violated, D is not guaranteed any more 
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Architecture 

9 

 High level provides throughput control as well as 

service synchronization 

 Low level monitors the device and adjusts # 

outstanding requests of the device[13] 
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High Level Throughput Control 

 Efficient parallel storage synchronization: total-

service proportional sharing of bandwidth 

 Strict fair sharing using SFQ-based algorithm: better 

utilization 
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High Level Throughput Control 

 Total-service proportional sharing: parallel storage 

synchronization 

 Strict fair sharing of using SFQ-based algorithm: 

better utilization 
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Low Level Latency Control 

 Final dispatching of requests to storage device 

 A feedback-control loop for adjusting the device depth 
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Low Level Bounds and Terms 

 Three bounds to predict the future 

 For class i, the maximum depth LRT
O allowed without violating 

the deadline 

 The lower bound depth Ll
O to ensure any request whose deadline 

is in the current time window is completed 

 The upper bound depth Lu
O if the latency need is continuously 

met and utilization should be raised 

 Terms 

 X — # requests completed in last time window 

 LO — current window queue depth 

 LO
max — maximum # outstanding requests in current window 
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Low Level Feedbacks 

 LO  scaled by 3 coefficients to derive 3 threshold bounds 

 𝑒𝑖 : 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑙𝑒𝑓𝑡 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑡𝑢𝑟𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 (about latency) 

 The more time left to complete a request, the larger 𝑒𝑖 

 The smaller actual device latency, the larger 𝑒𝑖 

 𝑙 ∶  
𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 or 𝑢:

𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (about throughput) 
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Controlling LO :Underloaded Case 

 𝐿𝑅𝑇
𝑂 = 𝑒𝑖 × 𝐿𝑂; 𝐿𝑙

𝑂 = 𝑙 × 𝐿𝑂; 𝐿𝑢
𝑂 = 𝑢 × 𝐿𝑂 
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Controlling LO :Overloaded Case 

 Over all classes, a minimum of all selected queue 

threshold is chosen 
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Clients 

 Low level idleness detection 

 If 𝐿𝑐𝑢𝑟𝑟 ≤ 𝐿𝑂 × 0.9 

 Idleness updated on the lower level: 

 When a request is dispatched or completed 

 At the beginning of an overloaded time window  

 High level credit replenishment  

 When the lower level reports idleness 

 When no remaining credits 

 But new requests query and find the idleness 

 When credit replenishment time window elapsed 

Cooperation between Two Levels 
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Evaluation 

 Hardware 

 1 Client with 64 processes 

 1 Server 

 One gigabit switch 

 Software 

 PVFS 2.8.2 

 IOR 2.10.3 

 Experiments 

 Adaptation of storage queue size 

 Handling of overloaded storage 
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IORs’ Issue Rates 

 One on-off pattern, with one constantly increasing 

 Storage capacity is about 50MB/s 

 App1 QoS: (40MB/s, 100ms); App2 QoS: (20MB/s, 300ms) 
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Adaptation of Queue Length 
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 Accurate transition between over- and under-load 

 Good depth obtained for adequate throughput 



Latency Differentiation 

 Storage is overloaded when both Apps are on 

 App1 conforms to 100ms 10 times than App2 

 App1’s overall 95th percentile latency is smaller than App2 
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Conclusions & Future Work 

 Two-level I/O control for parallel storage 

 Two-level scheduler can effectively respect the latency 

needs of different applications 

 Latency can be managed using a feedback-control loop for 

a black box storage device 

 Future work 

 Manage I/Os of different sizes 

 Create distributed versions of EDF 
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