
Errata Slip

In the published version of “BetrFS: A Right-Optimized Write-Optimized File System”, (Wednesday Ses-
sion, “Quoth the Raven, Neveread: Write-Optimized File Systems”, pp 301–315 of the proceedings), the
authors transposed two data points in Table 6 (btrfs on find and grep).

The original table:

FS find grep dir rename delete
BetrFS 0.36 ± 0.06 3.95 ± 0.28 21.17 ± 1.01 46.14 ± 1.12
btrfs 14.91 ± 1.18 3.87 ± 0.94 0.08 ± 0.05 7.82 ± 0.59
ext4 2.47 ± 0.07 46.73 ± 3.86 0.10 ± 0.02 3.01 ± 0.30
XFS 19.07 ± 3.38 66.20 ± 15.99 19.78 ± 5.29 19.78 ± 5.29
zfs 11.60 ± 0.81 41.74 ± 0.64 14.73 ± 1.64 14.73 ± 1.64

Table 6: Directory operation benchmarks, measured in seconds. Lower is better.

FS chmod mkdir open read stat unlink write
BetrFS 4913 ± 0.27 67072 ± 25.68 1697 ± 0.12 561 ± 0.01 1076 ± 0.01 47873 ± 7.7 32142 ± 4.35
btrfs 4574 ± 0.27 24805 ± 13.92 1812 ± 0.12 561 ± 0.01 1258 ± 0.01 26131 ± 0.73 3891 ± 0.08
ext4 4970 ± 0.14 41478 ± 18.99 1886 ± 0.13 556 ± 0.01 1167 ± 0.05 16209 ± 0.2 3359 ± 0.04
XFS 5342 ± 0.21 73782 ± 19.27 1757 ± 0.12 1384 ± 0.07 1134 ± 0.02 19124 ± 0.32 9192 ± 0.28
zfs 36449 ± 118.37 171080 ± 307.73 2681 ± 0.08 6467 ± 0.06 1913 ± 0.04 78946 ± 7.37 18382 ± 0.42

Table 7: Average time in cycles to execute a range of common file system calls. Lower is better.

comparable.
Both the rename and delete tests show the worst-case

behavior of BetrFS. Because BetrFS does not include a
layer of indirection from pathname to data, renaming re-
quires copying all data and metadata to new points in
the tree. We also measured large-file renames, and saw
similarly large overheads—a function of the number of
blocks in the file. Although there are known solutions
to this problem, such as by adding a layer of indirec-
tion, we plan to investigate techniques that can preserve
the appealing lexicographic locality without sacrificing
rename and delete performance.

7.4 System Call Nanobenchmarks

Finally, Table 7 shows timings for a nanobenchmark
that measures various system call times. Because this
nanobenchmark is warm-cache, it primarily exercises the
VFS layer. BetrFS is close to being the fastest file sys-
tem on open, read, and stat. On chmod, mkdir, and
unlink, BetrFS is in the middle of the pack.

Our current implementation of the write system call
appears to be slow in this benchmark because, as men-
tioned in Section 5.1, writes in BetrFS issue an upsert to
the database, even if the page being written is in cache.
This can be advantageous when a page is not written of-
ten, but that is not the case in this benchmark.

7.5 Space Overheads

The Fractal Tree index implementation in BetrFS in-
cludes a cachetable, which caches tree nodes. Cachetable
memory is bounded. BetrFS triggers background flush-
ing when memory exceeds a low watermark and forces
writeback at a high watermark. The high watermark is
currently set to one eighth of total system memory. This

Total BetrFS Disk Usage (GiB)
Input After After After
Data Writes Deletes Flushes

4 4.14 ± 0.07 4.12 ± 0.00 4.03 ± 0.12
16 16.24 ± 0.06 16.20 ± 0.00 10.14 ± 0.21
32 32.33 ± 0.02 32.34 ± 0.00 16.22 ± 0.00
64 64.57 ± 0.06 64.59 ± 0.00 34.36 ± 0.18

Table 8: BetrFS disk usage, measured in GiB, after writ-
ing large incompressible files, deleting half of those files,
and flushing Be -tree nodes.

is configurable, but we found that additional cachetable
memory had little performance impact in our workloads.

No single rule governs BetrFS disk usage, as stale data
may remain in non-leaf nodes after delete, rename, and
overwrite operations. Background cleaner threads at-
tempt to flush pending data from 5 internal nodes per
second. This creates fluctuation in BetrFS disk usage,
but overheads swiftly decline at rest.

To evaluate the BetrFS disk footprint, we wrote sev-
eral large incompressible files, deleted half of those files,
and then initiated a Be -tree flush. After each operation,
we calculated the BetrFS disk usage using df on the un-
derlying ext4 partition.

Writing new data to BetrFS introduced very little over-
head, as seen in Table 8. For deletes, however, BetrFS
issues an upsert for every file block, which had little im-
pact on the BetrFS footprint because stale data is lazily
reclaimed. After flushing, there was less than 3GiB of
disk overhead, regardless of the amount of live data.

7.6 Application Performance
Figure 5 presents performance measurements for a vari-
ety of metadata-intensive applications. We measured the
time to rsync the Linux 3.11.10 source code to a new di-

11

The correct table:
FS find grep dir rename delete
BetrFS 0.36 ± 0.06 3.95 ± 0.28 21.17 ± 1.01 46.14 ± 1.12
btrfs 3.87 ± 0.94 14.91 ± 1.18 0.08 ± 0.05 7.82 ± 0.59
ext4 2.47 ± 0.07 46.73 ± 3.86 0.10 ± 0.02 3.01 ± 0.30
XFS 19.07 ± 3.38 66.20 ± 15.99 19.78 ± 5.29 19.78 ± 5.29
zfs 11.60 ± 0.81 41.74 ± 0.64 14.73 ± 1.64 14.73 ± 1.64

Table 6: Directory operation benchmarks, measured in seconds. Lower is better.

FS chmod mkdir open read stat unlink write
BetrFS 4913 ± 0.27 67072 ± 25.68 1697 ± 0.12 561 ± 0.01 1076 ± 0.01 47873 ± 7.7 32142 ± 4.35
btrfs 4574 ± 0.27 24805 ± 13.92 1812 ± 0.12 561 ± 0.01 1258 ± 0.01 26131 ± 0.73 3891 ± 0.08
ext4 4970 ± 0.14 41478 ± 18.99 1886 ± 0.13 556 ± 0.01 1167 ± 0.05 16209 ± 0.2 3359 ± 0.04
XFS 5342 ± 0.21 73782 ± 19.27 1757 ± 0.12 1384 ± 0.07 1134 ± 0.02 19124 ± 0.32 9192 ± 0.28
zfs 36449 ± 118.37 171080 ± 307.73 2681 ± 0.08 6467 ± 0.06 1913 ± 0.04 78946 ± 7.37 18382 ± 0.42

Table 7: Average time in cycles to execute a range of common file system calls. Lower is better.

Both the rename and delete tests show the worst-case
behavior of BetrFS. Because BetrFS does not include a
layer of indirection from pathname to data, renaming re-
quires copying all data and metadata to new points in
the tree. We also measured large-file renames, and saw
similarly large overheads—a function of the number of
blocks in the file. Although there are known solutions
to this problem, such as by adding a layer of indirec-
tion, we plan to investigate techniques that can preserve
the appealing lexicographic locality without sacrificing
rename and delete performance.

7.4 System Call Nanobenchmarks
Finally, Table 7 shows timings for a nanobenchmark
that measures various system call times. Because this
nanobenchmark is warm-cache, it primarily exercises the
VFS layer. BetrFS is close to being the fastest file sys-
tem on open, read, and stat. On chmod, mkdir, and
unlink, BetrFS is in the middle of the pack.

Our current implementation of the write system call
appears to be slow in this benchmark because, as men-
tioned in Section 5.1, writes in BetrFS issue an upsert to
the database, even if the page being written is in cache.
This can be advantageous when a page is not written of-
ten, but that is not the case in this benchmark.

7.5 Space Overheads
The Fractal Tree index implementation in BetrFS in-
cludes a cachetable, which caches tree nodes. Cachetable
memory is bounded. BetrFS triggers background flush-
ing when memory exceeds a low watermark and forces
writeback at a high watermark. The high watermark is
currently set to one eighth of total system memory. This
is configurable, but we found that additional cachetable
memory had little performance impact in our workloads.

Total BetrFS Disk Usage (GiB)
Input After After After
Data Writes Deletes Flushes

4 4.14 ± 0.07 4.12 ± 0.00 4.03 ± 0.12
16 16.24 ± 0.06 16.20 ± 0.00 10.14 ± 0.21
32 32.33 ± 0.02 32.34 ± 0.00 16.22 ± 0.00
64 64.57 ± 0.06 64.59 ± 0.00 34.36 ± 0.18

Table 8: BetrFS disk usage, measured in GiB, after writ-
ing large incompressible files, deleting half of those files,
and flushing Be -tree nodes.

No single rule governs BetrFS disk usage, as stale data
may remain in non-leaf nodes after delete, rename, and
overwrite operations. Background cleaner threads at-
tempt to flush pending data from 5 internal nodes per
second. This creates fluctuation in BetrFS disk usage,
but overheads swiftly decline at rest.

To evaluate the BetrFS disk footprint, we wrote sev-
eral large incompressible files, deleted half of those files,
and then initiated a Be -tree flush. After each operation,
we calculated the BetrFS disk usage using df on the un-
derlying ext4 partition.

Writing new data to BetrFS introduced very little over-
head, as seen in Table 8. For deletes, however, BetrFS
issues an upsert for every file block, which had little im-
pact on the BetrFS footprint because stale data is lazily
reclaimed. After flushing, there was less than 3GiB of
disk overhead, regardless of the amount of live data.

7.6 Application Performance
Figure 5 presents performance measurements for a vari-
ety of metadata-intensive applications. We measured the
time to rsync the Linux 3.11.10 source code to a new di-
rectory on the same file system, using the --in-place

option to avoid temporary file creation (Figure 5a). We

11

1


