
Two-level Throughput and Latency

I/O Control for Parallel File Systems

Yiqi Xu, Ming Zhao Florida International University

School of Computing and Information Sciences

http://visa.cis.fiu.edu

yxu006@cis.fiu.edu, ming@cis.fiu.edu

http://visa.cis.fiu.edu/
mailto:yxu006@cis.fiu.edu
mailto:ming@cis.fiu.edu

Background – Parallel Storages

 Parallel File System in High Performance Computing

 Distribute data on multiple storage nodes

 Aggregate throughput from multiple, parallel storage nodes

 Components

 Server side: data & meta-data server daemon

 Client side: MPI library, client daemon

2

Compute

nodes

APP

Storage

nodes

P
a
ra

ll
e
l

F
il
e

S
y
st

e
m

Meta-data
nodes

Data nodes

PFS

Motivation (1)

 Parallel storage is commonly shared

 Applications have different I/O demands

 Their I/Os interfere with each other

Compute

nodes
APP1

APP2

APPn

Storage

nodes

3

WRF[10]

S3D[12]

mpiBlast[11]

Frequent update of

Gigabytes of output

Periodic check-pointing

Gigabytes of data

Load Gigabytes of

data before execution

Background – vPFS

 Enhanced distributed SFQ scheduler

 Global bandwidth proportional sharing with low overhead

App

App

App

PFS Proxy

Virtual PFS1

Virtual PFS2

HPC
application 1

HPC
application 2

4

Fixed Queue Depth

Motivation (2)

 Two representative parallel application: BTIO[9]/IOR[8]

 Limited performance improvement from vPFS[5]

 Throughput alone is not enough to satisfy applications’

performance needs

5

31.17%

3.1%

58.76%

11.24%

0

10

20

30

40

50

60

Large BTIO (1MB/IO) Small BTIO (320B/IO)

B
T

IO
 T

h
ro

u
g
h
p
u
t

(M
B
/s

) Native - Standalone

Native - with IOR

vPFS - DSFQ

Overview

 Problem

 HPC applications requiring throughput or latency (or both)

guarantees interfere with each other on the parallel storage

 vPFS enforcement on bandwidth sharing is NOT enough to

satisfy different applications’ needs

 Solution

 Use vPFS to create a new scheduler to recognize and regulate

I/Os with awareness of both throughput and latency needs

6

Outline

 Background, Motivation & Overview

 Two-Level Parallel I/O Scheduler

 Architecture

 Algorithm

 Experimental Evaluation

 Conclusions and Future Work

7

Two-Level QoS

 (T, D): A tuple for both Throughput and Latency

 T is the agreed throughput upper bound limit from the

application

 D is the guaranteed the latency (deadline) upper bound

from the storage

 When T is violated, D is not guaranteed any more

8

Architecture

9

 High level provides throughput control as well as

service synchronization

 Low level monitors the device and adjusts #

outstanding requests of the device[13]

C1 C2 C3 ∙∙∙ Cm

High

Level

Low

Level
EDF

Monitor Controller Dispatcher

vPFS-DSFQ
Parallel Storage

Nodes

Depth

High Level Throughput Control

 Efficient parallel storage synchronization: total-

service proportional sharing of bandwidth

 Strict fair sharing using SFQ-based algorithm: better

utilization

10

C1 C2 C3 ∙∙∙ Cm

D*w1 D*w2
D*W3 D*Wm

Low Level

vPFS-DSFQ
Parallel Storage

Nodes

vPFS-DSFQ

vPFS-DSFQ

D* (1-w2-w3) credits used D credits in each time window

High Level Throughput Control

 Total-service proportional sharing: parallel storage

synchronization

 Strict fair sharing of using SFQ-based algorithm:

better utilization

11

C1 C2 C3 ∙∙∙ Cm

r1
r4

Low Level

vPFS-DSFQ
Parallel Storage

Nodes

vPFS-DSFQ

vPFS-DSFQ

Credits claimed only when requests arrive: r1+r4=D

Low Level Latency Control

 Final dispatching of requests to storage device

 A feedback-control loop for adjusting the device depth

12

C1 C2 C3 ∙∙∙ Cm
High Level

Low Level

Monitor Controller Dispatcher

EDF

LO

Mean EDF Wait Time

95th Percentile Response Time

Low Level Bounds and Terms

 Three bounds to predict the future

 For class i, the maximum depth LRT
O allowed without violating

the deadline

 The lower bound depth Ll
O to ensure any request whose deadline

is in the current time window is completed

 The upper bound depth Lu
O if the latency need is continuously

met and utilization should be raised

 Terms

 X — # requests completed in last time window

 LO — current window queue depth

 LO
max — maximum # outstanding requests in current window

13

Low Level Feedbacks

 LO scaled by 3 coefficients to derive 3 threshold bounds

 𝑒𝑖 :
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑙𝑒𝑓𝑡 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑓𝑢𝑡𝑢𝑟𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 (about latency)

 The more time left to complete a request, the larger 𝑒𝑖

 The smaller actual device latency, the larger 𝑒𝑖

 𝑙 ∶
𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 or 𝑢:

𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (about throughput)

14

𝐷𝑖

Low Level at the end of current time window

Monitor Controller Dispatcher

EDF Waiting Time MTi
e

95th Percentile Response

Time Ti
o, X, Lmax

O

𝑒𝑖 =
𝐷𝑖 − 𝑀𝑇𝑖

𝑒

𝑇𝑖
𝑂

𝒍 =
𝐿𝑂

𝑋
, e.g.

𝟑

𝑋
,

𝑢 =
𝐿 𝑂

𝑋
, e.g.

𝟔

𝑋

From (𝑇𝑖 , 𝐷𝑖)

Controlling LO :Underloaded Case

 𝐿𝑅𝑇
𝑂 = 𝑒𝑖 × 𝐿𝑂; 𝐿𝑙

𝑂 = 𝑙 × 𝐿𝑂; 𝐿𝑢
𝑂 = 𝑢 × 𝐿𝑂

15

𝐼𝑓 𝐿𝑅𝑇
𝑂 ≤ 𝐿𝑙

𝑂 𝐼𝑓 𝐿𝑢
𝑂 ≤ 𝐿𝑅𝑇

𝑂

𝑇ℎ𝑒𝑛 ∞ 𝑇ℎ𝑒𝑛 𝐿𝑢
𝑂

𝐼𝑓 𝐿𝑂
𝑚𝑎𝑥

 < 𝐿𝑂 ≤ 𝐿𝑅𝑇
𝑂

𝑇ℎ𝑒𝑛 𝐿𝑂

𝐼𝑓 𝐿𝑅𝑇
𝑂 < 𝐿𝑂

𝑇ℎ𝑒𝑛 𝐿𝑅𝑇

𝑂

𝐼𝑓 𝐿𝑂 ≤ 𝐿𝑂𝑚𝑎𝑥

𝑇ℎ𝑒𝑛 𝐿𝑅𝑇
𝑂

or

Controlling LO :Overloaded Case

 Over all classes, a minimum of all selected queue

threshold is chosen

16

𝐿 𝑂 𝐼𝑓 𝑋 <

𝑇ℎ𝑒𝑛 ∞

≤ 𝑋

𝑇ℎ𝑒𝑛 𝑚𝑎𝑥(𝐿𝑂, 𝐿𝑅𝑇
𝑂)

𝐿𝑂

 𝐿𝑅𝑇
𝑂 = 𝑒𝑖 × 𝐿𝑂𝑚𝑎𝑥ver all classes, a minimum of all

selected queue threshold is chosen

Clients

 Low level idleness detection

 If 𝐿𝑐𝑢𝑟𝑟 ≤ 𝐿𝑂 × 0.9

 Idleness updated on the lower level:

 When a request is dispatched or completed

 At the beginning of an overloaded time window

 High level credit replenishment

 When the lower level reports idleness

 When no remaining credits

 But new requests query and find the idleness

 When credit replenishment time window elapsed

Cooperation between Two Levels

17

credits

idleness

Monitor

vPFS-DSFQ
Clients

Clients

Evaluation

 Hardware

 1 Client with 64 processes

 1 Server

 One gigabit switch

 Software

 PVFS 2.8.2

 IOR 2.10.3

 Experiments

 Adaptation of storage queue size

 Handling of overloaded storage

18

IORs’ Issue Rates

 One on-off pattern, with one constantly increasing

 Storage capacity is about 50MB/s

 App1 QoS: (40MB/s, 100ms); App2 QoS: (20MB/s, 300ms)

19

0 100 200 300 400 500

Adaptation of Queue Length

20

 Accurate transition between over- and under-load

 Good depth obtained for adequate throughput

Latency Differentiation

 Storage is overloaded when both Apps are on

 App1 conforms to 100ms 10 times than App2

 App1’s overall 95th percentile latency is smaller than App2

21

9
5

th
 P

e
rc

e
n
ti
le

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

App2 (20MB/s, 300ms)

App1(40MB/s, 100ms)

Conclusions & Future Work

 Two-level I/O control for parallel storage

 Two-level scheduler can effectively respect the latency

needs of different applications

 Latency can be managed using a feedback-control loop for

a black box storage device

 Future work

 Manage I/Os of different sizes

 Create distributed versions of EDF

22

References

[1] PVFS2. http://www.pvfs.org/pvfs2/.

[2] PanFS. http://www.panasas.com .

[3] GPFS. http://www.ibm.com/systems/software/gpfs .

[4] Lustre. http://www.lustre.org .

[5] Y. Xu, D. Arteaga, M. Zhao, Y. Liu, R. Figueiredo, S. Seelam, “vPFS: Bandwidth Virtualization of

Parallel Storage Systems”, IEEE 28th Symposium on Mass Storage Systems and Technologies, 2012

[6] Yin Wang and Arif Merchant, “Proportional-share scheduling for distributed storage systems,”

In Proceedings of the 5th USENIX conference on File and Storage Technologies (FAST’07). USENIX

Association, Berkeley, CA, USA, 4-4.

[7] W. Jin, J. S. Chase, and J. Kaur, “Interposed Proportional Sharing For A Storage Service Utility,”

SIGMETRICS, 2004.

[8] IOR HPC Benchmark, http://sourceforge.net/projects/ior-sio/.

[9] NASA Parallel Benchmark, http://www.nas.nasa.gov/publications/npb.html .

[10] P. Welsh, P. Bogenschutz, “Weather Research and Forecast (WRF) Model: Precipitation

Prognostics from the WRF Model during Recent Tropical Cyclones,” Interdepartmental Hurricane

Conference, 2005.

[11] A. Darling, L. Carey, and W. Feng, “The Design, Implementation, and Evaluation of mpiBLAST,”

ClusterWorld Conf. and Expo, 2003.

[12] R. Sankaran, et al., “Direct Numerical Simulations of Turbulent Lean Premixed Combustion,”

Journal of Physics Conference Series, 2006.

[13] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel, “Storage performance

virtualization via throughput and latency control”. Trans. Storage 2 (August 2006), 283–308.

23

http://www.pvfs.org/pvfs2/
http://www.panasas.com/
http://www.ibm.com/systems/software/gpfs
http://www.lustre.org/
http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/
http://www.nas.nasa.gov/publications/npb.html

Acknowledgement

 Sponsor: National Science Foundation

 VISA lab: http://visa.cs.fiu.edu

 More information: http://visa.cis.fiu.edu/hecura

24

http://visa.cs.fiu.edu/
http://visa.cis.fiu.edu/hecura

Backup Slides

25

