
	

SRE	Design	Review	Checklist	
	
Some	sections	may	not	apply	to	the	system	
under	design	-	in	those	cases	there	is	no	need	
to	spend	time	on	those	sub-checklists.		
	

❏ What	and	why:		do	I	understand	the	
need	for	the	change,	the	design	itself,	
and	how	it	relates	to	other	systems?		

❏ Who:		are	all	affected	teams	
represented	in	the	reviewers,	including	
operations	and	support?	

❏ Privacy	and/or	security	review	
needed?	

❏ Alternatives	considered:		is	building	a	
new	system	the	right	approach?	Did	the	
proposer	speak	to	owners	of	similar	
systems?	

❏ Stickiness:		see	sub-checklist	
❏ Complexity:		see	sub-checklist	
❏ Data:		see	sub-checklist	
❏ Scale	and	performance:		see	

sub-checklist	
❏ Operability:		see	sub-checklist	
❏ Robustness:		see	sub-checklist	

Stickiness	sub-checklist	
❏ What	aspects	of	the	design	will	make	

major	change,	or	migration	and	
eventual	turndown	easier	or	harder?		

❏ Can	users	extend	the	system,	with	
their	own	code?	

❏ How	tight	is	the	coupling	with	other	
systems?	

❏ What	assumptions	are	baked	into	the	
architecture	or	the	data	model	that	
might	change	in	the	future?		

	
Complexity	sub-checklist:		

❏ Does	each	component	of	the	system	
have	a	clearly	defined	role	and	a	crisp	
interface?	

❏ Is	it	built	using	standard	building	
blocks	(caches,	message	queues	etc)	
that	engineers	at	this	organisation	
already	understand?		

❏ Does	it	use	the	same	kinds	of	
plumbing	such	as	RPC	mechanisms,	
logging,	monitoring	and	so	on?	

	

Data	sub-checklist:	
❏ What	is	the	flow	of	data	through	the	

system?	
❏ What	are	the	data	consistency	

requirements	and	how	does	the	
design	support	them?	 	

❏ What	data	can	be	recomputed	from	
other	sources	and	which	cannot?		

❏ Is	there	a	data	loss	Service	Level	
Objective	(SLO)?	

❏ How	long	does	data	need	to	be	
retained,	and	why?		

❏ Does	it	need	to	be	encrypted	at	rest,	
in	transit?		

❏ Are	there	multiple	replicas	of	the	
data?		

❏ How	do	we	detect	and	deal	with	loss	
or	corruption	of	data?		

❏ How	is	data	sharded,	and	how	do	
we	deal	with	growth	and	resharding?		

❏ How	should	data	be	backed	up	and	
restored?		

❏ What	are	the	access	control	and	
authentication	strategies?	

❏ Have	relevant	regulations	such	as	
GDPR	and	any	data	residency	
requirements	been	addressed?	

	

SRE	Design	Review	Checklist,	by	Laura	Nolan	-	July	2019	
1	



Scale	and	performance	sub-checklist:		
❏ What	are	the	bottlenecks	in	this	

system	that	will	limit	its	scale	and	
throughput	(not	forgetting	the	impact	
of	writes	and	locking)?	

❏ What’s	the	critical	path	of	each	type	
of	request,	and	how	do	requests	
fan-out	into	multiple	sub-requests?	

❏ What	is	the	expected	peak	load	and	
how	does	the	system	support	it?	

❏ What	is	the	required	latency	SLO	and	
how	does	the	system	support	it?	

❏ How	will	capacity	planning	and	
loadtesting	be	done?	

❏ What	systems	are	we	depending	on,	
what	are	their	performance	limits	and	
their	documented	SLOs?	

❏ What	will	it	cost	to	run	financially?	
❏ How	will	this	system	deal	with	a	large	

spike	of	load?	
❏ Does	the	system	use	caching,	and	if	

so,	will	it	be	able	to	serve	at	
increased	latency	without	the	cache?	

❏ Can	this	system	break	its	backends	
by	making	excessive	requests?	

Operability	sub-checklist:		
❏ How	does	the	design	support	

monitoring	and	observability?		
❏ Do	all	third-party	system	components	

provide	appropriate	observability	
features?	

❏ What	tools	will	be	available	to	
operators	to	understand	and	control	
the	system’s	behavior	during	
production	incidents?	How	will	these	
tools	make	clear	to	the	operator	what	
specific	actions	they	will	take,	to	avoid	
surprises?	

❏ What	routine	work	is	going	to	be	
needed	for	this	system?	Which	team	
is	expected	to	be	responsible	for	it?	

❏ Are	there	manual	operations	that	will	
be	required	to	recover	from	common	
kinds	of	failure?	

❏ How	to	detect	and	manage	abusive	
users?	

❏ If	the	design	involves	relying	on	
third-parties	(such	as	a	cloud	
provider,	hardware	or	software	vendor	
or	even	an	open-source	community),	
how	responsive	will	vendors	be	to	
your	feature	requests	or	problems?	

❏ Are	all	configurations	stored	in	source	
control?		

Robustness	sub-checklist:		
❏ How	is	the	system	designed	to	deal	

with	failure	in	the	various	physical	
failure	domains	(device,	rack,	
cluster/AZ,	datacenter),	plus	network	
partitions	or	high	latency?		

❏ How	could	an	operator	accidentally	
(or	deliberately)	break	the	system?		

❏ Is	there	isolation	between	users?	
❏ Are	hotspots	or	large	shards	

possible?	
❏ How	can	this	system	degrade	

gracefully	if	its	dependencies	fail?	
❏ What	is	the	process	to	restart	it	from	

scratch,	and	how	long	does	that	take?	
❏ Do	we	depend	on	anything	that	might	

depend	on	this	system?		
❏ Is	the	control	plane	fully	separate	from	

the	data	plane?	
❏ Can	I	canary	this	design	effectively?	
❏ Can	this	system	autonomously	drain	

capacity	and	how	have	risks	around	
that	been	managed,	in	particular	with	
respect	to	human	operators’	ability	to	
understand	and	control	the	system?	

❏ Can	this	system	create	self-reinforcing	
phenomena	(i.e.	vicious	cycles),	for	
example	when	re-replicating	data	or	
retrying?	

SRE	Design	Review	Checklist,	by	Laura	Nolan	-	July	2019	
2	


