
Two-level Throughput and Latency

I/O Control for Parallel File Systems

Yiqi Xu, Ming Zhao Florida International University

School of Computing and Information Sciences

http://visa.cis.fiu.edu

yxu006@cis.fiu.edu, ming@cis.fiu.edu

http://visa.cis.fiu.edu/
mailto:yxu006@cis.fiu.edu
mailto:ming@cis.fiu.edu

Background – Parallel Storages

 Parallel File System in High Performance Computing

 Distribute data on multiple storage nodes

 Aggregate throughput from multiple, parallel storage nodes

 Components

 Server side: data & meta-data server daemon

 Client side: MPI library, client daemon

2

Compute

nodes

APP

Storage

nodes

P
a
ra

ll
e
l

F
il
e

S
y
st

e
m

Meta-data
nodes

Data nodes

PFS

Motivation (1)

 Parallel storage is commonly shared

 Applications have different I/O demands

 Their I/Os interfere with each other

Compute

nodes
APP1

APP2

APPn

Storage

nodes

3

WRF[10]

S3D[12]

mpiBlast[11]

Frequent update of

Gigabytes of output

Periodic check-pointing

Gigabytes of data

Load Gigabytes of

data before execution

Background – vPFS

 Enhanced distributed SFQ scheduler

 Global bandwidth proportional sharing with low overhead

App

App

App

PFS Proxy

Virtual PFS1

Virtual PFS2

HPC
application 1

HPC
application 2

4

Fixed Queue Depth

Motivation (2)

 Two representative parallel application: BTIO[9]/IOR[8]

 Limited performance improvement from vPFS[5]

 Throughput alone is not enough to satisfy applications’

performance needs

5

31.17%

3.1%

58.76%

11.24%

0

10

20

30

40

50

60

Large BTIO (1MB/IO) Small BTIO (320B/IO)

B
T

IO
 T

h
ro

u
g
h
p
u
t

(M
B
/s

) Native - Standalone

Native - with IOR

vPFS - DSFQ

Overview

 Problem

 HPC applications requiring throughput or latency (or both)

guarantees interfere with each other on the parallel storage

 vPFS enforcement on bandwidth sharing is NOT enough to

satisfy different applications’ needs

 Solution

 Use vPFS to create a new scheduler to recognize and regulate

I/Os with awareness of both throughput and latency needs

6

Outline

 Background, Motivation & Overview

 Two-Level Parallel I/O Scheduler

 Architecture

 Algorithm

 Experimental Evaluation

 Conclusions and Future Work

7

Two-Level QoS

 (T, D): A tuple for both Throughput and Latency

 T is the agreed throughput upper bound limit from the

application

 D is the guaranteed the latency (deadline) upper bound

from the storage

 When T is violated, D is not guaranteed any more

8

Architecture

9

 High level provides throughput control as well as

service synchronization

 Low level monitors the device and adjusts #

outstanding requests of the device[13]

C1 C2 C3 ∙∙∙ Cm

High

Level

Low

Level
EDF

Monitor Controller Dispatcher

vPFS-DSFQ
Parallel Storage

Nodes

Depth

High Level Throughput Control

 Efficient parallel storage synchronization: total-

service proportional sharing of bandwidth

 Strict fair sharing using SFQ-based algorithm: better

utilization

10

C1 C2 C3 ∙∙∙ Cm

D*w1 D*w2
D*W3 D*Wm

Low Level

vPFS-DSFQ
Parallel Storage

Nodes

vPFS-DSFQ

vPFS-DSFQ

D* (1-w2-w3) credits used D credits in each time window

High Level Throughput Control

 Total-service proportional sharing: parallel storage

synchronization

 Strict fair sharing of using SFQ-based algorithm:

better utilization

11

C1 C2 C3 ∙∙∙ Cm

r1
r4

Low Level

vPFS-DSFQ
Parallel Storage

Nodes

vPFS-DSFQ

vPFS-DSFQ

Credits claimed only when requests arrive: r1+r4=D

Low Level Latency Control

 Final dispatching of requests to storage device

 A feedback-control loop for adjusting the device depth

12

C1 C2 C3 ∙∙∙ Cm
High Level

Low Level

Monitor Controller Dispatcher

EDF

LO

Mean EDF Wait Time

95th Percentile Response Time

Low Level Bounds and Terms

 Three bounds to predict the future

 For class i, the maximum depth LRT
O allowed without violating

the deadline

 The lower bound depth Ll
O to ensure any request whose deadline

is in the current time window is completed

 The upper bound depth Lu
O if the latency need is continuously

met and utilization should be raised

 Terms

 X — # requests completed in last time window

 LO — current window queue depth

 LO
max — maximum # outstanding requests in current window

13

Low Level Feedbacks

 LO scaled by 3 coefficients to derive 3 threshold bounds

 𝑒𝑖 :
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑙𝑒𝑓𝑡 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑡𝑢𝑟𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 (about latency)

 The more time left to complete a request, the larger 𝑒𝑖

 The smaller actual device latency, the larger 𝑒𝑖

 𝑙 ∶
𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 or 𝑢:

𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (about throughput)

14

𝐷𝑖

Low Level at the end of current time window

Monitor Controller Dispatcher

EDF Waiting Time MTi
e

95th Percentile Response

Time Ti
o, X, Lmax

O

𝑒𝑖 =
𝐷𝑖 − 𝑀𝑇𝑖

𝑒

𝑇𝑖
𝑂

𝒍 =
𝐿𝑂

𝑋
, e.g.

𝟑

𝑋
,

𝑢 =
𝐿 𝑂

𝑋
, e.g.

𝟔

𝑋

From (𝑇𝑖 , 𝐷𝑖)

Controlling LO :Underloaded Case

 𝐿𝑅𝑇
𝑂 = 𝑒𝑖 × 𝐿𝑂; 𝐿𝑙

𝑂 = 𝑙 × 𝐿𝑂; 𝐿𝑢
𝑂 = 𝑢 × 𝐿𝑂

15

𝐼𝑓 𝐿𝑅𝑇
𝑂 ≤ 𝐿𝑙

𝑂 𝐼𝑓 𝐿𝑢
𝑂 ≤ 𝐿𝑅𝑇

𝑂

𝑇ℎ𝑒𝑛 ∞ 𝑇ℎ𝑒𝑛 𝐿𝑢
𝑂

𝐼𝑓 𝐿𝑂
𝑚𝑎𝑥

 < 𝐿𝑂 ≤ 𝐿𝑅𝑇
𝑂

𝑇ℎ𝑒𝑛 𝐿𝑂

𝐼𝑓 𝐿𝑅𝑇
𝑂 < 𝐿𝑂

𝑇ℎ𝑒𝑛 𝐿𝑅𝑇

𝑂

𝐼𝑓 𝐿𝑂 ≤ 𝐿𝑂𝑚𝑎𝑥

𝑇ℎ𝑒𝑛 𝐿𝑅𝑇
𝑂

or

Controlling LO :Overloaded Case

 Over all classes, a minimum of all selected queue

threshold is chosen

16

𝐿 𝑂 𝐼𝑓 𝑋 <

𝑇ℎ𝑒𝑛 ∞

≤ 𝑋

𝑇ℎ𝑒𝑛 𝑚𝑎𝑥(𝐿𝑂, 𝐿𝑅𝑇
𝑂)

𝐿𝑂

 𝐿𝑅𝑇
𝑂 = 𝑒𝑖 × 𝐿𝑂𝑚𝑎𝑥ver all classes, a minimum of all

selected queue threshold is chosen

Clients

 Low level idleness detection

 If 𝐿𝑐𝑢𝑟𝑟 ≤ 𝐿𝑂 × 0.9

 Idleness updated on the lower level:

 When a request is dispatched or completed

 At the beginning of an overloaded time window

 High level credit replenishment

 When the lower level reports idleness

 When no remaining credits

 But new requests query and find the idleness

 When credit replenishment time window elapsed

Cooperation between Two Levels

17

credits

idleness

Monitor

vPFS-DSFQ
Clients

Clients

Evaluation

 Hardware

 1 Client with 64 processes

 1 Server

 One gigabit switch

 Software

 PVFS 2.8.2

 IOR 2.10.3

 Experiments

 Adaptation of storage queue size

 Handling of overloaded storage

18

IORs’ Issue Rates

 One on-off pattern, with one constantly increasing

 Storage capacity is about 50MB/s

 App1 QoS: (40MB/s, 100ms); App2 QoS: (20MB/s, 300ms)

19

0 100 200 300 400 500

Adaptation of Queue Length

20

 Accurate transition between over- and under-load

 Good depth obtained for adequate throughput

Latency Differentiation

 Storage is overloaded when both Apps are on

 App1 conforms to 100ms 10 times than App2

 App1’s overall 95th percentile latency is smaller than App2

21

9
5

th
 P

e
rc

e
n
ti
le

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

App2 (20MB/s, 300ms)

App1(40MB/s, 100ms)

Conclusions & Future Work

 Two-level I/O control for parallel storage

 Two-level scheduler can effectively respect the latency

needs of different applications

 Latency can be managed using a feedback-control loop for

a black box storage device

 Future work

 Manage I/Os of different sizes

 Create distributed versions of EDF

22

References

[1] PVFS2. http://www.pvfs.org/pvfs2/.

[2] PanFS. http://www.panasas.com .

[3] GPFS. http://www.ibm.com/systems/software/gpfs .

[4] Lustre. http://www.lustre.org .

[5] Y. Xu, D. Arteaga, M. Zhao, Y. Liu, R. Figueiredo, S. Seelam, “vPFS: Bandwidth Virtualization of

Parallel Storage Systems”, IEEE 28th Symposium on Mass Storage Systems and Technologies, 2012

[6] Yin Wang and Arif Merchant, “Proportional-share scheduling for distributed storage systems,”

In Proceedings of the 5th USENIX conference on File and Storage Technologies (FAST’07). USENIX

Association, Berkeley, CA, USA, 4-4.

[7] W. Jin, J. S. Chase, and J. Kaur, “Interposed Proportional Sharing For A Storage Service Utility,”

SIGMETRICS, 2004.

[8] IOR HPC Benchmark, http://sourceforge.net/projects/ior-sio/.

[9] NASA Parallel Benchmark, http://www.nas.nasa.gov/publications/npb.html .

[10] P. Welsh, P. Bogenschutz, “Weather Research and Forecast (WRF) Model: Precipitation

Prognostics from the WRF Model during Recent Tropical Cyclones,” Interdepartmental Hurricane

Conference, 2005.

[11] A. Darling, L. Carey, and W. Feng, “The Design, Implementation, and Evaluation of mpiBLAST,”

ClusterWorld Conf. and Expo, 2003.

[12] R. Sankaran, et al., “Direct Numerical Simulations of Turbulent Lean Premixed Combustion,”

Journal of Physics Conference Series, 2006.

[13] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel, “Storage performance

virtualization via throughput and latency control”. Trans. Storage 2 (August 2006), 283–308.

23

http://www.pvfs.org/pvfs2/
http://www.panasas.com/
http://www.ibm.com/systems/software/gpfs
http://www.lustre.org/
http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/
http://www.nas.nasa.gov/publications/npb.html

Acknowledgement

 Sponsor: National Science Foundation

 VISA lab: http://visa.cs.fiu.edu

 More information: http://visa.cis.fiu.edu/hecura

24

http://visa.cs.fiu.edu/
http://visa.cis.fiu.edu/hecura

Backup Slides

25

