
How to Start on Formal Methods and Share It

January 27, 2022

You might have heard of formal methods and there is a small chance that
you might even be using them. We know that we cannot really rigorously test
software and formal methods have the answer. However, it is hard to find anyone
in our circle that was actually using them, except for some exotic projects on
the web, and our guess was that it is hard to learn and use. Long story short,
we decided to learn a thing or two about formal method and try to use it in
some way in general software development.

Formal verification
Testing can show the presence of bugs, not their absence.
Edsger W. Dijkstra

Verification in software development usually means testing, i.e. the running of
test subject with some input and checking the output against some expected
output. Formal verification is checking the code against some formal proofs.
When we explained this to some people, the responses were usually, “Yeah, of
course” or “That makes sense”. Showing this on a piece of paper or on a white-
board is a different story. We found that simple math can illustrate the problem:
let’s say we have a specification (x + y)2 and a programmer implemented it as
x2 + 2xy + y2 and now we have to verify it.

Two things that we want to point out with this illustration are 1) the “formal
proof” is not that hard to understand as it is basic math and 2) as we will show
later, computer code can be verified in the same way using formal proof. But
why is it called formal proof? The “formality” can be seen as the level of details,

Table 1: Unit test cases
x y result
0 0 0
0 1 1
1 0 1
1 1 4

1

Table 2: Formal proof
Proof step Goal

(x+ y)2 = x2 + 2xy + y2

expansion (x+ y)(x+ y) = x2 + 2xy + y2

distributive x(x+ y) + y(x+ y) = x2 + 2xy + y2

simplify x2 + xy + yx+ y2 = x2 + 2xy + y2

reflexivity x2 + 2xy + y2 = x2 + 2xy + y2

analogous to formal proof being a programming language and informal as a
natural language. In informal proof, one can say “expand the power of 2 then
use distributive law”. Formal proof is writing down the proof steps. Informal
proof requires some knowledge and intuition to comprehend, where formal proof
is so detailed it can be processed by a computer.

Prerequisite
There are many tools that can be used for formal verification, together they are
called Proof Assistants. We choose Coq because we found that one of the best
sources to learn about formal verification is the Software Foundations[1] and it
uses Coq. Coq is built on OCaml and a convenient way to install Coq and its
dependencies is by using opam, the OCaml package manager. It also allows you
to install packages built on Coq later in the journey. We will also use ‘make‘,
which hopefully you already have installed

To install opam, please go to https://opam.ocaml.org/doc/Install.html and
follow the instruction that is suitable for your OS. After opam is installed,
installing Coq is just a matter of doing ‘$ opam install coq‘.

Writing specifications
As our intention is to make this formal verification exercise really applicable to
whatever project you might have, we want to write the example specifications
inside some existing source code that you might have been working on. If you
don’t have one, just create an empty one in any language, as long as it supports
some kind of doc block notation. We will use PHP here for our example.

Let’s say we have a function that is used to decide whether a given trans-
action is available or not based on a few simple rules and we want to formally
verify the implementation.

/∗∗
∗ r e tu rn s t rue when a t r an sa c t i on i s :
∗ unlocked and committed and a withdrawal or
∗ unlocked and i t was a r e v e r s a l or
∗ unlocked and committed and undisputed

2

∗/
func t i on av a i l a b l e (bool unlocked , bool disputed ,

bool committed , bool r e v e r s a l , bool withdrawal) : bool
{

re turn unlocked && (committed && (! d i sputed
| | withdrawal) | | r e v e r s a l) ;

}
From the piece of code above we can see the specifications of the function

in the comments and the function definition as the implementation. Obviously
the example here is crafted to make it straight forward to translate it into Coq.
Now, let’s translate the rules in the comment block, we start by replacing “and”
with “/\” (forward and back slashes) and removing “or”.

• unlocked /\ committed /\ a withdrawal

• unlocked /\ a reversal

• unlocked /\ committed /\ undisputed

These rules must apply to all types of transactions, withdrawal and reversal
were special types of transactions by the look of it, to keep it simple, we can
treat them as statuses like “unlocked” and “committed”, so we can drop “a” and
add “forall” to these rules because we want these rules to work “for all” cases:

• forall unlocked /\ committed /\ withdrawal

• forall unlocked /\ reversal

• forall unlocked /\ committed /\ undisputed

Specification is one half of proposition, called the antecedent and the implemen-
tation code is the second half of proposition, called the consequent. Propositions
have the form “antecedent -> consequent”. To convert the implementation we
just take the one line of code and replace “!”, “&&” and “||” with “~”, “/\” (aka
conjunction) and “\/” (aka disjunction) respectively like so:

unlocked /\ (committed /\ (~disputed \/ withdrawal) \/ reversal)
Now we can write the complete specifications:

• forall unlocked /\ committed /\ withdrawal -> unlocked /\ (committed
/\ (~ disputed \/ withdrawal) \/ reversal).

• forall unlocked /\ reversal -> unlocked /\ (committed /\ (~ disputed \/
withdrawal) \/ reversal).

• forall unlocked /\ committed /\ ~disputed -> unlocked /\ (committed /\
(~ disputed \/ withdrawal) \/ reversal).

They look almost ready, we just need to tell Coq what all these variables are, we
tell Coq that these are proposition with “(unlocked committed disputed reversal
withdrawal: Prop)”. Coq also need to be able to tell what each line is, we
just call them Property (we could also call them Lemma or Theorem, they are
syntactic sugar) and we give each one a name. The finished lines look like this:

3

• Property withdrawal: forall (unlocked committed disputed reversal with-
drawal: Prop), unlocked /\ committed /\ withdrawal -> unlocked /\
(committed /\ (~ disputed \/ withdrawal) \/ reversal).

• Property reversal: forall (unlocked committed disputed reversal with-
drawal: Prop), unlocked /\ reversal -> unlocked /\ (committed /\ (~
disputed \/ withdrawal) \/ reversal).

• Property undisputed: forall (unlocked committed disputed reversal with-
drawal: Prop), unlocked /\ committed /\ ~disputed -> unlocked /\ (com-
mitted /\ (~ disputed \/ withdrawal) \/ reversal).

Before we continue, we want to point out that unlike logical statements, there
is no right or wrong in propositions. Proposition can either be proven or cannot
be proven. What that means is if a proposition cannot be proven, it may still
give true results, but not always, and it may give false results which in real life
can be referred to as “edge cases”, “dead lock”, “race condition”, etc.

Develop proof for propositions
Coq is a proof assistant, it does not create the proof for us, so we have to create
the proof. A good thing about formal proof is that we can see each step of
the proof and what the meaning of the proof steps are although they can be
long compared to informal proof, it does not require intuition, especially when
the intuition requires long and hard study in logic. Lets try creating proof
for “Property withdrawal” inside Coq, start Coq by running ‘coqtop‘, copy the
“Property withdrawal” line and paste it at the “Coq < “ prompt.

Coq < Property withdrawal:forall (unlocked committed disputed \

reversal withdrawal: Prop), unlocked /\ committed /\ \

withdrawal -> unlocked /\ (committed /\ (~ disputed \/ \

withdrawal) \/ reversal).

1 subgoal

============================

forall unlocked committed disputed reversal withdrawal : Prop,

unlocked /\ committed /\ withdrawal ->

unlocked /\ (committed /\ (~ disputed \/ withdrawal) \/ reversal)

Coq has accepted the property as the context, indicated by the prompt has
changed to “withdrawal”. Please note that the line continuation character “\”
were only added for formatting here. When using coqtop interactively, the
property should be entered as one line with “\” removed. We can now start
proving by giving it the command “Proof.” (’.’ is the statement delimiter in
Coq).

withdrawal < Proof.

1 subgoal

4

============================

forall unlocked committed disputed reversal withdrawal : Prop,

unlocked /\ committed /\ withdrawal ->

unlocked /\ (committed /\ (~ disputed \/ withdrawal) \/ reversal)

This is where the fun begins. The goal that we are trying to prove is basically in
the form of “P -> Q”. The Q part in the current form is a bit long to read, but
if we ignore the parts within the outer parentheses for now, it is a conjunction
(“/\”) of A & B or “A /\ B”. What that means is to prove P -> Q, we have to
prove both P -> A and P -> B. We can tell Coq that we will prove both of
them separately using the tactic “split”.

withdrawal < split.

2 subgoals

unlocked, committed, disputed, reversal, withdrawal : Prop

H : unlocked /\ committed /\ withdrawal

============================

unlocked

subgoal 2 is:

committed /\ (~ disputed \/ withdrawal) \/ reversal

Now we have two lines above “=============”, the first line lists all the
variables and the second line shows the hypothesis “H”. We also now have two
subgoals, the first and current subgoal is “unlocked”. Since we have “unlocked
/\ committed /\ withdrawal” as hypothesis, we apply the hypothesis to the goal
using “apply H”.

withdrawal < apply H.

1 subgoal

unlocked, committed, disputed, reversal, withdrawal : Prop

H : unlocked /\ committed /\ withdrawal

============================

committed /\ (~ disputed \/ withdrawal) \/ reversal

As the first goal has been satisfied, Coq is now showing the next goal. The goal
has a disjunction (“\/”) which means that the two parts on either side of the
disjunction are two separate statements “Left \/ Right”. Because they are two
separate statements, we do not need to “split” the goal. Just like a logical “or”
in programming, it does not really matter which statement is true, as long as
one of them is true. Now, which side should we prove? Looking at the subgoal,
Right is “reversal”, it is something that we do not have in the current hypothesis,
if we choose Right, we will not progress our proving. So, let’s choose to continue
proving on Left, the Coq command is “left”.

5

withdrawal < left.

1 subgoal

unlocked, committed, disputed, reversal, withdrawal : Prop

H : unlocked /\ committed /\ withdrawal

============================

committed /\ (~ disputed \/ withdrawal)

Here we have the “A /\ B” again, so let’s split it.

withdrawal < split.

2 subgoals

unlocked, committed, disputed, reversal, withdrawal : Prop

H : unlocked /\ committed /\ withdrawal

============================

committed

subgoal 2 is:

~ disputed \/ withdrawal

We have subgoal 1 (committed) in the hypothesis, so we can apply the hypoth-
esis.

withdrawal < apply H.

1 subgoal

unlocked, committed, disputed, reversal, withdrawal : Prop

H : unlocked /\ committed /\ withdrawal

============================

~ disputed \/ withdrawal

We have to choose between left (~disputed) or right (withdrawal). We can see
withdrawal in the hypothesis so let’s go with Right.

withdrawal < right.

1 subgoal

unlocked, committed, disputed, reversal, withdrawal : Prop

H : unlocked /\ committed /\ withdrawal

============================

withdrawal

And now we can apply the hypothesis.

withdrawal < apply H.

No more subgoals.

That is it! We close the proof with “Qed”.

6

withdrawal < Qed.

Proof.

split.

apply H.

left.

split.

apply H.

right.

apply H.

Qed.

withdrawal is defined

Only two more rules to prove! Hint: the second rule is even easier to prove.
When you are done, the command to quit Coq is “Quit.”

Let’s recap what we have learnt so far, we have shown how to write proof
using three tactics: split, left/right and apply. There are many more tactics
available in Coq, the highlight here is that we can start with a handful of tactics
and write a working proof. Looking back at the original comment block and the
function code, we have extracted the logic from the rules and the implementation
code and make the connection between them in the form of proof. Having the
proof available relieves programmers or code reviewers from mentally making
that connection and gives assurance of the correctness.

Putting all together
We now know how to write propositions and formal proofs. The next goal that
we want to achieve is to apply it to our project. One way to do it is to create
a sub-project and write as much as we can in Coq then integrate it back to the
main project. This is a common approach, there are many projects done this
way. The downside is they become separated from the main projects, whatever
that main projects are, and isolate the techniques and knowledge used in that
project to the few people who are working on it. This is fine for domain specific
knowledge, but formal methods are applicable across domains. We want people
to practice formal method like they practice test driven or behaviour driven
development. So, we add a subgoal: we want to apply formal methods to our
main project, in other words, we will share it so other people working on the
same project can see it too.

Some code already has comments to explain what it was doing and they
should also come with test files. In code review, we read them and check if they
make sense. We think we could do better, if we put the formal specification and
the formal proof together with the code, then all we need to check is that the
code was translated correctly into the specification and let machine do the rest.
Here is the original code with specification and proof in the comment:

7

/∗∗
∗ r e tu rn s t rue when :
∗ unlocked and committed and a withdrawal or
∗ unlocked and i t was a r e v e r s a l or
∗ unlocked and committed and undisputed
∗)
Property withdrawal :
f o r a l l (unlocked committed di sputed r e v e r s a l \

withdrawal : Prop) ,
unlocked /\ committed /\ withdrawal −> unlocked \

/\ (committed /\ (~ disputed \/ withdrawal) \/ \
r e v e r s a l) .

Proof . s p l i t . apply H. l e f t . s p l i t . apply H. r i g h t . \
apply H. Qed .

Property r e v e r s a l :
f o r a l l (unlocked committed di sputed r e v e r s a l \

withdrawal : Prop) ,
unlocked /\ r e v e r s a l −> unlocked /\ (committed /\ \

(~ disputed \/ withdrawal) \/ r e v e r s a l) .
Proof . Admitted .

Property undisputed :
f o r a l l (unlocked committed di sputed r e v e r s a l \

withdrawal : Prop) ,
unlocked /\ committed /\ ~ disputed −> unlocked /\ \

(committed /\ (~ disputed \/ withdrawal) \/ r e v e r s a l) .
Proof . Admitted .

(∗
∗/
func t i on av a i l a b l e (bool unlocked , bool disputed ,

bool committed , bool r e v e r s a l , bool withdrawal) : bool
{

re turn unlocked && (committed && (! d i sputed | |
withdrawal) | | r e v e r s a l) ;

}

If we know how to separate the Coq from the rest of the code, then it should
be straight forward to check the proofs. Here is what our Makefile looks like:

proof: test.vo

%.v: %.php

@cat $^| sed -ne ’/\/*/,/*\//p’ | sed -n ’/*)/,/(*/p’ \

| grep -v ’(*’ | grep -v ’*)’ > $@

8

%.vo: %.v

coqc $^

clean:

$(RM) *.v *.vo *.glob

We named the php containing the code “test.php” which ‘make‘ will look for to
build “test.vo” file, which is the output of Coq compiler. When we run ‘make‘,
it will extract Coq code from ‘test.php‘ into ‘test.v‘ and run ‘coqc‘ on the file.
The key to make that works is to use Coq’s block comment delimiter “(* *)”. In
the PHP code above we have Coq code between “*)” and “(*”, this is intentional
because the Coq code lives inside a PHP comment block. When the file is read
as Coq code, the PHP code would be the comment block, hence the inverse
commenting “*) ... (*”.

As usual, if everything was Ok, make will build “test.vo” file and if not then
error will be thrown. In fact, you should try removing one of the proof step and
see what happens, ’make’ should throw an error. At this point, we believe it is
straight forward to make this as part of a project or help integrating it into a
build pipeline.

Closing
That is pretty much it! From here, it should just be like learning a new tool or
programming language. There will be challenges and shortcuts along the way.
Some of them are:

• Coqtop does not have the best user interface for development. Coq has
an IDE, which is called CoqIDE, and there are also text editor plug-ins,
like Proof General for Emacs.

• The example shown was for proving proposition A -> B. We actually have
to prove that A <-> B and the way to do it is to “split” it into A -> B
and B -> A. With multiple rules as in the example, you can write them
all as one proposition like A1 \/ A2\/ A3 <-> B.

• Sometimes Coq can do the job for you because someone has written smart
tactics in the library. E.g. try using “tauto” in the proof, as in “Proof.
tauto. Qed”.

As people get more comfortable with Coq and if you write functional programs,
you might even go the whole length and write your types and functions in Coq.
This will give even more return on your investment because you will be able
to use types and functions as part of formal proof. Coq can then “extract” the
code into Haskell or OCaml.

There are other alternatives to Coq, one of them Isabelle/HOL which is
used in seL4 microkernel project[2]. Operating systems are common targets for
formal methods because it sits at the bottom of the stack so it should give most

9

bang for the buck. CertiKOS is another project that is formally verified, this
time with Coq[3].

The example used here was based on real experience. When we review
code, it is not hard to check some piece of code which has two or three boolean
variables, by mentally doing a truth table. When it gets to four or more variables
it will get out of hand. Having proof assistant to check some logical expressions
is like having a calculator. Sure we can do math with pen and paper but when
machine can do it, usually we can trust the result. Most programmers already
understand that features in a softwares come from many small functions. We
hope that by exposing formal proof of some propositions in a common project
will lead to better understanding of, let’s say how an application can be proven
or certified to be secure. Or at least it will start a discussion.

References
[1] https://softwarefoundations.cis.upenn.edu/lf-current/toc.html

[2] http://sel4.systems

[3] https://www.usenix.org/system/files/conference/osdi16/osdi16-gu.pdf

10

