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Background – Parallel Storages 

 Parallel File System in High Performance Computing 

 Distribute data on multiple storage nodes 

 Aggregate throughput from multiple, parallel storage nodes 

 Components 

 Server side: data & meta-data server daemon 

 Client side: MPI library, client daemon 
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Motivation (1) 

 Parallel storage is commonly shared 

 Applications have different I/O demands  

 Their I/Os interfere with each other 
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Background – vPFS 

 Enhanced distributed SFQ scheduler 

 Global bandwidth proportional sharing with low overhead 
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Fixed Queue Depth 



Motivation (2) 

 Two representative parallel application: BTIO[9]/IOR[8] 

 Limited performance improvement from vPFS[5] 

 Throughput alone is not enough to satisfy applications’ 

performance needs 
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Overview 

 Problem 

 HPC applications requiring throughput or latency (or both) 

guarantees interfere with each other on the parallel storage 

 vPFS enforcement on bandwidth sharing is NOT enough to 

satisfy different applications’ needs 

 Solution 

 Use vPFS to create a new scheduler to recognize and regulate 

I/Os with awareness of both throughput and latency needs 
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Outline 

 Background, Motivation & Overview 

 Two-Level Parallel I/O Scheduler 

 Architecture 

 Algorithm 

 Experimental Evaluation 

 Conclusions and Future Work 
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Two-Level QoS 

 (T, D): A tuple for both Throughput and Latency 

 T is the agreed throughput upper bound limit from the 

application 

 D is the guaranteed the latency (deadline) upper bound 

from the storage 

 When T is violated, D is not guaranteed any more 
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Architecture 
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 High level provides throughput control as well as 

service synchronization 

 Low level monitors the device and adjusts # 

outstanding requests of the device[13] 
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High Level Throughput Control 

 Efficient parallel storage synchronization: total-

service proportional sharing of bandwidth 

 Strict fair sharing using SFQ-based algorithm: better 

utilization 
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High Level Throughput Control 

 Total-service proportional sharing: parallel storage 

synchronization 

 Strict fair sharing of using SFQ-based algorithm: 

better utilization 
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Low Level Latency Control 

 Final dispatching of requests to storage device 

 A feedback-control loop for adjusting the device depth 
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Low Level Bounds and Terms 

 Three bounds to predict the future 

 For class i, the maximum depth LRT
O allowed without violating 

the deadline 

 The lower bound depth Ll
O to ensure any request whose deadline 

is in the current time window is completed 

 The upper bound depth Lu
O if the latency need is continuously 

met and utilization should be raised 

 Terms 

 X — # requests completed in last time window 

 LO — current window queue depth 

 LO
max — maximum # outstanding requests in current window 
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Low Level Feedbacks 

 LO  scaled by 3 coefficients to derive 3 threshold bounds 

 𝑒𝑖 : 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑙𝑒𝑓𝑡 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑡𝑢𝑟𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 (about latency) 

 The more time left to complete a request, the larger 𝑒𝑖 

 The smaller actual device latency, the larger 𝑒𝑖 

 𝑙 ∶  
𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 or 𝑢:

𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (about throughput) 
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Controlling LO :Underloaded Case 

 𝐿𝑅𝑇
𝑂 = 𝑒𝑖 × 𝐿𝑂; 𝐿𝑙

𝑂 = 𝑙 × 𝐿𝑂; 𝐿𝑢
𝑂 = 𝑢 × 𝐿𝑂 
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Controlling LO :Overloaded Case 

 Over all classes, a minimum of all selected queue 

threshold is chosen 
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Clients 

 Low level idleness detection 

 If 𝐿𝑐𝑢𝑟𝑟 ≤ 𝐿𝑂 × 0.9 

 Idleness updated on the lower level: 

 When a request is dispatched or completed 

 At the beginning of an overloaded time window  

 High level credit replenishment  

 When the lower level reports idleness 

 When no remaining credits 

 But new requests query and find the idleness 

 When credit replenishment time window elapsed 

Cooperation between Two Levels 
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Evaluation 

 Hardware 

 1 Client with 64 processes 

 1 Server 

 One gigabit switch 

 Software 

 PVFS 2.8.2 

 IOR 2.10.3 

 Experiments 

 Adaptation of storage queue size 

 Handling of overloaded storage 
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IORs’ Issue Rates 

 One on-off pattern, with one constantly increasing 

 Storage capacity is about 50MB/s 

 App1 QoS: (40MB/s, 100ms); App2 QoS: (20MB/s, 300ms) 
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Adaptation of Queue Length 
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 Accurate transition between over- and under-load 

 Good depth obtained for adequate throughput 



Latency Differentiation 

 Storage is overloaded when both Apps are on 

 App1 conforms to 100ms 10 times than App2 

 App1’s overall 95th percentile latency is smaller than App2 
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Conclusions & Future Work 

 Two-level I/O control for parallel storage 

 Two-level scheduler can effectively respect the latency 

needs of different applications 

 Latency can be managed using a feedback-control loop for 

a black box storage device 

 Future work 

 Manage I/Os of different sizes 

 Create distributed versions of EDF 
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