

Confidential (C)

Wanted Hacked or Patched: Bug Bounties for Third Party Open-

Source Software Components

Chujiao Ma†
 Comcast Cable

 Philadelphia, PA, USA
 chujiao_ma@comcast.com

Matthew Bosack
 Comcast Cable

 Philadelphia, PA, USA
 matthew_bosack@comcast.com

Wendy Rothschell
 Comcast Cable

 Philadelphia, PA, USA
 wendy_rothschell@comcast.com

Noopur Davis
 Comcast Cable

 Philadelphia, PA, USA
 noopur_davis@comcast.com

Vaibhav Garg
 Comcast Cable

 Philadelphia, PA, USA

 vaibhav_garg@comcast.com

Introductions

In this article, we propose a targeted open-source bug bounty

initiative that offers OSC users a proactive approach towards

investigating the security of relevant components by

crowdsourcing the discovery of security vulnerabilities to external

security researchers. All without breaking the bank. We illustrate

the process with a case study of bug bounty for JavaScript OSCs

used at Comcast. Overall, we conclude that these bounty programs

are a cost-effective and low effort solution to the hidden security

risk of OSCs.

1. Overview

In 2022 Synopsys found that over 90% of codebases contain open-

source software components (OSCs) [1]. OSCs are crucial to

commercial software developments. However, they also contain

hidden security risks [5]. The security risks of using OSCs were

highlighted by the discovery of the Heartbleed bug in OpenSSL in

2014, which allowed attackers remote access to private keys and

passwords. Approximately 24-55% of popular websites using TLS,

as well as more than one billion Android devices, were exposed to

Heartbleed attacks [2]. Despite the pervasiveness of OpenSSL, the

project had no full-time developers, received just $2000 a year, and

had no policies for handling vulnerabilities [2].

Heartbleed highlighted some of the unique challenges of securing

open-source projects. Maintainers have neither the necessary

resources nor the expertise for security analysis or incident

response. The security of open-source projects is then contingent

on ah-hoc security analysis by third party researchers, who may

focus on more popular projects. Thus, a small number of

vulnerabilities for a project may simply indicate a lack of security

analysis rather than a lack of vulnerabilities.

To address the hidden security risk from OSCs that are used across

the cyber ecosystem, the European Union (EU) launched a bug

bounty initiative as part of the Free and Open-Source Software

Audit (FOSSA) project [3]. In 2018, companies located in EU

invested approximately one billion euros in open-source projects

[4]. This makes evident the dependency of EU companies on open-

source software projects and the importance of their security

guarantees. However, EU’s effort only addresses OSCs that are

broadly popular across the ecosystem. Individual companies may

have additional OSCs used in key products that are not addressed

by FOSSA.

There is thus a need to address the security of OSCs that are popular

within an individual company, but perhaps not across the

ecosystem. With an average of 528 OSCs per codebase as of 2020

[1], an exhaustive security analysis of all OSCs used by a company

may be fiscally challenging and arguably imprudent. The

alternative is to identify areas of concentrated risk, e.g. OSCs with

greater number of dependents within the company. Thus, scope the

analysis to a smaller set of key components [5]. This smaller set of

components can be effectively examined as part of a bug bounty

program for third party OSCs. A well designed bug bounty program

may expose the targeted components to the broader cybersecurity

community leveraging their wide range of expertise. This can

provide a more comprehensive examination than internal teams

who may have different focus and competing priorities.

However, as these components are neither owned nor maintained

by the bounty issuer, the process for setting up a bug bounty

program raises additional questions. For example, how should the

bounty issuers inform or collaborate with the project owners? Who

should be responsible for building a patch? How does the open-

source license inform the bug bounty requirements? In this article,

mailto:chujiao_ma@comcast.com
mailto:matthew_bosack@comcast.com
mailto:wendy_rothschell@comcast.com
mailto:noopur_davis@comcast.com
mailto:vaibhav_garg@comcast.com

Confidential (C)

we answer these questions by outlining a process for setting up a

bug bounty program for third party OSCs. We illustrate how this

process can be operationalized with a case study from Comcast.

2. Background

2.1. Securing Open Source

The security of OSCs can vary widely based on its popularity and

security expertise of the maintainers. Also, the same OSC may be

implemented in different ways in different commercial

applications. These challenges make remediation and assessing

security of the OSCs quite difficult for the general users.

One example is Log4j, an open source logging software used by a

wide range of applications from Minecraft to Apple iCloud and

AWS. The vulnerability in Log4j allows the attacker to remotely

control the targeted server, posing a severe risk to millions of

consumer products, enterprise software and web applications [5]..

However, due to its diverse use, there is no one-size-fits-all solution

to patching it. The fix could require a wholesale system update,

software update or manual removal of vulnerable code [5].

The different approach for fixes based on deployment highlights

one of the differences between securing open-source third party

code and commercial applications. Since the company does not

own the code, it can be difficult to identify the impact and severity

with limited time and cost. Even when a fix is provided by the open

source community, the companies will need to identify how the

vulnerable OSCs are incorporated into the application to see if the

fix can be applied to them and how.

One approach to reduce such issues is to assess the security of an

open source project before it is used in a commercial application.

The standard method is by examining the associated CVEs. The

presence of CVE means that a vulnerability has been disclosed.

However, OSCs that haven’t been through a security analysis or are

not popular enough to be targeted may not have any CVEs despite

lack of security. Another way to assess the health of the OSC is by

using metrics based on the characteristics of the OSC. Open Source

Security Foundation (OSSF) scorecard project scores 1 million

most critical open source projects based on security status and code

characteristics [6]. OSSF also have a criticality score that, given a

project located on Github, will generate a score based on the

activity level [7]. The ‘npm’ package repository also has its own

score for all open-source projects in it based on quality,

maintenance and popularity [8]. The different scoring systems are

all based on different combination of risk indicators or are

platform-specific. For companies with a large repertoire of OSCs

in different languages, the risk indicator information that can be

collected may differ by platform or due to manual entry. A security

analysis is still necessary to ensure there are no hidden risks. Since

open-source projects used may not fall under anyone’s

responsibility, a good way to incentivize security analysis is

through a bug bounty program.

2.2. Open Source Bug Bounties

Bug bounty programs allow companies to enhance their security by

engaging a wider array of security researchers with diverse

expertise [9].

Bug bounty programs are also cost effective. The bounty issuer

only pays for verified exploits in a bug bounty. The issuer can also

set the scope for analysis of different OSCs to focus on the top

security concerns. In fact, the average cost of operating a bug

bounty program for a year may be less than the cost of hiring two

additional software engineers as of 2019 [10]. Research found that

contributors are largely motivated by non-monetary factors, so a

company is still able to derive utility from bug bounties even if they

have a limited budget [11].

Traditional bug bounty programs address first party code. The first

security initiative that includes third party code is Google’s Project

Zero, founded in 2014. The focus of the project are zero-day

vulnerabilities in hardware and software systems, both from and

outside of Google [12]. The first security initiative specifically for

third party open-source code is the software bug bounty by the

European Commission from January of 2019. The European

Commission started paying out bug bounties for any vulnerabilities

found in 14 open-source projects used in European infrastructure

[3]. At the time of writing, it had more than 300 vulnerabilities

reported during first 2 months and over 90k Euro paid. [13]. The

bug bounty has been crucial in discovering a host of bugs within

open-source projects, including a 20 year old bug in PuTTY that

has been fixed [14]. The latest industry-wide effort was Internet

Bug Bounty program in September of 2021 [15]. It focuses on open

source projects within the software supply chain that are commonly

used across the internet, from rails, Django, Nginx to OpenSSL

[16].

In terms of other open-source bug bounties, typically companies

will host them for open-source projects written by their own

developers. However, in 2020, Google collaborated with Cloud-

Native Computing Foundation (CNCF) to launch the Kubernetes

bug bounty program, scoped to ‘core’ Kubernetes. [17]. Google

also launched Vulnerability Reward Program (VRP) for third party

open source projects with payment upfront to encourage the

maintainers to prioritize security work [18]. The latest iteration

includes open source bug bounty Google-released open source

software (Google OSS). The focus are on security flaws that would

significantly impact software supply chain, including

vulnerabilities in Google OSS’s third-party dependencies [19]. The

open source community can also take the matter into their own

hands using one of the open source bug bounty platform such as

IssueHunt [20], PlugBounty [21], Huntr [22], and BountySource

[23].

Confidential (C)

These open source bug bounties and security initiatives focus on

OSCs that are most popularly used across industry, or OSCs that

are popular with the open source community. With the large

amount of OSCs used within a company, there are many that may

be unpopular externally but widely used internally that warrant a

security analysis.

3. Open Source Bug Bounty Design

The existing open source initiatives have been successful so far by

both providing financial resources to the open source community

and identifying hidden vulnerabilities that could have been

exploited. Yet, few companies have set up bug bounty programs for

third party OSCs. This is in part driven by the lack of guidance on

how to set up such a program. If companies would like to secure

third party OSCs used in their applications, they face the challenge

of how to identify OSCs that are high risk to them while

collaborating with the open source community. In this section, we

present a four step approach to the bug bounty process for third

party OSCs that addresses the unique challenges of handling third

party open-source code.

3.1. Pre-Bug Bounty: Tracking

Before planning a bug bounty program, the first task is to take

inventory of the OSCs used within the company. An audit of 1,500

commercial codebases found that 85% of them contained open-

source dependencies more than four years out of date [1]. This

means that while updates and security patches are available, they

are not being applied downstream by consumers. This is driven, in

part, by the difficulty of tracking the use of open-source software

components.

Tracking of OSC usage in first party software can be done with

Software Component analysis (SCA) tools or manual inputs.

Individual OSCs may also have upstream open-source

dependencies.

Short of reverse engineering, customers usually do not have

visibility into the open-source dependencies of third party

proprietary software offerings. Over 70% of vulnerabilities are

found in indirect dependencies. However, 60% of companies

surveyed do not have a good view into the full dependency trees of

their software, so it’s difficult to identify if a newly discovered

vulnerability in OSC affects their code or not [24]. One proposed

solution is to leverage Software Bill of Materials, which provides

an itemized list of all OSCs included in a commercial software

product as well as associated information such as version number

[25].

Thus, key considerations for the company when tracking OSCs are:

• How to take inventory of the OSCs in an automated

fashion with tools to reduce manual entry?

• How far back in the dependency chain should the

inventory focus on tracking?

These decisions should be made and integrated into security

practices within the company regardless of whether it chooses to

approach the security internally or externally. By having a good

idea of the inventory of OSCs used within the company, we will

have a better idea of the focus for the bug bounty initiative.

3.2. Scoping

The second step of bug bounty planning is to set the scope. A

company may use thousands of OSCs in different languages.

However, an analysis of OSCs used by Comcast found that about a

quarter to a third of the risk for each language are concentrated in

the top 100 OSCs [26]. The amount of coverage by the top 100 will

vary depending on the set of OSCs used by each company.

However, by plotting the dependencies for each component it is

possible to determine the area of concentrated risk.

In some cases, it is not feasible to analyze all OSCs used by the

company. In order to ensure the best trade-off between risk covered

and resources spent, it is possible to narrow down the list of targets

by the following criteria:

• Popularity – popular OSCs are more likely to attract the

attention of the open source community for security

analysis while the less popular OSCs are often left

unexamined and potentially vulnerable. Thus, the targets

should be concentrated on OSCs that are widely used

internally but unpopular externally. This can be

determined by a relative popularity risk ranking [26].

• Lines of code – larger code bases are more likely to

contain vulnerabilities since they are often more complex

and requires more effort to analyze or fix.

• Last update – if the OSC was updated recently, it may

be actively maintained while the one updated years ago

may be neglected in terms of security.

• License – depending on the company policy, some may

prefer to focus on OSCs with licenses that don’t require

open sourcing the downstream products.

• Usage – OSCs used by applications that are in production

or for critical operations can have widespread impact and

should be of high importance.

• Owner/maintainer support – if the owner or maintainer

is willing to support the bug bounty with patches or

updates, it will greatly help with the remediation process.

• Existing initiatives – if the OSC has been through

another security initiative already, it would be of a lower

priority than one that has never been analyzed.

3.3. Set Up the Bug Bounty Program

Setting up a bug bounty program for third party OSCs would

require setting up a bug bounty process internally as well as setting

up a parallel process for the maintainer.

Confidential (C)

For the internal process of the company, the components of the bug

bounty program include:

• Setting the scope or list of targets of the program.

• Defining the scope of the vulnerabilities accepted. A

company may choose to focus on server side

vulnerabilities rather than client side vulnerabilities, on

code vulnerabilities rather than usage, or on a

predetermined class of attacks, e.g. OWASP Top 10.

• Deciding on a bug bounty platform. The company can

utilize one of the established platforms for hosting

security analysis such as HackerOne [27], Intigriti [28],

Bugcrowd [29], and OpenBugBounty [30]. There are

also new platforms in recent years focusing specifically

on open source bug bounties such as Huntr [22],

BountySource [23] and PlugBounty [21].

• Setting the budget and bounty amount. This may differ

depending on the cost of the platform, number of targets

chosen, and severity level or type of vulnerabilities

accepted. To attract the most amount of researchers, it is

important for the bounty amount to be competitive.

• Checking if there are any legal or compliance issues with

license or contribution of open source code.

• Drafting up a bounty brief. The bounty brief outlines the

company’s expectation and program details such as the

targets, goals, scope, rewards and timeline. It ensures all

stakeholders are on the same page before the program

details are posted and bug bounty started.

The support from and collaboration with the maintainers is

important since disclosure and contribution of the patch may be

needed. The outreach to the maintainers should include:

• Gaining support from the maintainers to launch the bug

bounty program. The maintainers should be kept in

communication throughout the process from initial

report, validation, and severity rank to remediation.

• Checking if the maintainers are willing to provide

patching support. It is important to collaborate with the

owner or maintainers to make sure they agree with the

remediation plan, as they may need to come up with their

own fixes or incorporating submitted fixes back to the

main branch.

• Asking the maintainers to lock the OSC at current version

with a security policy posted on it at the start of the bug

bounty.

Once the logistics of the bug bounty program has been worked out,

the program is ready to be opened to security researchers.

3.4. Verifying Vulnerabilities

Once the bug bounty program is live and vulnerability reports

submitted, the next step is to verify the relevance of the

vulnerability. Unlike commercial applications, the same OSC can

be used in multiple commercial applications for multiple purposes.

The issuers of the bug bounty can work with the contributors to

ensure the validity of the test cases for verification. This will allow

the internal teams to better understand the impact of the

vulnerability within the company since the configuration and set up

may be different from the testing environment. Once verified, the

issuer and contributor can sometimes negotiate a reasonable

window of time to allow for remediation before disclosing the

vulnerabilities.

Disclosure doesn’t always occur, and the disclosure deadlines vary

among companies, researchers and organizations. One common

recommendation is a 90 days deadline before going public, with a

45 days deadline for vulnerabilities reported to CERT Coordination

Center and a 7 day requirement for critical security issues [31]. Due

to the public nature of the code, attackers may take advantage of

newly discovered vulnerabilities as soon as they are disclosed. To

ensure a quick and smooth remediation process, the companies

should have a plan in place that allows them to:

• Identify impact such as whether it is affecting sensitive

applications and how widespread is the usage of the OSC.

• Identify the severity such as by referencing CVE scores

or how difficult is it to exploit the vulnerability based on

how the OSCs are used within different applications.

This knowledge allows them to prioritize which assets to secure

first if the OSCs are widespread among their applications, and what

remediation strategy to pursue.

3.5. Remediation

How to remediate the risk depends on the nature of the exploit and

the type of license used for the OSCs. If the new exploit is

leveraging an existing vulnerability where the patch might already

be available, updating the OSCs used in the application may be

sufficient. The vulnerability may also be remediated by a security

measure or compensation control already in place, such as

tightening the access control.

If the exploit is based on a new vulnerability, companies can check

for initiatives in creating a patch within the open-source

community. While disclosure of vulnerabilities in open-source

projects gave attackers opportunities to exploit them, it also allows

other members of open source community to contribute to a patch.

When using patches from open-source community, internal teams

should perform an analysis on their specific application before

implementation. This prevents the update from introducing new

vulnerabilities or negatively impact the operations of the

application.

If a patch isn’t available, then the company will need to create a

patch with the internal team in accordance with the company policy

and open source licenses. The licenses typically fall into 2

categories: copyleft and permissive. If the developer uses a OSC

with copyleft license, then they need to make their product open

Confidential (C)

source, too. Permissive licenses, however, do not require

downstream products to be open source [32]. Since a patch for

copyleft license will be open sourced, the internal team need to

make sure there’s nothing proprietary in the patch. If the patch is

for permissive license, then the internal team can choose to use

proprietary code and not open sourcing or disclose the patch.

4. Open Source Bug Bounty Case Study

Section 3 described the process of setting up a bug bounty program

for third party OSCs. Based on this process, we set up a bug bounty

for JavaScript OSCs on the Bugcrowd platform [29].

1. Set the scope – the list of top 100 OSCs was ranked

based on the relative popularity first. Then, OSCs with

less than 100 lines of code and have been updated within

the last year were eliminated. Lastly, the internal team

reached out to the maintainers to ask for their

collaboration. The OSC will not be chosen as a target if

the owner or maintainer does not want to be involved.

Based on these factors, the list of targets was narrowed

down to 4 OSCs for the pilot program.

2. Set up the bounty – once the plans and logistics are in

place, we then worked with Bugcrowd on the set up for

the bug bounty on the 4 OSCs [33]. The vulnerabilities

submitted will be categorized and paid according to the

level of severity: critical, high, medium, and low. The

bug bounty was launched in two phases. It was first

launched privately on the platform with invites sent to

200 researchers. After three months, it was opened to the

public.

3. Verification – to validate submissions, the internal team

checked against known open issues for duplicates. The

owners or maintainers had the final say on whether or not

a submission would be classified as a vulnerability, and

should be accepted, rejected, or deemed “won’t fix”.

4. Remediation – remediation could be done by the

contributor, internal teams or the maintainer. If none of

the options were chosen, then we would investigate the

potential of notifying a subset of the community for a

potential fix. There was valid concern over fix

acceptance testing and making merges to otherwise

stable repositories. Fixes needed to be validated to ensure

that they were not introducing new vulnerabilities into

the code. We continued to work with the OSC owners or

maintainers on a solution and over final discretion on

whether or not to merge any fixes.

All the submissions for this bug bounty program were made in the

first 6 months, and the analysis of the 4 OSCs covers 1.1% of risk

in total for JavaScript OSCs used within Comcast. Aside from the

cost of the platform, $1,500 was paid out for the 3 verified

submissions.

5. Conclusion

Using third party open source projects in commercial application

can reduce the total cost of ownership and vendor lock-in [4].

However, it also puts the responsibility of securing them onto the

users. By taking a proactive approach to security analysis of OSCs,

the company can mitigate the hidden risks before they are realized.

Thus minimize the risk from zero day attacks due to undisclosed

vulnerabilities. A bug bounty program is a cost effective way to

leverage the security research community when individual product

teams or maintainers may not have the bandwidth or expertise.

In this article, we provided the bug bounty process for third party

OSCs and an example case study on a selected group of JavaScript

OSCs. Our results indicated that the open source community is

generally very responsive. The list of top OSCs used by the

company is unlikely to change drastically from year to year, so the

scope of hidden risk will decrease as more bug bounties and

security analysis are conducted. Thus, open source bug bounty is

an effective way to uncover hidden risk and to give back to the open

source community.

REFERENCES

[1] "2021 Open Source Security and Risk Analysis Report,"

Synopsys, 2021.

[2] J. Walden, "The impact of a major security event on an open

source project: The case of OpenSSL," in Proceedings of the

17th International Conference on Mining Software

Repositories, 2020.

[3] "Europe to Fund Open Source Software Bug Bounty

Programme," TechMonitor, 2019.

[4] K. Blind, S. Pätsch, S. Muto, et al., "The Impact of Open

Source Software and Hardware on Technological

Independence, Competitiveness and Innovation in the EU

Economy," European Commission, 2021.

[5] S. Torres-Arias, "What is Log4j? A cybersecurity expert

explains the latest internet vulnerability, how bad it is and

what’s at stake," The Conversation, 22 December 2021.

[Online]. Available: https://theconversation.com/what-is-

log4j-a-cybersecurity-expert-explains-the-latest-internet-

vulnerability-how-bad-it-is-and-whats-at-stake-173896.

[6] "Security Scorecards - Security health metrics for Open

Source," OSSF, 2022. [Online]. Available:

https://github.com/ossf/scorecard.

[7] "Criticality Score," OSSF, 2021. [Online]. Available:

https://github.com/ossf/criticality_score.

[8] "npms - About," [Online]. Available: https://npms.io/about .

[9] A. Sivagnanam, S. Atefi, A. Ayman, J. Grossklags, and A.

Laszka, "On the Benefits of Bug Bounty Programs: A Study

of Chromium Vulnerabilities," in Workshop on the

Economics of Information Security (WEIS), 2021.

Confidential (C)

[10

]

T. Walshe and A. Simpson, "An Empirical Study of Bug

Bounty Programs," in IEEE 2nd International Workshop on

Intelligent Bug Fixing , 2020.

[11

]

K. Sridhar and M. Ng, "Hacking for good: Leveraging

HackerOne data to develop an economic model of Bug

Bounties," Journal of Cybersecurity, vol. 7, no. 1, 2021.

[12

]

"Project Zero," Google, 2014. [Online]. Available:

https://googleprojectzero.blogspot.com/p/about-project-

zero.html.

[13

]

"EU-FOSSA Bug Bounties in Full Force," European

Commission, 2019. [Online]. Available:

https://ec.europa.eu/info/news/eu-fossa-bug-bounties-full-

force-2019-apr-05_en.

[14

]

"20-year-old open source bug found and fixed under the EU-

FOSSA 2 project," European Commission, 2019. [Online].

Available: https://ec.europa.eu/info/news/20-year-old-open-

source-bug-found-and-fixed-under-eu-fossa-2-project-2019-

dec-11_en.

[15

]

"The Internet Bug Bounty," HackerOne, 2021. [Online].

Available: https://www.hackerone.com/internet-bug-bounty.

[16

]

"Internet Bug Bounty Program," HackerOne, [Online].

Available: https://hackerone.com/ibb?type=team.

[17

]

"Securing open-source: how Google supports the new

Kubernetes bug bounty," Google Security Blog, 2020.

[Online]. Available:

https://security.googleblog.com/2020/01/securing-open-

source-how-google.html.

[18

]

J. Keller, "Announcing updates to our Patch Rewards

program in 2020," Google Security Blog, 2019. [Online].

Available:

https://security.googleblog.com/2019/12/announcing-

updates-to-our-patch-rewards.html.

[19

]

S. Gatlan, "Announcing Google’s Open Source Software

Vulnerability Rewards Program," 30 August 2022. [Online].

Available:

https://security.googleblog.com/2023/08/Announcing-

Googles-Open-Source-Software-Vulnerability-Rewards-

Program%20.html.

[20

]

"IssueHunt," [Online]. Available: https://issuehunt.io/.

[21

]

"Plugbounty," [Online]. Available:

https://www.plugbounty.com/.

[22

]

"Huntr," [Online]. Available: https://huntr.dev/.

[23

]

"BountySource," [Online]. Available:

https://bountysource.com/.

[24

]

Snyk, "State of Open Source Security Report," 2020.

[25

]

"Software Bill of Materials," [Online]. Available:

https://www.ntia.gov/SBOM.

[26

]

C. Ma and V. Garg, "Hidden Risk of Unpopularity in Open

Source," in Society of Cable Telecommunications Engineers,

2021.

[27

]

"HackerOne," [Online]. Available:

https://www.hackerone.com/.

[28

]

"Intigriti," [Online]. Available: https://www.intigriti.com/.

[29

]

"Bugcrowd," [Online]. Available:

https://www.bugcrowd.com/.

[30

]

"Open Bug Bounty," [Online]. Available:

https://www.openbugbounty.org/.

[31

]

K. T. Hanna, "Vulnerability Disclosure," 2021. [Online].

Available:

https://www.techtarget.com/searchsecurity/definition/vulner

ability-disclosure.

[32

]

A. Goldstein, "Open Source Licenses Explained,"

WhiteSource, 2021. [Online]. Available:

https://www.whitesourcesoftware.com/resources/blog/open-

source-licenses-explained/.

[33

]

"Xfinity Opensource," Comcast, [Online]. Available:

https://bugcrowd.com/xfinity-opensource.

