
  

conference

proceedings

Proceedings of the 16th U
SEN

IX Sym
posium

 on Operating System
s Design and Im

plem
entation (O

SDI ’22)     Carlsbad, CA
, USA 

July 11–13, 2022

Sponsored by 

In cooperation with ACM SIGOPS
ISBN 978-1-939133-28-1

16th USENIX Symposium on 
Operating Systems Design and 
Implementation (OSDI ’22)

Carlsbad, CA, USA
July 11–13, 2022



USENIX Supporters

USENIX Patrons
Amazon • Ethyca • Google • Meta 
Microsoft • NetApp • Salesforce

USENIX Benefactors
AuriStor • Bloomberg • Discernible • Goldman Sachs • IBM 

Shopify • Thinkst Canary • Transcend • Two Sigma

USENIX Partners
Blameless • Lightstep • Top10VPN

Open Access Supporter
Google

Open Access Publishing Partner
PeerJ

OSDI ’22 Sponsors

Open Access Sponsor

Platinum Sponsor

Bronze Sponsors

Silver Sponsors

Gold Sponsor



USENIX Association

July 11–13, 2022
Carlsbad, CA, USA

Proceedings of the 
16th USENIX Symposium on Operating Systems 

Design and Implementation



© 2022 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s 
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research 
purposes.  Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings. 
USENIX  acknowledges all trademarks herein.

ISBN 978-1-939133-28-1



Program Co-Chairs
Marcos K. Aguilera, VMware Research
Hakim Weatherspoon, Cornell University and Exotanium, Inc.

Program Committee
Atul Adya, Databricks
Nitin Agrawal, ThoughtSpot
Marcos K. Aguilera, VMware Research
Deniz Altinbüken, Google
Behnaz Arzani, Microsoft Research
Mahesh Balakrishnan, Facebook
Oana Balmau, McGill University
Andrew Baumann, Microsoft Research
Adam Belay, MIT CSAIL
Ranjita Bhagwan, Microsoft Research
Annette Bieniusa, Technische Universität Kaiserslautern
Ken Birman, Cornell University
Rodrigo Bruno, INESC-ID and Instituto Superior Técnico, 

University of Lisbon
Irina Calciu, Graft
George Candea, EPFL
Marco Canini, KAUST
Miguel Castro, Microsoft
Rong Chen, Shanghai Jiao Tong University
Byung-Gon Chun, Seoul National University and FriendliAI
Asaf Cidon, Columbia University
Landon Cox, Microsoft Research
Natacha Crooks, University of California, Berkeley
Murat Demirbas, Amazon Web Services
Yufei Ding, University of California, Santa Barbara
Roxana Geambasu, Columbia University
Ashvin Goel, University of Toronto
Haryadi S. Gunawi, University of Chicago
Indranil Gupta, University of Illinois at Urbana–Champaign
Andreas Haeberlen, University of Pennsylvania
Wenjun Hu, Yale University
Rüdiger Kapitza, Technische Universität Braunschweig
Manos Kapritsos, University of Michigan
Baris Kasikci, University of Michigan
Ana Klimovic, ETH Zurich
Eddie Kohler, Harvard University
Kevin Kornegay, Morgan State University
Dejan Kostić, KTH Royal Institute of Technology
Philip Levis, Stanford University
Jialin Li, National University of Singapore
Jonathan Mace, Max Planck Institute for Software Systems 

(MPI-SWS)
Ratul Mahajan, University of Washington and Intentionet
Petros Maniatis, Google Research
Z. Morley Mao, University of Michigan
Kathryn S McKinley, Google
Neha Narula, Massachusetts Institute of Technology
Ravi Netravali, Princeton University
Jason Nieh, Columbia University

Cristina Nita-Rotaru, Northeastern University
Shadi Noghabi, Microsoft Research
Sam H. Noh, UNIST (Ulsan National Institute of Science and 

Technology)
Aurojit Panda, NYU
Amar Phanishayee, Microsoft Research
Peter Pietzuch, Imperial College London
Luis Rodrigues, INESC-ID and Instituto Superior Técnico, 

University of Lisbon
Christopher Rossbach, The University of Texas at Austin and 

Katana Graph
Malte Schwarzkopf, Brown University
Marco Serafini, University of Massachusetts Amherst
Marc Shapiro, Inria and UPMC-LIP6
Ji-Yong Shin, Northeastern University
Liuba Shrira, Brandeis University
Vishal Shrivastav, Purdue University
Alex C. Snoeren, University of California, San Diego
Robert Soulé, Yale University
Phillip Stanley-Marbell, University of Cambridge
Swami Sundararaman, Pyxeda AI
Adriana Szekeres, VMware Research
Amy Tai, VMware Research
Doug Terry, Amazon Web Services
Dan Tsafrir, Technion—Israel Institute of Technology and 

VMware Research
Ymir Vigfusson, Emory University
Rashmi Vinayak, Carnegie Mellon University
Hakim Weatherspoon, Cornell University and Exotanium, Inc.
Bernard Wong, University of Waterloo
Tim Wood, George Washington University
Gala Yadgar, Technion—Israel Institute of Technology
Ding Yuan, University of Toronto
Gerd Zellweger, VMware Research
Yiying Zhang, University of California, San Diego

Poster Session Co-Chairs 
Natacha Crooks, University of California, Berkeley
Adriana Szekeres, VMware Research

Steering Committee
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Angela Demke Brown, University of Toronto
Jason Flinn, Facebook
Casey Henderson, USENIX Association
Jon Howell, VMware Research
Kimberly Keeton
Hank Levy, University of Washington
Jay Lorch, Microsoft Research
Shan Lu, University of Chicago
James Mickens, Harvard University
Timothy Roscoe, ETH Zurich
Margo Seltzer, University of British Columbia
Geoff Voelker, University of California, San Diego

Anirudh Badam
Can Cebeci
Ranveer Chandra
Adrian Chiu
Mosharaf Chowdhury

Rishikesh Devsot
Ittay Eyal
Chris Hawblitzel
Jon Howell
Kevin Hsieh

David Irwin
Michael Isard
Rishabh Iyer
Ruibin Li
Yatin A. Manerkar

Beomseok Nam
Kexin Pei
Solal Pirelli
Laurent Prosperi
Shaz Qadeer

Xiang Ren
Adrian Sampson
Foteini Strati
Caroline Trippel
Rui Wang

Haiqi Xu
Lei Yan

External Reviewers

Conference Organizers



Message from the OSDI ’22 Program Co-Chairs 

Dear colleagues,
Welcome to the 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’22).
This year OSDI ’22 is co-located with the 2022 USENIX Annual Technical Conference (ATC ’22). We are holding the joint 
conference in a hybrid format, with the option of virtual or physical participation. We are excited to return to a physical event, 
in Carlsbad, California, after a two-year hiatus. Due to Covid, the previous two instances of OSDI (2020 and 2021) were held 
only virtually, and we have made the best of it. That has made OSDI more accessible but less interactive. This year, with the 
hybrid format, we hope to get the best of both worlds. We have encouraged presenters to attend in person if they can, while 
attendants have the option of joining in person or virtually.
OSDI ’22 received 253 submissions and accepted 49 of them for a 19.4% acceptance rate. As in the last OSDI, we did not 
allow the program chairs to submit papers. Due to the historically high number of submissions, we recruited a large PC of 
76 members in addition to the two chairs. PC members included academics, industrial researchers, and industrial practitio-
ners. We also recruited a few additional people to serve as an external review committee to provide additional coverage of 
expertise if necessary. We are grateful to all the committee members for their hard work that was essential to the success of 
OSDI ’22.
The program committee reviewed the submissions in two rounds. In the first round, papers received three reviews. About 
29% of papers were then rejected based on these reviews, while the others advanced to the second round. In the second 
round, papers received at least two additional reviews and, in some cases, we solicited additional input from expert external 
reviewers. We discussed these papers online and reached a decision for another 52% of the submitted papers. The remaining 
papers were discussed and decided over a three-day online PC meeting. Each of the accepted papers was shepherded by a PC 
member to help the authors address the reviewers’ comments in the camera-ready version. In total, we produced over 1130 
reviews and 2900 online comments, representing an enormous amount of work. We estimate the human cost of evaluating the 
papers to be above $1M based on an average of 4.5 hours per review (to read the paper, write the report, and discuss it in the 
group) and a cost of $200/hour per reviewer. This is a significant price to the community and as such we must optimize it go-
ing forward while maintaining the high quality that OSDI is known for. Toward that goal, OSDI ’22 experimented with some 
approaches that make better use of the collective effort.
In particular, OSDI ’22 introduced a change to the reviewing process: the option to revise and resubmit. This option was 
given to a small number of papers that were rejected but that reviewers felt would have been accepted if authors could address 
a list of objective issues. This list was provided to authors so they can work on a revision of the paper. The revision will then 
be re-evaluated by the same reviewers if possible, for publication in OSDI next year, OSDI ’23, based on how well the authors 
address the issues on the list. This year, only six papers were given the option to revise-and-resubmit but this number should 
increase in future years if OSDI continues with this practice. All six papers have decided to resubmit. These revise-and-
resubmit papers are now under evaluation.
After finalizing the program, we proceeded to decide the Jay Lepreau Best Paper Awards. We asked all PC members to nom-
inate papers. We next created a short list based on the nominations, the reviews, and the paper themselves. We then selected 
a small set of PC members that were not conflicting with any of the papers in the short list, and we asked them to score each 
paper. Based on the nominations, reviews, and scores, the best papers were selected.
OSDI ’22 had an artifact-evaluation process organized by three co-chairs: Anuj Kalia, Neeraja J. Yadwadkar, and Chengyu 
Zhang. Of the 49 papers accepted to OSDI ’22, 35 had artifacts submitted by their authors. Of those 33 earned the “Avail-
able” badge, 31 artifacts earned the “Functional” badge and 27 earned the most challenging “Results Reproduced” badge. For 
more details, see the Message from the OSDI ’22 Artifact Evaluation Committee Co-Chairs.
OSDI ’22 had a poster submission process organized by Natacha Crooks and Adriana Szekeres. Submissions were open to 
all, and authors of papers accepted to OSDI ’22 were encouraged to submit a poster. We accepted 52 posters. For more de-
tails, see the Message from the OSDI ’22 Poster Co-Chairs.
As PC co-chairs, we rely on many people to make OSDI ’22 a success, to whom we are grateful. We thank the authors for 
choosing to submit their work to OSDI. We thank the program committee and external reviewers for their arduous work in re-
viewing and discussing the submissions. We thank the co-chairs and all members of the Artifact Evaluation Committee, who 
conducted thorough evaluations. We also thank the co-chairs of the poster committee, who identified high-quality posters 
for the conference. We thank Jiri Schindler and Noa Zilberman, the program co-chairs of ATC ’22, for coordinating with us 
efficiently, productively, and enjoyably. We thank the USENIX staff, who have been fundamental in organizing OSDI ’22 as 
we transition to a hybrid format. The logistics of the online PC meeting were facilitated by PhD student Daniel Amir, whose 
assistance we greatly appreciate. Finally, OSDI wouldn’t be what it is without our attendees. Thank you for listening to our 
speakers, asking challenging and insightful questions, and sharing your ideas with others.
We hope you will find OSDI ’22 interesting, educational, and inspiring!
Marcos K. Aguilera, VMware 
Hakim Weatherspoon, Cornell University and Exotanium, Inc. 
OSDI ’22 Program Co-Chairs



Message from the OSDI ’22 
Artifact Evaluation Committee Co-Chairs

We are happy to report about the OSDI ’22 artifact evaluation process. This is the third time that OSDI conducted such a pro-
cess and we hope to keep improving it so that artifact evaluation will become more common in our community’s conferences. 
This year, the OSDI ’22 artifact evaluation process is combined with USENIX ATC ’22. The combined artifact evaluation 
committee consists of 118 artifact reviewers from academia and industry. 
Process 
We continued to use the three-badge approach (vs. the single-badge approach) from OSDI ’21 evaluation and these three 
badges include: 

• Artifacts Available: To earn this badge, the AEC must judge that the artifacts associated with the paper have been 
made available for retrieval, permanently and publicly. 

• Artifacts Functional: To earn this badge, the AEC must judge that the artifacts conform to the expectations set by the 
paper in terms of functionality, usability, and relevance. 

• Results Reproduced: To earn this badge, the AEC must judge that they can use the submitted artifacts to obtain the 
main results presented in the paper. 

Evaluation 
In the evaluation process, each artifact was evaluated by 3 reviewers. The evaluation process had two key phases: the kick-
the-tires phase and the in-depth evaluation phase. During the kick-the-tires phase, reviewers made a quick first pass over all 
assignments to identify and report obvious problems and communicated them with the authors. After the kick-the-tires phase, 
reviewers evaluated each assignment thoroughly and wrote detailed reviews. Finally, reviewers coordinated and communi-
cated with fellow AEC members and decided which badges should be awarded to each artifact. 
Results 
OSDI ’22 accepted 49 papers and 35 papers participated in the AE. Of the 35 submitted artifacts: 

• 33 artifacts received the Artifacts Available badge (94%).
• 31 artifacts received the Artifacts Functional badge (88%).
• 27 artifacts received the Results Reproduced badge (77%). 

Key Takeaways 
Our experience shows that after the kick-the-tires response period, reviewers can still encounter technical problems that ob-
struct their evaluation. We suggest future AEC chairs extend the kick-the-tires response period and encourage more interac-
tion between reviewers and authors during the period. 
Finally, we deeply thank the authors and the AEC committee for all their efforts in making the OSDI ’22 artifact evaluation 
possible. 
Anuj Kalia, Microsoft 
Neeraja J. Yadwadkar, University of Texas at Austin 
Chengyu Zhang, ETH Zurich 
OSDI ’22 Artifact Evaluation Committee Co-chairs

Message from the OSDI ’22 
Poster-Session Co-Chairs

We are happy to report about the OSDI ’22 poster session. We accepted a total of 52 posters. 28 of these posters correspond 
to accepted OSDI papers.  The remaining 24 were independent submissions. We reviewed these posters for conference fit 
and clarity of problem exposition and motivation. We intentionally encouraged posters describing early work, as well as more 
mature projects. 
We look forward to lively and interesting discussions at the OSDI ’22 poster session.
Natacha Crooks, UC Berkeley 
Adriana Szekeres, VMware Research 
OSDI’22 Poster Co-Chairs



16th USENIX Symposium on Operating Systems  
Design and Implementation (OSDI ’22)

July 11–13, 2022

Carlsbad, CA, USA

Monday, July 11
Distributed Storage and Far Memory
Owl: Scale and Flexibility in Distribution of Hot Content  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
Jason Flinn, Xianzheng Dou, Arushi Aggarwal, Alex Boyko, Francois Richard, Eric Sun, Wendy Tobagus, Nick Wolchko, 
and Fang Zhou, Meta

BlockFlex: Enabling Storage Harvesting with Software-Defined Flash in Modern Cloud Platforms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .17
Benjamin Reidys and Jinghan Sun, University of Illinois at Urbana-Champaign; Anirudh Badam and Shadi Noghabi, 
Microsoft Research; Jian Huang, University of Illinois at Urbana-Champaign

MemLiner: Lining up Tracing and Application for a Far-Memory-Friendly Runtime  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson, and Christian Navasca, UCLA;  
Shan Lu, University of Chicago; Guoqing Harry Xu, UCLA

Carbink: Fault-Tolerant Far Memory   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
Yang Zhou, Harvard University; Hassan M. G. Wassel, Google; Sihang Liu, University of Virginia; Jiaqi Gao and  
James Mickens, Harvard University; Minlan Yu, Harvard University and Google; Chris Kennelly, Paul Turner, and  
David E. Culler, Google; Henry M. Levy, University of Washington and Google; Amin Vahdat, Google

Bugs
Metastable Failures in the Wild   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
Lexiang Huang, The Pennsylvania State University and Twitter; Matthew Magnusson and Abishek Bangalore Muralikrishna, 
University of New Hampshire; Salman Estyak, The Pennsylvania State University; Rebecca Isaacs, Twitter; Abutalib 
Aghayev and Timothy Zhu, The Pennsylvania State University; Aleksey Charapko, University of New Hampshire

Demystifying and Checking Silent Semantic Violations in Large Distributed Systems   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Chang Lou, Yuzhuo Jing, and Peng Huang, Johns Hopkins University

Resin: A Holistic Service for Dealing with Memory Leaks in Production Cloud Infrastructure   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109
Chang Lou, Johns Hopkins University; Cong Chen, Microsoft Azure; Peng Huang, Johns Hopkins University;  
Yingnong Dang, Microsoft Azure; Si Qin, Microsoft Research; Xinsheng Yang, Meta; Xukun Li, Microsoft Azure; 
Qingwei Lin, Microsoft Research; Murali Chintalapati, Microsoft Azure

Cancellation in Systems: An Empirical Study of Task Cancellation Patterns and Failures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Utsav Sethi and Haochen Pan, University of Chicago; Shan Lu, University of Chicago and Microsoft;  
Madanlal Musuvathi and Suman Nath, Microsoft Research

Automatic Reliability Testing For Cluster Management Controllers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
Xudong Sun, Wenqing Luo, and Jiawei Tyler Gu, University of Illinois at Urbana-Champaign; Aishwarya Ganesan,  
Ramnatthan Alagappan, Michael Gasch, and Lalith Suresh, VMware; Tianyin Xu, University of Illinois at 
Urbana-Champaign

Persistent Memory
ListDB: Union of Write-Ahead Logs and Persistent SkipLists for Incremental Checkpointing  
on Persistent Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .161
Wonbae Kim, UNIST; Chanyeol Park, Sungkyunkwan University and Naver; Dongui Kim, Sungkyunkwan University 
and Line; Hyeongjun Park, Sungkyunkwan University; Young-ri Choi, UNIST; Alan Sussman, University of Maryland, 
College Park; Beomseok Nam, Sungkyunkwan University

Odinfs: Scaling PM Performance with Opportunistic Delegation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .179
Diyu Zhou, Yuchen Qian, Vishal Gupta, and Zhifei Yang, EPFL; Changwoo Min, Virginia Tech; Sanidhya Kashyap, EPFL

duRinn: Adversarial Memory and Thread Interleaving for Detecting Durable Linearizability Bugs   .  .  .  .  .  .  .  .  .  .  .  . 195
Xinwei Fu, Virginia Tech; Dongyoon Lee, Stony Brook University; Changwoo Min, Virginia Tech



Machine Learning 1
SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213
Ningxin Zheng, Microsoft Research; Bin Lin, Microsoft Research and Tsinghua University; Quanlu Zhang, Lingxiao Ma, 
Yuqing Yang, Fan Yang, Yang Wang, Mao Yang, and Lidong Zhou, Microsoft Research

RolleR: Fast and Efficient Tensor Compilation for Deep Learning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233
Hongyu Zhu, University of Toronto and Microsoft Research; Ruofan Wu, Renmin University of China and Microsoft 
Research; Yijia Diao, Shanghai Jiao Tong University and Microsoft Research; Shanbin Ke, UCSD and Microsoft 
Research; Haoyu Li, Columbia University and Microsoft Research; Chen Zhang, Tsinghua University and Microsoft 
Research; Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, and Lidong Zhou, Microsoft Research; 
Asaf Cidon, Columbia University; Gennady Pekhimenko, University of Toronto

Walle: An End-to-End, General-Purpose, and Large-Scale Production System for Device-Cloud Collaborative  
Machine Learning .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249
Chengfei Lv, Zhejiang University & Alibaba Group; Chaoyue Niu, Shanghai Jiao Tong University & Alibaba Group; 
Renjie Gu, Xiaotang Jiang, Zhaode Wang, Bin Liu, Ziqi Wu, Qiulin Yao, Congyu Huang, Panos Huang, Tao Hudyang, 
Hui Shu, Jinde Song, Bin Zou, Peng Lan, and Guohuan Xu, Alibaba Group; Fei Wu, Zhejiang University; Shaojie Tang, 
University of Texas at Dallas; Fan Wu and Guihai Chen, Shanghai Jiao Tong University

Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations  
and Parallelization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 267
Colin Unger, Stanford University; Zhihao Jia, Carnegie Mellon University and Meta; Wei Wu, Los Alamos National 
Laboratory and NVIDIA; Sina Lin, Microsoft; Mandeep Baines and Carlos Efrain Quintero Narvaez, Meta;  
Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, and Jamaludin Mohd-Yusof, Los Alamos National Laboratory;  
Xi Luo, SLAC National Accelerator Laboratory; Dheevatsa Mudigere, Jongsoo Park, and Misha Smelyanskiy, Meta;  
Alex Aiken, Stanford University

Tuesday, July 12
Potpourri
Trinity: High-Performance Mobile Emulation through Graphics Projection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 285
Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, and Yunhao Liu, Tsinghua University; Feng Qian, University of Minnesota; 
Liangyi Gong, CNIC, CAS; Tianyin Xu, UIUC

ORion and the Three Rights: Sizing, Bundling, and Prewarming for Serverless DAGs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 303
Ashraf Mahgoub and Edgardo Barsallo Yi, Purdue University; Karthick Shankar, Carnegie Mellon University;  
Sameh Elnikety, Microsoft Research; Somali Chaterji and Saurabh Bagchi, Purdue University

Occualizer: Optimistic Concurrent Search Trees From Sequential Code  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 321
Tomer Shanny and Adam Morrison, Tel Aviv University

Immortal Threads: Multithreaded Event-driven Intermittent Computing on Ultra-Low-Power Microcontrollers  . 339
Eren Yıldız, Ege University; Lijun Chen and Kasim Sinan Yıldırım, University of Trento

Debugging the OmniTable Way .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 357
Andrew Quinn, UC Santa Cruz; Jason Flinn, Meta; Michael Cafarella, MIT; Baris Kasikci, University of Michigan

Storage
XRP: In-Kernel Storage Functions with eBPF  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 375
Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan Mesterhazy, Michael Makris, and  
Junfeng Yang, Columbia University; Amy Tai, Google; Ryan Stutsman, University of Utah; Asaf Cidon, Columbia University

TriCache: A User-Transparent Block Cache Enabling High-Performance Out-of-Core Processing  
with In-Memory Programs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 395
Guanyu Feng and Huanqi Cao, Tsinghua University; Xiaowei Zhu, Ant Group; Bowen Yu, Yuanwei Wang, Zixuan Ma, 
Shengqi Chen, and Wenguang Chen, Tsinghua University

Tiger: Disk-Adaptive Redundancy without Placement Restrictions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 413
Saurabh Kadekodi, Google; Francisco Maturana and Sanjith Athlur, Carnegie Mellon University; Arif Merchant, Google; 
K. V. Rashmi and Gregory R. Ganger, Carnegie Mellon University

zIO: Accelerating IO-Intensive Applications with Transparent Zero-Copy IO  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 431
Timothy Stamler, Deukyeon Hwang, and Amanda Raybuck, UT Austin; Wei Zhang, Microsoft;  
Simon Peter, University of Washington



Formal Verification
Verifying the DaisyNFS concurrent and crash-safe file system with sequential reasoning   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 447
Tej Chajed, MIT CSAIL; Joseph Tassarotti, Boston College; Mark Theng, M. Frans Kaashoek, and Nickolai Zeldovich, 
MIT CSAIL

Design and Verification of the Arm Confidential Compute Architecture   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 465
Xupeng Li and Xuheng Li, Columbia University; Christoffer Dall, Arm Ltd; Ronghui Gu and Jason Nieh, Columbia University; 
Yousuf Sait and Gareth Stockwell, Arm Ltd

DuoAI: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 485
Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh, Columbia University

Verifying Hardware Security Modules with Information-Preserving Refinement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 503
Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich, MIT CSAIL

Machine Learning 2
ORca: A Distributed Serving System for Transformer-Based Generative Models   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 521
Gyeong-In Yu and Joo Seong Jeong, Seoul National University; Geon-Woo Kim, FriendliAI and Seoul National 
University; Soojeong Kim, FriendliAI; Byung-Gon Chun, FriendliAI and Seoul National University

Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 539
Mingcong Han, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Shanghai AI 
Laboratory; Hanze Zhang, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; MoE 
Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China; Rong Chen, Institute of Parallel 
and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Shanghai AI Laboratory; Haibo Chen, Institute of 
Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering Research Center for Domain-
specific Operating Systems, Ministry of Education, China

Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 559
Lianmin Zheng, Zhuohan Li, and Hao Zhang, UC Berkeley; Yonghao Zhuang, Shanghai Jiao Tong University; Zhifeng Chen 
and Yanping Huang, Google; Yida Wang, Amazon Web Services; Yuanzhong Xu, Google; Danyang Zhuo, Duke University; 
Eric P. Xing, MBZUAI and Carnegie Mellon University; Joseph E. Gonzalez and Ion Stoica, UC Berkeley

Looking Beyond GPUs for DNN Scheduling on Multi-Tenant Clusters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 579
Jayashree Mohan, Amar Phanishayee, and Janardhan Kulkarni, Microsoft Research; Vijay Chidambaram, The University 
of Texas at Austin and VMware Research

Wednesday, July 13
Isolation and OS Services
CAP-VMs: Capability-Based Isolation and Sharing in the Cloud  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 597
Vasily A. Sartakov and Lluís Vilanova, Imperial College London; David Eyers, University of Otago; Takahiro Shinagawa, 
The University of Tokyo; Peter Pietzuch, Imperial College London

KSplit: Automating Device Driver Isolation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 613
Yongzhe Huang, Penn State University; Vikram Narayanan and David Detweiler, University of California, Irvine; 
Kaiming Huang, Gang Tan, and Trent Jaeger, Penn State University; Anton Burtsev, University of California, Irvine,  
and University of Utah

Operating System Support for Safe and Efficient Auxiliary Execution  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 633
Yuzhuo Jing and Peng Huang, Johns Hopkins University

From Dynamic Loading to Extensible Transformation: An Infrastructure for Dynamic Library Transformation  .  .  . 649
Yuxin Ren, Kang Zhou, Jianhai Luan, Yunfeng Ye, Shiyuan Hu, Xu Wu, Wenqin Zheng, Wenfeng Zhang,  
and Xinwei Hu, Poincare lab, Huawei Technologies Co., Ltd, China

Application-Informed Kernel Synchronization Primitives .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 667
Sujin Park, Georgia Tech; Diyu Zhou and Yuchen Qian, EPFL; Irina Calciu, Graft; Taesoo Kim, Georgia Tech;  
Sanidhya Kashyap, EPFL



Security and Private Messaging
BlackBox: A Container Security Monitor for Protecting Containers on Untrusted Operating Systems   .  .  .  .  .  .  .  .  .  . 683
Alexander Van’t Hof and Jason Nieh, Columbia University

Blockaid: Data Access Policy Enforcement for Web Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 701
Wen Zhang, UC Berkeley; Eric Sheng, Yugabyte; Michael Chang, UC Berkeley; Aurojit Panda, NYU; Mooly Sagiv,  
Tel Aviv University; Scott Shenker, UC Berkeley/ICSI

shoRtstack: Distributed, Fault-tolerant, Oblivious Data Access  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 719
Midhul Vuppalapati and Kushal Babel, Cornell University; Anurag Khandelwal, Yale University; Rachit Agarwal,  
Cornell University

Groove: Flexible Metadata-Private Messaging  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 735
Ludovic Barman, EPFL; Moshe Kol, Hebrew University of Jerusalem; David Lazar, EPFL; Yossi Gilad, Hebrew University 
of Jerusalem; Nickolai Zeldovich, MIT CSAIL

Managed Languages
upgRadvisoR: Early Adopting Dependency Updates Using Hybrid Program Analysis and Hardware Tracing   .  .  .  .  .751
Yaniv David, Columbia University; Xudong Sun, Nanjing University; Raphael J. Sofaer, Columbia University;  
Aditya Senthilnathan, IIT, Delhi; Junfeng Yang, Columbia University; Zhiqiang Zuo, Nanjing University;  
Guoqing Harry Xu, UCLA; Jason Nieh and Ronghui Gu, Columbia University

Practically Correct, Just-in-Time Shell Script Parallelization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 769
Konstantinos Kallas, University of Pennsylvania; Tammam Mustafa, MIT CSAIL; Jan Bielak, XIV Staszic High School; 
Dimitris Karnikis, Aarno Labs; Thurston H.Y. Dang, MIT CSAIL; Michael Greenberg, Stevens Institute of Technology; 
Nikos Vasilakis, MIT CSAIL

Hubble: Performance Debugging with In-Production, Just-In-Time Method Tracing on Android   .  .  .  .  .  .  .  .  .  .  .  .  .  . 787
Yu Luo and Kirk Rodrigues, University of Toronto; Cuiqin Li, Feng Zhang, Lijin Jiang, and Bing Xia, Huawei Technologies 
Co., Ltd.; David Lion and Ding Yuan, University of Toronto

Jawa: Web Archival in the Era of JavaScript   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 805
Ayush Goel and Jingyuan Zhu, University of Michigan; Ravi Netravali, Princeton University; Harsha V. Madhyastha, 
University of Michigan

Recommenders and Pattern Mining
Ekko: A Large-Scale Deep Learning Recommender System with Low-Latency Model Update  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  821
Chijun Sima, Tencent; Yao Fu and Man-Kit Sit, The University of Edinburgh; Liyi Guo, Xuri Gong, Feng Lin, Junyu Wu, 
Yongsheng Li, and Haidong Rong, Tencent; Pierre-Louis Aublin, IIJ research laboratory; Luo Mai, The University  
of Edinburgh

faeRy: An FPGA-accelerated Embedding-based Retrieval System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 841
Chaoliang Zeng, Hong Kong University of Science and Technology; Layong Luo, Qingsong Ning, Yaodong Han, and 
Yuhang Jiang, ByteDance; Ding Tang, Zilong Wang, and Kai Chen, Hong Kong University of Science and Technology; 
Chuanxiong Guo, ByteDance

Efficient and Scalable Graph Pattern Mining on GPUs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 857
Xuhao Chen and Arvind, MIT CSAIL





Owl: Scale and Flexibility in Distribution of Hot Content

Jason Flinn, Xianzheng Dou, Arushi Aggarwal, Alex Boyko,
Francois Richard, Eric Sun, Wendy Tobagus, Nick Wolchko, Fang Zhou

Meta

Abstract
Owl provides high-fanout distribution of large data objects

to hosts in Meta’s private cloud. Owl combines a decentral-
ized data plane based on ephemeral peer-to-peer distribution
trees with a centralized control plane in which tracker ser-
vices maintain detailed metadata about peers, their cache state,
and ongoing downloads. In Owl, peer nodes are simple state
machines and centralized trackers decide from where each
peer should fetch data, how they should retry on failure, and
which data they should cache and evict. Owl trackers pro-
vide a highly-flexible and configurable policy interface that
customizes and optimizes behavior for widely-varying dis-
tribution use cases. In contrast to prior assumptions about
peer-to-peer distribution, Owl shows that centralizing the con-
trol plan is not a barrier to scalability: Owl distributes over
800 petabytes of data per day to millions of client processes.
Owl improves download speeds by a factor of 2–3 over both
BitTorrent and a prior decentralized static distribution tree
used at Meta, while supporting 106 use cases that collectively
employ 55 different distribution policies.

1 Introduction

Within Meta’s private cloud, efficient distribution of large, hot
content to end hosts is an increasingly important requirement.
Three dimensions express the scope of the task: (1) scale: the
same content may be read by anywhere from a handful of
clients to millions of processes running in data centers around
the globe, (2) size: objects to be distributed range from 1 MB
to a few terabytes, and (3) hotness: all clients may read an
object within a few seconds of each other, or their reads may
be spread over hours. At Meta, executables, code artifacts,
AI models, and search indexes are content types commonly
distributed within this scope.

Distribution requirements are exacting. First, content dis-
tribution must be fast: the predictive value of AI models
decreases over time, and slow executable delivery increases
downtime and delays deploying fixes. We expect to provide
data at a rate bounded by either the available network band-
width of the reading host or by the available write bandwidth
of its storage media.

Second, content distribution must be efficient. One dimen-
sion of efficiency is scalability, i.e., the number of clients that

can have their distribution needs met by a given number of
servers. Another dimension is network usage, which we mea-
sure both in terms of bytes transmitted and communication
locality (e.g., an in-rack data transfer is less costly than a cross-
region transfer) . A final dimension of efficiency is resource
usage on client machines; e.g., CPU cycles, memory, and disk
I/O. Not only should we use as few resources as possible, but
we should also adjust for their relative importance on different
clients; e.g., some services are memory-constrained, while
others are CPU-constrained or cannot afford to write to disk.

Finally, content distribution must be reliable. Reliability
is measured as the percentage of download requests that the
distribution system satisfies within a latency SLA. Opera-
tional ease-of-management is an oft-overlooked prerequisite
for high reliability. In a production environment, workloads
change, dependent service and infrastructure may have par-
tial outages, and performance faults in which a dependency
doesn’t meet its own SLA are not uncommon. In order to
maintain a high SLA for distribution, engineers need to be
alerted quickly about such events, and they need a clear pic-
ture of operational health for each client type. Finally, they
need simple knobs that adjust behavior when reliability, speed,
or efficiency starts to degrade in order to restore operational
health quickly.

Prior to our work, Meta used at least three different sys-
tems for large content distribution. No prior solution met all
of the above requirements. We identified two root causes: (1)
no prior system struck the correct balance between decen-
tralization and centralization, and (2) no prior system was
sufficiently flexible to meet all of the requirements of the
many different types of services at Meta that require content
distribution.

Meta previously implemented highly-centralized distribu-
tion via hierarchical caching, in which clients download con-
tent from first-level caches on remote hosts. These caches,
in turn, handle cache misses by reading from other caches,
with the final layer of the hierarchy being a distributed stor-
age system. Hierarchical caching is inefficient for hot content
distribution, and it is difficult to scale. Meta needed dedicated
hosts in great quantity to implement the cache hierarchy. The
number of hosts increased to keep pace with growth in work-
loads from services consuming the data and with growth in
the number of reading clients. Load spikes caused by hot con-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    1



tent were a continual problem: strict quotas were necessary
to protect the centralized caches. However, readers of hot
content were frequently throttled because they exceeded their
quotas. In general, provisioning for transient spikes caused
by hot content and setting quotas appropriately was quite
challenging.

Meta also used two highly-decentralized systems: a
location-aware BitTorrent [7] implementation and a static
peer-to-peer distribution tree based on consistent hashing,
which we will refer to as StaticTree. In both cases, a peer
is any process that wishes to download data, and there are
millions of such processes at Meta. The decentralized systems
scaled much better than hierarchical caching, but they brought
their own problems. First, because each peer made distribution
decisions based on local information, resource efficiency and
speed could be poor; e.g., with each peer making independent
caching decisions, the collection of peers could retain either
more or less copies of a data object than necessary. Perhaps
more importantly, these decentralized solutions were difficult
to operate. Engineers could not get a clear picture of health
and status without aggregating data from large numbers of
peers. Each peer had a different and limited view of the state
of distribution, so it was often hard to tell whether or not a
collection of peers was making good decisions. In general,
it was very hard to reason about system-wide correctness or
efficiency.

In summary, decentralized systems were inefficient and
difficult to operate, while centralized systems scaled poorly.
As a result, we chose to create a new, split design with a
decentralized data plane and a centralized control plane. The
decentralized data plane streams data from sources to clients
via a distribution tree. However, its trees are ephemeral, i.e.,
each tree tracks a single data chunk, and each edge in a tree
persists only while the chunk is being transferred from a
source to a peer.

The design realizes a mechanism-policy split. Peers are sim-
ple and provide the mechanism for caching and transferring
data chunks. The centralized control plane makes all detailed
policy decisions about distribution, e.g., from where peers
should get each chunk of content, when and how they should
cache content, and how they should retry failed downloads.
The control plane is implemented by a small set of trackers 1.
Trackers have a complete picture of the distribution state; e.g.,
which data each peer is downloading, where these peers are
located, and which chunks are in each peer’s cache. Detailed
state enables trackers to make highly-optimized decisions
about data placement and distribution that minimize the use
of expensive network links and maximize cache hit rate. Cen-
tralizing the control plane has also made distribution easy to
operate and debug: engineers can understand which decisions
led to low availability, high latency, or poor hit rate because
these decisions are made by a tracker with a consistent view

1borrowing terminology from BitTorrent

of distribution state.
When workloads scale beyond the capacity of a single

tracker, the detailed state is sharded across several cooperat-
ing trackers, each managing a distinct set of peers. Trackers
exchange lower-fidelity views of their individual state with
other trackers. Thus, each tracker has a fine-grained view of
the state it manages and a coarse-grained view of the entire
state. Trackers use the coarse-grained view to delegate deci-
sions to other trackers when using peers that those trackers
manage.

The second major problem faced by prior distribution sys-
tems was a lack of flexibility. At Meta, clients have vastly
different resources to spare for distribution; e.g., some clients
can dedicate gigabytes of memory or disk for peer-to-peer
caching, while others have no resources to spare. Client have
very different access patterns and scale. Finally, the objec-
tives for distribution can differ: some clients need low latency,
while others wish to reduce the load on external storage to
avoid throttling or excess quota requests. The variety in client
needs was one reason Meta needed many different distribu-
tion solutions; each solution was customized for a small set
of use cases. To unify the disparate distribution solutions, we
could not simply provide a one-size fits all solution because
that would regress many clients on their key metrics.

We therefore chose to make customization a first-class
design priority. Trackers implement modular interfaces for
specifying different policies for caching and fetching data.
Further, each policy is itself configurable to allow for differ-
ent tradeoffs across client types and responses to changing
workloads. We use trace-driven emulation to search through
the space of possible customizations and find the best policies
and configurations for each observed workload.

This paper describes our solution, Owl, a highly-
customizable data distribution system with a centralized con-
trol plane and a decentralized data plane. Owl has been in
production use at Meta for almost 2 years. Owl has scaled
out rapidly (production traffic increased by almost 200x in
2021). Currently, Owl has over 10 million unique clients (bi-
naries concurrently using the Owl library), and it downloads
over 800 petabytes of data per day. Owl supports 106 unique
types of clients and has customized policies for 55 of these.
In production, Owl improved download latency over prior
systems by a factor of 2–3 for our most important use cases,
while requiring only a fraction of the resources needed by
prior centralized solutions.

In summary, this paper makes the following contributions:

1. It shows that a centralized control plane need not be a
barrier to scalability in peer-to-peer distribution.

2. It shows that tracker sharding and delegation retain the
benefit of fine-grained management even when load
grows beyond the capacity of a single tracker.

3. It shows that first-class support for flexible distribution

2    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Client API function and arguments Description
read_blob (object, offset, length, deadline, Fetches all or part of an object to memory.

integrityChecker, decryptor)
read_blob_to_file (object, fd, offset, length, deadline, Fetches all or part of an object to a file.

integrityChecker, decryptor)
provide_file (object, fd, length) Allows a file to be distributed ephemerally.
evict_file (fd) Evicts a file from the peer cache.

Table 1: Owl client API

and caching policies can provide substantial gains in effi-
ciency and latency, especially when combined with tools
that automatically search the space of possible policies
for optimizations.

2 Design and Implementation

Owl has two basic components: peers, libraries linked into ev-
ery binary that uses Owl to download data, and trackers, ded-
icated Owl services that manage the control plane for a group
of peers. A physical host often has several Owl peers due to
container stacking and use of Owl by the Twine container in-
frastructure [16]. Each tracker manages many peers: over 10
million Owl peers are currently managed by 112 trackers. Ad-
ditionally, Owl has approximately 800 superpeers, dedicated
services running the Owl library that provide extra caching or
perform specialized tasks.

2.1 Peers
Owl peers provide a simple API for downloading data, shown
in Table 1. Client processes call read_blob to fetch con-
tent from a source object, specifying a range of data to read.
The object name encodes an external storage source and a
unique identifier for the object within the external storage
namespace. Owl currently supports 3 types of external stor-
age. The caller can optionally specify a deadline and classes
that check data integrity or decrypt provided data (discussed
in Section 2.9). read_blob returns a reference-counted mem-
ory buffer, while read_blob_to_file writes the content
to a file. The provide_file function allows peers to pro-
vide ephemeral content, as discussed in Section 2.11, and
evict_file lets clients manage disk caches shared with Owl,
as discussed in Section 2.7.

Owl peers cache data in memory and on disk. These caches
may be shared with the client binary if the client does not
modify downloaded data. Owl uses the caches to serve content
requests from other peers. Owl policies usually prefer to fetch
data from a peer rather than from an external data source, so
most requests are satisfied by peer-to-peer distribution.

In the design of Owl, a key principle is that peers should
be as simple as possible. This is achieved via a mechanism-
policy split, where peers provide the mechanism to perform

simple actions such as downloading a chunk of content from
a single source, caching or evicting a chunk in memory or on
disk, or providing cache data in response to a request from
another peer. When downloading content, peers ask trackers
to decide from where they should fetch content, how they
should retry failed downloads, and even which chunks they
should cache locally.

This design principle has been invaluable for operational
simplicity. At Meta, the Owl team can control the deployment
of its own service (i.e., trackers and superpeers); however, Owl
peers are linked with client binaries and so deploy according
to different schedules controlled by many other teams. The
Owl team deploys code changes to trackers daily, and the team
can change configuration values on trackers within seconds
if necessary. In contrast, peer code changes can take months
to fully deploy. By keeping peers as simple as possible, the
team minimizes the need to change a widely-deployed and
hard to modify part of the system.

Each peer is associated with a bucket, which uniquely iden-
tifies the type of the client binary with which the library is
linked. The bucket provides a way to customize Owl behavior
for each type of client and it lets us monitor usage, perfor-
mance, and reliability for each Owl customer individually.
Currently, Owl supports production traffic for 106 buckets.

2.2 Trackers
A tracker manages download state for a set of peers. Typi-
cally, peers and trackers are grouped by region (a region is
several co-located data centers), with 3–4 trackers per region
providing scale and redundancy. Trackers are homogeneous
and multi-tenant. In general, each tracker supports all Owl
buckets, and the association between peers and trackers in a
region is random. However, Owl uses a separate set of track-
ers in each region for binary distribution to provide strict
performance isolation for this sensitive workload.

Trackers associate data and peers. Downloaded objects
are divided into chunks; chunk size varies by bucket with
50 MB being the most common size. For each chunk, tracker
metadata specifies which peers are caching the chunk and
which are downloading it. Tracker metadata also specifies the
source of each peer’s download (e.g., an external source or
another peer). For each peer, the tracker metadata specifies the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    3



peer’s location (host, rack, region, etc.) and its cache state (the
chunks in the cache, last access time, and so on). In contrast
to highly-decentralized systems, Owl trackers can maintain
such detailed state because trackers make all major decisions
about caching and downloading chunks on behalf of peers.

As our evaluation shows, a single Owl tracker can scale to
handle 1.5–2.4 TB/s of distribution traffic, depending on as-
sumptions about cache hit rate for download requests. To
achieve this scalability, we have used careful, but mostly
standard, engineering practices. Trackers are implemented in
C++ and use common abstractions (coroutines, reader-writer
locks, and standard library containers). Trackers maintain
geographically-sorted indexes to order peers and the chunks
they cache by location; these indexes allow trackers to effi-
ciently find the nearest peers caching a particular chunk of
data. Geographically-sorted indexes are used frequently by
location-aware selection polices. Trackers store all metadata
in memory, and they rebuild their state quickly when restarted.

Peers associate with one tracker. Each peer picks a random
instance from the set of available trackers and registers by
sending an RPC. Peers register with a new random tracker
if their association with the current tracker fails. Section 2.8
describes how peers are sharded across multiple trackers.

2.3 Superpeers

Superpeers are tasks running the Owl peer library as a stan-
dalone process (without any client). Superpeers sometimes
provide specialized functionality. For example, some external
storage systems use mountpoints that are not available on
most hosts, so we access this storage only via superpeers that
have been configured with the necessary mountpoint. To read
external storage, the tracker directs such a superpeer to fetch
and cache a data chunk, and it directs a reading peer to get
the data from the superpeer.

Some Owl buckets need more peer resources than their
clients can provide. For example, some clients are extremely
memory and disk constrained and yet also require a high cache
hit rate to reduce load on external storage. Superpeers can use
all the resources of their hosts for caching, and so Owl uses
superpeer caches to supplement peer caches for such buckets.

When used in this manner, a collection of superpeers can
be viewed as a hierarchical caching layer. It is possible to craft
Owl selection policies that direct all requests to superpeers
and bypass fetching from other peers. Early in the project, we
created one such policy to support an AI bucket that could
spare no memory or disk for peer caching. However, we soon
found that shared caching, discussed in Section 2.7, allowed
Owl to temporarily access data buffers in use by the applica-
tion to provide a decent peer-to-peer cache hit rate. Superpeers
are still valuable because their additional caching resources
improve the total Owl cache hit rate from the base peer-to-
peer rate up to the target needed by the AI team. Currently, the
Owl team discourages superpeer-only policies because there

are several existing systems at Meta that provide excellent
standalone caching solutions.

At the other end of the spectrum, it is also possible to craft
Owl selection policies that do not use superpeers at all. For
buckets with very large working sets and large numbers of
clients, the additional cache resources of superpeers make
little difference in overall cache hit rate. In practice, though,
Owl selection policies for these types of buckets still use
superpeers as a last level of retry if a direct fetch from storage
by the peer fails. We have found this to be useful in handling
rare corner cases such as particular peers being in a bad state
where they cannot fetch from external storage. Because peers
run on heterogeneous hosts not owned by the Owl team, they
can be less stable than superpeers. The superpeer layer thus
still plays a role in improving overall data availability.

Superpeers have occasionally been quite useful in mitigat-
ing production issues that lead to a poor cache hit rate. In
such scenarios, we have quickly stood up a large number of
superpeers in a region to provide temporary caching that re-
stores the desired hit rate until we are able to deploy a fix for
the underlying problem.

We originally implemented superpeers as a sharded service
built on a standard caching library [3]. This approach proved
to be insufficiently flexible; it was difficult to customize su-
perpeer cache behavior for each bucket. Later, we rewrote
superpeers to use the Owl peer library, which let us customize
superpeers via tracker policies and which also provided the
simplicity of code reuse for peers and superpeers. From the
point of view of a peer, there is no distinction between fetch-
ing a data chunk from a superpeer or another peer.

2.4 Tracker-Peer Communication

Peers register with a tracker by sending an RPC with their
bucket and location. Trackers customize behavior by bucket;
e.g., tracker configuration parameters assign specific down-
load and caching policies to each bucket. When registering,
peers select trackers randomly within a geographic scope, and
the association between a tracker and peer persists until a
peer terminates or cannot communicate with the tracker. On
failure to communicate with a tracker, peers re-register with a
randomly-chosen tracker.

To download data, an Owl peer first makes an RPC to the
tracker specifying the object to be downloaded and the range
of data to read. The tracker returns the chunk size (determined
by the bucket configuration). It initializes a state machine
to track the download of each chunk that has data in the
specified range. If the download later fails or times out, the
tracker cancels all per-chunk state machines for the download.
Otherwise, each chunk is handled independently.

Peers download chunks in parallel. Download concurrency
is limited by the per-bucket configuration, which specifies
both the maximum number of chunks each peer can download
in parallel and a maximum number of chunks that can be read

4    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 1: Ephemeral distribution tree. This figure shows how a tracker uses a per-chunk ephemeral distribution tree to track
which peers cache a chunk and which are downloading the chunk.

in parallel for each individual read_blob request.
For each chunk, the peer first checks if the chunk is in its

cache already. If so, it sends an RPC to the tracker, which
terminates the per-chunk download state machine and updates
the access time in the peer metadata for LRU and similar evic-
tion policies. Otherwise, the peer sends a getSource RPC to
the tracker that asks how it should get the data. The tracker can
respond with a peer from which data can be obtained. Alter-
natively, the tracker may specify an external data source from
which the peer should fetch content directly. The getSource
response specifies whether the peer should cache the down-
loaded chunks and lists chunks that should be evicted from
the peer cache to make room. The tracker updates its peer
and chunk metadata, along with the per-chunk download state
machine to reflect its decision.

The peer next attempts to obtain the data in the manner
specified by the tracker, and it informs the tracker of the re-
sult. On success, the tracker terminates the state machine.
On failure, the tracker makes a new decision based on its
current metadata. Based on per-bucket policies and the fail-
ure type, the tracker may specify a new source (or possibly
retry the same source in rare cases), or it may tell the peer to
give up (e.g., because a maximum number of retries has been
exceeded or it believes the chunk is not available from any
source).

Prior systems such as BitTorrent [7] provide a list of candi-
date sources to a peer and let peers handle retries transparently.
Owl’s approach of involving trackers in retry decisions has
several advantages. First, trackers can pick a new source based
on the latest state about which peers cache the chunk and cur-

rent peer load. In contrast, the peers included in BitTorrent’s
initial list can be stale when retries are needed. Second, Owl
trackers maintain very detailed state about which peers are
fetching from others. This allows trackers to enforce precise
caps on the maximum number of inflows and outflows per
peer, and it allows trackers to make more informed selec-
tion decisions. Finally, this detailed state gives operators a
complete picture of Owl download state, making it easier to
determine why downloads may be slow or failing.

The peer simply follows the tracker’s instructions at each
step. On retry, if a prior step returned partial content before
failing, the peer resumes fetching from a new source after the
last byte it received (so failures do not lead to excess data
being transmitted).

If a chunk download fails (because the tracker tells the peer
to give up) or the download time exceeds a deadline specified
by the client, the peer cancels all remaining chunk downloads
and fails the read_blob request. Otherwise, the peer returns
the requested data either via a memory buffer or by writing
to a specified disk file. The tracker also sets a timeout for
each chunk download; it terminates a download and cleans up
download state if the peer does not respond within this time.

2.5 Ephemeral Distribution Trees

The ephemeral distribution tree is the core abstraction used
by the tracker to manage per-chunk download state. The root
of a tree is an external data source or a peer that caches the
chunk. Directed edges indicate which peers are actively down-
loading the chunk from others; e.g., in Figure 1(a), peer A

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    5



is downloading the chunk from external storage, and peer
B is downloading the chunk from peer A. While prior dis-
tribution systems have commonly used trees to efficiently
distribute data, Owl’s trees are particularly ephemeral in that
each chunk of data has its own forest of trees, and nodes re-
main in a tree only while they are downloading a particular
chunk or providing a chunk to another peer.

In the data plane, chunks are streamed from the root to
leaves; i.e., bytes along each edge are sent in order, followed
by a per-chunk checksum used to verify integrity. Each peer
forwards data to its children as soon as it receives new bytes.
With large chunks, this design means that tree depth does
not strongly affect latency. Leaf-nodes see only the first-byte
latency of additional communication hops, which is often
quite small within a data center or region. In Figure 1(b),
when peers C and D request the chunk; the tracker tells them
to get it from B, which is still receiving data. Peer B first sends
its cached bytes and then forwards additional chunk bytes as
it receives them.

When a peer reports a failure fetching data, the tracker re-
moves the edge connecting the peer to its parent. If the tracker
chooses a new source, it creates an edge from the peer to that
source. Thus, the entire subtree rooted at the peer reporting
the failure is moved to a have a new parent in the tree. When
choosing a new peer, the tracker avoids creating download
cycles; i.e., it will not designate a descendent of a peer as a
new source for that peer. Tree repair minimally impacts down-
stream nodes because Owl resumes a new download after the
last byte fetched from the previous attempt. In Figure 1(c),
peer A fails, and the tracker tells peer B to fetch the remaining
bytes from external storage. Peers C and D are oblivious to
this change since they continue to download from B.

When a peer reports a successful download, the edge con-
necting it to its parent is removed. The tracker adds the peer
to the list of nodes that have the chunk fully cached if the
tracker asked the peer to retain the chunk. Since chunks may
be cached at multiple peers, the download state for a chunk is
a forest of ephemeral distribution trees rooted at multiple such
peers and/or the external data source. In Figure 1(d), peers B
and C have downloaded and cached the chunk, while peer D is
still downloading bytes from B. Thus, we have two ephemeral
distribution trees in the forest; a new peer that requests the
chunk may be directed to any of these peers or to external
storage, depending on the selection policy for the bucket.

At first glance, it might seem surprising that Owl often
prefers to download chunks from peers that have partially
downloaded a chunk in preference to peers that have the
chunk fully cached. However, selecting a peer that has par-
tially downloaded a chunk has little latency cost. The peer
immediately starts streaming out the bytes it has already down-
loaded and sends remaining bytes out as soon as they arrive.
Network locality and quick scale-out of hot contents are big-
ger concerns in practice. For instance, many peers in a rack
often request a chunk at the same time. Most Owl policies are

location-aware and build a tree so that a single peer downloads
data from outside the rack and other peers in the same rack get
the chunk from that peer or one of its children. Similarly, if
many peers in a data center request a chunk at the same time,
typically only one peer fetches the chunk from outside the
data center. Allowing peers to fetch from other peers that are
still downloading the chunk is essential to achieving network
locality for hot content.

2.6 Selection Policies

Each bucket has a selection policy that the tracker executes on
each getSource request. The selection policy considers the
result of all prior attempts by a peer to fetch a chunk, as well
as per-chunk state that includes the set of caching peers and
ephemeral distribution trees. The result of the selection policy
often directs a peer to fetch the chunk from another peer or
an external data source; these decisions add a new edge to an
ephemeral distribution tree. The policy is implemented as a
class inheriting from an abstract interface; each policy class
has a considerable number of parameters that can be further
customized via configuration [15].

A selection policy may use a superpeer to assist in the
download. The tracker directs the superpeer to fetch the chunk
from an external source, and it directs the requesting peer
to get the chunk from the superpeer. This creates a 2-edge
distribution tree. Usually, the tracker will have the superpeer
cache the chunk so other peers can fetch the same chunk
without reading from external storage; this is especially useful
when many chunk requests arrive within a short time window.

The location-aware policy is the default selection policy.
This policy selects the nearest peer that caches or is download-
ing the chunk, subject to per-peer constraints on maximum
fanout and bandwidth usage. Distance is determined by net-
work topology; peers on the same host are preferred over peers
in the same rack, which are, in turn, preferred over peers in
the same network cluster, etc. To make location-aware selec-
tions quickly, the tracker maintains a topological sort over all
peers caching or downloading a chunk. A selection policy
also specifies the number and type of retries. By default, the
location-aware policy tries up to 5 peers, then tries to fetch the
chunk via a superpeer, then tries to fetch the chunk directly
from a source before giving up. The policy also has unique
handling for specific errors, such as external source throttling.

Another common policy is the hot-cold policy, which re-
fines the location-aware policy by using superpeers for hot
data. If no peer can provide a chunk from its cache, this pol-
icy reads data from an external source via superpeers if the
chunk is hot or directly from the source if the chunk is cold.
Hotness is determined by examining the number of chunk
reads within a recent time window. The policy improves hit
rate in superpeer caches for buckets that have a mix of hot
and cold content.

Other policies implement load balancing; e.g., spreading

6    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 D e c i s i o n s e l e c t S o u r c e F o r D a t a (
2 c o n s t ChunkMetadata& MD,
3 s t d : : s h a r e d _ p t r < Pee rMetada t a > r e q u e s t e r ,
4 c o n s t ChunkS ta tu s& s t a t ,
5 c o n s t ShardedChunksMap& shardedChunks ,
6 c o n s t DownloadContext& c o n t e x t ) o v e r r i d e {
7
8 i f ( h a s D i r e c t F e t c h F a i l e d ( s t a t ) ) {
9 r e t u r n D e c i s i o n {GIVE_UP , n u l l p t r } ;

10 }
11
12 i f ( c a n n o t F i n d S u p e r p e e r ( ) | |
13 noMoreSupe rpee rAt t empt s ( s t a t ) | |
14 noMoreAttempts ( s t a t ) ) {
15 r e t u r n D e c i s i o n {DIRECT_FETCH , n u l l p t r } ;
16 }
17
18 i f ( noMorePeerAt tempts ( s t a t ) ) {
19 r e t u r n D e c i s i o n {SUPERPEER_FETCH , n u l l p t r } ;
20 }
21
22 p e e r = s e l e c t P e e r (MD, r e q u e s t e r , s t a t , c o n t e x t ) ;
23 i f ( p e e r ) {
24 r e t u r n D e c i s i o n {PEER_FETCH , p e e r } ;
25 }
26
27 d e l e g a t i o n = f i n d D e l e g a t i o n ( sha rdedChunks ) ;
28 i f ( d e l e g a t i o n ) {
29 r e t u r n D e c i s i o n {DELEGATED_FETCH, d e l e g a t i o n ) } ;
30 }
31
32 r e t u r n D e c i s i o n {SUPERPEER_FETCH , n u l l p t r } ;
33 }

Figure 2: Pseudocode: Location-Aware Selection Policy

downloads from sources evenly. Still others always fetch via
superpeers, select random peers, and direct whether and how
chunks should be fetched from out-of-region peers.

To illustrate how policies are written, Figure 2 shows pseu-
docode for Owl’s location-aware selection policy. Each policy
is implemented by overriding a C++ base class; in this case
we show the selectSourceForData method, which is used
to determine how and from where a peer should fetch data
on each chunk download attempt. The method’s inputs are:
chunk metadata that includes a topologically sorted index of
all peers and superpeers caching the chunk, metadata describ-
ing the peer requesting the data that incudes its location info,
a status object containing all prior attempts to fetch the chunk
for this download and their results, a list of other trackers that
have the chunk available for delegation, and bucket-specific
context about the chunk.

Policy implementations are usually a series of simple rules.
The location-aware policy first calls a helper function (line
22) to select the nearest peer or superpeer caching or down-
loading the chunk, as long as such a peer is healthy (no recent
failures reported) and would not exceed limits on number
of downloads, network bandwidth, etc. The helper function
considers past attempts and only tries each source once.

If the tracker has no more locally-managed peers or super-
peers caching the chunk, it tries to find a delegation for the
chunk from a peer tracker (line 27). If this fails, the policy
asks a superpeer to fetch the chunk from an external source,

cache it, and provide it to the requester (line 32).
The policy has configurable limits on the number of peer

and superpeer attempts. If there are no more peer attempts
allowed, the next retry asks a superpeer to fetch the chunk
from an external source (lines 18–19). If there are no more
superpeer attempts left or the policy has attempted to find a
free superpeer and failed, the peer is asked to fetch the data
from the external source directly (lines 12–15). If this direct
fetch fails, the policy gives up (lines 8–9).

2.7 Caching policies

Per-bucket caching polices determine how peers cache data.
Peers may cache data in memory or on disk, with some buck-
ets using both types of cache. Cache size is configurable; the
default memory cache size is 1 GB but size varies widely
across buckets, depending on memory constraints and desired
cache hit rates.

Some buckets use a shared peer cache, in which a single
copy of data is shared read-only between the client application
and Owl distribution. For in-memory caching, Owl returns
a reference-counted buffer from read_blob. The buffer re-
mains in the cache until the client releases the reference. For
example, one memory-constrained client type reads AI mod-
els using a shared cache. While the client has no memory to
spare, it retains data read for several seconds while it trans-
forms the model chunk into a different format. By sharing
the buffer with the client, Owl can satisfy many peer-to-peer
download requests during this time. This sharing is essentially
free because the data would reside in memory for the trans-
formation anyway. This particular bucket needed a good hit
rate to avoid overloading its external storage. Shared caching
got us most of the way there, and we used superpeer cache
capacity to further improve the hit rate to meet the bucket’s
requirement.

Buckets with disk caching often use shared caching. Down-
loaded objects are written to files with Owl retaining an open
file handle so that it can serve cached file content to peers.
The client controls when files are garbage collected by call-
ing evict_file in Table 1. Owl also provides an interface
that watches downloaded files and calls evict_file on the
client’s behalf if the file is deleted. In lieu of controlling evic-
tion explicitly, some clients provide a TTL (time-to-live) that
specifies how long downloaded data should be cached before
eviction.

For private (non-shared) caching, Owl trackers manage
peer caches. On each getSource request, the caching policy
determines whether the peer should cache the requested chunk
and which chunks to evict to make room in the cache. Peers
specify their current cache state when registering with a new
tracker so management persists across tracker failures.

The default caching policy is LRU (least recently used).
Another popular policy, used for shared caching, never evicts
chunks because the eviction is done explicitly by each peer.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    7



Many clients that need good peer-to-peer cache hit rates use a
least rare policy that prefers to evict chunks cached on more
peers over chunks cached on fewer peers. A hybrid policy
uses least-rare eviction for hot chunks and LRU eviction for
cold chunks. Owl also supports random chunk eviction, which
often has good properties for hot data [18].

2.8 Tracker sharding
For the first year of operation, Owl used a single tracker per
region, with hot spares providing primary-backup fault toler-
ance. The simplicity of a single tracker allowed us to start serv-
ing production traffic 3 months after the start of the project.
However, we knew that our workload would eventually exceed
the capacity of a single tracker. Thus, we added the capability
to shard peers across multiple trackers.

With sharding, trackers have equivalent responsibilities. A
sharded tracker maintains the complete peer state for a given
set of peers, but per-chunk and per-download state is split
across the shards. Peers and superpeers register with random
trackers.

Sharded trackers periodically exchange the set of chunks
cached by at least one peer or superpeer that they manage.
Trackers normally send incremental updates once a second
with additions to and removals from this set. However, a re-
ceiving tracker may request a full snapshot when needed; e.g.,
because it just restarted or it missed an incremental update.
Thus, each tracker has a coarse-grained and slightly stale view
of the global distribution state that maps chunks to trackers
rather than to specific peers.

Selection policies can decide to fetch a chunk from another
sharded tracker; typically, this happens when the chunk is not
cached on any peer managed by the local tracker and another
tracker has reported that it has the chunk. The tracker running
the selection policy sends a delegation request to the other
tracker. In turn, that tracker selects and returns a peer caching
or downloading the chunk. The delegation request fails if no
such peer exists.

On successful delegation, each tracker updates state for the
peer it manages. The getSource response simply specifies
the endpoint of the delegated peer, so peers are oblivious to
delegation. When the downloading peer reports success or
failure, its tracker forwards the report to the delegating tracker
and both trackers update their individual state accordingly.

On receiving a successful delegation response, a tracker
starts a new ephemeral distribution tree. The root of a tree is
a delegated peer, which indicates that the peer is managed
by another tracker. The tracker grows the tree as other peers
request the chunk, since selection policies commonly prefer
to fetch from a locally-managed peer over a delegated one.

The ephemeral distribution tree for a chunk is now parti-
tioned across multiple trackers with a node in the tree of one
tracker serving as the root of a subtree in another tracker. In
order to prevent cycles in this partitioned tree, a tracker will

Figure 3: Delegation with 2 sharded trackers. Peer E fetches
a chunk from a peer managed by another tracker to reduce
load on external storage.

not provide any peer in a tree rooted at a delegated peer in
response to a delegation request.

Figure 3 shows an ephemeral distribution tree sharded be-
tween 2 trackers. Tracker 2 initially receives a getSource
request from peer A and instructs peer A to read the chunk
from external storage. At this point, tracker 2 starts advertising
that it has the chunk to other sharded trackers. Next, tracker 1
receives a getSource request from peer E. It does not have
the chunk on any of its peers, but it knows that tracker 2 has
advertised the chunk. Tracker 1 sends a delegation request to
tracker 2, which selects and returns peer A. Tracker 1 tells
peer E to fetch the chunk from peer A. When tracker 1 re-
ceives subsequent getSource requests from peers F and G,
the bucket’s selection policy prefers locally-managed peers,
and so these peers are directed to fetch from peer E. As this ex-
ample shows, delegation improves cache hit rate for sharded
trackers. Without delegation, both peers A and E would fetch
from external storage. With delegation, there is only a single
fetch by peer A, which achieves the same overall cache hit
rate that would have been achieved without sharding.

Some data sources accessed by Owl are regional. In these
cases, when an out-of-region peer requests a chunk that is not
cached by another peer, selection policies use delegation to
ask an in-region tracker to have one of its superpeers read the
chunk. The requesting peer is directed to that superpeer for
the data. Selection policies consider cross-region latency to
find the closest location from which to read data.

8    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



2.9 Security and integrity

All communication between Owl components in encrypted,
and all RPCs are checked against access control lists. Many
data sources read by Owl encrypt data at rest, so chunks in
Owl caches are often encrypted. Owl clients can provide de-
cryption functions to read decrypted data. For shared caching,
Owl must cache and share unencrypted data with clients (be-
cause that is how they consume the data). In this case, Owl
decrypts each chunk when writing it to the cache and re-
encrypts it to share it with another peer.

Owl generates an internal checksum when reading chunks
from external sources, passes the checksum with the chunk
data, and validates chunks with the checksum before returning
them to clients. Many Owl clients generate end-to-end hashes
when writing to external storage. These clients can optionally
provide Owl an integrity checker class containing these hashes
and the hash calculation function to validate that the data
being read is the same as what they originally wrote. Owl
calls the integrity checker as data is being written to a disk or
a memory buffer. It fails the download if the integrity checker
reports that the calculated hash does not match the write hash.

2.10 Virtual superpeers

One of our original design principles for Owl was that peers
should not fetch content that their clients do not read. This
led to high network efficiency and made it easier to convince
users to adopt Owl since their clients would not be doing work
for other services.

However, one recent bucket demonstrated a drawback with
this approach. For this bucket, reducing load on external stor-
age is crucial; if data is read too fast, the external storage
system throttles readers and performance degrades rapidly.
Periodically, a new search index is generated and distributed,
which each client then reads at a random time over the next
few hours. The first client reads the index directly from ex-
ternal storage, but its memory cache fits only a few chunks.
The next client reads those chunks from the first client, and
it reads the remainder of the index from external storage. As
more clients download the index, their collective caches are
eventually sufficient to hold all the data (especially since we
use the least-rare caching policy to maximize hit rate for the
bucket). However the clients together read many extra chunks
from external storage until the index is fully cached, and this
causes the external storage system to throttle readers.

To solve this problem, we added a new Owl abstraction
called a virtual superpeer. If a bucket is configured with a
virtual superpeer, the tracker divides each peer’s cache into
a normal portion and a portion reserved for the virtual super-
peer. The tracker aggregates the virtual superpeer portions
and manages the collection in the same way that it would
manage a superpeer dedicated solely to the bucket. When the
first client reads the index, the bucket selection policy routes

the ephemeral distribution tree for each chunk through the
virtual superpeer. The tracker uses the per-bucket policy to
select one peer to fetch the chunk from external storage and
cache it; the tracker also selects chunks to evict from the vir-
tual superpeer portion of that peer’s cache, if necessary. The
requesting peer streams each chunk from the peer that fetched
it from the external source. After the index is loaded by one
peer, the next peer to fetch the index finds all chunks in the
virtual superpeer cache. Thus, Owl makes no additional reads
to external storage, and it achieves a high cache hit rate.

The benefit of virtual superpeers over non-virtual (physi-
cal) superpeers is that virtual superpeers use spare memory
capacity on peers rather than dedicated machines. The bucket
described in this section would require approximately 640
physical superpeers to achieve the same cache hit rate as Owl
achieves with virtual superpeers. Another bucket that we are
currently onboarding would require approximately 10,000
physical superpeers; we are avoiding this cost by leveraging
spare peer memory via virtual superpeers.

Virtual superpeers are a tracker-only concept; peers are
unaware of the abstraction because they simply follow tracker
instructions for where to fetch data and which chunks to cache.
Further, the abstraction is implemented almost entirely via
Owl selection and caching policies (we added a few hun-
dred lines of tracker code to implement cache partitioning
and eliminate double-buffering). Overall, virtual superpeers
demonstrate the flexibility of Owl policies: we were able to
implement a substantial change not envisioned in the original
Owl design primarily by writing new policies.

2.11 Ephemeral data sources

Owl was originally designed to download content from ex-
ternal storage. However, several clients wanted to use Owl
to distribute content produced by instances of their service
directly to other instances, bypassing storage entirely. For AI
models and search indexes that have diminishing value over
time, durable storage provides little benefit. Yet, the resources
used to read and write large data objects to distributed storage
can be significant. We modified Owl to support these use
cases by adding ephemeral data sources.

An ephemeral data source is simply a peer that promises
to supply specific content when requested. The client calls
provide_file in Table 1 to specify a file containing content
for a given unique identifier. In turn, the peer tells the tracker
that this content is now in its cache. When other peers re-
quests chunks from this content, the tracker builds ephemeral
distribution trees rooted at the providing peer to distribute the
chunks. The tracker also advertises and provided content to
other sharded trackers, which makes the content available via
delegation.

Owl guarantees that the data will be provided only as long
as an ephemeral data source provides the data. It caches
ephemeral content on peers and superpeers as normal, and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    9



it falls back to the peer(s) providing the data as a last resort.
Ephemeral data sources must re-register with a new tracker
if their connection with the current tracker fails; they send
heartbeats every second to their trackers to proactively detect
failures and re-register quickly. A client may stop providing
content by calling evict_file.

2.12 Fault tolerance
Tracker sharding allows Owl to tolerate tracker faults. When
a peer detects that its tracker has failed, it re-registers to use a
new tracker. Trackers have only soft state, and a new tracker
learns a peer’s existing cache state as part of registration.
We regularly test failover by continuously deploying tracker
code each workday, during which trackers are sequentially
killed and restarted. We occasionally experiment by killing
and restarting all sharded trackers simultaneously to ensure
that performance does not drop below SLA bounds when all
trackers restart. This has proved enlightening; e.g., we added
peer re-registration when we noticed that SLA bounds had
been violated during one such trial.

The RPC routing layer at Meta (not part of Owl) load
balances requests among sharded trackers at the granularity
of each new chunk download. However, peer associations
with trackers are typically long-lived, as rebalancing does not
need to be done often in steady state. In contrast, Owl load
balances superpeers among trackers itself because the number
of superpeers per tracker is small and we want to maintain a
tighter balance than the RPC router layer provides.

Trackers detect peer failures when a peer reports that it can-
not reach a peer from which it is trying to get data. Peers are
marked down (and not used to serve further requests) after a
configurable number of consecutive failures. Peers are marked
up again when they re-register with a tracker. The Owl library
explicitly deregisters on shutdown, but many peers don’t shut
down cleanly, in which case there is no deregistration.

Generally, we do not allow peers to fail over and use track-
ers outside their region. Experiences with other systems left
us concerned about cascading failures in which a failure in
one region causes out-of-region requests to overload services
in other regions. We use a separate set of global trackers for
buckets that require peers to contact out-of-region trackers.

2.13 Emulation and customization
Over time, Owl has become more customizable as we have
added new policies and enabled different behavior via con-
figuration within each policy. This flexibility often makes it
difficult to determine the best set of policies for each bucket.

The Owl team writes all policies and helps Owl users pick
the best policy for their needs. If the team identifies a specific
need not covered by an existing policy, we write a new policy;
the development of the virtual superpeer policy, described in
Section 2.10, is a good example of this process.

Choosing the best policy is difficult. Many engineers who
wish to use Owl do not understand their service traffic patterns
well. In some cases, it is not clear whether their workload
would benefit from peer-to-peer distribution. In other cases, it
is difficult to choose the best set of policies or explain specific
configuration tradeoffs; e.g., how much additional cache hit
rate can the bucket expect for each additional gigabyte of
peer memory used? For existing users of Owl, traffic patterns
and distribution goals change over time (e.g., a service can
spare less memory or require better cache hit rate to reduce
external storage load). Thus, initial policy choices often need
to be tuned to keep pace with client changes. As the number
of buckets using Owl grew, it became infeasible for the Owl
team to manually choose and tune policies for each unique
workload.

Owl uses offline, trace-driven emulation to guide policy
choices. On a per-bucket basis, Owl can be configured to
log basic information about each client request to a database;
e.g., the timestamp of the request, the object, and data range
read. When we onboard a new bucket that reads data from an
external source, we first use an evaluation mode policy that
always instructs the peer to fetch from the external source and
not cache data. The peer thus performs the same actions it
would perform without Owl except that each request is routed
through a tracker for logging. For existing buckets, logging is
always enabled.

An Owl emulator runs our actual tracker service with mock
peers and superpeers that generate traffic and service requests.
The emulator is event-driven and uses a virtual clock to de-
termine when events occur. Mock peers register, deregister,
and generate requests at the times recorded in the production
traces. The emulator adds configurable network and storage
delays, and can simulate different error profiles. Because we
run the actual tracker code, we can emulate any Owl policy
or configuration. The emulator reports key statistics such as
overall cache hit rate, load on external storage, and tracker
CPU usage.

To find the best policy, we compare statistics from multiple
emulation runs with the same trace and different policy/con-
figuration settings. As the setting space is quite large, we use
random-restart hill climbing [10] to search for the best choice
for each bucket. Currently, we run the emulator weekly on
existing Owl buckets, and we use the emulator to evaluate all
new buckets during onboarding.

3 Evaluation

Our evaluation answers the following questions:

1. How well does Owl provide hot content distribution in
production?

2. How does Owl compare to other centralized and decen-
tralized distribution solutions?

10    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  200  400  600  800  1000  1200  1400

T
ra
ffi
c 
(T
B
/s
)

Time (min)

external fetch
total

Figure 4: Owl traffic over a 24 hour period. The top line
shows total bytes downloaded by all clients averaged every
minute. The bottom line shows the total bytes read from
external storage. The difference between the two lines is the
reduction in external storage load due to Owl peer-to-peer
caching and distribution.

3. How much benefit does Owl realize from delegation?

4. What are the benefits of flexible distribution policies?

5. How well does Owl scale and how many peer resources
does it require?

3.1 Reducing load on external storage

Figure 4 shows a recent (and typical) 24 hours of Owl produc-
tion traffic, aggregated by minute. The top line is the amount
of data read by clients; this is the load they would impose
on external storage without Owl. The bottom line shows the
load on external storage with Owl. During the 24 hours, Owl
clients read 717 PB of data, yet only 36.5 PB was read from
external storage, for a cache hit rate of 94.9%.

The cumulative read rate across all Owl clients varies from
a minimum of 6.84 TB/s to a maximum of 14.75 TB/s. Fig-
ure 4 shows that peer-to-peer distribution and caching hides
the client load spikes almost entirely from external storage;
in fact, the load on external storage never exceeds 0.72 TB/s.

A CDN or hierarchical caching could also reduce the load
on external storage, as in a recently reported study of Cache-
Lib [3]. In that study, each caching node could sustain a max-
imum data rate of approximately 640 MB/s. Thus, even as-
suming perfect load distribution, it would require over 23,000
caching nodes to handle Owl’s peak client request rate for the
reported period, which is more that 200 times the number of
current Owl trackers (112).

Figure 5 shows the scalability benefit of Owl’s decentral-
ized data plane by comparing the relative growth in production
traffic and servers (trackers and superpeers) in 2021. While
Owl’s peak traffic is almost 200 times greater than traffic at

 0

 50

 100

 150

 200

 0  50  100  150  200  250  300

G
ro
w
th

 r
at
e

Time (day)

Server usage growth rate
Daily traffic growth rate

Figure 5: 2021 growth in traffic and server usage. The top
line shows Owl’s daily 2021 traffic load relative to the load at
the beginning of the year, and the bottom line shows the num-
ber of servers (trackers and superpeers) used in production
relative to the number used at the beginning of the year.

the beginning of the year, server usage has grown by less than
a factor of 4.

When Owl replaced hierarchical caching solutions at Meta,
we also saw latency speedups from 50% to 100% for several
large buckets due to better network locality and elimination
of throttling errors.

3.2 Benefits of delegation
Figure 6 shows the number of successful and failed delegation
requests for all Owl trackers over the same 24 hour period.
97.5% of delegation requests are successful; they return a
peer that provides the requested content. The primary reason
why delegation requests fail is because a sharded tracker’s
list of cached objects is stale. The low rate of delegation
failure indicates that a 1 second update interval is sufficient
for the majority of our workloads. We verified this by reducing
the delegation interval to 250 ms in one region for 24 hours.
Owl’s largest bucket saw only a 1% improvement in cache
miss rate, and overall cache miss rate did not improve within
experimental error.

Delegation provides 10.1% of the total data read by Owl
in the 24 hour period. In other words, without delegation,
the Owl cache hit rate would decrease from 94.9% to 85.4%
(increasing the miss rate by nearly a factor of 3). Delegation is
thus an essential factor in providing good download efficiency
with sharded trackers.

3.3 Comparison with prior systems
We next compare Owl with the two peer-to-peer distribution
systems it replaced at Meta. The first such system was a
location-aware implementation of BitTorrent. We configured
roughly half the hosts in one region to download binaries

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    11



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0  200  400  600  800  1000  1200  1400

R
eq
ue
st
s 
pe
r 
se
co
nd

Time (min)

success
failure

Figure 6: Delegation success rate over a 24 hour period.
The top line shows the number of successful delegation re-
quests, and the bottom line shows the number of unsuccessful
delegation requests.

for provisioning via Owl; the remaining half used BitTor-
rent. Both systems had identically-sized disk caches. During
a 24 hour experiment, these hosts downloaded 17.6 million
binaries with a median size of approximately 300 MB. Ta-
ble 2 compares results for the two systems. Owl is signif-
icantly faster than BitTorrent, almost doubling the median
per-client download throughput and more than quintupling
the p95 throughput. Because the client writes downloaded
binaries to local storage, the maximum throughput of Owl
was often capped by the available write bandwidth of local
media on each host; in contrast, BitTorrent rarely reached
the storage bandwidth limit. Additionally, Owl reduces the
load on external storage by 42% due to its higher cache hit
rate (99.21% for Owl and 98.64% for BitTorrent). Both Owl
and BitTorrent provided 4 9’s of availability. BitTorrent had
slightly higher availability due to allowing more retries with
additional backoffs; we later adjusted Owl’s retry policies for
this bucket to more closely match BitTorrent’s policy.

The second prior download system at Meta, StaticTree,
used a relatively-static distribution tree constructed via consis-
tent hashing. Each chunk has one primary cacher that fetches
the chunk from storage and caches it. The primary cacher is
determined by hashing the unique chunk id and selecting a
host from a membership list stored in Zookeeper [9]. Each
tree level corresponds to a location type (e.g., region, data
center, rack, etc.) with the node at each level and location
responsible for a chunk again selected via consistent hashing.
Secondary nodes at each level provide fault tolerance.

Table 3 compares important download metrics for Owl and
StaticTree. Experiments ran for 1–7 days and consisted of
millions of production requests to both systems. Both sys-
tems use identically-sized memory caches. Owl provides 4
9’s of availability in 3 of the 5 experiments and 3 9’s in the re-
maining experiment. StaticTree provides substantially lower
availability because of the time needed to detect and route

around failed nodes in the tree, as well as the need to remove
failed nodes from the membership list in Zookeeper. In con-
trast, with Owl, ephemeral distribution trees let trackers avoid
using a peer immediately for new chunk downloads as soon
as that peer is suspected of being unhealthy or slow.

Compared to StaticTree, Owl improves p50 download la-
tency by an average of 55% and p99 latency by 32% across the
five experiments. While Owl’s latency improvement comes
partially from better failure handling, the improved latency
also results from the tracker dynamically picking the best
data source for a chunk on each getSource request. Trackers
improve latency by considering load on peers and network
locality based on detailed peer and chunk state.

Improving per-chunk download latency often translates
into even greater improvements for application-level metrics.
Table 4 compares the average time to load six different types
of AI models in production via Owl and StaticTree. Owl
speeds up model loading time from 1.44x to 3.48x, for an
average speedup of 2.92.

Cache hit rates are roughly equivalent for the two systems
(StaticTree provides better cache hit rate in 3 out of 5 experi-
ments, but Owl’s cache hit rate improvement in Bucket D is
by far the most substantial). We also examined network local-
ity for peer-to-peer data transfers between the two systems;
we found locality to be roughly the same as both systems
optimize for this metric.

3.4 Optimization results
Owl currently has 106 buckets that use 55 distinct policies
and configurations. We use the Owl emulator to regularly
search for potential policy improvements. Table 5 shows the
optimizations that we found in the previous month. We report
savings in either peak or total storage usage over 24 hours that
we achieved by modifying bucket policies in production. All
of these buckets were seeing throttling from external storage
at the time, so reducing storage usage was an important goal.

For the first two buckets, emulation lets us inform bucket
owners how much improvement in cache hit rate they could
expect from allocating more peer memory to Owl caching.
Because these clients had memory to spare, we were able to
achieve a substantial reduction in peak load. For the remaining
three buckets, we achieved better cache hit rate without the
need for any additional peer resources simply by changing
the policies used by the tracker to manage each bucket.

3.5 Overheads
We measured Owl overhead on peers by profiling one thou-
sand hosts during production usage. Owl’s CPU overhead is
only 0.05% on 26-core Intel Cooper Lake processors. Owl
allocates memory for data caches and for network buffers;
both uses of memory are configurable and controlled by the
per-bucket policy depending on the client’s tradeoff between

12    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Availability Cache hit rate Per-host throughput (MB/s) Latency (s)
p50 p95 p50 p99

Owl 99.994% 99.21% 130.1 20.17 2 132
BitTorrent 99.996% 98.64% 66.9 3.89 4 255

Table 2: Comparing download metrics for Owl and BitTorrent. Both systems are used side-by-side to download binaries in
one region for 24 hours. We compare the percentage of successful downloads (availability), the reduction in load on external
storage (cache hit rate), the median and 95th percentile throughput (download rate), and the median and 99th percentile download
latency for five different buckets.

Bucket Experiment Downloaded System Availability Cache Latency (s)
duration bytes hit rate Average p99

A 7 days 14 PB Owl 99.99% 85% 46.7 47.9
StaticTree 99.60% 86% 72.2 78.2

B 1 day 30 PB Owl 99.99% 99.34% 48.8 107.5
StaticTree 99.91% 99.50% 51.48 122.8

C 1 day 1 PB Owl 99.99% 69.47% 114.7 507.9
StaticTree 99.99% 72.52% 180.5 630.8

D 7 days 22 PB Owl 99.91% 92.70% 44.8 119.0
StaticTree 99.83% 81.87% 99.8 128.4

E 7 days 50 PB Owl 99.96% 99.63% 8.5 69.1
StaticTree 99.95% 99.47% 13.3 112.1

Table 3: Comparing download metrics for Owl and StaticTree. Both systems are used side-by-side in production. We compare
the percentage of successful downloads (availability), the reduction in load on external storage (cache hit rate), and the median
and 99th percentile download latency for four different buckets.

Model Loading Latency (sec.) Speedup
Owl StaticTree

A 31 97 3.13
B 138 199 1.44
C 78 264 3.38
D 75 261 3.48
E 82 282 3.44
F 137 465 3.39

Table 4: Latency improvement in AI model loading Each
row compares the average loading time using StaticTree with
the average loading time using Owl for a different bucket.

performance and resource usage. Outside of these two uses,
Owl uses less than 0.01% of RSS (resident set size) memory
on hosts with 64 GB memory. For comparison, StaticTree
uses 0.15% CPU and 0.03% memory for roughly the same
workload, which is 3x the resources used by Owl.

To verify scalability, we ran a load test with Owl trackers
running on hosts with 64 GB memory, a 26-core Intel Cooper
Lake processor, and a 25 Gb/s NIC. Our load tests showed
that each such Owl tracker can support 2.4 TB/s client traffic
when the Owl cache hit rate is 99%, or 1.5 TB/s client traffic
when the Owl cache hit rate is 70%. The trackers are CPU-
bound at these traffic levels. As an additional confirmation of
being CPU-bound, over 30 days of operation, tracker memory

(RSS) stayed at 11% or less on 64 GB hosts, while CPU
usage spiked up to a maximum of 37%. In practice, Owl
uses many more trackers than these numbers would indicate
to provide redundancy for failures, regional failure isolation,
and performance isolation among critical buckets.

4 Related work

BitTorrent is the most widely-recognized solution for peer-
to-peer data distribution. Classic BitTorrent [7] is highly-
decentralized; the trackers simply help peers find each other.
Trackers originally returned a random list of peers containing
desired data, but later BitTorrent implementations introduced
refinements. For instance, the BitTorrent version at Meta sorts
peers by location before returning the list. Many recent BitTor-
rent versions replace trackers with a decentralized distributed
hash table [14] for so-called trackerless torrent.

Recently, peer-to-peer distribution has been used to pro-
vision containers and virtual machines in public and pri-
vate clouds. Some implementations have used BitTorrent
directly [5]. Uber’s Kraken [1] uses a BitTorrent-like archi-
tecture to provision containers. Kraken uses trackers that re-
turned an ordered list of candidate peers for downloading data,
and it uses dedicated seeders to read from external storage.
Alibaba’s Dragonfly [2] also provides peer-to-peer container
provisioning. Dragonfly’s SuperNodes combine tracker and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    13



Bucket Metric Before After Optimization
A Peak storage usage 124 GB/s 54 GB/s Increase peer cache size from 0.2 GB to 4 GB
B Peak storage usage 63 GB/s 27 GB/s Increase peer cache size from 0.2 GB to 4 GB
C Peak storage usage 95 GB/s 18 GB/s Change selection policy from location-aware to hot-cold
D Daily storage usage 1.7 PB 1.3 PB Change eviction policy from LRU to least-rare
E Daily storage usage 11.7 PB 10.7 PB Change eviction policy from LRU to least-rare

Table 5: Savings from continuous offline analysis. 5 production buckets were optimized in a 1 month period baed on offline
analysis results. The table shows the key metric being optimized and the value of the metric before and after optimization.

seeder functionality.

FaaSNet [17], also from Alibaba, takes an even more de-
centralized approach for distributing serverless containers,
foregoing the use of all centralized nodes and instead utilizing
a tree-based network overlay. Dadi [13] and VMThunder [19]
also use a tree overlay to distribute container/VM images
among peers, with cache misses serviced by nodes higher
in the tree. These approaches are similar to Meta’s Static-
Tree, except that StaticTree constructs locality-aware trees
that minimize the network distance between sibling nodes.

Classically, many tree- and mesh-based networks have
been proposed for high-bandwidth data distribution to many
hosts [4,6,11,12]. While Owl uses a forest of distribution trees,
these trees are per-data-chunk and ephemeral, with edges per-
sisting only for the time needed for a peer to download a single
chunk of data. The trees in prior works are longer-lasting and
used for more than just a single data chunk.

In contrast to all of these prior distribution systems, Owl’s
control plane is significantly more centralized. Owl trackers
make explicit decisions on behalf of peers about what data
to cache and evict, where to download each chunk from, and
how to retry failed downloads. Owl trackers consequently
have a much more complete view of download and peer state,
which allows for making more optimal, global decisions. Cen-
tralization also improves ease-of-management. The classic
argument against centralizing the distribution control plane
has been a projected scalability bottleneck; Owl refutes this ar-
gument by demonstrating that careful design can scale even a
highly-centralized control plane to support millions of clients
and hundreds of petabytes of data distributed per day. Addi-
tionally, Owl demonstrates more flexibility than prior systems
through its customized policies; container provisioning is
currently just a small portion of Owl’s total workload.

The control plane and data plane taxonomy used in this pa-
per comes from software defined networking (SDN). Recently,
Google’s Orion [8] demonstrated the benefits of centralizing
the SDN control plane. Distribution and SDNs both provide
routing and store-and-forward-style caching. Yet, Owl tracks
each individual chunk of data at a level of detail that is in-
feasible for network packets. This is possible because Owl
operates on much larger units of data.

5 Conclusion

Owl distributes over 800 PB of hot content per day to millions
of peers at Meta. Owl combines a decentralized peer-to-peer
data plane with a highly-centralized control plane in which
trackers make detailed decisions for peers such as for where
to fetch each chunk of data, how to retry failed fetches, and
which chunks to cache in peer memory and storage. Owl
is highly-customizable through tracker policies that allow a
unique configuration for each type of client.

6 Acknowledgements

We thank our shepherd, Doug Terry, and the anonymous re-
viewers for providing valuable feedback that allowed us to
improve this paper. We also thank CQ Tang for reading early
iterations of the paper and helping us focus our discussion.

References

[1] Introducing Kraken, an open source peer-to-
peer docker registry. https://eng.uber.com/
introducing-kraken/.

[2] What is Dragonfly? https://d7y.io/en-us/docs/
overview/what_is_dragonfly.html.

[3] BERG, B., BERGER, D. S., MCALLISTER, S.,
GROSOF, I., GUNASEKAR, S., LU, J., UHLAR, M.,
CARRID, J., BECKMANN, N., HARCHOL-BALTER,
M., AND GANGER, G. R. The CacheLib caching
engine: Design and experiences at scale. In Proceedings
of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (November 2020).

[4] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M.,
NANDI, A., ROWSTRON, A., AND SINGH, A. Split-
stream: High-bandwidth multicast in cooperative envi-
ronments. In Proceedings of the 19th Symposium on
Operating Systems Principles (SOSP) (October 2003).

[5] CHEN, Z., ZHAO, Y., MIAO, X., CHEN, Y., AND
WANG, Q. Rapid provisioning of cloud infrastructure
leveraging peer-to-peer networks. In Proceedings of the

14    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://eng.uber.com/introducing-kraken/
https://eng.uber.com/introducing-kraken/
https://d7y.io/en-us/docs/overview/what_is_dragonfly.html
https://d7y.io/en-us/docs/overview/what_is_dragonfly.html


9th IEEE Conference on Distributed Computing Work-
shops (2009).

[6] CHU, Y.-H., RAO, S. G., SESHAN, S., AND ZHANG, H.
Enabling conferencing applications on the internetusing
an overlay multicast architecture. In Proceedings of
ACM SIGCOMM (August 2001).

[7] COHEN, B. Incentives build robustness in BitTorrent.
In Proceedings of the Workshop on Economics of Peer-
to-Peer Systems (2003).

[8] FERGUSON, A. D., GRIBBLE, S., HONG, C.-Y.,
KILLIAN, C., MOHSIN, W., MUEHE, H., ONG, J.,
POUTIEVSKI, L., SINGH, A., VICISANO, L., ALIMI,
R., CHEN, S. S., CONLEY, M., MANDAL, S., NA-
GARAJ, K., BOLLINENI, K. N., SABAA, A., ZHANG,
S., ZHU, M., AND VAHDAT, A. Orion: Google’s
software-defined networking control plane. In Pro-
ceesings of the 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (April
2021).

[9] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,
B. ZooKeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the USENIX Annual Techni-
cal Conference (2010).

[10] JACOBSON, S. H. Analyzing the performance of local
search algorithms using generalized hill climbing algo-
rithms. Essays and Surveys in Metaheuristics 14 (2002),
441–467.

[11] JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L.,
KAASHOEK, M. F., AND O’TOOLE, J. W. Overcast:
Reliable multicasting with an overlay network. In Pro-
ceedings of the 1st USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (October
2000).

[12] KOSTIC, D., RODRIGUEZ, A., ALBRECHT, J., AND
VAHDAT, A. Bullet: High bandwidth data dissemination
using an overlay mesh. In Proceedings of the 19th
Symposium on Operating Systems Principles (SOSP)
(October 2003).

[13] LI, H., YUAN, Y., DU, R., MA, K., LIU, L., AND HSU,
W. DADI: Block-level image service for agile and elas-
tic application deployment. In Proceedings of the 2020
USENIX Annual Technical Conference (July 2020).

[14] MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A
peer-to-peer information system based on the xor metric.
In Proceedings of the International Workshop on Peer-
to-Peer Systems (2002), pp. 53–65.

[15] TANG, C., KOOBURAT, T., VENKATACHALAM, P.,
CHANDER, A., WEN, Z., NARAYANAN, A., DOWELL,
P., AND KARL, R. Holistic Configuration Management
at Facebook. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP’15) (Monterey,
CA, Oct. 2015).

[16] TANG, C., YU, K., VEERARAGHAVAN, K., KALDOR,
J., MICHELSON, S., KOOBURAT, T., ANBUDURAI, A.,
CLARK, M., GOGIA, K., CHENG, L., CHRISTENSEN,
B., GARTRELL, A., KHUTORNENKO, M., KULKARNI,
S., PAWLOWSKI, M., PELKONEN, T., RODRIGUES, A.,
TIBREWAL, R., PAWLOWSKI, M., PELKONEN, T., RO-
DRIGUES, A., TIBREWAL, R., VENKATESAN, V., AND
ZHANG, P. Twine: A Unified Cluster Management Sys-
tem for Shared Infrastructure. In Proceedings of the
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) 2020 (November 2020).

[17] WANG, A., CHANG, S., TIAN, H., WANG, H., YANG,
H., LI, H., DU, R., AND CHENG, Y. FaasNet: Scal-
able and fast provisioning of custom serverless container
runtimes at Alibaba cloud function compute. In Proceed-
ings of the 2021 USENIX Annual Technical Conference
(July 2021).

[18] YANG, J., YUE, Y., AND RAHMI, K. A large scale
analysis of hundreds of in-memory cache clusters at
Twitter. In Proceedings of the 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI) (November 2020).

[19] ZHANG, Z. Z., LI, Z., WU, K., LI, D., LI, H., PENG,
Y., AND LU, X. VMThunder: Fast provisioning of large-
scale virtual machine clusters. IEEE Transactions on
Parallel and Distributed Systems 25, 12 (2014), 3328–
–3338.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    15





BlockFlex: Enabling Storage Harvesting
with Software-Defined Flash in Modern Cloud Platforms

Benjamin Reidys∗ Jinghan Sun∗ Anirudh Badam† Shadi Noghabi† Jian Huang

University of Illinois at Urbana-Champaign †Microsoft Research

Abstract
Cloud platforms today make efficient use of storage resources
by slicing them among multi-tenant applications on demand.
However, our study discloses that cloud storage is still seriously
underutilized for both allocated and unallocated storage. Al-
though cloud providers have developed harvesting techniques
to allow evictable virtual machines (VMs) to use unallocated re-
sources, these techniques cannot be directly applied to storage
resources, due to the lack of systematic support for the isolation
of space, bandwidth, and data security in storage devices.

In this paper, we present BlockFlex, a learning-based
storage harvesting framework, which can harvest available
flash-based storage resources at a fine-grained granularity
in modern cloud platforms. We rethink the abstractions of
storage virtualization and enable transparent harvesting of
both allocated and unallocated storage for evictable VMs.
BlockFlex explores both heuristics and learning-based
approaches to maximize the storage utilization, while ensuring
the performance and security isolation between regular
and evictable VMs at the storage device level. We develop
BlockFlex with programmable solid-state drives (SSDs) and
demonstrate its efficiency with various datacenter workloads.

1 Introduction

In modern cloud platforms, storage devices such as flash-based
solid-state drives (SSDs) have been virtualized as system-wide
shared resources to provide storage services across multiple
application instances [5, 9, 14, 29, 38, 65]. This enables
cloud platforms to make efficient use of storage capacity
and bandwidth by slicing them among multiple multi-tenant
virtual machines (VMs) [43,60,75]. However, our study of the
event traces collected from popular cloud platforms [3, 9, 22]
reveals that storage I/O is still significantly underutilized for
both unallocated (unsold) and allocated storage. For instance,
we find that 40% of the cloud storage servers have 25% of

*Co-primary authors.

their storage unallocated, and the I/O utilization of allocated
storage is under 33% on average (see Figure 1 and §2.1).

To improve the resource efficiency in the cloud, providers
offer evictable VMs (i.e., Spot VMs or Harvest VMs) [4,23,62].
These evictable VMs allow users to use unallocated resources
with low priority, i.e., the resources of evictable VMs can
be reclaimed by regular VMs at any time. Recent stud-
ies [5, 48, 69, 76] advanced this technique by improving the
resource allocation and scheduling for evictable VMs with
heuristic-based harvesting approaches.

However, prior work on resource harvesting mainly focused
on CPU and memory resources, which cannot be directly
be applied to cloud storage for three reasons. First, current
cloud storage virtualization approaches do not support
storage harvesting, and dynamic reallocation of resources is
not feasible. Second, cloud storage usually stores sensitive
application data, which requires careful management for
storage allocation and deallocation. Third, cloud storage
can suffer from significant harvesting overhead due to the
block erasure and metadata updates, which requires specific
optimizations for enabling efficient storage harvesting.

In this paper, we present BlockFlex, the first learning-based
storage harvesting framework, which enables transparent
storage harvesting for both allocated and unallocated storage
at a fine-grained granularity, while ensuring data privacy for
cloud users with low harvesting overhead.

To develop BlockFlex, we first conduct a characterization
study of storage resources that could be harvested in a cloud
platform. According to our study (see §2), we find that for
unallocated VMs configured with 512GB SSD, 78%, 43%,
and 25% of them can be harvested and used for 1 hour, 6 hours,
and 12 hours, respectively. This provides us the heuristic
information about how these unallocated storage resources
can be utilized. As for the allocated storage for VMs, an
average of 70% can be harvested, however, the time available
for harvesting varies depending on the workloads running
in the VMs. Our study discloses the dynamics of available
storage resources, which drives us to develop a learning-based
approach for assisting the storage harvesting.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    17



To enable transparent and fine-grained storage harvesting,
we rethink the abstractions of storage virtualization for flash-
based SSDs. The recent development of software-defined flash
(SDF) in datacenters [29, 51] allows VMs to map their storage
to dedicated flash channels. We build on top of the SDF ab-
straction and propose a new class of virtualized SSDs, named
ghost vSSD. A ghost vSSD is created by harvesting free flash
blocks from either unallocated or allocated but unused storage.
The ghost vSSD provides the flexibility for fine-grained
storage allocation and deallocation as well as block-level
state tracking. It enables storage harvesting at the device level,
which is transparent to the upper-level applications running on
the VMs. Each ghost vSSD aims to meet the storage capacity
and bandwidth requests from an evictable VM, however if
needed, they can be reclaimed by regular VMs at any time.

However, frequent preemption and harvesting will in-
evitably introduce performance overheads to both regular VMs
and evictable VMs, and even cause VM recreations. Therefore,
it is desirable to provision the best-fit storage resource for an
evictable VM. To achieve this, we develop learning-based
techniques to predict the storage demands as well as the
storage resources available for harvesting, in terms of storage
capacity, bandwidth, and the duration available for harvesting.
With these predictions, for each ghost vSSD, BlockFlex
ensures the harvested storage resource will maximally meet
the requirements of evictable VMs, while minimizing the
opportunity of being preempted unexpectedly by regular VMs.

BlockFlex uses the Long Short-Term Memory (LSTM) net-
work for online predictions at runtime, because of its low over-
head and ability to make time-series predictions. We improve
the prediction accuracy by developing different LSTM models
for different dimensions of storage properties. For the pre-
dictions of storage capacity, bandwidth, and the time avail-
able for harvesting, BlockFlex can reach at 94.1%, 95.3%, and
93.1% accuracy, respectively, with slight over-provisioning.
Upon mispredictions, BlockFlex implements different excep-
tion handlers for different cases (see the details in Table 1).
As mispredictions do not happen frequently, the performance
impact of misprediction handling is negligible in BlockFlex.

To minimize the performance interference between
the regular VM and evictable VM caused by the storage
harvesting, we assign higher priority to I/O requests from
regular VMs when sharing the same SSDs with evictable VMs.
When the harvested storage needs to be reclaimed, its flash
blocks will be erased first to ensure data security, and then
returned back to the corresponding regular VMs. Overall, we
make the following contributions in this paper.

• We conduct a characterization study of the storage efficiency
in different cloud platforms, our observations motivate the
desirable need for storage harvesting.

• We rethink the abstractions of storage virtualization in
modern cloud platforms for enabling fine-grained storage
harvesting with software-defined flash.

0 1 2 3 4 5 6 7
Time (days)

0
5

10
15
20
25
30
35

St
or

ag
e 

B
W

 U
til

 (%
)

(a) Storage utilization per VM.

0 1 2 3 4 5 6 7
Time (days)

0
5

10
15
20
25
30
35

St
or

ag
e 

B
W

 U
til

 (%
)

(b) Storage utilization per server.

Figure 1: The bandwidth utilization of allocated cloud storage.

• We build a learning-based storage harvesting framework
named BlockFlex that can harvest both unallocated and
allocated storage resources.

• We develop lightweight predictors that can make efficient
predictions for both storage demand and availability in
terms of storage capacity, bandwidth, and the time available
for harvesting.

• We implement BlockFlex with real programmable SSDs
and show its efficiency with various datacenter workloads.

Our experiments show that BlockFlex can improve the
overall storage utilization by up to 1.75× in cloud platforms.
BlockFlex is lightweight, it incurs trivial additional overheads
to cloud platforms. BlockFlex can improve the performance
of evictable VMs running with batch-processing workloads by
1.68× on average, while having negligible negative impact on
the performance of regular VMs. The codebase of BlockFlex
is available at https://github.com/platformxlab/blockflex.

2 Characterization for Storage Harvesting

Although storage virtualization has been widely deployed
in cloud platforms, we observe that storage devices are still
significantly underutilized, in terms of both storage bandwidth
and capacity. In this section, we first quantify the cloud storage
utilization, and then we conduct a hypothetical analysis of the
opportunities for storage harvesting.

2.1 Cloud Storage Utilization
The storage underutilization in cloud platforms is due to both
the poor utilization of allocated storage resources and the large
portion of unallocated resources, as we discuss below.
Allocated storage resources. We conduct the storage
utilization study based on the open-source cloud traces from
Alibaba [3] and Google [22]. These traces track the usage
of allocated storage resources across both VMs and physical
servers. Alibaba cloud traces contain the VM utilization logs
of 4K servers over 8 days, and Google cloud traces were
collected from 12.5K servers over 29 days. As different cloud
traces emphasize different aspects of the cloud storage usage
(e.g., storage capacity, I/O bandwidth, server utilization, and

18    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/platformxlab/blockflex


0 20 40 60 80 100
Percentage of VMs (%)

0
20
40
60
80

100
St

or
ag

e 
C

ap
ac

ity
 

 U
til

iz
at

io
n 

(%
)

Maximum
Average
Minimum

Figure 2: The capacity utilization of allocated cloud storage.

0 20 40 60 80 100
Percentage of Servers (%)

0
20
40
60
80

100

U
ns

ol
d 

St
or

ag
e 

(%
)

Maximum
Average
Minimum

Figure 3: Unallocated storage in cloud servers.

VM utilization), we analyze both traces. We summarize our
study results as follows:

• Storage bandwidth: We show the bandwidth utilization of
Alibaba cloud [3] in Figure 1. The bandwidth utilization
of allocated storage across all VMs is below 33%, and the
average bandwidth utilization across all VMs over their
entire lifetime is 9.2%. For physical servers that usually
host multiple VMs, we obtain a similar trend: the bandwidth
utilization of the physical storage devices is below 31%, and
the average bandwidth utilization is 8.6%.

• Storage capacity: We present the cumulative distribution of
storage capacity across the VMs of Google cloud [22] in Fig-
ure 2. We find that 20% of the VMs almost did not use their
allocated storage capacity, 50% of the VMs used only 26.4%
of the allocated storage capacity on average, and only 20% of
the VMs used up to 90% of their allocated storage. Although
different VMs may allocate different storage capacities, our
study shows that their capacity utilization is surprisingly low.

The low utilization of allocated cloud storage resources
is mainly due to two major reasons. First, cloud platforms
usually allocate storage resource associated with each VM at a
coarse-grained granularity for simplified storage management.
For instance, the storage capacity of a VM in the Azure Cloud
is linearly proportional to the number of allocated processor
cores [5, 76], no matter whether the VM is I/O-intensive
or CPU-intensive. Second, storage allocation is usually
conducted in a static manner, while the storage usage of the
workloads running in each VM changes dynamically over
time. Therefore, the user of a VM has to over-provision
sufficient storage for the peak demand upon VM creation.
Unallocated (unsold) storage resource. Beyond the allocated
storage, the unallocated (unsold) storage in cloud platforms
is another source for storage underutilization. This is because
cloud providers usually over-provision VMs in their resource
pool to satisfy the elasticity requirement from customers [5].
As each unsold VM consumes a fixed amount of resources

10% 25% 50%
Harvested Bandwidth

0
20
40
60
80

100

%
 o

f V
M

s

1 hr 6 hrs 12 hrs 3 days

Figure 4: The availability of allocated storage for harvesting.

(e.g., processor cores, memory, and storage), it will result in
storage resources unallocated.

To further understand the unallocated storage, we analyze
the cloud traces of unsold storage resources from Azure
Cloud [5]. The traces include the VM allocation/deallocation
logs for about 1,400 servers over 24 hours. As shown in
Figure 3, nearly 70% of cloud servers have unsold storage
resources, 50% of the servers have an average of 17.3% of
their storage unallocated, and 20% of the servers have at least
20.1% of their storage unallocated. Given that a datacenter
has thousands of servers, the unallocated storage is another
critical source for the storage underutilization.

2.2 Opportunities for Storage Harvesting
As discussed in §2.1, we identify two sources for storage
harvesting: unallocated storage and allocated storage. In
this part, we conduct a hypothetical analysis of these storage
resources to understand their potential for storage harvesting.
Analysis methodology. We study the cloud traces as discussed
in §2.1, with a focus on the storage resource allocation and
deallocation. We analyze the available storage in allocated
and unallocated VMs over time, and check (1) whether we
can harvest storage from them for a hypothetical harvest
VM requesting a certain amount of storage capacity; (2) how
long the harvested storage can last; (3) how many storage
resources we can potentially harvest for the hypothetical
harvest VMs. Note that Google and Alibaba cloud traces only
report normalized numbers, so we use percentages rather than
absolute numbers in our analysis.
Allocated storage resource. We first apply the hypothetical
analysis on the allocated storage resource. Given a hypo-
thetical harvest VM requesting different percentages (10%,
25%, and 50%) of storage bandwidth from a regular VM, we
investigate how many servers have such available bandwidth,
and how long these resources are available for harvesting.
We report the average percentage across the entire trace. The
results are summarized in Figure 4. We observe that more than
91% of the servers have harvestable bandwidth for 12 hours,
and about 76% of the servers have harvestable bandwidth for 3
days. As we harvest storage for a shorter time (i.e., less than 12
hours), the portion of the available servers is consistently high.
This is due to the constant low storage utilization of allocated
VMs, as shown in Figure 1.
Unallocated storage resource. We now explore the unallo-
cated storage resource. Given a hypothetical harvest VM that

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    19



128GB 256GB 512GB
Storage capacity

0

20

40

60
%

 o
f s

er
ve

rs
1 hr
6 hrs
12 hrs

Figure 5: The availability of unallocated storage for harvesting.

2 4 6 8 10 12
Harvestable Hours

0

20

40

60

80

100

%
 o

f V
M

s

128 GB
256 GB
512 GB

Figure 6: The availability of unsold regular VMs for storage
harvesting with different capacities.

requests different storage capacities (128GB, 256GB, and
512GB), we analyze how many servers can satisfy the request
from this harvest VM, and how long the available storage can
last. We present the study results in Figure 5. Our study finds
that 32% of the servers can satisfy the requirement of 128GB
storage capacity for 12 hours. If the harvest VM requests
storage for a shorter time, such as 1 hour, 50% of the servers
can meet the request. As harvest VM increases the requested
storage capacity, the number of harvestable servers decreases.

We also study unsold regular VMs. We vary the storage
capacity request from 128GB to 512GB for the hypothetical
harvest VM, and demonstrate our study results in Figure 6. For
a hypothetical harvest VM of 128GB storage capacity, 94%,
76%, and 62% of the unsold regular VMs can be harvested for
1 hours, 6 hours, and 12 hours, respectively. As we increase the
requested storage capacity for the harvest VM, the percentage
of available unsold regular VMs drops. However, we still find
a decent amount of unsold regular VMs can be harvested. For
instance, for the harvest VM that requests 512GB storage
capacity, 43% and 24% of the unsold VMs are available for
6 hours and 12 hours, respectively.

It is worth noting that the storage bandwidth is usually
allocated proportionally with storage capacity in cloud
platforms [19, 29]. This is also reflected in the cloud traces we
studied in this paper. For instance, as for the VM with 128GB,
256GB, and 512GB, the storage bandwidth is 192 MB/s, 384
MB/s, and 768 MB/s, respectively. Thus, our study on the
unsold storage capacity also applies to the storage bandwidth.
Takeaways. Our characterization study shows that:

• Both unallocated and allocated storage have sufficient
storage capacity and bandwidth for harvesting, and they are
available long enough to facilitate harvesting.

• The harvestable storage resource varies depending on
the storage capacity and time available for harvesting.

vSSD vSSD vSSD vSSD

SSD Virtualization 

Flash

Flash

Flash
Controller

Channel 0

Flash

Flash

Flash
Controller

Channel 1

Flash

Flash

Flash
Controller

Channel 2

Flash

Flash

Flash
Controller

Channel 3

Figure 7: Storage virtualization with software-defined flash.

Harvesting a large storage capacity for a longer time has a
lower chance of identifying the available storage resource.

• The harvestable storage resource from unallocated VMs and
allocated VMs shows different availability patterns and trade-
offs. We have a larger chance to harvest storage in allocated
VMs, but this may have interference with the regular VM.
The harvestable storage from unallocated VMs is limited,
but it has no impact on the performance of regular VMs.

With BlockFlex, we aim to improve the cloud storage
utilization by harvesting the available storage resources from
both allocated and unallocated storage.

3 Technical Background

To facilitate our discussion, we first present the essential
technical background of storage virtualization in cloud
platforms, and then discuss the harvest VMs that will benefit
from storage harvesting.

3.1 Storage Virtualization and SDF
In modern cloud platforms, storage virtualization has become
the backbone of the storage infrastructures, in which storage
devices such as flash-based solid-state drives (SSDs) are
virtualized and shared by multiple VMs in order to improve
storage utilization [29, 38, 60, 65]. The storage virtualization
layer provides the system abstraction of virtualized storage
devices (e.g., virtual disks) and hides the underlying hardware
complexities from upper-level VMs. Each VM can have one or
more virtual storage devices, and each virtual storage device
can be mapped to one or more physical storage devices.

At the same time, SSDs are increasingly being adopted
by cloud providers for their low latency and high through-
put [1, 29, 30, 46]. Internally, an SSD consists of multiple flash
channels, each channel has multiple flash chips, and each chip
has thousands of flash blocks (see Figure 7). Each channel
can issue I/O requests independently, thus, offering high
parallelism and performance isolation. SSDs can only write
data to free blocks, and once a free block is written, it is no
longer available for future writes until it is erased. However, the
erase operation is time-consuming. Thus, writes are issued to

20    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



flash blocks that have been erased in advance (i.e., out-of-place
update). Because of this, SSDs employ a flash translation layer
(FTL) to maintain the logical-to-physical address mapping,
and manage the garbage collection (GC) operations.

To ultimately exploit the performance benefits of SSDs in the
cloud, software-defined flash (SDF) was developed [39,51]. In
the context of SSD virtualization, SDF allows the upper-level
VM to map its virtual SSD (vSSD) to a set of flash channels,
as shown in Figure 7. Therefore, cloud providers can allocate
storage capacity and bandwidth to each vSSD per its request
by allocating fewer/more flash channels, following the pay-as-
you-go model, while enabling the device-level performance
isolation between vSSDs. The vSSD performs like a conven-
tional storage disk, it provides the block interface to upper-level
software, and uses a mapping table to index the logical-to-
physical block address mappings [29, 51]. As SDF enables
various cloud services such as Database-as-a-Service (DaaS)
and Infrastructure-as-a-Service (IaaS) to achieve predictable
storage performance and satisfy their service level objectives
(SLOs), it has become an essential component in modern cloud
platforms [16, 31, 55, 56, 64]. In this work, we develop Block-
Flex based on the software-defined flash infrastructure.

3.2 Harvest Virtual Machine

To improve the resource utilization in cloud platforms, a few
VM techniques have been developed recently [4, 5, 12, 20, 58,
62, 69]. Cloud providers offer evictable VMs or Spot VMs that
run with lower priority than regular VMs, they can be evicted
if resources are needed by a regular VM [4,62]. With evictable
VMs, cloud providers can sell unsold resources at a lower price
while providing resource guarantees for regular VMs. There-
fore, cloud customers usually rent evictable VMs to run batch-
processing workloads or similar applications that have lower
requirements on resource guarantees. Based on the evictable
VMs, researchers developed harvest VM [5], elastic VM [69],
and memory-harvesting VM [20], which further improve the
cloud resource utilization by enabling flexible and dynamic
harvesting of unallocated resources. To simplify the discus-
sion, we will use harvest VM to represent these aforementioned
VMs for resource harvesting in the remainder of the paper.

A majority of these harvest VMs were developed to harvest
CPU and memory resources, and none of them can be directly
applied to the storage resources. Additionally, prior work
proposed various VM scheduling techniques by co-locating
multi-tenant applications on the shared bare-metal servers to
improve the resource efficiency [41, 43, 66, 71]. However, our
study of various cloud traces discloses that the storage utiliza-
tion is still a severe issue within modern cloud platforms. Since
storage virtualization today assumes exclusive ownership of
storage resources for each VM, it inevitably causes storage
underutilization. In this work, we enable the storage harvesting
for harvest VMs to improve the cloud storage utilization.

4 Design and Implementation

In this section, we first discuss the design goals and challenges
of BlockFlex. After that, we will present the overview of the
system as well as the design and implementation details of
each component.

4.1 Design Goals and Challenges
As we develop BlockFlex to enable efficient storage harvesting,
we aim to achieve the following goals:

• The storage harvesting should satisfy the storage require-
ments from harvest VMs while minimizing unexpected
preemptions by regular VMs.

• The storage harvesting should be transparent to the upper-
level VM to minimize changes to the VM and applications,
as well as facilitate its production deployment.

• The storage harvesting should have minimal negative
impact on the regular VMs to guarantee the quality of cloud
services as we improve the global storage utilization.

• The storage harvesting should ensure the data safety, when
it temporarily allocates unused data blocks from both
allocated and unallocated storage to the harvest VMs.

Since cloud platforms today do not provide system support
for storage harvesting, it is not easy to achieve the above goals.
Additionally, existing resource harvesting techniques cannot
be directly applied to storage resources. Specifically, we have
to overcome the following challenges. First, cloud customers
usually rely on the storage to permanently store their data, the
data durability and availability are critical for storage services.
This makes the storage harvesting fundamentally more
challenging than the harvesting of CPU and memory resources.
For example, shrinking available storage (upon reclamation)
may result in data loss, while reclaiming memory and CPU
resources mainly causes reduced performance. Second, the
storage virtualization and management are different from that
of CPU and memory resources, especially for SSDs that have
intrinsic properties (see §3.1). Therefore, sharing storage re-
sources while maintaining isolation among tenants needs new
techniques. Third, storage allocation and deallocation usually
incur more performance overhead than the context switch
overhead caused by harvesting CPU and memory resources,
which requires special development efforts for enabling the
deployment of storage harvesting in cloud platforms.

4.2 System Overview
To the best of our knowledge, BlockFlex is the first storage
harvesting framework built based on modern software-defined
storage infrastructure. We present the system architecture
of BlockFlex in Figure 8. To manage the harvested storage,
we propose a new abstraction, named ghost vSSD (gSSD),
on top of software-defined flash (§4.3). The ghost vSSDs

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    21



vSSD Manager
ghost vSSD

ghost vSSD
......

Unallocated VM Regular VM HarvestVM HarvestVM

Online
Predictor

vSSD
Online

Predictor

vSSD
Online

Predictor

vSSD
Heuristic-based

Predictor

vSSD

SSD Virtualization

Harvested
Storage

 BlockFlex

Figure 8: System overview of BlockFlex.

can be attached to created vSSDs , therefore, no changes are
required to VMs. BlockFlex will deploy a predictor in each
vSSD (§4.4). For harvest VMs, BlockFlex will predict their
demanded storage capacity and bandwidth, as well as how
long the demand will last. For regular VMs, BlockFlex will
predict their available storage capacity and bandwidth, as
well as their available time. For unused storage resources,
BlockFlex will use both heuristic-based approaches to predict
the duration time available for harvesting. Based on the
prediction, BlockFlex will make a best-fit match and allocate
unused storage to the harvest VM. In case resource preemption
happens to the harvest VM (caused by misprediction),
BlockFlex will release the harvested storage to the regular VM
and handle the exceptions for different scenarios (§4.5).

Since BlockFlex enables storage harvesting at the system
virtualization level, it does not change the upper-level dura-
bility model (e.g., data replication) offered by current cloud
storage infrastructures. For harvest VMs, cloud platforms
assume their end users are aware of the relaxed durability
guarantees and their applications may suffer from early
reclamations. BlockFlex makes the best effort to allocate new
gSSDs to ensure the data durability for harvest VMs. However,
similar to Spot VMs [63], the owners of harvest VMs should
be aware of the risk and take responsibility for their data as
the cost of harvest VMs is much lower than regular VMs. As
BlockFlex is deployed on top of existing software-defined
storage infrastructure, it runs in a distributed environment
where the global control plane manages the gSSDs and their
allocations/deallocations. In the following section, we will
discuss each technique proposed in BlockFlex, respectively.

4.3 New Abstraction for Storage Harvesting
As discussed in §3.1, with software-defined flash, the storage
virtualization can map each virtual SSD to a number of flash
channels depending on the storage capacity and bandwidth
requested by the associated VM. We show two typical exam-
ples in Figure 9. Suppose we have a 1TB SSD that contains 16
channels. Each channel has 64GB and delivers a bandwidth of
70MB/s. As shown in Figure 9 (a), the cloud platform allocates
two flash channels to vSSD-2 (128GB), leaving other flash

...

CHCH CH

vSSD-1

CH CH

vSSD-2

(a) Allocated and Unallocated vSSDs (b) Harvest available storage

...

CHCH CH

vSSD-2

CH CH

vSSD-1

gSSD-2
gSSD-1

Figure 9: Examples of harvesting storage. CH: flash channel;
vSSD-1: unsold storage; vSSD-2: allocated storage; gSSD-1:
harvest unsold storage; gSSD-2: harvest allocated storage.

channels temporarily unused (e.g., vSSD-1). Both vSSD-1 and
vSSD-2 could provide opportunities for storage harvesting.
For example, as shown in Figure 9(b), the entire unsold vSSD-1
(gSSD-1) and part of the allocated vSSD-2 (gSSD-2) could
be harvested depending on their availability. The SDF offers
the flexibility to allocate fewer/more resources to each gSSD.

However, the harvested storage still belongs to the original
vSSDs, which could be preempted by existing or newly
allocated regular VMs. Since the availability of harvested
storage varies depending on the workloads in the cloud
platform, it increases the complexity of storage harvesting.

4.3.1 Definition of Ghost vSSD

To simplify the management of harvested storage, we develop
the gSSD abstraction. Its block interface is the same as that
of the regular vSSD. Therefore, no code modifications are
required for the VMs. Similar to vSSDs, each gSSD has a
block-level mapping table to index the mappings of logical
block addresses to physical block addresses , and a free block
list to manage the free flash blocks. However, since each gSSD
is created/borrowed from regular vSSDs and has a different
lifetime (the time available for harvesting), we maintain a
metadata structure for each gSSD, as shown in Figure 10.

The metadata of a gSSD includes its maximum bandwidth
and capacity. We use the number of flash channels to represent
the storage bandwidth, and the number of flash blocks to
represent the storage capacity. As the actual storage bandwidth
and capacity offered by a gSSD could vary at runtime, we
use their maximum values because they are provided on a
best-effort basis. We use the expire to indicate when the gSSD
will no longer be available for use. This value is predicted
with our duration predictor (see the detailed discussion in
§4.4). The metadata structure also has a bit in_use to indicate
whether the gSSD has been assigned to a harvest VM or not.
If yes, the vm_id stores the ID of the corresponding harvest
VM. The home pointer points to the regular vSSD from which
the blocks in the gSSD are harvested. The ghost points to the
created ghost vSSD after storage harvesting. The metadata
is stored in the gSSD. It is initialized when the gSSD is created
and updated when the gSSD is harvested/reclaimed.

22    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



typedef struct vmeta { 

} vmeta_t;

   int bandwidth        ; maximum bandwidth of gSSD
   int capacity         ; maximum capacity of gSSD
   int expire           ; how long the gSSD lasts

   struct vssd* home    ; vSSD that owns these blocks
   struct vssd* ghost   ; points to the attached gSSD 

   boolean in_use       ; used by harvest VM or not
   string vm_id         ; harvest VM ID

Figure 10: Metadata of a ghost vSSD in BlockFlex.

4.3.2 Management of Ghost vSSDs

We now discuss the gSSD creation and management.
Creating gSSDs. Instead of harvesting storage upon requests,
BlockFlex allows regular vSSDs to proactively create gSSDs
and add them into the gSSD pool managed by the vSSD
manager (see Figure 8). This removes the harvesting procedure
from the critical path. A vSSD creates a gSSD when its
predictor predicts that it will have available storage resources
for harvesting. These predictions occur at regular intervals
(every three minutes by default). In order to create a new
gSSD, BlockFlex will harvest free blocks from the vSSD and
create a mapping table for them. Following our prior study
on SDF [29], we use block-level address mapping tables
for indexing flash blocks in the gSSDs/vSSDs. We align the
address mapping granularity and flash erase granularity to
simplify the storage management with improved efficiency.
And each gSSD/vSSD has its own mapping table. Although
the flash blocks of a gSSD could be harvested from a vSSD, the
corresponding gSSD and vSSD will not share these harvested
flash blocks. Therefore, we do not need to synchronize the
mapping table entries between the gSSD and vSSD at runtime.

The metadata of a gSSD (Figure 10) is initialized with the
number of flash channels harvested (bandwidth), the number
of free blocks (capacity), and the predicted time the resources
will be available for use (expire). The home of the gSSD will
point to the regular vSSD, and the ghost will point to the newly
created gSSD. At the same time, the gSSD will be added to
the gSSD pool for serving future harvesting requests.

To simplify the management of gSSDs, we only create
a gSSD when harvesting a chunk of resources. BlockFlex
enables the storage harvesting at the granularity of a flash
channel, 16GB size, and 30-minute for storage bandwidth,
capacity, and duration time, respectively. To ensure reasonable
performance isolation between regular VMs and harvest VMs,
we restrict each vSSD to provide only one gSSD.
Managing gSSDs. To facilitate fast gSSD lookup, we organize
gSSDs in a set of lists in the vSSD manager with considering
the sorting in three dimensions: storage bandwidth, capacity,
and time available for harvesting. We optimize the lists based
on our observations that (1) the storage bandwidth and capacity
are correlated with the number of channels available in a vSSD;
(2) the time available for harvesting for each gSSD needs to be
updated at regular intervals; and (3) we will not update the max-

32GB,70MB/s

gSSD

gSSD
gSSD gSSD gSSD

A 
Se

t o
f L

in
ke

d 
Li

st
s

BW: 70MB/s
Capacity: 32GB

Expire: 2 hrs

Home: vSSD

32GB,140MB/s

256GB,280MB/s
256GB,140MB/s

32GB,280MB/s

<Capacity, Bandwidth>

Ghost: N/A

In-use: 0
VM_id: N/A

Sorted by Expiration Time

Figure 11: The organization of the gSSD pool in BlockFlex.

imum storage capacity and bandwidth over the lifetime of a
gSSD. Therefore, as shown in Figure 11, BlockFlex maintains
a set of gSSD lists sorted by <capacity, bandwidth>. In each list,
the gSSDs are sorted by their expiration time from the farthest
one to the nearest one. There is a timer running periodically
(per 15 minutes by default) to update the expire time in the
gSSD pool. For the expired gSSDs but have not been allocated
to any harvest VM, BlockFlex will remove them from the list.
Harvesting gSSDs. Upon receiving a request for storage
harvesting, BlockFlex will check the gSSD pool to identify
a best-fit match for the requested storage capacity, bandwidth,
and time available for harvesting. BlockFlex uses the best-fit
matching policy to minimize the waste of storage resources.
These requested parameters are obtained from the predictors
deployed in the vSSD of the corresponding harvest VM (see
§4.4). Since the gSSD pool is sorted, we use the binary search
to first locate the corresponding list that matches with the
requested storage capacity and bandwidth. After that, we walk
through the list until identifying an available gSSD whose
expire time matches with the requested harvestable time.

Once a gSSD is identified in the pool, we set its in_use to
1 to indicate this gSSD has been assigned to a harvest VM
and the corresponding harvest VM ID is recorded. BlockFlex
supports concurrent gSSD allocations by managing the gSSD
lists using non-blocking linked-lists implementation with the
compare-and-swap operations [27]. Compared to the lifetime
of a gSSD (hours or even days), the gSSD allocation overhead
(a few microseconds) is trivial.

With a harvested gSSD, BlockFlex will assign its flash
blocks to the vSSD of the corresponding harvest VM. This
harvesting procedure is transparent to the harvest VM, as we
track these blocks in the mapping table of the vSSD of the har-
vest VM, as shown in Figure 12. The address mapping table in
the vSSD is extended to include the ID of the harvested gSSD.
Therefore, upon data accesses from the harvest VM, its vSSD
will conduct the address translation to translate the logical
block address (LBA) to [gSSD-ID, gLBA]. With the obtained
gSSD-ID, the corresponding gSSD will translate the gLBA to
the physical block address (PBA). This enables BlockFlex to
harvest multiple gSSDs for a harvest VM. With the expanded
vSSD, the harvest VM can resize the vSSD and its file system
with existing virtual disk and file system tools [13, 18, 67].
Note that the address mapping of a vSSD will also index the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    23



Harvest VM

Virtual SSD (vSSD)

Address Mapping (LBA-->[gSSD-ID, gLBA])

Default Storage

gSSD-1 gSSD-2 gSSD-N

Addr
Mapping

Addr
Mapping

Addr
Mapping

Harvested Storage

Figure 12: Harvesting multiple ghost vSSDs for a harvest VM.

default storage allocated when a harvest VM is created.
We assume each harvest VM will not request more than

256 gSSDs, so 1 byte is used to index the gSSDs. In total, each
address mapping entry takes 9 bytes (4 bytes for LBA and
4 bytes for PBA). Given a harvest VM that requests 128GB
storage, and each flash block is 4MB, the block-level address
mapping of a vSSD will take only 288KB.
Reclaiming gSSDs. When a harvest VM finishes its jobs, the
harvested gSSDs will be reclaimed to the pool in the vSSD
manager. Upon the gSSD reclamation, the corresponding
entries in the address mapping table of the vSSD will be
removed. BlockFlex will check whether a gSSD will expire
soon or not (i.e., in 30 minutes by default). If yes, BlockFlex
will erase the flash blocks for data safety, and remove the
gSSD instance. Otherwise, BlockFlex will add the gSSD into
the gSSD pool for future harvesting. Since the erase operation
is expensive, BlockFlex leverages the channel parallelism of
an SSD to execute them in parallel.

The additional erase operations caused by gSSD reclama-
tion has minimal impact on the lifetime of SSDs. This is for
two major reasons. First, BlockFlex ensures wear leveling of
SSDs by following a relaxed wear-leveling scheme proposed
in our prior study [29]. It showed that SDF can achieve
near-ideal SSD lifetime by swapping channels every 19 days
on average for data center workloads, and 12 days on average
for the worst case of erasing channels at full bandwidth. The
wear leveling plays a fundamental role of ensuring the device
lifetime, no matter whether flash blocks are used by regular
VMs or harvest VMs. Second, the harvesting procedure itself
only introduces erases when harvested storage is reclaimed,
and it happens infrequently. Based on our study, for a given
vSSD, it is harvested about every 2.1 days and consumes an
average of 25% of the SSD (see §5.2), meaning the entire
vSSD is erased once per 8.4 days. For modern SSDs that
usually have 10K P/E cycles and can last 5-year lifetime, the
storage harvesting operations will consume about 2% of the
device lifetime, which is acceptable in practice.

In addition, with the assistance of predictors (see §4.4),
BlockFlex minimizes the chances of early reclamation, and
takes the erase operations from the critical path. However,
a reclamation would still happen, even though a gSSD is in
use by a harvest VM. This could be caused by the resource
preemption issued by a regular VM. We will discuss how
BlockFlex handles this in details in §4.5.

Capacity
Predictor

Learning Rate: 0.04
Hidden Layer Size: 4

Bandwidth 
Predictor

Learning Rate: 0.001
Hidden Layer Size: 16

<maxiops, miniops, .....>
Duration 
Predictor

Channels = 1
Channels = 2

Duration 
Selector

Duration 
Predictor

Input for LSTM

Output

Bandwidth

Capacity

Duration

I/O
Traces

Figure 13: The workflow of the predictors used in BlockFlex.

4.4 Predictions for Storage Harvesting

Instead of relying on the cloud customers or VM users to
specify their demanded or unused storage resource, we use
a lightweight online learning approach to predict them. As
discussed in §4.2, each vSSD has an online predictor, except
those for the unallocated (unsold) VMs.

4.4.1 Heuristic-based Prediction for Unsold VMs

For the unallocated (unsold) VMs, we use a heuristic-based
approach, based on our study characterizing the unallocated
storage in cloud platforms (see §2). Recall that cloud providers
usually over-provision VMs to provide the elasticity for their
services. They reserve different regular VMs with various
storage capacities. The common sizes include 128GB, 256GB,
and 512GB for simplified VM management and deployment.
According to our study in Figure 6, their availability for
harvesting varies by their capacities.

Previous harvesting studies have identified that past
values are a useful indicator for the available time of unsold
storage [5]. In our study of unsold storage resource, we confirm
that the available time of unsold storage for harvesting is stable.
For this reason, we tag each unsold VM with a predicted du-
ration time using the histogram of previous available times for
the unsold VM with the same storage capacity. For instance, for
the unsold VMs with 512GB storage capacity, we can use 20%
of them as gSSDs that would be available for 12 hours, 20% for
6 hours, and the remaining for 1 hour. This distribution could
change depending on the heuristic study of the corresponding
cloud platform. The distribution of these gSSD sizes depends
on the configured storage capacities for the unsold VMs.

4.4.2 Online Learning for Allocated and Harvest VMs

We predict the harvestable storage resource for allocated
VMs, and demanded storage resource for harvest VMs.
Since the predictions for allocated VMs and harvest VMs
are both determined by their workloads, they use the same
learning-based approach but different learning parameters.

We show the entire prediction workflow of BlockFlex in
Figure 13. In each vSSD, we collect the read, write, and erase
operations at the block layer for online predictions, therefore,
we do not rely on the systems software running on top of

24    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



TeraSort

ML Prep

PageRank

Alib
aba

50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Storage Bandwidth

TeraSort

ML Prep

PageRank
Google

50
60
70
80
90

100

Storage Capacity

TeraSort

ML Prep

PageRank

Alib
aba

50
60
70
80
90

100

Bandwidth Duration

TeraSort

ML Prep

PageRank
Google

50
60
70
80
90

100

Capacity Duration

None 5% 10% 30%

Figure 14: Prediction accuracy of storage bandwidth, capacity, and duration time available for harvesting, with various
over-provisioning ratios. A slight over-provisioning for storage harvesting can significantly improve the prediction accuracy.

the vSSD. Based on these I/O traces, we infer the bandwidth,
throughput (IOPS), and current storage utilization.

We use Long-Short Term Memory (LSTM) models [28] to
develop our predictors, because of their strength in time-series
predictions and relatively low overhead. The inputs for LSTMs
are statistical measures gathered from the bandwidth, IOPS
(e.g., maxiops, miniops), and storage utilization. By default,
BlockFlex trains the models every three minutes using the
collected statistics from the preceding 15 minutes. This
introduces minimal performance and memory overhead. Both
bandwidth predictor and capacity predictor use the same
LSTM model, but we tune their learning rate and hidden layer
size slightly differently for improved accuracy (see Figure 13).
These predictors will generate the predicted bandwidth (in
channels) and predicted capacity (in GB), respectively.

The predictions of storage bandwidth and capacity are
passed to their respective duration predictors. Each duration
predictor consists of a collection of individual sub-predictors.
Each sub-predictor is responsible for a possible output from
the bandwidth/capacity predictors. For instance, if the output
of the bandwidth predictor ranges from 1 to 16 channels, we
will have 16 duration sub-predictors, each sub-predictor will
predict its corresponding duration time by using the history
of previous durations at that demand.

To ensure a gSSD can satisfy both the storage and bandwidth
requirements from a harvest VM, the duration selector takes
the maximum duration for demanded storage resources. To
ensure a regular VM will not reclaim resources early, the
selector takes the minimum duration for the harvestable
storage resources. The final output delivered by the predictors
in BlockFlex is presented in a tuple of <bandwidth, capacity,
duration>. We describe the details of each predictor as follows.
Storage bandwidth: For the prediction of storage bandwidth,
we use six inputs for the LSTM model: the maximum, minimum,
and average for both bandwidth and IOPS. We do not use other
statistical measures as inputs because they do not improve
the prediction accuracy and slow down the convergence of
the model. As the number of flash channels is proportional
to the storage bandwidth, we use the number of channels as
the bandwidth metric to simplify the bandwidth prediction.
Storage capacity: The prediction model for the storage
capacity is similar to the model used for the storage bandwidth.

We use the maximum, minimum, and average of past storage
utilizations, and the current changes in storage utilization as
the inputs. We find that using the changes in storage utilization
helps differentiate long periods of sequential writes against
shorter changes. We use the number of flash blocks as the
output of the capacity predictor.
Duration: For the duration, we make the predictions for
storage bandwidth and capacity separately. For allocated
VMs, we predict how long their available storage capacity
and bandwidth can be used by harvest VMs; for harvest
VMs, we predict how long a demand of storage capacity and
bandwidth will last before more resources are needed. As
discussed, a set of sub-predictors are used for each demanded
bandwidth/capacity. BlockFlex updates and maintains the
history of durations for model training and inference.

4.4.3 Resource Provisioning for Improved Accuracy

We examine the accuracy of the LSTM models we develop for
the aforementioned predictors using various cloud workloads
(see their descriptions in Table 2). A prediction for storage
bandwidth and capacity is considered accurate if the predictor
predicts at least as much as the actually demanded/available
storage. A prediction of duration time is considered accurate
if the predicted storage bandwidth and capacity lasts as long
as the actual demand/availability. We track the actual storage
demand/availability and predicted storage demand/availability
to calculate the prediction accuracies.

As shown in Figure 14, the average accuracies of predicting
storage bandwidth, capacity, and their durations are 89%, 93%,
79%, and 79% on average. Their accuracy varies for different
workloads. To further improve the prediction accuracy and
avoid resource preemptions (see §4.5), we use a simple yet
effective approach – over-provisioning more storage resources
based on the predictions of demanded storage resources, and
under-provisioning storage resources based on the predictions
of harvestable storage resources. We vary the provisioning ratio
from 5% to 30%, and show the updated accuracies in Figure 14.
We find the accuracies of all the predictions can reach 93–96%
with a provisioning ratio of 5%. As we increase the provision-
ing ratio, we do not see much accuracy improvement. There-
fore, we use the 5% provisioning ratio in BlockFlex by default.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    25



Table 1: Exception handling for different scenarios.

ID Harvestable
Storage

Demanded
Storage

Possible Exceptions

1 Over-predict Over-predict Waste or Early Reclamation or N/A
2 Over-predict Under-predict Under-Harvest or Early Reclamation
3 Under-predict Over-predict Waste
4 Under-predict Under-predict Under-Harvest or Waste or N/A

4.5 Exception Handling in Storage Harvesting
Although the predictors in BlockFlex deliver high accuracy
as discussed in §4.4, mispredictions can still happen, causing
exceptions during storage harvesting. Typical exceptions
include the resource preemption in which a regular VM
prematurely reclaims the harvested storage from a harvest VM,
and under-harvesting in which a harvest VM must request ad-
ditional storage resources to satisfy the request of more storage
resource than the predicted demand. VM terminations and data
loss could happen if these exceptions are not handled properly.
Misprediction types. Mispredictions can be categorized into
two types: over-prediction and under-prediction. As we make
predictions for both harvestable storage (in the regular VMs)
and demanded storage (in the harvest VMs), the two mispre-
diction categories apply to both sides, as shown in Table 1.

An over-prediction of demanded storage means that a har-
vest VM harvests more storage resources than it really needs;
an under-prediction of demanded storage means that a harvest
VM harvests less storage resources than it really needs. In
contrast, an over-prediction of harvestable storage means that
a regular VM has less harvestable storage resources than pre-
dicted; an under-prediction of harvestable storage means that
a regular VM has more harvestable storage resources than pre-
dicted. During storage harvesting, any misprediction or combi-
nations of mispredictions could cause an exception. BlockFlex
employs different exception handling for each scenario.
Exception handling. As shown in Table 11, mispredictions
could mainly cause three exceptions: waste of storage
resources, early resource reclamation, and under-harvesting.
Waste of storage resources. BlockFlex could waste storage
resources when mispredictions leave them unused. In the case
1 of Table 1, a regular VM provides the storage resource
requested from the harvest VM, although the harvest VM
may over-predict its demanded storage resource. In case 3 ,
the waste of storage resources becomes worse, because the
regular VM actually has more harvestable storage resources
than the requested resources from the harvest VM. As we
trade the over-provisioning of demanded storage in the harvest
VMs for increased prediction accuracy, it is inevitable to cause
some waste of storage resources. However, since BlockFlex
uses a 5% over-provisioning ratio (see §4.4) in its predictors,
the waste is minimal. Compared to the cloud platforms
without storage harvesting, BlockFlex still improves the
storage utilization. Therefore, BlockFlex does perform special

1If the demanded storage resource from a harvest VM exactly matches with
the harvestable storage resource in a regular VM, there is no exception (N/A).

exception handling for this exception.
Early resource reclamation. This could happen when a
regular VM has less harvestable storage resources than the
demanded storage resources from a harvest VM. Typical
examples include the case 1 and 2 in Table 1, in which we
over-predict the harvestable storage resource in a regular VM,
but in reality, the regular VM has less harvestable storage than
the demanded storage from a harvest VM. In both cases, the
regular VM has to reclaim its storage from the harvest VM.
To handle this exception, BlockFlex will identify a new gSSD
that meets the requirements for storage capacity, bandwidth,
and duration. After that, BlockFlex will copy all the data
from the old gSSD to the new gSSD and update the address
mapping table in the vSSD of the corresponding harvest
VM. BlockFlex will migrate data between gSSDs at block
granularity to minimize the impact on the running applications.
BlockFlex will reclaim the old gSSD while ensuring its flash
blocks are erased before being used by the regular vSSD (see
§4.3.2). However, if there is no satisfactory gSSD available,
an exception will be reported to the end users of the harvest
VM (like what is done today for spot VMs [63]).
Under-harvesting. The exception of under-harvesting could
happen when a harvest VM under-predicts its demanded
storage resources (i.e., it requests less storage resources than
it really needs). Typical examples include the cases 2 and
4 . For the case 2 , under-harvesting could happen when the
harvest VM under-predicts its demanded storage resources.
For the case 4 , although the regular VM under-predicts its
harvestable storage resources, the demanded storage in reality
could still be more than the available storage resources in
the regular VM. To handle this exception, BlockFlex will
harvest new gSSDs for the harvest VM until meeting the
demand. As discussed in Figure 12, BlockFlex enables the
use of multiple gSSDs in a single vSSD. However, if there
is no gSSD available, BlockFlex will report an exception to
the users of the harvest VM, resulting in a termination of the
harvest VM or a delay of job executions in the harvest VM.

Note that mispredictions could happen along all three
dimensions (i.e., storage capacity, bandwidth, and time
available for harvesting) of the storage resource. The described
exception handling is used in BlockFlex for mispredictions
along any of the three dimensions.

4.6 Implementation Details

We implement the gSSD abstraction of BlockFlex using a
programmable SSD with 1TB capacity. The SSD has 16
channels, each channel has 4 dies, each die has 4 planes, each
plane has 1024 blocks. Each block consists 256 pages, each
16KB. Its controller allows read/write/erase operations against
the raw flash resources and enables the host to develop their
own FTL for address translation, GC, and wear leveling.

The gSSD implementation takes 4.1K lines of code (LoC)
using C programming language. The vSSD used in this paper

26    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Table 2: Workloads used in our evaluation.

Workload Description
TeraSort [25] Sort data generated by TeraGen.
ML Prep [2] Preprocess images for machine learning tasks.

PageRank [24] Compute the pagerank of a graph.
YCSB [73] Transaction processing on a database.

0 20 40 60 80 100
Percentage of VMs (%)

0

20

40

60

80

100

St
or

ag
e 

C
ap

ac
ity

 
 U

til
iz

at
io

n 
(%

)

Baseline (Avg)
Baseline (Max)
Blockflex (Avg)
Blockflex (Max)

Figure 15: Improved utilization for underutilized storage.

is similar to the virtualized SSDs in our prior work [29]. Block-
Flex creates different vSSDs for harvest VMs and regular VMs.
It allocates physical flash channels for each vSSD to ensure
performance isolation. Upon workload execution, BlockFlex
handles the logical block I/O requests received by the vSSDs
with actual read and write operations to the allocated physical
flash blocks. We run BlockFlex on a real server with 8 Intel(R)
Xeon(R) CPU E3-1240 v5 cores running at 3.5 GHz.

BlockFlex’s predictors are implemented using PyTorch
v1.9.0 [52] in 2.8K LoC using Python. Each model is im-
plemented with one hidden LSTM layer fully connected with
the input and output layers. The bandwidth and space predic-
tors have an additional softmax layer applied to the output.
All models use adam [36] as an optimizer and mean squared
error as a loss function. We vary the learning rate and sizes of
the hidden layer. Bandwidth prediction uses a learning rate of
0.005 and 16 hidden nodes. Capacity prediction uses a learning
rate of 0.04 and 4 hidden nodes. Bandwidth duration uses a
learning rate of 0.006 and 50 hidden nodes. Capacity duration
uses a learning rate of 0.001 and 50 hidden nodes.

5 Evaluation

Our evaluation demonstrates that: (1) BlockFlex improves the
storage utilization in cloud platforms by leveraging both under-
utilized and unallocated storage resources (§5.2); (2) Block-
Flex improves the performance of harvest VMs while minimiz-
ing the impact on regular VMs (§5.3 and §5.4); (3) BlockFlex
introduces negligible overhead to storage management (§5.5);

5.1 Experimental Setup
We evaluate BlockFlex with a set of synthetic workloads and
real-world applications as shown in Table 2. We use Hadoop’s
TeraSort [25], ML Prep [2], and the PageRank implementation
in GraphChi [24] to represent common applications in harvest
VMs, while YCSB [73] represents common regular VM work-
loads. For TeraSort, we generate and sort 75GB datasets with

0 20 40 60 80 100
Percentage of VMs (%)

0

20

40

60

80

100

St
or

ag
e 

B
an

dw
id

th
 

 U
til

iz
at

io
n 

(%
) Blockflex (Avg)

Blockflex (Max)
Baseline (Avg)
Baseline (Max)

Figure 16: Improved utilization for underutilized bandwidth.

0 20 40 60 80 100
Percentage of Servers (%)

0

20

40

60

80

100

St
or

ag
e 

C
ap

ac
ity

 
 U

til
iz

at
io

n 
(%

)

Blockflex (Avg)
Baseline (Avg)

Figure 17: Improved utilization for unallocated resources.

the TeraGen in Hadoop [25]. For PageRank, we use the Friend-
ster graph (61GB) [72]. For ML Prep, we process images from
the ImageNet data set (220 GB) [17]. For YCSB, we populate
a key-value store RocksDB [54] with 180GB of data and run
workloads A-E. In the evaluation, we report the numbers for
YCSB-A since the workloads B-E deliver similar results.

5.2 Improved Storage Utilization
To evaluate the improved utilization of BlockFlex, we gather
requests from 60,000 low priority VMs from Google traces
to characterize the demand of harvest VMs. Their storage
requests vary between 32GB and 512GB, and last between
30 minutes and 8.5 days (2.1 days on average). The demanded
bandwidth is proportional to the demanded storage. We match
these storage demands with harvestable storage capacity from
4,000 regular VMs. When evaluating the benefits of utilizing
unallocated storage, we match them with unallocated VMs of
1,400 servers. Since VMs with low storage utilization present a
greater opportunity for harvesting, we highlight the capability
of utilizing the heavily underutilized storage with BlockFlex.
Underutilized Capacity. We first analyze the impact on the
underutilized storage capacity, summarized in Figure 15. We
compare the average and maximum utilization when using
BlockFlex against the baseline utilization for VMs without
harvesting (originally shown in Figure 2). We see an average
improvement of 1.25× (43% vs. 54% utilization) across all
VMs and an improvement of 1.75× (20% vs. 35%) for those
that had less than 60% storage utilization. This shows the
benefits BlockFlex can obtain, especially when harvesting
flash blocks from VMs with low storage utilization.

Next, we see that the maximum utilization across all of the
VMs is increased by 1.37× (49% vs. 67%). We also observe
that the over-provisioning we add to the predictions ensures
that we do not fully utilize any regular VM. This reinforces

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    27



0 30 60 90 120
Time (minutes)

200

400

600

B
an

dw
id

th
 (M

B
/s

) Unsold
Sold

Static

(a) TeraSort

0 30 60 90 120
Time (minutes)

200

400

600

B
an

dw
id

th
 (M

B
/s

) Unsold
Sold

Static

(b) ML Prep

0 30 60 90 120
Time (minutes)

200

400

600

B
an

dw
id

th
 (M

B
/s

) Unsold
Sold

Static

(c) PageRank

Figure 18: Performance benefits of storage harvesting for harvest VMs.

that BlockFlex has a low probability of reclamation.
Underutilized Bandwidth. We now analyze the underutilized
storage resource from a bandwidth perspective, summarized
in Figure 16. Our results show a stable improvement of 1.34×
(22% vs. 30%) for all VMs. BlockFlex also increases the
maximum utilization by 1.27× (53% vs. 66%). As with
underutilized storage, we avoid reclamations by not fully
utilizing the bandwidth of regular VMs. This demonstrates
that BlockFlex can improve both the bandwidth and capacity
utilization of cloud storage from underutilized resources.
Unallocated Storage. We analyze the utilization improvement
by harvesting unallocated VMs, presented in Figure 17. We
observe that BlockFlex improves the overall utilization by
1.17× (69% vs. 81%). Servers with utilization below 60% are
improved by 1.42× (45% vs. 64%).

For underutilized and unallocated storage resources, we ob-
serve 1.25× improvement on average, showing that BlockFlex
can significantly use both underutilized and unsold storage
resources to improve utilization. For extremely underutilized
cases (under 60%), we observe 1.48× improvement on aver-
age. This shows that BlockFlex can successfully match the har-
vestable storage resources to the demands from harvest VMs.

5.3 Improved Performance for Harvest VM
We examine how BlockFlex improves the performance of
harvest VMs. The results are shown in Figure 18. We evaluate
three different configurations: Static: the harvest VM is
statically configured with 8 channels and does not harvest.
This represents the current (baseline) storage virtualization.
Sold: a 4-channel gSSD is allocated from channels occupied
by a regular VM that uses 50% of its maximum bandwidth.
Unsold: a 4-channel gSSD is allocated from unallocated
channels. For both unsold and static, the gSSD is harvested
after one hour. Before each experiment, we warm up the SSD
to ensure GC will occur. We run all workloads for two hours.

By harvesting additional channels, the harvest VM has
significantly improved bandwidth. As we compare the Sold
scheme with the Static scheme, the workload performance is
improved by 16–51% on average. For the Unsold scheme, the
lack of interference with the regular VM improves the storage
bandwidth by 22–60%. We observe the best improvement

15 30 45 60
Time (minutes)

50

100

150

200

250

B
an

dw
id

th
 (M

B
/s

) Unsold Static

(a) ML Prep Bandwidth

15 30 45 60
Time (minutes)

100

200

300

400

500
B

an
dw

id
th

 (M
B

/s
) Unsold Static

(b) PageRank Bandwidth

Figure 19: Read bandwidth of ML Prep and PageRank
workloads after storage harvesting.

for PageRank, as its workload spends more time on I/O than
TeraSort or ML Prep workloads. The Unsold scheme provides
an additional 6% bandwidth improvement over the Sold
scheme on average. As we translate this into the end-to-end
execution time, we see an average performance improvement
of 20% using Sold storage, and 25% improved performance
using Unsold storage. This demonstrates the significant
performance benefits BlockFlex can obtain for IO-intensive
applications, when utilizing either sold or unsold storage.

Clearly, additional flash channels can benefit write-heavy
workloads, as we increase the I/O parallelism. It is less clear
whether additional channels can benefit read heavy workloads,
as the harvested channels cannot immediately satisfy reads. To
investigate this, we focus on the read bandwidth improvements
in Figure 19. For both ML Prep and PageRank workloads, we
see an increase of 10−21% after 5 minutes of harvesting. After
the full 60 minutes, the average increase of the read bandwidth
stabilizes and reaches an overall improvement of 22−60%.

Specifically, for ML Prep, we see a slight increase (10%) as

28    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



2 4 6 8 10
Channels

0

50

100

150

200

Th
ro

ug
hp

ut
 (K

 o
ps

/s
)

W/O Harvesting
W/ Harvesting

(a) Bandwidth

2 4 6 8 10
Channels

0
50

100
150
200
250

La
te

nc
y 

(m
ic

ro
se

cs
)

W/O Harvesting
W/ Harvesting

(b) 95th Percentile Latency

Figure 20: Performance of a regular SSD with storage
harvesting enabled.

we redirect writes to the additional channels immediately upon
harvesting (0-5 minutes). Afterwards, as we start issuing writes
and reads to the new channels, we see the read bandwidth ben-
efit stabilizes at an improved level (24%). As for the PageRank
workload, it shows relatively consistent benefit in the read
bandwidth (60%). This is because PageRank workload is write
intensive, during the first two minutes of harvesting. Thus, the
PageRank data is aggressively written to the new harvested
channels, which benefits the read bandwidth in return.

5.4 Performance Impact on Regular VM

To investigate the impact of storage harvesting on regular VMs,
we examine the interference generated by the harvest VM. We
run the YCSB workload-A with 10 threads in the regular VM,
and vary the number of flash channels in its vSSD from 2 to 10.
The database tables are striped across all the available channels
in the vSSD. We first measure the throughput and tail latency
(95th percentile latency) of the YCSB workload without
enabling storage harvesting. After that, we create a harvest
VM to run the ML Prep workload. The harvest VM will
harvest all the channels of the regular VM, and we measure
the performance of the regular VM after the harvesting.

As shown in Figure 20, the throughput of YCSB Workload-
A decreases slightly, while the latency is almost constant as we
increase the number of channels. The storage harvesting does
not introduce much overhead (5.1% on average), since the reg-
ular VM always has the higher priority for its I/O requests and
available storage bandwidth. We observe a similar overhead for
the tail latency, demonstrating that the storage harvesting has
negligible negative impact on the performance of regular VMs.

We also examine the interference caused by additional
GC and storage reclamations. As indicated in §5.3, GC is
enabled in our experiments. We believe the GC overhead can
be further reduced with erase suspension available in modern
SSDs [35, 70]. We wish to explore this feature in our future
work. As for the overhead caused by storage reclamations, we
observe that reclaiming an entire flash channel results in 1.5%
slowdown in the average bandwidth of regular VMs. Such an
overhead is acceptable in reality, as storage reclamations do
not happen frequently over the entire lifetime of VMs.

Table 3: Learning overheads for each iteration in our predictors

.

Predictor Training Time
(millisecs)

Inference Time
(millisecs)

Model
Size (KB)

Bandwidth 10.3 2.5 22
Space 13.0 0.4 12

Bandwidth Duration 410.0 4.1 1153
Space Duration 42.0 0.3 510

Total 475 7.3 1697

5.5 Overhead Sources in BlockFlex

We now profile the overheads introduced by BlockFlex. We
begin by analyzing the overheads introduced by the predictors.
We present the summary of these overheads in Table 3. First,
we measure the time consumed by training each predictor
for one iteration of online training. As discussed in §4.4, each
model is trained one iteration every three minutes. Since each
duration predictor has multiple models, their training is more
expensive than storage bandwidth and capacity predictors. In
total, training all of the predictors consumes 0.48 seconds on
our multi-core server. In this case, cloud platform operators do
not need powerful hardware accelerators like GPUs to deploy
BlockFlex. Since input sizes and training frequency do not
change by workload, the training overhead is the same across
all the workloads evaluated in this paper.

For each inference, the total execution time is 7.3 millisec-
onds. This overhead is also incurred once every three minutes,
but can be further optimized. For example, we can decrease
the inference frequency when a vSSD has generated a gSSD.

To store the predictors for each vSSD, BlockFlex allocates
about 1.7MB memory space. It also allocates 4KB memory to
store the history of bandwidth/capacity information used for
training each iteration. This demonstrates the minimal perfor-
mance and storage overheads of the predictors in BlockFlex.

We also profile the overheads of gSSD creation and lookup.
They include the overheads of creating a new gSSD and harvest-
ing free blocks from a regular vSSD. Since they only involve
metadata operations, the overhead is 61 µs for creating a gSSD
with 64GB. As gSSDs are created in the background, their cre-
ation overhead is not on the critical path. We organize the gSSD
pool in sorted lists, the gSSD lookup takes 1.2 µs on average.

As we reclaim a gSSD from a harvest VM, its primary
cost is on the erase of all the written blocks. Since we can
parallelize the erase operations across channels, the limiting
factor is the channel with the most allocated blocks. The total
overhead is 17.1, 34.2, and 68.4 seconds for a channel (64GB)
with 25%, 50%, 100% harvested, respectively. According to
our study of various cloud traces, we observe that storage
harvesting is infrequent (once every few hours). Additionally,
compared to the lifetime of VMs in the cloud, the overhead
of storage reclamation is relatively small, which has negligible
impact on the performance of regular VMs.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    29



6 Discussion and Future Work

Security implications of storage harvesting. A few potential
security concerns may arise when sharing physical flash
blocks in a cloud environment. First, we consider whether
data could be leaked via harvested blocks. Since BlockFlex
erases the flash blocks before creating/reclaiming the gSSD, it
guarantees that user data will not be leaked through the storage
harvesting. Second, we consider whether information could be
leaked through the cached data, such as LBA-PBA mappings.
As existing cloud infrastructure prevents access to the SSD
virtualization, device driver, and controller layers without
permission checking, therefore, even though a flash channel
is shared across VMs, their accesses are protected. Third,
we consider whether multiple VMs sharing a physical flash
channel could suffer from side-channel attacks. It is actually
hard for attackers to obtain meaningful information, since
the variations could be caused by many factors, such as the
number of co-located VMs or the CPU/memory contention.
Compatible with compute and memory harvesting. Upon
the creation of harvest VMs, cloud platforms will allocate
essential compute, memory, and storage resources. BlockFlex
mainly targets storage harvesting to improve the overall cloud
storage utilization, and improve the performance of applica-
tions bottlenecked by storage resources. It is compatible with
prior studies on compute and memory harvesting [20, 69] for
improving the whole-system resource utilization.
Semantic-aware storage harvesting. BlockFlex utilizes the
vSSD interface in its implementation, making it transparent
to applications in VMs. However, due to the lack of semantic
information from upper-level applications, BlockFlex has to
rely on the predictors to decide the harvestable and demanded
storage resources. Additionally, preventing data loss is one
of the key challenges when developing BlockFlex, allowing
systems software to manage their data in harvested storage
would be an alternative solution to address this challenge.
Therefore, new APIs can be developed and exposed to popular
software systems such as key-value stores and Hadoop
Distributed File System (HDFS), which offers more flexibility
for applications to manage their data in harvested storage.

7 Related Work

Storage virtualization and efficiency. Storage devices
such as SSDs have been virtualized as system-wide
shared resources for improved utilization in cloud plat-
forms [29,34,43,60,61,75]. Based on this, most recent studies
focused on improving the performance isolation between
collocated applications [6, 32, 33, 42, 49, 65]. However,
our study (see §2) reveals that the cloud storage is still
significantly underutilized. Ouyang et al. [51] identified
the resource underutilization in the SSDs and developed
the software-defined flash for cloud platforms. Similar to
software-defined networking, software-defined flash is be-

coming a backbone technique in datacenters today [16, 56, 65].
However, most of them still use a static-allocation approach,
which inevitably causes the waste of both storage capacity
and bandwidth [11, 51]. Disaggregated storage architectures
are proposed [40, 47, 50, 57, 68]. However, they still suffer
from storage underutilization when we allocate disaggregated
storage to VMs, due to the dynamic workload changes in VMs.
BlockFlex addresses the storage underutilization problem by
enabling storage harvesting in software-defined datacenters.
Resource harvesting in cloud platforms. Harvesting
resources for VMs to improve the resource utilization is not
a new concept in cloud platforms. Similar to the harvest VM,
many studies have been developed recently, such as Spot
VMs and burstable VMs [5, 7, 8, 20, 21, 59, 69]. However, they
typically harvest compute and memory resources at a VM
granularity. BlockFlex is the first work that focuses on storage
harvesting, and addresses the unique challenges in storage
harvesting and exception handling. Beyond harvesting unsold
resources [5], we can also harvest underutilized allocated
storage resources, while providing the performance and
security isolation between regular VMs and harvest VMs.
Learning approaches for resource efficiency. Most recently,
researchers started to leverage learning techniques to
improve the task scheduling [53, 69, 77], cluster resource
management [5, 10, 15, 45, 74], and performance optimiza-
tions [26, 37, 44, 78]. They showed that the learning-based
approach is a promising method to address system optimiza-
tion problems. However, it is still unclear how they can benefit
the cloud storage. In this work, we apply the learning-based
approach to improve the storage utilization within our storage
harvesting framework. We customize the classical LSTM
models for the predictions of harvestable and demanded
storage resources, and show their efficiency in our evaluation.

8 Conclusion

In this paper, we first conduct a characterization study of the
cloud storage utilization, and discloses that the low storage
utilization exists pervasively in modern cloud platforms. To
this end, we develop a learning-based storage harvesting
framework BlockFlex, which can harvest both allocated and
unallocated storage for evictable VMs. Our experiments show
that BlockFlex can significantly improve the cloud storage
utilization, while accelerating the storage performance of
harvest VMs with minimal impact on the regular VMs.

Acknowledgments

We thank the anonymous reviewers and our shepherd Swami
Sundararaman for their helpful comments and feedback. We
thank Íñigo Goiri for providing part of the cloud traces for our
study as well as insightful discussions. This work is supported
by NSF CAREER Award 2144796, CCF-1919044, CNS-
1850317 and a grant from Western Digital Technologies, Inc.

30    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Ahmed Abulila, Vikram S Mailthody, Zaid Qureshi, Jian
Huang, Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu.
FlatFlash: Exploiting the Byte-Accessibility of SSDs within
A Unified Memory-Storage Hierarchy. In Proceedings of the
24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’19),
Providence, RI, USA, 2019.

[2] Albumentations Image Processing.
https://github.com/albumentations-team/
albumentations, 2021.

[3] Alibaba Cluster Trace. https://github.com/alibaba/
clusterdata/blob/master/cluster-trace-v2018/
trace_2018.md.

[4] Amazon Elastic Compute Cloud. Amazon EC2 Spot Instances.
https://aws.amazon.com/ec2/spot/.

[5] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and
Ricardo Bianchini. Providing slos for resource-harvesting
vms in cloud platforms. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’20), November 2020.

[6] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg
O’Shea, and Eno Thereska. End-to-end performance isolation
through virtual datacenters. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’14), Broomfield, CO, October 2014.

[7] Amazon AWS. Burstable performance instances. https:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/
burstable-performance-instances.html, 2020.

[8] Microsoft Azure. Introducing B-Series, our new burstable
VM size. https://azure.microsoft.com/en-us/blog/
introducing-b-series-our-new-burstable-vm-size/,
2017.

[9] Azure cloud trace. https://github.com/Azure/
AzurePublicDataset, 2019.

[10] Ricardo Bianchini, Marcus Fontoura, Eli Cortez, Anand Bonde,
Alexandre Muzio, Ana-Maria Constantin, Thomas Moscibroda,
Gabriel Magalhaes, Girish Bablani, and Mark Russinovich.
Toward ml-centric cloud platforms. Communication of ACM,
63(2), January 2020.

[11] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
Lightnvm: The linux open-channel SSD subsystem. In Pro-
ceedings of the 15th USENIX Conference on File and Storage
Technologies (FAST’17), Santa Clara, CA, February 2017.

[12] Amazon Elastic Compute Cloud, Burstable Performance
Instances.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/burstable-performance-instances.html,
2020.

[13] Microsoft Azure Cloud. Configure online vir-
tual hard disk resize. https://docs.microsoft.
com/en-us/previous-versions/windows/it-pro/

windows-server-2012-r2-and-2012/dn282284(v=ws.
11), 2016.

[14] Cloud flash storage: SSD options from AWS, Azure, and GCP.
https://www.computerweekly.com/feature/
Cloud-flash-storage-SSD-options-from\
-AWS-Azure-and-GCP, 2020.

[15] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich,
Marcus Fontoura, and Ricardo Bianchini. Resource central:
Understanding and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP’17),
Shanghai, China, 2017.

[16] Project denali to define flexible ssds for cloud-scale applica-
tions.
https://azure.microsoft.com/en-us/blog/
project-denali-to-define-flexible\
-ssds-for-cloud-scale-applications/.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’09), 2009.

[18] Andreas E Dilger. Online ext2 and ext3 filesystem resizing. In
Ottawa Linux Symposium, page 117, 2002.

[19] Ev3 and Esv3-Series.
https://docs.microsoft.com/en-us/azure/
virtual-machines/ev3-esv3-series, 2021.

[20] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan
Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene
Bak, Mehmet Iyigun, and Ricardo Bianchini. Memory-
harvesting vms in cloud platforms. In Proceedings of the 27th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’22),
Lausanne, Switzerland, February 2022.

[21] Google. Our data centers now work harder
when the sun shines and wind blows. https:
//blog.google/inside-google/infrastructure/
data-centers-work-harder-sun-shines-wind-blows,
2020.

[22] Google Cluster Trace. https://github.com/google/
cluster-data/blob/master/ClusterData2011_2.md.

[23] Google Cloud. Preemptible VM Instances. https://cloud.
google.com/compute/docs/instances/preemptible.

[24] Graphchi.
https://github.com/GraphChi/graphchi-cpp, 2021.

[25] Hadoop TeraSort.
https://hadoop.apache.org/docs/r3.2.0/api/org/
apache/hadoop/examples/terasort/package-summary.
html, 2021.

[26] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg
Halim, Henry Hoffmann, and Haryadi S. Gunawi. LinnOS:
Predictability on Unpredictable Flash Storage with a Light
Neural Network. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’20), November 2020.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    31

https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://aws.amazon.com/ec2/spot/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282284(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282284(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282284(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282284(v=ws.11)
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-options-from\-AWS-Azure-and-GCP
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-options-from\-AWS-Azure-and-GCP
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-options-from\-AWS-Azure-and-GCP
https://azure.microsoft.com/en-us/blog/project-denali-to-define-flexible\-ssds-for-cloud-scale-applications/
https://azure.microsoft.com/en-us/blog/project-denali-to-define-flexible\-ssds-for-cloud-scale-applications/
https://azure.microsoft.com/en-us/blog/project-denali-to-define-flexible\-ssds-for-cloud-scale-applications/
https://docs.microsoft.com/en-us/azure/virtual-machines/ev3-esv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ev3-esv3-series
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://github.com/GraphChi/graphchi-cpp
https://hadoop.apache.org/docs/r3.2.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r3.2.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r3.2.0/api/org/apache/hadoop/examples/terasort/package-summary.html


[27] Timothy Harris. A pragmatic implementation of non-blocking
linked-lists. In Proceedings of the 15th International Sympo-
sium on Distributed Computing (DISC 2001), Lisbon, Portugal,
2001.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[29] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath,
Sudipta Sengupta, Bikash Sharma, and Moinuddin K. Qureshi.
Flashblox: Achieving both performance isolation and uniform
lifetime for virtualized ssds. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST’17), Santa
Clara, CA, February 2017.

[30] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and
Karsten Schwan. Unified Address Translation for Memory-
Mapped SSD with FlashMap. In Proceedings of the 42nd
International Symposium on Computer Architecture (ISCA’15),
Portland, OR, June 2015.

[31] IBM. Ibm flash storage and software defined storage. White
Paper, 2017.

[32] Giorgos Kappes and Stergios V. Anastasiadis. Libservices:
Dynamic storage provisioning for multitenant i/o isolation. In
Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys’20), Tsukuba, Japan, 2020.

[33] Giorgos Kappes and Stergios V. Anastasiadis. A user-level
toolkit for storage i/o isolation on multitenant hosts. In
Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC’20), Virtual Event, USA, 2020.

[34] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards SLO
Complying SSDs Through OPS Isolation. In Proc. FAST’15,
Santa Clara, CA, February 2015.

[35] Shine Kim, Jonghyun Bae, Hakbeom Jang, Wenjing Jin,
Jeonghun Gong, Seungyeon Lee, Tae Jun Ham, and Jae W. Lee.
Practical erase suspension for modern low-latency SSDs. In
Proceedings of the 2019 USENIX Annual Technical Conference
(ATC’19), Renton, WA, July 2019.

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[37] Daniar H. Kurniawan, Levent Toksoz, Anirudh Badam, Tim
Emami, Sandeep Madireddy, Robert B. Ross, Henry Hoffmann,
and Haryadi S. Gunawi. Ionet: Towards an open machine
learning training ground for i/o performance prediction.
Technical Report, 2021.

[38] Dongup Kwon, Junehyuk Boo, Dongryeong Kim, and Jangwoo
Kim. FVM: Fpga-assisted virtual device emulation for fast,
scalable, and flexible storage virtualization. In Proceedings
of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20), November 2020.

[39] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim,
and Arvind. Application-managed flash. In Proceedings of the
14th USENIX Conference on File and Storage Technologies
(FAST’16), Santa Clara, CA, February 2016.

[40] Sergey Legtchenko, Hugh Williams, Kaveh Razavi, Austin
Donnelly, Richard Black, Andrew Douglas, Nathanael
Cheriere, Daniel Fryer, Kai Mast, Angela Demke Brown, Ana
Klimovic, Andy Slowey, and Antony Rowstron. Understanding
Rack-Scale disaggregated storage. In Proceedings of the 9th
USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage’17), Santa Clara, CA, July 2017.

[41] Jacob Leverich and Christos Kozyrakis. Reconciling high
server utilization and sub-millisecond quality-of-service. In
Proceedings of the Ninth European Conference on Computer
Systems (EuroSys’14), Amsterdam, The Netherlands, 2014.

[42] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. PSLO:
Enforcing the Xth Percentile Latency and Throughput SLOs
for Consolidated VM Storage. In Proceedings of the Eleventh
European Conference on Computer Systems (EuroSys’16),
London, United Kingdom, April 2016.

[43] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy
Ranganathan, and Christos Kozyrakis. Heracles: Improving
Resource Efficiency at Scale. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture
(ISCA’15), Portland, OR, June 2015.

[44] Martin Maas, David G. Andersen, Michael Isard, Moham-
mad Mahdi Javanmard, Kathryn S. McKinley, and Colin Raffel.
Learning-based memory allocation for c++ server workloads.
In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’20), Lausanne, Switzerland, 2020.

[45] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakr-
ishnan, Zili Meng, and Mohammad Alizadeh. Learning
scheduling algorithms for data processing clusters. In
Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM’19), Beijing, China, 2019.

[46] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos
Maltzahn, Ryan Stutsman, and Robert Ricci. Taming per-
formance variability. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’18), Carlsbad, CA, October 2018. USENIX Association.

[47] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, An-
drew Wei, In Hwan Doh, and Arvind Krishnamurthy. Gimbal:
Enabling multi-tenant storage disaggregation on smartnic jbofs.
In Proceedings of the 2021 Annual Conference of the ACM
Special Interest Group on Data Communication on the Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM’21), Virtual Event, USA, 2021.

[48] Pulkit A. Misra, Inigo Goiri, Jason Kace, and Ricardo Bian-
chini. Scaling distributed file systems in resource-harvesting
datacenters. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC’17), Santa Clara, CA, July 2017.

[49] Dushyanth Narayanan, Eno Thereska, Austin Donelly, Sameh
Elnikety, and Antony Rowstron. Migrating server storage
to ssds, analysis of tradeoffs. In Proceedings of the Fourth
European Conference on Computer Systems (EuroSys’09),
Nuremberg, Germany, March 2009.

[50] Nutanix Distributed Storage.
https://www.nutanix.com/products/acropolis/
distributed-storage, 2022.

[51] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong
Wang, and Yuanzheng Wang. Sdf: Software-defined flash
for web-scale internet storage systems. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’14),
Salt Lake City, UT, 2014.

32    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.nutanix.com/products/acropolis/distributed-storage
https://www.nutanix.com/products/acropolis/distributed-storage


[52] PyTorch.
https://pytorch.org/, 2021.

[53] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T.
Kalbarczyk, and Ravishankar K. Iyer. FIRM: An intelligent
fine-grained resource management framework for slo-oriented
microservices. In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’20),
November 2020.

[54] RocksDB.
https://github.com/facebook/rocksdb, 2021.

[55] Software-defined data center.
https://en.wikipedia.org/wiki/Software-defined_
data_center.

[56] Software-defined storage.
https://en.wikipedia.org/wiki/Software-defined_
storage.

[57] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang.
LegoOS: A disseminated, distributed OS for hardware resource
disaggregation. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’18),
Carlsbad, CA, October 2018.

[58] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy.
Resource deflation: A new approach for transient resource recla-
mation. In Proceedings of the Fourteenth European Conference
on Computer Systems (EuroSys’19), Dresden, Germany, 2019.

[59] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and
Prashant Shenoy. Spotcheck: Designing a derivative iaas cloud
on the spot market. In Proceedings of the 10th European
Conference on Computer Systems (EuroSys’15), 2015.

[60] David Shue, Michael J. Freedman, and Anees Shaikh. Perfor-
mance isolation and fairness for multi-tenant cloud storage.
In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’12), Hollywood,
CA, October 2012.

[61] Dharma Shukla, Shireesh Thota, Karthik Raman, Mad-
han Gajendran, Ankur Shah, Sergii Ziuzin, Krishnam Sun-
dama, Miguel Gonzalez Guajardo, Anna Wawrzyniak, Samer
Boshra, Renato Ferreira, Mohamed Nassar, Michael Koltachev,
Ji Huang, Sudipta Sengupta, Justin Levandoski, and David
Lomet. Schema-agnostic indexing with azure documentdb. In
Proceedings of the 41st International Conference on Very Large
Databases (VLDB’15), Kohala Coast, Hawaii, September 2015.

[62] Azure Spot VM. https://azure.microsoft.com/en-us/
services/virtual-machines/spot/.

[63] Error Messages for Azure Spot Virtual Machines and Scale
Sets. https://docs.microsoft.com/en-us/azure/
virtual-machines/error-codes-spot.

[64] Software-Enabled Flash for Hyperscale Data Centers.
https://searchstorage.techtarget.com/post/
Software-Enabled-Flash-for-Hyperscale\
-Data-Centers, 2021.

[65] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Kara-
giannis, Antony Rowstron, Tom Talpey, Richard Black, and
Timothy Zhu. Ioflow: A software-defined storage architecture.
In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP’13), 2013.

[66] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David
Oppenheimer, Eric Tune, and John Wilkes. Large-scale cluster
management at google with borg. In Proceedings of the Tenth
European Conference on Computer Systems (EuroSys’15),
Bordeaux, France, 2015.

[67] VMware. Growing, thinning, and shrinking virtual disks in esxi.
https://kb.vmware.com/s/article/1002019, 2021.

[68] VMWare VSAN.
https://www.vmware.com/products/vsan.html, 2022.

[69] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga,
Aditya Bhandari, Neeraja J. Yadwadkar, Siddhartha Sen,
Sameh Elnikety, Christos Kozyrakis, and Ricardo Bianchini.
Smartharvest: Harvesting idle cpus safely and efficiently in the
cloud. In Proceedings of the Sixteenth European Conference
on Computer Systems (EuroSys’21), 2021.

[70] Guanying Wu and Xubin He. Reducing SSD read latency via
NAND flash program and erase suspension. In Proceedings of
the 10th USENIX Conference on File and Storage Technologies
(FAST’12), San Jose, CA, February 2012.

[71] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.
Bubble-flux: Precise online qos management for increased
utilization in warehouse scale computers. In Proceedings
of the 40th Annual International Symposium on Computer
Architecture (ISCA’13), Tel-Aviv, Israel, 2013.

[72] Jaewon Yang and Jure Leskovec. Defining and evaluating
network communities based on ground-truth. arXiv preprint
arXiv:1205.6233, 2012.

[73] Yahoo! Cloud Serving Benchmark.
https://github.com/brianfrankcooper/YCSB/wiki,
2021.

[74] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and
Bing Xie. RLScheduler: An Automated HPC Batch Job
Scheduler Using Reinforcement Learning. In Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’20), Virtual Event,
November 2020.

[75] Ning Zhang, Junichi Tatemura, Jignesh M. Patel, and Hakan
Hacigumus. Re-evaluating Designs for Multi-Tenant OLTP
Workloads on SSD-based I/O Subsystems. In Proceedings of
the SIGMOD’14, Snowbird, UT, June 2014.

[76] Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola,
Marcus Fontoura, Inigo Goiri, and Ricardo Bianchini. History-
based harvesting of spare cycles and storage in large-scale
datacenters. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16),
Savannah, GA, November 2016.

[77] Zhiheng Zhong, Minxian Xu, Maria Alejandra Rodriguez,
Chengzhong Xu,and Rajkumar Buyya. Machine learning-based
orchestration of containers: A taxonomy and future directions.
Computing Research Repository (CoRR), abs/2106.12739,
2021.

[78] Giulio Zhou and Martin Maas. Learning on distributed traces
for data center storage systems. In Proceedings of the Machine
Learning and Systems (MLSys’21), Austin, TX, March 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    33

https://pytorch.org/
https://github.com/facebook/rocksdb
https://en.wikipedia.org/wiki/Software-defined_data_center
https://en.wikipedia.org/wiki/Software-defined_data_center
https://en.wikipedia.org/wiki/Software-defined_storage
https://en.wikipedia.org/wiki/Software-defined_storage
https://azure.microsoft.com/en-us/services/virtual-machines/spot/
https://azure.microsoft.com/en-us/services/virtual-machines/spot/
https://docs.microsoft.com/en-us/azure/virtual-machines/error-codes-spot
https://docs.microsoft.com/en-us/azure/virtual-machines/error-codes-spot
https://searchstorage.techtarget.com/post/Software-Enabled-Flash-for-Hyperscale\-Data-Centers
https://searchstorage.techtarget.com/post/Software-Enabled-Flash-for-Hyperscale\-Data-Centers
https://searchstorage.techtarget.com/post/Software-Enabled-Flash-for-Hyperscale\-Data-Centers
https://kb.vmware.com/s/article/1002019
https://www.vmware.com/products/vsan.html
https://github.com/brianfrankcooper/YCSB/wiki




MemLiner: Lining up Tracing and Application for
a Far-Memory-Friendly Runtime

Chenxi Wang†♣ Haoran Ma†♣ Shi Liu† Yifan Qiao† Jonathan Eyolfson† Christian Navasca†

Shan Lu‡ Guoqing Harry Xu†

University of California, Los Angeles† University of Chicago‡

Abstract
Far-memory techniques that enable applications to use re-
mote memory are increasingly appealing in modern data cen-
ters, supporting applications’ large memory footprint and im-
proving machines’ resource utilization. Unfortunately, most
far-memory techniques focus on OS-level optimizations and
are agnostic to managed runtimes and garbage collections
(GC) underneath applications written in high-level languages.
With different object-access patterns from applications, GC
can severely interfere with existing far-memory techniques,
breaking remote memory prefetching algorithms and causing
severe local-memory misses.

We developed MemLiner, a runtime technique that im-
proves the performance of far-memory systems by “lining up”
memory accesses from the application and the GC so that they
follow similar memory access paths, thereby (1) reducing the
local-memory working set and (2) improving remote-memory
prefetching through simplified memory access patterns. We
implemented MemLiner in two widely-used GCs in Open-
JDK: G1 and Shenandoah. Our evaluation with a range of
widely-deployed cloud systems shows MemLiner improves
applications’ end-to-end performance by up to 2.5×.

1 Introduction
Datacenters are becoming increasingly memory con-
strained [65, 45, 40] with the ubiquitous deployment of
in-memory data analytics and ML systems like Neo4j [52],
Cassandra [12], Spark [74] and TensorFlow [5], which hold
large amounts of intermediate data in memory for quick pro-
cessing. To tackle this constraint, far-memory techniques
[30, 10, 63, 58, 26] that enable applications to use remote
memory are increasingly appealing, backed by advances in
hardware and networking techniques [13, 62, 66, 23, 19, 28,
35, 49, 55, 59, 32, 8, 16, 38, 41, 33, 63, 43, 57, 37, 42, 60, 7]
that allow remote memory to offer much lower latency and
higher bandwidth than local block devices.

♣ Contributed equally.

Most of these far-memory systems [30, 10, 63, 48, 68]
build on a cache-and-swap mechanism: the application’s host
server uses local memory as a data cache. Once a page that
does not reside in the local memory is accessed, a page fault
is triggered and the page is fetched from a remote server
into the local memory. Good locality and effective remote-
memory prefetching [50, 48] are crucial to the performance
of applications running in such far-memory systems.

Unfortunately, the interference from garbage collection
(GC) severely degrades the memory-access locality and
remote-memory prefetching for applications written in high-
level languages (e.g., Java, Go, and Python), which are domi-
nant in datacenter workloads. At run time, application threads
access heap objects following their program-execution paths,
while GC threads concurrently scan the heap, performing
graph traversal from a set of “roots” (i.e., objects referenced
by stack and global variables) to mark live objects. Object
accesses by these two sets of threads are uncoordinated, cre-
ating two disjoint working sets, as illustrated by Figure 1(a),
and causing severe performance problems.

Problem 1: Resource Competition. Pages swapped in for
GC’s heap traversal are often not used (in near future) and
hence evicted by the application; conversely, pages swapped
in for the application are often not needed (in near future) and
evicted by GC. Evicting each other’s pages, the application
and GC both suffer from severe local-memory misses and
further compete for RDMA bandwidth for page swapping.
The more concurrent activities a GC runs , the more the re-
source competition between GC and the application—our
results show that running Spark with the Shenandoah con-
current GC [25] on the 25% memory configuration incurs
a 12× slowdown to the end-to-end performance, which is
5× larger than the default G1 GC that reclaims memory in
stop-the-world pauses.

Problem 2: Ineffective Prefetching. Monitoring the execu-
tion of a managed program, an OS-level prefetcher such as
[48] cannot recognize clear memory-access patterns and has
to give up prefetching. The reason is that, even if the appli-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    35



Aligned 
Working Set

App ThreadApp Thread

GC Tracing Thread

(a) Current runtime (b) MemLiner runtime

GC Working Set

App Working Set

Figure 1: Our main idea: the working sets of GC threads, in
blue, and application threads, in red, during a time window
(a) without or (b) with the access alignment from MemLiner.

cation’s memory accesses follow a simple sequential pattern,
the combined accesses from both the application and the GC
often appear random from the OS’ perspective.
State of the Art. In the past, supporting applications that have
large memory footprints (e.g., larger than the main memory
size) is not the priority of traditional GC. Although there
exists a body of work (such as Platinum [70]) on concurrent
GC, such work focuses primarily on improving throughput
and reducing latency on memory-abundant servers. However,
remote memory is designed to enable applications to use
more memory than what their hosts can offer; as a result,
developing new GC techniques to support these applications
becomes a crucial task.

Recent work Semeru [68] supports running Java programs
on disaggregated hardware by disaggregating the traditional
JVM into two new ones, with the CPU-JVM executing the
program on the CPU server and the memory-JVM perform-
ing GC on the memory server. The idea of offloading GC
completely to a remote server works for Semeru where all
the application’s memory data is located in a remote server,
but does not suit today’s datacenters where resources are not
entirely disaggregated and applications use remote memory
only if their local memory runs out. Furthermore, this of-
floading approach imposes extra communication overhead
for CPU-JVM and memory-JVM to coordinate, and extra
computation cost on the remote memory server to run the
memory-JVM, which may impose deployment challenges.

Another recent work AIFM [58] proposes a novel runtime
to improve the prefetching and swap performance of appli-
cations running in remote-memory systems. AIFM targets
applications written in native languages (C/C++), and hence
cannot easily be applied to solve the GC interference problem
in the managed language runtime.
MemLiner. This paper presents a fully-automated runtime
technique, MemLiner, for programs written in high-level
languages (HLLs) to efficiently use remote memory.

The design of MemLiner is based on two key observations.
First, the objects accessed by the application and the GC

are not completely unrelated—they are just not temporally
aligned. The live objects traced by the GC are mostly accessed

by the application at some point during the execution; the
objects accessed by the application must be live objects at the
moment of the access and hence the target of GC.

Second, although changing object-access order in applica-
tion threads would break the application semantics, changing
that order in GC would not. Specifically, GC threads aim to
trace and mark all reachable objects in the heap, while the
order of that tracing and marking (e.g., which objects are
traced first) does not matter.

Guided by these observations, the key idea behind Mem-
Liner is working set alignment. MemLiner carefully reorders
the objects traced by the GC threads, so that they follow a
similar, although not identical, memory-access path of the
concurrent application threads (illustrated by Figure 1(b)).
Consequently, their working sets can better overlap with each
other; the resource competition can be much alleviated, with
much reduced page faults and on-demand swaps; the appli-
cation’s access patterns can be more easily recognized by
the underlying prefetcher such as Leap [48]. All of these
are achieved in a way that is compatible with existing GC
algorithms, without offloading the GC to another machine or
re-desgining the prefetcher.

MemLiner must overcome several challenges.
First, how to align GC threads with application threads.

In a conventional setting, GC traces objects using a graph
traversal starting at the root objects. To align GC’s accesses
with application threads’, MemLiner uses a priority-based
algorithm—MemLiner makes application threads inform the
GC of the objects they are accessing; these objects, which
must be live and reachable in the object graph at that moment,
are then immediately traced and marked by the GC, without
any risk of triggering page faults and expensive remote swaps.
To enable such communication, MemLiner leverages the read-
write barrier—a piece of code executed by the runtime at
each heap read/write in the application—to inform GC of
the objects on the application’s access path. Details of the
coordination are discussed in §4.1.

Second, when to break the alignment so that GC can finish
its work without unnecessary delays. Completely aligning
GC threads with application threads could severely delay GC
from reclaiming dead heap space, as application threads may
take a long time, sometimes even the whole execution, to
access every live object. In fact, a complete alignment is
unnecessary, as application threads may repeatedly access
the same object in a short time window due to application
semantics, like during a loop, while GC only needs to mark
that object live once. Consequently, MemLiner allows GC
to break from the alignment to work on another part of the
heap traversal from time to time. To minimize the inter-
ference, MemLiner prioritizes two types of objects in GC’s
unaligned accesses: (1) objects that will likely be accessed
by the application soon; (2) objects that were accessed by the
application not long ago and hence are likely still inside the
local memory. The former is predicted based on what objects

36    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the application just accessed; the latter is predicted based
on object-access history that MemLiner efficiently encodes
inside the per-object pointer. Details can be found in §4.2.

Results. We have integrated MemLiner into two widely used
GCs (G1 and Shenandoah) in OpenJDK 12. A thorough
evaluation with Spark, Cassandra, Neo4J, QuickCached and
DayTrade demonstrates that MemLiner improves the end-to-
end execution time by an overall of 1.48× and 1.51× under
the 25% and 13% local memory configurations for the G1
GC, and 2.16× and 1.80× for the Shenandoah GC (which
runs concurrent GC threads more frequently than G1). Fur-
thermore, MemLiner improves Leap’s prefetching coverage
and accuracy by 1.5× and 1.7×, respectively. Compared to
Semeru [68], MemLiner achieves a comparable performance
without offloading any computation on remote servers.

Key Takeway. Although there are several directions of work
on remote memory (e.g., clean-slate approaches such as
AIFM [58] and Kona [17], swap optimizations such as Infin-
iSwap [30] and FastSwap [10], as well as distributed runtimes
such as Semeru [68]), MemLiner takes an easy-to-adopt, non-
intrusive approach that enables performance improvements
for a wide variety of new and legacy applications. Mem-
Liner is orthogonal to (and complements) these existing tech-
niques—aligning the memory accesses between application
and GC threads reduces thread-level interference and the
application’s local-memory working set regardless of the un-
derlying remote-access mechanisms and optimizations.

2 Background

GC. A major benefit of high-level languages over native
languages is their support for automated memory manage-
ment—developers are released from the burden of deallo-
cating objects, leading to improved reliability and security.
Automated memory management is enabled by garbage col-
lection (GC), which runs when the heap has little free space.
The key idea of GC is simple [36]: perform a reachability
analysis to identify a transitive closure of live objects and
reclaim objects outside the closure. Consequently, a modern
GC algorithm has two main components: (1) tracing the heap
graph to compute that closure and identify live objects, and
(2) reclamation of dead objects, while evacuating live objects
to contiguous space and updating pointers.

Concurrent Tracing. To ensure the correctness of pointer
updating, a conservative way of running GC is to pause all
application threads (i.e., a stop-the-world phase) for full-heap
tracing and reclamation, which incurs significant delays [53,
47]. To address this performance limitation, starting from
the G1 GC [22], which is the default GC in Oracle’s JVM,
all modern garbage collectors, including Shenandoah [25]
from Red Hat and ZGC [2] from Oracle, run the tracing phase
concurrently with application threads to (1) leverage the many
available cores and (2) minimize GC pauses. For example, in
G1, the number of tracing threads is configured, by default, to

be 1/4 of the number of cores. Concurrent tracing often uses
a snapshot-at-the-beginning (SATB) algorithm [73]—tracing
traverses the heap graph from a logical snapshot of the heap;
it will not miss any live object as long as object allocation and
pointer updates made by the application since the snapshot
are recorded and considered conservatively. G1 runs stop-the-
world phases to reclaim memory by evacuating live objects
into new regions while Shenandoah and ZGC run evacuation
also concurrently to minimize the pause time.

Tracing Algorithm. Logically, tracing divides objects into
three colors: white, black, and gray. The white set is the set
of objects that are candidates for reclamation. The black set
is the set of objects that can be shown to have no references
going to objects in the white set, and to be reachable from
the roots. Objects in the black set are not candidates for
reclamation. The gray set contains all objects reachable from
the roots but yet to be scanned.

Initially, all objects are white. Tracing implements a graph
traversal algorithm that gradually changes the color of ob-
jects reachable from the roots from white to black. For each
reachable object o, tracing marks it black, retrieves all ob-
jects referenced directly by o, and adds them into the gray set.
Each iteration retrieves an object from the gray set, marks it
black, and adds more objects into the gray set. The algorithm
repeats until the gray set becomes empty; objects that remain
white can be safely reclaimed. In practice, a modern runtime
uses a bitmap to mark live objects efficiently.

3 Motivation
In this section, we use an experiment to quantitatively demon-
strate (1) how tracing and application threads interfere with
each other, and (2) why simply disabling concurrent tracing
cannot solve the problem.

Setup. We ran Spark Logistic Regression (LR) with the
Wikipedia dataset on OpenJDK 12 and its default G1 GC.
We used two machines, each with 2 Xeon(R) CPU E5-2640
v3 processors, 128GB memory, 1024GB SSD, and CentOS
7.5, connected by RDMA over a 40Gbps InfiniBand network.
One machine runs Spark, using local memory and remote
memory on the other machine. We configured the first ma-
chine to have just enough memory to host 25% of Spark’s
working set. We name the first server providing compute re-
source as host server and the second server providing remote
memory as remote server.

We compare the execution of Spark LR in two modes:
(1) The G1 GC’s concurrent tracing is disabled;
(2) The G1 GC’s concurrent tracing is enabled—the default

option in G1 GC. The number of tracing threads is set to be a
quarter of the number of available cores, as suggested by G1.

In both cases, the heap size of Spark LR is set to 32GB and
the host server can hold up to 8GB of its heap. The execution
goes through application-execution phases and stop-the-world
GC phases alternatively.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    37



15000

18000

21000

24000

27000

30000

0 64 128 192 256 320 384 448 512

Fa
ul

ty
 P

ag
e 

In
de

x

Page Fault Sequence

0

5000

10000

15000

20000
25000

30000

0 64 128 192 256 320 384 448 512

Fa
ul

ty
 P

ag
e 

In
de

x

Page Fault Sequence

35%
61%

65%
39%

0%

20%

40%

60%

80%

100%

CT Disabled CT Enabled

Fa
ul

ty
 P

ag
e 

So
ur

ce

 on-demand prefetched

(a) Page fault trace of Spark LR. (b) Page fault trace of Spark LR with CT. (c) Prefetching effectiveness.

Figure 2: Prefetching effectiveness for Spark LR executed atop OpenJDK 12 (with its default G1 GC): (a) trace of faulty page
index for application threads only; (b) trace of faulty page index when concurrent tracing (CT) is enabled; (c) disabling CT
significantly improves the effectiveness of Linux’ default swap prefetcher.

How much interference from concurrent tracing? To have
an intuitive look at how well prefetching may or may not work,
we randomly sampled 512 consecutive page faults in the
middle of Spark LR’s execution under both execution modes.
Note that, since we collected page-fault information from
inside the kernel and the execution under the two GC modes
proceeds at vastly different paces, we cannot guarantee that
the two samples come from the same window of application
instructions, but we do make sure that the stop-the-world GCs
did not occur during our samples.

Figure 2 (a) and (b) illustrate the virtual page index of the
faulty addresses (Y-axis) ordered by when each fault occurs,
with the sequence number shown in the X-axis. Without con-
current tracing, each of the application threads has a clear
streaming access pattern, as shown in Figure 2(a), which
should be detected by an advanced prefetcher. This clear
pattern is messed up by concurrent tracing, as shown in Fig-
ure 2(b), making prefetching much harder.

To quantitatively measure the impact of concurrent tracing
on prefetching, we checked 500 application-execution phases
(i.e., the period between two stop-the-world GCs) to under-
stand, among all the page faults, how many were resolved
through on-demand swaps from remote memory and how
many were resolved using data already brought in through
prefetching. Clearly, this ratio of on-demand swapping versus
prefetching directly affects the application performance.

As shown in Figure 2(c), without concurrent tracing,
prefetching is effective, addressing 65% of the page faults.
Unfortunately, with concurrent tracing, this ratio greatly
dropped to only 39%, with the remaining 61% of page faults
leading to costly remote-memory accesses. Note that our ex-
periments use Linux’s default swap prefetcher. If an advanced
prefetcher such as Leap [48] is used, the prefetch-ratio would
be even higher without concurrent tracing and hence suffer
even more from the interference (see §7).

Finally, to understand how much the interference has af-
fected the working set of the execution, we also measured

the average number of page faults encountered by application
threads. The page-fault rate jumps from 3.5K per second
per thread to 9.6K per second per thread, when concurrent
tracing is enabled, indicating a huge interference.

El
ap

se
d 

Ti
m

e 
(s

)

250
300

350

400

450

500
550

CT Disabled CT Enabled

El
ap

se
d 

Ti
m

e 
(s

)

20
40
60
80

100
120
140
160

CT Disabled CT Enabled

(a) End-to-end execution time. (b) GC pause time.

Figure 3: Concurrent tracing improves overall performance.
(Data is from 10 runs of each program; dots are outliers.)

Why not just disable concurrent tracing? Having seen sig-
nificant interference from concurrent tracing, a strawman so-
lution is to simply disable concurrent tracing for applications
running in far-memory systems.

Unfortunately, this strawman solution does not work.
First, modern concurrent GCs such as Shenandoah [25] and
ZGC [2], which are designed for low-pause and used widely
by latency-sensitive cloud applications, rely on concurrent
tracing to reclaim memory (also concurrently). Disabling
concurrent tracing would destroy the functionality of such
collectors. Second, even for GCs such as G1 that could
perform tracing in a stop-the-world phase, the end-to-end
execution time suffers significantly without concurrent trac-
ing. As shown in Figure 3(a), the execution time increases
by 18% on average in 10 runs. The main reason is that the
aggregated stop-the-world GC periods now take 2.7× longer
without concurrent tracing, as shown in Figure 3(b). Without
concurrent tracing, each (fast young-generation) GC cannot

38    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



reclaim as many dead objects in the same amount of time and
has to resort to slow, full-heap GC that scans and compacts
the whole heap space in a stop-the-world period, which is
extremely time consuming. For example, the longest full-
heap GC (i.e., a single pause) in Spark LR takes 76.9 seconds,
clearly an intolerable delay.

Key Takeway. Memory accesses from application and GC
threads exhibit diverse patterns, significantly increasing the
application’s working set and making prefetching harder. Sim-
ply disabling concurrent tracing in GC would not work, as it
reduces the number of local-memory misses at a cost of sig-
nificantly increased GC pause and end-to-end execution time.
MemLiner offers a solution that can greatly reduce the num-
ber of local-memory misses and increase the effectiveness of
existing prefetchers without introducing extra GC-pause time,
and hence effectively reduce the end-to-end execution time.

4 MemLiner Design and Implementation

This section presents the design and implementation of Mem-
Liner, particularly how we realize the two key ideas: (1)
making GC concurrently trace objects immediately after their
access by application threads (§4.1) and (2) making GC trace
other live objects through a novel priority-based algorithm
(§4.2) to reduce interference.

MemLiner modifies the garbage collector inside the run-
time and the swapping system inside the kernel, while requir-
ing no changes to applications. In terms of runtime changes,
MemLiner is a general mechanism that can be integrated into
any modern runtime that performs concurrent tracing. This pa-
per focuses on a design for Oracle’s OpenJDK, a commercial
JVM that supports a variety of high-level languages such as
Java, Scala, Python, Ruby, etc. In terms of kernel changes, we
build MemLiner atop paging/swap mechanisms that already
exist in the OS kernel, with minimal invasion. Any swap
optimizations such as InfiniSwap [30] and FastSwap [10]
can be readily used to improve the swap performance for a
MemLiner-equipped runtime. MemLiner’s runtime design is
independent of how remote memory is accessed; for example,
MemLiner could also run on a clean-slate platform such as
Kona [17] that access remote memory based on cache coher-
ence, not page faults, if coherence is provided by hardware.

When a MemLiner-equipped JVM is launched, the maxi-
mum heap sizeM is specified by the user via a command-line
option. A small amount of physical memory on the local ma-
chine is initially used to back up the heap (which is much
smaller than M ). The heap stays entirely in local memory
until its usage exceeds the size of local memory, in which
case, the OS kernel allocates remote memory by registering
it as an RDMA buffer. The kernel uses an approximate LRU
algorithm to evict pages. MemLiner does not require any
software/hardware support on remote servers, providing a
practical solution that can be readily used in today’s cloud.

4.1 Application and GC Coordination

To align memory accesses, application threads inform GC’s
tracing threads of the objects they are accessing so that tracing
threads can trace these objects immediately.

To facilitate such communication, we need to instrument
every heap read/write instruction so that the application can
send an object pointer to GC when it dereferences the pointer:
(1) At a statement that reads an object field or an array element
of the form a = b.f or a = b[i], our instrumentation pushes
the corresponding address in b into a thread-local producer-
consumer queue (PQ), which will be read by GC during
tracing. (2) At a statement that writes an object field or an
array element of the form b.f = a or b[i] = a, we similarly
push the object reference in b into the PQ.

MemLiner implements this instrumentation through exist-
ing read/write barriers—a piece of code that is executed by
modern runtimes at each heap read/write operation to record
heap information for GC purposes. MemLiner piggybacks on
the existing implementation of read/write barrier in OpenJDK
12 that intercepts both interpreted and compiled code. A PQ is
created for each application (producer) thread so that no syn-
chronization is needed for enqueuing pointers. A GC tracing
(consumer) thread constantly checks PQs to retrieve pointers
for tracing. Consumer threads use atomic instructions when
dequeuing object pointers. In practice, the number of applica-
tion threads is often larger than the number of tracing threads;
hence, there is little contention when PQs are accessed by
multiple threads.

To minimize the maintenance overhead, we represent each
PQ as a non-blocking ring buffer. Producers and consumers
do not synchronize at all—an application thread keeps writing
into the queue even if it is full. As such, the application
thread may overwrite entries that have not yet been picked
up by GC. Note that this would not cause any correctness
issues because those entries only indicate tracing priority:
overwriting an entry will delay the corresponding object’s
tracing, but the tracing of these objects will eventually happen
in GC’s regular graph traversal, which will be discussed in
the next sub-section.

Note that our instrumentation code at different program
points is unlikely to enqueue the same object reference multi-
ple times (e.g., neighboring reads to the same data structure).
This is because marking an object live sets a bit in a global
live bitmap. Before pushing each object reference into the
queue, an application thread checks its bit from the bitmap
and filters it out if the bit is already set.

4.2 MemLiner Tracing Algorithm

4.2.1 Design Overview

A major challenge in aligning tracing and application threads
is that GC has to compute a full closure of live objects to
reclaim memory. Hence, it is unproductive to trace a live
object only right after it is accessed by the application, which

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    39



will delay the closure computing, leading to inefficiencies in
memory reclamation.

The key question here is: how can GC make quick progress
in closure computation without producing a working set that
significantly departs from that of the application? On the
one hand, after processing all objects in the PQ, we want GC
to trace as many other live objects as possible, even if not
in the PQ, to complete the closure. On the other hand, GC
should better not trace many objects that do not reside in local
memory because tracing those objects triggers page faults and
swaps. How to reconcile these seemingly conflicting goals is
a problem MemLiner must solve.

Reachable Object Classification. To better explain our trac-
ing algorithm, we first classify all live objects at any moment
of the execution into three categories based on their location
and when they are accessed by the application, as illustrated
in Figure 41:

(1) Objects in local memory (i.e., data cache): These ob-
jects have recently been accessed by the application and have
not been evicted yet. Clearly, tracing them at this moment
(or in the near future) would not generate any page faults or
interfere with the application. Many of these object (i.e., the
red ones in the figure) are made known to the GC through the
PQ discussed in §4.1. However, since the PQ is designed to
be a ring buffer, some of these objects (i.e., the striped ones
in the figure) may be missed by GC due to being overwritten
in the ring buffer. How to trace them sooner rather than later
requires extra handling that we will discuss later.

(2) Objects in remote memory and to be used soon: Since
these objects (i.e., the wavy nodes in Figure 4) will soon be
accessed by the application, they are typically just a few refer-
ences away from the objects being accessed by the application.
Tracing them is also desirable—although they are currently
not local, they will soon be needed by the application. If
GC triggers page faults when accessing them, the costs of
handling these faults and swapping would be necessary as
they are “prepaid” by GC for the application.

(3) Objects in remote memory and not used soon: These
are illustrated as clear-circle objects in the figure. They were
used by the application a while ago and got evicted to remote
memory. Tracing them is needed eventually but is undesirable
now or in the near future, as tracing them pays the high cost of
fault handling and swapping (which is entirely wasted if they
are not used by the application before their next eviction).

Handling Different Categories in GC. MemLiner’s central
design goal is to let GC trace objects in Category (1) and
(2) right away to maximize progress and delay tracing ob-
jects in Category (3) to avoid unnecessary page faults and
interference. Among the different categories of objects, our
starting point is the set of red objects, which are captured by

1For ease of discussion, here we do not consider cold objects staying in
cache due to hot objects on the same page. We will discuss it in Section 4.3.

(3) In remote memory
not used by applications soon

(GC should wait)

(2) In remote memory
used by applications soon

(GC should touch)

…

…

Roots
(1) In local memory
(GC should touch)

Live 
Objects

In PC queue Not in PC queue

Figure 4: Classification of reachable objects in the heap: red
objects are being accessed by the application and shaded
objects are what MemLiner intends to trace.

the read/write barrier, sent to GC via the PQ, and traced by
GC immediately.

With the red objects in hand, the wavy objects in Category
(2) are just a few references away. To mark these objects, we
let GC trace a small number of references forward from the
red objects, which were retrieved from the PQs. As discussed
above, tracing such an object will likely trigger swapping,
prepaying the cost for the application to access the object
soon later. Note that tracing too many references forward
will not be useful, as that may bring in objects not used by
the application in the near future. In our implementation, we
limit the number of hops to 3, which is often large enough to
cover objects in the same logical data structure [72].

After red objects and wavy objects, the remaining live
objects to trace are those in Category (3) and the striped
objects in Category (1). There are two challenges here. First,
there are no easy ways to reach them from the red objects.
Second, to reduce memory interference, it is better to trace the
striped Category (1) objects before the Category (3) objects,
as discussed above.

To tackle these challenges, MemLiner makes every concur-
rent tracing thread alternate between two modes:

(1) When the PQ is not empty, trace objects in the PQ (i.e.,
red) and objects a few references forward (i.e., wavy);

(2) When the PQ is empty, perform normal object-graph
traversal that starts from root objects like traditional GC.

Different from a traditional GC, MemLiner modifies the
traversal algorithm to consider whether an object o to be
traced is likely in local memory (i.e., whether o is a striped
Category (1) object or a Category (3) object)—if o is esti-
mated to reside in local memory (i.e., a striped Category (1)
object), it is traced right away in GC; if not (i.e., Category
(3)), MemLiner postpones processing o in its graph traversal
until a later time, optimistically hoping that o will be used
by the application before it is encountered again in GC. Af-
ter postponing a number of times (referred to as MAX _DL
below) , GC processes o even if it is still estimated to be
remote, so that the closure computation will not be signifi-
cantly delayed. MemLiner dynamically adjusts the value of

40    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Object Address (42 bits, 
4TB address space)Unused(14 bits) ts (4 

bits)
GC(4 
bits)

Figure 5: A 64-bit object pointer in MemLiner.

MAX_DL, in response to the size of available heap space.
For example, when the available heap size is in the red zone
(i.e., <15% available space), MAX _DL will be set to 0, let-
ting GC quickly finish tracing and collect memory. Details of
this adaptive algorithm can be found in this section.

4.2.2 Object Location Estimation

Now, the only missing piece of MemLiner’s tracing algorithm
is a way to estimate whether an object is local or not. A naïve
solution is to create a system call that allows GC to query the
page table. However, this can be prohibitively expensive as it
requires a system call per object visited during tracing.

To solve this problem, we conceptually divide the execu-
tion into epochs and encode the current epoch ID into each
object pointer whenever an object is accessed. Later on, dur-
ing concurrent tracing, this epoch ID will allow the GC to
estimate how recently an object was accessed and hence how
likely it is still in local memory.

Epoch. Given our goal of estimating whether an object is in
local memory, we define an epoch to be an execution period
in which the set of pages in local memory that belongs to the
JVM process are relatively stable (i.e., they do not change
much). This set changes as new pages of this JVM process
are swapped in and old pages are swapped out. When the
change becomes significant (e.g., larger than N% of the total
number of JVM pages), a new epoch starts. We modify the
kernel swap system to keep track of the pages in the cache and
determine the start of a new epoch. A global epoch counter is
maintained in the JVM and its address is passed into the swap
system. This epoch counter starts from zero and is increased
by one whenever a new epoch starts.

Timestamp. In the JVM, virtual addresses of objects are rep-
resented as references, which are essentially pointers with a
strong type. In a 64-bit JVM, the format of an object refer-
ence is shown in Figure 5. Recall that our need is to estimate
whether an object is in local memory from a reference/pointer
of the object (e.g., recorded in a field of another object) during
GC’s graph traversal. Our idea here is to modify the pointer
format by reserving 4 unused bits as a timestamp (ts in Fig-
ure 5) that indicates the epoch in which the pointer was last
dereferenced—once the epoch ID reaches 15, the next epoch
ID goes back to 0. Dereferencing the pointer accesses the
target object (i.e., bringing the object to local memory if it
is remote). As such, if the timestamp is close to the current
epoch, the object is likely in local memory (i.e., Category
(1)) and GC should follow the pointer to trace the object;
otherwise, the object may not be local (i.e., Category (3)),
and GC should postpone tracing it.

Algorithm 1: Allocation semantics.
Input: Allocation site o = new C.
Output: Object reference o.

1 addr ←ALLOCATE(SIZEOF(C))
2 o←UPDATEPOINTER(addr , CURRENTEPOCH())
3 return o

Algorithm 2: Object read and write semantics in ap-
plication threads.

Input: Object read/write access a = b.f or b.f = a.
1 ENQUEUE(PQ , b)
2 b ← UPDATEPOINTER(b, CURRENTEPOCH())
3 if ISREFERENCE(a) then
4 b.f ← a← UPDATEPOINTER(a , CURRENTEPOCH())

Upon the allocation of a new object o, MemLiner sets the
timestamp bits in o’s pointer to be the current epoch number
(with function UPDATEPOINTER in Algorithm 1).

Whenever an object is read/written in an application thread
like b.f = a or a = b.f (Algorithm 2), MemLiner updates the
timestamp ts in the dereferenced pointer b to be the current
epoch ID. Furthermore, if a and b.f are also object references,
we write an updated pointer of a into b.f , indicating that
soon the object referenced by b.f will be accessed through
a. Again, this instrumentation is implemented through read-
/write barriers.

Note that we use Algorithm 1 and Algorithm 2 to illus-
trate the high-level logic. Our implementation actually inserts
assembly code for efficiency. Changing object pointers in
the JVM would not cause problems for actual memory ac-
cesses—although each pointer represents a virtual address,
the barriers we use mask pointers so that only the last 42 bits
are used to access memory.

4.2.3 MemLiner Tracing Algorithm

Algorithm 3 shows GC’s tracing logic, which was summa-
rized in §4.2.1. The algorithm takes two queue data structures
as input: TQ is a standard tracing queue (already used by the
JVM) that contains references yet to be explored in object
graph traversal; it is initialized with a set of object references
in the stack and global variables (i.e., roots). PQ, as dis-
cussed earlier, is the producer-consumer queue that contains
references of red objects sent to GC by application threads.

As discussed in §4.2.1, every tracing thread of MemLiner
alternates between two modes. In the default mode, tracing
loops over the tracing queue TQ, shown in Line 2-13 in Algo-
rithm 3, to perform normal graph traversal. Whenever PQ is
not empty (Line 3), the tracing thread interrupts the normal
traversal and switches to the other mode to handle the (red)
objects in PQ (Line 4); this logic is listed in Algorithm 4 and
will be discussed shortly.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    41



Algorithm 3: Main tracing logic in MemLiner’s GC.
Input: (1) Producer-consumer queue PQ ; (2) tracing queue

TQ .
Output: Fully marked live bitmap for all live objects.

1 Function TRACING(TQ ,PQ):
2 while TQ 6= ∅ do
3 if PQ 6= ∅ then
4 TRACEREDANDCATEGORY2(TQ , PQ)

5 Tuple 〈o, dl〉 ← DEQUEUE(TQ)
6 if DIFF(TS(o), CURRENTEPOCH()) > δ ∧dl <

MAX_DL then
7 ENQUEUE(TQ , 〈o, dl + 1〉)
8 Continue

9 if CHECKLIVEBITMAP(o) = 0 then
10 MARKLIVEBITMAP(o)
11 foreach Non-null reference-type field f ∈ o do
12 Object reference p← o.f
13 ENQUEUE(TQ , 〈p, 0〉)

In the default mode, each iteration of the tracing loop re-
trieves a 2-tuple 〈o, dl〉 from TQ, representing an object ref-
erence o and a delay limit dl . MemLiner compares TS(o)
with the current epoch ID (Line 6). If these two IDs are close
to each other (DIFF(TS(o), CURRENTEPOCH()) ≤ δ), Mem-
Liner goes ahead to mark this object in the global live bitmap
(Line 10) and pushes all the non-null object references stored
in this object into the tracing queue TQ (Line 13). Otherwise,
MemLiner estimates that the object is not in the cache and
hence pushes this tuple back into TQ (Line 7), hoping that the
application will use this object and bring it to the cache before
the next time it is dequeued in tracing. To avoid pushing back
an object too many times, which would delay the comple-
tion of closure computation, MemLiner uses a delay limit dl ,
which is initialized to 0. Every time a tuple is pushed back,
its dl is incremented (Line 7). Once it becomes MAX_DL
(i.e., the additional check at Line 6), GC is forced to mark
the object. MAX_DL is auto-tuned based on the amount of
available heap space (discussed shortly).

The other mode of tracing red objects is triggered when
PQ is not empty, as illustrated in Algorithm 4. Similar to
the default tracing loop, each iteration of the loop (Line 2) in
Algorithm 4 retrieves an object reference from PQ, calling
a recursive function EXPLORE to not only mark red objects
themselves, but also trace a few references forward to mark
objects in Category (2), which may be soon used by the appli-
cation. We use a recursive function here to control the number
of references (i.e., data structure depth) to be explored—once
depth exceeds a constant MAX_Depth (Line 9, 3 by default),
the function does not further explore the object graph, but
instead, pushes these unexplored references into the regular
tracing queue TQ (Line 12) so that they can be traced later
in a normal graph traversal without priority. This is because,

Algorithm 4: Tracing logic for red and Category-(2)
objects.

Input: (1) Producer-consumer queue PQ ; (2) regular
tracing queue TQ .

1 Function TRACEREDANDCATEGORY2(TQ ,PQ):
2 while PQ 6= ∅ do
3 o← DEQUEUE(PQ)
4 EXPLORE(o, TQ , 0)

Input: (1) Object reference o; (2) tracing queue TQ ; (3)
current exploration depth depth .

5 Function EXPLORE(o,TQ , depth):
6 MARKLIVEBITMAP(o)
7 foreach Non-null reference-type field f ∈ o do
8 Object reference p← o.f
9 if depth < MAX_Depth then

10 EXPLORE(p, TQ , depth + 1)

11 else
12 ENQUEUE(TQ , 〈p, 0〉)

as discussed in §4.2.1, following long reference chains can
swap in objects that may not be needed by the application in
the near future, leading to wasted efforts.

Marking an object live flips its corresponding bit in a global
live bitmap (Line 6); as a result, the regular graph traversal
(Algorithm 3) would not mark it again if it is encountered
there. Once the tracing of the red and Category-(2) objects is
done, GC resumes the normal graph traversal in Algorithm 3.

In modern GC with concurrent tracing, each tracing thread
works on its own tracing queue TQ. MemLiner modifies each
tracing thread to run Algorithm 3 so that the work on TQ
is interrupted if there are outstanding red objects in a PQ.
Each application thread independently pushes red objects into
its thread-local PQ while each tracing thread can consume
objects from all PQs. This design makes it possible to en-
able work stealing between threads to balance the number
of red and Category-(2) objects processed by these threads.
The read/write barrier is already used in existing GC algo-
rithms, such as G1, Shenandoah and ZGC, as well as other
far-memory techniques such as AIFM [58]. To further reduce
MemLiner’s overhead at each read/write barrier, we only need
to push the object reference o (64 bit) onto the queue with a
very small number of instructions.
Autotuning of MAX_DL. How much delay should be intro-
duced to tracing depends on how urgently GC must be com-
pleted. As a result, we develop an autotuner that dynamically
adjusts the value of MAX_DL in response to the available
heap size. The rationale is straightforward: if the heap is
almost full, there is an urgent need to complete GC and hence
we should use a small value for MAX_DL; on the contrary,
if the heap is mostly available, delaying GC will not have a
large impact on memory and hence we use a large value for
MAX_DL to minimize interference.

42    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



MemLiner uses two thresholds for heap availability: 15%
and 50%. When the percentage of available memory is lower
than 15%, the JVM is in a red zone. If the percentage is
between 15% and 50%, it is in a yellow zone. The JVM is
in a green zone if the amount of available memory is higher
than 50% of the heap size. MemLiner monitors heap usage
upon allocations and uses three values for MAX_DL: 0, 2, and
4 respectively if the heap falls in the red, yellow, and green
zone. These thresholds were empirically chosen and worked
well for all our applications.

4.3 Discussion

MemLiner performs adaptation in two dimensions: (1) adapt-
ing timestamps based on the swap behavior and (2) adapting
MAX_DL based on heap availability. The swap behavior
correlates with interference and heap availability correlates
with GC urgency. We elaborate on how (1) and (2) work in
harmony to make MemLiner achieve superior performance.

For (1), MemLiner uses the timestamp mechanism to re-
duce the interference between GC and application threads.
For example, if the cached pages rarely change (i.e., the ap-
plication has excellent locality or the local memory size is
large enough), the interference is minimal and hence it would
not create performance issues if MemLiner does not deviate
much from an existing GC. Indeed, our algorithm makes the
global epoch change slowly and timestamps in most pointers
are the same as the current epoch ID. Algorithm 3 would
trace most objects in TQ without delays. This is a desired
property—when resources are not constrained, MemLiner
would not incur overhead because GC can trace objects and
reclaim memory in a timely fashion.

Conversely, if the set of cached pages frequently changes
(i.e., the application has poor locality or the cache size is
small), the interference is significant and MemLiner should
perform differently from an existing GC. Indeed, the global
epoch moves at a fast speed. As such, the timestamps in most
pointers are different from the current epoch ID. In other
words, most objects in the heap are Category-(3) objects
that are not in local memory. Consequently, Algorithm 3
would delay the marking of most objects and thus make slow
progress. This is also a desired property—tracing should
“yield” to the application when local memory resource is
tight and application threads are constantly accessing remote
memory. In this case, MemLiner imposes a delay to GC, and
the delay is bounded by MAX_DL.

For (2), we use heap availability to dynamically adjust
MAX_DL, enabling MemLiner to “override” the policy made
under (1) in urgent situations. For example, if the application
is experiencing frequent changes in cached pages (indicating
interference) while the heap is almost full, the policy under (1)
would delay tracing, which can, in turn, delay the completion
of GC and subsequently trigger an undesired full-heap collec-
tion. In this case, our adaptation under (2) would determine
that the heap is in the red zone and thus change MAX_DL

to 0—even if tracing is delayed, the delay length is set to 0,
effectively allowing GC to move in a normal pace.

5 GC-Specific Optimizations
We have implemented MemLiner in both the JVM’s default
G1 GC [22] and Red Hat’s Shenandoah GC [25], which are
two representative GCs widely used in cloud settings. G1 is
a generational GC that optimizes for throughput with stop-
the-world pauses while Shenandoah is a concurrent GC that
minimizes the time of each pause by concurrently tracing and
compacting objects. Shenandoah optimizes for latency at the
cost of reduced throughput. Our goal is to demonstrate that
MemLiner can be easily integrated into both GC algorithms,
providing performance benefits for different kinds of (e.g.,
latency-sensitive or batching) workloads.

One challenge in MemLiner is its reliance on read and
write barriers, which, if used naïvely, can incur a significant
runtime overhead. This section discusses our optimizations to
mitigate the overhead. With these optimizations, MemLiner’s
barrier introduces an average of 2% and 5% overheads,
respectively, to Shenandoah and G1, when the application
runs entirely with local memory. Such low overheads are due
to the following reasons:

First, Shenandoah already utilizes both read and write bar-
riers for concurrent tracing and concurrent evacuation. Mem-
Liner only inserts few instructions into the existing barriers,
incurring negligible overheads.

Second, the original G1 only uses the write barrier. Naïvely
adding the read barrier into G1 can cause a much higher
overhead. We develop the following three optimizations that
successfully filter out a significant fraction of object accesses:
Optimization #1: The enqueue operation of MemLiner’s bar-
riers is enabled only when concurrent tracing is in progress.
When concurrent tracing is not running, it is unnecessary to
add any objects into the PQ.
Optimization #2: G1 is a generational GC that splits the
heap into a young and an old generation. Concurrent tracing
scans only old-to-old references (to compute garbage ratio
for each region in the old-gen), meaning that references in the
young generation are not traced in concurrent tracing at all.
Based on this insight, our read barrier filters out all references
in the young generation—there is no need to update their
timestamps or add them in PQ because these references are
not traced in G1’s concurrent tracing anyways.
Optimization #3: Our read barrier does not need to update
timestamps for objects whose pointer timestamp is the same
as the epoch ID. Essentially, we use a check that first com-
pares the pointer timestamp with the epoch ID and updates
the timestamp only if they do not have the same value. The
larger the local memory percentage is, the less frequently the
epoch changes and hence more objects can benefit from this
optimization. This explains why when the percentage of local
memory increases, MemLiner’s overhead does not increase
proportionally (as shown in Figure 7).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    43



6 Limitations
MemLiner is designed for managed applications running on
a managed runtime and thus not applicable to native applica-
tions such as those written in C/C++. Furthermore, MemLiner
is designed to optimize throughput (by reducing interference
and improving prefetching), not latency. However, it does not
increase the application latency (i.e., making remote access
longer) or the GC pause time. For the Shenandoah GC, its
pauses are already very short because operations requiring
a pause do not involve many remote accesses and their time
is not changed much by MemLiner. For G1, by lining up
the tracing and application’s memory accesses, MemLiner
makes concurrent tracing more efficient, thereby significantly
reducing the frequency of triggering full-heap collections.
However, it does not reduce the per-collection pause time.

As shown in our evaluation, the more remote memory an
application uses, the more effective MemLiner’s optimization.
However, when a large percentage of the working set fits into
local memory, MemLiner’s effectiveness reduces. In fact, if
this percentage exceeds 50%, MemLiner’s performance is on
par with that of the original JVM.

The other limitation is that MemLiner focuses on reducing
interference between the application and concurrent tracing
threads. Application threads may also interfere with mem-
ory reclamation threads if the GC performs concurrent recla-
mation (such as Shenandoah and ZGC). MemLiner cannot
reduce this type of interference.

7 Evaluation
7.1 Experiment Setup

We implemented MemLiner on top of OpenJDK 12 (v 12.0.2)
and Linux (v 5.4.0). Our swap system is based upon our
re-implementation of FastSwap [10]2, which provides good
swap performance. We implemented it on top of G1 and
Shenandoah. Implementing MemLiner in other GCs would
be straightforward in the future.
Environment. We ran our experiments with two ma-
chines, each with two Xeon(R) CPU E5-2640 v3 processors,
128GB memory, one 1TB SSD, and one 40 Gbps Mellanox
ConnectX-3 InfiniBand network adapter. They are connected
by one Mellanox 100 Gbps InfiniBand switch. One machine
runs the JVM process while the other provides remote mem-
ory via RDMA. All our experiments used a 32GB heap and
4K pages.

Although our application heap size is relatively small (com-
pared to the size of main memory on our machines), the per-
formance of a remote-memory application depends on how
much of its working set can fit into local memory and how
many (application and GC) threads are used, not on how large
local memory is. In particular, MemLiner’s key data structure
is a per-thread PQ (i.e., TQ is not key to MemLiner as it is
GC’s original data structure). PQ’s size depends on the ratio

2Its original implementation was incompatible with OpenJDK12.

Spark [74] Dataset Size
MLlib KMeans

Wikipedia France [4] 1.1GB
(SKM)

Spark Linear
Wikipedia English [4] 3GB

Regression (SLR)
Spark Transitive

Synthetic graph
1.5M edges

Closure (STC) 384K vertices

Cassandra [12] Workload Operation
Update Intensive Update 50%

10M ops
(CUI) Insert 50%

Read Intensive Read 50%
10M ops

(CRI) Insert 50%

Insert Intensive
Insert 50%

10M ops
(CII)

Update 25%
Read 25%

Neo4j [52] Dataset Size
PageRank

Wikipedia Turkish [4]
14M edges

(NPR) 544K vertices
Triangle Counting

Wikipedia Turkish [4]
14M edges

(NTR) 544K vertices
Degree Centrality

Dogster Friends [4]
8.5M edges

(NDC) 451K vertices

QuickCached [3] Workload Operation
Write Dominant Insert 60%

9M ops
(QWD) Read 40%

Read Dominant Insert 20%
9M ops

(QRD) Read 80%

DayTrader [34] Workload Size
Tradesoap Synthetic set 12288 users

(DTS) of stocks 8192 sessions

Table 1: Applications and datesets used for G1.

between the number of applications and the number of tracing
threads. For instance, for G1, we follow Oracle’s recommen-
dation [56] by setting the number of parallel GC threads to be
5 × (core number)/8, and the number of concurrent tracing
threads to be 1/4 of the parallel GC threads. With this ratio
and a per-thread PQ of 1024 entries, we rarely saw overwrites
in our experiments (with our filtering optimizations stated
above). However large the heap is, as long as this ratio re-
mains the same, the size of PQ does not need to change; so
does the work done by MemLiner.

Applications. To evaluate MemLiner, we used a range of
cloud applications including Apache Spark [74] (3.0.0), the
de-facto data analytics system, Apache Cassandra [12] (3.11),
a widely used distributed database, Neo4j [52] (4.3.2), a graph
database, QuickCached [3], a Java implementation of Mem-
cached, as well as DayTrader [34], IBM’s open-source ap-
plication emulating an online stock trading system. These
applications cover a wide spectrum of text and graph analyt-
ics, web services, machine learning tasks, and database query
tasks. For each application, their workloads and datasets are
reported in Table 1.

44    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



25% 13%0

50

100

150

200

Ti
m

e(
s)

SKM

25% 13%0

200

400

SLR

25% 13%0

100

200

300
STC

25% 13%0

200

400

600

800

CUI

25% 13%0

200

400

600

CRI

25% 13%0

200

400

600

800

CII

25% 13%0

200

400

600

Ti
m

e(
s)

NPR

25% 13%0

100

200

300

400

NTR

25% 13%0

200

400

600
NDC

25% 13%0

50

100

150

200
QWD

25% 13%0

50

100

150

200

QRD

25% 13%0

100

200

DTS

All Local (100%) App+GC
All Local (100%) App

Unmodified JVM GC
Unmodified JVM App

MemLiner GC
MemLiner App

Figure 6: Performance comparisons between G1 GC (yellow bars) and MemLiner (green bars) under two local memory ratios:
25% and 13%; each bar is split into application (bottom with light colors) and GC (top with dark colors) time in seconds. The
two dashed lines show application time and total time with unmodified JVM and 100% local memory (no swaps).

The memory access patterns of our applications can be
categorized into three types:

• Mostly sequential access patterns: Spark applications op-
erate over RDDs. An RDD is an object array or serialized
primitive array. Each application thread exhibits clear mem-
ory access patterns, e.g., streaming or stride.

• Random access patterns: QuickCached (a key-value store)
and DayTrader (stock trading simulation) exhibit quite
random memory access patterns.

• Mixed access patterns: Take Cassandra as an example.
Each read/update operation goes through several micro-
operations. Different micro-operations have different mem-
ory access patterns, i.e., the MemTable loading exhibits
a good streaming memory access pattern and some other
calculations access memory randomly. Both Cassandra and
Neo4j belong to this category.

Our experiments considered two local memory ratios: 25%,
and 13% of the total Java heap size (32GB), which are con-
sistent with local memory ratios used in prior work [58, 68].
We enforced these ratios with cgroup.

7.2 Performance with G1 GC

Overall. Figure 6 compares the performance of the baseline
(the default G1 GC) and MemLiner under two different local
memory ratios: 25%, and 13%. As shown, MemLiner offers
better performance over the baseline JVM for all workloads,
1.48× speedup on average under 25% local memory and
1.51× speedup on average under 13% local memory. A sum-

Local Memory G1 GC Shenandoah GC
Configuration App GC All App GC All

25% Local 1.45× 1.65× 1.48× 1.88× 15.33× 2.16×
13% Local 1.46× 1.79× 1.51× 1.60× 6.20× 1.80×

Table 2: Speedups provided by MemLiner for G1 and Shenan-
doah. (speedup: the average time under each configuration
using the unmodified JVM divided by that using MemLiner)

mary of these performance improvements (for the application,
GC, and end-to-end performance) is reported in Table 2.

We also compared the number of swap-in pages between
MemLiner and the unmodified JVM: MemLiner reduces an
average of 81% of on-demand swap-ins and 56% of total
swap-ins (including both on-demand and prefetching swaps).

Compared with running the whole application in local
memory with no swapping (illustrated by dashed lines in
Figure 6), the unmodified JVM incurs 2.17× and 3.73× slow-
downs under the 25% and 13% local memory configurations,
respectively. MemLiner brings them down to 1.47× and
2.48×.

Details. For several workloads (e.g., SLR, STC, CUI, NDC,
QWD and DTS), the default JVM’s GC time increases dra-
matically when the local memory ratio drops from 25% to
13%. This is because when memory resources are tight, con-
current tracing becomes slow with many local-memory cache
misses. It sometimes cannot finish a complete closure before
the heap is full, causing the JVM to pause all application
threads and run a time-consuming full-heap GC. Fortunately,
MemLiner brings down that GC cost, enabling concurrent

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    45



tracing to quickly compute the closure by following the appli-
cations’ accesses and reducing full-heap GCs.

Cassandra’s performance degrades drastically under 13%
local memory. In addition to more frequent full-heap GCs,
this also stems from data spilling. When the memory usage
exceeds a certain ratio (e.g., 2/3) of the heap size, Cassandra
automatically spills data from memory to disk. Since con-
current tracing under a tighter local-memory budget becomes
much slower, the memory consumption frequently exceeds
that ratio, triggering spilling and slowing down the applica-
tion. In these large-scale systems, GC can actually impact the
performance of applications in many unexpected ways.

20 40 60 80 100
Local Memory Ratio (%)

1.0
1.5
2.0
2.5
3.0
3.5
4.0

No
rm

al
ize

d 
Ti

m
e SKM Unmodified JVM

SKM MemLiner
STC Unmodified JVM
STC MemLiner

Figure 7: Performance comparisons for SKM and STC be-
tween the unmodified JVM and MemLiner under different
local memory configurations.

Different Local Memory Configurations. We ran SKM and
STC with various local-memory ratio configurations and re-
port the performance in Figure 7. As shown, the lower the
ratio, the higher the benefit MemLiner provides. For both
applications, the turning point is around 50%—MemLiner
and the baseline have about the same performance when the
local memory ratio reaches 50% or above.

7.3 Performance with Shenandoah GC

To demonstrate the generality of MemLiner, we implemented
MemLiner in a second garbage collector: Shenandoah[25],
a widely-used highly-concurrent low-pause GC developed
by Red Hat. It performs not only concurrent tracing but also
concurrent object evaluation to minimize pauses.

Shenandoah provides great latency benefits under sufficient
local memory. However, it has extremely poor performance
with remote memory involved. For example, the slowdowns
under 25% memory for our Spark and Neo4j applications are
constantly above 10× and 4×, respectively. Compared to
Neo4j, Spark applications usually have much larger working
sets, leading to more remote accesses. Such a large over-
head highlights the problem of running many concurrent GC
threads that do not align with the application’s memory access.
In particular, Shenandoah is not a generational GC (while G1
is). In G1, when the young generation, which contains short-
lived objects, is full, the JVM suspends application threads

 25% 13% 
SKM

 25% 13% 
SLR

 25% 13% 
STC

0

2000

4000

Ti
m

e 
(s

)

Spark

 25% 13% 
NPR

 25% 13% 
NTR

 25% 13% 
NDC

0

200

400

600
Neo4j

All Local Unmodified JVM MemLiner

Figure 8: Performance comparison with Shenandoah GC [25].

Spark Programs Dataset Size
MLlib KMeans (SKM) Wikipedia Polish [4] 1GB
Spark Linear Regression

Wikipedia Polish [4] 1GB
(SLR)

Spark Transitive Closure
Synthetic Graph

1.5M edges
(STC) 384K vertices

Neo4J Programs Dataset Size
PageRank

Wikipedia Slovak [4]
7.6M edges

(NPR) 291K vertices
Triangle Counting

Wikipedia Slovak [4]
7.6M edges

(NTR) 291K vertices

Degree Centrality
Wikipedia min-nan [4]

4.4M edges
(NDC) 429K vertices

Table 3: Benchmarks and datasets for Shenandoah.

and evacuates objects in the young generation. This leads
to excellent data locality after evacuation. However, under
Shenandoah GC, the JVM runs concurrent tracing much more
frequently to scan the full heap to identify and collect garbage.
Those tracing threads exhibit particularly poor locality. To
evaluate Shenandoah, we had to use smaller datasets (Table
3) for a tolerable running time.

As illustrated in Figure 8 and summarized in Table 2, Mem-
Liner achieves an overall 2.16× and 1.80× speedup com-
pared to the unmodified JVM under 25% and 13% local
memory, respectively. MemLiner reduces an average of 82%
on-demand swap-ins and 56% of total swap-ins under 25% lo-
cal memory, while it reduces 79% of on-demand swap-ins and
22% of total swap-ins under 13% local memory. As shown in
Table 2, MemLiner provides tremendous improvements for
Shenandoah’s GC performance, because the unmodified JVM
frequently triggers full-heap stop-the-world GC.

7.4 Comparisons with Other Systems

Leap [48] is an advanced OS-level prefetcher. It uses a major-
vote algorithm to determine how to do prefetches. In cases
where no clear access patterns are seen, Leap aggressively
prefetches consecutive pages. Although this strategy may
improve performance for native applications whose memory
accesses often fall into large arrays, it often hurts managed
applications such as Spark, as GC’s pointer-chasing behavior
often makes prefetched consecutive pages useless.

46    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



SLR SKM STC NPR NTR NDC

100

300

500

700
Ti

m
e(

s)

Unmodified JVM GC
Unmodified JVM App

MemLiner GC
MemLiner App

A  C
SLR

A  C
SKM

A  C
STC

A  C
NPR

A  C
NTR

A  C
NDC

0
10
20
30
40
50
60
70

Pe
rc

en
ta

ge
(%

)

Unmodified JVM MemLiner

SLR STC SKM0

100

200

300

Ti
m

e(
s)

Semeru GC
Semeru App

MemLiner GC
MemLiner App

MemLiner on Semeru Swap GC
MemLiner on Semeru Swap App

(a) Leap: Running time (b) Leap: Accuracy(A) and Coverage(C) (c) Semeru: Running time

Figure 9: Performance comparisons with Leap and Semeru; Semeru crashed on NPR, NTR, and NDC (i.e., Neo4j applications).

Our hypothesis is that even aggressive prefetchers like Leap
cannot handle the interference of GC, and that by aligning the
memory accesses of GC with application threads, MemLiner
can improve application performance under Leap just like
under less aggressive prefetchers. To test our hypothesis, we
compared MemLiner with the unmodified JVM (default G1
GC) both using Leap as the prefetcher. This experiment was
conducted on three Spark applications: SLR, SKM, STC,
and three Neo4j applications: NPR, NTR, NDC, under 25%
local memory.

As shown in Figure 9(a), compared with the unmodified
JVM on Leap, MemLiner improves the overall performance
by an average of 1.6× and reduces 58% of on-demand swap-
ins, as well as 53% of total swap-ins on average. To un-
derstand whether MemLiner improves Leap’s prefetching
effectiveness, we additionally measured Leap’s prefetching
accuracy (i.e., the percentage of page faults hitting on the
swap cache among prefetched pages) and coverage (i.e., the
percentage of swap cache hits among all page faults) with
and without MemLiner. As shown in Figure 9(b), MemLiner
helps Leap deliver higher accuracy and coverage. We still ob-
served that MemLiner is not as useful for STC and NTR as it
is for the two applications. This is because the number of live
objects in STC during concurrent tracing is relatively small,
leading to shorter tracing time and better access patterns. For
NTR, its application threads exhibit random memory accesses
themselves. Hence, Leap cannot detect clear patterns even if
MemLiner has already eliminated much of the interference.

Semeru [68] is a memory-disaggregated runtime, where the
entire Java heap is backed by physical memory on memory
servers and the CPU server’s local memory is used as an in-
clusive cache. Semeru completely redesigned the JVM so that
all the garbage collection is offloaded from the CPU server
to the memory servers, through special lightweight JVMs
running there. Applications execute on the CPU server with
absolutely no GC interference, at the cost of extra computa-
tion on memory servers (i.e., two extra cores for each memory
server to run the offloaded lightweight JVM).

Here, to evaluate whether MemLiner can achieve similar
performance as Semeru, without Semeru’s intrusive changes

to JVM and Semeru’s extra computation load on memory
servers, we ran the same three Spark applications under 25%
local memory on top of (1) Semeru, (2) MemLiner on Se-
meru’s swap system (i.e., a modified version of NVMe-over-
fabrics [1]), and (3) MemLiner on FastSwap [10], which is
the default swap system MemLiner builds on. We ran Semeru
with one CPU server and two memory servers—the Java heap
is partitioned between the memory servers.

As shown in Figure 9(c) , MemLiner’s performance is com-
parable with Semeru when using Semeru’s swap system, and
is much better than Semeru when using MemLiner’s default
swap system. The reason is that, even though Semeru com-
pletely eliminates GC tracing threads from the local machine,
it has to perform a great deal of coordination between servers
to handle cross-server references, incurring communication
overheads. We would have also liked to run Semeru directly
over FastSwap, but this was not feasible due to Semeru’s
runtime-kernel co-design that prevents Semeru from easily
adapting to different swap systems.

We could not directly compare Memliner with AIFM [58]
as AIFM targets native languages (C/C++) applications and
requires rewriting programs. However, the major idea behind
AIFM—swapping at the object granularity—is orthogonal to
MemLiner. MemLiner can also benefit from a redesigned
swap system that performs object-level swapping.

7.5 More Detailed Results

50 100

10

20

30

M
em

or
y

 F
oo

tp
rin

t (
GB

)

SKM

100 200
Time Elapsed (s)

STC

150 300

SLR

Unmodified JVM Pre-GC
Unmodified JVM Post-GC

MemLiner Pre-GC
MemLiner Post-GC

Figure 10: Memory footprints for SKM, STC, and SLR,
between unmodified JVM and MemLiner under 25% rate.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    47



Memory Reclamation Impact. Since MemLiner postpones
tracing objects estimated to be remote, it may delay memory
reclamation. To understand the impact of such a delay, we
collected post-GC memory footprints for STC, SKM, and
SLR executed atop the unmodified JVM and MemLiner under
25% local memory configuration. Figure 10 reports, for each
program, both its pre-GC and post-GC memory footprints. As
shown, for all three workloads, MemLiner incurs insignificant
delays in memory reclamation and only a slight increase
in the peak memory consumption. This is because tracing
of each remote object can only be postponed a few times
(i.e., MAX_DL); when the available heap runs low, MAX_DL
becomes 0 and we do not postpone GC at all.
Epoch Estimation Effectiveness. We collected the number
of objects that are scanned from PQ and TQ for three Spark
applications under 25% local memory. The ratio of objects
scanned from PQ over total objects scanned during the con-
current tracing phase is 45%, 42%, and 11% respectively
for SLR, SKM and STC. We also evaluated MemLiner after
disabling epoch estimation: we saw an overall performance
degradation of 8.6%, 8.8% and 11.3% respectively, for SLR,
SKM and STC under 25% local memory.

8 Related Work
Far Memory. Due to rapid technological advances in network
controllers, it has become practical to reorganize resources
into disaggregated clusters [32, 18, 27, 15]. A disaggregated
cluster can increase the hardware resource utilization and has
the potential to overcome fundamental hardware limits, such
as the critical “memory capacity wall” [14, 44, 43, 67, 20, 38,
7, 11]. A body of techniques [10, 30, 6, 58, 68, 61, 63, 68, 31,
69] have been developed to enable applications to use remote
memory and efficiently access remote data.

Among these techniques, a mainstream approach [10, 30,
6] is to provide transparent remote memory access with swap
mechanisms where the running application is not aware of
remote memory, which is mapped into the application host
server as a swap partition. The host server reserves a certain
amount of local memory as a software-managed data cache.
Once the program accesses a page that does not reside in
the data cache, it triggers a page fault, and the swap system
fetches the page from a remote memory server via RDMA.

A traditional swap system was designed for slow and rare
accesses to disks, not for fast and frequent accesses to remote
memory via RDMA. Having realized this speed discrepancy,
existing techniques have performed a variety of optimizations,
e.g., removing redundant block layers [30], leveraging multi-
queues [10], or performing per-application prefetching [48],
all to maximize the paging/swap efficiency. Despite these
commendable efforts, these techniques need to pay a “trans-
parency tax”—since all remote accesses go through the OS
kernel, which incurs a non-trivial overhead. To mitigate such
a software-introduced overhead, work such as AIFM [58]
provides primitives for developers to perform efficient remote

access in the user space. AIFM outperforms swap-based tech-
niques by bypassing the kernel data plane. However, to use
AIFM, applications have to be rewritten (with new primitives),
which can significantly hinder its practical use.

Modern Garbage Collectors. Modern GCs, including Ora-
cle’s Garbage-First (G1) GC [22], Red Hat’s Shenandoah
GC [25], Azul’s pauseless GC [21], and C4 [64], all use
concurrent tracing. Some also perform concurrent memory
compaction [39, 2]. As big data systems gain popularity,
there is a line of work that develops systems for applications
running on the cloud [24, 53, 54, 51, 67], on NUMA ma-
chines [29], as well as using non-volatile memory [67, 71, 9].
Yak [53] is a region-based big-data-friendly GC. Taurus [47]
coordinates GC efforts among workers in a distributed sys-
tem. Facade [54] uses region-based memory management
to reduce GC costs for Big Data applications. Gerenuk [51]
develops a compiler analysis and runtime system that enable
native representation of data for managed analytics systems
such as Spark and Hadoop. Espresso [71] and Panthera [67]
are designed for systems with non-volatile memory. Plat-
inum [70] aims to reduce tail latency for interactive applica-
tions. NUMAGiC [29] is a GC that provides efficiency by
considering NUMA features.

Semeru [68] and Mako [46] are both GCs developed for
memory disaggregation. While they both achieve superior
performance via compute offloading (e.g., running concur-
rent tracing and evacuation on memory servers), offloading
introduces numerous challenges in resource utilization and
cluster scheduling. AIFM [58] performs GC-like memory
compaction to eliminate dead objects to reduce read/write am-
plification. This approach is orthogonal to MemLiner, which
leverages tracing for prefetching.

9 Conclusion

This paper presents MemLiner, a runtime technique that re-
duces the GC-application interference by aligning the mem-
ory accesses of application and tracing threads. We classify
reachable objects into three categories and treat objects in
each category in a different way to achieve the two seemingly
conflicting goals. Our promising results with two produc-
tion GCs demonstrate that MemLiner can be readily used in
today’s datacenters.

Acknowledgments

We thank the anonymous reviewers for their valuable and
thorough comments. We are grateful to our shepherd Auro-
jit Panda for his feedback. This work is supported by NSF
grants CNS-1703598, CNS-1763172, CNS-1764039, CNS-
1907352, CNS-1956180, CNS-2007737, CNS-2006437,
CNS-2128653, CNS-2106838, CCF-2119184, ONR grant
N00014-18-1-2037, and research grants from Facebook, Mi-
crosoft, and Cisco.

48    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A Artifact Appendix
A.1 Artifact Summary

MemLiner is a managed runtime built for a memory-
disaggregated cluster where each managed application runs
on one server and uses both local memory and remote mem-
ory located on another server. When launched on MemLiner,
the process fetches data from the remote server via the paging
system. MemLiner reduces the local-memory working set
and improves the remote-memory prefetching by lining up
the memory accesses from application and GC threads. Mem-
Liner is transparent to applications and can be integrated in
any existing GC algorithms, such as G1 and Shenandoah.

A.2 Artifact Check-list
• Hardware: Intel servers with InfiniBand
• Run-time environment: OpenJDK 12.02, Linux-5.4, Ubuntu

18.04 with MLNX-OFED 4.9-2.2.4.0
• Public link: https://github.com/uclasystem/
MemLiner

• Code licenses: The GNU General Public License (GPL)

A.3 Description

A.3.1 MemLiner’s Codebase

MemLiner contains the following three components:

• the Linux kernel, which includes a modified swap system,
• the Java Virtual Machine (JVM) with MemLiner,
• necessary shell scripts and configuration files.

A.3.2 Deploying MemLiner

To build MemLiner, the first step is to download its source
code:

git clone

git@github.com:uclasystem/MemLiner.git

When deploying MemLiner, install the components in the
following order: (1) install the kernel and the RDMA module
on all participating servers; (2) install the JVM with Mem-
Liner on the server that runs the process; (3) connect the
participating servers before running applications.
Kernel Installation. We first discuss how to build and install
the kernel.

• Modify grub and set transparent_hugepage to
madvise:

sudo vim /etc/default/grub

+ transparent_hugepage=madvise

• Install the kernel and restart the machine:

cd MemLiner/Kernel

sudo ./build_kernel.sh build

sudo ./build_kernel.sh install

• Install the MLNX OFED driver:
MemLiner has only been tested on Ubuntu 18.04 with
MLNX-OFED-4.9-2.2.4.0. The driver should be installed
all participating servers.

# @all participating servers
# Remove the incompatible libraries
sudo apt remove ibverbs-providers:amd64

librdmacm1:amd64 librdmacm-dev:amd64

libibverbs-dev:amd64 libopensm5a

libosmvendor4 libosmcomp3 -y

# Download and install the MLNX OFED driver
curl https://content.mellanox.com/ofed/

MLNX_OFED-4.9-2.2.4.0/MLNX_OFED_LINUX

-4.9-2.2.4.0-ubuntu18.04-x86_64.tgz

--output MLNX_OFED.tgz

tar -xzf MLNX_OFED.tgz

sudo MLNX_OFED/mlnxofedinstall

--add-kernel-support

# Enable the openidb and opensmd services
sudo systemctl enable openibd

sudo systemctl start openibd

sudo systemctl enable opensmd

sudo systemctl start opensmd

• Configure and install the MemLiner RDMA module:

# Assign the IP of a memory server into:
# @CPU server
# MemLiner/rswap/client/rswap_rdma.c

char ip[] = "10.0.0.4"; # IP of memory server
# @memory server
# MemLiner/rswap/server/rswap_server.cpp

const char *ip_str = "10.0.0.4";

# Build the MemLiner RDMA module
# @CPU server
cd MemLiner/rswap/client

make clean && make

# @memory server
cd MemLiner/rswap/server

make clean && make

Install the MemLiner (JVM). We next discuss the steps to
build and install the MemLiner JVM on the CPU server.

• Download Oracle JDK 12 to build the MemLiner
JVM:

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    49

https://github.com/uclasystem/MemLiner
https://github.com/uclasystem/MemLiner


# @CPU server
# Assume jdk 12.02 is under path:
# ${HOME}/jdk-12.0.2

cd MemLiner/JDK

./configure -with-boot-jdk=${HOME}/jdk-

12.0.2 --with-debug-level=release

make JOBS=32

# Run the applications with the built JVM.
# The built JVM (MemLiner) is under:
MemLiner/JDK/build/

linux-x86_64-server-release/jdk

A.3.3 Running Applications

To run applications, we first need to connect the CPU and
memory servers. Next, we mount the remote memory pool
as a swap partition on the CPU server. When the applica-
tion uses more memory than the limit set by cgroup, its
data will be swapped out to remote memory via RDMA.

• Launch memory servers:

# @memory server
cd MemLiner/rswap/server

./rswap-server

• Connect the CPU server with memory
servers:

# @CPU server
cd MemLiner/rswap/client

./manage_rswap_client.sh install

• Set a cache size limit for an application:

# For example, create a cgroup with a 9GB
memory limit.
# @CPU server
# Create the cgroup with the name memctl
# $USER is the username of the account
sudo cgcreate -t $USER -a $USER -g

memory:/memctl

# Set the memory limit to 9GB
echo 9g > /sys/fs/cgroup/memory/

memctl/memory.limit_in_bytes

• Add a Spark executor into cgroup:

# Add a Spark worker into cgroup, memctl.
# Its sub-process, executor, falls into the same
cgroup.
# @CPU server
# Modify the function start_instance under:
# Spark/sbin/start-slave.sh

cgexec -sticky -g memory:memctl

"${SPARK_HOME}/sbin" /sparkdaemon.sh

start $CLASS $WORKER_NUM -webui-port

"$WEBUI_PORT" $PORT_FLAG $PORT_NUM

$MASTER "$@"

• Launch the Spark cluster:
Certain JVM options need to be added to run the Mem-
Liner. We use the Spark as an example here. Please
refer to the MemLiner’s code repository for more details
about how to run other applications.

# @CPU server
# Replace the Spark default configuration
cd ${spark-home-dir}/conf

cp MemLiner/config-files/spark-confs/

spark-defaults-memliner.conf

spark-defaults.conf

# Launch the Spark master and worker services
${spark-home-dir}/sbin/start-all.sh

• Run Spark applications:
Specify the Spark application name and local memory
ratio, e.g., 25% or 13%, and then execute the applica-
tions:

# @CPU server
# Para#1 application: lr, km, tc
# Para#2 mem_local_ratio: 25, 13
MemLiner/app-scripts/memliner.sh

${application} ${mem_local_ratio}

More details of MemLiner’s installation and deployment
can be found in MemLiner’s code repository.

50    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] NVMe over fabrics. http://
community.mellanox.com/s/article/
what-is-nvme-over-fabrics-x.

[2] The Z garbage collector. https://wiki.
openjdk.java.net/display/zgc/Main.

[3] QuickCached. https://github.com/
QuickServerLab/QuickCached, 2017.

[4] Konect network datasets. http://konect.cc/
networks/, 2021.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A
system for large-scale machine learning. In OSDI,
pages 265–283, 2016.

[6] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei. Remote mem-
ory in the age of fast networks. In SoCC, pages
121–127, 2017.

[7] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Sing-
hal. Designing far memory data structures: Think
outside the box. In HotOS, pages 120–126, 2019.

[8] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. Pim-
enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture. In ISCA, pages
336–348, 2015.

[9] S. Akram, J. B. Sartor, S. M. Blackburn, K. S. McKin-
ley, and L. Eeckhout. Write-rationing garbage col-
lection for hybrid memories. In PLDI, pages 62–77,
2018.

[10] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ouster-
hout, M. K. Aguilera, A. Panda, S. Ratnasamy, and
S. Shenker. Can far memory improve job throughput?
In EuroSys, 2020.

[11] S. Angel, M. Nanavati, and S. Sen. Disaggregation
and the application. In HotCloud, 2020.

[12] Apache. Apache cassandra. https://
cassandra.apache.org, 2021.

[13] K. Asanovic. Firebox: A hardware building block for
2020 warehouse-scale computers. In FAST, 2014.

[14] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A
view from berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of Califor-
nia, Berkeley, Dec 2006.

[15] L. A. Barroso. Warehouse-scale computing: Entering
the teenage decade. In ISCA, 2011.

[16] M. N. Bojnordi and E. Ipek. PARDIS: A pro-
grammable memory controller for the DDRx interfac-
ing standards. In ISCA, pages 13–24, 2012.

[17] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A.
Maruf, O. Mutlu, and A. Kolli. Rethinking software
runtimes for disaggregated memory. In ASPLOS,
pages 79–92, 2021.

[18] A. Carbonari and I. Beschasnikh. Tolerating faults
in disaggregated datacenters. In HotNets-XVI, pages
164–170, 2017.

[19] CCIX. Cache coherent interconnect for accelera-
tors. https://www.ccixconsortium.com/,
2018.

[20] L. Chen, J. Zhao, C. Wang, T. Cao, J. Zigman, H. Vo-
los, O. Mutlu, F. Lv, X. Feng, G. H. Xu, and H. Cui.
Unified holistic memory management supporting mul-
tiple big data processing frameworks over hybrid
memories. ACM Trans. Comput. Syst., 2022.

[21] C. Click, G. Tene, and M. Wolf. The pauseless gc
algorithm. In VEE, pages 46–56, 2005.

[22] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-first garbage collection. In ISMM, pages
37–48, 2004.

[23] A. Dragojević, D. Narayanan, M. Castro, and O. Hod-
son. FaRM: Fast remote memory. In NSDI, pages
401–414, 2014.

[24] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu.
Interruptible tasks: Treating memory pressure as in-
terrupts for highly scalable data-parallel programs. In
SOSP, pages 394–409, 2015.

[25] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and
R. Westrelin. Shenandoah: An open-source concur-
rent compacting garbage collector for openjdk. In
PPPJ, pages 13:1–13:9, 2016.

[26] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay.
Caladan: Mitigating interference at microsecond
timescales. In OSDI, pages 281–297, 2020.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    51

http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
https://wiki.openjdk.java.net/display/zgc/Main
https://wiki.openjdk.java.net/display/zgc/Main
https://github.com/QuickServerLab/QuickCached
https://github.com/QuickServerLab/QuickCached
http://konect.cc/networks/
http://konect.cc/networks/
https://cassandra.apache.org
https://cassandra.apache.org
https://www.ccixconsortium.com/


[27] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,
S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker.
Network requirements for resource disaggregation.
In OSDI, pages 249–264, 2016.

[28] GenZ. Genz consortium. http://
genzconsortium.org/, 2019.

[29] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and
N. Nguyen. NumaGiC: A garbage collector for big
data on big NUMA machines. In ASPLOS, pages
661–673, 2015.

[30] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G.
Shin. Efficient memory disaggregation with infin-
iswap. In NSDI, pages 649–667, 2017.

[31] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang.
Clio: A hardware-software co-designed disaggre-
gated memory system. In ASPLOS, pages 417–433,
2022.

[32] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network support for resource disaggrega-
tion in next-generation datacenters. In HotNets, pages
10:1–10:7, 2013.

[33] Hewlett-Packard. The machine: A new kind of
computer. https://www.hpl.hp.com/research/systems-
research/themachine/, 2015.

[34] IBM. Daytrader. https://www.ibm.com/
docs/en/linux-on-systems?topic=
bad-daytrader, 2021.

[35] Intel. Intel high performance com-
puting fabrics. https://www.
intel.com/content/www/us/en/
high-performance-computing-fabrics/,
2019.

[36] R. Jones, A. Hosking, and E. Moss. The Garbage
Collection Handbook: The Art of Automatic Memory
Management. Chapman & Hall/CRC, 1st edition,
2011.

[37] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA efficiently for key-value services. In SIG-
COMM, pages 295–306, 2014.

[38] K. Keeton. The Machine: An architecture for
memory-centric computing. In ROSS, 2015.

[39] H. Kermany and E. Petrank. The Compressor: Con-
current, incremental, and parallel compaction. In
PLDI, pages 354–363, 2006.

[40] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal,
R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng,
J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and
P. Ranganathan. Software-defined far memory in
warehouse-scale computers. In ASPLOS, pages 317–
330, 2019.

[41] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Ar-
chitecting phase change memory as a scalable dram
alternative. In ISCA, pages 2–13, 2009.

[42] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-
value storage. In NSDI, pages 429–444, 2014.

[43] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated memory
for expansion and sharing in blade servers. In ISCA,
pages 267–278, 2009.

[44] K. Lim, Y. Turner, J. R. Santos, A. AuYoung,
J. Chang, P. Ranganathan, and T. F. Wenisch. System-
level implications of disaggregated memory. In
HPCA, pages 1–12, 2012.

[45] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. Imbalance
in the cloud: An analysis on Alibaba cluster trace. In
Big Data, pages 2884 – 2892, 2017.

[46] H. Ma, S. Liu, C. Wang, Y. Qiao, M. D. Bond,
S. M. Blackburn, M. Kim, and G. H. Xu. Mako: A
low-pause, high-throughput evacuating collector for
memory-disaggregated datacenters. In PLDI, pages
92–107, 2022.

[47] M. Maas, T. Harris, K. Asanović, and J. Kubiatowicz.
Taurus: A holistic language runtime system for coor-
dinating distributed managed-language applications.
In ASPLOS, pages 457–471, 2016.

[48] H. A. Maruf and M. Chowdhury. Effectively prefetch-
ing remote memory with Leap. In USENIX ATC,
pages 843–857, 2020.

[49] Mellanox. Connectx-6 single/dual-port
adapter supporting 200gb/s with vpi.
http://www.mellanox.com/page/
products_dyn?product_family=265&
mtag=connectx_6_vpi_card, 2019.

[50] S. Mittal. A survey of recent prefetching techniques
for processor caches. ACM Comput. Surv., 49(2),
2016.

[51] C. Navasca, C. Cai, K. Nguyen, B. Demsky, S. Lu,
M. Kim, and G. H. Xu. Gerenuk: Thin computa-
tion over big native data using speculative program
transformation. In SOSP, pages 538–553, 2019.

52    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://genzconsortium.org/
http://genzconsortium.org/
https://www.ibm.com/docs/en/linux-on-systems?topic=bad-daytrader
https://www.ibm.com/docs/en/linux-on-systems?topic=bad-daytrader
https://www.ibm.com/docs/en/linux-on-systems?topic=bad-daytrader
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card


[52] Neo4j. Neo4j graph data platform. https://
neo4j.com, 2021.

[53] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu,
S. Alamian, and O. Mutlu. Yak: A high-performance
big-data-friendly garbage collector. In OSDI, pages
349–365, 2016.

[54] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and
G. Xu. FACADE: A compiler and runtime for (almost)
object-bounded big data applications. In ASPLOS,
pages 675–690, 2015.

[55] OpenCAPI. Open coherent accelerator processor in-
terface. https://opencapi.org/, 2018.

[56] Oracle. Garbage first garbage collector
tuning. https://www.oracle.com/technical-
resources/articles/java/g1gc.html, 2020.

[57] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang.
The RAMCloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, Aug. 2015.

[58] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-performance, application-integrated
far memory. In OSDI, pages 315–332, 2020.

[59] S. M. Rumble. Infiniband verbs performance.
https://ramcloud.atlassian.net/
wiki/display/RAM/Infiniband+Verbs+
Performance, 2010.

[60] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker,
A. De, Y. Jin, Y. Liu, and S. Swanson. Willow: A
user-programmable SSD. In OSDI, pages 67–80,
2014.

[61] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, pages 69–87, 2018.

[62] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa,
K. S. Lee, H. Wang, R. Agarwal, and H. Weather-
spoon. Shoal: A network architecture for disaggre-
gated racks. In NSDI, pages 255–270, 2019.

[63] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and
G. Alonso. StRoM: Smart remote memory. In Eu-
roSys, 2020.

[64] G. Tene, B. Iyengar, and M. Wolf. C4: The contin-
uously concurrent compacting collector. In ISMM,
pages 79–88, 2011.

[65] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G.
Qin, S. Hand, M. Harchol-Balter, and J. Wilkes. Borg:
The next generation. In EuroSys, 2020.

[66] M. Tork, L. Maudlej, and M. Silberstein. Lynx: A
SmartNIC-driven accelerator-centric architecture for
network servers. In ASPLOS, pages 117–131, 2020.

[67] C. Wang, H. Cui, T. Cao, J. Zigman, H. Volos,
O. Mutlu, F. Lv, X. Feng, and G. H. Xu. Panthera:
Holistic memory management for big data process-
ing over hybrid memories. In PLDI, pages 347–362,
2019.

[68] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen,
M. D. Bond, R. Netravali, M. Kim, and G. H. Xu.
Semeru: A memory-disaggregated managed runtime.
In OSDI, pages 261–280, 2020.

[69] C. Wang, Y. Qiao, H. Ma, S. Liu, Y. Zhang, W. Chen,
R. Netravali, M. Kim, and G. H. Xu. Canvas: Iso-
lated and adaptive swapping for multi-applications
on remote memory. https://arxiv.org/abs/
2203.09615, 2022.

[70] M. Wu, Z. Zhao, Y. Yang, H. Li, H. Chen, B. Zang,
H. Guan, S. Li, C. Lu, and T. Zhang. Platinum: A
cpu-efficient concurrent garbage collector for tail-
reduction of interactive services. In USENIX ATC,
pages 159–172, 2020.

[71] M. Wu, Z. Ziming, L. Haoyu, L. Heting, C. Haibo,
Z. binyu, and G. Haibing. Espresso: Brewing Java for
more non-volatility. In ASPLOS, pages 70–83, 2018.

[72] G. Xu, M. Arnold, N. Mitchell, A. Rountev, E. Schon-
berg, and G. Sevitsky. Finding low-utility data struc-
tures. In PLDI, pages 174–186, 2010.

[73] T. Yuasa. Real-time garbage collection on general-
purpose machines. Journal of Systems and Software,
11(3):181–198, 1990.

[74] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster comput-
ing with working sets. HotCloud, page 10, Berkeley,
CA, USA, 2010.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    53

https://neo4j.com
https://neo4j.com
https://opencapi.org/
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://arxiv.org/abs/2203.09615
https://arxiv.org/abs/2203.09615




Carbink: Fault-Tolerant Far Memory

Yang Zhou†∗ Hassan M.G. Wassel‡ Sihang Liu§∗ Jiaqi Gao† James Mickens† Minlan Yu†‡

Chris Kennelly‡ Paul Turner‡ David E. Culler‡ Henry M. Levy‖‡ Amin Vahdat‡

†Harvard University ‡Google §University of Virginia ‖University of Washington

Abstract
Far memory systems allow an application to transparently
access local memory as well as memory belonging to re-
mote machines. Fault tolerance is a critical property of any
practical approach for far memory, since machine failures
(both planned and unplanned) are endemic in datacenters.
However, designing a fault tolerance scheme that is efficient
with respect to both computation and storage is difficult. In
this paper, we introduce Carbink, a far memory system that
uses erasure-coding, remote memory compaction, one-sided
RMAs, and offloadable parity calculations to achieve fast,
storage-efficient fault tolerance. Compared to Hydra, a state-
of-the-art fault-tolerant system for far memory, Carbink has
29% lower tail latency and 48% higher application perfor-
mance, with at most 35% higher memory usage.

1 Introduction
In a datacenter, matching a particular application to just
enough memory and CPUs is hard. A commodity server
tightly couples memory and compute, hosting a fixed number
of CPUs and RAM modules that are unlikely to exactly match
the computational requirements of any particular application.
Even if a datacenter contains a heterogeneous mix of server
configurations, the load on each server (and thus the amount
of available resources for a new application) changes dynam-
ically as old applications exit and new applications arrive.
Thus, even state-of-the-art cluster schedulers [51,52] struggle
to efficiently bin-pack a datacenter’s aggregate collection of
CPUs and RAM. For example, Google [52] and Alibaba [34]
report that the average server has only ~60% memory utiliza-
tion, with substantial variance across machines.

Memory is a particularly vexing resource for two reasons.
First, for several important types of applications [19, 20, 33,
54], the data set is too big to fit into the RAM of a single
machine, even if the entire machine is assigned to a single
application instance. Second, for these kinds of applications,
alleviating memory pressure by swapping data between RAM
and storage [14] would lead to significant application slow-
downs, because even SSD accesses are orders of magnitude
slower than RAM accesses. For example, Google runs a graph
∗Contributed to this work during internships at Google.

analysis engine [28] whose data set is dozens of GBs in size.
This workload runs 46% faster when it shuffles data purely
through RAM instead of between RAM and SSDs.

Disaggregated datacenter memory [2,5,15,16,22,44,46] is
a promising solution. In this approach, a CPU can be paired
with an arbitrary set of possibly-remote RAM modules, with
a fast network interconnect keeping access latencies to far
memory small. From a developer’s perspective, far memory
can be exposed to applications in several ways. For example,
an OS can treat far RAM as a swap device, transparently
exchanging pages between local RAM and far RAM [5,22,46].
Alternatively, an application-level runtime like AIFM [44]
can expose remotable pointer abstractions to developers, such
that pointer dereferences (or the runtime’s detection of high
memory pressure) trigger swaps into and out of far memory.

Much of the prior work on disaggregated memory [2,44,55]
has a common limitation: a lack of fault tolerance. Unfor-
tunately, in a datacenter containing hundreds of thousands
of machines, faults are pervasive. Many of these faults are
planned, like the distribution of kernel upgrades that require
server reboots, or the intentional termination of a low-priority
task when a higher-priority task arrives. However, many server
faults are unpredictable, like those caused by hardware fail-
ures or kernel panics. Thus, any practical system for far mem-
ory has to provide a scalable, fast mechanism to recover from
unexpected server failures. Otherwise, the failure rate of an
application using far memory will be much higher than the
failure rate of an application that only uses local memory;
the reason is that the use of far memory increases the set of
machines whose failure can impact an application [8].

Some prior far-memory systems do provide fault toler-
ance via replication [5, 22, 46]. However, replication-based
approaches suffer from high storage overheads. Hydra [29]
uses erasure coding, which has smaller storage penalties than
replication. However, Hydra’s coding scheme stripes a sin-
gle memory page across multiple remote nodes. This means
that a compute node requires multiple network fetches to re-
construct a page; furthermore, computation over that page
cannot be outsourced to remote memory nodes, since each
node contains only a subset of the page’s bytes.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    55



In this paper, we present Carbink,1 a new framework for
far memory that provides efficient, high-performance fault
recovery. Like (non-fault-tolerant) AIFM, Carbink exposes
far memory to developers via application-level remoteable
pointers. When Carbink’s runtime must evict data from lo-
cal RAM, Carbink writes erasure-coded versions of that data
to remote memory nodes. The advantage of erasure coding
is that it provides equivalent redundancy to pure replication,
while avoiding the double or triple storage overheads that
replication incurs. However, straightforward erasure coding
is a poor fit for the memory data created by applications writ-
ten in standard programming languages like C++ and Go;
those applications allocate variable-sized memory objects,
but erasure coding requires equal-sized blocks. To solve this
problem, Carbink eschews the object-granularity swapping
strategy of AIFM, and instead swaps at the granularity of
spans. A single span consists of multiple memory pages that
contain objects with similar sizes. Carbink’s runtime asyn-
chronously and transparently moves local objects within the
spans in local memory, grouping cold objects together and
hot objects together. When necessary, Carbink batch-evicts
cold spans, calculating parity bits for those spans at eviction
time, and writing the associated fragments to remote memory
nodes. Carbink utilizes one-sided remote memory accesses
(RMAs) to efficiently perform swapping activity, minimizing
network utilization. Unlike Hydra, Carbink’s erasure coding
scheme allows a compute node to fetch a far memory region
using a single network request.

In Carbink, each span lives in exactly one place: the local
RAM of a compute node, or the far RAM of a memory node.
Thus, swapping a span from far RAM to local RAM creates
dead space (and thus fragmentation) in far RAM. Carbink
runs pauseless defragmentation threads in the background,
asynchronously reclaiming space to use for later swap-outs.

We have implemented Carbink atop our datacenter infras-
tructure. Compared to Hydra, Carbink has up to 29% lower
tail latency and 48% higher application performance, with
at most 35% more remote memory usage. Unlike Hydra,
Carbink also allows computation to be offloaded to remote
memory nodes.

In summary, this paper has four contributions:
• a span-based approach for solving the size mismatch be-

tween the granularity of erasure coding and the size of the
objects allocated by compute nodes;

• new algorithms for defragmenting the RAM belonging to
remote memory nodes that store erasure-encoded spans;

• an application runtime that hides spans, object migration
within spans, and erasure coding from application-level
developers; and

• a thorough evaluation of the performance trade-offs made
by different approaches for adding fault tolerance to far
memory systems.

1Carbink is a Pokémon that has a high defense score.

2 Background
Recent work on far memory has used one of two approaches.
The first approach modifies the OS that runs applications,
exploiting the fact that preexisting OS abstractions already
decouple application-visible in-memory data from the back-
ing storage hierarchy. For example, INFINISWAP [22],
Fastswap [5], and LegoOS [46] leverage virtual memory sup-
port to swap application memory to far RAM instead of a local
SSD or hard disk. Applications use standard language-level
pointers to interact with memory objects; behind the scenes,
the OS swaps pages between local RAM and far RAM, e.g., in
response to page faults for non-locally-resident pages. In con-
trast, the remote region approach [2] exposes far memory via
file system abstractions. Applications name remote memory
regions using standard filenames, and interact with regions
using standard file operations like open() and read().

Exposing far memory via OS abstractions is attractive be-
cause it requires minimal changes to application-level code.
However, invasive kernel changes are needed; such changes
require substantial implementation effort, and are difficult to
maintain as other parts of the kernel evolve.

The second far-memory approach requires more help from
application-level code. For example, AIFM [44] uses a modi-
fied C++ runtime to hide the details of managing far memory.
The runtime provides special pointer types whose dereferenc-
ing may trigger the swapping of a remote C++-level object
into local RAM. AIFM’s runtime tracks object hotness using
GC-style read/write barriers, and uses background threads to
swap out cold local objects when local memory pressure is
high. To synchronize the local memory accesses generated
by application threads and runtime threads, AIFM embeds a
variety of metadata bits (e.g., present, isBeingEvicted)
in each smart pointer, leveraging an RCU-like scheme [36] to
protect concurrent accesses to a pointer’s referenced object.

Listing 1 provides an example of how applications use
AIFM’s smart pointers. Like AIFM, Carbink exposes far mem-
ory via smart pointers, but unlike AIFM, Carbink provides
fault tolerance.

3 Carbink Design
Figure 1 depicts the high-level architecture of Carbink. Com-
pute nodes execute single-process (but potentially multi-
threaded) applications that want to use far memory. Memory
nodes provide far memory that compute nodes use to store
application data that cannot fit in local RAM. A logically-
centralized memory manager tracks the liveness of compute
nodes and memory nodes. The manager also coordinates the
assignment of far memory regions to compute nodes. When a
memory node wants to make a local memory region available
to compute nodes, the memory node registers the region with
the memory manager. Later, when a compute node requires
far memory, the compute node sends an allocation request to
the memory manager, who then assigns a registered, unallo-

56    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



RemUniquePtr<Node> rem_ptr = AIFM::MakeUnique<Node>();
{

DerefScope scope;
Node* normal_ptr = rem_ptr.Deref(scope);
computeOverNodeObject(normal_ptr);

} // Scope is destroyed; Node object can be evicted.

Listing 1: Example of how AIFM applications interact with
far memory. In the code above, the application first allocates a
Node object that is managed by a particular RemUniquePtr.
Such a remote unique pointer represents a pointer to an object
that (1) can be swapped between local and far memory, and
(2) can only be pointed to by a single application-level pointer.
The code then creates a new scope via an open brace, declares
a DerefScope variable, and invokes the RemUniquePtr’s
Deref() method, passing the DerefScope variable as an
argument. Deref() essentially grabs an RCU lock on the
remotable memory object, and returns a normal C++ pointer
to the application. After the application has finished using the
normal pointer, the scope terminates and the destructor of the
DerefScope runs, releasing the RCU lock and allowing the
object to be evicted from local memory.

cated region. Upon receiving a deallocation message from a
compute node, the memory manager marks the associated re-
gion as available for use by other compute nodes. A memory
node can ask the memory manager to deregister a previously
registered (but currently unallocated) region, withdrawing the
region from the global pool of far memory.

Carbink does not require participating machines to use cus-
tom hardware. For example, any machine in a datacenter can
be a memory node if that machine runs the Carbink memory
host daemon. Similarly, any machine can be a compute node
if that node’s applications use the Carbink runtime.

From the perspective of an application developer, the
Carbink runtime allows a program to dynamically allocate
and deallocate memory objects of arbitrary size. As described
in Section 3.2, programs access those objects through AIFM-
like remotable pointers [44]. When applications dereference
pointers that refer to non-local (i.e., swapped-out) objects,
Carbink pulls the desired objects from far memory. Under
the hood, Carbink’s runtime manages objects using spans
(§3.3) and spansets (§3.4). A span is a contiguous run of
memory pages; a single region allocated by a compute node
contains one or more spans. Similar to slab allocators like
Facebook’s jemalloc [17] and Google’s TCMalloc [21, 24],
Carbink rounds up each object allocation to the bin size of the
relevant span, and aligns each span to the page size used by
compute nodes and memory nodes. Carbink swaps far mem-
ory into local memory at the granularity of a span; however,
when local memory pressure is high, Carbink swaps local
memory out to far memory at the granularity of a spanset
(i.e., a collection of spans of the same size). In preparation for

App 
threads

Remotable pointers

Carbink
threads

Swap in span

Swap out 
spans + parity

Compute nodes

Span Object Memory manager

…
Monitoring

Allocation, dealloc.
Monitoring

Registration, 
deregistration

Memory nodes

Figure 1: Carbink’s high-level architecture.

swap-outs, background threads on compute nodes group cold
objects into cold spans, and bundle a group of cold spans into a
spanset; at eviction time, the threads generate erasure-coding
parity data for the spanset, and then evict the spanset and the
parity data to remote nodes. As we discuss in Sections 3.4
and 3.5, this approach simplifies memory management and
fault tolerance.

Carbink disallows cross-application memory sharing. This
approach is a natural fit for our target applications, and has
the advantage of simplifying failure recovery and avoiding
the need for expensive coherence traffic [46].

3.1 Failure Model
Carbink implements the logically-centralized memory man-
ager as a replicated state machine [1, 45]. Thus, Carbink as-
sumes that the memory manager will not fail. Carbink as-
sumes that memory nodes and compute nodes may experience
fail-stop faults. Carbink does not handle Byzantine failures
or partial network failures.

The memory manager tracks the liveness of compute nodes
and memory nodes via heartbeats. When a compute node fails,
the memory manager instructs the memory nodes to deallo-
cate the relevant spans; if applications desire, they can use an
application-level fault tolerance scheme like checkpointing
to ensure that application-level data is recoverable. When
a memory node fails, the memory manager deregisters the
node’s regions from the global pool of far memory. However,
erasure-coding recovery of the node’s regions is initiated by a
compute node when the compute node unsuccessfully tries to
read or write a span belonging to the failed memory node. If
an application thread on a compute node tries to read a span
that is currently being recovered, the read will use Carbink’s
degraded read protocol (§3.5), reconstructing the span using
data from other spans and parity blocks.

3.2 Remotable Pointers
Like AIFM, Carbink exposes far memory through C++-level
smart pointers. However, as shown in Figure 2, Carbink uses
a different pointer encoding to represent span information.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    57



L S M E H (8b) Object local address (48b)
62 61 60 59 ⋯ 55 ⋯ 48 47  0⋯

P
63

(a) Local object.

L S Obj ID (13b) Region ID (16b) Span ID (32b)
62 61 60 48 47 32 31  0⋯ ⋯ ⋯

P
63

(b) Far object.

Field Meaning
Present Is the object in local RAM or far RAM?
Lock Is the object (spin)locked by a thread?
Shared Is the pointer a unique pointer or a shared pointer?
Moving Is the object being moved by a background thread?
Evicting Is the object being evicted by a background thread?
Hotness Is the object frequently accessed?

(c) Field semantics.

Figure 2: Carbink’s RemUniquePtr representation. In con-
trast to AIFM [44], Carbink does not embed information about
a data structure ID or an object size. Instead, Carbink embeds
span metadata (namely, a Region ID and a Span ID) to asso-
ciate a pointed-to object with its backing span.

A Carbink RemUniquePtr has the same size as a traditional
std::unique_ptr (i.e., 8 bytes). The Present bit indicates
whether the pointed-to object resides in local RAM. The
Shared bit indicates whether a pointer implements unique-
pointer semantics or shared-pointer semantics; the former
only allows a single reference to the pointed-to object. The
Lock, Moving, and Evicting bits are used to synchronize
object accesses between application threads and Carbink’s
background threads (§3.6). The Hotness byte is consulted by
the background threads when deciding whether an object is
cold (and thus a priority for eviction).

If an object is local, the local virtual address of the object is
directly embedded in the pointer. If an object has been evicted,
the pointer describes how to locate the object. In particular, the
Obj ID indicates the location of an object within a particular
span; the Span ID identifies that span; and the Region ID
denotes the far memory region that contains the span.

Carbink supports two smart pointer types: RemUniquePtr,
which only allows one reference to the underlying object,
and RemSharedPtr, which allows multiple references. When
moving or evicting an object, Carbink’s background threads
need a way to locate and update the smart pointer(s) which
reference the object. To do so, Carbink uses AIFM’s approach
of embedding a “reverse pointer” in each object; the reverse
pointer points to the object’s single RemUniquePtr, or to the
first RemSharedPtr that references the object. An individ-
ual RemSharedPtr is 16 bytes large, with the last 8 bytes
storing a pointer that references the next RemSharedPtr in
the list. Thus, Carbink’s runtime can find all of an object’s
RemSharedPtrs by discovering the first one via the object’s
reverse pointer, and then iterating across the linked list.

128MB 8KB
64KB 4KB

152MB
32MB

256MB
128KB

256KB
32KB 1KB

16KB

Allocated object size

0

5

10

%
 o

f a
llo

ca
te

d
 m

em
or

y 
pe

r s
ec

Figure 3: Allocation sizes in our production workloads.

3.3 Span-Based Memory Management

Local memory management: A span is a contiguous set of
pages that contain objects of the same size class. Carbink sup-
ports 86 different size classes, and aligns each span on an 8KB
boundary; Carbink borrows these configuration parameters
from TCMalloc [21, 24], which observed these parameters to
reduce internal fragmentation. When an application allocates
a new object, Carbink tries to round the object size up to the
nearest size class and assign a free object slot from an appro-
priate span. If the object is bigger than the largest size class,
Carbink rounds the object size up to the nearest 8KB-aligned
size, and allocates a dedicated span to hold it.

To allocate spans locally, Carbink uses a local page heap.
The page heap is an array of free lists, with each list tracking
8KB-aligned free spans of a particular size (e.g., 2MB, 4MB,
etc.). If Carbink cannot find a free span big enough to satisfy
an allocation request, Carbink allocates a new span, using
mmap() to request 2MB huge pages from the OS.

Allocating and deallocating via the page heap is mutex-
protected because application threads may issue concurrent
allocations or deallocations. To reduce contention on the page
heap, each thread reserves a private (i.e., thread-local) cache of
free spans for each size class. Carbink also maintains a global
cache of free lists, with each list having its own spinlock.
When a thread wants to allocate a span whose size can be
handled by one of Carbink’s predefined size classes, the thread
first tries to allocate from the thread-local cache, then the
global cache, and finally the page heap. For larger allocation
requests, threads allocate spans directly from the page heap.

Carbink associates each span with several pieces of meta-
data, including an integer that describes the span’s size class,
and a bitvector that indicates which object slots are free. To
map a locally-resident object to its associated span metadata,
Carbink uses a two-level radix tree called the local page map.
The lookup procedure is similar to a page table walk: the first
20 bits of an object’s virtual address index into the first-level
radix tree table, and the next 15 bits index into a second-level
table. The same mapping approach allows Carbink to map the
virtual address of a locally-resident span to its metadata.
Far memory management: On a compute node, local spans
contain a subset of an application’s memory state. The rest of
that state is stored in far spans that live in far memory regions.
Recall from Figure 2b that a Carbink pointer to a non-local
object embeds the object’s Region ID and Span ID.

58    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



To allocate or deallocate a region, a compute node sends
a request to the memory manager. A single Carbink region
is 1GB or larger, since Carbink targets applications whose
total memory requirements are hundreds or thousands of GBs.
Upon successfully allocating a region, the compute node up-
dates a region table which maps the Region ID of the allocated
region to the associated far memory node.

A compute node manages far spans and far regions using
additional data structures that are analogous to the ones that
manage local spans. A far page heap handles the allocation
and deallocation of far spans belonging to allocated regions.
A far page map associates a far Span ID with metadata that (1)
names the enclosing region (as a Region ID) and (2) describes
the offset of the far span within that region.

Each application thread has a private far cache; Carbink
also maintains a global far cache that is visible to all appli-
cation threads. To swap out a local span of size s, a compute
node must first use the far page heap (or a far cache if pos-
sible) to allocate a free far span of size s. Similarly, after a
compute node swaps in a far span, the node deallocates the
far span, returning the far span to its source (either the far
page heap or a far cache).
Span filtering and swapping: The Carbink runtime executes
filtering threads that iterate through the objects in locally-
resident spans and move those objects to different local spans.
Carbink’s object shuffling has two goals.
• First, Carbink wants to create hot spans (containing only

hot objects) and cold spans (containing only cold ones);
when local memory pressure is high, Carbink’s eviction
threads prefer to swap out spansets containing cold spans.
Carbink tracks object hotness using GC-style read/write
barriers [4, 23]. Thus, by the time that a filtering thread
examines an object, the Hotness byte in the object’s pointer
(see Figure 2) has already been set. Upon examining the
Hotness byte, a filtering thread updates the byte using the
CLOCK algorithm [12].

• Second, object shuffling allows Carbink to garbage-collect
dead objects by moving live objects to new spans and
then deallocating the old spans. During eviction, Carbink
utilizes efficient one-sided RMA writes to swap spansets
out to far memory nodes; this approach allows Carbink to
avoid software-level overheads (e.g., associated with thread
scheduling) on the far node.

From the application’s perspective, object movement and
spanset eviction are transparent. This transparency is pos-
sible because each object embeds a reverse pointer (§3.2)
that allows filtering threads and evicting threads to determine
which smart pointers require updating.

Carbink swaps far memory into local memory at the granu-
larity of a span. As with swap-outs, Carbink uses one-sided
RMAs for swap-ins. Swapping at the granularity of a span
simplifies far memory management, since compute nodes
only have to remember how spans map to memory nodes (as
opposed to how the much larger number of objects map to

memory nodes). However, swapping in at span granularity
instead of object granularity has a potential disadvantage: if
a compute node swaps in a span containing multiple objects,
but only uses a small number of those objects, then the com-
pute node will have wasted network bandwidth (to fetch the
unneeded objects) and CPU time (to update the remotable
pointers for those unneeded objects). We collectively refer to
these penalties as swap-in amplification.

To reduce the likelihood of swap-in amplification,
Carbink’s filtering and eviction threads prioritize the scanning
and eviction of spansets containing large objects. The asso-
ciated spans contain fewer objects per span; thus, swapping
in these spans will reduce the expected number of unneeded
objects. Figure 3 shows that, for our production workloads,
large objects occupy the majority of memory. Moreover, most
hot objects are small; for example, in our company’s geo-
distributed database [13], roughly 95% of accesses involve
objects smaller than 1.8KB. As a result, an eviction scheme
which prioritizes large-object spansets is well-suited for our
target applications.

In Carbink, a local span has a three-state lifecycle. A span
is first created due to a swap-in or local allocation. The span
transitions to the filtering state upon being examined by filter-
ing threads. Once filtering completes, those spans transition
to the evicting state when evicting threads begin to swap out
spansets. The transition from created to filtering to evicting
is fixed, and determines which Carbink runtime threads race
with application threads at any given moment (§3.6).

3.4 Fault Tolerance via Erasure Coding

Erasure coding provides data redundancy with lower storage
overhead than traditional replication. However, the design
space for erasure coding schemes is more complex. Carbink
seeks to minimize both average and long-tail access penal-
ties for far objects; per our fault model (§3.1), Carbink also
wants to efficiently recover from the failure of memory nodes.
Achieving these goals forced us to make careful decisions
involving coding granularity, parity recalculation, and cross-
node transport protocols.
Coding granularity: To motivate Carbink’s decision to
erasure-code at the spanset granularity, first consider an ap-
proach that erasure-codes individual spans. In this approach,
to swap out a span, a compute node breaks the span into
data fragments, generates the associated parity fragments, and
then writes the entire set of fragments (data+parity) to remote
nodes. During the swap-in of a span, a compute node must
fetch multiple fragments to reconstruct the target span.

This scheme, which we call EC-Split, is used by Hydra [29].
With EC-Split, handling the failure of memory nodes during
swap-out or swap-in is straightforward: the compute node
who is orchestrating the swap-out or swap-in will detect the
memory node failure, select a replacement memory node,
trigger span reconstruction, and then restart the swap-in or

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    59



Schemes EC data fragment size Network transport Parity computation Defragmentation
EC-Split (Hydra [29]) Span chunk RMA in & out Local N/A

EC-2PC Full span RMA in, RPC out (+updating parity via 2PC) Remote N/A
EC-Batch Local (Carbink) Full span RMA in & out Local Remote compaction

EC-Batch Remote (Carbink) Full span RMA in & out (+parallel 2PC for compaction) Local (swap-out)+ Remote compaction
Remote (compaction)

Table 1: The erasure-coding approaches that we study.

swap-out. The disadvantage of EC-Split is that, to reconstruct
a single span, a compute node must contact multiple memory
nodes to pull in all of the needed fragments. This requirement
to contact multiple memory nodes makes the swap-in opera-
tion vulnerable to stragglers (and thus high tail latency2). This
requirement also frequently prevents a compute node from
offloading computation to memory nodes; unless a particu-
lar object is small, the object will span multiple fragments,
meaning that no single memory node will have a complete
local copy of the object.

An alternate approach is to erasure-code across a group
of equal-sized spans. We call such a group a spanset. In this
approach, each span in the spanset is treated as a fragment,
with parity data computed across all of the spans in the set.
To reconstruct a span, a compute node merely has to contact
the single memory node which stores the span. Carbink uses
this approach to minimize tail latencies.
Parity updating: Erasure-coding at the spanset granularity
but swapping in at the span granularity does introduce compli-
cations involving parity updates. The reason is that swapping
in a span s leaves an invalid, span-sized hole in the backing
spanset; the hole must be marked as invalid because, when s
is later swapped out, s will be swapped out as part of a new
spanset. The hole created by swapping in s causes fragmen-
tation in the backing spanset. Determining how to garbage-
collect the hole and update the relevant parity information
is non-trivial. Ideally, a scheme for garbage collection and
parity updating would not incur overhead on the critical path
of swap-ins or swap-outs. An ideal scheme would also allow
parity recalculations to occur at either compute nodes or mem-
ory nodes, to enable opportunistic exploitation of free CPU
resources on both types of nodes.
Cross-node transport protocols: In systems like RAM-
Cloud [39], machines use RPCs to communicate. RPCs in-
volve software-level overheads on both sides of a communi-
cation. Carbink avoids these overheads by using one-sided
RMA, avoiding unnecessary thread wakeups on the receiver.
However, in and of itself, RMA does not automatically solve
the consistency issues that arise when offloading parity calcu-
lations to remote nodes (§3.4.2).

Throughout the paper, we compare Carbink’s erasure-coding
approach to various alternatives.

2Hydra [29] and EC-Cache [42] try to minimize straggler-induced laten-
cies by contacting k+∆ memory nodes instead of the minimum k, using the
first k responses to reconstruct an object. This approach increases network
traffic and compute-node CPU overheads.

• EC-Split is Hydra’s approach, which erasure-codes at
the span granularity, swaps data using RMA, and syn-
chronously recalculates parity at compute nodes when swap-
outs occur. Fragmentation within an erasure-coding group
never occurs, as a span is swapped in and out as a full unit.

• EC-2PC erasure-codes using spansets, and uses RMA to
swap in at the span granularity. During a swap-out (which
happens at the granularity of a span), EC-2PC writes the
updated span to the backing memory node; the memory
node then calculates the updates to the parity fragments,
and sends the updates to the relevant memory nodes which
store the parity fragments. To provide crash consistency for
the update to the span and the parity fragments, EC-2PC im-
plements a two-phase commit protocol using RPCs. There
is no fragmentation within an erasure-coding group because
swap-ins and swap-outs both occur at the span granularity.

• EC-Batch Local and EC-Batch Remote are the ap-
proaches used by Carbink. Both schemes erasure-code at
spanset granularity, using RMA for swap-in as well as swap-
out. Swap-ins occur at the granularity of a span, but swap-
outs occur at the granularity of spansets (§3.4.1); thus, both
EC-Batch approaches deallocate a span’s backing area in
far memory upon swapping that span into a compute node’s
local RAM. The result is that swap-ins create dead space on
a remote memory node. Both EC-Batch schemes reclaim
dead space and recalculate parity data using asynchronous
garbage collection. EC-Batch Local always recalculates
parity on compute nodes, whereas EC-Batch Remote can re-
calculate parity on compute nodes or memory nodes. When
EC-Batch Remote offloads parity computations to remote
nodes, it employs a parallel commit scheme that avoids the
latencies of traditional two-phase commit (§3.4.2).

Table 1 summarizes the various schemes. We now discuss
EC-Batch Local and Remote in more detail.

3.4.1 EC-Batch: Swapping

Swapping out: In both varieties of EC-Batch, a spanset con-
tains multiple spans of the same size. At swap-out time, a
compute node writes a batch (i.e., a spanset and its parity
fragments) to a memory node. Figure 4a shows an exam-
ple. In that example, the compute node has two spansets:
spanset1 (consisting of data spans < D1,D2,D3,D4 > and
parity fragments < P1,P2 >), and spanset2 (containing data
spans < D5,D6,D7,D8 > and parity fragments < P3,P4 >).
Carbink uses Reed-Solomon codes [43] to create parity data,
and prioritizes the eviction of spansets that contain cold spans

60    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



D1 D2 D3 D4

D5 D6 D7 D8

Memory nodes

P1 P2

P3 P4

M2 M3 M4 M5 M6M1Compute node

Spanset1: 
D1,2,3,4+P1,2

Spanset2: 
D5,6,7,8+P3,4

(a) Swapping out spans and parity in a batch.

D1 D2 D3 D4

D5 D6 D7 D8

Memory nodes

P1 P2

P3 P4

M2 M3 M4 M5 M6M1Compute node

Spanset1: 
D1,2,3,4+P1,2

Spanset2: 
D5,6,7,8+P3,4

(b) Swapping in individual spans.

D1 D2 D3 D4

D5 D6 D7 D8

Memory nodes

P1’ P2’

P3 P4

M2 M3 M4 M5 M6M1Compute node

Spanset1: 
D1,2,3,4+P1,2

Spanset2: 
D5,6,7,8+P3,4

Spanset3: 
D3,4,5,6+P1,2

(c) Compacting spansets to reclaim space.
Figure 4: EC-Batch swapping-out, swapping-in, and far compaction.

(§3.3). Neither variant of EC-Batch updates spansets in place,
so eviction may require a compute node to request additional
far memory regions from the memory manager.
Swapping in: When an application tries to access an object
that is currently far, the Carbink runtime inspects the appli-
cation pointer and extracts the Span ID (see Figure 2b). The
runtime consults the far page map (§3.3) to discover which
remote node holds the span. Finally, the runtime initiates the
appropriate RMA operation to swap in the span.

However, swapping in at the span granularity creates re-
mote fragmentation. In Figure 4b, the compute node in the
running example has pulled four spans (D1, D2, D7, and D8)
into local memory. Any particular span lives exclusively in
local memory or far memory; thus, the swap-ins of the four
spans creates dead space on the associated remote memory
nodes. If Carbink wants to fill (say) D1’s dead space with a
new span D9, Carbink must update parity fragments P1 and
P2. For a Reed-Solomon code, those parity fragments will
depend on both D1 and D9.

There are two strawman approaches to update P1 and P2:
• The compute node can read D1 into local memory, generate

the parity information, and then issue writes to P1 and P2.
• Alternatively, the compute node can send D9 to memory

node M1, and request that M1 compute the new parity data
and update P1 and P2.

The second approach requires a protocol like 2PC to guaran-
tee the consistency of data fragments and parity fragments;
without such a protocol, if M1 fails after updating P1, but be-
fore updating P2, the parity information will be out-of-sync
with the data fragments.

The first approach, in which the compute node orchestrates
the parity update, avoids the inconsistency challenges of the
second approach. If a memory node dies in the midst of a
parity update, the compute node will detect the failure, pick a
new memory node to back the parity fragment, and retry the
parity update. If the compute node dies in the midst of the par-
ity update, then the memory manager will simply deallocate
all regions belonging to the compute node (§3.1).

Unfortunately, both approaches require a lot of network
bandwidth to fill holes in far memory. To reclaim one vacant
span, the first approach requires three span-sized transfers—
the compute node must read D1 and then write P1 and P2.
The second approach requires two span-sized transfers to up-
date P1 and P2. To reduce these network overheads, Carbink
performs remote compaction, as described in the next section.

3.4.2 EC-Batch: Remote Compaction

Carbink employs remote compaction to defragment far mem-
ory using fewer network resources than the two strawmen
above. On a compute node, Carbink executes several com-
paction threads. These threads look for “matched” spanset
pairs; in each pair, the span positions containing dead space
in one set are occupied in the other set, and vice versa. For ex-
ample, the two spansets in Figure 4b are a matched pair. Once
the compaction threads find a matched pair, they create a new
spanset whose data consists of the live spans in the matched
pair (e.g., < D3,D4,D5,D6 > in Figure 4b). The compaction
threads recompute and update the parity fragments P1′ and
P2′ using techniques that we discuss in the next paragraph.
Finally, the compaction threads deallocate the dead spaces
in the matched pair (e.g., < D1,D2,D7,D9,P3,P4 > in Fig-
ure 4b), resulting in a situation like the one shown in Figure 4c.
Carbink’s compaction can occur in the background, unlike the
synchronous parity updates of EC-2PC which place consensus
activity on the critical path of swap-outs.

So, how should compaction threads update parity infor-
mation? Carbink uses Reed-Solomon codes over the Galois
field GF(28). The new parity data to compute in Figure 4c is
therefore represented by the following equations on GF(28):

P1′−P1 = A1,1(D5−D1)+A2,1(D6−D2)

P2′−P2 = A1,2(D5−D1)+A2,2(D6−D2)
where Ai, j (i ∈ {0,1,2,3}, j ∈ {0,1}) are fixed coefficient
vectors in the Reed-Solomon code. Carbink provides two
approaches for updating the parity information.
• In EC-Batch Local, the compute node that triggered the

swap-out orchestrates the updating of parity data. In the
running example, the compute node asks M1 to calculate
the span delta D5−D1, and asks M2 to calculate the span
delta D6−D2. After retrieving those updates, the compute
node determines the parity deltas (i.e., P1′−P1 and P2′−
P2) and pushes those deltas to the parity nodes M5 and M6.

• In EC-Batch Remote, the compute node offloads parity
recalculation and updating to memory nodes. In the running
example, the compute node asks M1 to calculate the span
delta D5−D1, and M2 to calculate the span delta D6−D2.
The compute node also asks M1 and M2 to calculate partial
parity updates (e.g., A1,1(D5−D1) and A1,2(D5−D1) on
M1). M1 and M2 are then responsible for sending the partial
parity updates to the parity nodes. For example, M1 sends
A1,1(D5−D1) to M5, and A1,2(D5−D1) to M6.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    61



In EC-Batch Local, recovery from memory node failure is
orchestrated by the compute node in a straightforward way,
as in EC-Split (§3.4). In EC-Batch Remote, a compute node
performs remote compaction by offloading parity updates to
memory nodes. The compute node ensures fault tolerance
for an individual compaction via 2PC. However, the com-
pute node aggressively issues compaction requests in parallel.
Two compactions (i.e., two instance of the 2PC protocol) are
safe to concurrently execute if the compactions involve dif-
ferent spansets; the prepare and commit phases of the two
compactions can partially or fully overlap.

On a compute node, Carbink’s runtime can monitor the
CPU load and network utilization of remote memory nodes.
The runtime can default to remote compaction via EC-Batch
Local, but opportunistically switch to EC-Batch Remote if
spare resources emerge on memory nodes. During a switch
to a different compaction mode, Carbink allows all in-flight
compactions to complete before issuing new compactions that
use the new compaction mode.

The strawmen defragmentation schemes in Section 3.4.1 re-
quire two or three span-sized network transfers to recover one
dead span. In the context of Figure 4, EC-Batch Local recov-
ers four dead spans using four span-sized network transfers.
EC-Batch Remote requires four span-sized network trans-
fers (plus some small messages generated by the consistency
protocol) to recover four dead spans.

3.5 Failure Recovery

Carbink handles two kinds of memory node failures: planned
and unplanned. Planned failures are scheduled by the cluster
manager [51, 52] to allow for software updates, disk refor-
matting, and so on. Unplanned failures happen unexpectedly,
and are caused by phenomena like kernel panics, defective
hardware, and power disruptions.
Planned failures: When the cluster manager decides to
schedule a planned failure, the manager sends a warning no-
tification to the affected memory nodes. When a memory
node receives such a warning, the memory node informs the
memory manager. In turn, the memory manager notifies any
compute nodes that have allocated regions belonging to the
soon-to-be-offline memory node. Those compute nodes stop
swapping-out to the memory node, but may continue to swap-
in from the node as long as the node is still alive. Meanwhile,
the memory manager orchestrates the migration of regions
from the soon-to-be-offline memory node to other memory
nodes. When a particular region’s migration has completed,
the memory manager informs the relevant compute node, who
then updates the local mapping from Region ID to backing
memory node. At some point during this process, the mem-
ory manager may also request non-failing memory nodes to
contribute additional regions to the global pool of far memory.
Unplanned Failures: On a compute node, the Carbink run-
time is responsible for detecting the unplanned failure of a

memory node. The runtime does so via connection timeouts
or more sophisticated leasing protocols [15, 16]. Upon de-
tecting an unplanned failure, the runtime spawns background
threads to reconstruct the affected spans using erasure cod-
ing. The runtime is also responsible for allowing application
threads to read spans whose recovery is in-flight.
Span reconstruction: To reconstruct the spans belonging to
a failed memory node M f ail , a compute node first requests
a new region from the memory manager. Suppose that the
new region is provided by memory node Mnew. The compute
node iterates through each lost spanset associated with M f ail ;
for each spanset, the compute node tells Mnew which external
spans and parity fragments to read in order to erasure-code-
restore M f ail’s data. As the relevant spans are restored, a
compute node can still swap in and remotely compact those
spans. However, the swap-in and remote compaction activity
will have to synchronize with recovery activity (§3.6).

In EC-Batch Local, when a compute node detects a mem-
ory node failure, the compute node cancels all in-flight com-
pactions involving that node. A compute node using EC-
Batch Remote does the same; however, for each canceled
compaction, the compute node must also instruct the surviv-
ing memory nodes in the 2PC group to cancel the transaction.

The data and parity for a swapped-out spanset reside on
multiple memory nodes. As a compute node recovers from
the failure of one of the nodes in that group, another node in
the group may fail. As long as the number of failed nodes
does not exceed the number of parity nodes, Carbink can
recover the spanset. The reason is that all of the information
needed to recover is stored on a compute node, e.g., in the far
page heap (§3.3). Due to space limitations, we omit a detailed
explanation of how Carbink deals with concurrent failures.
Degraded reads: During the reconstruction of an affected
span, application threads may try to swap in the span. The
runtime handles such a fetch using a degraded read proto-
col. For example, consider Figure 4a. Suppose that M1 fails
unexpectedly, and while the Carbink runtime is recovering
M1’s spans (D1 and D5), an application thread tries to read
an object residing in D1. The runtime will swap in data spans
D2, D3, and D4, as well as parity fragment P1, and then re-
construct D1 via erasure coding. Degraded reads ensure that
the failure of a memory node merely slows down an appli-
cation instead of blocking it. In Section 5.3, we show that
application performance only drops for 0.6 seconds, and only
suffers a throughput degradation of 36% during that time.
Network bandwidth consumption: During failure recovery,
Carbink consumes the same amount of network bandwidth
as Hydra. For example, suppose that both Hydra and Carbink
use RS4.2 encoding and have 4 spans, with a span stored on
each of 4 memory nodes. In Hydra, a single node failure will
lose four 1/4th spans. Reconstructing each 1/4th span will
require the reading of four 1/4th span/parity regions from the
surviving nodes, resulting in an aggregate network bandwidth
requirement of 1 full span. So, reconstructing four 1/4th spans

62    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



will require an aggregate network bandwidth of 4 full spans.
In Carbink, the failure of a single memory node results in the
loss of 1 full span. To recover that span, Carbink (like Hydra)
must read 4 span/parity regions.

3.6 Thread Synchronization

On a compute node, the main kinds of Carbink threads are
applications threads (which read objects, write objects, and
swap in spans), filtering threads (which move objects within
local spans), and eviction threads (which reclaim space by
swapping local spansets to far memory). At any given time, a
span may be in one of two concurrency regimes (§3.3): the
span is either accessible to application threads and filtering
threads, or to application threads and eviction threads. In both
regimes, Carbink has to synchronize how the relevant threads
update Carbink’s smart pointers (§3.2).

At a high level, Carbink uses an RCU locking scheme that
is somewhat reminiscent of AIFM’s approach [44]. Due to
space restrictions, we merely sketch the design. Carbink op-
timizes for the common case in which a span is only being
accessed by an application thread. In this common case, an
application thread grabs an RCU read lock on the pointer via
the pointer’s Deref() method, as shown in Listing 1. The
thread sees that either (1) the Present bit is not set, in which
case the Carbink runtime issues an RMA read to swap in
the appropriate span; (2) alternatively, the thread sees that
the Present bit is set, but the M and E bits are unset. In the
second case, Deref() can just return a normal pointer back
to the application. The application can be confident that con-
current filtering or evicting threads will not move or evict the
object, because those threads cannot touch the object until
application-level threads have released their RCU read locks
via the DerefScope destructor (Listing 1).

The more complicated scenarios arise when the Present
bit is set and either the M or E bit are set as well. In this
case, the (say) M bit has been set because the filtering thread
set the bit and then called SyncRCU() (i.e., the RCU write
waiting lock). The concurrent application thread and filtering
thread essentially race to acquire the pointer’s spinlock; if the
application thread (i.e., Deref()) wins, it makes a copy of the
object, clears M, releases the spinlock, and returns the address
of the object copy to the application. Otherwise, if the filtering
thread wins, it moves the object, clears M, and releases the
spinlock. The losing thread has to retry the desired action. An
analogous situation occurs if the E bit is set.

Carbink’s eviction and remote compaction threads directly
poll the network stack to learn about RMA completions and
RPC completions. An application thread which has issued
an RMA swap-in operation will yield, but a dedicated RMA
poller thread detects when application RMAs have completed
and awakens the relevant application threads. Polling avoids
the overheads of context switching to new threads and notify-
ing old threads that network events have occurred.

During recovery (§3.5), Carbink spawns additional threads
to orchestrate the reconstruction of spans. Those threads ac-
quire per-spanset mutexes which are also acquired by threads
performing swap-ins, swap-outs, and remote compactions.

4 Implementation
Our Carbink prototype contains 14.3K lines of C++. It runs
atop unmodified OSes, using standard POSIX abstractions
for kernel-visible threads and synchronization. The runtime
leverages the PonyExpress user-space network stack [35]. On
a compute node, all threads in a particular application (both
application-defined threads and Carbink-defined threads) ex-
ecute in the same process. On a memory node, a Carbink
daemon exposes far memory via RMAs or RPCs. We use
Intel ISA-L v2.30.0 [25] for Reed-Solomon erasure coding.

Our current prototype has a simplified memory manager
that is unreplicated, does not handle planned failures, and
statically assigns memory nodes to compute nodes. Imple-
menting the full version of the memory manager will be con-
ceptually straightforward, since we can use off-the-shelf li-
braries for replicated state machines [1, 45] and cluster man-
agement [51, 52]. We also note that the experiments in §5
are insensitive to the performance of the memory manager,
regardless of whether the manager is replicated or not. The
reason is that memory allocations and deallocations (which
must be routed through the memory manager) are rare and
are not on the critical path of steady-state compute node oper-
ations like swap-in and swap-out.

To better understand the performance overheads of
Carbink’s erasure-coding approach, we built an AIFM-
like [44] far memory system. That system uses remotable
pointers like Carbink, but swaps in and out at the granular-
ity of objects, and provides no fault tolerance. Like Carbink,
it leverages the PonyExpress [35] user-space network stack.
Our AIFM clone is 5.8K lines of C++.

5 Evaluation
In this section, we answer the following questions:
1. What is the latency, throughput, and remote memory us-

age of EC-Batch compared with the other fault tolerance
schemes (§5.1 and §5.2)?

2. How does an unplanned memory node failure impact the
performance of Carbink applications (§5.3)?

3. How does the performance of Carbink’s span-based mem-
ory organization compare to the performance of an AIFM-
like object-level approach (§5.4)?

Testbed setup: We deployed eight machines in the same rack,
including one compute node and seven memory nodes; one of
the memory nodes was used for failover. Each machine was
equipped with dual-socket 2.2 GHz Intel Broadwell proces-
sors and a 50 Gbps NIC.
Fault tolerance schemes: Using the Carbink runtime, we
compared our proposed EC-Batch schemes to four ap-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    63



Non-FT Replication EC-Split EC-2PC
EC-Batch Local EC-Batch Remote

0 1 2 3 4 5 6 7
Offered load (Mops)

0

100

200

300

99
p 

la
te

nc
y 

(μ
s)

Figure 5: Microbenchmark load-latency curves.
Non-FT Replication EC-Split EC-2PC

EC-Batch Local EC-Batch Remote

0 50 100 150 200 250 300
Latency of remote object access (μs)

0

25

50

75

100

C
D

F 
(%

)

Figure 6: Latency distribution of remote object accesses in
the microbenchmark under an offered load of 2 Mops.

proaches: Non-FT (a non-fault-tolerant scheme that used
RMA to swap spans), Replication (which replicated spans on
multiple nodes), EC-Split (the approach used by Hydra [29]),
and EC-2PC (Table 1). We configured all fault tolerance
schemes to tolerate up to two memory node failures. So,
the Replication scheme replicated each swapped-out span on
three memory nodes, whereas the EC schemes used six mem-
ory nodes—four held data, and two held RS4.2 parity bits [43].
EC-Batch spawned two compaction threads by default.

As mentioned in Section 4, we also built an AIFM-like far
memory system. This system did not provide fault tolerance,
but it provided a useful comparison with our Non-FT Carbink
version.

Carbink borrows the span sizes that are used by TCMalloc
(§3.3). These parameters have been empirically observed to
reduce internal fragmentation. In our evaluation, EC-Batch
(both Local and Remote) grouped four equal-size spans into a
spanset, swapping out at the granularity of a spanset. Increas-
ing spanset sizes would allow Carbink to issue larger batched
RMAs, improving network efficiency. However, spansets
whose evictions are in progress must be locked in local mem-
ory while RMAs complete; thus, larger spanset sizes would
delay the reclamation of larger portions of local memory.

5.1 Microbenchmarks
To get a preliminary idea of Carbink’s performance, we cre-
ated a synthetic benchmark that wrote 15 million 1 KB objects
(totalling 15 GB) to a remotable array. The compute node’s
local memory had space to store 7.5 GB of objects (i.e., half
of the total set). By default, the compute node spawned 128

Non-FT Replication EC-Split EC-2PC
EC-Batch Local EC-Batch Remote

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Skew of object accessing pattern

10
0

10
1

Th
ro

ug
hp

ut
 (M

op
s)

Figure 7: Impact of skew on throughput.

threads on 32 logical cores to access objects; the access pat-
tern had a Zipfian-distributed [41] skew of 0.99. Such skews
are common in real workloads for key/value stores [7].
Object access throughput and tail latency: Figure 5 shows
the 99th-percentile latency with various object access loads.
All of the fault-tolerant schemes eventually hit a “hockey stick”
in tail latency growth when the schemes could no longer catch
up with the offered load. EC-Batch Remote had the highest
sustained throughput (6.0 Mops), which was 40% higher than
the throughput of the state-of-the-art EC-Split (4.3 Mops).
EC-Batch Local achieved 5.6 Mops, which was 30% higher
than EC-Split. EC-Split had worse performance because it
had to issue four RMA requests to swap in one span; thus, EC-
Split quickly became bottlenecked by network IO. In contrast,
EC-Batch only issued one RMA request per swap-in.

EC-Batch Remote had 18%-29% lower tail latency than
EC-Split under the same load (before reaching the “hockey-
stick”). The reason was that EC-Split’s larger number of
RMAs per swap-in left EC-Split more vulnerable to strag-
glers [29]. Also recall that EC-Batch can support computation
offloading [3, 27, 44, 57], which is hard with EC-Split (§3.4).

EC-2PC had the worst throughput because it relied on
costly RPCs and 2PC protocols to swap out spans. Thus, EC-
2PC could not reclaim local memory as fast as other schemes.
The Replication scheme was bottlenecked by network band-
width, since every swap-out incurred a 3× network write
penalty; in contrast, EC-based schemes used RS4.2 erasure
coding to reduce the write penalty to 1.5×.
Latency distribution of remote object accesses: Figure 6
shows the latency of accessing remote objects under 2 Mops
of offered load. With this low offered load, Replication and
EC-Batch Remote achieved similar access latencies as Non-
FT because none of the schemes were bottlenecked by net-
work bandwidth. EC-Batch Local had slightly higher remote
access latencies. However, EC-Split had significantly higher
access latencies (e.g., at the median and tail) than EC-Batch
Local and Remote; the reason was that EC-Split issued four
times as many network IOs and thus was more sensitive to
stragglers. EC-2PC’s tail latency was slightly higher than that
of EC-Batch Local and Remote due to the overhead of costly
RPCs and 2PC traffic.
Impact of skewness: Figure 7 shows how the skewness of
object accesses impacted throughput. EC-Batch Remote and

64    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



# Compac-
tion threads

Norm. remote
mem usage

Avg. # remote
logical cores

Avg. BW
(Gbps)

EC-Batch
Local

1 2.54 0.23 1.27
2 2.35 0.53 1.64
3 2.28 0.56 1.76

EC-Batch
Remote

1 1.89 1.97 2.98
2 1.83 2.10 3.15
3 1.74 2.27 3.40

W/o compaction 0 3.03 – –

Table 2: Remote resource usage in the microbenchmark. The
remote memory usage is normalized with respect to the us-
age of Non-FT. The number of remote logical cores and the
network bandwidth are averaged across all six memory nodes.

Local performed best due to their more efficient swapping
approaches. However, the throughput of all schemes increased
with higher skewness. The reason is that high skewness led
to a smaller working set and thus a higher likelihood that
hot objects were locally resident. In these scenarios, schemes
with faster swapping were not rewarded as much.
Remote resource usage with compaction: Table 2 shows
the impact of compaction on the average memory, CPU, and
bandwidth usage per memory node. Without compaction, EC-
Batch used 3.03× remote memory (normalized with respect to
Non-FT memory consumption). With two local compaction
threads, EC-Batch Remote’s memory overhead reduced to
1.83×. The memory reduction was at the expense of 2.1 cores
and 3.15 Gbps bandwidth on each memory node. With more
compaction threads, Carbink could further reduce memory
usage at the cost of higher CPU and bandwidth utilization.
That being said, we note that the synthetic microbenchmark
application represented an extreme case of remote CPU and
network usage, since the workload accessed objects without
actually computing on them.
EC-Batch Remote vs. Local: EC-Batch Remote had higher
throughput and lower tail latency than EC-Batch Local (Fig-
ure 5). This was because EC-Batch Local’s compaction re-
quired (1) local CPUs for parity computation and (2) network
bandwidth for transferring span deltas and parity updates, leav-
ing fewer local resources for application threads and RMA
reads. Because of EC-Batch Remote’s faster compaction, EC-
Batch Remote also used 28%-34% less remote memory than
EC-Batch Local (Table 2). However, EC-Batch Remote con-
sumed more remote CPUs (2.10 vs. 0.53 cores) and more
network bandwidth (3.15 vs. 1.64 Gbps) than Local. In prac-
tice, the Carbink runtime could transparently switch between
EC-Batch Remote and Local based on an application devel-
oper’s policy about resource/performance trade-offs.

5.2 Macrobenchmarks

We evaluated Carbink using two memory-intensive applica-
tions that would benefit from remote memory: an in-memory
transactional key-value store, and a graph processing algo-
rithm. The two applications exhibited different patterns of

Non-FT Replication EC-Split EC-2PC
EC-Batch Local EC-Batch Remote

0 25 50 75 100
Local memory (% of 50GB)

0

20

40

60

Th
ro

ug
hp

ut
(T

PS
x1

k)

(a) Transaction throughput.

0 25 50 75 100
Local memory (% of 50GB)

0

1

2

3

N
or

m
al

iz
ed

 re
m

ot
e

 m
em

or
y 

us
ag

e

(b) Remote memory usage.

Figure 8: Transactional KV-store evaluation.

object accesses, and had different working set behaviors.
Transactional KV-store: This application implemented a
transactional in-memory B-tree, exposing it via a key/value
interface similar to that of MongoDB [37]. Each remotable
object was a 4 KB value stored in a B-tree leaf. The applica-
tion spawned 128 threads, and each thread processed 20 K
transactions. The compute node provisioned 32 logical cores,
with the application overlapping execution of the threads for
higher throughput [26, 38, 44, 56]. Each transaction contained
three reads and three writes, similar to the TPC-A bench-
mark [53]. Each update created a new version of a particular
key’s value; asynchronously, the application trimmed old ver-
sions. The maximum working set size during the experiment
was roughly 50 GB.
Throughput: Figure 8a shows the KV-store throughput when
varying the size of local memory (normalized as a fraction
of the maximum working set size). In scenarios with less
than 50% local memory, EC-Batch Remote achieved higher
transactions per second (TPS) than all other fault tolerance
schemes. For example, TPS for EC-Batch Remote was 1.5%-
48% higher than that of EC-Split; this was because EC-Batch
only needed one RMA request to swap in a span. EC-Batch
Remote was at most 29% slower than Non-FT, mainly due to
the additional parity update required for fault tolerance. EC-
Batch Local was at most 13% slower than EC-Batch Remote.
EC-2PC performed the worst among EC schemes.

All schemes achieved similar throughput when the local
memory size was above 50%. The reason was that the average
working set size of the workload was only half the size of the
maximum memory usage. The maximum memory usage only
occurred when the B-Tree had fallen very behind in culling
old versions of objects.
Remote memory usage: Figure 8b plots remote memory us-
age as a function of local memory sizes; remote memory
usage is normalized with respect to that of Non-FT. Com-
pared to EC-Split, EC-Batch Remote and Local used up to
35% and 93% more remote memory, respectively. EC-Batch
schemes defragmented remote memory using compaction,
but when local memory space was less than 50%, remote
compaction could not immediately defragment the spanset
holes created by frequent span swap-ins. As local memory
grew larger, span fetching became less frequent, making it

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    65



Non-FT Replication EC-Split EC-2PC
EC-Batch Local EC-Batch Remote

0 25 50 75 100
Local memory (% of 40GB)

0

20

40

60

80

Pr
oc

es
si

ng
 ti

m
e 

(s
ec

)

(a) Processing time.

0 20 40 60 80
Local memory (% of 40GB)

0

1

2

3

N
or

m
al

iz
ed

 re
m

ot
e

 m
em

or
y 

us
ag

e
(b) Remote memory usage.

Figure 9: Graph processing evaluation.

easier for remote compaction to reclaim space. In this less
hectic environment, EC-Batch’s remote memory usage was
similar to that of the other erasure-coding schemes.3

Graph processing: We implemented a connected-
components algorithm [50] that found all sets of linked
vertices in a graph. This kind of algorithm is critical to
various Google services. We evaluated the algorithm using
the Friendster graph [30] which contained 65 million vertexes
and 1.8 billion edges. In the graph analysis code, each
vertex’s adjacency list was referenced via remotable pointers.
The total size of the objects stored in Carbink was roughly 40
GB. The application used 80 application threads that ran atop
80 logical cores. In our experimental results, the reported
processing times exclude graph loading, since graph loading
is dominated by disk latencies.

Figure 9a shows that all schemes had similar processing
times as Non-FT, regardless of the local memory size. The
reason was that the graph application had a high compute-
to-network ratio—the application fetched all neighbors asso-
ciated with each vertex and then spent non-trivial time enu-
merating each neighbor and computing on them. As a result
of this good spatial locality and high “think time,” the graph
application did not incur frequent data swapping, and thus
avoided fault tolerance overhead that the KV-store could not.

Figure 9b shows that EC-Batch Local and Remote had
similar remote memory usage as EC-Split: 15%-39% lower
than EC-2PC and roughly 50% lower than Replication. All
EC-based schemes had lower remote memory overheads than
Replication because the erasure coding only incurred a 1.5×
space overhead for the extra parity data.

EC-2PC used more memory than EC-Batch because the
graph workload randomly fetched diverse-sized spans. The
random fetch sizes reflected the fact that different vertices
had different sizes for their adjacency lists. This lack of span
size locality hindered dead space reclamation, since EC-2PC
had to wait longer for all of the spans in an erasure-coding
group to be swapped in. EC-Batch avoided this problem by
bundling equal-sized spans into the same spanset and using
remote compaction.

3The remote memory usage of triple-replication was slightly less than 3×
the usage of Non-FT because Non-FT could swap out memory faster during
periods of high local memory pressure.

80 85 90 95
Time (sec)

0

20

40

60

Th
ro

ug
hp

ut
(T

PS
x1

k)

12.2k
 TPS

Fully recoveredFully recovered

Memory node lost Replication
EC-Batch

(a) KV-store TPS over time.

0 10 20 30 40
Remote data size (GB)

0

5

10

15

R
ec

ov
er

y 
tim

e 
(s

ec
)

Replication
EC-Batch

(b) Microbenchmark recovery.

Figure 10: Failure recovery evaluation.

5.3 Failure Recovery

We measured the recovery time for an unplanned memory
node failure in the KV-store, the graph processor, and the
microbenchmark application. For the graph application, all
schemes achieved similar processing time during unplanned
failures; thus, in the text below, we focus on the KV-store and
the microbenchmark.
Transactional KV-store: Figure 10a shows the KV-store
throughput of Replication and EC-Batch Local, with a data
point collected every 100 ms before and after an unplanned
memory node failure. Upon detecting the failure, EC-Batch
Local immediately reconstructed the lost data on a pre-
configured failover memory node. We gave the KV-store 15
GB of local memory, equivalent to 30% of the 50 GB maxi-
mum working set size.

The throughput of both schemes fluctuated sinusoidally be-
cause the KV-store frequently tried to swap in remote objects,
but the swap-ins sometimes had to synchronously block until
eviction threads could reclaim enough local memory. After a
memory node failed, EC-Batch needed 0.6 seconds to restore
normal throughput, while replication needed 0.3 seconds. This
is because, during failure recovery, an EC-Batch read that tar-
geted an affected span used the degraded read protocol which
uses more bandwidth than a normal read (§3.5); in contrast,
a Replication read that targeted an affected span consumed
the same amount of bandwidth as a read during non-failure-
recovery. During recovery, the throughput of Replication and
EC-Batch dropped an average of 35% and 36% respectively.

EC-Batch required 9.7 seconds to fully regenerate the lost
data on the failover node, taking 1.7× longer than Replication.
This difference arose because, in EC-Batch, the new memory
node read 4× span/parity information involving the lost data
and computed erasure codes to reconstruct the lost data. In
contrast, Replication lost more data per memory node, but
only read one copy of the lost data. Note that with EC-Batch,
degraded reads mostly happened during the first second of fail-
ure recovery; the skewed workload meant that a small number
of objects were the targets of most reads, and once a hot object
was pulled into local memory (perhaps by a degraded read),
the object would not generate additional degraded reads.
Microbenchmark: Figure 10b shows recovery times as a
function of the remote data size. The recovery time of EC-
Batch increased almost linearly with the remote data size,

66    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Obj-based (RPC) Obj-based (RMA) Carbink Non-FT Carbink EC-Batch Remote

0 25 50 75 100
Local memory (% of 50GB)

0

20

40

60

Th
ro

ug
hp

ut
(T

PS
x1

k)

(a) KV-store application.

0 25 50 75 100
Local memory (% of 40GB)

0

100

200

300

Pr
oc

es
si

ng
 ti

m
e 

(s
ec

)
(b) Graph application.

Figure 11: Application performance: AIFM-like object-
based systems and Carbink.

with 0.6 GB/s recovery speed. This speed was 12%-44%
slower than Replication due to the larger amount of recovery
information that EC-Batch had to transfer around the network,
and the computational overhead of generating erasure codes.

Prior work [10, 29, 58] also found that, during recovery,
erasure-coding schemes had longer recovery times and worse
performance degradation than replication schemes. However,
this drawback only happens for unplanned failures which, in
our production environment, are rare compared to planned
failures; in an erasure-coding scheme, handling a planned
failure just requires simple copying of the information on a
departing memory node, and does not incur additional work
to find parity information or recompute erasure coding. Thus,
in our deployment setting where unplanned failures are rare,
erasure-coding schemes (which have lower memory utiliza-
tion than replication schemes) are very attractive.

5.4 Comparison with AIFM-like Systems

We compared span-based swapping in Carbink with the object-
based approach used in AIFM [44]. We implemented two
AIFM-like systems using our threading and network stack
(§4). The first system used RPCs to swap individual objects,
with the remote memory nodes tracking the object-to-remote-
location mapping (as done in AIFM). Our second object-
granularity swapping system used more-efficient RMAs to
swap objects, and had compute nodes track the mapping be-
tween objects and their remote locations; recall that RMA is
one-sided, so compute nodes could not rely on memory nodes
to synchronously update mappings during swaps. Like the
original AIFM, neither system provided fault tolerance.
Transactional KV-store: Figure 11a shows that, if local
memory was too small to hold the average working set, Non-
FT Carbink had 45%-167% higher throughput than the AIFM-
like system with RPC. The reason is that, when local memory
pressure was high, more swapping occurred, and the better
efficiency of RMAs over RPCs became important. However,
Non-FT Carbink achieved 5.6%-15% lower throughput than
the object-based system with RMA. This was due to swap-in
amplification. For example, Non-FT Carbink might swap in
an 8KB span but only use one 4KB object in the span; this
never happens in a system that swaps at an object granularity.

Graph processing: Figure 11b shows the graph application’s
processing time. When the local memory size was below
87.5%, Carbink performed 18%-58% faster than the object-
based system with RMA. This is because, in the graph work-
load, 4% of large objects occupied 50% of the overall data set.
Carbink prioritized swapping out large cold objects (§3.3),
keeping most small objects in local memory and reducing the
miss rate for those objects. In contrast, the object-based sys-
tems did not consider object sizes when swapping, leading to
an increased miss rate for small objects. Note that, with larger
local memories, all schemes had similar performance; indeed,
when all objects fit into local memory, the object-based sys-
tem with RPC slightly outperformed the rest because it did
not require a dedicated core to poll for RMA completions.

6 Discussion

EC-Batch for paging-based systems: Carbink uses EC-
Batch to transparently expose far memory via remotable point-
ers. However, EC-Batch can also be used to expose far mem-
ory via OS paging mechanisms [5, 22, 46]. In a traditional
paging-based approach for far memory, a compute node swaps
in and out at the granularity of a page. However, a compute
node can use EC-Batch to treat each page as a span, such that
pages are swapped out at the “pageset” granularity, and pages
are swapped in at the page granularity.
Custom one-sided operations: EC-Batch requires memory
nodes to calculate span deltas and parity updates (§3.4.2). In
our Carbink prototype, memory nodes use separate threads
to execute these calculations. However, memory nodes could
instead implement them as custom one-sided operations in the
network stack, such that the network stack itself performs the
calculations, avoiding the need to context-switch to external
threads. This approach has been used in prior work [6, 9, 35,
47, 48] to avoid thread scheduling overheads.
Designing the memory manager: We used a centralized
manager because such a manager (1) simplified our overall
design, and (2) made it easier to drive memory utilization high
(because a centralized manager will have a global, accurate
view of memory allocation metadata). A similarly-centralized
memory manager is used by the distributed transaction system
FaRM [16]. If the centralized manager became unavailable,
Carbink could fall back to a decentralized memory allocation
scheme like the one used by Hydra [29] or INFINISWAP [22].

The state maintained by the memory manager is not large.
With 1 GB regions, we expect up to 500 regions in a typical
memory node (similar to FaRM [16]). With thousands of
memory nodes, the memory manager just needs to store a few
MBs of state for region assignments.
Fault tolerance for compute nodes: In Carbink, a compute
node does not share memory with other compute nodes. Thus,
a Carbink application can checkpoint its own state without
fear of racing with other compute nodes that modify the state
being checkpointed. Checkpoint data could be placed in a

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    67



Fast
s/o

Low
mem

Fast
s/i Interface Coding

granularity
On-disk rpl. 7 3 3 Various –

In-memory rpl. 3 7 3 Various –
Hydra [29] 3 3 7 Paging Split 4KB pages

Cocytus [10] 3 3 7 KV-store Across 4KB pages
BCStore [31] 3 3 7 KV-store Across objs
Hybrid [32] 7 7 3 KV-store Split 4KB pages

Carbink 3 3 3 Remotable pointers Across spans

Table 3: Comparison of existing fault-tolerant approaches
for far memory. “Fast s/o” indicates whether a system can
swap out at network/memory speeds. “Low mem” means that
a system has relatively low memory pressure. “Fast s/i” refers
to whether a system can swap in at network/memory speeds.

non-Carbink store, obviating the need to track how check-
pointed spans move across Carbink memory nodes during
compaction and invalidation. Alternatively, Carbink itself
could store checkpoints, e.g., in the fault-tolerant address
space of a well-known Carbink application whose sole pur-
pose is to store checkpoints.

7 Related Work
Fault tolerance for far memory: Many far memory systems
do not provide fault tolerance [2, 44, 55]. Of the systems
that do, most replicate swapped-out data to local disks or
remote ones [5, 22, 46]. Unfortunately, this approach forces
application performance to bottleneck on disk bandwidth or
disk IOPs during bursty workloads or failure recovery [29].
This behavior is unattractive, since a primary goal of a far
memory system is to have applications run at memory speeds
as much as possible.

Like Carbink, Hydra [29] is a far memory system that
provides fault tolerance by writing erasure-coded local mem-
ory data to far RAM. Hydra uses the EC-Split coding ap-
proach that we describe in Section 3.4. As we demonstrate in
Section 5, Carbink’s erasure-coding scheme provides better
application performance in exchange for somewhat higher
memory consumption. Carbink’s coding scheme also enables
the offloading of computations to far memory nodes. Such of-
floading can significantly improve the performance of various
applications [3, 27, 44, 57].
Fault tolerance for in-memory transactions and KV-
stores: In-memory transaction systems typically provide fault
tolerance by replicating data across the memory of multiple
nodes [15, 16, 26]. These approaches suffer from the classic
disadvantages of replication: double or triple storage over-
head, and the associated increase in network traffic.

Recent in-memory KV-stores use erasure coding to provide
fault tolerance. For example, Cocytus [10] and BCStore [31]
only rely on in-memory replication to store small instances
of metadata; object data is erasure-coded using a default page
size of 4KB. Cocytus erasure-codes using a scheme that re-
sembles EC-2PC (§3.4). To reduce the network utilization of

a Cocytus-style approach, a BCStore compute node buffers
outgoing writes; this approach allows the node to batch the
computation of parity fragments (and thus issue fewer updates
to remote data and parity regions). Batching reduces network
overhead at the cost of increasing write latency.

Both Cocytus and BCStore rely on two-sided RPCs to ma-
nipulate far memory. RPCs incur software-level overheads
involving thread scheduling and context switching on remote
nodes. To avoid these costs, Carbink eschews RPCs for one-
side RMA operations. Carbink also issues fewer parity up-
dates than Cocytus; whereas Cocytus uses expensive 2PC
to update parity information during every write, Carbink de-
fers parity updates until compaction occurs on remote nodes
(§3.4.2). Carbink’s compaction approach is also more effi-
cient than that of BCStore. BCStore’s compaction algorithm
performs actual copying of data objects on memory nodes,
whereas Carbink compaction just manipulates span pointers
inside of spanset metadata.

A far memory system could use both replication and erasure
coding [32]. For example, during a Hydra-style swap-out, a
span would be erasure-coded and the fragments written to
memory nodes; however, a full replica of the span would
also be written out. Relative to Carbink, this hybrid approach
would have lower reconstruction costs (assuming that the full
replica did not live on the failed node). However, Carbink
would have lower memory overheads because no full replica
of a span would be stored. Carbink would also have faster
swap-outs, because swap-outs in the hybrid scheme would
require an EC-2PC-like mechanism to ensure consistency.

Table 3 summarizes the strengths and weaknesses of the
various systems discussed above.
Memory compaction: In Carbink, the far memory regions
used by a program become fragmented as spans are swapped
in. Memory compaction is a well-studied topic in the literature
about “moving” garbage collectors for managed languages
(e.g., [11, 18, 49]). Moving garbage collection is also possible
for C/C++ programs; Mesh [40] represents the state-of-the-art.
With respect to this prior work, Carbink’s unique challenge
is that the compaction algorithm (§3.4.2) must compose well
with an erasure coding scheme that governs how objects move
between local memory and far memory.

8 Conclusion
Carbink is a far memory system that provides low-latency,
low-overhead fault tolerance. Carbink erasure-codes data us-
ing a span-centric approach that does not expose swap-in
operations to stragglers. Whenever possible, Carbink uses
efficient one-sided RMAs to exchange data between com-
pute nodes and memory nodes. Carbink also uses novel com-
paction techniques to asynchronously defragment far memory.
Compared to Hydra, a state-of-the-art fault-tolerant system
for far memory, Carbink has 29% lower tail latency and 48%
higher application performance, with at most 35% higher
memory usage.

68    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Acknowledgments
We thank our shepherd Luís Rodrigues and the anonymous
reviewers for their insightful comments. We also thank Kim
Keeton and Jeff Mogul for their comments on early drafts of
the paper, and Maria Mickens for her comments on a later
draft. Yang Zhou and Minlan Yu were supported in part by
NSF CNS-1955422 and CNS-1955487.

References

[1] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Maofan Yin. Sync HotStuff: Simple and Practical
Synchronous State Machine Replication. In Proceed-
ings of IEEE Symposium on Security and Privacy, pages
106–118, 2020.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, and et al. Remote Regions: A Simple Abstrac-
tion for Remote Memory. In Proceedings of USENIX
ATC, pages 775–787, 2018.

[3] Marcos K Aguilera, Kimberly Keeton, Stanko No-
vakovic, and Sharad Singhal. Designing Far Memory
Data Structures: Think Outside the Box. In Proceedings
of ACM HotOS, pages 120–126, 2019.

[4] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley,
and Lieven Eeckhout. Write-Rationing Garbage Col-
lection for Hybrid Memories. ACM SIGPLAN Notices,
53(4):62–77, 2018.

[5] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
Far Memory Improve Job Throughput? In Proceedings
of ACM EuroSys, pages 1–16, 2020.

[6] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout,
Arvind Krishnamurthy, Aurojit Panda, Sylvia Rat-
nasamy, and Scott Shenker. Remote Memory Calls.
In Proceedings of ACM HotNets, pages 38–44, 2020.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. ACM SIGMETRICS Per-
formance Evaluation Review, 40(1):53–64, 2012.

[8] Cristina Băsescu and Bryan Ford. Immunizing Systems
from Distant Failures by Limiting Lamport Exposure.
In Proceedings of ACM HotNets, pages 199–205, 2021.

[9] Matthew Burke, Shannon Joyner, Adriana Szekeres, Ja-
cob Nelson, Irene Zhang, and Dan R.K. Ports. PRISM:
Rethinking the RDMA Interface for Distributed Sys-
tems. In Proceedings of USENIX SOSP, pages 228–242,
2021.

[10] Haibo Chen, Heng Zhang, Mingkai Dong, Zhaoguo
Wang, Yubin Xia, Haibing Guan, and Binyu Zang. Effi-
cient and Available In-Memory KV-Store with Hybrid
Erasure Coding and Replication. ACM Transactions on
Storage (TOS), 13(3):1–30, 2017.

[11] Jon Coppeard. Compacting Garbage Collection in Spi-
derMonkey. https://hacks.mozilla.org/2015/0
7/compacting-garbage-collection-in-spide
rmonkey/, 2015.

[12] Fernando J. Corbato. A Paging Experiment with the
Multics System. Technical report, MASSACHUSETTS
INST OF TECH CAMBRIDGE PROJECT MAC, 1968.

[13] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman, San-
jay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, and et al. Spanner: Google’s Globally
Distributed Database. ACM Transactions on Computer
Systems (TOCS), 31(3):1–22, 2013.

[14] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[15] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In Proceedings of USENIX NSDI, pages 401–414,
2014.

[16] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of ACM
SOSP, pages 54–70, 2015.

[17] Jason Evans. A Scalable Concurrent malloc (3) Imple-
mentation for FreeBSD. In Proceedings of BSDCan
Conference, 2006.

[18] Robert R. Fenichel and Jerome C. Yochelson. A LISP
Garbage-Collector for Virtual-Memory Computer Sys-
tems. Communications of the ACM, 12(11):611–612,
1969.

[19] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
Graph-Parallel Computation on Natural Graphs. In Pro-
ceedings of USENIX OSDI, pages 17–30, 2012.

[20] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.
Graphx: Graph Processing in a Distributed Dataflow
Framework. In Proceedings of USENIX OSDI, pages
599–613, 2014.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    69

https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/
https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/
https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/


[21] Google. TCMalloc Open Source. https://github.c
om/google/tcmalloc.

[22] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient Memory Dis-
aggregation with INFINISWAP. In Proceedings of
USENIX NSDI, pages 649–667, 2017.

[23] Xianglong Huang, Stephen M Blackburn, Kathryn S.
McKinley, J. Eliot B. Moss, Zhenlin Wang, and Perry
Cheng. The Garbage Collection Advantage: Improving
Program Locality. ACM SIGPLAN Notices, 39(10):69–
80, 2004.

[24] Andrew Hamilton Hunter, Chris Kennelly, Paul Turner,
Darryl Gove, Tipp Moseley, and Parthasarathy Ran-
ganathan. Beyond Malloc Efficiency to Fleet Efficiency:
A Hugepage-Aware Memory Allocator. In Proceedings
of USENIX OSDI, pages 257–273, 2021.

[25] Intel. Intel Intelligent Storage Acceleration Library.
https://github.com/intel/isa-l.

[26] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Trans-
actions with Two-Sided RDMA Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185–201, 2016.

[27] Dario Korolija, Dimitrios Koutsoukos, Kimberly Kee-
ton, Konstantin Taranov, Dejan Milojičić, and Gustavo
Alonso. Farview: Disaggregated Memory with Operator
Off-loading for Database Engines. In Proceedings of
Conference on Innovative Data Systems Research, 2022.

[28] Jakub Łącki, Vahab Mirrokni, and Michał Włodarczyk.
Connected Components at Scale via Local Contractions.
arXiv preprint arXiv:1807.10727, 2018.

[29] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G. Shin. Mitigating
the Performance-Efficiency Tradeoff in Resilient Mem-
ory Disaggregation. arXiv preprint arXiv:1910.09727,
2019.

[30] Jure Leskovec. Friendster Social Network Dataset. ht
tps://snap.stanford.edu/data/com-Friends
ter.html.

[31] Shenglong Li, Quanlu Zhang, Zhi Yang, and Yafei Dai.
BCStore: Bandwidth-Efficient In-Memory KV-store
with Batch Coding. Proceedings of IEEE International
Conference on Massive Storage Systems and Technol-
ogy, 2017.

[32] Yuzhe Li, Jiang Zhou, Weiping Wang, and Yong Chen.
RE-Store: Reliable and Efficient KV-Store with Erasure
Coding and Replication. In Proceedings of IEEE Inter-
national Conference on Cluster Computing, pages 1–12,
2019.

[33] Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos E. Guestrin, and Joseph Hellerstein.
Graphlab: A New Framework for Parallel Machine
Learning. arXiv preprint arXiv:1408.2041, 2014.

[34] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong
Xu, and Tongxin Bai. Imbalance in the Cloud: An Analy-
sis on Alibaba Cluster Trace. In Proceedings of IEEE In-
ternational Conference on Big Data, pages 2884–2892,
2017.

[35] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, and et al. Snap: A Microkernel Approach to Host
Networking. In Proceedings of ACM SOSP, pages 399–
413, 2019.

[36] Paul E. McKenney and John D. Slingwine. Read-Copy
Update: Using Execution History to Solve Concurrency
Problems. In Proceedings of Parallel and Distributed
Computing and Systems, pages 509–518, 1998.

[37] MongoDB Inc. MongoDB Open Source. https://gi
thub.com/mongodb/mongo.

[38] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of USENIX NSDI, pages
361–378, 2019.

[39] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, and et al.
The RAMCloud Storage System. ACM Transactions on
Computer Systems (TOCS), 33(3):1–55, 2015.

[40] Bobby Powers, David Tench, Emery D. Berger, and An-
drew McGregor. Mesh: Compacting Memory Manage-
ment for C/C++ Applications. In Proceedings of ACM
PLDI, pages 333–346, 2019.

[41] David M.W. Powers. Applications and Explanations of
Zipf’s Law. In Proceedings of New Methods in Lan-
guage Processing and Computational Natural Language
Learning, 1998.

[42] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. EC-Cache: Load-
Balanced, Low-Latency Cluster Caching with Online
Erasure Coding. In Proceedings of USENIX OSDI,
pages 401–417, 2016.

[43] Irving S. Reed and Gustave Solomon. Polynomial Codes
over Certain Finite Fields. Journal of the Society for In-
dustrial and Applied Mathematics, 8(2):300–304, 1960.

70    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/google/tcmalloc
https://github.com/google/tcmalloc
https://github.com/intel/isa-l
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo


[44] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-Performance,
Application-Integrated Far Memory. In Proceedings
of USENIX OSDI, pages 315–332, 2020.

[45] Fred B. Schneider. Implementing Fault-Tolerant Ser-
vices Using the State Machine Approach: A Tutorial.
ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[46] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In Proceedings of
USENIX OSDI, pages 69–87, 2018.

[47] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. StRoM: Smart Remote Mem-
ory. In Proceedings of ACM EuroSys, pages 1–16, 2020.

[48] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob
Cauble, Harshad Deshmukh, Dan Gibson, Milo M.K.
Martin, Amanda Strominger, Thomas F. Wenisch, and
Amin Vahdat. CliqueMap: Productionizing an RMA-
Based Distributed Caching System. In Proceedings of
ACM SIGCOMM, pages 93–105, 2021.

[49] SUN Microystems. Memory Management in the Java
HotSpot Virtual Machine, 2006.

[50] Michael Sutton, Tal Ben-Nun, and Amnon Barak. Op-
timizing Parallel Graph Connectivity Computation via
Subgraph Sampling. In Proceedings of IEEE Interna-
tional Parallel and Distributed Processing Symposium,
pages 12–21, 2018.

[51] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,

Aravind Anbudurai, and et al. Twine: A Unified Clus-
ter Management System for Shared Infrastructure. In
Proceedings of USENIX OSDI, pages 787–803, 2020.

[52] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the Next Generation. In
Proceedings of ACM EuroSys, pages 1–14, 2020.

[53] Transaction Processing Performance Council (TPC).
TPC-A. http://tpc.org/tpca/default5.asp.

[54] Volt Active Data. VoltDB. https://www.voltdb.c
om/.

[55] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D. Bond, Ravi Netravali,
Miryung Kim, and Guoqing Harry Xu. Semeru: A
Memory-Disaggregated Managed Runtime. In Proceed-
ings of USENIX OSDI, pages 261–280, 2020.

[56] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed
Transactions: Hybrid Is Better! In Proceedings of
USENIX OSDI, pages 233–251, 2018.

[57] Jie You, Jingfeng Wu, Xin Jin, and Mosharaf Chowd-
hury. Ship Compute or Ship Data? Why Not Both? In
Proceedings of USENIX NSDI, pages 633–651, 2021.

[58] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno
Thereska, and Dushyanth Narayanan. Does Erasure
Coding Have a Role to Play in My Data Center? Mi-
crosoft Research Technical Report, 2010.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    71

http://tpc.org/tpca/default5.asp
https://www.voltdb.com/
https://www.voltdb.com/




Metastable Failures in the Wild
Lexiang Huang1,3*, Matthew Magnusson2*, Abishek Bangalore Muralikrishna2, Salman Estyak1,

Rebecca Isaacs3, Abutalib Aghayev1, Timothy Zhu1, and Aleksey Charapko2

1The Pennsylvania State University, 2University of New Hampshire, 3Twitter

Abstract
Recently, Bronson et al. [7] introduced a framework for un-
derstanding a class of failures in distributed systems called
metastable failures. The examples of metastable failures pre-
sented in that work are simplified versions of failures observed
at Facebook. In this work, we study the prevalence of such fail-
ures in the wild by scouring over publicly available incident
reports from many organizations, ranging from hyperscalers
to small companies.

Our main findings are threefold. First, metastable failures
are universally observed—we present an in-depth study of 22
metastable failures from 11 different organizations. Second,
metastable failures are a recurring pattern in many severe
outages—e.g., at least 4 out of 15 major outages in the last
decade at Amazon Web Services were caused by metastable
failures. Third, we extend the model by Bronson et al. to
better reflect the metastable failures seen in the wild by cate-
gorizing two types of triggers and two types of amplification
mechanisms, which we confirm through developing multi-
ple example applications that reproduce different types of
metastable failures in a controlled environment. We believe
our work will aid in a deeper understanding of metastable
failures and in coming up with solutions to them.

1 Introduction
Building reliable distributed systems has been the holy grail

of distributed computing research. Historically, academic re-
searchers studied the reliability of distributed systems under
the assumptions of fail-stop [31, 42, 46] and Byzantine [8, 32]
failure modes. The proliferation of cloud services led to
previously unseen scales and the discovery of new failure
modes, such as stragglers [9, 12, 62], fail-slow hardware fail-
ures [3,27,29], and scalability failures [34,53]. Most recently,
Bronson et al. [7] introduced a new class of failures called
metastable failures.

Bronson et al. define the metastable failure state as the
state of a permanent overload with an ultra-low goodput
(throughput of useful work). In their framework, they also
define the stable state as the state when a system experiences
a low enough load than it can successfully recover from tem-
porary overloads, and the vulnerable state as the state when a
system experiences a high load, but it can successfully handle
that load in the absence of temporary overloads. A system ex-
periences a metastable failure when it is in a vulnerable state
and a trigger causes a temporary overload that sets off a sus-
taining effect—a work amplification due to a common-case

*Equal contribution.

optimization—that tips the system into a metastable failure
state. The distinguishing characteristic of a metastable failure
is that the sustaining effect keeps the system in the metastable
failure state even after the trigger is removed.

This phenomenon of metastable failure is not new. How-
ever, instances of such failures look so dissimilar that it is
hard to spot the commonality. As a result, distributed systems
practitioners have given different names to different instances
of metastable failures, such as persistent congestion [51], over-
load [60], cascading failures [5], retry storms [2, 56], death
spirals [37], among others. Bronson et al. [7] is the first work
that generalizes all of these different-looking failures under
the same framework.

A key property of metastable failures is that their root cause
is not a specific hardware failure or a software bug. It is an
emergent behavior of a system, and it naturally arises from
the optimizations for the common case that lead to sustained
work amplification. As such, metastable failures are hard to
predict, may potentially have catastrophic effects, and incur
significant ongoing human engineering costs because auto-
mated recovery is difficult (since these failures are not under-
stood well). For example, in Section 6.3, we discuss how code
and configuration changes without truly understanding the
metastable failure can exacerbate the problem and lead to fu-
ture incidents. Incidentally, at the time of writing this paper, a
metastable failure at Amazon Web Services (AWS) disrupted
the operation of airlines [38], home appliances [30], smart
homes, payment systems [52], and other critical services for
several hours.

As Bronson et al. point out, operators choose to run their
systems in the vulnerable state all the time because it is much
more efficient than running them in the stable state. As a
simple example, an operator of a system with a database that
can handle 300 requests per second (RPS) can install a cache
with a 90% hit-rate and start serving up to 3,000 RPS. While
more efficient, the system is now operating in a vulnerable
state because a cache failure can overwhelm the database
with more requests that it can handle. The problem is that in
a complex, large-scale distributed system, we lack the ability
to analyze the consequences of this decision to run in a vul-
nerable state under different conditions; e.g., what happens
if load increases, or if the downstream latency increases, or
if messages increase in size and serialization/deserialization
starts to cost more CPU? So picking “how vulnerable” of a
state to operate in, under normal conditions, is a best guess
and not always the right choice, which is why we continue to
experience metastable failures.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    73



In this paper, we make four contributions that extend the
work of Bronson et al. and increase our understanding of
metastable failures:
• A study of metastable failures in the wild that confirms

metastable failures are universally observed and comprise a
substantial fraction of the most severe outages (Section 2).

• An improved model that categorizes two types of triggers
and two types of amplification mechanisms, which better
explains how metastable failures happen (Section 3).

• An insider view at Twitter of a new type of metastable
failure where garbage collection acts as an amplification
mechanism (Section 4).

• Three example applications on which metastable failures
are experimentally reproduced, which helps researchers
propose and test solutions to metastable failures (Section 5).
We have open-sourced these examples at https://github.com/
lexiangh/Metastability.
We hope our work will encourage more research into this

devastating kind of failure and help in building more robust
distributed systems, as our daily lives start to increasingly
depend on them [20, 30, 38, 52].

2 Metastability in the Wild
Bronson et al. [7] used simplified examples to illustrate the

mechanism of metastability and only asserted that the pattern
was common, but did not present any data about real-world
occurrences. Thus, we perform a large-scale study of actual
metastable failures in the wild by sifting through hundreds
of publicly available incident reports. It is an arduous task
that requires an in-depth analysis of each incident report to
understand if the failure is metastable, and the lack of details
in the reports makes it even more challenging. We identify 21
metastable failures (Table 1) that are severe enough to warrant
public incident reports in a range of organizations, including
four at AWS, four at Google Cloud, and four at Microsoft
Azure. Though this number may appear low compared to other
failure types in distributed systems [26,27,33,53], metastable
failures usually have devastating results that last many hours,
which makes them an important class of failures to study.
2.1 Methodology

To find examples of metastability, we searched through
troves of publicly available post-mortem incident reports from
large cloud infrastructure providers and significantly smaller
companies or services. Large infrastructure providers, such
as Amazon Web Services (AWS), Azure, and Google, are
held accountable by many paying customers, forcing greater
transparency into their reliability and operation practices.
Smaller businesses often operate with higher self-imposed
transparency goals until they grow large enough to become a
significant target for malicious attacks.

Infrastructure providers often maintain incident and outage
reporting tools [4, 11, 50], which became our primary source
for metastable failures. We analyzed hundreds of incidents to
find a handful that depicts systems in the metastable state. We

also found several smaller failures from other public sources
such as postmortem communities [13, 44, 45, 54], weekly
outage incident digests [14, 17, 55], etc.

The reports from different sources do not follow the same
format nor provide the same level of information, making our
job of finding examples of metastability more difficult. While
going through these reports, we focus on tell-tale signs of
metastability—temporary triggers, work amplification or sus-
taining effects, and certain specific mitigation practices. More
specifically, we look for patterns when a trigger initiates some
processes that amplify the initial trigger-induced problem and
sustain the degraded performance state even after the trigger
is removed. The sustaining effect can take multiple forms,
such as exacerbated queue growth or retries that create more
load. We also pay attention to mitigation efforts, as metastable
failures often require significant load shedding [57, 60] for
recovery.

We perform a comprehensive analysis of these incidents,
focusing on impact, trigger, work amplification mechanisms,
and mitigation practices. To study the impact, we focus on the
duration and number of impacted services. This information
is usually readily available in the reports. For the triggers, we
identify the triggers and classify them into several distinct
categories. We use a similar identification and classification
process to distill work-amplification mechanisms and mitiga-
tion patterns. We present our summarized findings in Table 1.
2.2 Summary of Metastable Failures in the Wild

In Table 1, we provide a breakdown of metastable failure
incidents we have found. The examples include instances
from both major cloud providers (e.g., Microsoft, Amazon,
Google, IBM) and smaller companies and projects (e.g., Spo-
tify, Elasticsearch, Apache Cassandra). Our summary table
describes high-level aspects of these failures: duration of the
incident, impacted services, triggers leading to the outage, the
sustaining effect mechanism, and corrective actions taken by
the engineers.

Due to the often limited scope of provided information, we
use our best judgment in identifying metastable failures. The
most important criteria we use is the sustaining effect mecha-
nism. We highlight several instances in gray color when the
incident description is not clear on the presence of such a sus-
taining effect, but metastable failure is plausible depending
on the interpretation and given the rest of the information
provided. Additionally, we assign each incident a unique iden-
tifier to refer to each incident later.

Triggers are the starting events in the chain leading to
metastable failures. Around 45% of observed triggers in Ta-
ble 1 are due to engineer errors, such as buggy configuration
or code deployments, and latent bugs (i.e., undetected pre-
existing bugs). These can be observed in incidents GGL1,
GGL2, GGL3, GGL4, AWS1, AWS3, AZR3, ELC1, SPF1.
Load spikes are another prominent trigger category, with
around 35% of incidents reporting it. A significant number of
cases (45%) have more than one trigger.

74    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/lexiangh/Metastability
https://github.com/lexiangh/Metastability


ID Date
Duration
(hours) Services Impacted Triggers

Sustaining
Effect Mitigation

G
oo

gl
e

GGL1 [22] 03/12/19 4.17
Gmail, Photos, Drive, Cloud Storage,

various other GCP services
• load spike

• config change • cascading overload
• load shedding

• stop config deploy

GGL2 [23] 10/31/19 21.5 multiple components of GCE • software bug • retry
• load shedding

• reboot
• capacity increase

GGL3 [24] 04/08/20 3.2
Google BigQuery, Cloud IAM

3% of Cloud SQL HA
• config change
• software bug • retry

• config rollback
• policy change

GGL4 [21] 04/30/13 1.5 Google API infrastructure
• config change

• latent software bug
• traffic queue growth

• reboots
• config rollabck
• server reboot

A
W

S

AWS1 [47] 04/21/11 66.7 Amazon EC2, Amazon RDS
• network

config change • retry

• config rollback
• policy change
• load shedding

• capacity increase

AWS2 [48] 06/13/14 4.23 Amazon SimpleDB • power loss • retry
• load shedding
• server restart

AWS3 [49] 09/20/15 4.55
AWS SQS, EC2 Autoscaling,
CloudWatch, AWS Console

• load spike
• network disruption

• retry
• cascading server

demotion

• load shedding –
pause metadata ops
• capacity increase

AWS4 [51] 12/07/21 9.3
AWS DynamoDB, EC2, Fargate,

RDS, EMR, Workspaces, AWS Console,
Authorization services, internal DNS

• latent software bug
triggered by scale-up

led to load spike
• retry • load rebalancing

• load shedding

A
zu

re

AZR1 [4] 07/01/20 2.65
Azure SQL DB & SQL Data Warehouse,

Azure Database for
MySQL/PostgreSQL/MariaDB

• unspecified load
imbalance trigger

• latent config bug
• cascading overload • service restart

AZR2 [4] 04/01/21 1.15 Azure DNS
• software bug leading
to cache degradation • retry

• unknown automation
• capacity increase

AZR3 [4] 06/14/21 13.25
Management operations

of many Azure
Services

• latent software bug
• load spike

• unspecified queue
growth due to overload

and timeouts

• load shedding
• remove buggy software

• capacity increase

AZR4 [4] 07/12/21 7.92
Windows Virtual Desktop,

Azure Front Door,
Azure CDN Standard

• deployment of
software bug
• load spike

• retry
• other unspecified

• load rebalancing
• trigger hot fix
• policy change

O
th

er

IBM1 [11] 06/11/21 73.53
Private DNS, HS Crypto Service,

Cloudant DNS Services,
Osaka, Cloudshell services

• software bug • retry
• load shedding
• policy change
• trigger hot fix

SPF1 [19] 04/13 NA core app/service UI
• load spike

• policy failure • retry • load shedding

SPF2 [19] 06/04/13 8.33 core app/service UI
• load spike due to
unexpected service

dependency

• retry
• excessive logging

in failure case

• trigger hot fix
• load shedding

ELC1 [39] 04/02/19 6.67 Elasticsearch Service
• unspecified maintenance

• unspecified error
• load caused ZK churn

causing more load
• restart

• load shedding

WIK1 [58] 03/30/21 2.25 media upload, misc queued jobs • load spike
• unspecified causing

queue growth
• load shedding
• policy change

CCI1 [10] 07/07/15 18.33 Core product • load spike
• load increase

due to contention • load shedding

CAS1 [1] 07/27/17 NA Partial database outage • rolling restart
• self-sustaining and
increasing overload • policy change

CAS2 [43] 2020 0.16 ably services
• load spike of certain

costly operations • retry • trigger removal –
operated in stable state

FB1 [18] NA NA Facebook core services • load spike • software bug • hot fix
Table 1: Metastable failures from public sources. Azure and IBM do not provide a direct incident link. Gray highlight indicates a
plausible metastable failure, although the incident description lacked some necessary details.

Handling and recovering from metastable failures is not
easy, with our data suggesting that incidents cause significant
outages. For instance, the IBM1 incident lasted over three
days. More generally, we have observed outages in a range
of 1.5 to 73.53 hours, with 4 to 10 hours of outages being the
most common (35% of incidents reporting the outage period).

While triggers initiate the failure, the sustaining effect
mechanisms prevent the system from recovering. We ob-
served a variety of different sustaining effects, such as load

increase due to retries, expensive error handling, lock con-
tention, or performance degradation due to leader election
churn. By far, the most common sustaining effect is due to the
retry policy, affecting more than 50% of the studied incidents—
GGL2, GGL3, AWS1, AWS2, AWS3, AZR2, AZR4, IBM1,
SPF1, SPF2, and CAS2 incidents are all sustained by retries.

Recovery from a metastable failure is challenging and often
requires reducing load. Direct load shedding, such as throt-
tling, dropping requests, or changing workload parameters,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    75



Symbols Names
Lnorm,Cnorm Normal load and capacity without is-

sues (i.e., triggers)
Lorg(t),Corg(t) Organic load and capacity at time t

including effects from triggers
Lsys(t),Csys(t) System load and capacity at time t

including metastable amplification
over the organic load and capacity

Cstable Stable capacity below which the sys-
tem recovers from metastability

mtrigL, mtrigC Maximum load-spike and capacity-
decreasing trigger magnitudes

αL(t), αC(t) Workload and capacity degradation
amplification factors

∆ttrig Trigger overloading duration
wL(∆ttrig),
wC(∆ttrig)

Workload and capacity degradation
amplification upper bound functions

w∗
L, w∗

C Maximum workload and capacity
degradation amplifications

Table 2: Symbols of Metastability Framework.

was used in over 55% of the cases. Some indirect mecha-
nisms were also popular, such as reboots to clean the queues
or operation backlogs, or policy changes. An example of such
a policy change is the CAS1 incident where a feature was
turned off to allow the servers to join the cluster.

3 Metastability Framework
Based on our observations of real-world metastable failures,

we extend the model of Bronson et al. [7] in three ways. First,
while the previous framework presumes that a system enter-
ing a metastable failure state is usually due to a load increase,
we observe in multiple incidents that a software bug or a con-
figuration change may decrease the capacity of the system
and trigger a metastable failure even without a load increase.
Second, although the previous framework describes a system
sustaining in a metastable failure state due to workload am-
plification, we show examples of another type of metastable
failure sustaining effect where background activities such as
garbage collection cause the system’s capacity to degrade
or remain degraded even after the trigger is removed. Third,
based on our experiments on the reproductions of metastable
failures, we find that a vulnerable state is not a binary condi-
tion; whether a system transitions from a vulnerable state into
a metastable failure state is determined by the current degree
of vulnerability, the trigger magnitude, and its duration.

3.1 System Model
We devise our model based on the load and capacity of a

system, and a summary of the symbols are shown in Table 2.
The capacity of the system, Csys(t), is represented in terms
of abstract resource units (RUs) that the system can handle
per second (i.e., work per second). Each request consumes
some RUs from the system’s budget. For example, consider a
system with a constant Csys(t) = 100 RUs/sec; every second

such a system can process up to 100 requests, each costing
1 RU, or up to 50 requests, each costing 2 RUs. The load,
Lsys(t), represents the work per second arriving to the system
in terms of RUs/sec. So for a system to not be overloaded,
Lsys(t)<Csys(t).

Under normal idealized conditions, we assume the process-
ing capacity Csys(t) is constant, Csys(t) = Cnorm. However,
depending on circumstances it may diminish due to failures,
transient outages, or amplification effects of metastability.
Similar to Csys(t), we set Lsys(t) = Lnorm as the normal load
excluding transient effects and workload amplification.

Since metastability is fundamentally due to sustaining ef-
fects that amplify the load and degrade the system capacity,
we also define Lorg(t) and Corg(t) as the load and system ca-
pacity without amplification effects. That is, the organic load,
Lorg(t), is the load originating from the system’s clients. This
includes transient effects such as load spikes, but does not in-
clude workload amplification effects such as retries. Similarly,
the organic capacity, Corg(t), represents the system capacity
including transient capacity decreases, but without sustaining
degradation. For example, background interference may drop
the organic capacity in half temporarily until the interference
ends. But sustaining amplification effects such as garbage
collection would cause the system capacity to degrade further
or remain degraded even after the trigger is removed. We
illustrate these effects on capacity and load in Figure 1.
3.2 Triggers

Metastable failures begin with trigger events. In our survey
(Section 2), we have identified two broad types of triggers.
The first trigger type results from a sudden burst in organic
load, Lorg(t) (e.g., a celebrity posting their baby’s picture).
The left two scenarios in Figure 1 illustrate how such a trigger
could lead to a metastable failure, and incidents GGL1, AWS3,
AZR3, AZR4, SPF1, SPF2, WIKI1, CCI1, and CAS2 are ex-
amples of such failures. The second trigger type degrades the
system’s organic capacity, Corg(t) (e.g., a rack failure or de-
ployment of inefficient code). The right two scenarios in Fig-
ure 1 illustrate how such a trigger could lead to a metastable
failure, and incidents GGL2, GGL3, GGL3, AWS1, AWS2,
AZR4, and IBM1 are examples of such failures. While the
two types of triggers behave differently, they impact the sys-
tem’s operation similarly by changing the balance between
the load and capacity.
Definition 1 (Trigger). A trigger T (mtrigL,mtrigC) repre-
sents the total effect from one or more of the following events:
• A load-spike trigger is an event that increases the load on

the system by some maximum magnitude mtrigL such that
Lorg(t)−Lnorm ≤ mtrigL for all t.

• A capacity-decreasing trigger is an event that decreases
the system capacity by some maximum magnitude mtrigC
such that Cnorm −Corg(t)≤ mtrigC for all t.
We assume mtrigL and mtrigC represent upper bounds on the

total trigger effect across all the triggers in a trigger event.
In our survey, over half of the observed incidents had one

76    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Time

Cnorm

Lorg

Cstable

L sy
s

Workload amplification increases
the system load above the triggers'

effects in the organic load.

Lnorm

RUs 
/sec

tmeta

Stable State
Vulnerable State

ttrig

Lsys(t) continues
to amplify after
fixing the trigger

Metastable Failure:  
Lsys(t) - Csys(t) > mtrigL

W
or

kl
oa

d 
A

m
pl

ifi
ca

tio
n 

RUs 
/sec

Csys=Corg

m
tri

gL

Time

Cnorm

Lorg

Stable State
Vulnerable StateCstable

Workload amplification
increases the system load;

organic load remains constant. 

Lnorm

tmeta

Metastable Failure: 
Lsys(t) - Csys(t) > mtrigC 

Lsys(t) continues
to amplify after
fixing the trigger

ttrig

Capacity-decreasing Trigger

RUs 
/sec

Csys=Corg

Lsys

m
tri

gC

C
ap

ac
ity

 D
eg

ra
da

tio
n 

A
m

pl
ifi

ca
tio

n 

Load-spike Trigger

Time

Cnorm

Cstable

Lnorm

tmeta

Stable State
Vulnerable State

Metastable Failure:
Lsys(t) - Csys(t) > mtrigL

Lsys=Lorg

Capacity degradation amplification
decreases the system capacity;

organic capacity remains constant. 

ttrig Csys(t) continues
to degrade after
fixing the trigger

Time

Cnorm

Cstable

Capacity degradation amplification
decreases the system capacity below the
triggers' effects in the organic capacity.

m
tri

gC

Corg

Lnorm

Metastable Failure:  
Lsys(t) - Csys(t) > mtrigC

tmeta

Stable State
Vulnerable State

Lsys=Lorg

Csys(t) continues 
to degrade after
fixing the trigger

ttrig

RUs 
/sec

Corg

Csys

Csys

m
tri

gL

Figure 1: Four metastability scenarios (Section 3.4). Two types of triggers (i.e., load-spike and capacity-decreasing) and two types
of amplification mechanisms (i.e., workload amplification and capacity degradation amplification) form the different scenarios.

overloading trigger, but to our surprise, incidents with multiple
triggers were also common (GGL1, GGL3, GGL4, AWS3,
AZR1, AZR3, AZR4, SPF1, and ELC1).

Not all triggers are dangerous; small variations of capacity
or load are normal and unavoidable. The triggers become dan-
gerous when they overload the system (i.e., Lsys(t)≥Csys(t)).
Definition 2 (Overloading trigger condition). If mtrigL +
mtrigC ≥ Cnorm −Lnorm, then the trigger(s) can overload the
system.
Theorem 1 (Overloading trigger). If the system does not
have an overloading trigger condition, then it will never have
a metastable failure. (Proof in Section A.1.)

An overloading trigger is a necessary precursor of a
metastable failure. Once the system is in an overloaded state,
its performance starts to degrade, which sets off alarms and
starts mitigation efforts. For instance, GGL2, GGL3, AZR2,
and AZR4, among others, relied on an automated monitoring
and notification system to initiate the mitigation efforts once a
drop in availability is detected. Although not always explicitly
mentioned, we believe that most, if not all, systems surveyed
have monitoring and notification capabilities. As the system

overloads, the latency of client operations will start to rise,
while the goodput will stay at or below the Csys(t).

The overloaded state, however, is not a metastable failure
state just yet. Getting out of overload is relatively straightfor-
ward — fix the trigger and restore the balance in the system,
such that Lsys(t) < Csys(t) again. If the load on the system
returns to a level below the system’s capacity when the trigger
is removed, then the system should eventually recover.

The duration of the trigger’s impact on the system is an-
other important aspect to consider. While the trigger persists,
the system is working in a reduced capacity or increased load
setting, depending on the trigger type. Some triggers are easy
to fix and end their impact on the systems. For instance, most
of the misconfiguration triggers (GGL1, GGL4, AWS1) and
buggy software deployment (AZR4) can be fixed by a roll-
back action. Some triggers are more difficult to address since
the ability to fix the trigger, ironically, may depend on the
system’s performance, which is degraded by the trigger. For
instance, CAS1 incident had a rolling server restart for main-
tenance. The restart lowers the overall capacity of the system
by the capacity of a server currently rebooting, placing more

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    77



load on other machines. A rebooted server needs to repair
itself by catching up, which requires both the rebooted server
to be fast enough to catch up with the missed and ongoing
load, and the rest of the system needs to be fast enough to
provide this repair service.
3.3 Sustaining Effect Loop

A metastable failure arises when the overloaded system
does not eventually return to a healthy state (Lsys(t)<Csys(t)).
Many reasons can keep the system in a failed state, such as
the inability to recover from the trigger or an uncontrolled
increase in load, among others. However, all of the reasons
share a common pattern of keeping systems inoperative. We
refer to this pattern as a sustaining effect.
Definition 3 (Sustaining effect). A sustaining effect is a
feedback loop that keeps the system in an overloaded state
such that Lsys(t)≥Csys(t) even after the trigger is removed.

The feedback mechanism itself may have existed prior to
the trigger, however, the overload made the feedback mecha-
nism self-sustaining, and we name this feedback mechanism
as metastable amplification. For instance, the AWS4 incident
occurred with networking overload due to a planned scale-up
operation. The overload resulted in connection timeouts and
retries, creating even more load and causing more timeouts
and retries.
Definition 4 (Metastable amplification). A metastable am-
plification W (αL(t),αC(t),wL(∆ttrig),wC(∆ttrig),w∗

L,w
∗
C)

exacerbates the system’s overload until it reaches a maximum
overload limit. The amplification can manifest itself by
increasing the load on the system Lsys(t) and/or decreasing
the system’s capacity Csys(t):
• Workload amplification is a feedback loop that increases

the system load Lsys(t) beyond the organic load Lorg(t)
(i.e., Lsys(t)≥ Lorg(t)). The workload amplification factor,
αL(t) = Lsys(t)/Lorg(t), can be upper bounded by some
workload amplification upper bound function wL(∆ttrig)
and max load amplification w∗

L such that 1 ≤ αL(t) ≤
wL(∆ttrig)≤ w∗

L for all t,∆ttrig, where wL is a monotonically
increasing function of the trigger overloading duration ∆ttrig
from wL(0) = 1 to wL(∞) = w∗

L.
• Capacity degradation amplification is a feedback loop

that decreases the system’s capacity Csys(t) below the or-
ganic capacity Corg(t) (i.e., Csys(t)≤Corg(t). The capacity
degradation amplification factor, αC(t) = Csys(t)/Corg(t),
can be upper bounded by some capacity degradation am-
plification upper bound function wC(∆ttrig) and max ca-
pacity degradation amplification w∗

C such that 1 ≥ αC(t)≥
1/wC(∆ttrig) ≥ 1/w∗

C for all t,∆ttrig, where wC is a mono-
tonically increasing function of the trigger overloading du-
ration ∆ttrig from wC(0) = 1 to wC(∞) = w∗

C.
Intuitively, the upper bounds allow us to reason about vul-

nerability and when a system enters a metastable failure state.
We do not assume the upper bounds are tight, and the intent
is to explain (i) there are two different types of amplification
(that may both be active simultaneously), and (ii) how the

amplification factors impact metastability.
Workload amplification can manifest in multiple ways. Re-

call that each request in our model has some RU cost. The
workload amplification, therefore, can use one of the two
broad mechanisms—increasing the number of requests in the
system or increasing the average cost of a request. We ob-
serve the former amplification method in incidents GGL2,
SPF1, AZR2, while the latter shows up in AWS3, WIKI1, and
SPF2. For example, the SPF1 incident was caused by retrying
the requests, while the SPF2 issue was exaggerated by extra
debug logging added for timed-out requests. In our model,
this corresponds to the top left scenario in Figure 1 where
a load-spike trigger (i.e., Lorg increases) starts a workload
amplification (i.e., Lsys increases) due to retries or an increase
in the average per-request cost.

Workload amplification does not necessarily start immedi-
ately with the trigger. A common type of workload amplifica-
tion is retry-driven amplification, observed in incidents GGL2,
AWS1, AWS2, AZR2, SPF1, and SPF2. It occurs when the
requests start to timeout after waiting for some timeout pe-
riod, and clients begin to retry the failed requests. Typically,
this type of amplification starts building after some amplifi-
cation delay. This delay depends on several factors, such as
the degree of overload in the system and request timeout. A
short request timeout is good for latency when retrying due
to a small transient issue. However, it can hurt the system’s
ability to handle larger problems by quickly starting the work-
load amplification. For example, AWS2 specifies that a small
handshake timeout was a contributing factor to starting and
sustaining the overload. The handshake timeout controlled the
frequency of heartbeat messages and the duration a server can
remain active without receiving a heartbeat. A longer time-
out would have both reduced the heartbeat load and allowed
for a longer heartbeat wait, potentially delaying workload
amplification.

Capacity degradation amplification is another common
type of sustaining effect. This effect occurs when the ini-
tial trigger overloads the system and causes the capacity to
degrade or remain degraded. For example, a system experi-
encing a trigger where background interference from other
co-located processes pushes it into an overloaded state may
now need to also deal with an increased amount of garbage
collection (GC) due to a queue buildup. In this case, the
GC amplifying effect would degrade the system capacity be-
yond the capacity decrease from the trigger. The metastability
arises when the capacity degradation from GC grows to be
high enough such that the system remains overloaded even if
the background interference is removed.

A sustained degradation is a special case of capacity degra-
dation amplification. The CAS1 incident discussed earlier is
an example of this. A different instance of this type of sus-
taining effect is the caching failure described in Bronson et
al. [7]. In a system backed by a look-aside cache, a partial
failure of a cache, such as a reboot of a caching server, may

78    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



result in a load spike on the underlying database and cause it
to timeout. Because of timeouts, all operations effectively fail,
preventing the system from filling the cache. This sustaining
effect causes the capacity to remain degraded.

Figure 1 shows the impact of workload amplification (top
scenarios) and capacity degradation amplification (bottom
scenarios) on metastability. While the scenarios look different
visually, they can all be understood under the metastability
model of a sustaining effect that amplifies the load and/or
capacity degradation to magnify an overload condition.
3.4 Metastability Scenarios

Figure 1 demonstrates four scenarios in which metastable
failures occur. We introduce two types of triggers and two
types of amplification mechanisms that impact the load and
capacity of the system. We use the terms “load-spike" for
triggers and “workload amplification" for amplification mech-
anisms impacting the load, and we use the terms “capacity-
decreasing" for triggers and “capacity degradation" for ampli-
fication mechanisms impacting the capacity. In practice, both
types of triggers and both types of amplification mechanisms
can occur simultaneously.

In the upper left scenario, when there is a load-spike trigger,
the organic load Lorg increases beyond the system capacity
Csys, and thus the system is overloaded. The workload am-
plification (e.g., retries) further increases the system load
Lsys above the triggers’ effects (i.e., mtrigL) in the organic
load Lorg. When the system overload (i.e., Lsys(t)−Csys(t))
is high enough (e.g., at time tmeta), even after removing the
trigger (i.e., the dip of Lorg and Lsys), the system remains over-
loaded and the workload amplification mechanism continues
to exacerbate the overload, which indicates the system is in a
metastable failure state.

In the upper right scenario, when there is a capacity-
decreasing trigger, the organic capacity Corg decreases below
the system load Lsys, and thus the system is overloaded. The
workload amplification (e.g., retries) increases the system
load Lsys. Once the amplification is high enough (e.g., at time
tmeta), even after removing the trigger (i.e., the recovery of
Corg by mtrigC), the system is still overloaded, and the work-
load amplification mechanism continues to exacerbate the
system overload. Hence a metastable failure.

In the bottom left scenario, when there is a load-spike
trigger, the organic load Lorg increases beyond the system
capacity Csys, and thus the system is overloaded. The capac-
ity degradation amplification (e.g., GC amplifying effect)
decreases the system capacity Csys. Once the amplification
is high enough (e.g., at time tmeta), even after removing the
trigger (i.e., the organic load Lorg decreases by mtrigL), the
system is still overloaded, and the capacity degradation am-
plification mechanism continues to exacerbate the system
overload. Hence a metastable failure.

In the bottom right scenario, when there is a capacity-
decreasing trigger, the organic capacity Corg decreases below
the system load Lsys, and thus the system is overloaded. The

capacity degradation amplification (e.g., GC amplifying ef-
fect) further decreases the system capacity Csys below the trig-
gers’ effects (i.e., mtrigC) in the organic capacity Corg. When
the system overload (i.e., Lsys(t)−Csys(t)) is high enough
(e.g., at time tmeta), even after removing the trigger (i.e., the
recovery of Corg and Csys), the system remains overloaded and
the workload amplification mechanism continues to exacer-
bate the overload. Hence a metastable failure.
3.5 System States

Based on Bronson et al. [7], we define three states (stable,
vulnerable, metastable failure) that a system operates in and
describe the boundaries between these states.
3.5.1 Stable State

Assuming a system has a metastable amplification mecha-
nism W (αL(t),αC(t),wL(∆ttrig),wC(∆ttrig),w∗

L,w
∗
C) and trig-

ger T (mtrigL,mtrigC), it will never have a metastable failure
if it’s running under low enough load Lnorm < Cstable. The
demarcation line between stable and vulnerable states de-
pends on the max amplification factors w∗

L,w
∗
C and the normal

capacity of the system, Cnorm.
Theorem 2 (Stable region). Define Cstable = Cnorm

(w∗
L∗w∗

C)
. If

Lnorm <Cstable, then the system will never have a metastable
failure. (Proof in Section A.2.)

When the normal load is low enough relative to the nor-
mal system capacity, then even if the trigger overloads the
system and causes the maximum metastable amplification,
it will recover once the trigger is removed and hence is not
a metastable failure. For instance, in the CAS2 incident, the
Apache Cassandra cluster operated at a low load of 10% to
30% percent of the capacity. Despite a very significant trigger
and workload amplification, the cluster recovered itself when
the trigger was removed.
3.5.2 Vulnerable State

If the system has a normal load higher than Cstable, it’s
running in a vulnerable state. Bronson et al. [7] define the
vulnerable state as the state when a system experiences a high
enough load that temporary overloads can tip the system into
a metastable failure state. However, based on our experiments,
the vulnerable state is not a binary—there are many degrees
to it and many factors determine this degree of vulnerability.

As an overloading trigger event T (mtrigL,mtrigC) unfolds,
the system (and engineers) are in a race to mitigate the over-
load before the feedback loop of the sustaining effect makes
the failure unrecoverable without more drastic measures. In
such a system, a combination of amplification and trigger
factors impact the likelihood of a metastable failure.
Theorem 3 (Degrees of vulnerability). If the metastable
amplification during the trigger overloading duration ∆ttrig
is small enough relative to the system headroom (i.e.,
wL(∆ttrig) ∗wC(∆ttrig) <

Cnorm
Lnorm

), then the system will never
have a metastable failure. (Proof in Section A.3.)

Once the system is in a vulnerable state, a combination of
factors determines its degree of vulnerability. First, how close
Lnorm is to Cnorm impacts the vulnerability. The smaller the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    79



Cnorm/Lnorm ratio, the easier it is to enter a metastable failure
state (i.e., the higher degree of vulnerability). The smaller
the Cnorm −Lnorm difference, the smaller the trigger magni-
tude needed to overload the system and potentially trigger the
metastable failure (Theorem 1). Second, the metastable ampli-
fication impacts the vulnerability. As described in Theorem 3,
higher metastable amplifications (wL(∆ttrig) and wC(∆ttrig))
increase the vulnerability to metastable failures. Since wL
and wC increase with the overloading trigger duration ∆ttrig,
longer triggers also increase the vulnerability.

The amplification delay, if present, is the first mechanism to
buy some time for mitigation efforts. Unfortunately, there is
very little control over this delay interval, aside from timeouts
in scenarios like retry-based workload amplification. The trig-
ger overloading interval ∆ttrig is another factor in determining
whether an overload develops into the metastable failure. In-
tuitively, short triggers mean that amplification may not have
started yet due to the amplification delay or has not escalated
too far. Recall that entering a metastable failure state requires
the system load to exceed the capacity even after fixing the
trigger. This means that the amplification factors αL(t) and
αC(t) play a role—a smaller amplification translates into a
more moderate system load growth that can buy the engineers
time to recover the trigger.
3.5.3 Metastable Failure State

The point when the trigger(s) cause the system to enter a
metastable failure state depends on the current amplification
factors αL(t) and αC(t) and trigger magnitudes.
Theorem 4 (Metastable failure boundary). If the
metastable amplification causes the system overload
to exceed the triggers’ effects (i.e., Lsys(t) − Csys(t) ≥
αL(t) ∗ mtrigL + αC(t) ∗ mtrigC), then the system is in a
metastable failure state. (Proof in Section A.4.)

Since the current amplification factors and trigger mag-
nitudes change over time, we can use the current amplifica-
tion factors and maximum trigger magnitudes to develop a
metastable failure boundary. If the overload Lsys(t)−Csys(t)
exceeds the boundary in Theorem 4, then there is a metastable
failure because the system is overloaded even after the trig-
ger is removed. If the overload Lsys(t)−Csys(t) is below the
boundary in Theorem 4 while the trigger(s) are in full ef-
fect, then the system is not in a metastable failure state yet.
This is because the removal of the trigger would result in a
non-overloaded state where the system can recover.

Theorem 4 indicates the boundary in the general case where
both types of triggers and amplifications occur simultaneously,
but for simplicity, Figure 1 depicts the specific boundaries for
each type of trigger and amplification in the four scenarios.
That is, mtrigL = 0 or mtrigC = 0 depending on the trigger, and
αL(t) = 1 or αC(t) = 1 depending on the amplification.

A practical takeaway from these results is that it is impor-
tant to monitor the overload and take more drastic measures
before it exceeds the metastable failure boundary. The key in-
sight is that the overload should not be so bad that the system

is overloaded even after the trigger is removed.
3.6 Recovery

Fixing the trigger is the first intuitive step many engineers
take in recovery efforts. The intuition is likely the result of
treating the trigger as the root cause of the failure. For in-
stance, many incidents caused by deploying bad configura-
tion involved rollbacks (GGL3, GGL4, AWS) or halting the
deployments (GGL1). Similarly, many incidents triggered
by software bugs involved hot-fixing the bug (AZR4, IBM1,
SPF2). All incidents caused by load spikes included some
form of load shedding (GGL1, AWS3, AZR3, CCI1, etc.).

However, once in the metastable failure state, the system
cannot recover all by itself as the sustaining effect keeps it
in the metastable failure state. Therefore, we need to remove
the sustaining effect from the system to recover. Two broad
strategies exist to recover from the failure. The first is load
shedding—bringing the load down below the stable threshold
Cstable. The second is to raise Cstable by increasing the system
capacity.

Load shedding was the most popular mitigation effort used
in over 50% of the incidents. This approach is intuitive in
any kind of overload situation. However, without a proper
understanding of the metastability and feedback loops, it is
hard to know just how much the load needs to be reduced.
This results in long mitigations and additional destructive
steps, such as server reboots (AWS2, GGL2).

Raising Cstable is more nuanced than load shedding. One
mechanism for changing the stable threshold is a policy
change that impacts the amplification thresholds w∗

L and w∗
C.

An example of such a policy change is decreasing the max-
imum number of retries per request. For instance, a policy
with at most two retries will not amplify the work more than
three times, while the policy with no cap effectively leaves the
system with no stable region. A more popular way of increas-
ing Cstable is to add the capacity to the system, essentially
raising its Cnorm. For a fixed w∗

L and w∗
C, increasing normal

capacity will also raise the stable threshold, per Theorem 2.
A few incidents in our study used this approach. For instance,
AZR2 added more capacity after performing load shedding
and fixing the trigger.

4 Metastability at Twitter
While publicly available incident reports provide enough

high-level information to identify the metastable failures, they
lack the depth and detail to understand the complex inter-
actions between components in large systems. In this case
study, we use insider information to describe in detail one
specific metastable failure occurring at Twitter, a large inter-
net company, due to garbage collection (GC). We identify
a sustaining loop where high queueing increases memory
pressure and mark-and-sweep processing during GC, causing
job slowdowns and thus higher queueing. The effect is more
pronounced at high system loads, where the system is more
vulnerable to spikes. Specifically, we see that a peak load test

80    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0 20 40 60 80 100 120 140
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
m

et
ric

s Test starts Test endsLoad shedding: 1st 2nd 3rd
--->
SR remains below SLO
for many minutes
until service restartsSystem load

GC duration
Queue length
Success rate (SR)

Figure 2: Timeseries of a core service under a peak load test at Twitter. Metrics are normalized except for the success rate, which
is scaled to show the trend dropping below the SLO.

0.4 0.6 0.8 1.0
Normalized queue length

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
GC

 d
ur

.

(a) Queue length vs. GC duration.

0.4 0.6 0.8 1.0
Normalized GC duration

0.8

1.0

No
rm

al
ize

d 
la

te
nc

y

(b) GC duration vs. Latency.
Figure 3: Correlation between metrics during 3 normal days.

during a busy day triggers the system to enter a metastable
failure state where jobs start to fail, and it is only after suffi-
cient load shedding that the success rate stops dropping.

Peak load tests are one of the common types of tests used
regularly in industry to expose potential problems and high-
light the necessary steps to prevent incidents from happening.
Figure 2 shows the timeseries of system metrics at a core
service during a peak load test where we see a metastable fail-
ure. System load, GC duration, and queue length have been
normalized to show the trend only, while success rate (SR) is
scaled to demonstrate it dropping sharply below the SLO. All
metrics are measured using the standard observability tools
at Twitter, except for the (average) queue length, which is
inferred using Little’s Law [35]. By queue length, we mean
the count of all the requests in the system. The service is a
mature production service that’s well-tuned and has been run-
ning for several years, under all the usual operating practices
of frequent deployments, regular stress tests, and continuous
monitoring and alerting.

In this incident, the peak load occurs around the 48-minute
mark, and the SR starts to drop over time. Once the SR of
this service drops below a critical threshold (i.e., the SLO),
service operators are alerted to mitigate the problem. In this
incident, the operators start load shedding at around the 83-
minute mark and continue with more load shedding at 106
minutes. This had the desired effect of lowering the load,
which also lowers GC and queue length. However, the SR
still continues to drop and does not start to recover even when
the load is back down to the level before the test. SR remains
below the SLO until the service is restarted by operators. This
is because even after the load shedding, a sustaining effect is
still slowing down the system and causing it to remain in a
metastable failure state.

Studying the internal system metrics from the test has shed

some light on the problem. We find that the changes to GC
duration are highly correlated with load fluctuations, as more
load brings more memory allocation, thus requiring more
GC. However, the GC is busier than normal during the peak
load test. During the second load-shedding period between
106-118 minute marks, the load is more than 20% lower than
that at the 40-minute offset, yet the GC is busier and SR is
still dropping. At the same time, the queue length is also
more than 50% higher, which implies that there are more
jobs stuck in the system exacerbating GC. Thus, there is con-
tention between arriving traffic and GC consuming resources,
suggesting the metastability sustaining effect.

Specifically, the incident is caused by the sustaining effect
in the following steps: (i) a load spike (i.e., a Lorg increase)
caused by peak load test introduces initial high queue length
in the system; (ii) high queue length results in high GC behav-
iors; (iii) high GC behaviors slow job processing (i.e., Csys
decreases); (iv) more jobs get stuck in the system, which leads
to higher queue length.

To demonstrate each of these steps, we further study data
from this test as well as non-test data as a baseline. For (i),
we can see the initial trigger in Figure 2 at around minute
48 where the load spike causes a sharp increase in queue
length. For (ii), we see that queue length and GC duration
are correlated over time in Figure 2. Additionally, we plot
queue length vs. GC duration (Figure 3a) under 3 normal days
without the test to show these metrics generally exhibit a pos-
itive correlation. One might wonder whether the system load
affects these metrics, and we find that it is correlated to both
queue length and GC duration. But to eliminate the impact of
system load, we also filtered the data to only include results
with approximately the same system load, and we still see
a correlation between queue length and GC duration, which
suggests that high queue length leads to high GC. Correla-
tion does not imply causation, so we validate and reproduce
these effects in Section 5.1 via a simple example. For (iii),
we plot GC duration vs. latency (Figure 3b) during the same
period without peak load testing and observe that the latency
increases with GC duration. As GC consumes CPU cycles,
there is CPU contention with job processing, which causes
slowdowns to jobs as evidenced by the higher latencies. Nat-
urally, job slowdowns will cause additional congestion and
queueing, which completes the sustaining loop (iv).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    81



0 200 400 600 800 1000 1200
Time (s)

140

160

180

200

220

240

260

280

Re
qu

es
ts

 p
er

 se
co

nd

550

600

650

700

750

800

850

900

GC
 d

ur
at

io
n 

(m
s)

0

10000

20000

30000

40000

50000

60000

Qu
eu

e 
le

ng
th

(a) Timeseries of GC metastability.

20 40 60
Queue length

200

300

400

500

600

700

800

GC
 d

ur
at

io
n 

(m
s)

250 500 750
GC duration (ms)

300

400

500

600

700

800

Ap
p.

 st
op

pe
d 

du
r. 

(m
s)

(b) Correlation between queue
length, GC, & application stalls.

60 80 100 120 140 160 180 200
Requests per second

0

10

20

30

40

50

60

Tr
ig

ge
r d

ur
at

io
n 

(s
)

Stable
region

Metastable failure
region

Vulnerable region

Max heap size: 384MB

Max heap size: 256MB

(c) Degrees of vulnerabilities.
Figure 4: Metastability in Garbage Collection (GC).

Similar incidents recur many times, and engineers take
different approaches to mitigate/fix this issue. For example,
(i) observing unusually high latency spikes in backend ser-
vices resulted in work to improve their performance to lower
queue lengths, (ii) observing higher GC duration than nor-
mal resulted in adjusting the JVM memory configuration
(e.g., increasing max heap size) to tweak GC behavior, and
(iii) observing high resource utilization (e.g., CPU) resulted
in adding more servers to lower per-server load. These ap-
proaches decrease system vulnerabilities and make it more
robust to the trigger at the magnitude of the peak load test
level.

5 Replicating Metastability
We introduce three example applications and experimen-

tally reproduce metastable failures on them. One of these
applications reproduces the failure in the Twitter case study
(Section 4) at a small scale, and the other two reproduce
failures due to retries and look-aside caching described in
sections 2.1 and 2.2, respectively, of Bronson et al. [7].

5.1 Metastability due to GC
In this section, we develop a small-scale reproduction of

the GC metastable failure seen in Section 4. This allows us
to perform controlled experiments to validate the sustaining
effect and study the factors that affect vulnerability. We con-
firm that GC can cause metastability and that the vulnerability
increases with load. Since the sustaining effect is due to a
high queue length causing memory pressure and GC slow-
downs, we find that the memory size also impacts the degree
of vulnerability.

5.1.1 Experiment Setup
Our reproduction is a multi-threaded java program com-

piled via JDK 8 under default GC settings except we ex-
periment with MaxHeapSize. Each thread processes a job
consisting of many memory allocations. Each job allocates a
0.5MB array of arrays and then proceeds to allocate each row
in this 2D array, adding an additional 0.5MB of data. Once a
job completes, the allocated memory is unreferenced and will
eventually be garbage collected. The main thread launches
jobs following a Poisson process with a configured request
rate measured in requests per second (RPS). We launch the
java program in a docker container configured with 1GB of
memory running on an AWS EC2 m5.large instance.

5.1.2 Inducing Metastable Failures
To illustrate the metastability, we vary RPS over time and

plot the relevant metrics in Figure 4a. The initial RPS increase
causes queue length and the GC duration to increase. Even
as RPS is reduced over time, the sustaining effect causes the
queue length and GC duration to remain high.

To gain a deeper understanding of the sustaining effect that
causes the metastability, we extract detailed metrics from GC
logs. Figure 4b shows that queue length, which we directly
measure from arrival/completion timestamps, is correlated
with GC duration. This is because there are more active ob-
jects to process during a GC cycle when there’s a high queue
length, and there is higher memory pressure as well. The fig-
ure shows a scatterplot of the normal behavior, though we see
a similar correlation during metastable failures as well.

Figure 4b also shows that GC causes the application to
pause, which slows down the jobs. Here, we configure the
JVM to print a more detailed metric (PrintGCApplication-
StoppedTime) to indicate how the JVM impacts the job’s
running time. We find that GC activity is causing the applica-
tion to pause and slow down. As a result, the application isn’t
able to process jobs as efficiently, resulting in a higher queue
length, thus completing the feedback cycle.

We next study the factors that affect vulnerability by ex-
posing the example to varying trigger sizes. In our example,
we generate triggers by injecting 100% stalls in the program
for varying trigger durations. During the trigger, requests still
arrive, but are not launched and do not begin processing. Once
the trigger completes, there is effectively a large burst of back-
logged requests that creates a large spike in the queue length
until the backlog is handled. In our model, this corresponds to
the bottom left scenario in Figure 1 where a load spike trigger
(i.e., Lorg increases) starts a capacity degradation amplifica-
tion (i.e., Csys degrades) due to GC.

Figure 4c shows how the vulnerability varies as a func-
tion of RPS. At high RPS, even small delays would cause
the system to fall into a metastable failure state, whereas at
low RPS, the system can mostly recover unless there is a
very large trigger duration. The figure also shows how the
vulnerability changes with the JVM memory size. Striped
areas show regions where the metastability depends on the
higher or lower memory size. For example, the striped region
between the max heap (i.e., JVM memory) sizes indicates it
is a metastable failure region for the smaller size and a vulner-

82    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0 20 40 60 80 100 120 140
Time (seconds)

10 1

101

La
te

nc
y 

(lo
g 

se
co

nd
s)

trigger

0 20 40 60 80 100 120 140
101

103

105

107

109

RP
S 

(lo
g)

success
fail

(a) Trigger 10 s, -78% CPU.

0 20 40 60 80 100 120 140
Time (seconds)

10 1

101

La
te

nc
y 

(lo
g 

se
co

nd
s)

trigger

0 20 40 60 80 100 120 140
101

103

105

107

109

RP
S 

(lo
g)

success
fail

(b) Trigger 10 s, -80% CPU.

0 20 40 60 80 100 120 140
Time (seconds)

10 1

101

La
te

nc
y 

(lo
g 

se
co

nd
s)

trigger

0 20 40 60 80 100 120 140
101

103

105

107

109

RP
S 

(lo
g)

success
fail

(c) Trigger 9 s, -80% CPU.

0 20 40 60 80 100 120 140
Time (seconds)

10 1

101

La
te

nc
y 

(lo
g 

se
co

nd
s)

trigger

0 20 40 60 80 100 120 140
101

103

105

107

109

RP
S 

(lo
g)

success
fail

(d) Trigger 10 s, -80% CPU, -30%
RPS.

Figure 5: Metastability in a Replicated State Machine (RSM) due to retries.

able or stable region for the larger memory size (depending
on RPS). Larger memory sizes decrease the memory pres-
sure, which lowers the effect of GC. Thus, the system is less
vulnerable with more memory and can sustain higher trigger
durations and higher RPS. Nevertheless, the system is still
subject to metastable failures, so understanding the degree of
vulnerability is important for managing the system.
5.2 Metastability due to Retries

We next demonstrate an example of a metastable failure in
a replicated state machine (RSM) model utilizing a popular
NoSQL database. RSMs are prone to slowdowns [28, 41] that
can act as capacity-decreasing triggers for metastable failures.
We use the slowdowns of varying magnitude and duration to
induce metastable failures where retries create the sustaining
effect.
5.2.1 Experiment Setup

For this experiment, we rely on MongoDB replicated
database [64] based on the Raft [42] replication protocol.
We operate the database in a strongly-consistent mode in a
cluster of 3 replicas. A primary and two secondary MongoDB
servers (version 4.4.9) are deployed on AWS EC2 m5a.large
instances with 2 vCPU and 8 GiB of RAM each using Docker
containers. A client application provides a constant baseline
workload of insert operations against the replicated MongoDB
database. We deployed the client on a bigger m5ad.2xlarge
instance with 8 vCPU and 32 GiB of RAM.

We keep the RSM in a vulnerable state by running a con-
stant client workload of approximately 6,200 successful RPS.
A client uses a 3-second timeout for requests and will retry
each operation up to 4 times after the timeout. To introduce
the slowdowns, we temporarily restrict the CPU resources on
the docker container running the primary node. In our model,
this corresponds to the top right scenario in Figure 1 where
a capacity-decreasing trigger (i.e., Corg decreases) causes a
workload amplification (i.e., Lsys increases) due to retries.
5.2.2 Inducing Metastable Failures

In Figure 5, we present the result of four experiments to
demonstrate the relationship between trigger magnitude, trig-
ger duration, and request rate. The figure truncates the experi-
ments at 150 seconds, however, we ran the workloads for 500

seconds to ensure there is no delayed recovery from failure.
We apply the capacity-decreasing trigger at the 60 second
mark, as indicated by the gray shaded region in each of the
subfigures.

(a) Baseline with no metastable failure. Figure 5a
demonstrates a trigger of 10 seconds with a 78% reduction in
CPU availability. This trigger briefly reduced the success rate
of client requests, as observed by the dip in throughput with a
corresponding increase in latency. The impact was brief with
the occurrence of limited failures and retries towards the end
of the trigger duration. The system does not enter a metastable
failure state and recovers shortly after the trigger is removed.

(b) Increased trigger magnitude causes metastable fail-
ure. Figure 5b demonstrates a metastable failure in an RSM.
This result illustrates that even a slight increase in a trigger
magnitude can push the system into metastability. In this in-
stance, the trigger is of the same duration (10 seconds) against
the same workload as (a) but with an 80% reduction in CPU
availability (2% additional reduction). With this trigger mag-
nitude, the system performance does not ever recover once
the trigger is removed. Latency plateaus at approximately
the client timeout of 3 seconds, and the total number of at-
tempted requests peaks at around 20,000 RPS (a 3× increase
over baseline), and goodput is reduced by ≈ 90% to 600 RPS.
The client retry mechanism provides the feedback loop that
prevents the system from resuming a normal state.

(c) Decreased trigger duration averts metastable fail-
ure. Figure 5c demonstrates that a minor change to a trigger
duration, compared to the previous experiment (Figure 5b),
can prevent a system from entering the metastable failure state.
The experiment setup is the same as (b), except the trigger
duration is reduced by 1 second from 10 seconds to 9 seconds.
Similar to (a), we observe a transient increase in latency and
a corresponding reduction in goodput. However, the system’s
performance recovers in this experiment, demonstrating the
impact of trigger duration on vulnerability.

(d) Reduced load averts metastable failure. Figure 5d
illustrates system performance when the base workload is
reduced to about 4,200 RPS (≈ 30% lower than the baseline
RPS) to show a system with more idle resources to handle
triggers. We used the same trigger magnitude and duration as

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    83



0 20 40 60 80 100 120
time (second)

0.00

0.25

0.50

0.75

1.00

1.25

la
te

nc
y(

se
co

nd
)

latency

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t r

at
e/

Er
ro

r r
at

e

Cache hit rate
Error rate

(a) Trigger at 10s induces a metastable fail-
ure where a low cache hit rate causes the
database to become overloaded. This results
in high sustained error rates and latencies.

60 120 180 240 300 360
Requests per second

0.0

0.2

0.4

0.6

0.8

1.0

Dr
op

 in
 c

ac
he

 h
it 

ra
te

2 sec timeout
1 sec timeout

Stable region Metastable failure region

N
o 

m
et

as
ta

bl
it

y
 fo

r 
an

y 
tr

ig
ge

r 
si

ze

Vulnerable region

(b) Vulnerabilities for different request time-
outs. Striped area between lines indicates it is a
metastable failure region for 1 second timeouts
and a vulnerable region for 2 second timeouts.

200 400 600 800 1000 1200
Requests per second

0.0

0.2

0.4

0.6

0.8

1.0

Dr
op

 in
 c

ac
he

 h
it 

ra
te ~95% Hit rate

~80%
 Hit rate

St
ab

le
 r

eg
io

n

Vulnerable region

Metastable failure region

(c) Vulnerabilities for different steady state
cache hit rates. Striped areas indicate the region
is different for the hit rates (e.g., metastable
failure for ~80% and vulnerable for ~95%).

Figure 6: Metastability in Look-aside cache.

in (b) (a trigger intensity of 80% and a trigger duration of 10
seconds) that pushed a more loaded system into a metastable
failure. With more idle resources to handle the transient perfor-
mance degradation, the system handled the trigger gracefully
with only a temporary increase in latency.

Throughout our experiments on a replicated database, we
have established that a trigger that sets off the retry process
can lead to the feedback loop that prevents a distributed sys-
tem from recovering. Moreover, even small changes to a trig-
ger had a significant impact—a 2%-decrease in available CPU
or a 1-second increase in duration separated successful recov-
ery from a metastable failure. All experiments exhibit a small
number of failed requests immediately before the trigger is
removed. However, (b) demonstrates an increased level of
failures and retries during the last second of the trigger. This
suggests that timely removal of the trigger can prevent the
transition into the metastable failure state.
5.3 Metastability due to Look-aside Cache

We next illustrate another type of metastable failures due to
look-aside caching. Look-aside caching is a popular caching
strategy where an application looks for data in a cache and
will retrieve data from a backend system for cache misses.
The application is then responsible for putting the data from
the backend into the cache.

The metastability arises because the application is not al-
ways able to add the data from the backend into the cache.
Specifically, if a trigger causes the cache hit rate to drop,
then that would result in a higher rate of misses and an un-
expectedly high rate of requests to the backend system. This
amplified workload would in turn cause the backend to slow
down, which would lead to timeouts in the application and/or
backend. When there are timeouts, the application is unable to
put data into the cache. As a result, the cache hit rate remains
low, which sustains the metastability.
5.3.1 Experiment Setup

To replicate this metastability, we build an example web
application with a MySQL database (34.6 million entries,
totaling 15GB) and a memcached cache (1GB). If the web
application is unable to find an item in the cache, it queries the
database and stores the result in the cache. Items are requested
following a Zipf distribution—a common distribution for

representing cache entry popularity [6].
The arrival times are generated via a standard Poisson pro-

cess at the desired RPS from our load generator. Our web
server runs a standard Nginx + PHP setup, and we configure 1
second timeouts for the requests, which are much higher than
the normal request processing times.
5.3.2 Inducing Metastable Failures

Figure 6a shows an example of a metastable failure when
a trigger causes the hit rate to unexpectedly drop at time 10s.
We see that the backend traffic sharply increases, which results
in timeouts and errors. Since the application is unable to get
the data before the timeout, no new data is added to the cache,
which sustains the low hit rate for long periods of time.

We next run the system under different RPS and inject trig-
gers of different magnitudes to evaluate whether the system is
able to recover. We inject triggers by deleting the hottest items
in the cache*. In our model, this corresponds to the bottom
right scenario in Figure 1 where a capacity-decreasing trigger
(i.e., Corg decreases) starts a capacity degradation amplifica-
tion that causes the degradation to persist even after the cache
memory is available for use (i.e., Csys remains degraded). Af-
ter the trigger, we run the system for an hour to see if it can
recover or if the metastable failure persists. If the system
doesn’t recover within an hour, we mark this as a metastable
failure. Caching systems by nature are self-healing, and we
would expect the system to eventually recover if there’s a
non-zero chance that a request would successfully add data
to the cache. However, long-term outages are catastrophic to
companies so we still deem these cases as metastable failures.

Figure 6b illustrates the different degrees of vulnerability in
our look-aside caching example. Under low RPS, the system
is stable and can recover even if the entire cache is wiped.
As the RPS increases, the system becomes more vulnerable
where smaller drops in hit rate could cause the system to fall
into a metastable failure region and not recover.

Figure 6b also illustrates the impact of the request timeout
parameter. When increasing the timeout from 1 second to 2
seconds, the vulnerability at each RPS is decreased (i.e., a
higher trigger magnitude is needed to cause metastable fail-

*Dropping the hottest items gives a conservative bound on the metastable
region since these are the easiest items to recover.

84    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



ures). So there is a trade-off with setting the request timeout—
a higher timeout decreases the vulnerability, but it takes longer
to detect failed requests, whereas a lower timeout can quickly
detect issues, but increases the metastable vulnerability.

Figure 6c demonstrates the impact of the steady state cache
hit rate on vulnerability. When comparing a workload with
a ≈ 80% cache hit rate vs. a workload with a ≈ 95% cache
hit rate, we see that the higher hit rate is less vulnerable.
This is because the workload has a more skewed popularity
distribution where a small number of keys constitutes a large
fraction of the requests. This skewness makes it easier to
recover from a drop in hit rate. However, higher hit rates
enable the system to operate at higher RPS where the system
is vulnerable, and we see that the ~95% workload has a much
wider range of vulnerability in terms of RPS. Thus one still
needs to consider metastable issues at high hit rates.

6 Discussion
6.1 Multi-System Failures

Many metastable failures involve a combination of systems
or components interacting together. Often, these failures are
described as cascading failures (GGL1), where the failure of
one system causes further faults in other components. The
interactions between systems make it more difficult to iden-
tify the sustaining effect and enact quick fixes. Our caching
example is a good illustration of such a multi-system failure.

In our caching example, the cache and storage systems
are coupled together. When a cache fails, the result is a load
spike in the storage system – a capacity degradation of one
component cascades to a load increase in another. Even in the
absence of workload amplification, this multi-system example
has a sustaining effect. The complete cache-storage system
needs the storage component to respond in time to fill the
cache and reduce the load on storage. At the same time, the
storage cannot do so due to the overload, creating a sustained
condition where the overload cannot be alleviated even after
the cache has all servers back up again.
6.2 Human Factors

Around 50% of the observed triggers have some direct
human involvement, such as the deployment of buggy con-
figuration (GGL3, GGL4, AWS1), rushed testing and de-
ployment (AZR4), incomplete testing that fails to find bugs
(GGL2, GGL4, AZR2, AZR3, IBM1), and regular mainte-
nance (ELC1). For instance, in the AZR4 incident, engineers
rushed a buggy code for deployment without proper testing.
The bug would increase CPU consumption on some back-
ground tasks, essentially decreasing the system’s processing
capacity. Moreover, the deployment was happening on Friday
before a long holiday weekend when the load on the system
was lower than usual, potentially preventing the deployment
procedure from catching the capacity degradation. After the
holiday weekend when traffic returned to normal, the system
was overwhelmed, which increased latency, caused timeouts,
and failed user requests. This issue could have been avoided

with more complete testing and better deployment practices.
Another example of a human factor in metastability is the
GGL4 incident where engineers bypassed the testing phase
and released a buggy configuration to production.
6.3 Fix to Break

Misunderstanding the processes that cause the failure can
lead engineers to adapt long-term fixes or changes that can
further exacerbate the vulnerability for metastable failures.
For example, not realizing the existence of a feedback loop
may cause engineers to introduce changes that make the feed-
back loop more severe. In the AWS2 incident that brought
down AWS SimpleDB, the storage servers frequently com-
municate with the locking service to ensure they are still part
of the system. When an overload to the locking service oc-
curred, the storage servers started to timeout and retry, further
adding to the locking service overload. After several retries,
the servers would demote themselves and stop serving the
storage workload. The locking service remained overloaded
for as long as enough storage servers were alive to keep the
lock service busy. In the aftermath of the incident, engineers
decided that servers must continue to retry the locking ser-
vice instead of giving up, as the lack of prolonged retries was
seen as the reason for botched recovery. Unlimited retries,
however, can put a lot more workload amplification on the
system and make the sustaining effect more severe. A similar
incident (AWS3) happened to the DynamoDB database about
a year later. The storage nodes did not back out of retrying to
get updated membership data, causing a massive workload
amplification and metastable failure.

Another example of this is the SPF1 and SPF2 incidents.
In the aftermath of the first incident, engineers added signifi-
cant logging to the error path of request execution to better
understand the cause of the load spikes and retries. In SPF2,
the additional logging after a load spike and initial retries in-
creased the cost of each retry, adding more load to the system
and causing more requests to retry.
6.4 Mild Metastable Failures

Many metastable failures are severe enough to cause a
significant service disruption. However, this is not necessarily
the case for all metastable failures. The CAS1 incident is an
example of metastable behavior that did not cause a significant
outage. Another example is our Twitter case study. While the
metastable failure was severe enough to trigger internal alerts,
it was very far from becoming an outage. This mildness was
partly due to monitoring of key performance metrics and a
timely response.
6.5 Prevention and Mitigation

A crucial aspect of preparing for metastable issues is under-
standing the system’s vulnerability. As we have seen through-
out our experiments with retries, caching, and GC, many fac-
tors impact the vulnerability of a system, ranging from the
load to trigger magnitude and duration and to sustaining effect
mechanisms, such as workload amplification growth. With
a proper understanding of the processes involved, we can

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    85



have better control over both the triggers and sustaining ef-
fects. For example, our Twitter case study showed that even
if the sustaining effect cannot be eliminated, knowing and
understanding its characteristics can help engineers adjust
parameters and reduce its impact in the future.

Similarly, systems may not be able to avoid all possible
triggers, but they can often mitigate the trigger’s impact. For
instance, designing systems to be more resilient to component
slowdowns [41] can help reduce the severity of triggers and
reduce the system’s vulnerability. Designing automated miti-
gation strategies can reduce the trigger duration, which result
in a small performance blip instead of a metastable failure.

While autoscaling of resources can help mitigate
metastable failures in some cases, it does not necessarily pre-
vent metastable failures. Autoscaling is a way to increase the
normal capacity Cnorm of a system in response to load events,
which should also raise the stable threshold Cstable and help
the system recover sooner. However, autoscaling can be ex-
tremely costly for large systems and large work amplification
factors. For instance, a loss of a cache with 99% hit-rate can
result in a 100X amplification. Whether the current autoscal-
ing techniques can scale up fast enough to avert a metastable
failure requires further research. Furthermore, it is not always
possible to autoscale services due to stateful components and
system complexity (e.g., case Azure LL1H-9CZ).

7 Related Work
Since metastable failures were established as a class very

recently [7], there have not yet been any studies particu-
larly about them. However, researchers have discovered other
classes of failures that we think are relevant to metastability.
Specifically, the types of failures and bugs that we discuss
below often act as triggers that lead to metastable failures.

One such class is fail-slow failures [27], which were ex-
tensively studied under different names: fail-stutter [3], gray-
failure [29], and limpware [15, 16, 25]. Fail-slow failures hap-
pen when a hardware experiences a significant slowdown but
is still functional. Since fail-slow failures can occasionally
exhibit transient stops [27], they can trigger metastable fail-
ures. Unlike metastable failures, however, fail-slow failures
are essentially subtle hardware failures that can be fixed by
replacing the faulty hardware.

Another related class of failures is due to scalability
bugs [34, 53]. These are latent software bugs that are scale-
dependent—they only surface in large-scale deployments
and are not discoverable in small-scale testing. As a result,
load spikes can expose scalability bugs, which can trigger
metastable failures. We have observed several incidents where
load spikes exposed a bug that triggered a metastable failure.

Finally, there have been multiple studies on failures in
distributed systems caused by configuration changes [40, 59]
and software upgrades [63] both of which were predominant
triggers of metastable failures in our study.

In general, most prior studies classify incidents according
to their main root cause, for example, software bugs, hardware

faults, misconfiguration, etc. The metastable failure model,
where a service in the vulnerable state is tipped over to failure
by a trigger, allows a richer, multi-dimensional characteri-
zation of bugs. Metastability would likely explain some of
the bugs others have studied, but to date, researchers have
lacked a framework for identifying such failures. It is notable
that in [61] the authors observe that failures often “require
an unusual sequence of multiple events with specific input
parameters from a large space”, which suggests that they may
have in fact encountered metastable failures.

The cloud outage study of [26], which examines almost
600 publicly reported outages in popular Internet services,
discusses the idea of “hidden single points of failure” and ob-
serves that the recovery process itself is often faulty or simply
doesn’t run because the right metrics are not being monitored.
Our model for metastable failures may help identify the met-
rics that may act as triggers. They also note that the recovery
process can be a source of metastable amplification, such as
with retry storms or failover to cold caches.

In the Azure incidents studied by Liu et al. [36], running-
environment mitigation techniques are commonly applied,
such as restarting or migrating processes or adding capacity
resources. The authors note that to date there has been little
work on automation of such recovery methods – this would
also be a fruitful direction in mitigating metastable failures.

What sets a metastable failure apart from all of the above
is that its root cause is not a specific hardware failure or a
software bug. It is an emergent behavior of a complex system
that naturally arises from optimizations for the common case.
Specifically, if the aforementioned failures do not trigger a
metastable failure, then identifying and eliminating them re-
stores the system functionality. If, however, they do trigger a
metastable failure, then eliminating them will not restore the
system’s functionality.

8 Conclusion
Metastable failures are a class of system failures character-

ized by sustaining effects that keep systems in a degraded state
and resist recovery. While relatively infrequent, metastable
failures were behind big outages at large internet companies
(including a recent AWS outage on December 7th, 2021). In
this work, we confirm this observation by studying public
incident reports. We then extend the metastability framework
based on our observations for a more accurate metastability
model. We validate our model by building three applications
and reproducing different instances of metastability on them.
We hope our work spurs further research into understanding
and preventing metastable failures.

Acknowledgments
We thank our shepherd Atul Adya and the anonymous

reviewers who provided constructive and helpful feedback.
We also thank Nathan Bronson for his insightful comments
and suggestions. This research was supported in part by AWS
Cloud Credit for Research.

86    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Appendix
A Proof of model theorems
A.1 Proof of Theorem 1

Assuming no overloading trigger, then by Definition 2 we
have Cnorm −Lnorm > mtrigL +mtrigC. So,

Lorg(t)≤ Lnorm +mtrigL (Definition 1)
<Cnorm −mtrigC (assumption)
≤Corg(t) (Definition 1)

Since Lorg(t)<Corg(t) for all t, then ∆ttrig = 0. Since wL(0)=
1 and wC(0)= 1, then αL(t)= 1 and αC(t)= 1 for all t. There-
fore, Lsys(t) = Lorg(t)<Corg(t) =Csys(t) for all t by Defini-
tion 4. Thus, the system is never overloaded and never in a
metastable failure state.

A.2 Proof of Theorem 2

Assume Lnorm <Cstable =
Cnorm

(w∗
L∗w∗

C)
. So,

Lnorm ∗αL(t)≤ Lnorm ∗w∗
L (Definition 4)

<Cstable ∗w∗
L (assumption)

=Cnorm ∗w∗
L/(w

∗
L ∗w∗

C) (assumption)
=Cnorm/w∗

C (algebra)
≤Cnorm ∗αC(t) (Definition 4)

Thus, under the normal conditions without triggers, the am-
plification factors are bounded such that the system is always
stable even with the worst-case amplification factors.

A.3 Proof of Theorem 3

Assume wL(∆ttrig)∗wC(∆ttrig)<
Cnorm
Lnorm

. So,
Lnorm ∗αL(t)≤ Lnorm ∗wL(∆ttrig) (Definition 4)

<Cnorm/wC(∆ttrig) (assumption)
≤Cnorm ∗αC(t) (Definition 4)

Thus, under the normal conditions without triggers, the am-
plification factors are bounded such that the system is always
stable.

A.4 Proof of Theorem 4
Assume at time t, Lsys(t) − Csys(t) ≥ αL(t) ∗ mtrigL +

αC(t)∗mtrigC. So,
Lnorm ∗αL(t)

= Lorg(t)∗αL(t)− (Lorg(t)−Lnorm)∗αL(t) (algebra)
≥ Lorg(t)∗αL(t)−mtrigL ∗αL(t) (Definition 1)
= Lsys(t)−mtrigL ∗αL(t) (Definition 4)
≥Csys(t)+αC(t)∗mtrigC (assumption)
=Corg(t)∗αC(t)+αC(t)∗mtrigC (Definition 4)
≥Corg(t)∗αC(t)+αC(t)∗ (Cnorm −Corg(t)) (Definition 1)
=Cnorm ∗αC(t) (algebra)

Thus, if at time t we removed the triggers and reverted to the
normal load and capacity, then the amplifying factors would
cause the system to remain in an overloaded state. So the
system is in a metastable failure state.

References
[1] Anonymous. Overload because of hint pres-

sure + MVs. Apache Cassandra Issue Tracker:
https://issues.apache.org/jira/projects/CASSANDRA/
issues/CASSANDRA-13810?filter=allopenissues,
2017.

[2] Azure Architecture Performance Antipatterns. Retry
Storm antipattern. https://docs.microsoft.com/en-us/
azure/architecture/antipatterns/retry-storm/, 2021.

[3] R.H. Arpaci-Dusseau and A.C. Arpaci-Dusseau. Fail-
stutter fault tolerance. In Proceedings Eighth Workshop
on Hot Topics in Operating Systems, pages 33–38, 2001.

[4] Microsoft Azure. Azure status history. https://status.
azure.com/en-us/status/history/, 2021.

[5] Betsy Beyer, Jennifer Petoff, Niall Richard Murphy, and
Chris Jones. Site Reliability Engineering: How Google
Runs Production Systems. https://sre.google/sre-book/
table-of-contents/, 2016.

[6] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker.
Web caching and zipf-like distributions: evidence and
implications. In IEEE INFOCOM ’99. Conference on
Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies. The Future is Now (Cat.
No.99CH36320), volume 1, pages 126–134 vol.1, 1999.

[7] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko,
and Timothy Zhu. Metastable Failures in Distributed
Systems. In Proceedings of the Workshop on Hot Top-
ics in Operating Systems, HotOS ’21, page 221–227,
New York, NY, USA, 2021. Association for Computing
Machinery.

[8] Miguel Castro and Barbara Liskov. Practical Byzan-
tine Fault Tolerance. In 3rd Symposium on Operating
Systems Design and Implementation (OSDI 99), New
Orleans, LA, February 1999. USENIX Association.

[9] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee,
Gregory R. Ganger, Garth Gibson, Kimberly Keeton,
and Eric Xing. Solving the Straggler Problem with
Bounded Staleness. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems, Ho-
tOS’13, page 22, USA, 2013. USENIX Association.

[10] CircelCI. DB Performance Issue Incident Report
for CircleCI. https://circleci.statuspage.io/incidents/
hr0mm9xmm3x6, 2015.

[11] IBM Cloud. Incident reports. https://cloud.ibm.com/
status/incident-reports, 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    87

https://issues.apache.org/jira/projects/CASSANDRA/issues/CASSANDRA-13810?filter=allopenissues
https://issues.apache.org/jira/projects/CASSANDRA/issues/CASSANDRA-13810?filter=allopenissues
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/retry-storm/
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/retry-storm/
https://status.azure.com/en-us/status/history/
https://status.azure.com/en-us/status/history/
https://sre.google/sre-book/table-of-contents/
https://sre.google/sre-book/table-of-contents/
https://circleci.statuspage.io/incidents/hr0mm9xmm3x6
https://circleci.statuspage.io/incidents/hr0mm9xmm3x6
https://cloud.ibm.com/status/incident-reports
https://cloud.ibm.com/status/incident-reports


[12] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. In OSDI’04:
Sixth Symposium on Operating System Design and Im-
plementation, pages 137–150, San Francisco, CA, 2004.

[13] Down Detector. Downtime Detector). https://
downdetector.com, 2020.

[14] Availability digest article. Availability Digest). https:
//www.availabilitydigest.com/articles.htm, 2020.

[15] Thanh Do and Haryadi S. Gunawi. The Case for
Limping-Hardware Tolerant Clouds. In 5th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
13), San Jose, CA, June 2013. USENIX Association.

[16] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:
Understanding the Impact of Limpware on Scale-out
Cloud Systems. In Proceedings of the 4th Annual Sym-
posium on Cloud Computing, SOCC ’13, New York, NY,
USA, 2013. Association for Computing Machinery.

[17] Data Dynamics. Data center dynamics). https://www.
datacenterdynamics.com/en/news/?term=outages, 2020.

[18] Facebook. Solving the Mystery of Link Im-
balance: A Metastable Failure State at Scale).
https://engineering.fb.com/2014/11/14/production-
engineering/solving-the-mystery-of-link-imbalance-a-
metastable-failure-state-at-scale/, 2020.

[19] David Pobladori Garcia. Incident Management at
Spotify. https://engineering.atspotify.com/2013/06/04/
incident-management-at-spotify/, 2013.

[20] Jeremy M. Goldberg. The future of critical infrastruc-
ture is in the cloud. https://cloudblogs.microsoft.com/
industry-blog/government/2021/10/25/the-future-of-
critical-infrastructure-is-in-the-cloud/, 2021.

[21] Google. Google API infrastructure outage
incident report. Google Developers blog:
https://developers.googleblog.com/2013/05/google-
api-infrastructure-outage_3.html, 2013.

[22] Google. Google App Engine Incident #19007. https:
//status.cloud.google.com/incident/appengine/19007,
2019.

[23] Google. Google Compute Engine Incident #19008.
https://status.cloud.google.com/incident/compute/
19008, 2019.

[24] Google. Google Cloud Infrastructure Components Inci-
dent #20005. https://status.cloud.google.com/incident/
zall/20005, 2020.

[25] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and Anang D. Satria. What
Bugs Live in the Cloud? A Study of 3000+ Issues in
Cloud Systems. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC ’14, page 1–14, New York,
NY, USA, 2014. Association for Computing Machinery.

[26] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why Does the Cloud Stop Com-
puting? Lessons from Hundreds of Service Outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, SoCC ’16, page 1–16, New York, NY, USA,
2016. Association for Computing Machinery.

[27] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-Slow at Scale: Evidence
of Hardware Performance Faults in Large Production
Systems. In 16th USENIX Conference on File and Stor-
age Technologies (FAST 18), pages 1–14, Oakland, CA,
February 2018. USENIX Association.

[28] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Deepthi Srinivasan, Biswaranjan
Panda, Andrew Baptist, Gary Grider, Parks M. Fields,
Kevin Harms, Robert B. Ross, Andree Jacobson, Robert
Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha,
Mingzhe Hao, and Huaicheng Li. Fail-slow at scale:
Evidence of hardware performance faults in large pro-
duction systems. ACM Trans. Storage, 14(3), oct 2018.

[29] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray Failure: The Achilles’ Heel of Cloud-
Scale Systems. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, page
150–155, New York, NY, USA, 2017. Association for
Computing Machinery.

[30] The Wall Street Journal. Amazon Outage Disrupts
Lives, Surprising People About Their Cloud Depen-
dency. https://www.wsj.com/articles/amazon-outage-
disrupts-lives-surprising-people-about-their-cloud-
dependency-11638972001, 2021.

[31] Leslie Lamport. The Part-Time Parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

88    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://downdetector.com
https://downdetector.com
https://www.availabilitydigest.com/articles.htm 
https://www.availabilitydigest.com/articles.htm 
https://www.datacenterdynamics.com/en/news/?term=outages
https://www.datacenterdynamics.com/en/news/?term=outages
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.atspotify.com/2013/06/04/incident-management-at-spotify/
https://engineering.atspotify.com/2013/06/04/incident-management-at-spotify/
https://cloudblogs.microsoft.com/industry-blog/government/2021/10/25/the-future-of-critical-infrastructure-is-in-the-cloud/
https://cloudblogs.microsoft.com/industry-blog/government/2021/10/25/the-future-of-critical-infrastructure-is-in-the-cloud/
https://cloudblogs.microsoft.com/industry-blog/government/2021/10/25/the-future-of-critical-infrastructure-is-in-the-cloud/
https://developers.googleblog.com/2013/05/google-api-infrastructure-outage_3.html
https://developers.googleblog.com/2013/05/google-api-infrastructure-outage_3.html
https://status.cloud.google.com/incident/appengine/19007
https://status.cloud.google.com/incident/appengine/19007
https://status.cloud.google.com/incident/compute/19008
https://status.cloud.google.com/incident/compute/19008
https://status.cloud.google.com/incident/zall/20005
https://status.cloud.google.com/incident/zall/20005
https://www.wsj.com/articles/amazon-outage-disrupts-lives-surprising-people-about-their-cloud-dependency-11638972001
https://www.wsj.com/articles/amazon-outage-disrupts-lives-surprising-people-about-their-cloud-dependency-11638972001
https://www.wsj.com/articles/amazon-outage-disrupts-lives-surprising-people-about-their-cloud-dependency-11638972001


[32] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems, pages 382–
401, July 1982.

[33] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan
Lu, and Haryadi S. Gunawi. TaxDC: A Taxonomy of
Non-Deterministic Concurrency Bugs in Datacenter Dis-
tributed Systems. SIGARCH Comput. Archit. News,
44(2):517–530, mar 2016.

[34] Tanakorn Leesatapornwongsa, Cesar A. Stuardo, Riza O.
Suminto, Huan Ke, Jeffrey F. Lukman, and Haryadi S.
Gunawi. Scalability Bugs: When 100-Node Testing
is Not Enough. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, page
24–29, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[35] John D. C. Little. A proof for the queuing formula: L =
λw. Oper. Res., 9(3):383–387, jun 1961.

[36] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman
Nath. What bugs cause production cloud incidents? In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 155–162, 2019.

[37] Sean Lynch. Avoiding Death Spirals in Distributed
Systems. https://blog.couchbase.com/avoiding-death-
spirals-distributed-systems/, 2021.

[38] Aaron McDade. Significant Outage for Amazon
Web Services Stalls Netflix, Delta Airlines, Oth-
ers. https://www.newsweek.com/significant-outage-
amazon-web-services-stalls-netflix-delta-airlines-
others-1657077, 2021.

[39] Panagiotis Moustafellos and Ben Osborne. Elas-
tic Cloud Incident Report: February 4, 2019.
https://www.elastic.co/blog/elastic-cloud-incident-
report-feburary-4-2019, 2019.

[40] Kiran Nagaraja, Fabio Oliveira, Ricardo Bianchini,
Richard P. Martin, and Thu D. Nguyen. Understanding
and Dealing with Operator Mistakes in Internet Services.
In 6th Symposium on Operating Systems Design & Im-
plementation (OSDI 04), San Francisco, CA, December
2004. USENIX Association.

[41] Khiem Ngo, Siddhartha Sen, and Wyatt Lloyd. Tol-
erating slowdowns in replicated state machines using
copilots. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
583–598. USENIX Association, November 2020.

[42] Diego Ongaro and John Ousterhout. In Search of an
Understandable Consensus Algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual

Technical Conference, USENIX ATC’14, page 305–320,
USA, 2014. USENIX Association.

[43] Byers Paddy. Cassandra counter columns: nice in theory,
hazardous in practice. https://ably.com/blog/cassandra-
counter-columns-nice-in-theory-hazardous-in-
practice, 2021.

[44] peakscale + postmortem. Postmortem reports). https:
//pinboard.in/u:peakscale/t:postmortem/, 2020.

[45] Postmortems. Postmortems info). https://postmortems.
info, 2020.

[46] Richard D. Schlichting and Fred B. Schneider. Fail-
Stop Processors: An Approach to Designing Fault-
Tolerant Computing Systems. ACM Trans. Comput.
Syst., 1(3):222–238, aug 1983.

[47] Amazon Web Services. Summary of the Amazon EC2
and Amazon RDS Service Disruption in the US East Re-
gion. https://aws.amazon.com/message/65648/, 2011.

[48] Amazon Web Services. Summary of the Amazon Sim-
pleDB Service Disruption. https://aws.amazon.com/
message/65649/, 2014.

[49] Amazon Web Services. Summary of the Amazon Dy-
namoDB Service Disruption and Related Impacts in
the US-East Region. https://aws.amazon.com/message/
5467D2/, 2015.

[50] Amazon Web Services. AWS Post-Event Sum-
maries. https://aws.amazon.com/premiumsupport/
technology/pes/, 2021.

[51] Amazon Web Services. Summary of the AWS Service
Event in the Northern Virginia (US-EAST-1) Region.
https://aws.amazon.com/message/12721/, 2021.

[52] Isabella Steger. How Amazon Outage Left Smart
Homes Not So Smart After All. https://www.bloomberg.
com/news/articles/2021-12-08/amazon-outage-sparks-
anger-as-fridges-stop-people-locked-out, 2021.

[53] Cesar A. Stuardo, Tanakorn Leesatapornwongsa, Riza O.
Suminto, Huan Ke, Jeffrey F. Lukman, Wei-Chiu
Chuang, Shan Lu, and Haryadi S. Gunawi. ScaleCheck:
A Single-Machine Approach for Discovering Scalability
Bugs in Large Distributed Systems. In 17th USENIX
Conference on File and Storage Technologies (FAST 19),
pages 359–373, Boston, MA, February 2019. USENIX
Association.

[54] Thousandeyes. Internet Outages Map. https://www.
thousandeyes.com/outages/, 2020.

[55] SRE Weekly. SRE Weekly Digest. https://sreweekly.
com/about-sre-weekly-2/, 2020.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    89

https://blog.couchbase.com/avoiding-death-spirals-distributed-systems/
https://blog.couchbase.com/avoiding-death-spirals-distributed-systems/
https://www.newsweek.com/significant-outage-amazon-web-services-stalls-netflix-delta-airlines-others-1657077
https://www.newsweek.com/significant-outage-amazon-web-services-stalls-netflix-delta-airlines-others-1657077
https://www.newsweek.com/significant-outage-amazon-web-services-stalls-netflix-delta-airlines-others-1657077
https://www.elastic.co/blog/elastic-cloud-incident-report-feburary-4-2019
https://www.elastic.co/blog/elastic-cloud-incident-report-feburary-4-2019
https://ably.com/blog/cassandra-counter-columns-nice-in-theory-hazardous-in-practice
https://ably.com/blog/cassandra-counter-columns-nice-in-theory-hazardous-in-practice
https://ably.com/blog/cassandra-counter-columns-nice-in-theory-hazardous-in-practice
https://pinboard.in/u:peakscale/t:postmortem/
https://pinboard.in/u:peakscale/t:postmortem/
https://postmortems.info
https://postmortems.info
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65649/
https://aws.amazon.com/message/65649/
https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/premiumsupport/technology/pes/
https://aws.amazon.com/premiumsupport/technology/pes/
https://aws.amazon.com/message/12721/
https://www.bloomberg.com/news/articles/2021-12-08/amazon-outage-sparks-anger-as-fridges-stop-people-locked-out
https://www.bloomberg.com/news/articles/2021-12-08/amazon-outage-sparks-anger-as-fridges-stop-people-locked-out
https://www.bloomberg.com/news/articles/2021-12-08/amazon-outage-sparks-anger-as-fridges-stop-people-locked-out
https://www.thousandeyes.com/outages/
https://www.thousandeyes.com/outages/
https://sreweekly.com/about-sre-weekly-2/
https://sreweekly.com/about-sre-weekly-2/


[56] AWS Well-Architected. Design Interactions in a
Distributed System to Mitigate or Withstand Failures.
https://docs.aws.amazon.com/wellarchitected/latest/
reliability-pillar/design-interactions-in-a-distributed-
system-to-mitigate-or-withstand-failures.html, 2021.

[57] Matt Welsh, David Culler, and Eric Brewer. SEDA:
An Architecture for Well-Conditioned, Scalable Internet
Services. In Proceedings of the Eighteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’01, page
230–243, New York, NY, USA, 2001. Association for
Computing Machinery.

[58] Wikitech. Incident documentation/2021-03-30
Jobqueue overload. https://wikitech.wikimedia.
org/wiki/Incident_documentation/2021-03-
30_Jobqueue_overload, 2021.

[59] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tian-
wei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pa-
supathy. Do Not Blame Users for Misconfigurations. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 244–259,
New York, NY, USA, 2013. Association for Computing
Machinery.

[60] David Yanacek. Using load shedding to avoid over-
load. https://aws.amazon.com/builders-library/using-
load-shedding-to-avoid-overload/, 2021.

[61] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Ro-
drigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and
Michael Stumm. Simple testing can prevent most crit-
ical failures: An analysis of production failures in dis-
tributed data-intensive systems. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 249–265, Broomfield, CO, October
2014. USENIX Association.

[62] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, and Ion Stoica. Improving mapreduce
performance in heterogeneous environments. In Pro-
ceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, page
29–42, USA, 2008. USENIX Association.

[63] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi,
Kirk Rodrigues, Shan Lu, and Ding Yuan. Understand-
ing and Detecting Software Upgrade Failures in Dis-
tributed Systems, page 116–131. Association for Com-
puting Machinery, New York, NY, USA, 2021.

[64] Siyuan Zhou and Shuai Mu. Fault-Tolerant replica-
tion with Pull-Based consensus in MongoDB. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 687–703. USENIX
Association, April 2021.

90    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/design-interactions-in-a-distributed-system-to-mitigate-or-withstand-failures.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/design-interactions-in-a-distributed-system-to-mitigate-or-withstand-failures.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/design-interactions-in-a-distributed-system-to-mitigate-or-withstand-failures.html
https://wikitech.wikimedia.org/wiki/Incident_documentation/2021-03-30_Jobqueue_overload
https://wikitech.wikimedia.org/wiki/Incident_documentation/2021-03-30_Jobqueue_overload
https://wikitech.wikimedia.org/wiki/Incident_documentation/2021-03-30_Jobqueue_overload
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/


Demystifying and Checking Silent Semantic Violations
in Large Distributed Systems

Chang Lou Yuzhuo Jing Peng Huang

Johns Hopkins University

Abstract
Distributed systems today offer rich features with numerous
semantics that users depend on. Bugs can cause a system
to silently violate its semantics without apparent anomalies.
Such silent violations cause prolonged damage and are diffi-
cult to address. Yet, this problem is under-investigated.

In this paper, we first study 109 real-world silent semantic
failures from nine widely-used distributed systems to shed
some light on this difficult problem. Our study reveals more
than a dozen informative findings. For example, it shows that
surprisingly the majority of the studied failures were violating
semantics that existed since the system’s first stable release.

Guided by insights from our study, we design Oathkeeper, a
tool that automatically infers semantic rules from past failures
and enforces the rules at runtime to detect new failures. Eval-
uation shows that the inferred rules detect newer violations,
and Oathkeeper only incurs 1.27% overhead.

1 Introduction

Users’ increasing reliance on distributed systems highlights
the importance of ensuring they work correctly. Unfortunately,
real-world distributed systems inevitably encounter failures.
When a failure is recognizable through explicit signals such
as crash, timeout, error code, or exception, timely actions can
still be taken to detect [22,40,46] and mitigate [41,52,53] the
failure. A vexing problem occurs when a system is operational
but silently breaks its semantics without apparent anomalies.

Take a distributed notification service as an example, which
provides an interface that promises to invoke the client call-
back whenever the status of some object changes. A bug may
cause this system to miss invoking the callback upon a change
or invoke the callback more than necessary. As another exam-
ple, a distributed file system that is supposed to replicate data
blocks by user-configured n copies may incorrectly under-
replicate some blocks without any explicit errors.

Such failures can lead to severe consequences because they
violate the guarantees a system provides to its users. They
also break the contracts that other components or applications
rely on, and result in amplified incorrectness. Moreover, since
the violation is silent, the damage exacerbates over time. For
example, as the buggy distributed file system that silently
violates its replication policy continues to run, more and more
newly created files will be subject to potential data loss.

System Ver. Client Public Admin Config.API Method Command

ZooKeeper 3.4.6 38 219 13 30
ZooKeeper 3.6.2 78 2,853 18 128
HDFS 2.7.2 128 5,293 11 224
HDFS 2.10.0 162 6,306 12 449
Kafka 2.6.0 166 2,661 76 366
Kafka 2.8.0 171 3,107 86 379

Table 1: Number of public interfaces in popular distributed systems.
An interface can have multiple semantics under different settings.

Distributed systems today have rich semantics (Table 1)
exposed through client APIs, public methods including RPCs
among internal components, administrator commands, config-
uration parameters, etc. One interface often encodes multiple
guarantees. New interfaces and semantics are also continu-
ously introduced as a system evolves. These characteristics
together make it challenging to ensure that a distributed sys-
tem conforms to its semantics in production settings.

Indeed, real-world evidence shows that semantic violations
occur in practice. In a Google cloud incident [3], a traffic
engineering subsystem that is supposed to throttle traffic upon
congestion incorrectly throttled traffic even though the net-
work was not congested. Another highly-impactful global
outage [2] was caused by a quota system incorrectly reporting
the usage for a user ID service as zero.

However, other than anecdotal evidence, the problem of
silent semantic violations in distributed systems remains mys-
terious, despite its severe consequences. For instance, mature
distributed systems include extensive test cases to check the
correctness of their features. Thus, it is natural to assume
silent semantic violations are rare in production because test-
ing likely has eliminated most of them. In addition, while
adding assertions and runtime verification [43, 44, 48, 57] are
potential solutions, the conventional wisdom is that they are
expensive and semantic rules are difficult to get. It is also
unclear what kind of semantics are violated in practice.

To systematically understand this problem, we present, to
our best knowledge, the first empirical study on 109 real-
world silent semantic violations from nine widely-used dis-
tributed systems. Through these cases, we analyze key ques-
tions such as how prevalent are semantic violations in prac-
tice, what semantics are violated, why are these failures not
caught in testing, and how are these silent violations detected.

Our study provides quantitative data points to answer these

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    91



questions. The study findings also challenge some conven-
tional wisdom and reveal gaps in the current practice. We
highlight several findings:
• Contrary to the belief that silent semantic violations rarely

occur in deployed systems, they have significant presence
(39%) among sampled failures of all kinds.

• While the studied systems get more extensively tested over
time and continue to add new features and semantics, their
initial semantics do not become more bulletproof. On the
contrary, more than two thirds of the failures violate seman-
tics that have existed since the system’s first stable release.

• Although these are distributed system failures, most (74%)
violations can be determined locally in some component.

• The violated semantics are often not untested but rather
well covered by existing test cases.

• Enabling assertions in release builds helps by converting
semantic violations into crash failures. One studied system
does this and has the lowest ratio of semantic failures.

• In many cases, although a semantic was initially honored, it
was later violated, thus one-time assertions are insufficient.

• Many system semantics are vulnerable to violations during
maintenance operations or node events.
Given the prevalence (as our study indicates) and severity

of silent semantic violations, we design a tool Oathkeeper to
help users check silent semantic violations at runtime. The
tool design is directly guided by insights from our study.

Specifically, we find that in 73% of the cases, developers
add regression tests after the failure is reported, which contain
valuable information about the failed semantic. However, the
majority of the studied cases still violate semantics that have
been tested before. A major reason for the gap is that these
regression tests are usually patch-driven: they only check if
the specific bug is fixed in a particular setup using a bug-
triggering workload. The underlying semantics can continue
to be broken with different root causes in different scenarios.

Based on this insight, Oathkeeper leverages the regression
tests and tries to infer the underlying semantic rules implied
by the tests. To do so, Oathkeeper runs the tests on both the
buggy version and patched version of the system, and takes
a template-driven approach to automatically infer semantic
rules from the two traces. Oathkeeper then deploys these
semantic rules to production to catch future violations that
are caused by different bugs under different conditions.

We evaluate Oathkeeper on ZooKeeper, HDFS, and Kafka.
Oathkeeper infers hundreds to thousands of semantic rules
from the old regression tests in these systems. With the in-
ferred rules, we evaluate Oathkeeper on seven real-world se-
mantic failures that were introduced long (9–34 months) after
the old failures. Oathkeeper detects violations for six of them.
With all rules enabled, Oathkeeper on average only incurs
1.27% throughput overhead to the target systems.

The contributions of this paper are two-fold: (i) the first
study on real-world silent semantic violations in nine popular
distributed systems; (ii) the design of Oathkeeper, which au-

tomatically infers semantic rules for large distributed systems
to check silent semantic violations at runtime.

The source code of Oathkeeper is publicly available at:
https://github.com/OrderLab/OathKeeper

2 Background
2.1 Definition
We consider a distributed system S that provides services
through a collection of operations. Each operation o has cer-
tain semantics [29]. The semantics encode guarantees that o
makes about the output, system states, and results of subse-
quent operations, in response to some triggering condition c.
The condition c can be a client request, an admin command
(at the server side), a message from internal components, as
well as an environment change including the passage of time.
The semantics of S are all the guarantees provided by the
history of operations S executes in response to a list of c.

A semantic violation (failure) occurs when S breaks some
of its semantics in an execution. The failures may exhibit ex-
plicit error signals, such as crashes, timeouts, and exceptions.
In such cases, the violations overlap largely with existing fail-
ure models and can be well addressed by existing techniques.

This work focuses on silent semantic violations, in which S
violates its semantics but remains operational without exhibit-
ing explicit error signals (S is unaware of its misbehavior). We
focus on this class of failures because they are under-studied
yet incur damaging consequences, and they pose significant
challenges to testing, failure detection, and recovery.

Silent semantic violations differ from other failure modes
in observability. Fail-stop failures cause complete loss of func-
tionality, which can be observed with simple measures such as
monitoring heartbeats. Fail-slow [32], partial failures [46] and
gray failures [37] only cause some functionality to be broken
(slow). But these issues can still be observed with generic
approaches, e.g., checking exceptions or timeouts [45]. In
comparison, silent semantic violations are difficult to observe
without a deep understanding of S’ semantics and execution.

Another way to interpret the “silent” aspect is on the se-
mantics being violated. If S only has a few operations, all of
which have well-defined and thoroughly checked semantics,
semantic violations in S will be observable failures. Unfortu-
nately, distributed systems have a large number of interfaces
(Table 1), many of which have loosely-defined (or hidden)
semantics that cannot be easily checked. Consequently, viola-
tions of such semantics are difficult to detect and address.

2.2 An Example
We show an example of silent semantic failures from our study
(Section 3). ZooKeeper is a coordination service with a hier-
archical data model. Its clients store data by creating znode

in a namespace. A special type of znode is called ephemeral
node. The semantics of the ephemeral node create() opera-
tion guarantees that the znode exists for as long as the creating

92    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/OrderLab/OathKeeper


ZooKeeper service

Kafka 

consumer1

/kk/consumer1

ephemeral znode

disconnected

semantic violation: znode should be removed

Kafka client

get /kk/consumer1

Figure 1: A silent semantic failure in ZooKeeper.

client’s session and will be deleted once the associated session
ends. The triggering conditions are the create request and the
client session disconnection. Ephemeral nodes are commonly
used to store membership information. For example, HDFS
implements its leader election using ephemeral nodes [27].

In a production ZooKeeper failure [13], some ephemeral
node still existed even though the client session that created
them was long gone. Specifically, a Kafka consumer crashed
but the associated znode was not deleted (Figure 1). As a re-
sult, when Kafka clients queried ZooKeeper to discover con-
sumer information, they kept trying to connect to the crashed
consumer. In other settings, this semantic violation can propa-
gate to other dependent applications, e.g., it will break HDFS
namenode’s automatic fail-over feature, which depends on the
ephemeral node semantics, causing an HDFS service outage.

3 Study Methodology
Compared to other failure modes in distributed systems, silent
semantic violations are not well understood. To fill this gap,
we conduct a study on user-reported silent semantic failures
from nine large-scale distributed systems (Table 2). We select
these systems because they are representative, mature, widely
used in production, and record many user-reported failures.

To collect the failure cases, we first query the study systems’
issue trackers to find tickets that (1) are marked as “bugs”,
(2) have priorities higher than “minor”, (3) are resolved, (4)
involve the server components. This step returns a large num-
ber of tickets. We then randomly sample a subset (Table 2).
Among this subset, some are not real failures, such as issues
found in internal testing. The remaining ones (valid column in
Table 2) are potential production failures. We then read their
descriptions and check whether the failures violate system
semantics. We filter crashes, aborts, out-of-memory errors,
and semantic failures with clear error signals.

After the above step, we get a candidate set of production
silent semantic failures (Candidate column). Due to time
constraints, we perform in-depth analyses on a subset of the
candidate cases, preferring those with sufficient information
and discussions. This gives us the final study dataset (Studied
column) of 109 production semantic failure cases.

Note that our sample sizes vary across systems. This is
because the studied systems’ tickets vary greatly in terms
of their information, quality, and bug types. If using a fixed
sample size or ratio, one system can dominate the study and
produce extremely biased findings. Our sampling instead is
done iteratively: for a particular system, if after an initial

System Category Lang. All Sampled Candi Stud
(valid) -date -ied

Cassandra (CS) Database Java 3,308 69 (54) 25 12
CephFS (CF) File Sys. C++ 673 673 (123) 37 12
ElasticSearch (ES) Search Java 4,101 101 (46) 26 10
HBase (HB) Database Java 6,143 233 (80) 32 14
HDFS (HF) File Sys. Java 3,409 99 (52) 22 14
Kafka (KF) Streaming Scala 2,764 142 (92) 39 13
Mesos (ME) Cluster Mgr. C++ 2,462 116 (47) 21 12
MongoDB (MG) Database C++ 14,776 355 (151) 30 10
ZooKeeper (ZK) Coordination Java 1,141 134 (102) 36 12

Total 38,786 1,922 (747) 268 109

Table 2: Studied systems, the tickets (of various kinds) in the issue
tracker of each system, the cases we sampled, and cases studied.

sampling, its number of Candidate cases is too small or 0,
we sample more, until the candidate numbers for different
systems are relatively balanced. Note that each iteration in
this process is still randomly choosing from the All tickets.

Threats to Validity. Like all empirical studies, our study is
subject to validity problems such as the representativeness
and biases. We cover popular distributed systems of different
types, such as database, file system, and search engine, to
improve the representativeness. To minimize selection bias,
we randomly sample the cases. We also spread the sampling
across times so we are not biased by some specific version.
To reduce the manual inspection errors, we write a detailed
analysis document for each case and have multiple inspectors
examine each document to reach a consensus.

Although our study provides informative findings on se-
mantic failures in the studied systems, they may not be gen-
eralized to other systems beyond the scope this study was
conducted. Our study is also biased by programming lan-
guages (Java and C++); the findings may not generalize to
systems written in other languages such as Erlang or Elixir,
which embrace “let-it-crash” error handling philosophy [18].

4 Are Silent Semantic Failures Rare?
Prevalence. An important question about silent semantic vi-
olations is whether they occur rarely in production. Getting
accurate prevalence data requires examining thousands of
tickets for each system, which is a daunting task. We instead
obtain an approximate result by calculating the percentage
of silent semantic failures in our sample set. Specifically, we
calculate the percentages of the number of candidate cases in
Table 2 over the number of valid cases in the sample. Note that
the candidate cases are examined to be indeed silent semantic
failures, even though we only study a subset of them.
Finding 1: Silent semantic failures have significant presence
across all studied systems, occupying 20%–57% (39% on
average) of the sampled cases for all types of failures.

The percentages vary in different systems. Systems such
as ElasticSearch and Cassandra have a higher percentage of
semantic failures (57% and 46%, respectively). MongoDB
has the lowest ratio (20%). We will discuss in Section 8 these

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    93



CS CF HB HF KF ME MG ZK

System

0

20

40

60

80

100

P
e
rc

e
n
t

all:
semantic failure: Blocker Critical Major

Blocker Critical Major

Figure 2: Issue priorities of semantic failure
cases and all valid sampled cases.

0 5 10 15 20 25

Cases

Wrong response

Corrupt state

Data or state loss

Inconsistency

Perf. degradation

Denied operation

Other

Broken redundancy

Capacity issue

Security issue

Figure 3: Consequence of the studied semantic
failures.

API
spec

Internal
behavior

Config.

Implicit

53%

24%

10%

13%

Figure 4: Sources of violated
semantics.

systems’ practices that may contribute to the differences.
Severity. How severe are these reported silent semantic fail-
ures? To answer this question, we analyze the severity levels
that developers assign to the issues. Some systems use slightly
different categories. We normalize them into three levels:
Blocker, Critical, Major. Based on the official descriptions,
Blocker means the issue “should block release until it is re-
solved”; Critical means the issue causes severe consequences
like data loss; Major means a “major loss of function”.

Overall, 45% of the studied cases have Blocker or Critical
priorities. The ZooKeeper failure [13] described in Section 2.2
is an example Blocker issue. As another example Blocker
issue, users reported that in their HDFS deployment, all the
replicas of some blocks are residing on the same rack [8],
which breaks the redundancy policy. This is clearly a severe
violation because replica placement is critical to HDFS data.

We also compare the priority distribution of semantic fail-
ures with all failures in the sample. The result is shown in
Figure 2. The average percentage of Blocker priority in seman-
tic failures increases from 15% to 21%, and the percentage of
Critical priority increases from 8% to 24%.

Interestingly, we find in some cases initially developers may
not consider the symptoms to be severe, but after further inves-
tigation developers upgrade the priority level, e.g., “Marking
as critical for 2.0. These ‘unexpected behaviors’ cause opera-
tor head-scratching and wasted hours of digging” [5].
Finding 2: Despite the lack of explicit error symptoms, silent
semantic failures are considered severe by developers and
users. Moreover, the sampled semantic failures are assigned
with higher priorities compared to all sampled failures.

Consequence. We next analyze the failure consequences. Fig-
ure 3 shows that besides incorrectness, semantic failures cause
serious consequences such as corruption and data loss.

The consequences are damaging because clients or users
are misled by the system’s seemingly normal reactions. For
example, Kafka guarantees that when a success response is
sent to a producer, the produced message will be persisted
by at least min.isr replicas. Otherwise, the producer will
be notified of an error, so it may retry the request. In one
failure [9], a leader replica switched to follower then back to
leader. Some messages produced were lost while the client
received responses with no error. This false success resulted
in data loss for the users.

Note that Figure 3 is about the reported impact of failures,
which is not always the semantic violation per se. For example,
in a MongoDB case, the maximum cache usage configuration
is not enforced. It takes a while for the violation to cause
a performance problem—which is the consequence of this
failure. But even before the system reaches the performance
collapse, a cache limit violation has occurred.
Finding 3: In addition to incorrectness (wrong responses),
silent semantic violations often cause severe consequences
including corrupt state, data or state loss, and security issues.

5 What Kind of Semantics Is Violated?
5.1 Sources of Violated Semantics
The studied failures violate various system-specific semantics.
We analyze where these semantics come from. There are four
sources and Figure 4 shows their distributions:
• API spec: a system API promises certain effect will (not)

occur, e.g., a successful return of removeWatch API is sup-
posed to remove the specified watcher.

• Internal behavior: the system’s documentation explicitly
guarantees that something should (not) occur about its in-
ternal behavior, which is not directly exposed to external
APIs, e.g., HDFS guarantees that if some Erasure Coding
blocks fail, they should be detected and reconstructed.

• User configuration: user configurations regulate some sys-
tem behaviors and the guarantees depend on the user set-
tings. For example, the max_hint_window_in_ms parameter
in Cassandra defines the maximum time window the coor-
dinator will generate hints for a dead host.

• Implicit: the semantics are not explicitly defined or docu-
mented, but users expect them to hold for a correct system.

Finding 4: Most (87%) studied failures violate semantics that
are explicitly defined in API specs, system docs, or configs.

Interestingly, in 10% of the studied cases, the system
does not respect its configuration’s semantics. For exam-
ple, if users set acl.inheritance to true, HDFS should en-
able ACL inheritance; but in one case the inherited ACL
permissions are masked [7]. This violation causes security
issues. The problem of misconfiguration is extensively re-
searched [20,21,35,56]. This finding suggests that even when
users set configuration properly, a system can still misbehave.

94    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0 20 40 60 80 100 120 140

Issue ticket age since first release date (in months)

0.0

2.5

5.0

7.5

10.0

P
e
rc

e
n
t 

(%
)

0%

25%

50%

75%

100%

C
D

F

Figure 5: Issue ticket age (creation date minus first release date).

As an example of Implicit semantics, in one HBase case [4],
a region is online in server A, but the region location registered
in the meta table is server B. While this consistency semantics
is a common sense, it is not explicitly declared.

Explicit documentation of semantics is indicative of de-
velopers’ awareness of its guarantees and importance. One
hypothesis is that if the semantics in a failure is not docu-
mented, it is understandable that developers did not make
enough efforts to enforce the semantics. This finding dis-
proves this hypothesis. However, the explicit documentations
do not translate into fewer violations. One reason is that devel-
opers often document the semantics in a vague (e.g., “should
produce correct results”) or incomplete way. A more fun-
damental gap is that the documentation is designed to be
human-readable but not machine-checkable. For example, the
semantics for ephemeral znode in ZooKeeper is documented
clearly, but the system does not have any mechanism or tool
to enforce this semantics in deployment.
Implications: Rich sources of documentation exist to lever-
age and judge semantic violations. Developers should move
from documenting semantics in informal text to rigorously
declare semantics that are mechanically checkable and en-
forceable.

5.2 Categorizations of Violated Semantics
Old vs. New Semantics Modern distributed systems often
keep adding new features. For example, the number of client
APIs in ZooKeeper increased from 38 in version 3.4.6 (2016)
to 78 in version 3.6.2 (2020). Similarly, HDFS’ key APIs in
fs.FileSystem increased from 128 in version 2.7.2 (2016) to
162 in version 2.10.0 (2019), along with significant increases
of semantics in other interfaces such as RPC methods.

Since around 90% of our studied failures occurred after
more than two years since the software’s initial release (Fig-
ure 5), a natural hypothesis is that most of them violate some
new semantics. We validate this hypothesis by analyzing the
age of semantics in the studied failures. We define old seman-
tics as ones that exist since the first major stable release of the
system and others as new semantics.

Surprisingly, we find only less than one third (32%) of our
studied failures violate relatively new semantics, while 68%
of them violate old semantics. Old semantics usually repre-
sent the most fundamental functionalities the system provides
since developers implement them first, and they usually un-
dergo extensive testing already. However, our finding suggests
that (1) even with new features added to the system, old se-
mantics are still ones violated the most; (2) even with testing

accumulating over the years, the reliability of old semantics
is not necessarily higher in newer versions. Take ZooKeeper
as an example. Its ephemeral znode interfaces and semantics
have existed since the first major stable release (3.0.0) in Oc-
tober 2008 [1]. However, there are still production failures
violating the guarantees of ephemeral znode reported by users
even 10 years later [15].

We further investigate why old semantics still keep getting
violated. There are three broad reasons: (1) new implementa-
tion is buggy, developers may optimize, refactor or refine the
implementation of existing functionality, which contain bugs
that break old semantics, e.g., a concurrency bug introduced
in changing an implementation to be multi-threaded; (2) new
feature adds buggy interactions, when some new feature is
added, developers may extend existing module to interact
with or support the new feature. For example, after HDFS
introduces the encryption zone feature, it needs to extend the
original snapshot file function and the new handling path is
buggy [6]; (3) latent bugs are exposed, as the most basic se-
mantics, these old semantics’ original implementations can
be complex and contain latent bugs that can only be exposed
in very specific scenario. In one ZooKeeper failure [14], users
find the ephemeral znodes are not deleted when the system
time changes unexpectedly. This bug exists for 6 years be-
fore it is discovered, because neither the testing nor most
deployments would exercise the system with the time change.

Note that we did not count the numbers of semantics in the
study, either for new or old semantics. This is because even
with explicit documentation such as API specs, determining
how many semantics are there for a given API can be subjec-
tive, which depends on the granularity of semantics. Instead,
we objectively judge if the specific semantics violated in a
failure were introduced in the initial release or not.
Finding 5: 68% of the studied failures violate old semantics.
Implications: Instead of having the false hope that old se-
mantics are reliable, developers should invest efforts to pre-
vent semantic violation regressions.

Local vs. Distributed Semantics Since the study subjects
are distributed systems, we analyze whether the semantic vi-
olations naturally require considering multiple distributed
components. This question is important to the design of run-
time verification techniques [43, 44, 48, 57].

We find that indeed 26% of the semantic violations require
global information to judge, e.g., whether the replica place-
ment policy in HDFS is correctly enforced, or whether states
in different Cassandra nodes match the consistency level.

However, interestingly, we find that the majority (74%) of
the violations can be determined in a local scope. For example,
appendTo in HDFS has the semantics of appending data to the
end of a target file and making it persistent. A buggy node
may fail to persist the new blocks or accidentally overwrite
them. The violations can be determined in this node.

One reason is that a distributed system component often

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    95



keeps local copies of states for other components. For instance,
even though ZooKeeper session is a global concept (a client
connection to any follower or leader constitutes a session),
such state is acknowledged to the ensemble. Thus, each node
has a copy of the alive session and node list. The semantics
of ephemeral znode, which require knowledge of the session
information, can thus be checked locally in a ZooKeeper node.

Current runtime verification solutions typically aggregate
global states across all nodes to check property violations.
Obtaining such global information can be both expensive
and tricky, e.g., dealing with consistency issues in capturing
distributed snapshots [23]. Our finding suggests it may be suf-
ficient to use local checkers to expose many semantic failures.
Finding 6: The violations in semantic failures can be usually
(74%) determined in the scope of a single component.
Implications: Employing local checkers can potentially ex-
pose many semantic violations.
Safety vs. Liveness Semantics Some failures break safety-
related guarantees. For example, in Kafka, the maximum num-
ber of consumers in a group should not be larger than a config-
ured limit, but users found more consumers joined the group.

In comparison, other semantics are liveness related. For
example, ZooKeeper specifies that a container-type znode

with no child znodes should eventually be deleted. Even when
we observe some empty container node exists, it does not
necessarily indicate this guarantee is violated because it might
still hold some time later. Without context, one can interpret
some safety guarantee, such as a correct response should be
returned, to be involving liveness, because even if a response
is not received, it could be still on the way. We refer to the
system’s official documentation for making the distinction.
If the documentation explicitly states that when an operation
returns, something (e.g., a notification) will eventually happen,
then a failure about its absence is a liveness violation.

It is generally challenging to check liveness properties [38],
because there can be infinite possibilities in the execution that
eventually produce the desired effect. Fortunately, we find
most (86%) of our studied failures violate safety semantics.
Finding 7: 86% of the studied cases violate safety semantics.

Implications: There is usually a fixed time point to determine
if a system has violated its semantics.

6 Why Do Silent Semantic Failures Occur?
We analyze what causes a system to break its semantics. We
are interested in identifying potential common bug patterns in
the root causes, which can inform the designs of bug finding
tools to eliminate semantic failures before production.

Some semantic failures are caused by bugs such as memory
error, data race, and integer overflow, which are well studied
with many tools designed to detect them. We find only 12% of
the cases are caused by such bugs. The remaining failures are
caused by system-specific logic bugs including design flaws,
which are difficult to be caught by bug detection tools.

op1_start op1_end

Timeshort-lived 

semantics

long-lived semantics

op2_start op2_end

(33%)

(67%)

(33%)

(10%)

1

2

3 (40%) 4 (17%)

Figure 6: Timing of semantic violation.

An interesting finding is that even for failure cases that
violate the same or related semantics, their root causes can be
quite different. Take the ZooKeeper ephemeral znode as an
example: (1) ZK-1208 is caused by a race condition: when
ZooKeeper is handling the close session request, it deletes
ephemeral znodes and then removes the session, in between a
create operation causes new ephemeral znodes to be added;
(2) In ZK-3144, the violations are caused by an incorrect
order: during request processing, the lastProcessedZxid is
updated before sessions are modified, so a snapshot may not
include the change and the ephemeral node is not deleted
after log replay; (3) In ZK-2355, the violations are caused
by buggy error handling: follower fails while reading the
proposal packet, but resetting lastProcessedZxid is missed in
the error handler; (4) In ZK-2774, the system time of a server
is changed unexpectedly, and session expiration codes rely
the absolute system time, which causes the ephemeral znodes
to persist after the client is disconnected for a long time.
Finding 8: Only 12% of the studied failures are caused by
well-defined bugs such as race conditions, while most cases
are caused by a wide variety of logic bugs. Even for failures
violating the same semantics, the root causes are diverse.
Implications: It can be challenging to exploit code patterns
to eliminate semantic violations through static bug detection.

7 How Are Semantic Failures Manifested?
Timing of Violation Understanding when semantics are
violated can shed light on how to detect the violation.

As Figure 6 shows, some semantics only exist during the
execution of its associated operation (at return point), e.g.,
read operation should return the latest data. We call them
short-lived semantics. In comparison, some semantics exist
even after its associated operation finishes, e.g., the specified
file in create operation should be persisted and continue to
be available after create returns. They often only cease to
apply after some other event, e.g., until a delete operation on
the same file is executed. We call them long-lived semantics.

Interestingly, we find that 67% of the cases violate long-
lived semantics. This is partly because these semantics have a
larger “vulnerability” window compared to short-lived seman-
tics: a violation can occur anytime in its lifespan. ZooKeeper
ephemeral znode and watches are such examples. Essentially,
the system must maintain the promise for a long time.

We categorize the violation timing into four scenarios: at
the end of short-lived semantics (¬), e.g., wrong response,
at the start () or in the middle (®) or near the end (¯) for
long-lived semantics. An example for  is in HDFS-12217
the snapshot operation did not capture all open files, which

96    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



specific 
requests

timing/
concurrency

specific configs

node failures/
restarts

upgrade

env 
config

39
15

12

2

3

1

4 3
2

14
2

3

client 
reconn.

2

1

2
4

Figure 7: Distribution (# of cases) of the failure triggering condi-
tions. Some combinations are omitted in the diagram for readability.

violates the long-lived snapshot semantics since the beginning.
An example for ® is HDFS-9083: at the block creation time,
the block placement policy is honored; but after some node
failures, all replicas of the block reside on the same rack. ¯
happens when the semantics should cease to apply but did
not, e.g., ephemeral nodes should be removed when clients
timeout. Figure 6 shows the distributions of the four scenarios.
Finding 9: Near two thirds of the studied cases violate some
long-lived semantics. In 40% of the cases, the semantics are
initially honored but are violated in the middle.
Implications: It is crucial to continuously monitor semantic
guarantees, even after the initial semantic check passes.

Failure Triggering Conditions We further examine what
triggers the semantic failures. Figure 7 shows the result.
Finding 10: More than half of the studied failures are trig-
gered by specific requests, while 39% of the failures require
particular timing to trigger. Semantic failures often (41%)
only manifest themselves under multiple types of conditions.

HDFS-14514 is an example of semantic failure that re-
quires multiple types of triggering conditions. The semantic
violation (read out file size from snapshot is incorrect) can be
only triggered when 1) snapshot.capture.openfiles is set; 2)
create empty directory and encryption zone; 3) a client keeps
a file open for write under the empty directory; 4) append
several times; 5) perform a maintenance operation, snapshot.

We also find that in 23% of the cases, the triggering con-
dition is certain system maintenance operation, such as com-
paction, cluster upgrade, node decommissioning. Such events
do not occur frequently. They trigger semantic violations of-
ten because during the maintenance operation, the system
execution enters a different mode, which exposes rare bugs.
Implications: The reliability of semantics is vulnerable to
maintenance operations or node events. Operators and the
system should check violations during and after such actions.

8 Current Practice for Semantic Failures
8.1 Testing
Since semantic violations concern functionality correctness,
testing is responsible for catching them. The prevalence (Sec-
tion 4) of many semantic failures in production seems to
suggest a lack of testing. But that is not the case. The systems
we study have extensive test cases—a median of 1309 test
files. In addition, in 73% of the studied cases, the system has
at least one test case covering the violated semantics.

Then why the studied failures are not exposed during test-
ing? The earlier Finding 10 provides some clues. In many
cases, even though there are related test cases, they lack some
operations or arguments key to trigger the production failure.
Even when the test cases have the proper operations and argu-
ments, they only exercise the system under one timing, one
configuration or normal scenarios, while the bugs are only
triggered with unique timing, configuration, or node failures.

Are the failure triggering conditions so special that it is
impossible for developers to foresee? Interestingly, we find
that in many cases, similar triggering scenarios do exist in the
test suite but they are not used in testing the violated feature.

Finding 11: Semantic violations occur not simply due to a
lack of testing. The violated semantics are usually (73%)
covered by some existing test. In more than half of the studied
failures, similar triggering conditions exist in the test suite.

A fundamental gap is that developers tend to write tests
driven by examples or fixes for a specific bug. Such tests
are not expressive enough to preserve the underlying se-
mantics and prevent regression. Consequently, developers
spend repeated efforts to add tests. In HDFS-14514, the
server reads snapshot file with incorrect length from encrypted
zones. This exact semantics is already checked in an existing
test case. If that test “copies” one line of test configuration
dfsAdmin.createEncryptionZone(...) from other tests, the
new bug will be triggered and exposed.

Implications: Coverage of semantics alone is insufficient.
Developers should introduce variances in existing test cases.
It is also useful to “copy” triggering conditions across tests.
More fundamentally, developers should write more general
tests for the semantic properties rather than specific examples.

8.2 Assertions
Assertions are a common method for catching logic bugs,
which are major contributors to semantic failures (Section 6).
They are typically only used in development and are turned
off by default in release build for performance and stability.

Some of our studied systems use assertions in production:
MongoDB has added many invariant checks since 2014 [11].
Interestingly, as Section 4 shows, MongoDB has the lowest ra-
tio of semantic failures compared to other systems. While this
practice may cause instability, e.g., some users got infrequent
crashes due to invariant check failures after upgrading to new
versions [12], developers still prefer to fix the underlying bugs
rather than turning off assertions completely.

We observe two gaps in the current practice. First, most
existing assertions are pre-condition checks on the sanity of
function arguments. They are too low-level to catch semantic
violations, which require checking system functionalities and
usually the operation history (e.g., in checking consistency
violations [48]). Second, existing assertions are usually only
activated once during an operation, e.g., the entry of a function.
But many semantics are long-lived (Section 7), which require

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    97



continuous validation until the lifespan of semantics ends.
Finding 12: Although in 51% of the failures the buggy func-
tions have some sanity checks, few (9%) cases can be poten-
tially detected by adding proper sanity checks.

Implications: Enabling assertions helps reduce silent seman-
tic violations. However, developers should add more semantic-
level invariant checks besides sanity checks.

8.3 Observability
Since our studied failures are silent violations, how do users
notice these subtle failures then? Understanding this question
can reveal insights to improve the observability of semantic
failures. We carefully examine the discussion threads in each
ticket. In 34 cases, users mentioned their experience clearly.

For all of these cases, users discovered the issues through
noticing something suspicious in some “side channels”. We
categorize them into two types: (i) benign errors in other
requests (32%); (ii) anomalies in logs, files, or performance
of other tasks (68%). In HBASE-11654, users find out the
violations by noticing splitting directories in /hbase/WALs/,
which is “very strange” because “those logs should have been
replayed and deleted”. In KAFKA-9137, users observe the
failure by seeing an increase in eviction rate in the logs. In
CASSANDRA-6527, users found tombstones appeared even
though they never used delete for a column family.

It might seem that we can rely on users to manually detect
system semantic failures. Note that there is a survival bias: our
studied cases by definition are identified, but in practice silent
semantic violations can be easily missed because (i) users do
not monitor the systems 24×7; (ii) when they check, they may
not inspect the proper signals. When users notice the failures,
the damage may be already done. In CASSANDRA-6527,
users commented: “Fortunately, we have noticed that quickly
and canceled the migration. However, we were quite lucky.”

How to make semantic failures more observable? First, if a
system API has no interaction with others, it is hard to judge
its correctness based on a single piece of information. In prac-
tice users often use multiple related APIs to cross-compare re-
sults. In HBASE-15236, users observe the violations because
Get and Scan return different sizes for the same bulkloaded
hfiles. Second, current systems often do not expose enough
information about theirs internal states, thus users have to ad-
hocly infer whether a promise is obeyed or not. Existing error
messages (e.g., a legitimate exception for another request)
only focus on the current request, which is hard to link to the
semantic violation in past correlated requests.
Finding 13: Semantic violations are currently observed from

“side channels”: 32% from errors in other requests, 68% from
anomalies in logs, files or performance of other tasks.

Implications: Designs of overlapping APIs improve observ-
ability of semantic violations. Systems should provide more
admin APIs for convenient query of their internal states. Error
messages should provide hints about past correlated requests.

9 Oathkeeper: A Semantic Violation Checker

Guided by our study, we build a tool Oathkeeper to check
semantic violations for large-scale distributed systems.

9.1 Design Overview and Workflow
Oathkeeper takes a runtime approach to check semantic viola-
tions in production. This choice is motivated by our findings
that semantic failures have diverse root causes (Finding 8) and
often difficult to expose in testing due to complex triggering
conditions (Finding 10).

Central to a runtime verification approach is what invari-
ants to use. Existing solutions rely on users to write dis-
tributed assertions to check the correctness of distributed pro-
tocols [43, 44] or network functions [57]. In those scenarios,
the semantics to check are limited and well-defined. But in
our cases, the systems have abundant (Table 1) and loosely-
defined semantics. Even for semantics that can be described in
simple expressions informally, mapping them to the concrete
checkable invariants in the complex systems code is hard.
These factors make manual construction a daunting task.

Insight and Key Idea. The insight behind Oathkeeper is
based on our finding that the majority of the studied failures
violate old semantics (Finding 5) despite the decent cover-
age of testing (Finding 10). When a semantic failure occurs,
developers usually add regression tests. But these tests only
check if the specific bug is fixed in a specific setup, while the
same semantics can be violated repeatedly in other scenarios.

Based on this insight, Oathkeeper leverages the existing
regression tests developers write for past semantic failures
and automatically extracts the essence—the violated seman-
tic rules. Oathkeeper then enforces these rules at runtime to
detect future semantic violations, which may be caused by
different bugs under different conditions.

Input and Output. To apply Oathkeeper to a new system,
users supply a system-wide configuration and a list of past
semantic failure metadata. The former provides basic infor-
mation about the system such as the compilation command
and test directory, and optionally the classes to include for
analysis. The latter metadata is provided in the form of git
commit id (for version switching) and regression test name.

Oathkeeper outputs the likely semantic rules (Section 9.3).
Prior runtime verification tools focus on invariants expressed
as predicates among key state variables in a system such
as lock_id and lock_mode. This representation alone can be
insufficient or complex to express the semantics of large dis-
tributed systems. Instead, Oathkeeper focuses on rules that
describe relations among semantics-related events, particu-
larly operation invocations and state updates. Such an event
relation rule is expressive to capture various semantics.
Workflow. Figure 8 shows the tool’s workflow. Oathkeeper
operates in two stages. In the offline stage, Oathkeeper instru-

98    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Offline Production

Bug
Patch

patched

unpatched

buggy
system

instrumen-

tation lib

p + ∆t ⇒ q

templates

inference

engine

apply

1

2

3

4

▪ rule 3
▪ rule N

verifier
6

traces traces

check

verifier

5 validate event 

tracer

system

Verified
rules

All tests

Regression 
tests

infer ▪ rule 1
▪ rule 2
▪ ...
▪ rule N

Figure 8: Workflow of Oathkeeper.

ments the target systems to record major events (¶). It then
exercises the system twice with the regression tests: once us-
ing the patched version and the second time using the buggy
version. This will generate two sets of traces (·). The infer-
ence engine infers likely semantic rules from the traces of the
patched version (¸). The verifier applies the inferred seman-
tic rules against the traces of the buggy version and output
rules that are violated in the buggy traces (¹). We assume
these violated rules are potentially related to the semantic
failure. Further optimizations are applied to remove noises
and redundancies (º). In the online stage, Oathkeeper only
performs minimal instrumentation that is relevant to these
final semantic rules from the offline stage. The event tracer
ingests traces from the system in real time. The Oathkeeper
verifier continuously checks the traces against the deployed
semantic rules and reports violations (»).

9.2 Instrumentation and Trace Generation
For both inferring semantic rules and runtime verification,
we need to first instrument the system to obtain execution
traces. The Oathkeeper traces use a uniform event schema
that captures operation-related events and state-related events.

Oathkeeper designs a load-time instrumentation library
that performs bytecode manipulation when a target system is
loaded. This way of instrumentation is convenient (without
re-compiling and re-packaging the system) and transparent.

To record operation events, the library adds hooks at the
beginning, return and exception point of a method. To record
state events, Oathkeeper takes a patch plus base approach.
It analyzes the given semantic failure patch and automati-
cally includes the list of classes involved in the patch file.
Users can optionally specify names of some important system
classes, such as SessionTrackerImpl. With the combined list
of classes, Oathkeeper performs simple analysis at the load-
ing phase of these classes to retrieve their member variables
of primitive or collections types, and treat them as the state
variables. It then identifies instructions that update these vari-
ables and insert a hook to emit a state update event with the
relevant context (variable name, location, etc.).

For each given test, Oathkeeper switches the target sys-
tem to the patched version. The tool executes the test with
the instrumented system and generates the trace of events.

Template Example

p⇒ q decommission a datanode should trigger reconstruction
s ↑⇒ p when datanode changes, associated watcher notifies clients
s ↑⇒ k ↑ after session disconnection, ephemeral node is removed
(s = c)⊕q read-only server should not provide write access
p+∆t⇒ q inserted data should expire after the TTL is reached.
s ↑→ q cf schema should be altered before alter command returns
p⇒�(s ↑,k ↑) after snapshot renaming, either new snapshot creation and

old snapshot deletion both occur or none of them occur

Table 3: Some templates integrated in Oathkeeper. p, q are opera-
tions, s and k are states, t is time, c is constant. ¬p means p can not
occur. ↑ means state changes. p+∆t means time t after p occurs.

Then Oathkeeper reverts the target system to the buggy ver-
sion (snapshot prior to the patch commit id). Since the buggy
version does not contain the test, Oathkeeper copies the re-
gression test from the patched version and executes it to get
the buggy trace. If the test cannot directly run on the buggy
version due to interface changes (e.g., a function used in the
test is not public in the buggy version), the tool supports user-
provided patches to fix the compatibility issue.

The trace is stored in a JSON file for ease of deserial-
ization. An example trace entry is {"type": "OpTriggerEvent",

"data":{"opName": "zookeeper.FileSnap.deserialize", "time":

1654026992, ...}}. The trace scale is usually moderate, because
it is generated from tests. For example, with ZooKeeper,
even under the full instrumentation mode (instrumenting
all classes), most end-to-end tests generate less than 10,000
events. A common scale is several thousands. We see large
traces in only 5/273 tests that produce over 500,000 events.
Under the diff mode (only instrument the classes affected by
the patch), the trace typically has hundreds of events.

9.3 Template-Driven Inference
A key challenge in the semantic rule inference step of
Oathkeeper is to integrate domain knowledge without requir-
ing significant manual effort, while also having reasonable
accuracy and efficiency. We take a template-driven approach
to address this challenge. We first summarize general seman-
tic rule patterns, such as happens-before relationship, atom-
icity, periodicity. For each pattern, we define one or more
parameterized templates, such as a state change event for
s must happen before the completion event of operation p.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    99



public abstract class InferScanner {

//init state variables

abstract void prescan(Set<Event> eventSet);

//always need to go through the whole traces

abstract void scan(Event event);

//check states after scan, and generate invariants

abstract List<Invariant> postscan();

}

public abstract class VerifyScanner {

//init state variables

abstract void prescan();

//return true if continues to scan, otherwise break

abstract boolean scan(Event event, Context context);

//check states after scan, and judge

abstract InvState postscan();

}
Listing 1: Inference and validation interfaces for each template.

Algorithm 1: Generic inference and validation workflow.
Input: L: a trace (list of events)
Output: a list of inferred invariants (one inv. is a template w/ context)
Func Infer(L):

/* get unique events in the trace (we define equality

individually for different types of events) */

unique_events← Set(L)
prescan(unique_events)

foreach event ∈ L do scan(event)

return postscan()

Input: L: a trace (list of events), context: parameters in templates, e.g.,
if an invariant is a1⇒ a2, context is a1 and a2

Output: the checking result of invariant (pass, fail or inactive)
Func Verify(L, context):

foreach event ∈ L do
if scan(event,context) then break

return postscan()

Func Main(Lpatched , Lbuggy):
inv_list← /0

foreach inv ∈ Infer(Lpatched) do
if Verify(Lbuggy, inv.context) == InvState.FAIL then
inv_list.add(inv)

return inv_list

Oathkeeper currently supports 18 templates. Table 3 shows
several examples. Our technical report [47] shows the full list.

The inference engine implements an inference algorithm
for each template. The algorithm checks if there are matches
in a given trace and derives concrete values to each template
parameter if so. We call each match a context for the template,
which is a potential invariant. For one template (e.g., p⇒ q), a
trace can have multiple contexts (e.g., a1⇒ a2 and a1⇒ a3).

The templates allow encoding domain-specific semantics
without significant specification effort. They also restrict the
search space so the inference engine only analyzes trace
events that match the template structure and parameter types.
While these templates may not represent the exact or full se-
mantics like a high-level specification does, they can capture
the essential ingredients for making the semantics hold.

The inference engine takes the trace obtained from running
the regression tests against the patched system. Each tem-
plate class implements an infer function that returns a list of

Algorithm 2: Implementation for template p⇒ q.
Func ImplyTemplate::InferScanner::prescan(S):

foreach event ∈ S do C.put(event, {})

foreach event ∈ S do
foreach event2 ∈ S do

if event != event2 then
C.get(event).put(event2, 0)

C.get(event2).put(event, 0)

Func ImplyTemplate::InferScanner::scan(event):
foreach (k,v) ∈ C.get(event) do v ← v + 1

foreach event2 ∈ C do
if event == event2 then continue
val ← C.get(event2).get(event)

if val > 0 then C.get(event2).put(event, val - 1)

Func ImplyTemplate::InferScanner::postscan(L):
lst ← []

foreach (k,v) ∈ C do
foreach (k2,v2) ∈ v do

/* add potential invariants when counter is 0 */

if v2==0 then lst.add(genImplyInv(k,k2))

return lst

Func ImplyTemplate::VerifyScanner::prescan():
ifHold ← true

ifActivated ← false

counter ← 0

Func ImplyTemplate::VerifyScanner::scan(event, context):
if event == context.left then

counter ← counter + 1

ifActivated ← true

else if event == context.right && counter > 0 then
counter ← counter - 1

return true

Func ImplyTemplate::VerifyScanner::postscan(L):
if counter != 0 then ifHold ← false

if !ifHold then return InvState.FAIL

if ifActivated then return InvState.PASS

else return InvState.INACTIVE

rules from the trace. Most templates follow three phases in
the infer function: pre-scan, scan, and post-scan (interfaces
defined in Listing 1). The pre-scan step typically builds an
index of the unique event set in the trace. The uniqueness
is determined by a custom function we define for different
types of events. For example, operation invocation events are
unique based on the signatures of invoked functions. The
scan step iterates through each event in the trace and up-
dates bookkeeping data structures such as an event occur-
rence map. The post-scan step generates invariants based on
the bookkeeping data structures. Templates that do not follow
this pattern can customize the procedures. For example, the
AfterOpAtomicStateUpdateTemplate iterates forward once
and scans backwards once; the StateEqualsDenyOpTemplate

scans the trace for each state type in the test.
The core inference algorithm for each template, while dif-

ferent, is relatively straightforward. It essentially involves
identifying events in the trace that match the type of a tem-
plate’s parameter, enumerating hypotheses (candidates) from
the contexts, and validating the hypotheses against the trace.
Since the trace size is moderate, we can afford enumerations.
Example. We describe the inference of a representative tem-

100    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



e3=>e1post-scan e3=>e2e1=>e2

pre-scan

e2

e1

e3

e2

e1

01 1 100

10 101 0

1 11 00 0

1 00 1 10

<e2,e3><e3,e1>

1 0

<e2,e1>

1 0

<e1,e3>

0

<e3,e2><e1,e2>

0

e1=>e2post-scan

pre-scan

e1

e2

e1

e3

1

0

0

1

<e1,e2>

scan

10

1 1

00

<e3,e1>

0

<e3,e2>

0

(a
) 
in

fe
re

n
c
e

(b
) 
v
a
lid

a
ti
o

n

/ e3=>e2

scan

Figure 9: Inference and validation algorithm example.

plate p⇒ q, which represents that every invocation of oper-
ation p implies a subsequent operation invocation of q. For
example, createSession should usually imply closeSession.
The steps are listed in Algorithms 1 and 2.

We use Figure 9 (a) to show the process of inferring rules of
template p⇒ q from a patched trace [e1,e2,e3,e1,e2]. The
algorithm assumes all pairs <ei,e j> in the unique event set
are candidate contexts to the template, in which ei and e j are
of OpTriggerEvent type and the uniqueness is based on the
operation name. Then it attempts to find counterexamples to
invalidate wrong rules. The inference algorithm of this tem-
plate uses a simple counting approach that runs in three steps.
The pre-scan step constructs a nested map {event: {event:
int}} to record the occurrences for the event pairs. For each
event pair, the counter is initially zero. Then the scan step
iterates through each event e in the trace in order. If e is ei,
i.e., a key in the nested map, we increment the counters for all
entries with <ei, *> keys; if e is e j, we decrement the counters
for entries that have <*, e j> keys and have positive counters.
In the post-scan step, we check the final state of counters. If
the final counter does not reach zero, there is an orphan ei that
does not have subsequent e j. We get e1⇒ e2, e3⇒ e1 and
e3⇒ e2 at the end. Rules like e1⇒ e3 are removed because
no subsequent e3 occurs after the second e1.

9.4 Rule Validation
After step ¸, the inference engine could infer many likely
semantic rules. Oathkeeper then applies these rules against
the buggy traces (¹) and sees which rules are violated. Simi-
larly to inference, each template class needs to implement a
verify function. The verify function also usually consists of
three phases: pre-scan, scan, and post-scan. The pre-scan step
initializes auxiliary data structures specific to the template.
The scan step goes over the events in the trace and updates
the data structures. In some template, the scan step does not
need to iterate through all events in the trace if a contradictory
example is already found. The post-scan step checks the data
structures and returns the result, which could be PASS (rule
is activated and no contradiction is found), INACTIVE (the an-
tecedent of the rule does not occur, e.g., p⇒ q is inactive in
a trace without occurrences of p), or FAIL (at least one con-
tradiction is found). We only preserve rules that pass in the
patched trace and fail in the buggy trace.

Example. Algorithms 1 and 2 show the steps to verify tem-

plate p⇒ q. We use Figure 9 (b) to show the process of vali-
dating inferred rules from (a) on a buggy trace [e1,e2,e3,e1].
There are three rules to verify: e1⇒ e2, e3⇒ e1, e3⇒ e2. In
the pre-scan step, we first initialize a counter for each inferred
rule. The scan step then updates the counter: for rule ei⇒ e j,
if a processed event e matches ei, we increment the counter;
if e matches e j, we decrement the counter if it is positive. All
three rules are active as both e1 and e3 appear in the trace.
The post-scan step marks rules with non-zero counters as
FAIL: e1⇒ e2 and e3⇒ e2.

However, there could still be a significant number of rules
due to noises like unfinished tests (e.g., an assertion failed
in the middle of the test), new type events (new methods
introduced), coincidence, and methods that are used for testing
only. To reduce these noises, the verifier validates (º) the
candidate rules against traces obtained from all test cases,
under the patched version, and discards rules that do not hold
in all traces. In addition, we filter uninteresting rules about the
system start-up or shut-down methods or thread run methods.
This is achieved by inserting special marker events at the
start and end of test method, and only running the inference
algorithms on trace region within the markers.

9.5 Runtime Checking
Oathkeeper deploys the refined semantic rules with the tar-
get system in production, along with the verifier and event
tracer. Oathkeeper performs load-time instrumentation to the
production system in a wrapper class of the entry points. Dif-
ferent from the offline stage, the instrumentation is selective
to only the deployed rules and is thus lightweight. The event
tracer stores in-memory traces from the target systems.

The runtime verifier schedules periodical tasks that validate
the current trace against each of the deployed semantic rules.
It reuses the same checking logic defined in the function
verify of the template. When the engine finds a semantic
rule reported as FAIL, it records the counterexamples in the
traces for debugging. It also schedules a second check on this
violated rule again shortly to tolerate transient violations or
inconsistencies in the trace. For high availability, Oathkeeper
generates alerts in the log upon detection of potential semantic
failures and does not attempt to crash the system.

9.6 Optimizations
The validation step can be time-consuming. With N (often
thousands) candidate rules and M (often hundreds) test cases,
we need to get M traces and check N×M times. To reduce the
validation time, we introduce a survivor optimization. After
a test finishes, we validate the rules, if some rule is already
“killed” (invalidated) by this test’s trace, it will not be carried
over to the remaining tests. Therefore, only the survived rules
will be validated to the end. Another optimization is to run
more closely related tests first. The rationale is that some test
takes a long time to run but is irrelevant to a given rule (thus
the test’s trace will not disprove the rule). By prioritization,
we can potentially invalidate false rules faster.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    101



We also add several optimizations to reduce the runtime
overhead. First, the event tracer only preserves the most re-
cent events within a time window, since always checking
full traces from the start is wasteful. The time window is
configured larger than checking frequency to avoid missing
checking events. The events involved in time-related semantic
rules are excluded as their expiration time is based on their
parameters. Second, to achieve both high concurrency and
low memory pressure, we decouple the checking from the
event emission with a ring buffer design inspired by high-
performance message queues [10]. Third, to avoid massive
new object creation frequently triggering garbage collection,
we reuse expired event objects in the ring buffers. Oathkeeper
also pre-allocates buffers for each type of events at the instru-
mentation phase to prevent buffer initialization blocking.

9.7 Implementation
We implement Oathkeeper in Java (JDK 8). Its instrumen-
tation library is built based on Javassist for class bytecode
manipulation. Its test engine leverages JUnit to manage and
execute test cases. The tool also includes a workflow script
such as checking out patched and buggy versions and check-
ing a semantic rule against given traces.

9.8 Limitations
Our approach makes several assumptions: 1) semantics should
be expressible with simple relations of events; 2) the system
has a number of test cases with good quality; 3) the failure
patch should not involve significant redesign or interface in-
terfaces. If some assumption does not hold, Oathkeeper may
fail to deduce good semantic rules.

10 Evaluation
We have integrated Oathkeeper with ZooKeeper, HDFS and
Kafka. We evaluate (1) whether Oathkeeper can leverage past
semantic failures to check new violations; (2) what runtime
overhead it incurs to the target system. The experiments are
done in servers with 20-core 2.2 GHz CPUs, 64 GB memory,
running Ubuntu 18.04. The Oathkeeper check engine is con-
figured to schedule and check rule violations every second.

10.1 Generation Overview
Oathkeeper requires old semantic failures and their associ-
ated regression tests as input to extract semantic rules. We
select old semantic failures and their regression tests to re-
produce (8 for ZooKeeper, 10 for HDFS and 8 for Kafka).
These tests cover major functionalities of the three systems.
We add a switch in the system code to easily enable and dis-
able the patch for the semantic failure bugs. We then apply
Oathkeeper to the source code to add instrumentation points,
run the regression tests with the patch switch turned on and
off, and execute other steps in Oathkeeper (Section 9.1). For
each case, Oathkeeper infers many raw semantic rules. After

JIRA Id Violated Semantics

ZK-1496 ephemeral node should be deleted after session expired
ZK-1667 watcher should return correct event when client reconnected
ZK-3546 container node should be deleted after children all removed
HDFS-14699 failed block need to be reconstructed
HDFS-14317 edit log rolling should be activated periodically
HDFS-14633 file rename should respect storageType quota
KAFKA-12426 partition topic ID should be persisted into metadata file

Table 4: Evaluated newer semantic failures.

the validation and optimization step, the rule set is signifi-
cantly reduced. In total, Oathkeeper extracted 285 rules for
ZooKeeper, 1,209 rules for HDFS, and 150 rules for Kafka.

10.2 Checking Newer Violations
We evaluate whether the inferred rules are useful to catch new
semantic failures. Given Oathkeeper’s approach, it is likely
less effective with unseen semantics. We reproduce 7 newer
(9–34 months later) failures (Table 4) that violate related
semantics in the old cases, but with different root causes.
With the inferred rules, Oathkeeper detects violations for 6
of them. These newer violations are known bugs by the time
we conducted this experiment. However, their root causes
and triggering conditions are completely different from the
failures used to extract semantic rules. Oathkeeper detects
these newer violations with only knowledge from the old
failures, which demonstrates the tool’s detection capability.

We show one example in Figure 10. ZK-1496 is not in our
study dataset, but its symptom is similar to a studied failure
ZK-1208 that was reported 9 months ago prior to ZK-1496 in
an older release. Users found that the ephemeral znodes were
not deleted long after the client exited. The root cause is a
race condition bug that while the session tracker is removing
the expired session, another thread is processing an ephemeral
node creation request. In ZK-1208, developers added a fix
to mark sessions as closing to prevent ephemeral node cre-
ation on expiring sessions, and introduced a regression test.
Oathkeeper executes the regression test on ZooKeeper twice
with patch enabled and disable, and generates two traces (c)
and (d). Then Oathkeeper infers rules (e) from the patched
traces. Not all inferred rules are useful. Oathkeeper only pre-
serves rules that fail in buggy traces and pass all tests (f).
Rules such as 3 are filtered when being validated on all tests.
Finally, two verified rules 1 and 2 detect the violations (g).

Oathkeeper fails to detect ZK-1667: client A sets a watch
on /d and then disconnects, client B deletes /d and recreates
it; when client A reconnects, it receives a NodeCreated event
instead of NodeDataChanged event. The violated semantics fits
into one of our templates. However, due to the quality of the
old watch test in our pool, Oathkeeper infers other rules.

The average detection time is 0.91 seconds. This result
does not contradict with the long-lived semantics finding in
Section 7. In the experiments, we trigger the conditions to
reproduce the failure soon and measure the detection time
from the start time of the violation.

We compare Oathkeeper with a state-of-the-art invariant

102    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



.. ..

0
1

state

.. removeSession
sessionsById..
ephemerals..

setSessionClo....
event trace# SessionTrackerImpl.setS

essionClosing()
SessionTrackerImpl.remo

veSession()

preceded-by

DateTree.ephemerals
SessionTrackerImpl.sessi

onsById

imply

DataTree.getNodeCount()
SessionTrackerImpl.remo

veSession()

happens-before

SessionTrackerImpl.sessi
onsById

PrepRequestProcessor.c
heckACL()

0=

1

2

3

4

DISCARDED

PASS

…

All traces

PASS

PASS

… …
4 FAIL

FAIL3
FAIL2
FAIL1

Buggy traceRule

1
FAIL

Rule

4 PASS
2

FAIL
Status

OpTriggerEvent
constant

....

0
1

state

.. removeSession
sessionsById..
ephemerals..

....
event trace#

(b) Regression test case (ZK-1208)

(a) Bug patch
void checkSession(...) {
-    if (session == null) {
+    if (session == null 
+        || session.isClosing()) {
        throw new SessionExpiredException();
    }
...
void pRequest2Txn(...){
     case OpCode.create:
         checkSession();

void testCreateAfterCloseShouldFail() {
  for (int i = 0; i < 10; i++) {
    // open a connection
    ConnectRequest conReq = new ...;
    // close connection
    RequestHeader h = new ...;
    // create ephemeral znode
    CreateRequest createReq = new...;
  }
  assertEquals(1, zk.getChildren("/").size());
}

(c) Patched trace

(d) Buggy trace

(e) Inferred rules

(f) Verified rules (g) Checking result (ZK-1496)

exclude

StateUpdate
Event

….

Figure 10: Example: Oathkeeper workflow of using ZK-1208 to detect ZK-1496.

2 4 6 8 10 12 14 16 18 20 22

Failures used for mining rules

0

5

10

15

20

D
e
te

c
te

d
 f

a
il
u
re

s

cases

ratio

0.00

0.25

0.50

0.75

1.00
D

e
te

c
ti

o
n
 r

a
ti

o

Figure 11: Detection of 22 semantic failures in ZooKeeper (sorted
by the bug ticket time in ascending order) when applying Oathkeeper
on a sliding subset of the failures for inferring semantic rules.

checking tool, Dinv [30]. Dinv is designed for checking dis-
tributed protocols. Its core invariant inference component is
based on Daikon [26] that mines variable-level relationship.
We instrument the state variables in the two systems and ap-
ply Daikon to traces from the system test cases. The inferred
invariants only detect 1 case (ZK-1496) and are highly noisy.

We conduct an additional “cross-validation” experiment.
Specifically, we collect a larger pool of 22 semantic failures
in ZooKeeper. The failures are sorted from older to newer. We
feed each failure to Oathkeeper and measure how many of the
22 failures can be detected. For 16 cases, the rules inferred
from one case only detect that case. It does not imply, though,
these rules are useless. They might help detect failures outside
the pool. Interestingly, for the remaining 6 cases, their inferred
rules detect a median of 5 failures. For example, rules from
ZK-2355 can detect 6 other failures besides itself. Figure 11
plots the aggregate detection result.

10.3 Performance
Figure 12 shows the performance of running Oathkeeper for
the 26 old cases. Our template-based inference is fast. The
median time to finish inference is 6.5 s. The median trace
generation time is 153.5 s. The most time-consuming part
is verifying the inferred rules against the system test suite,
because running the full test for the three systems alone takes
a long time. The end-to-end validation time is 2196 s (me-
dian). After discounting the original test execution time, the
median validation time is 301 s. The survivor optimization we
introduce (Section 9.4) helps. In one time-consuming case, it

0
2000
4000
6000
8000

Ti
m

e 
(s

)

0
30
60
90

Ti
m

e 
(s

)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Failure Id

0100200300400500

Ti
m

e 
(s

)

Verify Infer GenTrace

Figure 12: Time to generate trace, infer rules, and verify rules
against test suite. ZK: Id 0–7, HDFS: Id 8–17, KF: Id 18–25.

Base 25% 50% 75% 100%
ZooKeeper 418.27 417.63 416.71 416.55 416.1
HDFS 174.55 174.56 172.10 172.10 172.06
Kafka 30,759.49 30,546.00 30,377.50 30,246.04 30,183.15

Table 5: System throughput (op/s) with varying percentages of se-
mantic rules enabled. The 100% represents 285 rules for ZooKeeper,
1,209 rules for HDFS, and 150 rules for Kafka.

reduces the end-to-end validation time from 8104 s to 5024 s.

10.4 Runtime Overhead
We measure the overhead Oathkeeper introduces to the sys-
tems at runtime. The main source of overhead comes from
the added instrumentation to emit traces; the rule checking
does not impact the system much because it is done asyn-
chronously. Oathkeeper only adds instrumentation relevant to
the deployed rules to minimize the overhead. Naturally, more
rules lead to higher overhead. We evaluate the overhead as a
function of the percentage of enabled rules. For ZooKeeper,
we run the workload of 15 clients sending 15,000 requests
(40% reads, 60% creates and writes). For HDFS, we run the
built-in benchmark NNBenchWithoutMR which creates and
writes 100 files, each file has 160 blocks and each block is
1MB. For Kafka, we run the workload of producing 1 mil-
lion 16KB messages. Table 5 shows the result. With all rules
enabled, the average system throughput overhead is 1.27%.

Our initial event tracer used an array list with synchroniza-
tion, which resulted in a 31% overhead under heavy work-
loads. We later implemented a more complex non-blocking
queue, but the overhead is still large. After investigation, we

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    103



found the overhead mainly comes from memory and GC in-
stead of synchronization, which motivated our ring buffer
design (Section 9.6) that significantly reduced the overhead.

10.5 Rule Activation and False Positive
We deploy the inferred rules to a cluster of ZooKeeper, HDFS,
and Kafka instances. We run a set of workloads against the
instances. We first measure the rule activation ratio during
the experiment. A rule is activated if the check engine finds
the antecedent of the rule has occurred. For ZooKeeper, 11%
of the rules are activated. The remaining rules are not acti-
vated due to the lack of workloads, faulty conditions, etc.,
to trigger the antecedent events. For HDFS and Kafka, the
activation ratio is 66% and 48%. We then measure the false
positive ratio among the activated rules. The result is 4% for
ZooKeeper, 9% for HDFS, and 12% for Kafka. This result
benefits from the validation steps described in Section 9.4:
Oathkeeper eliminates falsely inferred rules by validating the
rules against both the buggy trace and the traces from all test
cases of a target system. Adding profile runs or a dynamic
ban mechanism can further remove the false rules.

11 Related Work
Semantic Bugs. Several studies [42,55,58] analyze the preva-
lence of semantic bugs in open-source server software. Our
study analyzes semantic failures in distributed systems. Be-
yond the difference that we investigate distributed systems,
the study of bugs is in general a complementary effort to
the study of failures. The former focuses on analyzing the
static code patterns, while the latter focuses on the dynamic
manifestations and system misbehavior.

Several solutions are proposed to detect semantic bugs in
file systems and DBMS, including cross-checking multiple
file system implementations [50], fuzzing [39], and testing
using pivoted query [54]. Both cross-checking and fuzzing
focus on finding bugs offline. Oathkeeper focuses on a com-
plementary direction of inferring semantic rules for runtime
checking. We hope our study can motivate future work to
extend these solutions to detect semantic bugs in distributed
systems. We observe some open challenges to cross-check
distributed systems: distributed systems usually provide a
wide variety of semantics that are less rigorously specified
compared to file systems, which have well-defined seman-
tics (e.g., POSIX standard) and many implementations. Each
distributed system has its unique semantics and may not be
cross-checkable. In addition, they often contain many internal
and background mechanisms that provide semantic guaran-
tees but the semantics are not easy to be tested. For fuzzing,
the challenge is that many silent semantic violations require
external faulty events (e.g., node restarts, network error) to
trigger besides input. Thus, fault injection testing is needed.

Distributed Systems Failure Study. Understanding failures
has been an important theme in distributed system literature,
with a series of empirical studies [16, 17, 19, 25, 31, 32, 36,

37, 46, 51], e.g., on fail-slow faults [32], gray failures [37],
and network partitions [17]. These failures usually have some
error signals such as timeouts. Our study complements these
studies and focuses on the under-explored silent semantic
failures in distributed systems.

Runtime Verification. Prior works have explored runtime
assertions to verify distributed protocols [43, 44], file sys-
tems [28], and network functions [57]. Runtime verifica-
tion [34] is also studied in embedded systems and Java bench-
mark programs [24]. Recent works [45, 46] propose intrinsic
watchdogs that detect partial faults with clear error signals.
Lu et al. propose a runtime checker for consistency viola-
tions [48]. Overall, there is a lack of runtime verification
solutions for monitoring the semantic correctness of large-
scale distributed system implementations. Our proposed tool
Oathkeeper explores automatically extracting semantic rules
to check a variety of semantics for large distributed systems.

Invariant Mining. Inferring likely invariants from software
execution traces have been studied, e.g., Daikon [26] and
DIDUCE [33]. They mainly focus on mining invariants on
the relationship of program variables for single-component
software, e.g., off < array.length. These invariants are too
low-level to capture the semantics of distributed systems.

Dinv [30] is proposed to infer protocol invariants of pro-
gram variables across nodes. It runs complex program slicing
to instrument program variables influenced by network com-
munication. It then uses Daikon to infer invariants from the
logs of running the system’s test suite. I4 [49] infers inductive
invariants for verifying distributed protocols.

Oathkeeper is complementary to the two efforts. Instead of
protocols and variable relations, we focus on inferring high-
level semantic rules for large distributed systems, most of
which are not about protocols. Also unlike Dinv, Oathkeeper
does not rely on complex static analysis to work and thus
does not suffer from analysis inaccuracies and scalability
limitations. Oathkeeper takes a unique approach of leveraging
past failures and semantic templates to extract semantic rules.

12 Conclusion

Silent semantic violations pose a severe challenge to dis-
tributed systems reliability. This paper sheds light on this
under-explored yet important problem by presenting a study
on real-world failures in popular distributed systems. It re-
veals that sadly “a promise is often not a promise”. Guided by
our study, we design a tool Oathkeeper that automatically ex-
tracts semantic rules from past semantic failures, and enforces
these rules at runtime to check future violations.

Acknowledgments
We thank our shepherd, Annette Bieniusa, and the OSDI re-
viewers for their valuable feedback. This work was supported
in part by NSF grants CNS-1942794, CNS-2149664, CNS-
1910133, and CCF-1918757, and a Facebook research award.

104    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Apache ZooKeeper releases. https://zookeeper.apache.org/
releases.html.

[2] Google cloud infrastructure incident #20013. https://status.
cloud.google.com/incident/zall/20013.

[3] Google cloud storage incident #17005. https://status.cloud.
google.com/incident/storage/17005.

[4] HBASE-11536: Puts of region location to meta may be out
of order which causes inconsistent of region location. https:
//issues.apache.org/jira/browse/HBASE-11536.

[5] HBase-17125: Inconsistent result when use filter to read data.
https://issues.apache.org/jira/browse/HBASE-17125.

[6] HDFS-12217: HDFS snapshots doesn’t capture all open files
when one of the open files is deleted. https://issues.apache.
org/jira/browse/HDFS-12217.

[7] HDFS-14359: Inherited acl permissions masked when parent
directory does not exist (mkdir -p). https://issues.apache.

org/jira/browse/HDFS-14359.

[8] HDFS-9083: Replication violates block placement policy.
https://issues.apache.org/jira/browse/HDFS-12070.

[9] KAFKA-2960: DelayedProduce may cause message loss dur-
ing repeated leader change. https://issues.apache.org/

jira/browse/KAFKA-2960.

[10] Lmax disruptor. https://lmax-exchange.github.io/

disruptor/.

[11] MongoDB-12355: add "invariant" for invariant check-
ing in server code. https://jira.mongodb.org/browse/

SERVER-12355.

[12] MongoDB-50971: Invariant failure, wt_notfound: item not
found. https://jira.mongodb.org/browse/SERVER-50971.

[13] ZooKeeper-1208: Ephemeral node not removed after the
client session is long gone. https://issues.apache.org/jira/
browse/ZOOKEEPER-1208.

[14] ZooKeeper-2774: Ephemeral znode will not be removed
when sesstion timeout, if the system time of zookeeper node
changes unexpectedly. https://issues.apache.org/jira/

browse/ZOOKEEPER-2774.

[15] ZooKeeper-3144: Potential ephemeral nodes inconsistent due
to global session inconsistent with fuzzy snapshot. https:

//issues.apache.org/jira/browse/ZOOKEEPER-3144.

[16] M. Alfatafta, B. Alkhatib, A. Alquraan, and S. Al-Kiswany.
Toward a generic fault tolerance technique for partial network
partitioning. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI ’20, pages 351–368.
USENIX Association, Nov. 2020.

[17] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany. An
analysis of network-partitioning failures in cloud systems. In
Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’18, page 51–68,
Carlsbad, CA, USA, 2018.

[18] J. Armstrong. Making reliable distributed systems in the pres-
ence of software errors. PhD thesis, The Royal Institute of
Technology, Stockholm, Sweden, 2003.

[19] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter
fault tolerance. In Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems, HotOS ’01, pages 33–. IEEE
Computer Society, 2001.

[20] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating
root-cause diagnosis of performance anomalies in production
software. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI ’12,
pages 307–320, 2012.

[21] M. Attariyan and J. Flinn. Automating configuration trou-
bleshooting with dynamic information flow analysis. In Pro-
ceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’10, pages 1–11, 2010.

[22] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2):225–267, Mar.
1996.

[23] K. M. Chandy and L. Lamport. Distributed snapshots: De-
termining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63–75, Feb. 1985.

[24] F. Chen and G. Roşu. Mop: An efficient and generic runtime
verification framework. In Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications, OOPSLA ’07, page 569–588, Mon-
treal, Quebec, Canada, 2007.

[25] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and
H. S. Gunawi. Limplock: Understanding the impact of limp-
ware on scale-out cloud systems. In Proceedings of the 4th
Annual Symposium on Cloud Computing, SOCC ’13, pages
14:1–14:14, Santa Clara, California, 2013.

[26] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao. The daikon system for dy-
namic detection of likely invariants. Sci. Comput. Program.,
69(1–3):35–45, Dec. 2007.

[27] A. S. Foundation. HDFS high availability using the
quorum journal manager. https://hadoop.apache.

org/docs/stable/hadoop-project-dist/hadoop-hdfs/

HDFSHighAvailabilityWithQJM.html.

[28] D. Fryer, K. Sun, R. Mahmood, T. Cheng, S. Benjamin, A. Goel,
and A. D. Brown. Recon: Verifying file system consistency at
runtime. In Proceedings of the 10th USENIX Conference on
File and Storage Technologies, FAST ’12, pages 7–7, San Jose,
CA, 2012.

[29] J. A. Goguen. Semantics of computation. In Proceedings
of the Proceedings of the First International Symposium on
Category Theory Applied to Computation and Control, page
151–163. Springer-Verlag, 1974.

[30] S. Grant, H. Cech, and I. Beschastnikh. Inferring and assert-
ing distributed system invariants. In Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18,
page 1149–1159, Gothenburg, Sweden, 2018.

[31] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D.
Satria, J. Adityatama, and K. J. Eliazar. Why does the cloud
stop computing?: Lessons from hundreds of service outages. In
Proceedings of the 7th ACM Symposium on Cloud Computing,
SOCC ’16, pages 1–16, Santa Clara, CA, USA, Oct. 2016.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    105

https://zookeeper.apache.org/releases.html
https://zookeeper.apache.org/releases.html
https://status.cloud.google.com/incident/zall/20013
https://status.cloud.google.com/incident/zall/20013
https://status.cloud.google.com/incident/storage/17005
https://status.cloud.google.com/incident/storage/17005
https://issues.apache.org/jira/browse/HBASE-11536
https://issues.apache.org/jira/browse/HBASE-11536
https://issues.apache.org/jira/browse/HBASE-17125
https://issues.apache.org/jira/browse/HDFS-12217
https://issues.apache.org/jira/browse/HDFS-12217
https://issues.apache.org/jira/browse/HDFS-14359
https://issues.apache.org/jira/browse/HDFS-14359
https://issues.apache.org/jira/browse/HDFS-12070
https://issues.apache.org/jira/browse/KAFKA-2960
https://issues.apache.org/jira/browse/KAFKA-2960
https://lmax-exchange.github.io/disruptor/
https://lmax-exchange.github.io/disruptor/
https://jira.mongodb.org/browse/SERVER-12355
https://jira.mongodb.org/browse/SERVER-12355
https://jira.mongodb.org/browse/SERVER-50971
https://issues.apache.org/jira/browse/ZOOKEEPER-1208
https://issues.apache.org/jira/browse/ZOOKEEPER-1208
https://issues.apache.org/jira/browse/ZOOKEEPER-2774
https://issues.apache.org/jira/browse/ZOOKEEPER-2774
https://issues.apache.org/jira/browse/ZOOKEEPER-3144
https://issues.apache.org/jira/browse/ZOOKEEPER-3144
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html


[32] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sun-
dararaman, X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. Mc-
Caffrey, G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Ja-
cobson, R. Ricci, K. Webb, P. Alvaro, H. B. Runesha, M. Hao,
and H. Li. Fail-slow at scale: Evidence of hardware perfor-
mance faults in large production systems. In Proceedings of the
16th USENIX Conference on File and Storage Technologies,
FAST ’18, pages 1–14, Oakland, CA, USA, 2018.

[33] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. In Proceedings of the 24th
International Conference on Software Engineering, ICSE ’02,
page 291–301, Orlando, Florida, 2002.

[34] K. Havelund and G. Roşu. Runtime verification. Computer
Aided Verification (CAV ’01) satellite workshop (ENTCS), 55,
2001.

[35] Y. Hu, G. Huang, and P. Huang. Automated reasoning and
detection of specious configuration in large systems with sym-
bolic execution. In Proceedings of the 14th USENIX Sympo-
sium on Networked Systems Design and Implementation, OSDI
’20. USENIX, November 2020.

[36] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang. Capturing
and enhancing in situ system observability for failure detection.
In 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’18, pages 1–16, Carlsbad, CA, October
2018.

[37] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalap-
ati, and R. Yao. Gray failure: The Achilles’ heel of cloud-scale
systems. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems, HotOS ’17. ACM, May 2017.

[38] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,
death, and the critical transition: Finding liveness bugs in sys-
tems code. In Proceedings of the 4th USENIX Conference
on Networked Systems Design and Implementation, NSDI ’07,
page 18, Cambridge, MA, 2007.

[39] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim. Find-
ing semantic bugs in file systems with an extensible fuzzing
framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 147–161,
Huntsville, Ontario, Canada, 2019.

[40] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Wal-
fish. Detecting failures in distributed systems with the Falcon
spy network. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 279–294,
Cascais, Portugal, Oct. 2011.

[41] S. Levy, R. Yao, Y. Wu, Y. Dang, P. Huang, Z. Mu, P. Zhao,
T. Ramani, N. Govindraju, X. Li, Q. Lin, G. L. Shafriri, and
M. Chintalapati. Predictive and adaptive failure mitigation to
avert production cloud VM interruptions. In Proceedings of
the 14th USENIX Symposium on Networked Systems Design
and Implementation, OSDI ’20. USENIX, November 2020.

[42] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have
things changed now? an empirical study of bug characteristics
in modern open source software. In Proceedings of the 1st
Workshop on Architectural and System Support for Improv-
ing Software Dependability, ASID ’06, page 25–33, San Jose,
California, 2006.

[43] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
M. F. Kaashoek, and Z. Zhang. D3S: Debugging deployed
distributed systems. In Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementation,
NSDI ’08, page 423–437. USENIX Association, 2008.

[44] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS checker: Com-
bating bugs in distributed systems. In Proceedings of the 4th
USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI ’07. USENIX Association, Apr. 2007.

[45] C. Lou, P. Huang, and S. Smith. Comprehensive and efficient
runtime checking in system software through watchdogs. In
Proceedings of the 17th Workshop on Hot Topics in Operating
Systems, HotOS ’19, Bertinoro, Italy, May 2019.

[46] C. Lou, P. Huang, and S. Smith. Understanding, detecting and
localizing partial failures in large system software. In 17th
USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI ’20, pages 559–574. USENIX Association,
Feb. 2020.

[47] C. Lou, Y. Jing, and P. Huang. A promise is not a promise—
demystifying and checking silent semantic violations in large
distributed systems. Technical report, Johns Hopkins Univer-
sity, July 2022. https://orderlab.io/paper/oathkeeper-tr.

pdf, Accessed July 2022.

[48] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Toba-
gus, S. Kumar, and W. Lloyd. Existential consistency: Measur-
ing and understanding consistency at facebook. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP
’15, page 295–310, Monterey, California, 2015.

[49] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci, and
K. A. Sakallah. I4: Incremental inference of inductive invari-
ants for verification of distributed protocols. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 370–384, Huntsville, Ontario, Canada, 2019.

[50] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-
checking semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 361–377, Monterey, Cali-
fornia, 2015.

[51] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do Internet services fail, and what can be done about it? In
Proceedings of the 4th Conference on USENIX Symposium on
Internet Technologies and Systems, USITS ’03, Seattle, WA,
Mar. 2003.

[52] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, and H. S.
Gunawi. IASO: A fail-slow detection and mitigation frame-
work for distributed storage services. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages 47–62.
USENIX Association, July 2019.

[53] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft. Recovery oriented computing (roc): Motiva-
tion, definition, techniques, and case studies. Technical Report
UCB/CSD-02-1175, EECS Department, University of Califor-
nia, Berkeley, Mar 2002.

106    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://orderlab.io/paper/oathkeeper-tr.pdf
https://orderlab.io/paper/oathkeeper-tr.pdf


[54] M. Rigger and Z. Su. Testing database engines via pivoted
query synthesis. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’20, pages 667–
682. USENIX Association, Nov. 2020.

[55] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug
characteristics in open source software. Empirical Softw. Engg.,
19(6):1665–1705, Dec. 2014.

[56] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupa-
thy. Early detection of configuration errors to reduce failure
damage. In Proceedings of the The 12th USENIX Symposium
on Operating Systems Design and Implementation, OSDI ’16,
November 2016.

[57] N. Yaseen, B. Arzani, R. Beckett, S. Ciraci, and V. Liu. Aragog:
Scalable runtime verification of shardable networked systems.
In 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’20, pages 701–718. USENIX Associa-
tion, Nov. 2020.

[58] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasun-
daram. How do fixes become bugs? In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE ’11, page
26–36, Szeged, Hungary, 2011.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    107





RESIN: A Holistic Service for Dealing with Memory Leaks
in Production Cloud Infrastructure

Chang Lou1, Cong Chen2, Peng Huang1, Yingnong Dang2, Si Qin3, Xinsheng Yang4, Xukun Li2,
Qingwei Lin3, Murali Chintalapati2

1Johns Hopkins University 2Microsoft Azure 3Microsoft Research 4Meta

Abstract
Memory leak is a notorious issue. Despite the extensive ef-
forts, addressing memory leaks in large production cloud
systems remains challenging. Existing solutions incur high
overhead and/or suffer from high inaccuracies.

This paper presents RESIN, a solution designed to holisti-
cally address memory leaks in production cloud infrastruc-
ture. RESIN takes a divide-and-conquer approach to tackle
the challenges. It performs a low-overhead detection first
with a robust bucketization-based pivot scheme to identify
suspicious leaking entities. It then takes live heap snapshots
at appropriate time points in carefully sampled leak entities.
RESIN analyzes the collected snapshots for leak diagnosis.
Finally, RESIN automatically mitigates detected leaks.

RESIN has been running in production in Microsoft Azure
for 3 years. It reports on average 24 leak tickets each month
with high accuracy and low overhead, and provides effective
diagnosis reports. Its results translate into a 41× reduction of
VM reboots caused by low memory.

1 Introduction
Memory leak is a prevalent issue in software, from applica-
tions [13] to OS kernels and device drivers [46]. At Microsoft
Azure, its infrastructure contains many complex software com-
ponents running on a massive number of machines with vari-
ous workloads. Unsurprisingly, these components encounter
memory leak issues from time to time. When a process leaks
memory, the direct consequence is performance degradation
and crash. Worse still, its impact often affects other compo-
nents running on the same machine, such as causing excessive
paging, innocent processes being killed, and node reboots.

Memory leak is notoriously difficult to deal with, especially
in a production cloud infrastructure setting. The issues are
usually only triggered by rare conditions and occur slowly,
thus they easily escape testing and failure detectors [20]. Af-
ter leak symptoms are detected, it is time-consuming and
sometimes impossible to reproduce them offline. Unlike other
failures like crashes that have clear points to start diagnosis,
developers are often clueless in finding the leak’s root cause.

Extensive solutions have been proposed to detect memory
leak bugs. One approach uses static analysis techniques [10,
15,18,36,47] to analyze the software source code and deduce
potential leaks. The second approach detects memory leaks
dynamically by instrumenting a program and tracking the
object references at runtime [16, 21, 25, 39, 49].

While helpful, these solutions are insufficient to address the
memory leak challenges in Azure. Static approach is limited
by the well-known accuracy and scalability issues with static
analyses. It also only focuses on leaks in which allocated
objects are unreachable [24]. If memory objects are reach-
able but never accessed again, it still incurs the consequences
of leaks. Such leaks are hard to detect statically. Moreover,
memory leaks in cloud infrastructure can be caused by cross-
component contract violations, which require too much do-
main knowledge to recognize statically.

Dynamic approaches better fit Azure’s requirements. How-
ever, while the existing dynamic detection solutions are gen-
erally more accurate, they are intrusive and require extensive
instrumentations that are cumbersome to apply to complex
components [16, 21]. They also incur high runtime overhead
that is prohibitive for deployment in production [6].

In this paper, we present RESIN, an end-to-end service
designed to holistically address memory leaks in large cloud
infrastructure, from detection to diagnosis and mitigation.
RESIN is highly scalable—it analyzes all the host software
components, including kernels, drivers, and system processes,
on millions of nodes in Azure. RESIN has low overhead while
running in production environment. At the same time, RESIN
provides good accuracy and helps developers pinpoint the
root causes of memory leak issues.

Two key insights motivate the design of RESIN and enable
it to achieve the above properties. First, the conundrum of
existing solutions is in part because they mix detecting a leak
and pinpointing the leak bug in one step, so they have to make
trade-offs among accuracy, scalability, and overhead. In our
experience, we should decompose the detection and pinpoint-
ing into multi-level stages to catch memory leaks at produc-
tion scale. Second, taking a centralized service approach that

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    109



leverages low-level system mechanism is essential to support
many components transparently in a non-intrusive way. It also
enables gathering valuable information from many nodes in
the cloud to address the accuracy challenges.

Based on these insights, RESIN performs non-intrusive,
low-overhead leak detection first. When a process is suspected
of experiencing leaks, RESIN triggers a live heap-snapshot
mechanism to capture sufficient evidence and runs diagnosis.
RESIN leverages kernel-level monitors and profilers as its
building blocks, so it directly supports all the running pro-
cesses without cumbersome integration. Furthermore, RESIN
builds a centralized service that analyzes processes across all
hosts in Azure fleet together to capture complex leaks.

A key challenge for dynamic leak detection is the highly
noisy nature of memory usage in modern software affected
by the workload characteristics. Using simple static thresh-
olds can easily generate many false alarms or false negatives.
For instance, in an impactful real-world cloud service outage
caused by memory leaks, no alarm was triggered despite the
existence of a memory monitoring service [4].

RESIN addresses this challenge by designing a robust
bucketization-based pivot scheme. It aggregates the mem-
ory usages of processes across machines, and groups them
into different buckets. Then by performing a pivot analysis
on the process name, bucket, and other attributes, RESIN can
reliably detect leaks without being prone to fragile thresh-
olds. Essentially, we focus on analyzing a component’s global
memory usage behavior, rather than the microscope of an indi-
vidual process. The rationale is that a true memory leak comes
down to some buggy release. Although the memory usage
of an individual process is highly dependent on workloads,
the workload effect is likely canceled out when inspecting the
usage of the same component running in all machines.

Once a suspicious memory leak is detected, RESIN acti-
vates the second stage of taking live heap snapshots of the
suspected processes, which contain information about the
active allocations and their stack traces. This stage is more
heavyweight but provides more evidence to help developers
confirm and diagnose the issue. Since a leak is often sporadic,
RESIN aims to “hit” the leak again and capture useful evi-
dence. It carefully chooses the snapshot time points so that
the obtained snapshots have a high chance of localizing the
root causes while minimizing the snapshot cost. Besides tak-
ing heap snapshots of the suspected leaking process, RESIN
performs a fingerprinting step that periodically takes heap
snapshots of representative processes to build a reference
database. This reference database is used in the diagnosis
algorithm to further improve the diagnosis accuracy.

Finally, RESIN automatically mitigates a detected leak to
minimize its impact on the service availability and perfor-
mance. The mitigation engine in RESIN leverages the infor-
mation from the detection and diagnosis engines, and deter-
mines the appropriate actions to resolve the leak symptoms
while developers investigate the root causes and fixes.

RESIN has been running in production in Azure for more
than 3 years. RESIN reported many memory leaks, helped
developers diagnose the issues, and automatically mitigated
the leaks before their impact becomes visible to customers.
Within the recent year at the timing of writing, the unexpected
VM reboots in Azure caused by out of memory are reduced
by 41×, and the new VM allocation errors due to low memory
are reduced by 10×. In addition, no severe outages in 2020
and 2021 at Azure were caused by memory leaks.

In summary, the main contributions of this work are:
• A holistic memory leak solution for cloud infrastructure.
• A novel bucketization-based pivot scheme to robustly detect

memory leaks with low overhead.
• A live heap snapshot algorithm to effectively capture evi-

dence in production and diagnose memory leaks.
• A lightweight automated leak mitigation design.
• Deployment of RESIN in a production cloud service.

2 Background and Motivation
2.1 Host Memory Compositions
In IaaS cloud infrastructure, servers are equipped with large
memory, a significant portion of which is used by the virtual
machines (VMs), while the other portion is used by the host
software. The latter includes the hypervisor, host OS kernel,
drivers, system processes, and various host agents, e.g., an
agent that manages networking of the VMs. In this work, we
focus on memory leak issues in host software, not leaks in
customer VMs. Unless otherwise specified, the kernel, drivers
and processes hereafter refer to those in host software stack.

Leaks in the host software can cause severe performance
degradation and even instability of the host OS. They can fur-
ther impact the running VMs, because memory between VMs
and the host is not strictly partitioned, typically controlled by a
soft threshold [45]. They can also cause potential VM start-up
failures due to insufficient physical memory available.

The host memory is divided into user-mode memory and
kernel memory. The host OS in Azure’s infrastructure distin-
guishes four states for pages in a process’ virtual memory:
free, reserved (for future use but no physical page is allo-
cated), committed (memory has been allocated from physical
memory or paging files), and shared. For memory leak de-
tection, we only need to consider pages in the committed
and shared states. For kernel memory, the kernel creates two
types of memory pools: non-paged pools and paged pools.
Virtual memory in the non-paged pool is guaranteed to reside
in physical memory as long as the kernel objects are alive,
whereas memory in paged pool can be paged out. Memory
leaks in the kernel can happen in both types of pools.

2.2 Memory Leaks
Memory leak occurs when heap-allocated objects are not
freed at appropriate time. It is manifested in two forms: (i)
unreachable leak, in which an allocated object is no longer

110    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



// ConfigMonitorThread

while (cm->running) {
  waitStatus = WaitForSingleObject(
                      fileChangeHandle, 5 * 1000);
  if (waitStatus == WAIT_OBJECT_0) {
    // object is signaled, config file has changed

    ::Sleep(200);
    cm->ReadConfig(); // read the file
+   if (!FindNextChangeNotification(fileChangeHandle))  
+     throw ServerBaseException(
+         "Failed to get handle to config directory");
  }
- FindNextChangeNotification(fileChangeHandle);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

5-sec timeout, previously 

it was set to INFINITE

Figure 1: A production memory leak example in Azure from a host
process that caused leaks of objects allocated at the kernel side.

reachable from the root objects such as global and stack vari-
ables; (ii) forgotten leak, in which an allocated object is still
reachable but no longer accessed. The first type does not occur
in managed languages like Java. For the second type, since the
program still keeps references to the leaked object, it cannot
be reclaimed even with managed languages [12]. Such leak is
challenging to be detected because whether an object will be
accessed in the remaining execution is undecidable. Thus, a
leak detection solution can only output conservative (correct)
answers, e.g., the objects that are definitely dead at a given
time point, or approximate answers (which may be incorrect)
such as inferring based on the object’s staleness [17].

Memory leaks in cloud software have further complications.
For instance, while existing solutions focus on detecting leaks
in an individual component, a memory leak in cloud infras-
tructure often happens because of API contract violations be-
tween different components, which is not well addressed. This
type of leak is hard to expose in pre-production environment,
because software components are often tested separately and
integration testing cannot cover all possible interactions. Slow
leaks also unlikely get detected due to testing time constraints.

Figure 1 shows a real example of such a leak in Azure
(this case was successfully caught by RESIN). The process
has a thread that monitors the configuration file updates us-
ing WaitForSingleObject with a 5-second timeout. In each
loop iteration, it calls the FindNextChangeNotification API
(line 13). Each invocation causes the kernel to allocate I/O
request kernel objects from the non-paged pool memory. The
contract of the FindNextChangeNotification is that it must
be followed by a call to a wait function, and if the wait func-
tion returns for any reason other than the change notification
handle being signaled (e.g., timeout), the wait must be retried.
In this case, although the process calls the wait function, it un-
conditionally calls FindNextChangeNotification even if the
wait returns timeout. Thus, the kernel objects are allocated
every 5 seconds without being cleaned up. In this incident,
the culprit process’ memory usage was not high. The kernel
was experiencing memory leak in its non-paged pool, not
because of kernel bugs but rather the improper API usage in
the process’ code. This memory leak was introduced during
a bug fix for another issue: previously the process waits for
the updates using an INFINITE parameter in line 4, but this

caused service restart operations to be blocked, so developers
changed the wait parameter to a timeout of 5 seconds.

2.3 Requirements
There are several challenges and requirements for addressing
memory leaks in cloud infrastructure software:
• Highly scalable. Cloud system is large in the number of

components, codebase size, and deployment scale.
• Versatile. Memory leaks in cloud infrastructure manifest

themselves in various ways—in processes, kernel, unreach-
able leaks, forgotten leaks, cross-component leaks, etc.

• Non-intrusive and low-overhead. Solutions that require in-
trusive modifications or incur high runtime overhead are
hard to be deployed in production.

• Accurate. True leaks should be detected. False positives
should be minimized, because they would cause developers
to waste significant time investigating false issues.

• Timely. If the leak detection is too slow, significant damage
to customers may already occur.

• End-To-End. Only alerting memory leaks is insufficient.
Developers also need considerable help in confirming the
issue, pinpointing the root cause, and mitigating the leak.

Additional constraints include generality and efforts of inte-
grating a solution. The software components in cloud infras-
tructure are written in different programming paradigms, and
may depend on proprietary libraries. The millions of nodes in
Azure also have heterogeneity with different OSes, libraries,
and hardware versions. Supporting all of these varieties is
challenging. For example, we made an experimental effort of
integrating the LeakSanitizer [1], a popular run-time memory
leak detector from the LLVM project, into one Azure host
component’s codebase. The integration effort was difficult
(took one person month) due to complex compilation flags,
and library compatibility issues. The MSVC compiler’s full
support for LeakSanitizer is still pending [3].

3 Overview of RESIN

Despite the extensive efforts to address memory leaks in con-
ventional settings, they are insufficient to satisfy the unique
requirements for tackling memory leaks in large cloud infras-
tructure (Section 2.3). To address this gap, we propose RESIN.
RESIN is a holistic system running in the Azure production
infrastructure to detect memory leaks in host software and
provide diagnosis support to developers easily pinpointing
the leak’s root causes. RESIN further performs automatic leak
mitigation to reduce the impact of detected leaks.

Approach A large cloud infrastructure can have hundreds
of components owned by different teams. Prior to RESIN,
tackling memory leaks in Azure is a team-by-team effort.
Some teams started investigating after incident reports about
slow or failing VMs, and developers discovered leak bugs in
their components during manual investigation. Some teams
added telemetry monitors in their testing cluster and used

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    111



Lightweight

Monitoring

Live Heap

Snapshotting

Root Cause 

Pinpointing

Hosts

Bucket-based 

pivot analysis

Telemetry

Remote Cross-

Case Analyses

Individual proc. 

analysis

1 2

Candidates

3

Growth pattern 

classification

Trace collector

Reference builder

4

Heap snapshot diff

Leak alert ticket

Mitigation engine

Ranking & filtering

Diagnosis report

Figure 2: Workflow of the RESIN system.

hard-coded thresholds to trigger leak alerts in testing. Simi-
larly, diagnosing leaks in Azure used to rely on developers
to manually inspect the leaking nodes and run profiling tools.
These individual practices were tedious and costed repeated
engineering efforts. They also incurred significant false posi-
tives and could not handle cross-component leak issues.

RESIN takes a centralized approach instead. It does not
require access to a component’s source code, nor extensive
instrumentation or re-compilation. RESIN uses a monitoring
agent to each host that leverages low-level OS features to
collect memory telemetry data. It automatically supports all
components including the kernel. The data analysis is of-
floaded to a remote service, which minimizes the overhead
to the hosts. By aggregating data from different hosts, RESIN
can run more sophisticated analyses to catch complex leaks.

In addition, RESIN decomposes and tackles the memory
leak problem in multi-level stages. It performs lightweight
leak detection first and triggers more in-depth inspections on
the fly when necessary for confirmation and diagnosis. This
divide-and-conquer approach allows RESIN to achieve low
overhead, high accuracy, and scalability together.

Workflow Figure 2 shows the workflow of RESIN. It starts
with low-overhead monitoring (¶) at each host. A remote
service analyzes (·) the collected data across different hosts
using a bucketization-pivot scheme. If a bucket is suspected of
leaking, RESIN triggers an analysis on the process instances
from that bucket. After the two steps identify a highly sus-
picious software component, RESIN automatically generates
an alert ticket for that component along with a list of leaking
process instances belonging to that component. Meanwhile,
RESIN performs live heap snapshotting (¸) for the suspected
processes. RESIN carefully chooses the snapshotting time us-
ing a growth pattern based algorithm to ensure the collected
snapshots would be helpful. RESIN also samples normal pro-
cesses to take regular heap snapshots and build a reference
database. After generating multiple heap snapshots, RESIN
tries to pinpoint the root causes (¹) by running a diagnosis al-
gorithm on the snapshots. The analysis report will be attached
to the alert ticket thread to assist developers. Finally, RESIN
automatically mitigates the leaking processes.

4 Design of Leak Detection
In this section, we describe the RESIN’s design for detect-
ing memory leaks. In existing literature, the term “detection”
refers to detect both (i) if a program or a process has a leak,

…SourceVersionClusterNodeIdMachineNameEnvironment

Process memory

Kernel memory

t1 … …

1413120456 2494464 14131205079040t1 netagent.exe

256000 3477504t1 123svchost.exe 2334720 2334720

Time

stamp
ImageName PID …

Pagefile

Usage

Working

SetSize

Shared

Commit

Private

Usage

Attributes

t1

t1

Time

stamp

t1

… …

6553520 652833driver1 10317824

9073571File 021552768 9074090

Tag
Non-paged

Pool

Paged

Pool
…FreesAllocs

PoolMon

Process Perf. Counter

Host

Monitor

Agent

Figure 3: Monitor agent in each node collecting memory usage data.

and (ii) the bug in code or leaked objects. RESIN separates
these as two tasks and uses the term detection to refer to (i)
specifically. The diagnosis component (Section 5) targets (ii).

4.1 Challenges
RESIN needs to address several challenges. First, cloud in-
frastructure software has highly noisy memory usage due
to changing workloads and interference in the environment.
Using static thresholds would generate many false positives.
Standard anomaly detection algorithms [40, 41] do not work
well either, because it is common for a component to ex-
hibit memory usage spikes that are not leaks but legitimate
increases in handling certain workloads.

Second, memory leaks in production systems are usually
fail-slow faults [14] that last days, weeks, to even months
(rapid leaks are likely caught in testing or deployment). In-
specting memory usage in a short time window would miss
these slow leaks. It is necessary but challenging to capture
gradual changes over a long period and still raise timely alerts.

Third, given the scale of Azure, collecting fine-grained data
for a long time is impractical because of storage and overhead
concerns. Therefore, RESIN can only collect limited, coarse-
grained data and must work well under this constraint. Still,
even with coarse-grained signals, the data volume is enormous.
The detection algorithms must run efficiently.

4.2 Lightweight Memory Usage Monitoring
RESIN deploys a privileged monitoring agent on each host
(Figure 3). This agent communicates with the host OS to track
memory usage. It collects both kernel memory usage and per-
process memory usage. The kernel usage is obtained from
a pool monitor kernel module (PoolMon), and includes the
usages of non-paged memory pool and paged memory pool
for each tag. The tag is passed as an argument by the callers
of the kernel allocation API [32] and represents a sub-system
that has requested memory from the kernel allocator, e.g., the
file system, a driver. The per-process usage is obtained by
querying the per-process performance counters from the host.
It includes breakdowns of a process’s memory, such as the
private commit, working set size, paging file usage, etc.

We collect the memory usage breakdowns and tags instead
of simply a single total memory usage metric, because mixing

112    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



different memory usage sources can introduce noises and miss
important changes. For example, a 20 MB increase can be a
leak for a driver but may be negligible for another component.
Reporting the specific memory portion or tag that is leaking
helps developers localize the buggy code. The breakdowns
also help RESIN take more effective mitigation actions.

In addition to memory usages, the monitoring agent also
records attributes such as the software version, hardware gen-
erations, node id, and cluster id. The attributes are used during
leak detection analyses to increase accuracy. RESIN includes
the common attributes of the leaked process in the detection
report to give developers troubleshooting hints.

The monitoring agent is scheduled to run every 5 minutes.
However, the data points from different hosts may not be
perfectly synchronized. Some special events in a host such as
node reboots also introduce missing or invalid data. Therefore,
RESIN aggregates the time-series data into hourly granularity
by removing extreme outliers and computing the mean of the
remaining data points. This pre-processing step reduces the
noises as well as the data volume. Using an hourly window is
not too coarse-grained because most software components in
cloud infrastructure are long running, and production leaks
typically occur in a large time scale.

4.3 Detection Algorithms
RESIN uses a two-level scheme to detect memory leak symp-
toms: a global bucketing-based pivot analysis to identify sus-
picious components, and a local individual process leak de-
tection to identify leaking processes. The detection output
includes the suspected component, the list of top leaking pro-
cesses of that component, the leak start and end times, severity
scores, etc. The detection algorithms are language agnostic.

4.3.1 Bucketization-based Pivot Analysis
To address the challenges described in Section 4.1, our insight
is that we should inspect at the component granularity across
processes. This is because although an individual process’
memory usage is influenced by workloads and highly noisy,
the noises can be “canceled out” en masse. For a normal
component, its process instances on different hosts may ex-
perience different workload effect at any time slice. But for a
leaky component, the memory leak must be caused by some
buggy release. Therefore, its processes should exhibit some
global trend at certain time slices despite the workload effect.

Based on this insight, we design a simple yet robust
bucketization-based pivot detection scheme (Figure 4). RESIN
first groups the raw memory usage telemetry data into a num-
ber of buckets. In our implementation, we use 20 buckets
(50 MB, 100 MB, 200 MB, . . . , 40 GB, 50 GB). RESIN then
applies pivoting to the data with a unique attribute tuple as
the index and memory usage bucket as columns. The attribute
tuple is (ProcessImageName, ServiceName) for user-level soft-
ware, and (TagName, PoolType) for kernel subsystems, where
Type is paged memory or non-paged memory. The aggregation
function is the count of distinct nodes. Thus, each summary

… … … …

… … … …

ImageName: 
 svchost.exe

Service: 
  ServiceT

2022-01-29 
13:00-14:00

2022-02-14 
09:00-10:00

2022-02-09 
21:00-22:00

…

…

…

…

…

50MB 100MB 200MB 2GB…

…

…

…

ImageName: 
AgentV.exe

Service: 

Non-leaky

component

Leaky 

component

… … … …

… … … …

abnormal bucket

2022-01-29 
13:00-14:00

2022-02-14 
09:00-10:00

2022-02-09 
21:00-22:00

…

…

baseline

test

baseline

test

Figure 4: Group the memory usage into buckets and pivot by image
name, service, and bucket size. Each circle represents one process.
Shaded circle represents a process moving to another bucket.

cell represents the number of nodes that have running pro-
cesses with a particular attribute tuple and these processes’
memory usages fall into the specific bucket. RESIN computes
the summary periodically and incrementally for data in each
time interval. The results are saved into a database table.

We basically transform the memory usage data into sum-
mary about numbers of nodes in different buckets, which can
more robustly represent the trends and tolerate noises due to
workload effect (e.g., the non-leaky component in Figure 4).
RESIN then runs anomaly detection on the time-series data
of each bucket for each component. It uses the most recent
time period of summary data (default 15 days), with the first
2/3 portion as the baseline and the remaining data points as
the test. If a bucket’s test period has data points that exceed
the µ+3σ of the baseline data (µ and σ represent the mean
and standard deviation of the distribution), it is considered to
be an anomaly. The start time and end time in the test period
when the node count becomes the outlier are recorded.

One caveat is that if many processes of a component expe-
rience a sudden drop in memory usage, the node count would
shift from a higher bucket to a lower bucket. But the lower
bucket’s node count significant increase is not an anomaly. To
handle such scenarios, RESIN calculates cumulative bucket
values during the anomaly detection. In other words, if the
100 MB bucket has a node count of n, it means there are n
nodes that have the particular processes with memory usage
equal to or larger than 100 MB, including processes (if any)
that fall into the 200 MB bucket. In this way, a significant
increase in a bucket almost always suggests an anomaly.

The bucketization approach also helps address the com-
putation challenges. Before introducing this approach, it can
take RESIN more than one day to run anomaly detection on
the enormous data points from millions of nodes. After the
pivot summary, RESIN only needs to run anomaly detection
for the time-series data in each bucket, which can finish in
less than one hour for all data (even without parallelization).

RESIN calculates a severity score for each bucket based on
the deviations and node count in the bucket. It considers a

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    113



component is leaking based on a <size_mb,score> threshold:
if a bucket is of size equal to or larger than size_mb and its
severity score exceeds score. RESIN generates intermediate
reports for the abnormal buckets. It de-duplicates the interme-
diate reports by only keeping the one for the largest bucket of
a unique attribute tuple, and generates a ticket for that report.

4.3.2 Localizing Individual Processes
The bucketization pivot analysis works at the component
granularity. RESIN uses a second-level detection scheme that
works at the process1 granularity. The motivation for this
scheme is that a component has many process instances. It is
important to localize the truly leaking processes in the alerting
bucket. If we simply include all the processes in the abnormal
bucket, developers can waste significant effort investigating
innocent processes that fall into that bucket by coincidence.

The second-level detection scheme computes the leak like-
lihood and severity for a process based on its memory usage.
RESIN uses all the memory usage data of a component in
the most recent month to train two parametric models: (i)
the absolute usage model and (ii) the usage difference model.
Since different clusters and regions can exhibit drastically dif-
ferent characteristics, the tool builds separate models for each
combination of region name and cluster type for a component.

Let Uc(ni, t j) denote the memory usage value for a process
of component c on node ni at time t j. RESIN assumes absolute
usage Uc(ni, t j) follows a Gaussian distribution N (µ1,σ

2
1)

and fits the memory usage data by calculating the maximum
likelihood estimators for µ1 and σ1. The absolute memory
usage values can be severely distorted by occasional events
such as VM creations. To account for such events, we consider
the differential memory usage, i.e., ∆Uc(ni, t j) =Uc(ni, t j)−
Uc(ni, t j−1). Based on our observations, when noisy events
such as VM creations occur, ∆Uc(ni, t j) usually significantly
deviates from its normal range. Thus, RESIN also builds a
parametric Gaussian distribution N (µ2,σ

2
2) model for usage

difference ∆Uc(ni, t j) and calculates the µ2 and σ2.
With the offline models, RESIN uses a moving suspicious

interval algorithm (Algorithm 1) to examine a suspected pro-
cess’ memory usage in real time. This algorithm works by
keeping a suspicious leak time interval [T0,T1]. The basic
idea is to assume the leak still continues at the end of the time
series and try to find the earliest time the leak trend starts
by skipping over low-confidence points. This interval is ini-
tialized as [t1, t1] upon reading the first data point in a time
series. At the j-th step, RESIN reads Uc(ni, t j), calculates the
∆Uc(ni, t j), and adjusts the time interval by moving T1 and up-
date T0 adaptively. If ∆Uc(ni, t j) has a significant increase or
drop (based on the 3-sigma rule for µ2 and σ2), T0 is updated
to t j because the system status is likely changed by some
event. If Uc(ni, t j) is lower than Uc(ni,T0) or there are few
increasing points in the current interval, T0 is also updated

1Here we use the term “process” to also include a running instance of a
kernel subsystem in a particular host for kernel memory leak detection.

Algorithm 1: Moving suspicious interval algorithm
Input: Uc(ni, t): time-series memory usage for node ni of component

c; N (µ2,σ
2
2): offline usage difference model for component c.

Output: T0, T1: leak start and end time; no leak if T0==T1. Ninc:
number of increasing data points

tn←max(t) in Uc(ni, t), Ninc← 0
T0 ← t1, T1 ← t1
for j← 2 to n do

T1 ← t j
∆Uc(ni, t j)←Uc(ni, t j) - Uc(ni, t j−1)
if IsOutlier(∆Uc,N ) || Uc(ni, t j)<Uc(ni,T0) || Ninc/n < ε then

T0← t j
if T0 == T1 then

Ninc← 0 /* empty interval, no leak, reset */

else if IsLarger(Uc(ni, t j),Uc(ni, t j−1),N ) then
Ninc ← Ninc +1 /* a new increasing data point */

return T0,T1,Ninc

t 

Uc(ni, t) 

T1 

T0 

t1 … 

∆Uc(ni, tj) 

∆T 

t2 t3 t4 … tj tn

Figure 5: Applying the moving suspicious interval algorithm.

to t j because a leaking trend should have enough increasing
values. For other situations, we keep the T0 intact. The loop
stops when T1 hits the last time point tn. If the final T0 is equal
to T1, this process is not considered as leaking.

Figure 5 shows an example of applying the algorithm.
[T0,T1] are initially set to [t1, t1]. When T1 is set to t2,
∆Uc(ni, t j) is positive thus we keep T0 unchanged and con-
tinue to move T1 forward. When T1 is set to t3, ∆Uc(ni, t j) is
an outlier in the offline model (N ,µ2,σ

2
2), which we consider

an occasional event instead of a leak. We reset T0 to t3 ac-
cordingly. When T1 is set to t4, Uc(ni, t j) is significantly lower
than Uc(ni,T0) thus we also reset T0 to t4. After t4 we did
not encounter scenarios to reset T0 (the memory usage drops
slightly later but it is unnecessary to reset for such cases), so
eventually T1 reaches the end tn, and [T0,T1] is [t4, tn].

RESIN calculates a severity score (Equation 1) for a pro-
cess to indicate its leak probability and impact. Several factors
are considered, including the normalized memory usage dif-
ference (∆Uc =Uc(ni, tn)−Uc(ni, t1)), the length of the sus-
picious leak interval (∆T = T1−T0 in the unit of month), the
increasing rate (number of increasing data points over the
number of all data points), and the final memory usage at tn.

SevScore =
∆Uc

σ1
+

Ninc

n
+∆T +

1
1+ e−Uc(ni,tn)/µ1

(1)

For efficiency, the above analyses are run proactively. When
the bucketization-based pivot detection step identifies a leak-
ing bucket, RESIN triggers the individual process analysis for
the processes in the bucket and can usually inspect the results
without waiting. It outputs the suspected leaking processes,
the leak start and end time, and the severity scores.

114    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



heap snapshot

process 

start

+++++

----

26410x80000

+++

-------

main() foo1()

foo2()

foo3()

process execution time

…

tracing

enabled

tracing

disabled

foo4()

23220xf0000

112810x90000

RefCountSizeStackIdAllocAddrallocation:

Figure 6: Periodic heap snapshot collection.

5 Diagnosis of Detected Leaks

Only detecting a leak is not enough. Without sufficient evi-
dence and diagnosis support, developers are likely stuck in
confirming and diagnosing the issue. RESIN designs a solu-
tion that automatically takes live heap snapshots and analyzes
the snapshots to pinpoint the root cause of a detected leak.

5.1 Background: Heap Snapshot

RESIN provides diagnosis information at stack trace granular-
ity. In our experience, if developers are presented with a stack
trace containing the problematic allocations, they can often
quickly debug the issue. RESIN leverages the Windows heap
manager’s snapshot capability to perform live profiling. The
heap manager exposes APIs such as HeapAlloc, HeapReAlloc,
and HeapFree, which are used by applications and C/C++ run-
time to allocate heap objects. Thus the heap manager has the
ability to collect the heap allocation sizes and stack traces.

RESIN uses the Windows Performance Recorder [2] to
notify the kernel to start tracing heap allocations, typically
for a specific process ID and occasionally for an image name
(which enables tracing for all processes with the image). Then
RESIN instructs the heap manager to take a snapshot at a cer-
tain time. Our current heap snapshotting mainly focuses on
C/C++, which are the primary language choices for host soft-
ware on Azure. Extending to other languages would take extra
effort but are still straightforward, as their runtime typically
already provides the functionality to capture allocation events.

To minimize overhead, the heap manager only stores lim-
ited information in each snapshot. Specifically, it stores (1)
the stack trace and size for each active allocation after the
tracing was enabled (if an allocation has been freed, no infor-
mation is stored), (2) the total allocation sizes for each unique
stack trace, and (3) the number of times a unique stack trace
is invoked. It does not store more detailed information such
as the allocation time or a pointer graph.

The information in a single snapshot is usually too noisy,
as it includes all active allocations from the tracing start to the
snapshot point. To get more accurate information for a time
window, RESIN periodically takes multiple heap snapshots
(Figure 6) to increase the chance of capturing truly leaking
allocations between snapshots. RESIN uploads the snapshot
files to a remote storage service. The diagnosis engine uses
these snapshots to deduce the leaking allocation points.

5.2 Choosing Candidate Hosts to Profile
Picking the right hosts to take heap snapshot is vital for diag-
nosis effectiveness. Because heap snapshot incurs overhead,
RESIN cannot afford to enable snapshot on all hosts contain-
ing the leaking processes the detection engine outputs. Simply
choosing the hosts randomly is not a good strategy either, be-
cause the workloads on different hosts vary widely. For the
same leak bug, it can exhibit in quite different patterns on dif-
ferent hosts. Thus, we may choose a candidate host in which
the buggy allocations are triggered rarely.

We rank the candidate hosts in the suspected list based
on three factors: 1) severity: choose processes with higher
severity scores as described in Section 4.3.2, since more ob-
vious symptoms suggest a better chance to be diagnosed; 2)
noisiness: choose processes with a clearer growth pattern,
which we will discuss in more detail in Section 5.3; 3) impact:
choose hosts that have fewer user activities to minimize im-
pact of profiling events. By default RESIN triggers snapshot
collection for the top three hosts in the list in case the collec-
tion fails unexpectedly (e.g., due to target process restart).

5.3 Deciding Trace Collection Strategy
With the candidate hosts selected, the next step is to decide if
a new leak happens in the most recent snapshot interval and
whether to take the snapshots. This step is different from the
analysis in Section 4.3, which only finds leaking processes in
past time. The decision making has two main challenges.

First, many production leaks are only triggered by specific
events. Some leaks only occur once in several days. If we
take snapshots at other times, the collected traces would not
be helpful. To ensure rare leaks are captured, RESIN attaches
the profiling workflow to the process for a long time and
periodically (every half hour) takes snapshots in hope of cap-
turing the leak. However, we cannot afford to keep uploading
snapshots due to storage and overhead concerns. RESIN ad-
dresses the challenge with a long-term, trigger-based strategy:
it uses a circular buffer that only keeps the most recently taken
snapshots, and completes tracing once certain trigger is met.

Second, how to decide when the trace collection should
complete, i.e., the trigger. At the completion time, we should
ideally (1) have snapshot(s) containing the buggy allocation;
(2) have snapshot(s) for non-leaking scenarios; (3) minimize
noisy allocations in the snapshot(s). One potential trigger is
to complete the collection once the memory usage difference
exceeds some threshold. This trigger can easily complete the
tracing prematurely (fails to capture the buggy allocation) due
to a legitimate memory usage spike, and/or produces snap-
shots that have many noisy allocations and mislead diagnosis.

To gain some insights on how to choose the triggers, we
study the memory usage data of 51 real leak cases. Inter-
estingly, most cases fall into three common patterns (and a
mixture of them). Additionally, one leaking process in a spe-
cific host often has a consistent pattern. In 63% of the cases,
the leaking process shows a steady pattern. One example is

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    115



a
b

c

d

Figure 7: Memory growth patterns and completion point choices.
Each data point is real memory usage from production processes.

Pattern Characteristics Completion Trigger

Steady Almost linear growth R2
j > λa.

Stair Steady growing and flat curves |1− slope j/slopek|< λb
alternately appears. && R2

j < λc

Spike A few large allocations in a short ∆Uc(ni, t j)/∆Uc(ni, tk)
period of time > λd

Table 1: Leak patterns, characteristics and their completion triggers.

the bug shown in Figure 1, in which the leak exists in period-
ical update tasks. The other two common patterns are stair
(the memory usage occasionally grows only when the proce-
dure containing leaks is activated) and spike (the leak only
occurs once in a while due to rare events). Each pattern has
its unique usage growth characteristics and clear completion
point candidates a , b , c shown in Figure 7. d is not a good
completion point as it is right after a period of some noises.

Guided by the findings, RESIN takes a pattern-based ap-
proach to decide the trace completion triggers. It uses the
target process’ memory usage data in the most recent week
and classifies it into one of the three patterns. Specifically,
RESIN first identifies nearly flat segments in the time-series
data and removes them. It then performs linear regression on
the remaining growing segments and outputs results including
the slope slopek, coefficient of determination R2, and absolute
memory usage increase ∆Uc(ni, tk). If the data contains no
flat segments, RESIN marks it as a steady pattern. If the data
has flat segments in between growing segments, it is marked
as a stair pattern. If a large increase in memory usage only
occurs in a few data points, it is marked as a spike pattern.

After the pattern is classified, the workflow starts to monitor
and analyze the recent memory usage. We compute the slope j,
R2

j , and ∆Uc(ni, t j) for the most recent six hours and check the
pattern’s completion trigger based on rules listed in Table 1 (
λa, λb, λc and λd are set to 0.8, 0.1, 0.1, and 0.5, respectively).
Once the trigger is satisfied, RESIN stops tracing and uploads
the trace file that contains the most recent few snapshots. It
ensures each trace has at least three snapshots.

5.4 Collecting Reference Snapshots
One challenge in using snapshots for diagnosis is the presence
of many noisy but benign allocations. Even with multiple
snapshots, they may remain active and mislead the diagnosis.
RESIN collects reference snapshots to address this challenge.

For the reference snapshots to be useful, they should be
comparable to the snapshots from the leaking process. A
poor choice of a reference snapshot may be even counter-

Algorithm 2: Heap snapshot diagnosis algorithm
Input: An−1,An: sets of allocations in two heap snapshots, Sr: a list

of outstanding stacks from reference hosts, pattern: classified
pattern, estimate_leak: upper bound of estimated leaking size

Output: So: a list of top N stack traces that likely caused leaks
So ← [], Sdi f f ← []
Sn ← An.groupBy(alloc=>alloc.stackid)

Sn−1 ← An−1.groupBy(alloc=>alloc.stackid)

foreach stack ∈ Sn do
if stack ∈ Sn−1 then Adi f f ← Sn[stack.id] \ Sn−1[stack.id]

else Adi f f ← Sn[stack.id]

if Adi f f 6= /0 then
foreach a ∈ Adi f f do stack.size← stack.size+a.size

Sdi f f .add(stack)

Sdi f f .orderBy(stack=>stack.size)

if pattern 6= SPIKE then
Sdi f f .removeAll(stack=> stack.size > estimate_leak)

Sdi f f .removeAll(stack=> stack ∈ Sr) /* filter references */

So ← Sdi f f .top(N) /* only keep top N stack traces */

return So

productive and filter out the culprit allocations. RESIN uses a
periodical fingerprinting process to build reference snapshots.
It randomly samples hosts for common leaking services to
take heap snapshots. We currently define the fingerprints
to be the attribute tuple (cluster_id, OS version, service

version, date). This is based on our observations on the
locality of memory leaks. These snapshots are saved in a
reference database and cleaned up when they become stale.

At the diagnosis stage, after RESIN chooses the candidate
leaking hosts to profile (Section 5.2), RESIN checks if the
database already has reference snapshots with similar finger-
prints. If not, RESIN triggers reference collection. It first scans
the qualified hosts (not in the detection engine’s suspicious
list and have similar fingerprints to the leaking hosts) and
samples a few that have active memory activities and modest
memory usage. Then RESIN applies the growth pattern analy-
sis (Section 5.3) to check if this host is leaking. If not, it takes
snapshots and uploads the traces to the reference database.

5.5 Trace Analyses for Diagnosis
The next step is to analyze the collected snapshots to output
the root cause stack traces. The challenge is to handle many
noisy allocations and localize the buggy allocations.

RESIN designs a diagnosis algorithm listed in Algorithm 2.
The inputs are the allocations from the two most recent snap-
shots of a trace file (An−1, An), stack traces from reference
snapshots, and the estimated leaked size upper bound calcu-
lated in the pattern analysis. For the steady and stair patterns,
we estimate the leaked size upper bound by multiplying the
slope with the time interval of the growing segments and a
coefficient (by default 2). The goal is to find the stack traces
that allocate objects of sizes closest to the estimated leak.

The diagnosis engine first groups allocations in An−1, An
by the stack trace id and get two maps Sn and Sn−1. Each map
value is all the allocations that come from a stack trace. It
then traverses each stack trace in Sn to calculate the aggre-

116    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



gated allocation size. The engine then identifies stack traces
that contain unique allocations, and ranks these traces based
by their allocated object sizes. Stack traces allocating sizes
larger than the estimated leak size are likely noises and thus
removed. Finally, the diagnosis engine cross-checks the refer-
ence snapshots to filter out benign stack traces. If the output
list is empty, the engine repeats the analysis for the next snap-
shot pairs (An−2, An−1), etc.

6 Mitigating Leaks

When a memory leak is detected, it can take time for develop-
ers to come up with and deploy the bug fix. To avoid further
customer impact, RESIN attempts to automatically mitigate
the detected leak issues. Depending on the nature of the mem-
ory leak, mitigation can be done in several ways. Rebooting
the host OS in general can mitigate all kinds of leaks. How-
ever, this is costly and potentially causes VM downtime.

RESIN leverages the results from its detection engine and
uses a rule-based decision tree to choose a mitigation action
that can minimize the impact. If the memory leak is localized
to a single process or Windows service, and this process or
service is not required to be always alive to provide services to
customers, RESIN attempts the lightest mitigation by simply
restarting the process or Windows service.

For some processes, the mitigation requires additional steps.
RESIN allows component teams to define custom scripts and
invoking conditions. If the leak is located in buggy drivers,
RESIN unloads and reloads the driver to mitigate the issue.

For safety, RESIN uses allowlists for each action category
to make sure auto-mitigation is not misused. It defines an
initial allowlist for the processes and drivers that are known
to be safe to restart. A feature team can opt in auto-mitigation
by adding the name of the process or tag to the allowlist.

For leaks in the OS kernel memory such as I/O request
objects and file objects, if the detection engine can attribute
the leak to a process or a service, RESIN attempts to restart
the culprit process or service. This action is usually effective
because it allows the leaked kernel objects to be properly
freed without the need to reboot the OS.

OS reboot will resolve any software memory leak but takes
a much longer time and can cause VM downtime. Thus, it is
the last resort when a leak cannot be mitigated by the above
actions or the name is not in the allowlist. RESIN checks if
the host is empty and does the OS reboot if so. Empty hosts
could also leak memory due to past user activities or current
background processes. For a non-empty host, RESIN first
performs live VM migrations [8]. Then it attempts a kernel
soft reboot, which skips hardware initialization. If the soft
reboot is ineffective, a full OS reboot is performed.

To minimize the impact of mitigation actions, RESIN
closely monitors the leaking hosts. It prioritizes the actions on
1) nodes that fire low-memory related events, such as E2004
(low virtual memory) from the Windows resource exhaus-

07 08 09 10 11 12 01 02 03 04 05 06 07 08

Month (2020-2021)

0

20

40

60

C
a
s
e
 N

u
m

b
e
rs

w/ traces

Confirmed

Unresolved

Denied

Figure 8: Memory leak cases RESIN detected and reported.

tion detector, E3122 (not enough memory to start VM) from
Hyper-V; 2) nodes in regions with capacity issues; 3) nodes
with host memory reservation overage; 4) nodes ordered by
the leak size, leaking rate, and the predicted time-to-failure.

RESIN stops applying mitigation actions to a target when
the detection engine no longer considers the target leaking.
This typically occurs without manual intervention. For exam-
ple, after developers identify the root cause and apply a fix,
the leak symptom disappears, so RESIN stops the mitigation.
Sometimes, after a mitigation action, the leak symptom no
longer re-appears, which naturally stops further mitigation.

RESIN also coordinates with its diagnosis engine (Sec-
tion 5) in performing the mitigation actions. If the diagnosis
engine plans to or is taking heap snapshots for a candidate
host, RESIN defers the mitigation actions to avoid losing the
critical opportunities for capturing the leaking allocations.

7 Evaluation
Our evaluation answers several questions: (1) how effective
is RESIN in detecting memory leaks? (2) how accurate is
the detection? (3) can RESIN help developers diagnose and
mitigate leaks? (4) what is the overhead of trace collection?

7.1 Deployment Status and Scale
RESIN has been running in production in Azure since late
2018. It covers millions of hosts, over 600 different host pro-
cesses and over 800 different kernel pool tags daily. The de-
tection engine in RESIN analyzes more than 10 TB memory
usage data every day. The diagnosis module collects 56 trace
files on average (10–200MB) daily. Every month, the miti-
gation engine performs a median of 1,592 process restarts,
1,290 kernel soft reboots, and 4,649 node reboots.

7.2 Detecting Production Memory Leaks
Azure has various solutions that help eliminate memory leak
bugs before production, including code reviews, static bug
finding tools, testing, and safe deployment policies. As a re-
sult, only complex memory leak bugs occasionally escape
these solutions. RESIN serves as the last defense to effec-
tively catch these bugs in production.

Figure 8 shows the memory leak tickets RESIN reported
in Azure from July 2020 to August 2021. Overall, RESIN
reported 564 tickets in 14 months, among which developers
explicitly resolved 291 tickets.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    117



09 10 11 12 01 02 03 04 05 06 07 08 09

Month (2020-2021)

0%

20%

40%

60%

80%

100%

U
n
e
x
p
. 
re

b
o
o
t

Figure 9: Unexpected VM reboot.

10 11 12 01 02 03 04 05 06 07 08 09

Month (2020-2021)

0%

20%

40%

60%

80%

100%

V
M

 a
ll
o
c
. 
e
rr

o
r 

ra
te

Figure 10: VM allocation error rate.

07 08 09 10 11 12 01 02 03 04 05 06 07 08

Month (2020-2021)

0.0

0.2

0.4

0.6

R
a
ti

o

Resolved ratio

w/ trace ratio

Figure 11: Ticket resolved and w/ trace ratio.

7.3 End-to-End Impact
The end-to-end benefits brought by RESIN are clearly demon-
strated by two key metrics: (1) VM unexpected reboot2: the
average number of reboots per one hundred thousand hosts
per day due to low memory; (2) VM allocation error: the ratio
of erroneous VM allocation requests due to low memory.

As shown in Figures 9 and 10 (data is normalized for con-
fidentiality), the improvement RESIN provides is significant.
Both metrics show large decreases: VM reboots are reduced
by 41× from September 2020 to September 2021, and allo-
cation error rates are reduced by 10× from October 2020 to
September 2021. Note that these key metrics have been con-
tinuously dropping before the starting points in Figures 9 and
10. We omit to plot these earlier points because the raw data
are no longer in the database due to data retention policies.

The improvement also shows in the reduction of service
incidents. In 2020 and 2021, no severe outages in Azure were
caused by memory leaks (such outages occurred previously).

7.4 Effectiveness of Detection
Detecting memory leaks in a complex, frequently changing
cloud infrastructure like Azure is challenging. RESIN aims to
minimize the false positives and false negatives.

Precision To evaluate the detection accuracy, we count how
many cases RESIN reported are flagged by developers as false
alarms. Overall, RESIN only incurs 7 false positives out of
291 resolved cases in 14 months.

There are two common patterns of false positives: (i) after
a component adds a new feature that consumes significantly
more memory; (ii) after a configuration change, e.g., “we are
collecting and correlating lot more counters and # of disks
per node have also increased”. The memory usages in these
cases typically stabilize and become new baselines, which
RESIN automatically picks up without requiring adjustment.

Recall We count how many cases RESIN misses or fails to de-
tect in time. The criterion is a memory leak causing noticeable
service impact and getting reported by users, developers, or
other monitoring services before RESIN detects it. We search
keywords including “memory leak” and “leak” on Azure’s
issue tracker used by all teams. We compare them with tickets
automatically created by RESIN. Overall the false negatives
are few: only 4 cases are not on RESIN’s ticket list.

We also inspect the reason for each case. One case in July
2020 was caught by us manually when analyzing a heap snap-

2In this paper, we only count those VM unexpected reboots and allocation
errors caused by low memory and memory exhaustion.

shot trace, before the issue triggered RESIN’s alert. In other
two cases, the leak impact was not significant, but developers
found the leaks when they were closely monitoring their new
deployment. The last case was both found by developers and
RESIN, but developers found the issue faster. This happened
because the issue manifested itself earlier on a testing cluster
that had a different workload from the production clusters
RESIN monitored; developers were also using an aggressive
threshold in that cluster to expose potential issues.

Timeliness It can be difficult to determine the exact starting
time of a leak and hence the exact detection delay. We observe
that RESIN’s detection typically occurs within two hours of
a leak’s clear manifestation. In general, a too-long detection
delay would be reflected in a false negative since developers
or other monitoring tools would detect the issue earlier.

Resolution rate Not all cases are eventually resolved by
developers. On average, RESIN reports a resolution rate of
52% within reported date range. We believe this resolution
rate is underestimated compared to actual responsive rate: in
many cases, developers took actions but did not update the
open tickets (only tickets tagged with a high severity level are
mandatory to resolve according to ticket platform’s policy).
“Unresolved” also does not necessarily mean the ticket is
unimportant. We observed that some teams tend to have lower
response rates, likely due to their limited resources and the
overwhelming number of urgent tickets.

This result is also influenced by our design goal. RESIN is
designed to catch memory leaks early before the leak escalates
to catastrophic issues. RESIN further provides automatic leak
mitigation. Thus, a could-have-been-severe leak would appear
to be low-risk. When developers prioritize resolving high-
impact tickets, it adversely affects the resolution rate for our
leak tickets. Due to the large volume of reported cases from
various groups, we could not afford to inspect all unresolved
tickets and check with their owners.

7.5 Effectiveness of Diagnosis
The diagnosis module of RESIN in total collects traces and
generates reports for 157 cases from July 2020 to August
2021 (Figure 8). For tickets related to kernel leaks or clusters
with legacy OSes, RESIN is unable to collect traces. Before
November 2020 the diagnosis module was in trial runs and
diagnosis reports were not appended to tickets. We gradually
enabled it for more clusters after the trial run was over.

Figure 11 shows how the ratio of tickets with collected
traces (and diagnosis reports) increases, which correlates with

118    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1

2

3

4

5

6

7

8

9

10

11

20

virtual void AddDsmsCertificate(CertificateStore& ... {

-   for (; certHead != nullptr; certHead = certHead->Next) {

+   for (auto currentCert = certHead; currentCert != nullptr;

+        currentCert = currentCert->Next) {

-      if (certHead->Versions == nullptr)

+      if (currentCert->Versions == nullptr)

          continue;

-      auto latest = certHead->Versions->Latest;

+      auto latest = currentCert->Versions->Latest;

       if (latest == nullptr)

          continue;

       ...

    freeCertLst(certHead)

Figure 12: The fix for ServiceH leak.

Startup (read config)

Create rules Crash

ServiceD.exe

FirewallRuleList

Object: RuleObject: RuleObject: RuleObject: RuleObject: RuleObject: Rule

Object: Rule

…

Svchost.exe (firewall)

Exit

add

delete

Figure 13: Contract violation induced leak on ServiceD.

the improvements on the ratio of resolved tickets.
Usefulness To evaluate the usefulness of the diagnosis re-
ports RESIN generates, we randomly sample 14 issue tick-
ets and closely follow up with the developers (all cases are
eventually resolved and fixed). In 11 cases (79%), develop-
ers directly use the diagnosis reports to pinpoint root causes.
Among them, in 5 cases the bug fix is in the same function
in the allocation stack; in 5 cases the allocation stack and
bug fix are in the same source file; in only 1 case the alloca-
tion stack and bug fix are in different components. Out of the
other three cases, two are solved by memory dumps because
the developers are quite experienced: upon seeing the sizes
of leaked memory objects, they immediately realized which
function the leaks came from. In one case the traces captured
in the production cluster are not particularly useful. Instead,
developers successfully captured some snapshots consisting
of leaking stack on their own testing cluster.
Feedback Over time, developers build up high confidence in
RESIN. We receive many pieces of positive feedback:

“(The result is..) incredibly useful. The information I had
was enough.”

“Thanks for pinpointing out the memory leak that we had
been trying so hard to find over the past few days.”

“Stack trace was sufficient for debugging this, it included
the API call that was problematic.”

Case studies We share two representative cases. The first
case occurs in ServiceH3. This process’ memory usage keeps
increasing and gets restarted every few days. The diagnosis
module in RESIN collects heap snapshots and pinpoints the
root cause stack trace. After the diagnosis report is attached
to the ticket, developers confirm and fix the issue in 3 hours.

In this case, the program uses a pointer to manage the list
of certificates, and frees the pointer at the end of the function.
However it also uses the pointer to traverse the list. In the end

3The service names are anonymized for reasons of confidentiality.

Mitigation Count 50% 75% 90% 99%

Process restart 27,039 1.62 5.74 6.50 30.70
Kernel soft reboot 8,292 24.64 34.47 49.14 141.69
Node reboot 278,005 248.58 274.36 362.10 1382.61

Table 2: Single mitigation action execution time (seconds).

the pointer has moved and only a part of the list is freed (Fig-
ure 12). This is a day-0 bug introduced a long time ago, but is
recently triggered due to added certificates to the machines.

The second case represents another common (6 out of 14
cases we studied) type of leaks in cloud infrastructure: leaks
due to contract violations in cross-component interactions.
After RESIN reports a firewall-related svchost is leaking, the
diagnosis module collects traces and reports a function in the
rule list adding procedures after analyses.

Developers do not find bugs in this specific function at
first, but the report prompts them to check the firewall rule
lists on these machines. They then find the rule lists on these
machines have been flooded with redundant rules. The reason
is that the svchost process gets a firewall configuration from
another program ServiceD. This program creates firewall
rules at startup. Due to another bug, ServiceD keeps crashing,
which causes it to miss deleting created rules and repeatedly
recreate rules upon restarts (Figure 13). This in turn causes
significant memory usage increases for the svchost program.
Such a bug is hard to be detected statically.

Timeliness The diagnosis timeliness is also important to help
developers. We measure the latencies of RESIN’s heap snap-
shot collection and analysis. The median trace collection time
is 61 minutes. For more than 80% of cases, the collection
finishes within 10 hours. Note that the trace collection time is
influenced by when a leak recurs in a suspected process. If the
leak is sporadic, RESIN has to wait until the symptom reap-
pears to capture the snapshot. For trace analysis, the median
latency of the analysis jobs is 10 minutes.

7.6 Effectiveness of Mitigation
Mitigation procedure duration on leaked services Fig-
ure 14 shows the number of mitigated nodes of a kernel leak
due to a buggy driver. At first, RESIN applied mitigation ac-
tions on a few nodes per day to test possible side effects.
Once the mitigation actions reached production, RESIN ap-
plied mitigation to at most around 2,000 nodes per day with
some fluctuations. The mitigation action volume then gradu-
ally dropped as the fix was being rolled out. Eventually the
volume dropped to a few nodes a day, which were primarily
nodes that failed in driver upgrading or other fix actions.

Mitigation action duration on single host We collect the
frequencies and durations of each mitigation action between
July 2020 to September 2021. As Table 2 shows, process
restart is the most lightweight mitigation action. In most cases,
it finishes within 6.5 seconds. Kernel soft reboot is also fast
and in most cases finishes in a minute. Node reboot takes a
longer time, with a median time of 4.6 minutes.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    119



0 50 100 150

Duration (days)

0

500

1000

1500

D
a
il
y
 M

it
ig

a
te

d
 H

o
s
ts

Figure 14: Mitigation for a leaking driver.

07 08 09 10 11 12 01 02 03 04 05 06 07 08

Month (2020-2021)

0

10

20

30

40

F
a
ls

e
 P

o
s
it

iv
e

500MB-40

500MB-80

1GB-40

1GB-80

Bucket

Figure 15: False positive of detection algo.

07 08 09 10 11 12 01 02 03 04 05 06 07 08

Month (2020-2021)

0

5

10

15

F
a
ls

e
 N

e
g
a
ti

v
e

500MB-40

500MB-80

1GB-40

1GB-80

Bucket

Figure 16: False negative of detection algo.

7.7 Comparison of Different Algorithms

Bucketization-based detection We first compare our core
detection algorithm, the bucketization-based pivot analysis,
with the practice of static threshold-based memory usage mon-
itoring. We use four threshold policies, e.g., policy “500MB-
40” means generating leak alerts if a service’s memory usage
exceeds 500 MB on more than 40 nodes. We apply these hard
thresholds to historical data and count how many cases will
be wrongly reported as leaking (false positive) and how many
leaking cases will be missed (false negative).

Figures 15 and 16 show the results. Our algorithm performs
the best: it has both the lowest false positives and the lowest
false negatives. In comparison, for other policies, it is often a
dilemma to balance precision and recall. For example, policy
“1GB-80” has the lowest false positives among the baselines
at the cost of having the highest false negatives.

Pattern-based collection We compare our pattern-based col-
lection with random collection. The experiment is conducted
on ServiceS, ServiceV, and ServiceW. They have ongoing
memory leaks on some hosts. We randomly choose six hosts
and apply pattern-based collection on three hosts and random
collection on the other three hosts. For the random strategy,
we implement a workflow that periodically collects snapshots
with at least two snapshots and completes the trace collection
with a probability 1/6. We inspect the collected heap snapshot
traces to see if the leaking allocation exists in the snapshot.

Our pattern-based collection successfully captures leak-
ing allocation stacks for all three services. Interestingly, the
root cause of ServiceW was still unknown at the time we
conducted the experiment. RESIN successfully captures an
outstanding allocation that contains the bug within a real-time
event processing function. In comparison, random collection
only captures the buggy allocation for ServiceS, which has a
frequent leaking interval (less than 1 hour).

Reference-assisted analysis We then evaluate the useful-
ness of reference snapshots with a controlled experiment on
the ongoing leaking component ServiceS, which has the most
noises among the three ongoing leak cases. We randomly
sample eight hosts that have leaking patterns and collect snap-
shots until the leaking stack appears. We feed eight collected
trace files to RESIN and compare the analysis results with
and without reference snapshots. Figure 17 shows the result.
Without the reference snapshots, the root cause stack trace
ranks below the top three in all traces. With the reference
snapshots, in 7 out of 8 traces, the root cause rank improves.

10X6XXX

4X2

5XX2

4

43X

8X5XX

54X

4XX1

File8

File7

File6

File5

File4

File3

File2

File1

Rank of root cause stack trace
1 2 3 4 5 6 7 8 9 10

rank change w/ 
reference snapshot

Figure 17: Ranks of root cause stack trace in diagnosis analyses on
8 trace files, w/ (green colored) and w/o (red colored) using reference
snapshots. Cell with a number represents the rank. “X” marks the
stack trace that gets filtered with the reference snapshots.

HasOverlap Sessions Nodes 25% 50% 75% 90% 95% 99%

FALSE 102,627 315 28 49 94 164 202 869
TRUE 165 31 38 50 59 86 241 888

Table 3: VM deployment time (seconds) impact by trace collection.

In four traces, the rank rises to the top three, which largely
narrows down the code regions developers need to investigate.

7.8 Runtime Overhead
As a production service, RESIN should not impose significant
overhead on the hosts. For the detection component, since
RESIN leverages the kernel to collect performance counters
infrequently and offloads the analyses remotely, the overhead
is minimal. The main source of overhead is the heap snapshot
trace collection. We use the VM deployment performance to
quantify the end-to-end cost of trace collection, because VM
deployment is the most important event for hosts and involves
nearly all host services and triggers many critical code paths.
A large overhead will be reflected in long deployment time.

We first check how many hosts RESIN performs trace col-
lection on in November 2021. The result shows only 346
hosts are collected at least once, which is less than 0.1% of all
nodes in a cluster. We then collect start and end timestamps
of all VM deployment sessions and the heap snapshot tracing
requests. We compare the timestamps in the two sets of events.
In 315 (91%) of the 346 hosts, the deployment sessions do
not have any overlap with tracing sessions, thus the tracing
has no impact on these sessions.

Table 3 shows the end-to-end latency of the overlapped
sessions compared to non-overlapped sessions: by 1 s for the
median, and by 10 s for the 25th percentile. The latency in-
crease could be notable for some short-duration deployments.
However, this impact is limited to only a few sessions (0.16%)
from a relatively small number of host nodes.

120    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0

20

40

60

M
e
m

 (
M

B
)

0 50 100 150 200 250

Execution time (minutes)

0
20
40
60
80

C
P
U

 (
%

)
tracing starts 

(84 min)
tracing ends 

(145 min)

(a) host A

0

20

40

60

M
e
m

 (
M

B
)

0 50 100 150 200 250

Execution time (minutes)

0
20
40
60
80

C
P
U

 (
%

)

tracing starts 
(62 min)

tracing ends 
(124 min)

(b) host B

Figure 18: Memory size and CPU usage changes through tracing.

To measure the impact on memory size and CPU, we con-
duct experiments on two hosts that have active workloads.
We trace one of the critical host processes. Figure 18 shows
the memory and CPU usage during the experiment. Enabling
tracing both slightly increases the average memory usage,
0.25 MB for host A and 0.53 MB for host B, and the CPU
usage, 0.23% for host A and 0.22% for host B. When do-
ing snapshot and dumping the trace, there is a clear spike
for CPU usage: around 46% in both hosts. The memory us-
age also increases, but not significantly: 1.93 MB for host A
and 3.89 MB for host B. After the tracing, the memory usage
remains at a slightly increased level due to a one-time ini-
tialization required by tracer. Overall, the CPU and memory
usage costs are acceptable in production deployment.

7.9 Tuning Effort
The software components and workloads in Azure infras-
tructure undergo frequent changes. As part of RESIN’s de-
sign goals of minimizing false positives and false nega-
tives, we aim to build robust algorithms that avoid fragile
parameter tuning. For the detection part, throughout RESIN’s
production operation, we only made one major parameter
change. We updated the alert threshold for the final result
<BucketSize,SeverityScore> (Section 4.3.1) from <50 MB,
10> to <200 MB, 40> around 3 months after deploying RESIN.
There has not been further tuning since then. For the diagnosis
part, except for the initial trial runs in which we were experi-
menting with the snapshot algorithms, the parameters for the
completion triggers have not been tuned after the diagnosis
engine was enabled in production.

8 Lessons and Limitations
Lessons While memory leaks are generally taken seriously,
developers tend to postpone the investigation if there are no
convincing hints. Presenting clear evidence in results is criti-
cal, and significantly improves developers’ responsiveness.

Many teams write extensive test cases that check if al-
locations are freed. Some teams also implement their own

version of memory leak detection tool in their testing cluster.
Developers mentioned a major pain point is that the testing
environment has significant discrepancies with the production
environment. For example, in one case, developers mentioned

“We don’t have an environment where ServiceH runs for a re-
ally long time with hosts undergoing reboots.”, otherwise,
their testing would have caught the memory usage anomaly.

Our initial thought in designing the diagnosis module is to
analyze the source code of the detected leaking component.
We later found that finding the root cause stack traces is usu-
ally good enough for developers to debug the issue based on
their own experience and domain knowledge.

For production services, safety is of high priority. The
cloud infrastructure is a complex and dynamic environment.
Some workflow in RESIN can be interrupted abruptly, e.g.,
due to transient network issues, interference with other profil-
ing tools. On one occasion, RESIN accidentally left the trace
collection running and triggered alarms in the detection en-
gine. We set three lines of protection to prevent similar issues:
(i) limit collecting on same cluster within one hour five times
at maximum to reduce side effects; (ii) a forced cleanup oper-
ation whether the profiling succeeds or not; (iii) a workflow
that periodically checks logs and cleans up for runaway hosts.

Limitations The telemetry data RESIN analyzes is relatively
coarse-grained. Even the heap snapshot only contains limited
information about allocations. Therefore, it has inherent inac-
curacies and may miss detection of minor leak bugs. RESIN
can be further enhanced by collecting more fine-grained sig-
nals, and leveraging semantic information from source code.

Developers may need to reproduce a reported memory leak
issue for investigation or confirming bug fixes. But this is of-
ten challenging, because the issues are often triggered by com-
plex workloads and rare conditions. RESIN does not address
this challenge. We plan to automatically capture production
triggering workloads for developers to reproduce leaks.

The patterns used in our heap snapshot trigger are based on
empirical observations, which may be incomplete. Our classi-
fication method is simple. They can be improved with more
comprehensive case studies and more advanced methods.

9 Related Work
Detecting memory leak bugs has been extensively studied in
the context of conventional software. Our work focuses on
addressing memory leaks in production cloud infrastructure,
which face unique challenges as described earlier. Indeed, the
memory leaks addressesed by RESIN are usually the ones
that escape the bug detection and extensive testing practice
in Azure and are only triggered in complex production work-
loads. The main research contribution of RESIN is its novel
multi-stage approach and algorithms including the bucket
pivot analysis and moving suspicious interval algorithm for
leak detection, the live heap snapshot collection and analysis
for leak diagnosis, and the decision tree based leak mitigation.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    121



Dynamic leak detection. Many solutions have been pro-
posed to dynamically detect memory leaks. There are broadly
two approaches. In one approach, the tool records memory-
related metadata by inserting checks to object code [16], using
performance monitoring units in processors [24], instrument-
ing bytecode [39, 49], instrumenting intermediate represen-
tation [25, 34], instrumenting source code [21], modifying
garbage collector or memory allocators [23, 35] or using met-
rics such as object staleness [17] as indicators to examine ob-
ject lifetime. These works usually record fine-grained memory
object information and have high accuracy, but they require
rewriting codes or special hardware support, which is difficult
and unsafe to apply in production settings.

Another approach analyzes heap snapshots/dumps [31, 33,
38, 44]. They are designed for interactive offline debugging
and do not work well for long-running processes and services
in production systems. They also rely on user-defined work-
loads as oracles to judge if memory growth is a leak. Obtain-
ing such oracle workloads is difficult in practice. RESIN con-
tinuously monitors components in production cloud, designs
robust algorithms to detect leaks without requiring oracles,
and performs low-overhead live trace collection on-demand.

Some solutions [22,40,41] analyze memory usage patterns.
They propose complex models to detect leaks in a single
process or VM. The memory usage behavior of an individ-
ual process can be highly noisy due to workload effect and
interference. Thus, they can have false positives and false neg-
atives when applied in production cloud. Building complex
models for each process in cloud scale also faces significant
computation challenges. In comparison, RESIN focuses on
the memory usage summary and global trend across processes,
which enables accurate detection and efficient computation.
RESIN additionally takes live heap snapshot and analyzes the
snapshots to help developers localize the root cause.

Static leak detection. A wealth of work uses static analy-
sis to find memory leak bugs. Many of them focus on im-
proving the accuracies of static analyses [10, 15, 18, 36, 47].
Some other work focuses on finding specific leak code pat-
terns. LeakChecker [50] finds objects created by the itera-
tion are unnecessarily referenced by objects external to the
loop. MLEE [46] finds leaks from early-exit paths by cross-
checking the presence of memory deallocations on different
early-exit paths and normal paths. Heapster [5] adopts a hy-
brid approach to leverage dynamic information to help static
analysis. In general, while static approaches have the advan-
tages of not requiring running a program, they face well-
known scalability and accuracy challenges. They are also
typically designed for a specific type of program. The soft-
ware components in cloud infrastructure are highly complex
and are written in a wide variety of programming paradigms.
Also, static analyses cannot handle the forgotten leaks.

Leak fix and recovery. Some research work focuses on help-
ing developers fix leak in addition to detecting them. Leak-

Point [9] points developers to the potential fixable locations
by taint analysis. LeakChaser [48] provides three layers of
abstractions to assist programmers to diagnose memory leaks.
Some other work focuses on automatically recovering the
program from leaking. LeakSurvivor [42] and Melt [7] re-
claim memory resources by swapping out objects to disks.
LeakFix [11] inserts deallocations for leaks.

Statistical debugging. Statistical debugging [28, 29] uses
statistical methods to identify predictors in the source code
that correlate with a program failure. It requires instrumenting
all predicates and re-running a program many times with
normal runs and buggy runs. The diagnosis design in RESIN
is complementary to statistical debugging. It collects live heap
snapshots from production directly. Its algorithm identifies
buggy stack trace based on the allocation information.

Failure detection and mitigation. Detecting memory leaks
in production cloud is related to the topic of failure detection
and mitigation in distributed systems [14,19,20,27,30,43,51].
Memory leaks are difficult to detect compared to other types
of failures. IASO [37] detects fail-slow issues and supports
mitigating slow issues with VM or node reboots. Narya [26]
predicts node-level failures and performs mitigation actions.
RESIN focuses on catching on-going memory leak issues,
and provides a holistic solution. Its mitigation module lever-
ages results from the detection engine to perform targeted
mitigation to a specific process, service, driver, or host OS.

10 Conclusion

This paper presents RESIN, an end-to-end service designed
to tackle memory leaks in production cloud infrastructure.
RESIN takes a divide-and-conquer approach to decompose
the memory leak problem, and designs a multi-level solution
with novel algorithms including bucketization-based pivot
analysis, live heap snapshot strategy, and diagnosis analysis.
RESIN has been running in Azure for more than 3 years, and
successfully reduces low-memory-induced VM reboots and
new VM allocation errors by 41× and 10×, respectively.

Acknowledgments
We would like to thank our shepherd, Kathryn S. McKinley,
and the anonymous reviewers for their thoughtful comments.
We thank our colleagues who partnered with us on building
the overall solution and providing feedback to us, including
but not limited to Nathan Ernst, Anupama Vedapuri, Rui Ding,
Carl Zhou, Francis David, Gaurav Jagtiani, Rakkimuthukumar
Nallore Ponnusamy, Jayjit Phadke, Dustin Douglas, Matt Se-
bek, Harish Srinivasan, Kevin Broas, and Heejin Son. We
would like to thank the strong support from Igal Figlin,
Dongmei Zhang, Marcus Fontoura, Melur Raghuraman, Mark
Russinovich, and Girish Bablani. This work was supported in
part by the National Science Foundation grants CNS-1942794,
CNS-2149664, CNS-1910133, and CCF-1918757.

122    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] LeakSanitizer – clang 13 documentation. https://clang.llvm.
org/docs/LeakSanitizer.html.

[2] Windows Performance Recorder. https://docs.

microsoft.com/en-us/windows-hardware/test/wpt/

windows-performance-recorder.

[3] Request for supporting LeakSanitizer. https:

//developercommunity.visualstudio.com/t/

support-leaksanitizer/826620, 2019.

[4] Amazon. AWS service outage on October 22nd, 2012. https:
//aws.amazon.com/message/680342.

[5] M. Benz, E. K. Kristensen, L. Luo, N. P. Borges, E. Bodden,
and A. Zeller. Heaps’n leaks: How heap snapshots improve
android taint analysis. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE ’20,
page 1061–1072, Seoul, South Korea, 2020.

[6] M. D. Bond and K. S. McKinley. Bell: Bit-encoding online
memory leak detection. In Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’06, page 61–72,
San Jose, California, USA, 2006.

[7] M. D. Bond and K. S. McKinley. Tolerating memory leaks. In
Proceedings of the 23rd ACM SIGPLAN Conference on Object-
Oriented Programming Systems Languages and Applications,
OOPSLA ’08, page 109–126, Nashville, TN, USA, 2008.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proceedings of the 2nd Conference on Symposium on Net-
worked Systems Design & Implementation, NSDI ’05, page
273–286. USENIX Association, 2005.

[9] J. Clause and A. Orso. LEAKPOINT: Pinpointing the causes
of memory leaks. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, ICSE ’10,
page 515–524, Cape Town, South Africa, 2010.

[10] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang. Smoke:
Scalable path-sensitive memory leak detection for millions
of lines of code. In Proceedings of the 41st International
Conference on Software Engineering, ICSE ’19, page 72–82,
Montreal, Quebec, Canada, 2019.

[11] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou, B. Xie,
and H. Mei. Safe memory-leak fixing for C programs. In
Proceedings of the 37th International Conference on Software
Engineering, ICSE ’15, page 459–470, Florence, Italy, 2015.

[12] M. Ghanavati, D. Costa, A. Andrzejak, and J. Seboek. Mem-
ory and resource leak defects in java projects: An empirical
study. In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, ICSE ’18,
page 410–411, Gothenburg, Sweden, 2018.

[13] M. Ghanavati, D. Costa, J. Seboek, D. Lo, and A. Andrzejak.
Memory and resource leak defects and their repairs in java
projects. Empirical Software Engineering, 25(1):678–718,
2020.

[14] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sun-
dararaman, X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. Mc-
Caffrey, G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Ja-
cobson, R. Ricci, K. Webb, P. Alvaro, H. B. Runesha, M. Hao,
and H. Li. Fail-slow at scale: Evidence of hardware perfor-
mance faults in large production systems. In Proceedings of the
16th USENIX Conference on File and Storage Technologies,
FAST’18, pages 1–14, Oakland, CA, USA, 2018.

[15] B. Hackett and R. Rugina. Region-based shape analysis with
tracked locations. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL ’05, page 310–323, Long Beach, California, USA, 2005.

[16] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proc. of the Winter 1992 USENIX
Conference, page 125–138, Berkeley, 1992.

[17] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak
detection using adaptive statistical profiling. In Proceedings of
the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’04, page 156–164, Boston, MA, USA, 2004.

[18] D. L. Heine and M. S. Lam. A practical flow-sensitive and
context-sensitive C and C++ memory leak detector. In Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation, PLDI ’03, page
168–181, San Diego, California, USA, 2003.

[19] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang. Capturing
and enhancing in situ system observability for failure detection.
In 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’18, pages 1–16, Carlsbad, CA, October
2018.

[20] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalap-
ati, and R. Yao. Gray failure: The Achilles’ heel of cloud-scale
systems. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems, HotOS XVI. ACM, May 2017.

[21] S. H. Jensen, M. Sridharan, K. Sen, and S. Chandra.
MemInsight: Platform-independent memory debugging for
javascript. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE ’15, page
345–356, Bergamo, Italy, 2015.

[22] A. Jindal, P. Staab, J. Cardoso, M. Gerndt, and V. Podolskiy.
Online memory leak detection in the cloud-based infrastruc-
tures. In International Conference on Service-Oriented Com-
puting, ICSOC ’20, pages 188–200, Dubai, United Arab Emi-
rates, 2020.

[23] M. Jump and K. S. McKinley. Cork: Dynamic memory leak
detection for garbage-collected languages. In Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’07, page 31–38,
Nice, France, 2007.

[24] C. Jung, S. Lee, E. Raman, and S. Pande. Automated memory
leak detection for production use. In Proceedings of the 36th
International Conference on Software Engineering, ICSE ’14,
page 825–836, Hyderabad, India, 2014.

[25] S. Lee, C. Jung, and S. Pande. Detecting memory leaks through
introspective dynamic behavior modelling using machine learn-
ing. In Proceedings of the 36th International Conference on

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    123

https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-recorder
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-recorder
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-recorder
https://developercommunity.visualstudio.com/t/support-leaksanitizer/826620
https://developercommunity.visualstudio.com/t/support-leaksanitizer/826620
https://developercommunity.visualstudio.com/t/support-leaksanitizer/826620
https://aws.amazon.com/message/680342
https://aws.amazon.com/message/680342


Software Engineering, ICSE ’14, page 814–824, Hyderabad,
India, 2014.

[26] S. Levy, R. Yao, Y. Wu, Y. Dang, P. Huang, Z. Mu, P. Zhao,
T. Ramani, N. Govindraju, X. Li, Q. Lin, G. L. Shafriri, and
M. Chintalapati. Predictive and adaptive failure mitigation to
avert production cloud vm interruptions. In Proceedings of the
14th USENIX Symposium on Networked Systems Design and
Implementation, OSDI ’20. USENIX, November 2020.

[27] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,
Q. Lin, Y. Wu, S. Levy, and M. Chintalapati. Gandalf: An in-
telligent, end-to-end analytics service for safe deployment in
large-scale cloud infrastructure. In Proceedings of the 17th
USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI ’20. USENIX, February 2020.

[28] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’05, page 15–26, Chicago, IL,
USA, 2005.

[29] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statistical
debugging: A hypothesis testing-based approach. IEEE Trans.
Softw. Eng., 32(10):831–848, oct 2006.

[30] C. Lou, P. Huang, and S. Smith. Understanding, detecting and
localizing partial failures in large system software. In 17th
USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI ’20, pages 559–574. USENIX Association,
Feb. 2020.

[31] E. K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing
memory leaks using graph mining on heap dumps. In Pro-
ceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’10, page
115–124, Washington D.C., USA, 2010.

[32] Microsoft. Windows kernel api: ExAllocatePoolWith-
Tag. https://docs.microsoft.com/en-us/windows-hardware/
drivers/ddi/wdm/nf-wdm-exallocatepoolwithtag.

[33] N. Mitchell and G. Sevitsky. LeakBot: An automated and
lightweight tool for diagnosing memory leaks in large Java
applications. In Proceedings of the 17th European Conference
on Object-Oriented Programming, ECOOP ’2003, pages 351–
377, Darmstadt,Germany, 2003.

[34] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’07, page 89–100,
San Diego, California, USA, 2007.

[35] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and pre-
cisely locating memory leaks and bloat. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, page 397–407, Dublin,
Ireland, 2009.

[36] M. Orlovich and R. Rugina. Memory leak analysis by con-
tradiction. In Proceedings of the 13th International Static
Analysis Symposium, SAS ’06, pages 405–424, Korea, 2006.

[37] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, and H. S.
Gunawi. IASO: A fail-slow detection and mitigation frame-
work for distributed storage services. In Proceedings of the

2019 USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, page 47–61, Renton, WA, USA,
2019.

[38] W. D. Pauw and G. Sevitsky. Visualizing reference patterns for
solving memory leaks in java. In Proceedings of the 13th Euro-
pean Conference on Object-Oriented Programming, ECOOP
’99, page 116–134, Genova, Italy, 1999.

[39] D. Rayside and L. Mendel. Object ownership profiling: A
technique for finding and fixing memory leaks. In Proceedings
of the Twenty-Second IEEE/ACM International Conference
on Automated Software Engineering, ASE ’07, page 194–203,
Atlanta, Georgia, USA, 2007.

[40] V. Šor, P. Oü, T. Treier, and S. N. Srirama. Improving statistical
approach for memory leak detection using machine learning.
In Proceedings of the 2013 IEEE International Conference on
Software Maintenance, ICSM ’13, pages 544–547, Washington,
DC, USA, 2013.

[41] V. Šor and S. N. Srirama. A statistical approach for identify-
ing memory leaks in cloud applications. In Proceedings of
First International Conference on Cloud Computing and Ser-
vices Science, CLOSER ’11, pages 623–628, Noordwijkerhout,
Netherlands, 2011.

[42] Y. Tang, Q. Gao, and F. Qin. LeakSurvivor: Towards safely
tolerating memory leaks for garbage-collected languages. In
Proceedings of the 2008 USENIX Annual Technical Confer-
ence, USENIX ATC ’08, pages 307–320, Boston, MA, USA,
2008.

[43] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. Cal-
ifornia fault lines: Understanding the causes and impact of
network failures. In Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, page 315–326, New Delhi, India,
2010.

[44] J. Vilk and E. D. Berger. BLeak: Automatically debugging
memory leaks in web applications. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’18, page 15–29, Philadelphia,
PA, USA, 2018.

[45] C. A. Waldspurger. Memory resource management in vmware
ESX server. In Proceedings of the 5th Symposium on Operat-
ing Systems Design and Implementation, OSDI ’02. USENIX
Association, Dec. 2002.

[46] W. Wang. MLEE: Effective detection of memory leaks on
early-exit paths in OS kernels. In Proceedings of the 2021
USENIX Annual Technical Conference, USENIX ATC ’21,
pages 31–45, July 2021.

[47] Y. Xie and A. Aiken. Context- and path-sensitive memory leak
detection. In Proceedings of the 10th European Software En-
gineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing, ESEC/FSE ’13, page 115–125, Lisbon, Portugal, 2005.

[48] G. Xu, M. D. Bond, F. Qin, and A. Rountev. LeakChaser:
Helping programmers narrow down causes of memory leaks.
In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’11, page 270–282, San Jose, California, USA, 2011.

124    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepoolwithtag
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepoolwithtag


[49] G. Xu and A. Rountev. Precise memory leak detection for java
software using container profiling. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08,
page 151–160, Leipzig, Germany, 2008.

[50] D. Yan, G. Xu, S. Yang, and A. Rountev. Leakchecker: Practi-
cal static memory leak detection for managed languages. In
Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’14, page 87–97,
Orlando, FL, USA, 2014.

[51] Y. Zhang, J. Yang, Z. Jin, U. Sethi, K. Rodrigues, S. Lu, and
D. Yuan. Understanding and Detecting Software Upgrade
Failures in Distributed Systems, page 116–131. Association
for Computing Machinery, New York, NY, USA, 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    125





Cancellation in Systems
An Empirical Study of Task Cancellation Patterns and Failures

Utsav Sethi
University of Chicago
usethi@uchicago.edu

Haochen Pan
University of Chicago

haochenpan@uchicago.edu

Shan Lu
University of Chicago/Microsoft

shanlu@uchicago.edu

Madanlal Musuvathi
Microsoft Research

madanm@microsoft.com

Suman Nath
Microsoft Research

Suman.Nath@microsoft.com

Abstract
Modern software applications rely on the execution and co-
ordination of many different kinds of tasks. Often overlooked
is the need to sometimes prematurely terminate or cancel
a task, either to accommodate a conflicting task, to manage
system resources, or in response to system or user events
that make the task irrelevant. In this paper, we studied 62
cancel-feature requests and 156 cancel-related bugs across
13 popular distributed and concurrent systems written in
Java, C#, and Go to understand why task cancel is needed,
what are the challenges in implementing task cancel, and
how severe are cancel-related failures. Guided by the study,
we generalized a few cancel-related anti-patterns and im-
plemented static checkers that found many code snippets
matching these anti-patterns in the latest versions of these
popular systems. We hope this study will help guide better
and more systematic approaches to task cancellation.

1 Introduction
Task cancellation is critical to the performance and availabil-
ity of modern concurrent and distributed systems. Unlike
fault handling, which reacts to the failure of a software or
hardware component, task cancellation proactively stops the
execution of a software component (i.e., a task) that no longer
needs to run. Concurrent applications use task cancellation
for better resource management, task coordination, and sys-
tem responsiveness [6, 7, 20, 22]. For instance, when a user
aborts a long-running operation, the underlying system may
want to cancel the relevant tasks to save resources; when
a high-priority request comes, a busy system may want to
cancel a low-priority task for the greater good. Task cancella-
tion is crucial for today’s systems that concurrently execute
a large number of complex and resource-consuming tasks
under stringent quality of service requirements.
Unfortunately, supporting efficient and correct task can-

cellation in modern applications is nontrivial. Tasks need to
be designed such that they can be aborted at certain points
of execution without undesirable side-effects (e.g., without
corrupting the system state). Moreover, the application needs

to decide when to safely cancel a task, and once decided to
cancel, the decision needs to be correctly propagated to the
target task to be canceled.1 Last but not least, a system may
contain dozens or hundreds of concurrent tasks, with com-
plex dependencies among the tasks as well as on the system
environment. If not carefully implemented, canceling a task
may break a dependency or introduce concurrency errors
such as races. It is therefore not surprising that implementing
task cancellation can be error-prone.
As it stands, there have been no studies on task cancel

problems in concurrent and distributed systems—how cancel
is used and implemented, the various types of cancel-related
bugs, the impact of those cancel-related bugs, and so on,
although various other types of bugs and problems have been
heavily studied for distributed systems [11, 16, 18, 26, 27].
This paper attempts to provide an in-depth analysis of

cancellation usage and problems in popular software appli-
cations across multiple languages, which we hope will help
guide cancellation-related systems research and design.

Why do applications cancel tasks? To understand why
cancellation may be desirable to system operation, we re-
viewed 62 feature requests in 13 popular open-source ap-
plications, such as HBase, Hive, Cassandra (Java); Roslyn,
ASP.NET Core (C#); CockroachDB, and InfluxDB (Go).

We found that about half of the cancel-feature requests
aim to terminate tasks that no longer produce useful results
upon a change in system or user state (e.g., the finish of a
related task and the end of a user session); close to half of the
requests aim to improve operational flexibility and enable
users to cancel a job, particularly the time-consuming ones, at
any time; a small number of requests aim to enable stopping
a low-priority task prematurely to support the launching
and running of other more important tasks.
Our study confirms our understanding that task cancel-

lation is a crucial feature that facilitates efficiency and op-
eration flexibility in concurrent systems. It shows that the
trigger of a cancel can be a variety of events (far beyond

1This is in contrast to fault-handling where the external environment de-
cides when a fault is generated.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    127



Task Task Cancellation
C# Task,Thread CancellationToken struct
Go goroutine Context type
Java Thread interrupt() on Thread itself

Table 1. Task constructs and cancellation mechanisms

system shutdown and component failures), and the target
of cancellation is often a small number of selective tasks
(rarely bulk cancellation), which can all bring complexity to
the implementation of task cancellation.

What causes cancel-related bugs? To understand the
challenges in implementing task cancellation correctly, we
studied 156 bug reports across the same set of 13 popular
open-source applications in Java, C#, and Go to understand
what are common cancellation-related bugs.

Our study shows that problems routinely occur at all
phases of cancel: 1) deciding when and which task to cancel
(about one third of the bugs), 2) propagating the cancel re-
quest from the initiator to the target task (about one quarter
of the bugs), and 3) fulfilling the cancel in the target task
(about one third of the bugs). Some classes of problems are
particular to the type of mechanism used to issue cancel,
such as bugs in the use of Java’s interrupt API, and bugs
in passing cancellation tokens through function parameters
in C# and Go. Many other classes of problems are due to
the overall complexity of implementing cancel, such as de-
termining which tasks conflict, which system state changes
must be reverted before task termination, etc. For each type
of bugs, we discuss potential solutions to tackle them.

Impacts of cancel-related bugs. The impact of cancel
bugs varies, but can in some cases be severe. Among issues
with specified symptoms, a few common categories are re-
source leaks, performance issues, broken task APIs, data
corruption or loss, and incorrect user reporting.

Cancellation anti-patterns. Through the study above,
we have generalized and implemented static checkers for
five cancel-related anti-patterns using the CodeQL [1] static
analysis framework, including (1) missing interrupt handling
inside a loop (Java); (2) using the wrong built-in API to check
or reset the interrupt flag on threads (Java); (3) failure to
propagate cancel to child tasks (Java); (4) ignoring cancel-
token parameters (C#); and (5) not propagating cancel tokens
(C#)2. We find around 200 instances of these anti-patterns
across the latest versions of the 13 applications we studied,
which further motivates future work to improve the support
for correct cancel implementation.

2 Background
Task. This paper defines a task as a unit of concurrent ex-
ecution. As summarized in Table 1, in Java, all code that
implements a Runnable interface qualifies (e.g., Thread). In
2This particular checker is a re-implementation of an existing C# checker.

1 public void run() {

2 try { ...

3 } catch (InterruptedException e) {

4 // receiver handles the cancel request

5 }

6 ...

7 if (Thread.currentThread ().isInterrupted ()) {

8 // receiver handles the cancel request

9 }

10 }

Listing 1. Handling cancel requests in Java

C#, tasks are objects of type Thread or Task. In Go, execution
inside a goroutine is a task [4, 5, 22]. Tasks are not limited
to any specific programming model: for example, some is-
sues we study involve tasks as part of an event-driven design.
Some tasks execute with a clear end, like a user-request task
launched by a server application; some execute with an open
end and cease only on system shutdown or explicit request to
terminate, like a task that provides an in-memory cache ser-
vice for others. Tasks can also initiate work on other nodes,
e.g. by issuing an RPC call.

Task Cancel. Cancel is the deliberate attempt of one task
to terminate another task in a cooperative way. We will refer
to the former as the cancel initiator and the latter as the
cancel target. All the instances of cancel we study are co-
operative, which means that the target task, upon receiving
the request, chooses how and when to terminate [15]. Note
that the alternate way of task cancel - abortive, where the
initiator forces the target to terminate - is prone to semantic
errors and is not supported by the three languages that our
study focuses on (Java, C#, Go). For example, the abortive
Java Thread.stop() method is deprecated now.

Cancel vs Fault Handling. Task cancel and fault han-
dling have some similarities in that they both involve a task
finishing earlier than expected, but they also have fundamen-
tal differences. Cancel can be considered part of the regular
operation of the system: the conditions that cause cancel
to be issued are known and expected with some regularity,
such as to proactively prevent performance problems, as we
will discuss in Section 4; the cancel process involves the co-
operation between at least two running parties, the initiator
and the target; after the cancel is conducted, the system is
expected to remain functioning as normal or even at a higher
capacity. This is in contrast to failure handling, in which fail-
ure events are unexpected; the handling is reactive after a
component failure; and the expectation for system function-
ing may be lower - e.g. to function at reduced capacity, or to
terminate safely.

Cancelmechanisms.Although the built-in cancel mech-
anisms in C#, Go, and Java take different forms, as listed in
Table 1, they all essentially offer a "flag": the initiator sets
the flag when requesting cancel, and the target can check
the flag and respond to the cancel request.

128    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 var tokenSource = new CancellationTokenSource ();

2 var token = tokenSource.Token;

3 var mytask = Task.Run(() => {

4 // the receiver checks the token before starting

5 // to handle a potential cancel request

6 ...

7 if (token.IsCancellationRequested) {

8 // receiver handles the cancel request

9 }

10 }, token);

Listing 2. Handling cancel requests in C#

Specifically, in Java, any thread can execute t.interrupt()
to set an internal flag of thread t. Any code executing in
thread t can use APIs like isInterrupted() to check this
flag and see if an cancel request has been delivered to it.
Alternatively, any execution of a blocking API, like sleep()
or poll(), will throw an InterruptedException upon the
setting of its thread’s cancel flag, as shown in Listing 1.
C# and Go offer more flexible ways of cancel. Instead of

limiting each thread to have one flag, they allow the software
to declare any number of CancellationToken structs (C#)
or Context variables (Go) that each contains a cancel flag. In
C#, a CancellationToken object, generated from a Cancel-
lationTokenSource is typically passed through function pa-
rameters. An invocation of Cancel() on the token’s source
would set the flag inside the token object, which is visible
to any task that has access to the token, as illustrated in
Listing 2. Cancel in Go is similar: the Context type provides
a CancelFunc to issue a cancel signal, which can be checked
via ctx.Done() on the Context ctx. Like CancellationToken,
Context is typically passed via function parameters. In the
remainder of the paper, we will refer to Context variables
also as cancellation tokens for simplicity.
The CancellationToken in C# also allows registering a

callback function to be called when the token is canceled.
This functionality is rarely used in the applications that we
study and hence will not be discussed in this paper.

Finally, developers can implement custommeans of cancel.
In many Java programs, shared Boolean variables are used
as cancel flags. Threads explicitly read and write these flags
to carry out cancel. This essentially allows multiple cancel
flags for one thread and hence can embed more semantic
information inside each flag. However, it is also prone to
bugs, as we will discuss in Section 5.

3 Methodology
Application selection. We study applications written in
three different languages: Java, C# and Go, as shown in Table
2. These languages were chosen as they have widespread use
of different built-in cancel mechanisms, and as such provide
a useful point of comparison for this study.
In choosing which Java applications to study, we focus

primarily on the most popular, as indicated by GitHub stars,
open-source distributed applications in various categories,

Table 2. Applications included in our study

Application Category Stars Bugs CFR2

Java (distributed apps)
Cassandra Database 7K 14 2
Elasticsearch Full-text search 57K 15 20

Hadoop1 Distri. storage;
distri. processing

12K 10 3

HBase Database 4K 26 3
Hive Data warehousing 4K 21 5
Kafka Stream processing 20K 9 2
Solr/Lucene Full-text search 4K 9 2
Spark Data processing 31K 6 6
Java - subtotal 110 43

C# (single-instance apps)
ASP.NET Core Web framework 26K 6 1
Roslyn Compiler 15K 14 8
C# - subtotal 20 9

Go (distributed apps)
CockroachDB Database 22K 12 6
etcd Key-value store 38K 8 0
InfluxDB Database 22K 6 4
Go - subtotal 26 10

Total 156 62
1 Including Hadoop Common, HDFS, YARN, MapReduce
2 Cancel-Feature Requests

as listed in Table 2. Our selection is more limited for Go and
C#, since there are much fewer applications written in these
two languages on GitHub. For Go, we study applications that
are analogous to categories studied in Java: InfluxDB and
CockroachDB (distributed databases), and etcd (distributed
application serving and coordination). For C#, there do not
exist any widely-used applications in those categories. So,
as an alternative, we chose the top 2 applications/frame-
works, out of the 50 most popular C# applications on GitHub,
that utilize cancel extensively: Roslyn (compiler suite) and
ASP.NET core (web framework).

Cancellation Issue Study. For these selected applica-
tions, we checked their Jira issue trackers or GitHub issue-
and-pull systems, if they do not use Jira. We searched for
resolved and valid issues, up to June 2021, using the following
keywords: abort, cancel, interrupt, and terminate. We then
manually checked the reports to exclude issues that do not
have a clear description or are unrelated to task cancel.
From the remaining, we get 156 issues that are labeled

by developers as “bug” or are clearly fixing a bug, although
not labeled. They will help us understand the root causes
and symptoms of cancel-related bugs, as presented in Sec-
tion 5 and 6. We should note that although an issue might
belong to multiple root causes or symptom categories, it

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    129



Table 3. Reasons underneath Cancel-Feature Requests (CFR)

Why should a task 𝑇 be canceled? #CFR
A. Efficiency: 𝑇 no longer produces useful results 30
- A1. Upon system shutdown 5
- A2. Upon a user disconnection or time-out 6
- A3. Upon a system or user event 19
B. Flexibility: 𝑇 is no longer wanted by users 28
- B1. Cancel through an API call 20
- B2. Cancel through user interface or keyboard 7
- B3. Cancel through timeout parameter 1
C. Priority: More important tasks need to run 4
Total 62

is classified by its primary category only, without double-
counting. In addition, we study 62 issues that are requests
to add the capability of canceling some tasks and are labeled
as “improvement” or “feature”, instead of “bug”, and con-
tain patches approved or already merged. They will help us
understand the motivation of task cancel, as in Section 4.

We believe cancel problems are under reported, as cancel
code can be difficult to exercise during testing. From the
discussion in cancel-feature requests, we also see that the
complexity in correctly implementing task cancel sometimes
drives developers away from implementing cancel, which of
course comes with performance and efficiency loss.

Threats to validity. Our study does not cover all task
cancel mechanisms, and may not generalize to those issues
and systems not covered in our benchmark suite. Particularly,
we have skipped those cancel-feature requests and cancel-
related bugs whose description is not clear enough for us
to conduct further categorization. We may also have missed
cancel-related requests or bugs whose reports do not contain
the search keywords used by us. Furthermore, since there
are many more issue reports and pull requests about adding
cancel features than those about cancel-related bugs, we limit
our study of cancel-feature requests to those that contain
cancel-related keywords in the issue/pull titles. Thus, we
likely have missed many requests that have those keywords
in the issue/pull body, but not the title.

4 Why Do Applications Cancel Tasks?
To understand why tasks may require cancel and what trig-
gers a task cancel, we studied 62 cancel-feature requests in
Java, C#, and Go systems, following the methodology de-
scribed in Section 3, and generalized three main reasons for
task cancel as shown in Table 3.

Reason-A: Efficiency. Close to half of the cancel-feature
requests originate from developers’ efficiency concerns, as
the computation of a task𝑇 no longer produces useful results
upon (A1) a system shut-down, (A2) a user-session termi-
nation, or (A3) a particular system or user event. Among

these three different cancel-trigger scenarios, A3 is the most
common and triggers cancel at a finer granularity than A1
and A2. For example, when a user navigates away from a
web page 𝑃 , the system still runs many tasks related to the
user, but can cancel all the tasks initiated by page 𝑃 (e.g.,
influxdb-19029); when one attempt of a task finishes, all other
speculative or parallel attempts of this task can be canceled
(e.g., SPARK-25773 and roslyn-8050); when a job is canceled
or finished, its related tasks can be canceled (e.g., roslyn-
25620 and roslyn-51816). In all these cases, continuing the
execution of 𝑇 does not affect functional correctness but
wastes system resources and affects request latency.

Reason-B: Flexibility. Another common reason is to of-
fer users the flexibility to prematurely terminate a user op-
eration and all its related tasks, which contribute to about
40% of the cancel-feature requests. In a number of cases, the
requests explicitly mention that the target task may take a
long time (e.g., elasticsearch-72644 and elasticsearch-73818
and SOLR-6122) or even hang for unknown reasons (e.g.,
KAFKA-1506), and hence should be cancellable. In other
cases, the exact reasons why a user may want to cancel a
task is not explained. The requested cancel features typically
get implemented as task-cancel commands or as handlers
of certain user interface events, like the Ctrl+C keyboard
combination.

Reason-C: Priority. Interestingly, sometimes, develop-
ers want to enable the system to sacrifice 𝑇 for the benefit
of other more important tasks. For example, in HDFS-2507,
a feature is added to cancel an ongoing checkpoint task of a
standby NameNode when the active NameNode fails. This
would allow the standby NameNode to immediately start the
fail-over task instead of waiting for the long checkpointing
to finish, minimizing the system downtime. Similar decisions
of sacrificing long-running low-priority tasks for the ben-
efit of high-priority tasks also occur in other systems (e.g.,
CASSANDRA-14397, elasticsearch-56009).

Observations. Trigger variety. A task cancel can be trig-
gered by a variety of events, as shown in Table 3. This variety
adds complexity to the implementation of cancel: the pro-
gram may miss a trigger and fail to initiate the cancel. Even
when a trigger is sensed, the trigger information may not
be included in the cancel request, e.g., in Java’s built-in can-
cel mechanism, making it difficult for the cancel handler to
process the cancel request properly.

Fine granularity. Task cancel is often targeted; bulk cancel
scenarios like system shutdown are rare. This fine granular-
ity can make it difficult to decide which task to cancel.
Heavy coordination. In a system that involves many con-

current components, cancel may involve a lot of coordination
across tasks: a task’s cancel could be due to the launch, the
progress, or the termination of another task. This heavy co-
ordination requirement demands careful synchronization
and shared-state clean-up during task cancel.

130    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/influxdata/influxdb/pull/19029
https://issues.apache.org/jira/browse/SPARK-25773
https://github.com/dotnet/roslyn/pull/8050
https://github.com/dotnet/roslyn/pull/25620
https://github.com/dotnet/roslyn/pull/25620
https://github.com/dotnet/roslyn/pull/51816
https://github.com/elastic/elasticsearch/pull/72644
https://github.com/elastic/elasticsearch/pull/73818
https://issues.apache.org/jira/browse/SOLR-6122
https://issues.apache.org/jira/browse/KAFKA-1506
https://issues.apache.org/jira/browse/HDFS-2507
https://issues.apache.org/jira/browse/CASSANDRA-14397
https://github.com/elastic/elasticsearch/pull/56009


Proactive instead of reactive. Unlike fault handling, task
cancel rarely reacts to an already exposed component failure.
It is more about the system efficiency, request latency, oper-
ational flexibility, and resource balancing, which, although
do not immediately precipitate system outages, are crucial
to the service quality and robustness.

5 Root Causes of Cancel-Related Bugs
We divide the whole procedure of cancel into three phases,
and categorize cancel bugs’ root causes accordingly:
1) Initiating Cancel - the cancel initiator senses a cancel-

trigger event and decides which task to cancel.
2) Propagating Cancel - the cancel request propagates from

the initiator to the target.
3) Fulfilling the Cancel - the cancel target responds to the

cancel request, releasing resources, restoring system states,
and ending its own execution.
Note that there are 9 bugs caused by miscellaneous se-

mantic errors that are not related to the core functionality
of task cancel. We put them in the “Other” category in Table
4 and skip discussion about them below.

5.1 Cancel-initiation bugs
As discussed in Section 4, a variety of conditions might trig-
ger a cancel. Deciding when to initiate a cancel to which
target task is complex and susceptible to problems, contribut-
ing to about 30% of cancel-related bugs (Table 4).
In some cases, a cancel is not initiated when it should

be, either because the system completely overlooks a can-
cel trigger ("Overlooking triggers") or because the system
checks the existence of a cancel trigger incorrectly ("Broken
trigger checking"). In other cases, a cancel is incorrectly or
unnecessarily initiated ("Excess cancel"). We describe each
type in more detail below.

5.1.1 Overlooking triggers. This type of bug occurswhen
a cancel should be initiated upon a specific trigger, but no
logic exists to do so. This is the most common type of cancel-
initiation bug, contributing tomore than 20% of all the cancel-
related bugs.

The most common scenario is that a running task𝑇 is can-
celed or has failed but a dependent task, which is no longer
necessary, is not canceled. As an example, in SPARK-21738,
expensive jobs would continue to run on a Spark cluster
even after a user session was closed, wasting computation
resources to produce irrelevant results. While Spark does
provide support for canceling jobs, the system did not realize
that a session closure should be treated as a trigger for job
cancel.
As another example, in roslyn-1086, the failure of a com-

pilation task will prevent a "completion" event from ever
being published to an event queue, while a task listening
to the queue, AnalyzerDriver, will continue to run and wait
for the event which will never arrive. The solution in this

Table 4. Cancel-related bugs: root causes

Root Cause Category Java C# Go

Buggy cancel initiation
- Overlooking triggers 22 3 9
- Broken trigger checking 7 0 0
- Excess cancel 7 1 0

Buggy cancel propagation
- Untimely delivery 15 3 4
- Dropped cancel 17 5 2

Buggy cancel fulfill
- Cancel not checked 8 0 4
- Cancel not carried out 6 0 0
- Defective cleanup 23 5 6

Other 5 3 1

case was to include a reference to the AnalyzerDriver in the
compilation task, which is canceled via cancellation token
upon compilation failure.
Other types of triggers could also be overlooked. For ex-

ample, in CASSANDRA-8805, developers realized that the
launch of high-priority tasks like repair often gets blocked
by long-running low-priority tasks like index-summary re-
distribution, as these tasks access sstables in a conflicting way
and cannot run in parallel. To solve this problem, developers
added the logic to allow any repair to check for and cancel
any running index-summary redistribution tasks.

Note that bugs of this type share similar root causes with
those cancel-feature requests for efficiency or priority rea-
sons, whichwere discussed in Section 4. The difference seems
to be the impact: the ones that cause more severe failure
symptoms are reported as bugs, instead of feature requests.

The patches to these bugs are straightforward: adding the
logic to initiate a cancel upon the occurrence of the trigger.

Lessons learned. A fundamental challenge here is to track
the dependency relationship among all the concurrent tasks,
a daunting task in modern concurrent and distributed sys-
tems: which tasks conflict with each other and cannot run
in parallel; which tasks depend on which task and hence
should not continue if the latter is canceled; which tasks
are redundant copies of which task and hence should not
continue if the latter finishes successfully; etc. In all systems
that we have checked, this is conducted in an ad-hoc way.
There is an unmet need for coherent tool/framework and
possibly programming language support for capturing these
dependencies.

One particular type of dependency, the parent-child rela-
tionship, is feasible to track through static program analysis.
Consequently, we can build a static checker to automatically
identify code snippets where the parent task is canceled, and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    131

https://issues.apache.org/jira/browse/SPARK-21738
https://github.com/dotnet/roslyn/issues/1086
https://issues.apache.org/jira/browse/CASSANDRA-8805


yet no cancel is initiated towards the children tasks. We will
present more details about this checker in Section 7.3.
Other types of dependencies, like repair versus index-

summary redistribution or a speculative task versus the orig-
inal task, depend on application-specific semantics and are
much harder to track systematically. We noticed that these
semantic-rich dependencies are often centered on some key
shared data, like the sstables that are updated by conflict-
ing tasks or the common job-ID shared between multiple
job attempts (e.g., HIVE-12307). Consequently, future work
may automatically infer task dependencies by analyzing ac-
cess patterns on key data.

5.1.2 Broken trigger checking. Sometimes, the program
anticipates the existence of a trigger. However, it checks the
trigger occurrence in a wrong way. For example, in SOLR-
10525, if a duplicate task is submitted while a previous in-
stance of a task is still running, the previous instance should
be canceled. However, the logic to recognize whether a previ-
ous instance of a task is running is incorrect and so a cancel
is never issued, leading to the execution of duplicate tasks.

Lessons Learned. Many bugs of this type are related to
checking whether a particular task is running. Often, the
task performing the check does not have a direct reference
to the task under check, and hence needs to refer to an
intermediary, like a shared collection of task status. The logic
to store and retrieve the task status information is custom
implemented in each system and hence prone to bugs: some
accesses to the task registry are not thread safe; different
types of tasks may store their information in different ways
in the collection and hence got mis-checked later; etc. Some
standard library support would help.

5.1.3 Excess cancel. Converse to "Overlooking triggers",
sometimes triggers are correctly sensed and yet tasks are
wrongly or unnecessarily canceled. For example, upon the
launch of a task𝑇 , the software may incorrectly cancel tasks
that are actually not conflicting with𝑇 (CASSANDRA-13142,
CASSANDRA-15024) or tasks that are indeed conflicting
but have higher priority than 𝑇 (HBASE-17674). Upon the
finish of a task 𝑇 , the software may incorrectly cancel tasks
which are related to 𝑇 but whose results are still needed
(roslyn-11470, HADOOP-6762).

Lessons Learned. Similar as “overlooking triggers”, these
bugs originate from the challenge of tracking the dependency
among tasks. Future research should study how to track
which tasks conflict with or depend on each other, potentially
through data dependency analysis.

5.2 Cancel-propagation bugs
Once a cancel trigger is correctly sensed and the cancel target
is correctly identified, the initiator issues a cancel request.
For about a quarter of the cancel-related bugs in our study,
the propagation from the initiator to the target went wrong.

1 // Cancel initiator

2 class Initiator {

3 Task myTask;

4 main() {

5 ...

6 myTask.cancelFlag = true;

7 }

8 }

9
10 // Cancel recipient

11 class Task {

12 public boolean cancelFlag = false;

13 private BlockingQueue Bqueue;

14
15 run() {

16 while(cancelFlag == false) {

17 ...

18 Bqueue.take(); // blocks until an element is

available

19 }

20 }

21 }

Listing 3. An example of late cancel (SPARK-1582)

5.2.1 Untimely delivery. It is important that a cancel can
be issued at any time to the cancel target without delays or
mis-handling. However, this is often not the case when a
custom cancel mechanism is used.

Cancel race. In many systems, a “task manager” is im-
plemented to coordinate tasks and relay cancel requests: the
cancel initiator notifies the task manager about its cancel re-
quest; the task manager then sends the request to the cancel
target. In several Java and Go systems, such as Cassandra
(CASSANDRA-9070), Spark (SPARK-4097), HBASE (HBASE-
13146), InfluxDB (influxdb-9018), and etcd (etcd-8443), the
implementation of task managers contain concurrency bugs
that manifest when cancel is issued at a special moment, like
shortly after the target task is submitted, or in parallel with
another cancel request towards the same target. As a result
of these bugs, cancel requests may be dropped.
Occasionally, such cancel-related concurrency bugs also

occur when a standard cancel mechanism is used. For ex-
ample, in aspnetcore-11757, a cancel initiator disposes a
CancellationTokenSource right after it requests a cancel
on the token. As a result, when the target task checks the
token, a use-after-disposal error occurs.

Lessons Learned. It is alarming that similar cancel-concur-
rency bugs occur in so many different systems. On one hand,
standard task-manager library support could help. On the
other hand, existing concurrency bug detection and test-
ing tools [10, 13, 14, 17, 19] should be applied to check the
correctness of cancel-related implementation.

Late polling. As discussed in Section 2, many custom
cancels are conducted through a shared flag variable. Un-
fortunately, without system support, such a cancel request
cannot be delivered timely when the target task conducts
frequent blocking operations. For example, Listing 3 illus-
trates a simplified version of bug SPARK-1582. A task checks

132    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://issues.apache.org/jira/browse/HIVE-12307
https://issues.apache.org/jira/browse/SOLR-10525
https://issues.apache.org/jira/browse/SOLR-10525
https://issues.apache.org/jira/browse/CASSANDRA-13142
https://issues.apache.org/jira/browse/CASSANDRA-15024
https://issues.apache.org/jira/browse/HBASE-17674
https://github.com/dotnet/roslyn/issues/11470
https://issues.apache.org/jira/browse/HADOOP-6762
https://issues.apache.org/jira/browse/SPARK-1582
https://issues.apache.org/jira/browse/CASSANDRA-9070
https://issues.apache.org/jira/browse/SPARK-4097
https://issues.apache.org/jira/browse/HBASE-13146
https://issues.apache.org/jira/browse/HBASE-13146
https://github.com/influxdata/influxdb/issues/9018
https://github.com/etcd-io/etcd/issues/8443
https://github.com/dotnet/aspnetcore/pull/11757
https://issues.apache.org/jira/browse/SPARK-1582


1 // Cancel recipient

2 class Task {

3 run() {

4 ...

5 commitSync () // interrupt lost inside commitSync

6 ...

7 if (isInterrupted ()) {

8 // cleanup steps here will not be performed

9 }

10 }

11 commitSync () {

12 sleep (1000); // unsets interrupted flag

13 ...

14 catch (InterruptedException ex) {

15 // does not reset flag , cancel gets dropped

16 }

17 }

18 }

Listing 4. An example of dropped delivery (KAFKA-4375)

1 class Task {

2 ...

3 void checkStale () {

4 ...

5 // current thread is interrupted somewhere

6 } catch (InterruptedException e) {

7 - Thread.currentThread ().interrupted (); // Wrong

8 + Thread.currentThread ().interrupt (); // Fixed

9 }

10 }

11 }

Listing 5. API Misuse Example (SOLR-8066)

whether a cancel is delivered to it at the beginning of every
work-loop iteration through a custom cancelFlag variable.
Unfortunately, since every iteration of the loop executes
a BlockingQueue::take() operation, the flag may not be
checked for a long or even unlimited amount of time, causing
severe delays in Spark job cancellation. Similar issues also
exist in KAFKA-5697, KAFKA-5896, and others.
These problems are typically fixed by using a language

built-in cancel mechanism instead of, or in addition to, the
custom flag to carry out the cancel. In Java, the built-in
Thread.interrupt() would terminate blocking operations
such as sleep(), BlockingQueue::take(), and poll(), with
an InterruptException thrown. In C# and Go, many sys-
tem operations such as sleep() accept cancellation tokens
as parameters, allowing the timely delivery of cancel.

Lessons Learned. The key takeaway here is to avoid using a
custom cancel flag, particularly when the nearby code region
conducts blocking operations. We can use static program
analysis to identify these vulnerable custom-cancel loops
and warn the developers. Having said that, the pervasive use
of custom-cancel loops in Java programs is probably due to
the limitation of Java’s built-in cancel mechanism, which we
will discuss more in Section 5.4.

5.2.2 Dropped cancel. Depending on the different can-
cellation mechanisms, a cancel request could be dropped
before it propagates to the right target in different ways.

Cleared interrupt (Java). A tricky aspect of Java’s built-
in mechanism is that the interrupt received by a thread can
be silently unset by methods along the call chain. As a result,
the interrupt may fail to reach the code that is prepared
to fulfill the cancel request, contributing to about 15% of
cancel-related bugs in Java programs in our study.
For example, in KAFKA-4375, function run contains a

well written cancel handler that stops child tasks and exits.
Unfortunately, at run time, the cancel is often intercepted by
the sleep method inside its callee commitSync, as shown in
Listing 4. The Java sleep method, just like many other Java
blocking methods, silently unset the interrupt and throw an
Interrupted Exception. Without rethrowing the exception
or resetting the interrupt flag, the interrupt is dropped before
reaching the right handler in function run. Similar problems
also occur in other systems, like HBASE-5243, HIVE-13858,
HBASE-10650, HBASE-10651, HBASE-10652, etc. Patches for
these bugs simply re-throw the interrupt in the catch block.
A related mistake is that developers sometimes get con-

fused about a few similar Java APIs: t.interrupt() inter-
rupts a thread t; t.interrupted() checks whether t’s in-
terrupt flag is set and clears the flag; t.isInterrupted()
conducts the same checking but does not clear the flag. When
interrupted() is mistakenly used, the cancel could be dropped
before reaching the intended cancel handler, as illustrated in
Listing 5. This type of mistake occurred at multiple places
across different systems (KAFKA-9415, KAFKA-5665,HBASE-
10455, SOLR-8066). Patches for these problems are straight-
forward, as shown in Listing 5.

Lessons Learned. Many bugs of this type can be automati-
cally detected. As we will discuss in Section 7.1 and 7.2, static
checkers can search for the catch blocks of Interrupted-
Exception that neither terminate the execution nor re-throw
the exception, and search for incorrect use of the inter-
rupted() API.

Invisible token (C#/Go). In C# and Go, once a cancel is
issued on a cancellation token, the status of the token cannot
be reverted. Consequently, the type of mistaken clearance
in Java does not exist in C# or Go. However, a cancel re-
quest may still get dropped during its propagation: since the
cancellation token is typically not a global object, develop-
ers need to pass the token through function parameters to
ensure the token is available through the chain of method
calls. If the token is not passed to a long-running function 𝑓 ,
cancel would be greatly delayed until the execution returns
to a caller of 𝑓 that has access to the token. This contributes
to close to 15% of cancel-related bugs in C# and Go.
Making things more complicated, unlike Java, C# and

Go allow canceling a thread through different cancellation
tokens, each representing different semantics—one token

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    133

https://issues.apache.org/jira/browse/KAFKA-4375
https://issues.apache.org/jira/browse/SOLR-8066
https://issues.apache.org/jira/browse/KAFKA-5697
https://issues.apache.org/jira/browse/KAFKA-5896
https://issues.apache.org/jira/browse/KAFKA-4375
https://issues.apache.org/jira/browse/HBASE-5243
https://issues.apache.org/jira/browse/HIVE-13858
https://issues.apache.org/jira/browse/HBASE-10650
https://issues.apache.org/jira/browse/HBASE-10651
https://issues.apache.org/jira/browse/HBASE-10652
https://issues.apache.org/jira/browse/KAFKA-9415
https://issues.apache.org/jira/browse/KAFKA-5665
https://issues.apache.org/jira/browse/HBASE-10455
https://issues.apache.org/jira/browse/HBASE-10455
https://issues.apache.org/jira/browse/SOLR-8066


1 // Cancel recipient

2 class SomeTask {

3 private CancellationToken systemCancelToken;

4
5 void doWork(CancellationToken userCancelToken) {

6 ...

7 libraryMethod(userCancelToken); //

systemCancelToken invisible to libraryMethod

8 }

9 }

Listing 6. One type of invisible token (aspnetcore-5936)

might represent requests from end users; one might repre-
sent requests from a periodic timer; and so on. As a result,
programmers may pass some tokens to a function, but forget
some others, causing certain cancel requests to be dropped,
as shown in Listing 6. Note that, a function typically only
allows one cancellation-token parameter. Consequently, the
onus is on developers to be aware of what tokens exist in
the current context and when or how to combine them into
one token to pass to a callee function—not a trivial task.

Lessons Learned. This type of bug can be detected by static
checkers: if a function 𝑓 has a cancellation-token parameter,
its caller function 𝐹 should pass every cancellation token
𝑡𝑜𝑘 visible in 𝐹 to 𝑓 . In fact, such a checker is included in
the .NET SDK, a set of libraries that provide support for
development for C#[23]. We apply this checker to the latest
versions of ASP.NET Core and Roslyn, and report the results
in Section 7.5.

5.3 Cancel-fulfill bugs
Once a cancel is correctly initiated and propagated to the tar-
get, the target task must process the cancel request, stopping
its execution, releasing resources, and reverting or invalidat-
ing shared states so that other tasks, including a potential
re-submission of the current task, can proceed correctly.
This is unsurprisingly the most difficult aspect of cancel,
contributing to about one third of all the bugs in our study.

5.3.1 Cancel not checked. Sometimes, a successfully de-
livered cancel request is not immediately checked by the
target task, causing severe cancellation delays.
In Java, the complexity is that explicit cancel checking is

not always needed. Once the internal cancel flag is set by
the system, the target thread will throw an Interrupted-
Exception once it executes a blocking Java API like sleep,
poll, and others. Consequently, if the target thread invokes
some of these APIs from time to time, explicit checking is
not needed. However, if a long-running code-region, like a
loop, does not call any such APIs, explicit checks using APIs
like isInterrupted or interrupted are needed. Lacking
such explicit checks are the root causes behind several bugs
in Java systems, like HIVE-16078 and HBASE-10575.
In C# and Go, similar problems occur if a long-running

function never checks its parameter cancellation token.

Table 5. Cleanup issues breakdown

Count

What type of cleanup defect?
- Incorrect: wrong API or cleanup semantics 10
- Incomplete: did not clean up all data 14
- Missing: no cleanup performed 4
- Unordered: clean up data in a wrong order 3
- Other 3

Where is data requiring cleanup located?
- Heap 27
- Persistent data 7

How should data be cleaned up?
- Invalidate, revert or reset data 13
- Release resource (lock, thread, etc.) 13
- Delete file from disk 2
- Other 6

Lessons Learned. For C# applications, we have implemented
a static checker to detect this type of bug (Section 7.4). For
Go applications, implementing an accurate checker is diffi-
cult, as the Context variables contain many fields and could
be used for many different purposes other than cancel. Au-
tomatically detecting this type of bug in Java programs is
feasible. We leave this to future work.

5.3.2 Cancel not carried out. This type of bug occurs
when the target task makes no attempt to stop its execution
after it becomes aware of the delivered cancel request.
Our study has only seen this type of bugs in the con-

text of the Java built-in mechanism. Specifically, an Inter-
ruptedException is thrown by a Java library API. This ex-
ception is caught by the caller function but the handling
block is essentially empty. There are many bugs of this type
(e.g., HBASE-3064, HBASE-10472, HIVE-15997, KAFKA-5833,
KAFKA-1886).

Comparingwith other cancelmechanisms, an Interrupted-
Exception contains the least semantic information—it is un-
clear which task initiated the cancel and for what reason.
This may be why some of these catch blocks are empty.

Lessons Learned.Although the root cause here differs slightly
from the “Cleared interrupt” bugs in Section 5.2.23, they both
can be detected by a checker that searches for problematic
catch blocks of InterruptedException, which we will dis-
cuss in Section 7.1.

5.3.3 Defective cleanups. When responding to a cancel
request, a task needs to not only stop itself, but also to release
resources that it acquired earlier and clean up changes it
made to shared data. Doing so in a coordinated, correct, and

3The cancel-target task has no cancel handling across the call chain for
bugs here, but has the right handling in a caller in “Cleared interrupt” bugs.

134    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dotnet/aspnetcore/issues/5936
https://issues.apache.org/jira/browse/HIVE-16078
https://issues.apache.org/jira/browse/HBASE-10575
https://issues.apache.org/jira/browse/HBASE-3064
https://issues.apache.org/jira/browse/HBASE-10472
https://issues.apache.org/jira/browse/HIVE-15997
https://issues.apache.org/jira/browse/KAFKA-5833
https://issues.apache.org/jira/browse/KAFKA-1886


efficient way is challenging. Unsurprisingly, bugs that occur
during this process are particularly common, contributing
to more than 20% of all the bugs in our study.

What went wrong? There are mainly four types of mis-
takes in a cancel cleanup, as shown in Table 5.

First, the cancel handler changes the values of some vari-
ables in an attempt at cleanup, but the resulting values lead
to failures (10 bugs in our study). For example, in SOLR-8372,
upon the cancel of a recovery task, the update log this recov-
ery task has been working on should remain in "inactive"
state until recovery is restarted. However the cleanup logic
mistakenly puts the update log into "active" state, which had
the serious consequence of potential data loss. The fix was
simply not to make that state change.
Next is incomplete cleanup, where the task attempted to

clean up data but did not do so comprehensively (14 bugs).
For example, in CASSANDRA-7803, compaction result files
were written during the compaction task. The files could
be written in a regular location or a temporary location,
depending on the configuration. The cleanup logic removed
the regular files but not the temporary ones, which could
quickly fill the disk and make the application unusable.

Completely missing cleanup, where no steps are taken to
clean up any data related to the task, occurred in 4 bugs. In
HBASE-13877, a TableFlushProcedure task is canceled. How-
ever the task simply ceases execution without any additional
steps taken. The data modified by the task (Memstore Snap-
shot) is not invalidated and may get reused by subsequent
tasks, causing data corruption or data loss.

Finally, there are 3 bugs where the cleanup routine works
on shared variables in an incorrect order, causing coordina-
tion problems with other tasks.

What data is at the center of defective cleanup? Un-
like crash handling, cancel handling is carried out by the
cancel target, an actively running task, and hence needs to
clean up not only persistent but also heap data it has touched.
In fact, for the majority of clean-up bugs (80%), heap, instead
of persistent data, is the target of defective cleanup.
In our study, a canceled task 𝑇 typically does not hold

a close dependency with other running tasks—otherwise,
𝑇 typically would not be canceled, or its dependent tasks
would be canceled altogether. Consequently and fortunately,
there is typically not too much heap data to clean. What
needs to be cleaned are mainly low-level resources, such as
locks or thread pools; or shared data structures related to sys-
tem activities or persisted information. The latter includes
things like task tracking, i.e. what tasks are running, have
run, or about to run in the system, e.g. the ZoneSubmission-
Tracker object in Hadoop; pointers to persisted user data
e.g. the DataTracker object in Cassandra, which maintains
references to all database tables; and other system metrics
or metadata, such as the StorageMetrics object in Cassan-
dra which tracks disk usage, and the RoutingNode object
in Elasticsearch, which maintains shard status information.

This relatively focused target of cleanup may help future
research to automate data cleanup.

Occasionally, a task which produces a large amount of in-
termediate results needs to be canceled. Fortunately, in most
cases we have seen, the system already has a transaction-
style design, where all intermediate data is buffered in a
cache. The cleanup only needs to update the cache meta-
data correctly.

In the cases where persistent data is the target of defective
cleanup, most often the data are temporary files local to
a task, which are not properly deleted or invalidated. In
three cases, however, the persistent data are shared by other
system activities, and defects in cleaning up this data prevent
the broader system from performing correctly.

What does the patch do?Most commonly, the patch re-
leases resources, invalidates or reverts the data modified by
the task. Releasing resources, such as locks, threads, and can-
cellation tokens, is straightforward. Often, the original task
already has the correct resource release routine. However,
upon a task cancel, that routine is short circuited. The patch
simply makes sure the complete release routine is followed.

How to correctly invalidate or revert the data varies from
case to case. Sometimes, the task needs not keep track of the
modifications it has performed: for example, in CASSANDRA-
5481, a task needs to reset a shared connection/cursor object
on cancel, which does not require information about the
history or the state of the task. But in other cases, a task
must track information about modifications it has made: in
CASSANDRA-15674, a task makes a single modification to
totalDiskSpaceUsed on the shared SystemMetrics object, and
should remember to decrement by this same value upon
cancel. One challenge in performing this type of clean up is
knowing, among the various heap data modified by a task,
which requires cleaning and which type of cleaning.

Lessons Learned. As evidenced by the examples above, de-
fective cleanups have severe consequences and are common.
It is important to tackle these bugs.
Detecting the complete absence of cleanups is relatively

easy. Whenever a cancel handler only ceases the execution
and performs no cleanup, a warning should be issued. Some
of these bugs can even be automatically fixed: in many cases,
one just needs to re-throw the interrupt to the caller that
contains the correct clean-up logic (e.g., HBASE-7711).

Some incomplete cleanups are caused by short-circuiting
a correct clean-up routine. Particularly, exceptions may be
thrown during the clean up, either due to unexpected task
states or a system API hitting the original interrupt signal
again. Incorrect handling of such a double-exception may
skip the remainder of the cleanup routine, causing incom-
plete cleanups (HIVE-15997). Automated checkers can be
developed to search for this type of bug.

Existing tools that detect resource leaks during exception
handling [25] and cancellation-token leaks [21] can be ap-
plied to detect those resource leak problems.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    135

https://issues.apache.org/jira/browse/SOLR-8372
https://issues.apache.org/jira/browse/CASSANDRA-7803
https://issues.apache.org/jira/browse/HBASE-13877
https://issues.apache.org/jira/browse/CASSANDRA-5481
https://issues.apache.org/jira/browse/CASSANDRA-5481
https://issues.apache.org/jira/browse/CASSANDRA-15674
https://issues.apache.org/jira/browse/HBASE-7711
https://issues.apache.org/jira/browse/HIVE-15997


Detecting incorrect cleanup or general missing cleanup is
the most challenging and requires more research. One possi-
ble research direction is to consolidate cleanup steps to help
detect and fix defective cleanups. In many bugs, the related
cleanup steps were interspersed across the task. However,
when they were combined or compared together, it was clear
that they were not comprehensive or correct. Sometimes
cleanup for one task should have been identical to another.
For example, in SPARK-1396, a scheduler had two methods,
handleCancel and abortStage. These should have performed
the exact same cleanup steps, but for each method steps were
implemented separately and non-comprehensively. The fix
was to combine the cleanup logic so that it was shared. Or,
the cleanup on task cancellation was very similar to the steps
performed on task completion (e.g. removing a task from a
registry when it is completed or canceled), and deficiencies
were clear on consolidation.

Finally, given our observation that the target of cleanup is
often a small set of system data structures, future research
may use data-flow analysis to remind developers about what
data should be cleaned, and to potentially synthesize in-
validating/reverting methods for the small number of data
structures that are the target of most cleanup.

5.4 Discussion: cancel mechanisms
5.4.1 Built-in mechanisms. A natural question to ask is
whether different built-in cancel mechanisms cause different
cancel usage issues. Some types of bugs are common no
matter what mechanism is used. For example, “overlooking
triggers” contribute to 19% and 26% of bugs in Java and
C#/Go, respectively; “defective cleanup” contribute to 20%
and 24% of bugs in Java and C#/Go, respectively.
However, there are also many types of bugs that occur

particularly often in Java systems, reflecting limitations of
Java’s built-in cancel mechanism:
1) “Cleared interrupt” bugs (Section 5.2.2) only occur in

Java programs, as neither C# nor Go allows clearing an al-
ready issued cancel request. Note that, it is natural for Java to
allow clearing a cancel signal received by a thread, because
each thread has only one internal cancel flag no matter how
many different cancel initiators and how many different can-
cel contexts there might be. This limitation also influences
the next two types of bugs in Java.
2) The “Late polling” bugs (Section 5.2) in theory could

exist in programs written in any languages, but were only
seen in Java programs by us: the use of custom cancel-flag
loops is very common in Java programs and yet very rare
in C#/Go programs, probably due to the limitation of Java
built-in cancel mechanism as discussed above.
3) “Cancel not carried out” bugs (Section 5.3) in theory

could exist in programs written in any language, but were
only seen by us in Java programs. We believe this is again
related to the above limitation of Java cancel mechanism.
In C# and Go, a nice effect of using a CancellationToken

as one of a task’s function parameters is that it makes clear
from the function protocol that the task is designed to be
cancellable. The rich semantics behind cancel tokens also
helps developers decide how to treat each cancel request.
In contrast, in Java, interrupt() is available on threads
by default but there is no guarantee threads respond to the
interrupt, and indeed often do not.
Of course, the mechanisms in C# and Go are not perfect

either. In addition to the common problems they face, such
as “defective cleanup”, they are particularly susceptible to
“invisible token” problems (Section 5.2.2). Furthermore, the
design of mixing cancel signals with other information in the
Context variable in Go introduces challenges for both devel-
opers and researchers in designing cancel-related analysis
tools.

5.4.2 Custommechanisms. Some of the systemswe stud-
ied contain components specially built to assist with cancel
functionality. These components offer features that may mit-
igate root cause cancel issues discussed previously, and so
may be of interest. We share examples of a few such con-
structs here.

Cancellable Task interfaces. While Java threads by de-
fault provide a method to cancel tasks, i.e. built-in inter-
rupt(), a few systems provide an alternative interface to be
used by cancellable tasks. At a bare minimum these inter-
faces declare a “cancel” method that task developers must
implement, in some cases encouraging developers to side-
step built-in “interrupt” and associated problems.
For example, the Interruptible interface in Cassandra’s

“concurrent” package declares, in addition to the main task
method run(), a method named interrupt() that requires
implementation by developers. Though simple, this design
advantageously makes explicit the task should be cancellable
and actively requires cancel implementation, whereas for
other task constructs, for example a generic thread, the need
for cancel might not be apparent, and developers might not
check for interrupts or passively ignore interrupt exceptions
as we have seen. (And, an examination reveals all existing
implementers of this interface do indeed handle cancel).
Some interfaces go further and include partial mecha-

nism implementation. The abstract class CancellableTask in
Elasticsearch’s tasks package provides a non-overridable,
pre-implemented cancel method which sets a member field
cancel flag isCanceled to false (and which task execution
code should check). The class also includes the status method
isCanceled(), which may help avoid misuse problems that
occur when using the built-in API to check interrupted status.
We must note, however, there is a downside to side-stepping
built-in interrupt entirely: if the task uses built-in blocking
Java methods - e.g. sleep - it will not be able to exit these
methods prematurely, as we have seen.
Interfaces may also include post-cancellation methods

that developers can implement to perform cleanup or other

136    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://issues.apache.org/jira/browse/SPARK-1396


related tasks. LifecycleTransaction in Cassandra’s db package
provides, in addition to a cancel method, an onAbort() hook
which is called after cancellation is processed. This may
encourage developers to implement or consolidate cleanup
logic, helping prevent missing or incorrect cleanup issues.

"Uninterruptible" interfaces. Conversely one system
provides an “uncancellable” interface that allows users to
run code sections without interruption: the Uninterrupt-
ibleThread abstract class in Spark’s “util” package allows
users to define “uninterruptible” code sections that will com-
plete in their entirety - if interrupt() is called on the thread,
it will be suppressed until the uninterruptible code section
completes. One area where this might be useful is for cleanup
steps which must be executed in their entirety after the task
is canceled: some issues we have seen arise from cleanup
steps failing to complete due to interrupt during cleanup
itself. An examination reveals that some implementations
of this interface indeed use this functionality for cleanup.
However, this design is susceptible to problems if not used
carefully: if an uninterruptible code section uses an opera-
tion that blocks indefinitely, the thread may never respond
to a cancellation request.

Task dependency tracking. One of the biggest cate-
gories of cancel issues is overlooking triggers, of which a
common trigger is cancellation of a parent or associated task.
Thus using constructs that track related or dependent tasks
and help propagate cancel between them may be valuable.
For example, some systems provide a task tracking ser-

vice or “task manager” that maintains a list of scheduled or
running tasks, usually by requiring that all task executions
be launched through the manager. The task manager may
additionally be designed to track task dependencies: e.g. the
TaskManager shared class in Elasticsearch’s "tasks" package
require that submitted Tasks contain an “id” and “parentId”.
All task executions are initiated through the task manager us-
ing the manager’s register or registerAndExecutemeth-
ods. Running tasks and their children can thus be tracked and
cancellations, which must also go through the manager (via
cancelTaskAndDescendants method), can be propagated
to all dependent tasks.

6 Symptoms of Cancel-Related Bugs
Not all the bug reports specify the exact failure symptoms.
We categorize the ones that describe the symptoms in Table
6. As we can see, the symptoms vary, and can be severe.

Resource leaks. Resources acquired during task execu-
tion, including locks, buffers, and others, might not be re-
leased due to defective cleanup (Section 5.3.3). Furthermore,
if a cancel does not take effect, the task thread itself may be
leaked, which may be especially problematic if the thread
pool has a fixed size. For example in SPARK-1582, work done

Table 6. Cancel-related bugs: symptoms

Symptom Category Issues

Resource leaks 30
Performance issues 29
Broken task API 17
Data corruption/loss 5
Incorrect reporting 10
Unspecified 65

Total 156

by a Spark Executor thread was no longer needed, but a can-
cel was delayed (sometimes indefinitely) and the thread was
not made available to perform other work.

Broken Task API. Unsurprisingly, incorrect cancellation
might break the API used to submit or manage tasks. For ex-
ample, in HDFS-12518, a critical task cannot be re-executed,
due to the task not cleaning up its status when canceled. In
SPARK-8132, no subsequent task for a multi-stage user job
is able to be launched due to incorrect cleanup.

Data corruption/data loss. Many tasks might perform
operations on user data, and a broken cancel can corrupt in-
memory data used to service user requests, as well as cause
persistent data to be lost - a very serious issue. For example,
a silently dropped cancel signal in a callee led a caller to
put incomplete (i.e. corrupted) in-memory values of user
computations into a shared cache. Later user jobs would use
these invalid values and give wrong results. (SPARK-1602).

Performance issues. While cancellation itself should
generally lead to improved performance, as resources pre-
viously used by a task can be freed for other work, broken
cancel handling can put the system in an unanticipated state
that causes degraded performance or unresponsiveness.

In HIVE-13858 an interrupt signal was dropped, leading to
an infinite loop in a task, which made access to a portion of
system I/O impossible. This could cause unavailability of the
entire cluster. Similarly, in CASSANDRA-11373, incomplete
cleanup led to an infinite loop and CPU saturation.
In elasticsearch-75316, how frequently cancel would be

used was underestimated, and inefficient cancel handling led
to a 50x increase in latency for normal user requests. The
patch was to make cancel handling more efficient.

Incorrect reporting to users. Lastly, mistakes in cancel
functionality might lead to incorrect reports to users. For
example a systemmight report to the user that a job has been
canceled when in fact it was not (HIVE-14942, SPARK-18665,
influxdb-13681). Or, conversely, the system might report that
a job has not been canceled when indeed it has (SPARK-2666).

7 Task Cancel Anti-Patterns
Root causes of cancel bugs are varied and sometimes com-
plex, but we find that a few types of bugs are associated

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    137

https://issues.apache.org/jira/browse/SPARK-1582
https://issues.apache.org/jira/browse/HDFS-12518
https://issues.apache.org/jira/browse/SPARK-8132
https://issues.apache.org/jira/browse/SPARK-1602
https://issues.apache.org/jira/browse/HIVE-13858
https://issues.apache.org/jira/browse/CASSANDRA-11373
https://github.com/elastic/elasticsearch/issues/75316
https://issues.apache.org/jira/browse/HIVE-14942
https://issues.apache.org/jira/browse/SPARK-18665
https://github.com/influxdata/influxdb/issues/13681
https://issues.apache.org/jira/browse/SPARK-2666


Table 7. Anti-pattern instances found in Java and C# applications

HBase Hive Spark Kafka Solr Cassandra Hadoop es ASP.NET Core Roslyn

Unhandled IE in loop (Java) 5 2 0 0 0 1 13 0 - -
API misuse (Java) 3 2 0 7 5 0 0 0 - -
Uncanceled child tasks (Java) 1 2 0 0 0 0 9 0 - -
Ignored tokens (C#)* - - - - - - - - 34/112 120/179
Tokens not passed (C#)** - - - - - - - - 9 9
* Our analyzer result / CodeRush analyzer (simulated) result
** .NET analyzer (simulated) result

with clear anti-patterns that are detectable by static code
analysis. This section presents our experience of designing
and evaluating a few anti-pattern checkers.
We have implemented a checker for each of the anti-

patterns below using CodeQL [1], a publicly available static
analysis tool. CodeQL takes as input queries which are a set
of conditions on the application source code’s call graph, con-
trol flow, dataflow graph and other information (e.g. object
hierarchies). Queries are language specific, so for each anti-
pattern and language, we have constructed a single query
that describes the anti-pattern and can be run on all applica-
tions of that language, using CodeQL’s command line tool
or web interface. The results of queries are references to
problematic section of source code (file and line number).
The queries associated with each anti-pattern can be viewed
at a publicly available repository [3].
Note that, code snippets that match an anti-pattern may

not all cause severe failures, but are frequently harmful to
the software in the long run if not fixed. We will discuss
this in detail when we comment on the severity of each
anti-pattern.

Also note that, these checkers mainly tackle low hanging
fruits of cancel-related bugs, with more complicated bugs
waiting to be tackled by future work. We are aware of sim-
ilar checkers for the two C# anti-patterns, which we will
discuss in details in Section 7.4 and 7.5. There may be similar
checkers for the Java anti-patterns, although we are cur-
rently not aware of them. Our main goal here is to show that
it is feasible to detect cancel-related code defects through
simple static checking, and that many cancel-related defects
exist even in the latest versions of these popular Java and C#
applications.

7.1 Unhandled Interrupt Exception (Java).
Anti-pattern. An InterruptedException is caught inside
a loop body, but in the catch block there is no handling -
no control flow to exit the loop (i.e. no break statement,
return statement or rethrown exception in the AST), and
the interrupt flag is not reset via t.interrupt() on thread
t. In addition, we also check via dataflow analysis that the
thread is indeed interrupted somewhere in the codebase.

Rationale. This anti-pattern is closely related to “cleared
interrupt” bugs (Section 5.2.2) and “cancel not carried out”
bugs (Section 5.3.2). Its severity has been explained in these
earlier sections. Note that, in this anti-pattern, we partic-
ularly look for problems inside a loop, as it is especially
problematic there: without proper cancel handling inside a
loop, a task may never cease execution or incur particularly
long delays (HADOOP-6221,HBASE-3064).
Severity. There is one scenario where the impact of this

anti-pattern may be mitigated: the program may use a cus-
tom cancel flag together with an interrupt call to cancel
a task. In that case, an unhandled interrupt exception may
not have a big impact, as long as the remainder of the loop
iteration does not take long time to execute. Having said that,
this type of implementation is still problematic and makes
code maintenance difficult: what if an expensive operation
is added near the end of the loop iteration? What if the task
initiator deems the use of flag redundant in the presence of
the interrupt call and removes the former?
Results. Our checker finds 21 cases of this anti-pattern in

the latest versions of 4 Java applications in our benchmark
suite (Table 7). Our manual checking of these 21 cases shows
that 14 of them are truly instances of this anti-pattern; 2 of
them are false positives (a corner case in CodeQL control-
flow analysis misses the fact that the exception handler does
stop the task execution); 5 of them may be considered false
positives: the exception handler sets a flag, which defers the
actual handling to a later point in the loop, which may or
may not cause perceivable delay in the cancel handling.

7.2 Interrupt API Misuse (Java).
Anti-pattern. A thread calls Thread.interrupted() inside
an InterruptedException catch block.

Rationale.This anti-pattern is inspired by a fewAPI-misuse
bugs discussed in Section 5.2.2 (e.g., Listing 5). When an
InterruptedException is triggered by a library method
in thread t, the interrupt flag is almost always cleared and
should be reset by invoking t.interrupt() if the excep-
tion is to be handled by the caller. If a t.interrupted()
is invoked instead, this is frequently a typo, as this API is

138    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://issues.apache.org/jira/browse/HADOOP-6221
https://issues.apache.org/jira/browse/HBASE-3064


designed to clear the interrupt flag, effectively a no-op in-
side the catch block. It may also be used inside a condition
check, as it returns the status of the flag before clearing - e.g.
if (t.interrupted()), - but when such checking occurs
inside the catch block it is even worse, as library methods
likely will have unset the flag before the check, and the logic
inside the condition will never execute.
Severity. This API misuse can cause an interrupt to be

dropped. Consequently, handling/cleanup logic that exists
elsewhere may not be executed, causing functional problems.

Results. Our script finds 17 instances of this anti-pattern in
4 applications, as shown in Table 7. Our manual examination
did not find any false positives.

7.3 Cancel not propagated to dependent tasks (Java)
Anti-pattern. A task instantiates a Java Timer and starts a
child task (wrapped in a TimerTask interface) using a Java
Timer object but does not cancel the Timer and TimerTask:
either it does not maintain the reference to the Timer or it
does not explicitly call cancel() on the Timer or TimerTask.
Rationale & Severity. This anti-pattern is related to some

of the “Overlooking triggers” bugs discussed in Section 5.1.1.
Java’s built in Timer is one of the mechanisms used for sched-
uling single or periodic task executions on a separate thread.
If the child task launched using the Timer (or Timer itself)
is not canceled when the parent is canceled, then at a mini-
mum, this lack of cancellation will leak resources. Note that,
this anti-pattern focuses on Timer-based parent-child task
dependency, because these type of child tasks are typically
scheduled periodically and hence lead to more severe impact
if not properly canceled.
Results. Our script finds 12 instances where a timer and

associated tasks are started but not canceled. Three of these
instances are false positives: in 2 cases, the reference to the
Timer is embedded in a nested class, and hence is missed by
our CodeQL-based static checking; in one case, the Timer
task is only started during system shut down, and hence its
leakage does not really cause problems.

7.4 Ignored cancellation tokens in loop (C#)
Anti-pattern. A method containing a loop accepts a Cancel-
lationToken parameter ct, but does not check the token
via ct.IsCancellationRequested, ct.CanBeCanceled or
ct.ThrowIfCancellationRequested(), anywhere inside
a loop. Nor does it pass the token as an argument to any
function calls inside the loop.
Rationale & Severity. The rationale of this anti-pattern

has been discussed in Section 5.3.1. For a similar reason
as discussed in Section 7.1, we focus on loops in this anti-
pattern, for their bigger performance impact.

Results. Our analyzer found 154 cases of this anti-pattern
(34 in ASP.NET Core and 120 in Roslyn). Manual checking
finds 4 of these to be false positives: in 3 cases, a token is used

via an indirect reference or reflection; in 1 case, a method
that operates on a token instead of using it as a signal.
We also investigated a similar analyzer that is part of

CodeRush [2], a popular debugging and code analysis ex-
tension for VisualStudio. The CodeRush analyzer warns if a
token is not checked anywhere inside in a method. We have
simulated the CodeRush analyzer using CodeQL and find 112
and 179 instances in ASP.NET Core and Roslyn, respectively.
In one regard, our analyzer is stricter: if a token is checked
somewhere in a method but not in a loop, our analyzer will
flag it as a warning but the CodeRush analyzer will not. But,
unlike the CodeRush analyzer, our analyzer does not check
methods that do not contain loops.
7.5 Token not passed - .NET analyzer (C#)
We also applied an analyzer included as part of the .NET
compiler platform (Roslyn). That Roslyn built-in analyzer
checks if a CancellationToken is passed via parameter to a
method𝑀 , but𝑀 does not pass the token to its calee𝐶 which
optionally accepts a token parameter (optional arguments
are a feature of the C# language). This anti-pattern is related
to the “invisible token” bugs discussed in Section 5.2.2.
Simulating this anti-pattern using CodeQL, we find 9 in-

stances each in the latest version of ASP.NET Core and
Roslyn. Our manual checking finds no false positives.

7.6 Anti-pattern limitations
While these checkers have been inspired by and cover some
of the bugs in our study, there are still many bugs that
cannot be covered by our checkers, for various reasons. In
some cases a bug manifests due to reasons logically different
from those covered by our checkers: for example, a cancel
is dropped due to a semantic bug in a custom mechanism,
rather than API misuse or an unhandled interrupt exception.
In other cases, conditions added to our antipatterns to

reduce false positives thereby introduce false negatives: for
example, we search for empty interrupt exception handling
specifically inside loops, but empty handling outside loops
can also cause bugs.

Finally, our checkers are designed around common usage
patterns and may miss other valid forms of usage: for ex-
ample, we assume a cancel-supporting method is one that
accepts a context or token explicitly as a top-level parame-
ter; our checkers will ignore methods where the context or
token is passed implicitly, say as a member field of another
parameter.

8 Related Work
Our study is the first empirical study of task cancellation
patterns and failures in concurrent systems to the best of
our knowledge. Nevertheless, several related works have
discussed general exception handling problems in the past.
The problem of empty exception handlers was discussed

by Yuan et al. in the study of real-world failures of distributed

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    139



systems and by Fu and Ryder in the context of analyzing
exception-chain of Java programs [8, 26]. Our work is or-
thogonal to their research, as we particularly focus on bugs
related to task cancel. As discussed in Section 5, only a small
portion of cancel-related bugs are due to empty exception
handlers — those 6 “Cancel not carried out” bugs in Java and
some of those 16 “Dropped cancel” bugs in Java. Because of
the task-cancel context, why these bugs’ catch blocks are
empty, how to fix them, their failure symptoms, and how
to generalize them into anti-patterns are all different from
generic empty handler problems (e.g., the anti-pattern in
Section 7.1 does not just look for empty catch blocks).
While our work discusses how cancel signals may fail

to propagate to the target tasks (Section 5.2) in concurrent
systems, previous work studied how incomplete error propa-
gation could occur in file systems and storage device drivers
[12, 24]. Since previous work looks at propagation through
function error-code return, it is orthogonal to our study.
Past studies about general cloud system failures [11, 18]

have identified error/fault handling to be a common cause,
contributing to 18% of software-related failures in one study
[11] and 31% of software-bug incidents in another study [18].
Both categorized error/fault handling problems into two
or three major categories, including “error/fault detection”,
“error propagation”, and “error handling”. This taxonomy
is similar to how we categorize cancel-related bugs at the
highest level. The similarity ends here. Since both previous
studies focus on general cloud failures, neither goes deep into
the error/fault handling problems. The examples of detection,
propagation, and handling problems there are very different
from the cancel initiation, propagation, and fulfillment bugs
discussed in this paper.

A Java textbook [9] has listed five possible reasons behind
task cancel: (a) user-requested cancel, (b) time-limited activi-
ties, (c) application events, (d) errors, (e) shutdown. In our
cancel feature study, we want to see what are the common
reasons and trigger events behind task cancel in modern
concurrent systems. Our study led to a categorization (Table
3) that is related but not the same as the textbook listing.

9 Future Research Directions
In this section we highlight a few potential areas for future
research.
Cancellation in other languages. Different languages may

have attributes which affect what types of cancel issues man-
ifest. For example, our study focuses on garbage-collected
languages; languages with manual memory management
(e.g. C++) may see other cancel issues, e.g. stemming from
explicit deallocation.

Cancel programming models and language features. As dis-
cussed in Section 5.4, different built-in cancel mechanisms
and language constructs offer different support and chal-
lenges to developers. While we present some examples of

custom cancel constructs in Section 5.4, more extensive ex-
ploration and evaluation of cancel-related designs and mod-
els are needed.

Bug-detection and other developer tools.Although this work
presents static tools to detect certain classes of cancel bugs,
there are still many cancel bugs that are not covered by
our static checkers. More static or dynamic detection and
diagnosis tools are needed.

Other kinds of developer tools may also assist in cancel im-
plementation. For example, in Section 5.3.2 we describe how
InterruptedException often contains the least semantic
information about the source of cancel; it may be worth ex-
ploring whether developer tools, such as IDE plugins that
detect and provide this contextual information, can help
guide proper implementation.

10 Conclusions
Task cancellation is critical to the efficiency, availability,
and operational flexibility of concurrent systems. This pa-
per presents a comprehensive study about how task cancel
is used and what type of bugs are related to task cancel in
popular distributed and concurrent systems written in Java,
C#, and Go. This study reveals the complexity of implement-
ing correct and efficient task cancel, and motivates future
research to offer better system support for task cancel.

11 Acknowledgements
We thank the reviewers for their insightful comments, and
Mahesh Balakrishnan for shepherding this work. The au-
thors’ research is supported by NSF (grants CCF-2119184,
CCF-2028427, CNS-1956180, CCF-1837120, CNS-1764039),
the CERES Center for Unstoppable Computing, the Marian
and Stuart Rice Research Award, and gifts from Microsoft
and Facebook.

References
[1] [n.d.]. CodeQL. https://codeql.github.com
[2] [n.d.]. CRR0038 - The CancellationToken parameter is never used.

https://docs.devexpress.com/CodeRushForRoslyn/119693/static-
code-analysis/analyzers-library/crr0038-the-cancellation-token-
parameter-is-never-used

[3] [n.d.]. Github - cancellation-study-osdi. https://github.com/
whoisutsav/cancellation-study-osdi

[4] [n.d.]. Golang. https://go.dev
[5] [n.d.]. Runnable. https://docs.oracle.com/en/java/javase/17/docs/api/

java.base/java/lang/Runnable.html
[6] Stephen Cleary. 2019. Concurrency in C# Cookbook: Asynchronous,

Parallel, and Multithreaded Programming. O’Reilly Media.
[7] Terry Crowley. 2016. How to Think About Cancellation.

https://terrycrowley.medium.com/how-to-think-about-cancellation-
3516fc342ae

[8] Chen Fu and Barbara G. Ryder. 2007. Exception-Chain Analysis: Re-
vealing Exception Handling Architecture in Java Server Applications.
In 29th International Conference on Software Engineering (ICSE’07).
230–239. https://doi.org/10.1109/ICSE.2007.35

[9] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, Doug Lea, and
David Holmes. 2006. Java concurrency in practice. Pearson Education.

140    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://codeql.github.com
https://docs.devexpress.com/CodeRushForRoslyn/119693/static-code-analysis/analyzers-library/crr0038-the-cancellation-token-parameter-is-never-used
https://docs.devexpress.com/CodeRushForRoslyn/119693/static-code-analysis/analyzers-library/crr0038-the-cancellation-token-parameter-is-never-used
https://docs.devexpress.com/CodeRushForRoslyn/119693/static-code-analysis/analyzers-library/crr0038-the-cancellation-token-parameter-is-never-used
https://github.com/whoisutsav/cancellation-study-osdi
https://github.com/whoisutsav/cancellation-study-osdi
https://go.dev
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runnable.html
https://terrycrowley.medium.com/how-to-think-about-cancellation-3516fc342ae
https://terrycrowley.medium.com/how-to-think-about-cancellation-3516fc342ae
https://doi.org/10.1109/ICSE.2007.35


[10] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and Petros Maniatis.
2021. Snowboard: Finding Kernel Concurrency Bugs through Sys-
tematic Inter-thread Communication Analysis. In SOSP, Robbert van
Renesse and Nickolai Zeldovich (Eds.). ACM, 66–83.

[11] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eli-
azar, Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and
Anang D. Satria. 2014. What Bugs Live in the Cloud? A Study of
3000+ Issues in Cloud Systems. In Proceedings of the ACM Sympo-
sium on Cloud Computing (Seattle, WA, USA) (SOCC ’14). Associa-
tion for Computing Machinery, New York, NY, USA, 1–14. https:
//doi.org/10.1145/2670979.2670986

[12] Haryadi S. Gunawi, Cindy Rubio-González, and Ben Liblit. 2008. EIO:
Error Handling is Occasionally Correct. In 6th USENIX Conference on
File and Storage Technologies (FAST 08). USENIX Association, San Jose,
CA. https://www.usenix.org/conference/fast-08/eio-error-handling-
occasionally-correct

[13] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy
Diagnosis of In-Production Concurrency Bugs. In SOSP.

[14] Baris Kasikci, Cristian Zamfir, and George Candea. 2013. RaceMob:
crowdsourced data race detection. In SOSP, Michael Kaminsky and
Mike Dahlin (Eds.). ACM, 406–422.

[15] Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer. 2013.
How to Cancel a Task. In Multicore Software Engineering, Performance,
and Tools, João M. Lourenço and Eitan Farchi (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 61–72.

[16] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and
Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-Deterministic
Concurrency Bugs in Datacenter Distributed Systems. InASPLOS, Tom
Conte and Yuanyuan Zhou (Eds.). ACM, 517–530.

[17] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. 2019. Efficient scalable thread-safety-violation detection: find-
ing thousands of concurrency bugs during testing. In SOSP, Tim Brecht
and Carey Williamson (Eds.). ACM, 162–180.

[18] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019.
What Bugs Cause Production Cloud Incidents?. In Proceedings of the
Workshop on Hot Topics in Operating Systems (Bertinoro, Italy) (HotOS
’19). ACM, New York, NY, USA, 155–162. https://doi.org/10.1145/
3317550.3321438

[19] Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song. 2021.
Automatically detecting and fixing concurrency bugs in go software
systems. In ASPLOS, Tim Sherwood, Emery D. Berger, and Christos
Kozyrakis (Eds.).

[20] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musu-
vathi. 2014. Towards General-Purpose Resource Management
in Shared Cloud Services. In 10th Workshop on Hot Topics in
System Dependability (HotDep 14). USENIX Association, Broom-
field, CO. https://www.usenix.org/conference/hotdep14/workshop-
program/presentation/mace

[21] Microsoft. 2021. CA2000: Dispose objects before losing scope.
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-
analysis/quality-rules/ca2000

[22] Microsoft. 2021. Cancellation in Managed Threads. https://docs.
microsoft.com/en-us/dotnet/standard/threading/cancellation-in-
managed-threads

[23] Microsoft. 2021. Code analysis in .NET. https://docs.microsoft.com/en-
us/dotnet/fundamentals/code-analysis/overview

[24] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-
Dusseau, and Andrea C. Arpaci-Dusseau. 2009. Error Propagation
Analysis for File Systems. SIGPLAN Not. 44, 6 (jun 2009), 270–280.
https://doi.org/10.1145/1543135.1542506

[25] Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia L. Lawall, and Gilles
Muller. 2013. Hector: Detecting Resource-Release Omission Faults in
error-handling code for systems software. In DSN.

[26] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu
Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple
Testing Can Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-Intensive Systems. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14).
USENIX Association, Broomfield, CO, 249–265. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/yuan

[27] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues,
Shan Lu, and Ding Yuan. 2021. Understanding and Detecting Software
Upgrade Failures in Distributed Systems. In SOSP, Robbert van Renesse
and Nickolai Zeldovich (Eds.). ACM, 116–131.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    141

https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1145/2670979.2670986
https://www.usenix.org/conference/fast-08/eio-error-handling-occasionally-correct
https://www.usenix.org/conference/fast-08/eio-error-handling-occasionally-correct
https://doi.org/10.1145/3317550.3321438
https://doi.org/10.1145/3317550.3321438
https://www.usenix.org/conference/hotdep14/workshop-program/presentation/mace
https://www.usenix.org/conference/hotdep14/workshop-program/presentation/mace
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2000
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2000
https://docs.microsoft.com/en-us/dotnet/standard/threading/cancellation-in-managed-threads
https://docs.microsoft.com/en-us/dotnet/standard/threading/cancellation-in-managed-threads
https://docs.microsoft.com/en-us/dotnet/standard/threading/cancellation-in-managed-threads
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/overview
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/overview
https://doi.org/10.1145/1543135.1542506
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan




Automatic Reliability Testing for Cluster Management Controllers

Xudong Sun†, Wenqing Luo†, Jiawei Tyler Gu†, Aishwarya Ganesan‡, Ramnatthan Alagappan‡,
Michael Gasch‡, Lalith Suresh‡, Tianyin Xu†

†University of Illinois at Urbana-Champaign ‡VMware

Abstract
Modern cluster managers like Borg, Omega and Kubernetes

rely on the state-reconciliation principle to be highly resilient
and extensible. In these systems, all cluster-management logic
is embedded in a loosely coupled collection of microservices
called controllers. Each controller independently observes the
current cluster state and issues corrective actions to converge
the cluster to a desired state. However, the complex distributed
nature of the overall system makes it hard to build reliable
and correct controllers – we find that controllers face myriad
reliability issues that lead to severe consequences like data
loss, security vulnerabilities, and resource leaks.

We present Sieve, the first automatic reliability-testing tool
for cluster-management controllers. Sieve drives controllers
to their potentially buggy corners by systematically and exten-
sively perturbing the controller’s view of the current cluster
state in ways it is expected to tolerate. It then compares the
cluster state’s evolution with and without perturbations to de-
tect safety and liveness issues. Sieve’s design is powered by
a fundamental opportunity in state-reconciliation systems –
these systems are based on state-centric interfaces between
the controllers and the cluster state; such interfaces are highly
transparent and thereby enable fully-automated reliability test-
ing. To date, Sieve has efficiently found 46 serious safety and
liveness bugs (35 confirmed and 22 fixed) in ten popular con-
trollers with a low false-positive rate of 3.5%.

1 Introduction
Modern cluster managers like Kubernetes [11], Borg [80],

Twine [77], Omega [72], and vSphere [20] break down cluster-
management logic into a fleet of microservices, called con-
trollers [27]. For example, in Kubernetes, all the cluster-
management logic is encoded in different controllers. Today,
thousands of controllers are implemented by commercial ven-
dors and open-source communities to extend Kubernetes with
new capabilities [42, 68, 74, 78]. Controllers manage every-
thing from application lifecycles (e.g., provisioning, upgrades,
autoscaling) to stateful services, storage, networking, and in-
tegrations with cloud providers [41, 53, 57, 60, 71].

These cluster managers follow the state-reconciliation prin-
ciple for resilience and extensibility [7, 27]. In this design,
each controller continuously monitors a subset of the cluster

Phase: “Ongoing”
Pods: [              ]
Vols:  [              ]

Phase: “Ongoing”
Pods: [              ]
Vols:  [              ]

Controller Code Snippet (simplified)

switch Get(Phase){
case “Ongoing”:
if NotFound(   ) {
return Error(“Pod not found”)

}
...
Delete(   )
...
Update(Phase, “Finalizing”)
...

case “Finalizing”:
...
Delete(   )
...
Update(Phase, “Done”) 

} 
/* cassandracluster/pod_operation.go */

Correct run Faulty run

Phase: “Done”
Pods: [             ]
Vols:  [             ]

Controller crash 
and restart

Delete   
Finalizing
Delete   
Done

Delete

Phase: “Ongoing”
Pods: [             ]
Vols:  [             ]

“Pod not found”

Cluster State (Controller’s View)

Figure 1: A bug in a Cassandra controller detected by our
tool, Sieve [30]. The controller cannot recover from an inter-
mediate state introduced by Sieve using a crash. As a conse-
quence, the controller cannot auto-scale the Cassandra cluster
and leaks storage resources. The bug has been fixed. The
code snippet is significantly simplified for clarity; the real
code spans 70+ functions and 2,000+ lines of Go.

state and reconciles the current state of the cluster to match
a desired state. The cluster state is typically hosted in a log-
ically centralized, highly available data store (e.g., etcd or
ZooKeeper). In Kubernetes, entities like pods, nodes, vol-
umes, and application instances are represented as objects
in the cluster state. An auto-scaling controller might thereby
monitor an application-group object for the number of cur-
rently active replicas and scale it to match the desired replica
count. The design allows cluster managers to be 1) resilient:
controllers can independently fail and pick up from where
they left off, and 2) extensible: supporting a new feature or
application is a matter of adding a custom controller that
manages a set of custom objects as part of the cluster state.

Despite the importance and prevalence of custom con-
trollers, ensuring their reliability is challenging. Controllers
run within complex, dynamic, and distributed environments.
They must safely drive the system to desired states while tol-
erating unexpected failures, network interruptions, and asyn-
chrony issues. If controllers are not robust to these circum-
stances, they lead to severe consequences such as application
outages, data loss, and security issues. Buggy controllers have
indeed caused many real-world problems [31, 38, 51, 52].

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    143



For example, Figure 1 shows a bug in a Kubernetes con-
troller for managing Cassandra [30]. The bug prevents the Cas-
sandra cluster from auto-scaling and leaks storage resources
(decommissioned volumes in gray are never deleted). This is
because the controller lacks crash safety – it fails to recover
from an intermediate state due to a crash between deleting a
Cassandra pod and updating the Finalizing phase.

The above crash-safety bug is only one of the myriad kinds
of reliability issues that affect controllers. We find that con-
trollers also experience bugs caused by state inconsistencies
due to asynchrony effects and bugs caused by uncoordinated
concurrent interactions between controllers. Existing testing
techniques are either too specialized for certain types of bugs
or require expert guidance in the form of formal specifica-
tions or carefully-crafted test inputs (§8). We instead seek a
solution that is broadly applicable across controllers and is
capable of automatically detecting a wide range of bugs.

Contributions. In this paper, we present Sieve, the first au-
tomatic reliability-testing technique for cluster-management
controllers. Sieve drives unmodified controllers to their po-
tentially buggy corners by systematically and extensively per-
turbing the controller’s view of the cluster state in ways it is
expected to tolerate. Sieve then compares the cluster state’s
evolution with and without perturbations to automatically
detect safety and liveness issues.

Sieve is highly usable. It does not require 1) formal specifi-
cations of the controller or the cluster manager, 2) hypotheses
about vulnerable regions in the code where bugs may lie, or
3) highly specialized test inputs. It does not rely on expert-
written assertions either. Sieve requires only a manifest for
building the controller image and basic test workloads. Sieve’s
testing is then fully automatic. This degree of usability is key
to making reliability testing broadly accessible to the rapidly
increasing number of custom controllers.

Sieve is powered by a fundamental opportunity in state-
reconciliation systems – controllers interact with the cluster
state via state-centric interfaces. State-centric interfaces per-
form semantically simple operations on the cluster state (e.g.,
reads and writes) and deliver notifications about cluster-state
changes; the objects that flow through the interfaces typically
have a uniform schema. Therefore, state-centric interfaces
are highly introspectable and hence an ideal vantage point to
observe and perturb a controller’s view of the cluster state.

Sieve leverages the fact that a controller’s actions are
strictly a function of its view of the current cluster state. We
thus test a controller by exhaustively introducing state pertur-
bations through failures, delays, and reconfigurations. These
are circumstances that reliable controllers are expected to
tolerate. Currently, Sieve supports three typical perturbation
patterns that expose controllers to 1) intermediate states (Fig-
ure 1), 2) stale states (or past cluster states), and 3) unobserved
states due to missing some cluster state transitions (§3.1).

For each pattern, Sieve automatically generates test plans

that cover all possible perturbations during an execution of
the controller under test. Test-plan generation is based on
analyzing a controller’s behavior and the cluster-state evo-
lution during reference executions. Sieve effectively avoids
redundant and futile test plans to maximize test efficiency.

Sieve automatically detects buggy controller behavior us-
ing differential test oracles that compare the cluster-state tran-
sitions with and without perturbations. This comparison is
feasible because a controller’s behavior is reflected in the
sequence of cluster-state transitions. The differential oracles
are often more effective than searching for errors in logs and
more comprehensive than human-written assertions (§3.6).

Key results. We implemented Sieve for Kubernetes con-
trollers. Sieve requires only a manifest for building the con-
troller image and basic workloads (e.g., a scale-up-and-down
workload for an autoscaling feature). Sieve’s testing is then
fully automatic. We evaluated Sieve on ten popular open-
source controllers of various kinds, from either commercial
vendors or official projects. Sieve found 46 new bugs in total,
among which 35 have been confirmed (22 fixed) after we
reported them. Notably, these are deep semantic bugs that
Sieve detected without any expert guidance. The bugs have
severe consequences, including application outages, security
vulnerabilities, resource leaks, and data loss. Sieve is highly
efficient—all controllers could be tested in under seven hours
on a cluster of 11 machines, representing a typical nightly test.
Sieve also has a very low false-positive rate of 3.5%, making
its testing results trustworthy.

Summary. The paper makes four main contributions:

• We present the first automatic reliability-testing technique
for state-reconciliation systems: exhaustively perturbing
the controller’s view of cluster states and using differential
oracles on the cluster state evolution to detect bugs.

• We design and implement Sieve, a system that uses our
proposed technique to automatically test unmodified cluster-
management controllers in Kubernetes.

• Sieve has already improved reliability for ten popular open-
source controllers by virtue of bugs it found that were then
fixed by developers. It is practical to run Sieve regularly.

• We have made Sieve publicly available at https://
github.com/sieve-project/sieve, with instructions to
reproduce all discovered bugs.

2 Background and Motivation
Modern cluster management and control plane designs fol-

low the state-reconciliation pattern, where control loops rec-
oncile the current state of the cluster to conform to a desired
state. Kubernetes, like its predecessors Borg and Omega, fol-
lows the idea of reconciliation control loops for resiliency [27].
Similarly, vSphere [81] and NSX [82] continuously monitor
and correct deviations from declaratively-specified desired

144    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/sieve-project/sieve
https://github.com/sieve-project/sieve


Cached
Objects

API Server
Kubernetes CoreKubernetes

Controller etcd

State 
Objects

Cached
Objects

Notification

Update

Read

Kubernetes API

Figure 2: Interactions between a controller and other Ku-
bernetes components and the state-centric APIs.

states to manage virtual machines and networks. These sys-
tems rely on a clean separation between the cluster state and
the control plane logic [27]; the state is represented as mere
data (e.g., JSON objects), and the control plane logic queries
and manipulates the state programmatically.

We now give a brief overview of state reconciliation and
cluster-management controllers. We also present the urgent
need for automated reliability testing and our insights.

State reconciliation by example. We use Kubernetes as a
representative example to present the basics of state recon-
ciliation. Figure 2 illustrates Kubernetes’ architecture. Ku-
bernetes’ core comprises an ensemble of API servers and
a highly available, strongly consistent data store (etcd) that
houses the cluster state. The cluster state is represented by a
collection of objects. Every entity in the cluster has a corre-
sponding object in the cluster state, including pods, volumes,
nodes, and groups of applications. All other components in
Kubernetes interact with the cluster state via API servers.

All cluster-management logic is encoded in controllers that
are clients of the API servers. The controllers continuously
monitor a part of the cluster state and perform state reconcili-
ation whenever the current state does not match the desired
state. The controllers perform reconciliation by querying and
manipulating the state objects via a client library that exposes
a state-centric interface. This interface provides notifications,
reads, and writes involving the cluster state objects.

This design enables Kubernetes to be highly extensible:
supporting a new application or feature is a matter of adding a
new controller and a corresponding set of custom object types
to the cluster state; it does not require changes to the client
library or interface. The design also allows controllers to be
loosely coupled, which improves resilience: controllers can
independently fail and new controller instances can resume
reconciliation without fail-over logic.

Figure 3 shows how a collection of controllers coordinate
in a loosely coupled manner. To deploy a ZooKeeper cluster
running on Kubernetes, the user creates a ZooKeeper object
which specifies the desired state of the ZooKeeper cluster
(e.g., replica count, version, storage size) via the Kubernetes
command-line tool. The ZooKeeper controller receives a no-
tification that a ZooKeeper object was created. To drive the
system to the desired state, it updates the cluster state by
creating a StatefulSet object (an abstraction to run stateful
applications). Then, a StatefulSet controller is subsequently

ZooKeeper
Controller

StatefulSet
ControllerK

ub
er

ne
te

s C
or

e

Kubectl
# ZooKeeper object
metadata:
name: my_zookeeper

spec:
replicas: 1
storage: 10GB
version: 3.6.3

...

Create ZooKeeper object

Create StatefulSet object

ZooKeeper object created

StatefulSet object created

Create volume object

Create pod object

Figure 3: The workflow of deploying ZooKeeper on Ku-
bernetes using a ZooKeeper controller.

notified about the StatefulSet object being created, which in
turn creates pod and volume objects to run the containerized
ZooKeeper nodes. While not shown in the figure for brevity,
this subsequently leads to more controllers like a scheduler, a
storage controller, and worker nodes being activated to bring
up the actual containers and volumes. Similarly, if the user
then edits the desired state of the ZooKeeper object (e.g., the
number of replicas), it triggers a similar sequence of reconcil-
iations by different controllers, as each tries to make minor
adjustments to get to its appropriate desired state.

The need for automated reliability testing. Kubernetes’ ex-
tensibility has led to a thriving ecosystem with thousands of
domain-specific controllers implemented by commercial ven-
dors and open-source communities [41, 42, 53, 60, 68, 71, 74].
For example, OpenShift, an enterprise Kubernetes platform
from Red Hat, provides 130+ custom controllers that extend
Kubernetes [17]. All these controllers represent critical infras-
tructure, making their correctness paramount. As shown by
many real-world problems [31, 38, 51, 52] and our evaluation
results, designing and implementing reliable controllers is
challenging – many popular, mature controllers misbehave un-
der faults, delays, and asynchrony with severe consequences.

However, controller reliability is notoriously hard to ensure.
A developer faces the fundamental challenge of 1) anticipat-
ing all possible views of the cluster state at the controller
(compounded by asynchrony) and 2) safely reconciling to
the required desired states from any of these points. We ob-
serve that manually-written test suites do not sufficiently test
a controller’s reliability (§6).

Unfortunately, existing testing techniques are either too
specialized for certain bug types (e.g., crash-recovery bugs
or concurrency bugs) and cannot address the broad range of
controller bugs; or require expert guidance in terms of formal
specifications of the system, crafted heuristics, or hypotheses
on vulnerable code regions (§8). We seek a solution that is
easy to use and broadly applicable to unmodified controllers.

Our insight. To overcome the above challenges, we 1) auto-
matically and extensively perturb an unmodified controller’s
view of the cluster states in ways it is expected to tolerate,
and 2) automatically flag safety and liveness issues using dif-
ferential oracles that compare the evolution of cluster states
with and without perturbations. This degree of automation

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    145



and unintrusiveness is enabled by the fundamental nature of
state-reconciliation systems. That is, these systems often have
a simple and highly introspectable state-centric interface with
which controllers interact with the cluster state. Such inter-
faces essentially do no more than reads and writes, or receive
notifications regarding state-object changes. All objects share
a common schema, which makes any arbitrary object highly
introspectable. For example, all objects in Kubernetes have an
identical set of fields representing their metadata. This enables
a degree of automation that is hard to achieve otherwise.

3 Sieve Design
Sieve is an automatic reliability testing tool for cluster man-

agement controllers. It checks whether the controllers under
test can correctly operate the system under common pertur-
bations (due to unexpected faults and inherent asynchrony)
and detects bugs that lead to safety and liveness issues at
the development time. Sieve is automatic—it tests unmodi-
fied controllers and does not rely on formal specifications or
controller-specific assertions. Sieve is effective—it focuses
on well-defined, highly-targeted perturbations that reliable
implementations are required to tolerate.

Sieve perturbs the controller’s view of the cluster state
based on three broad patterns that expose the controller to 1)
intermediate states, 2) stale states, and 3) unobserved states.
We discuss the three patterns and their rationales in §3.1.
Note that these are not the only patterns in which faults can
occur, but cover a broad range of faults that a component in a
distributed system is expected to handle gracefully. Sieve can
be extended to incorporate other patterns in the future.

Sieve tests controllers with the following workflow:

• Collecting reference traces (§3.2). Sieve starts by learning
how a controller behaves in the absence of faults (under test
workloads) and records the state transitions in reference
traces. To do so, it instruments the state-centric interfaces
used by the controller to interact with the cluster state.

• Generating test plans (§3.3). Sieve then analyzes the refer-
ence traces to generate test plans. A test plan describes a
concrete perturbation. The test plan specifies what faults
to inject and when to inject them to effectively drive the
controller to see a target cluster state.

• Avoiding ineffective test plans (§3.4). To achieve high test
efficiency, Sieve prunes redundant or futile test plans. For
example, it avoids a test plan if it is clear that it cannot
causally lead to a target cluster state.

• Executing test plans (§3.5). Sieve executes each test plan
using a test coordinator. The test coordinator monitors the
cluster-state transitions during testing and injects the speci-
fied faults according to the test plan’s specification.

• Checking test results (§3.6). Sieve has generic, effective,
differential oracles to automatically check test results. The

oracles detect buggy controller behavior by comparing the
cluster-state evolution between the reference and test runs.

Sieve deals with non-deterministic elements of the cluster
state during testing to minimize their impact on test plan gen-
eration and test oracles (§3.7). Specifically, Sieve identifies
non-deterministic state objects and fields and excludes them.
Usage. To use Sieve, one needs to provide two inputs: 1) a
manifest that specifies how to build and deploy the controller
under test, and 2) a set of test workloads that exercise end-
to-end behavior of the controller under test. The two inputs
are mostly available in mature controller projects, as they are
needed for controller development and deployment. In our
experience, finding them is straightforward.

3.1 Perturbing A Controller’s View of The State
Sieve operates under the assumption that a controller fol-

lows the state-reconciliation principle, which receives a se-
quence of notifications about the changes to the cluster states
and outputs a corresponding sequence of updates to the clus-
ter states. Sieve aims to affect the outputs of a controller by
perturbing its view of the cluster state. These perturbations
are produced by injecting targeted faults (e.g., crashes, delays,
and connection changes) when specific cluster-state changes
(triggering conditions) happen.

Notably, the perturbation strategy allows Sieve to decouple
policy from mechanism. The decoupling makes it easy to
extend existing policies or add new policies by orchestrating
the underlying perturbation mechanisms. Specifically, a policy
defines a view Sieve exposes to the controller at a particular
condition, while the mechanism specifies how to inject faults
to create the view. Sieve automatically generates test plans for
each policy; each test plan introduces a concrete perturbation
based on a specification of a triggering condition and a fault
to inject when that condition happens.

Sieve currently supports three patterns to perturb a con-
troller’s view. Crucially, these perturbations drive a controller
to states that it is expected to tolerate. They represent valid
inconsistencies in the view that a controller could see due
to common faults as well as the inherent asynchrony of the
overall distributed system. Over time, we hope to add more
perturbation patterns.

Intermediate states. Intermediate states occur when con-
trollers fail in the middle of a reconciliation before finishing
all the state updates they would have otherwise issued. After
recovery (e.g., Kubernetes automatically starts a new instance
of a crashed controller), the controller needs to resume recon-
ciliation from the intermediate state left behind.

Figure 4 illustrates how Sieve tests the official RabbitMQ
controller with intermediate-state perturbations and reveals
a new bug. The test workload attempts to resize the storage
volume from 10GB to 15GB. The resizing is implemented
with two updates: 1) updating VolCur to 15GB; 2) updating

146    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



VolDesired: 15GB
VolCur: 10GB
VolReq: 10GB

VolDesired: 15GB
VolCur: 10GB
VolReq: 10GB

Controller Code Snippet 
(simplified)

Desired = Get(VolDesired)
Current = Get(VolCur)
if Desired > Current {
...
Update(VolCur, Desired)
...
Update(VolReq, Desired)
... 

} 
/* reconcile_persistence.go */

VolDesired: 15GB
VolCur: 15GB
VolReq: 15GB

VolDesired: 15GB
VolCur: 15GB
VolReq: 10GB

VolCurß15GB
VolReqß15GB

Correct run Faulty run

VolCurß15GB

Controller crash 
and restart

Cluster State (Controller’s View)

Figure 4: An intermediate-state bug in a RabbitMQ con-
troller detected by Sieve [70]. The controller fails to recover
from the intermediate state introduced by Sieve; the controller
does not successfully resize the storage volume.

VolReq to 15GB which triggers Kubernetes to resize the vol-
ume. The controller issues updates when VolCur is smaller
than the desired volume size. During testing, Sieve crashes
the controller between the two updates, which creates an in-
termediate state where VolCur is updated, but VolReq is not.
The controller cannot recover from the intermediate state and
the resizing never succeeds. The bug has been fixed with 700+
lines of Go code to revamp the volume resizing logic. In addi-
tion, the developers added eight new tests along with the fix
to exercise how the controller handles different intermediate
states, which is what Sieve performs automatically.

Stale states. Controllers often operate on stale states, due to
asynchrony and the extensive uses of caches for performance
and scalability [26]. As shown in Figure 2, controllers do
not directly interact with the strongly consistent data stores,
but are connected with API servers. The states cached at API
servers could be stale due to delayed notifications. Controllers
are expected to tolerate stale views that lag behind the latest
states maintained in the data store.

Tolerating stale views correctly is nontrivial. For exam-
ple, a Kubernetes controller’s view may “time travel” to a
state it observed in the past. Time traveling occurs when
there are multiple API servers operating in a high-availability
setup, when the controller reconnects to a stale API server
that has not yet seen some updates to the cluster state. The
reconnection can be triggered by failover, load balancing, or
reconfigurations. Controllers are expected to recognize the
stale state [18], instead of treating it as a new, unseen state.

Figure 5 illustrates how Sieve tests Percona’s MongoDB
controller with stale-state perturbation and reveals a new bug
that leads to both application outages and data loss. To support
graceful MongoDB cluster shutdowns, the controller waits to
see a non-nil deletion timestamp (DeletionTS) field attached
to the state object representing the MongoDB cluster (a com-
mon practice to give systems time to react to an impending
deletion [23]). When the controller sees this change, it deletes
all the pods and volumes of the MongoDB cluster.

Controller Code Snippet (simplified)
if Get(   ).DeletionTS != nil {
...
DeleteAllPods()
...
DeleteAllVols() 

} /* perconaservermongdb/finalizers.go */

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

Time
travel

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB (UID: 1) deleted 

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

DeleteAllPods
DeleteAllVols

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB (UID: 2) created 

MongoDB (UID: 1) deleted 

MongoDB (UID: 2) created 

(DeletionTS) : an object 
is marked for deletion

Cluster State (Controller’s View)
Correct run Faulty run

Figure 5: A stale-state bug in a MongoDB controller de-
tected by Sieve [43]. The controller experiences a “time-
travel” and observes a stale state. It makes wrong reconcilia-
tion action based on the stale state (deleting all the pods and
volumes) which leads to application outages and data loss.

Sieve drives the controller to mistakenly delete a live Mon-
goDB cluster by introducing a time-travel perturbation. With
a workload that first shuts down a MongoDB cluster and then
recreates a new instance of the same cluster, Sieve waits till
the cluster is recreated and then introduces a time-travel per-
turbation. The perturbation causes the controller to see the
deletion timestamp being applied to the already-deleted clus-
ter. Consequently, the controller mistakenly shuts down the
newly created cluster. This revealed that the controller should
be checking for the UIDs of clusters, not just their names.

Unobserved states. By design, controllers may not observe
every cluster-state change in the system. The full history of
changes made to the cluster state is prohibitively expensive
to maintain and expose to clients [76]. Controllers are hence
expected to be designed as level-triggered systems (opposed
to being edge-triggered), i.e., a controller’s decision must be
based on the currently observable cluster state (level) [21],
not on seeing every single change to the cluster state (edge).

Figure 6 illustrates how Sieve tests Instaclustr’s Cassandra
controller using unobserved-state perturbations and reveals
a new bug that leads to resource leaks and service failures.
The test workload first scales down and then scales up storage
volumes of the Cassandra cluster. During scale-down, the con-
troller removes volumes when it learns that the corresponding
pods were marked for deletion (a non-nil deletion timestamp
field is set on the pod object, similar to the previous exam-
ple). The pods’ lifecycles (including deletions) are managed
by a built-in controller called a StatefulSet controller. Sieve
pauses notifications to the Cassandra controller for a window
such that it does not see these deletion marking events by the
StatefulSet controller. This causes the Cassandra controller to
not delete the corresponding volumes even though it has the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    147



DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

Correct run Faulty run

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

Delete
Delete

Cassandra controller 
code snippet (simplified)
if Get(  ).DeletionTS != nil {
...
Delete( )
...

}
/* cassandradatacenter/finalizers.go */

Statefulset controller 
code snippet (simplified)
// mark pod for deletion
SetDeletionTS(  ,    )
...
Delete( )

/* statefulset/stateful_pod_control.go */

Delete

Unobserved State

SetDeletionTSSetDeletionTS

Cluster State (Controller’s View)

Figure 6: An unobserved-state bug in a Cassandra con-
troller detected by Sieve [29]. The controller misses a tran-
sient state where the pod has a non-nil deletion timestamp.
It thus fails to delete the volumes, leaking storage resources.
The bug also prevents new Cassandra pods from rejoining.

right information to make that call (i.e., its view has volumes
created by it that do not have pods attached to them).

Hence, the volume never gets deleted, leaking the storage
resource. The bug also prevents the controller from scaling
the Cassandra cluster – newly-created pods try to reuse the
dangling volumes and cannot rejoin using the cluster metadata
already in them (as it represents a node that was decommis-
sioned). The bug has been fixed by adding a pre-deletion hook
– a coordination mechanism in Kubernetes that allows the Cas-
sandra controller to complete the required cleanup operations
before the pods can be deleted [9].

3.2 Collecting Reference Traces
Sieve starts by learning how a controller behaves in the

absence of faults. To do so, Sieve interposes around the state-
centric interfaces used by the controllers to interact with the
cluster state. All modern cluster managers have unified, well-
defined client libraries based on state-centric interfaces. Tak-
ing Kubernetes as an example, any interaction with the cluster
state (exposed by the API servers) goes through a small, well-
defined set of client APIs that read, modify, or receive notifi-
cations about state objects. They are used by every controller
that interacts with the Kubernetes API servers. To support
Kubernetes controllers, Sieve decorates 10 functions in the
client library and this interposition is fully automated (§4).

With the interposition in place, Sieve learns every cluster-
state change notification that the controller receives, as well as
any reads and writes attempted by the controller to the cluster
state or to the local cache of the cluster state maintained by
the client. Sieve then runs each test workload supplied by the
developer and collects the following two reference traces:

• Controller trace. A series of events observed via the inter-
position of client APIs, including notifications about state
changes, entry and exits of each reconciliation cycle, and
client-API invocation by the controller and their arguments.

• Cluster state trace. The initial cluster state and the sequence
of state changes (object creations, modifications, and dele-
tions), collected using public APIs of the cluster manager.

The controller trace is used for generating test plans (§3.3)
and the cluster-state trace is used by test oracles (§3.6).

3.3 Test Plan Generation
Sieve generates a set of test plans for each test workload

for which it has collected reference traces. Each test plan
specifies a perturbation to inject during the workload.

A test plan is represented by a self-contained file that de-
scribes a test workload, a list of faults to inject during the
workload run, and the triggering condition for when to in-
ject each fault. Sieve currently supports several primitives
that test plans can compose to introduce complex faults: 1)
crash/restart a controller, 2) disconnect/reconnect a controller
to an API server, 3) block/unblock a controller from process-
ing events, and 4) block/unblock an API server from process-
ing events. When an executed test plan reveals a bug, the
test-plan file is sufficient to reproduce the bug.

Figure 7 shows a simplified test-plan file generated by
Sieve. Each element in faults specifies the fault to inject
(faultType) and the triggering conditions (triggers). Each
element in triggers specifies a triggering condition, that
causes the specified fault to be injected before or after a par-
ticular cluster state change if executed. A composite triggering
condition can be specified in compositeTrigger by combin-
ing multiple conditions in triggers with boolean operators.
For example, t1 & t2 means the fault is only injected when
both t1 and t2 are triggered. In Figure 7, trigger1 is the
only required condition to inject the fault. Similarly, compos-
ite faults can be constructed (e.g. crashing a controller after
t1 and restarting it after t2).

We now present the basic rules Sieve applies to compute
test plans that exercise one of the three patterns in §3.1. We
later describe how Sieve avoids ineffective test plans in §3.4.
Optionally, one can customize patterns by implementing new
rules or manually writing test plans.
Intermediate-state rule. For a controller, Sieve generates
test plans that force all possible intermediate states and ex-
poses them to the controller. To do so, Sieve analyzes the
reference controller trace and marks the sequence of state up-
dates made by the controller within each reconciliation loop.
Concretely, for every reconciliation that issues multiple state
updates, U1,U2, ...,Un, Sieve generates one test plan per state
update Ui, where Sieve crashes the controller after it issues
Ui. When the controller restarts after the crash, it is presented
with the target intermediate state.
Stale-state rule. For stale states, Sieve generates test plans
that make the controller travel back in time and see stale
states that it has already observed. Concretely, Sieve checks
the controller trace for a notification-update pair (N,U), such
that observing N results in an update U (see §3.4.1). It then

148    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



testWorkload: resizePVC
faults:
- faultType: crashController

triggers:
- triggerName: trigger1

triggerAt: afterControllerIssues
stateChange:

beforeChange: 'VolCur :10GB'
afterChange: 'VolCur :15GB'

compositeTrigger: trigger1

Figure 7: A test plan generated by Sieve. This is a simpli-
fied view of the test-plan file that detected the bug in Figure 4.
This test plan crashes the RabbitMQ controller right after the
controller updates VolCur from 10GB to 15GB. Sieve learns
every state change issued by the controller via the state-centric
interfaces (e.g., Update in Table 1).

searches for a subsequent state-change notification N′ which
has a conflicting effect with U (e.g.,U deletes an object and N′

creates the same object). With time traveling, if the controller
mistakenly issues U after seeing the stale state N, it could
corrupt the newer cluster state as notified by N′.

Sieve generates test plans that 1) block a reserved API
server to prevent it from advancing its own state after it sees
N, 2) after the controller sees N′, time-travel the controller
to see N by reconnecting the controller to the reserved stale
API server, and 3) unblock the stale API server; so, the intro-
duced staleness is only transient—both the API server and
the controller catch up eventually. We focus on deletions for
U because they are destructive operations.

Unobserved-state rule. For unobserved states, Sieve gen-
erates plans that skip states that a controller might observe
during normal executions, but could potentially miss in the
presence of faults. Sieve checks the controller trace to find
pairs of notifications (N,N′) in which N′ is the closest subse-
quent notification that cancels the effect of N. Sieve generates
test plans that 1) block the controller to prevent it from see-
ing N, and 2) unblock the controller when N′ arrives. Such a
test plan causes the controller to miss cluster states from N
(inclusive) up to N′ (exclusive).

3.4 Avoiding Ineffective Test Plans
Sieve may potentially generate a large number of test plans

using rules specified in §3.3. For example, in stale-state test-
ing, Sieve might identify every notification the controller re-
ceives as a point to inject staleness, therefore generating test
plans for every received notification. For example, the naïve
rule above for stale states would generate 140,000+ test plans
for the MongoDB controller in Figure 5. It is therefore key to
prune ineffective test plans.

As a guiding principle, we prune a test plan if the test plan
does not introduce an intermediate-, a stale- or an unobserved-
state that can affect the controller’s outputs, or the introduced
state is identical to states introduced by other test plans. This

𝑁! 𝑁" 𝑁# 𝑁$

𝑈! 𝑈" 𝑈#

𝑁
𝑈

: Notification
: Update
: Reconciliation

Figure 8: Causality rules used by Sieve. For simplicity, in
this figure the object pertaining to each notification is im-
mediately read by the controller. (N1,U1), (N1,U2), (N3,U3)
and (N4,U3) are causally related according to the rules in
§3.4.1. N2 is not causally related to any update, given the
earliest-reconciliation rule.

naturally requires Sieve to have a clear notion of what input
events affect the controller’s outputs.

3.4.1 Pruning by Causality
If a controller makes an update U based on a notification

N, we consider N and U to be causally related. We consider a
pair (N,U) that is not causally-related to be irrelevant from a
testing standpoint, because perturbing N will not affect U .

Inferring causality between events is generally a challenge
in distributed systems. By focusing on the “narrow waist”
of state-centric input and output events of the controller un-
der test, we are able to design simple yet effective rules for
Sieve to infer whether a pair (N,U) is causally related. These
rules are lenient and only introduce false positives at best, but
not false negatives. False positives increase testing times by
generating redundant test plans, whereas false negatives risk
reducing test coverage that could miss bugs. While causal trac-
ing support [58] for Kubernetes is currently in its infancy [6],
we might be able to leverage it in the future.

Sieve currently considers a pair (N,U) to be causally re-
lated if both the following conditions holds (Figure 8 exem-
plifies the two causality rules):

• Read-before-update rule: the object pertaining to N is read
by the controller before it issues U ;

• Earliest-reconciliation rule: N and U happen in the same
or adjacent reconciliation cycles. The rationale is that con-
trollers always issue updates relevant to N in the earliest
possible reconciliation cycle after N is received.

For stale- and unobserved-state testing, Sieve only gener-
ates test plans involving a N if it has at least one causally-
related U . We find pruning test plans by causality effective,
especially when there are many notifications due to other
activities irrelevant to the controllers under test.

3.4.2 Pruning Unsuccessful Updates
Sieve ignores any update U that does not change the current

cluster state. Sieve checks whether an update U is successful
based on whether U triggers a state change ∆S of the cluster
state. This information is typically encoded in the return value
of the U operation.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    149



For stale-state testing, Sieve further ignores an update U
that, if issued again, does not change any of the subsequent
cluster states, (i.e., there does not exist an N′ that is affected
by U). Sieve checks whether the state objects updated by U
would later be conflicted with N′.

The rationale for the above pruning is straightforward. If
an update does not change the current cluster state, it is un-
likely to cause new states in the execution. If an update U
cannot affect any future cluster states, it would not perturb
the controller’s execution under the time-travel pattern either,
i.e., if U is issued again, it would not corrupt any future state.

In practice, we found that many controllers issue unsuc-
cessful updates that do not actually change the cluster state,
including pathologically frequent ones caused by inefficient
but benign behavior (see Section 5.2).

3.5 Test Plan Execution
Every test plan is executed by the Sieve test coordinator

running in the testing cluster. The coordinator faithfully exe-
cutes the test plan by running the test workload and injecting
the faults specified in the test plan. Specifically, the test co-
ordinator monitors state transitions of both the controller’s
view of the cluster state as well as the cluster state as seen by
API servers. This is done based on the interposition described
in §3.2; it allows the test coordinator to intercept and take
actions (e.g., injecting faults) when state transitions happen.
If the observed state transition matches the triggering condi-
tion ∆S specified in the test plan, the coordinator marks the
condition as matched. The coordinator injects a fault (e.g., a
controller crash) once all the corresponding conditions are
matched. Most of the interposition and injection are done
through the client APIs. But, for stale-state testing, the coor-
dinator also needs to interpose at the API server (to make an
API server stale).

As a concrete example, to execute the test plan in Figure 7,
the test coordinator monitors every state transition issued by
the RabbitMQ controller. The coordinator marks trigger1
in the test plan as matched when it observes a state transition
that updates VolCur from 10GB to 15GB. Since trigger1 is
the only required condition in the test plan, the coordinator
injects a controller crash right after trigger1 is matched. If
the test plan specifies multiple faults, the coordinator injects
them one by one according to the specified order.

The test coordinator also records the cluster states in a trace
during testing, which will be compared with the reference
cluster-state trace (§3.2) to detect buggy behavior.

3.6 Differential Test Oracles
Sieve has generic, effective oracles to automatically detect

safety and liveness issues. The oracles detect buggy controller
behavior based on the cluster states during and at the end
of the test run. The goal is to validate that the testing traces
are free of safety and liveness issues, in addition to monitor-

ing anomalous controller behavior (e.g., crashes and hangs).
Developers can also add domain-specific oracles.

In our experience, many buggy controller behaviors do not
show immediate or obvious symptoms (e.g., crashes, hangs,
and error messages). Instead, they lead to data loss, security
issues, resource leaks, and unexpected application behavior
which is hard to check with oracles typically used by prior
art [55, 75, 84, 88, 89]; in our evaluation, only five (out of 46)
bugs can be flagged by checking for exceptions or crashes.

We therefore develop differential test oracles that compare
cluster states in a reference run versus those in test runs—
with inconsistencies typically indicating buggy behavior. This
methodology means we need to exclude nondeterministic
states and state objects affected by the perturbation (§3.7).

We found that Sieve’s differential oracles vastly outperform
developer-written assertions in the test suites of the controllers
we evaluated, because Sieve’s oracles systematically examine
all the state objects and their evolution during testing. It is
challenging for developers to manually codify oracles that
comprehensively consider the large number of relevant states.

Note that Sieve does implement regular error checks for ob-
vious anomalies, including exceptions, error codes and time-
outs. Sieve scans the controller’s log and checks whether the
controller encountered any unexpected exception (i.e., panic
in Go). Sieve also checks whether the operations in the test
workload return error codes or fail to complete on time.

3.6.1 Checking End States

Sieve systematically checks the end state after running a
workload. Specifically, our oracles check the count of state
objects by type and the field values of all the objects after
accounting for nondeterminism (§3.7). It compares the end
state of the test run versus the reference run. Sieve fails the
test if it finds inconsistencies between the end states and prints
human-readable messages to pinpoint inconsistencies.

Such checking is effective compared to the simpler asser-
tions that we found in test suites for the controller projects we
studied. For example, in an intermediate-state bug [46], the
MongoDB controller fails to create an SSL certificate used for
securing communications inside the MongoDB cluster. This
causes the controller to fall back to insecure communications.
Such security issues do not manifest in the form of crashes or
error messages. Sieve however automatically catches the bug,
because the certificate object in the faulty run does not exist
in the cluster state, which is different from a normal run. The
bug was detected by Sieve and confirmed by the developers.

We found that none of the 71 test cases shipped with the
controller has an assertion that checks the certificate object,
despite the fact that enabling TLS is recommended and is the
default configuration [66]. We would not be able to repurpose
the assertions in these test cases to catch this bug.

150    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



3.6.2 Checking State-Update Summaries
Besides the end state, Sieve also checks how the controller

updates the cluster state over time. It does so by compar-
ing summaries of constructive and destructive state updates
for each object (e.g., CREATE and DELETE operations). Such
checks are complementary to the end-state checks, because a
correct end state does not imply that the controller behavior
is always correct during the test. We find that buggy behavior
can end in correct states (same as in the reference runs).

For example, in a stale-state bug [47], the XtraDB controller
mistakenly deletes the front-end proxy (which routes user
requests to the XtraDB cluster), causing service unavailability.
After the staleness ends, the API server and the controller
eventually catch up with updated states and recreate the proxy.
In this case, the end state of the proxy in the test run is the
same as in the reference, but the update that deleted the proxy
in the test run is buggy. Sieve detects the bug by noting that
the proxy pod receives 2 CREATE and 1 DELETE operations in
the faulty run, but only 1 CREATE in the reference run.

In another intermediate-state bug [62], the NiFi controller
fails to reload configuration files. The end state is the same as
a normal run; however, in the faulty run, the controller did not
restart the NiFi pod to reload the configuration. Sieve flags
this by noting the NiFi pod receives a CREATE and a DELETE
operation (to reload the configuration) in the normal run, but
neither appears in the faulty run.

Note, comparing the sequence of state-update is unreli-
able and would lead to false alarms—the sequences are not
strictly the same due to concurrent controller operations. The
summaries instead are robust to different event orderings.

3.7 Dealing with Nondeterminism
The shape of a state object (the set of fields and their val-

ues) might be nondeterministic. This nondeterminism affects
Sieve’s test plan generation and the differential test oracles.
We now describe how Sieve combats this problem.

All objects have identifying metadata (e.g., a type, names-
pace, and name). This is key for Sieve to identify two in-
stances of the same object, both within a run (e.g., checking
for conflicting operations in the stale-state rule) and across
runs (e.g., comparing configurations of objects across runs).

Sieve identifies nondeterministic field values by running
the test workloads without perturbation multiple times when
generating reference runs, and then comparing the values of
each field in each state object.

Objects whose identifying metadata is nondeterministic
are excluded from test plan generation and subsequent steps,
because Sieve cannot reliably match them across runs or setup
triggering conditions for them. If other kinds of fields have
nondeterministic values (typically IP addresses, timestamps,
or even random port numbers), Sieve does not exclude the
object but simply masks the field values. Note that these two
rules still allow Sieve to spot unexpected changes to the set of

API Component Instrumentation

reconcileHandler Client Log entry and exit
Get, List Client Send objects to coordinator
Create, Update, Patch Client Send objects to coordinator
Delete, DeleteAllOf Client Send objects to coordinator
HandleDeltas Client Send objects to coordinator
processEvent API server Send objects to coordinator
Get, List Client Add delay
processEvent API server Add delay

Table 1: Instrumentation performed by Sieve to monitor
and perturb states. The instrumentation is automated.

fields on the object (e.g., missing deletion timestamp fields).
In addition, Sieve provides an API for Sieve users to ex-

clude specific state objects or fields from test plans or oracles
based on domain knowledge, if needed.

4 Implementation
We implement Sieve for Kubernetes controllers. Sieve uses

kind [10] to run a Kubernetes cluster on a single machine,
so every test plan can be run entirely on one machine. Sieve
configures two API servers for stale-state testing. Sieve is
implemented in 5,500 lines of Python code (for test plan gen-
eration and oracles) and 3,100 lines of Go code (for automated
instrumentation and fault injection).

Sieve instruments 10 API methods, representing the state-
centric interface, for monitoring and perturbing states (Ta-
ble 1). Those methods are in Kubernetes client libraries [13,
14] and the API server. Sieve implements an automated pro-
cedure to instrument the 10 methods using dst [8] to work
with different versions of Kubernetes client libraries and API
servers. Sieve analyzes the syntax tree for each method to
insert monitoring and fault-injection code. Sieve applies the
instrumentation when building the controller image. Sieve
does not need to analyze or instrument the controller code.

In Kubernetes, level-triggered controllers do not immedi-
ately read notifications when they arrive [21]. Instead, the
controller first updates a locally-cached view of the state ob-
jects; the controller reads from this cache when it uses Get
or List APIs to query the cluster state. In causality analysis
(§3.4.1) Sieve needs to know whether a notification is read
before an update. To do so, Sieve analyzes the state objects
updated by each notification and those read by each Get/List.

Some controllers are multi-threaded, where each thread
calls a different reconcile function. Sieve uses the instru-
mented client libraries to obtain stacktraces whenever the con-
troller reads or updates the cluster state (e.g., Get, Create).
These stacktraces are used to differentiate between controller
threads when generating and executing test plans.

5 Evaluation
Sieve’s premise is that automatic and effective reliability

testing for unmodified controllers is viable, by a) exhaustively

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    151



Controller Systems Dev. #Stars #Commits #WL

cass-operator Cassandra DataStax 287 477 2
cassandra-operator Cassandra Instaclustr 227 337 2
casskop Cassandra Orange 177 1643 3
elastic-operator Elasticsearch Official 1832 3375 2
mongodb-operator MongoDB Percona 142 1407 5
nifikop NiFi Orange 101 232 3
rabbitmq-operator RabbitMQ Official 343 1679 3
xtradb-operator XtraDB Percona 302 1693 5
yugabyte-operator YugabyteDB Official 41 36 4
zookeeper-operator ZooKeeper Pravega 242 220 2

Table 2: Kubernetes controllers used in our evaluation.
“#WL” stands for the number of different test workloads.

perturbing a controller’s view of the cluster states and b) using
differential oracles to flag safety and liveness issues.

We validate this hypothesis with three evaluation questions:
1) Can Sieve find new bugs in real-world controllers? 2) Does
Sieve do so efficiently? 3) Are Sieve’s testing results trustwor-
thy? We answer these questions in the affirmative:

• §5.1: Sieve finds new bugs in all ten evaluated controllers,
resulting in a total of 46 new bugs, which represent a swathe
of safety and liveness issues. So far, 35 of them have been
confirmed and 22 have been fixed by the developers.

• §5.2: All controllers can be tested in seven hours on a clus-
ter of 11 machines, representing a typical nightly test. This
is attributed to the effective reduction techniques which
reduce test plans by 46.7%–99.6% across the controllers.

• §5.3: Sieve poses a low false positive rate of 3.5%.

Tested controllers We evaluated Sieve on ten popular con-
trollers from the Kubernetes ecosystem for managing widely-
used cloud systems (Table 2). The controllers are either devel-
oped by the official development team of the corresponding
system, or by companies that have production-grade offerings
around said systems. The term operator [12] in the project
names refers to the Kubernetes design pattern of using a cus-
tom controller to manage an application.

Sieve employs 2–5 basic test workloads for each controller
(Table 2). Each workload exercises a feature of the controller.
Every evaluated controller supports software deployment and
autoscaling, and therefore has at least two workloads. Sieve
also employs workloads for controllers that support more
features, such as sharding, storage resizing, reconfiguration,
and load balancing. A test workload is typically implemented
in 6–12 lines of code and takes 4–12 minutes to run.

It took us on average three hours to apply Sieve to each
controller, which was mostly spent on understanding how
to build the controller. We expect controller developers to
expend much less effort to integrate Sieve in their workflow.

5.1 Finding New Bugs
Sieve finds a total of 46 new bugs in the evaluated con-

trollers (Table 3). Those bugs include 11 intermediate-state

Controller Interm. Stale Unobser. Indirect TotalState State State

cass-operator 2 1 0 0 3
cassandra-operator 0 2 1 2 5
casskop 1 2 1 0 4
elastic-operator 0 2 0 0 2
mongodb-operator 2 3 1 3 9
nifikop 2 0 0 1 3
rabbitmq-operator 1 2 1 0 4
xtradb-operator 3 3 1 0 7
yugabyte-operator 0 2 1 2 5
zookeeper-operator 0 2 1 1 4

Total 11 19 7 9 46

Table 3: New bugs detected by Sieve in each controller.

bugs, 19 stale-state bugs, 7 unobserved-state bugs, and 9 bugs
indirectly detected by Sieve during testing. Sieve finds new
bugs in all the evaluated controllers. We have reported all
these bugs. So far, 35 of them have been confirmed and 22
have been fixed. No bug report was rejected.

Sieve can consistently reproduce all the 37 intermediate-
, stale-, and unobserved-state bugs—running the test plan
always reproduces the buggy behavior. In our experience,
Sieve’s reproducibility is invaluable for debugging test fail-
ures. It helps developers localize bugs in the source code and
continuously iterate on bug fixes (§6).

Table 4 shows the consequences of the 46 controller bugs
and an exemplar bug for each kind of consequence. We see
that many bugs have severe consequences, such as application
outages, security issues, service failures, and data loss. Note
that these controllers are all mature projects (Table 2 and §6),
suggesting that controller reliability is challenging to achieve.

The bugs that Sieve finds are deep and highly unlikely to
be detected by manual testing or imprecise techniques like
chaos testing or randomized fault injection tools [1, 2, 4, 5].
For example, a bug [63] in nifikop is triggered only when the
controller crashes between issuing two specific state updates
within one reconciliation loop (the time window between the
two updates is about 0.7 milliseconds). In contrast, the test
workload used for detecting the bug takes about 440 seconds
to finish, and causes 481 reconciliation loops and 1,687 state
updates issued by the controller. Sieve is able to detect and
consistently reproduce the bug because it relies on injecting a
fault precisely when a specific cluster-state change happens.

5.1.1 New Bugs Detected by Sieve

Intermediate-state bugs. Sieve found 11 intermediate-state
bugs. Sieve stresses a common pattern among controllers,
where they issue multiple updates per reconciliation, after the
controller checks for a certain condition to hold in the cluster
state. However, Sieve finds bugs when these condition checks
only detect states from running the reconciliation loop in its
entirety; that is, when the checks do not account for inter-
mediate states that may arise due to controller crashes. For

152    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/k8ssandra/cass-operator
https://github.com/instaclustr/cassandra-operator
https://github.com/Orange-OpenSource/casskop
https://github.com/elastic/cloud-on-k8s
https://github.com/percona/percona-server-mongodb-operator
https://github.com/Orange-OpenSource/nifikop
https://github.com/rabbitmq/cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/yugabyte/yugabyte-operator
https://github.com/pravega/zookeeper-operator


Consequence Example # Bugs

Application outage rabbitmq-operator-648: The RabbitMQ 12
cluster is mistakenly turned down [69].

Service failure K8SPSMDB-433: Sharding service for the 5
MongoDB cluster wrongly terminated [44].

Data loss K8SSAND-559: Storage volumes of 8
Cassandra replicas wrongly deleted [49].

Reduced reliability zookeeper-operator-314: The ZooKeeper 7
cluster scaled down unexpectedly [90].

Misconfiguration nifikop-49: The NiFi pod is not updated 6
with new configuration [62].

Security issue K8SPXC-896: TLS is not enabled for the 6
XtraDB cluster [48].

Resource leak cassandra-operator-398: Volumes used 7
by deleted replicas never recycled [29].

Controller malfunc. casskop-370: The controller stops serving 8
scaling requests [30].

Table 4: Consequences of the bugs found by Sieve (Ta-
ble 3). One bug can lead to multiple consequences.

example, in the intermediate-state bug in Figure 4, rabbitmq-
operator compares VolCur and VolDesired to check whether
the volume has been expanded already. However, this check
assumes that all subsequent steps in the reconciliation succeed
whenever this condition is satisfied. In the bug in Figure 1,
the condition check cannot differentiate an intermediate state
versus an unexpected faulty state. Part of the challenge is
that controllers lack mechanisms analogous to write-ahead
logging or journaling to guarantee atomicity of each reconcile
action to enforce crash consistency. Controllers typically run
as Kubernetes pods themselves and the newly created con-
troller pod instance lacks any memory of its past execution
(as they should – controllers must only depend on the current
state). Sieve exposes those bugs without the need to under-
stand source code—it systematically tests a controller with
all possible intermediate states and checks for correctness.

Stale-state bugs. Sieve found 19 stale-state bugs. In our
experience, it is notoriously challenging to anticipate all pos-
sible stale states. That said, we found controllers were not
adequately using Kubernetes’ mechanisms to tolerate asyn-
chrony and staleness: like object versioning and unique IDs
(instead of referring to objects by names, that need not be
unique), or using coordination mechanisms to enforce order-
ing between events. Controllers also have the option to avoid
staleness by using quorum reads to API servers, but this cre-
ates a scalability bottleneck as it drives more load to etcd –
developers therefore choose to synchronize selectively. In gen-
eral, we do not believe there is a shortcut to reasoning about
any given update under all possible staleness or time-travel
scenarios. Sieve therefore aids developers by systematically
testing controllers under all possible time-traveling scenarios.

Unobserved-state bugs. Sieve found 7 unobserved-state
bugs. We find that all of them are rooted in latent edge-
triggering behavior in the controllers, that go against the
Kubernetes philosophy of designing controllers to be level-

triggered (§3.1). That is, these bugs arise when the controller’s
correctness relies on observing a specific state transition
(edges), as exemplified by Figure 6. By identifying states
that would be later overwritten and preventing those states
from being observed by the controller, Sieve is effective at
exposing unobserved-state bugs in controllers.

Bugs indirectly detected by Sieve. Sieve also finds 9 bugs
that were not directly triggered by input states Sieve gener-
ated but were still correctly flagged by its differential oracles.
All these bugs could (and do) happen in reference runs as
well; but because Sieve executes many test plans, some test
traces inevitably differ from the reference traces due to these
bugs, allowing Sieve to detect them. These bugs are caused
by a range of issues, including 1) controllers making incor-
rect assumptions about the Kubernetes API (e.g., assuming a
list of pods from a query have stable ordinals); 2) spurious,
dangling object creations, masked by Kubernetes’ garbage
collection (e.g., accidentally creating ZooKeeper pods after
deleting the high-level ZooKeeper cluster object); 3) the ap-
plications managed by the controller being buggy and failing.
Sieve can be extended with new perturbation patterns to sys-
tematically force out some of those bugs. For example, after
understanding the root causes, we were able to reproduce two
of these bugs consistently with manually written test plans.

5.1.2 Oracle Effectiveness
Sieve’s differential oracles are crucial to detect buggy exe-

cutions. Of the 46 newly found bugs, 45 were flagged by the
differential test oracles. Checking logs for errors only flagged
5 bugs of which 4 were also found by our differential oracles.

Our end-state checker (§3.6.1) finds 28 bugs by comparing
the end states of a test workload with and without perturbation.
The state-update summaries checker (§3.6.2) finds 17 more
bugs by checking the number of object updates through an
execution. These oracles allow Sieve to detect bugs such as
security and reliability issues (see §3.6) that do not manifest as
simple failure symptoms (e.g. exceptions or process crashes).

The only bug that the differential oracles fail to find but is
found by a regular error check in log files, is a null-pointer
dereference bug [45] that causes an unexpected controller
crash. Since Kubernetes automatically restarts the controller,
it does not affect the end states or the state updates.

5.2 Test Efficiency
Table 5 shows the total time Sieve takes to test each con-

troller in terms of machine hours. All experiments were run
on 11 Amazon EC2 virtual machines, each with 8-core In-
tel(R) Xeon(R) Platinum 8259CL CPU with 2.50GHz and 32
GB memory, running Ubuntu 20.04.2 LTS.

Sieve’s total testing time varies from 11.07 to 67.24 ma-
chine hours across the controllers. Sieve runs tests in parallel
because every test plan is independent. With eleven virtual

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    153



Controller Testing Time (Machine Hours) # Test PlansGeneration Execution Total

cass-operator 0.60 43.67 44.27 218
cassandra-operator 0.49 10.72 11.21 81
casskop 0.57 12.40 12.97 125
elastic-operator 0.43 30.10 30.53 245
mongodb-operator 1.00 66.24 67.24 584
nifikop 1.17 41.61 42.78 239
rabbitmq-operator 0.47 10.60 11.07 133
xtradb-operator 1.40 62.96 64.36 395
yugabyte-operator 0.67 17.38 18.05 196
zookeeper-operator 0.33 13.75 14.08 164

Table 5: Sieve’s total testing time for each controller.

machines, the total testing time for each controller is no more
than 7 hours. Therefore, it is practical to run Sieve as a regular
nightly test.

Over 95% of the testing time is spent on executing test
plans. With the perturbations introduced by Sieve, a work-
load takes 8.8% longer to run on average. The overhead
mainly comes from delays injected by Sieve for stale- and
unobserved-state testing. In a few cases, when Sieve triggers
bugs that lead to liveness issues, the controller hangs and
triggers a timeout (by default, 10 minutes).

Sieve also spends 0.33–1.40 hours to 1) collect the refer-
ence trace and 2) generate test plans for each controller. The
collected trace for each workload contains 3,386 events of
notifications, updates, or reads on average. Generating test
plans takes only 20 seconds for each workload on average.

Test reduction. Sieve’s techniques to avoid ineffective test
plans are key for tractability. Figure 9 breaks down the cumu-
lative contribution of each technique. The baseline represents
the basic rules described in §3.1 without any of the pruning
techniques in §3.4. Overall, Sieve prunes away 46.7%–99.6%
possible test plans across the evaluated controllers.

Specifically, pruning by causality (§3.4.1) reduces test
plans by up to 95.0% across the controllers. This reduction
is particularly effective for controllers that receive many no-
tifications that are not causally related to any update. For
example, mongodb-operator receives 700+ notifications re-
garding 20+ state objects, which are not causally related to
most of its updates. This allows Sieve to prune 136,000+
causally unrelated pairs of notifications and updates.

Pruning unsuccessful updates (§3.4.2) further prunes up to
75.8% of test plans across the controllers. In casskop, 60.0+%
of updates issued by the controller do not affect the clus-
ter state because the controller redundantly recreates two
service objects that already exist. As none of these updates
are relevant, Sieve excludes them when generating test plans.

Sieve finally prunes up to 72.9% of test plans across all
controllers by focusing on deterministic triggering conditions
(§3.7). This makes Sieve robust to many peculiar behaviors.
For example, zookeeper-operator has an inefficient but benign
behavior – it regularly clears the NodePort field of a service

cas
s-

op
era

tor

cas
san

dra
-

op
era

torcas
sko

p

ela
sti

c-

op
era

tor

mon
go

db
-

op
era

tor nif
iko

p

rab
bit

mq-

op
era

torxtr
ad

b-

op
era

tor

yu
ga

by
te-

op
era

tor

zo
ok

eep
er-

op
era

tor

102

103

104

105

# 
Te

st
 P

la
ns

2664

152

580

16674

144233

6570

311

3944

1414

38028

415

106

502

1501

7247 6209

261

3404

970

14533

415

84
149

315

616

5030

213

416
294

2712

218

81
125

245

584

239

133

395

196 164

baseline
prune by causality
prune updates
deterministic timing

Figure 9: Effectiveness of Sieve’s test plan reduction tech-
niques (§3.4). The number of generated test plans is reduced
by 46.7%–99.6% compared with the baseline.

object in every reconciliation, forcing Kubernetes to randomly
allocate a port. This leads to thousands of state transitions
with random port numbers. Sieve identifies these transitions
to be nondeterministic and avoids related test plans.

5.3 False Positives
Sieve has a low false positive rate of 3.5%. It reports a total

of 227 test failures for the ten evaluated controllers. 219 of
them were true alarms—the test failures are caused by the
46 bugs described in §5.1 (one bug might fail multiple tests).
The other eight test failures are false alarms.

The eight false alarms come from test results of three con-
trollers (casskop, nifikop and xtradb-operator). All of them
are caused by benign state transitions introduced in the faulty
runs that did not happen in the reference runs.

The false alarms do not lead to opaque test failures—Sieve
pinpoints the inconsistent fields. In all eight cases, the false
alarms are easy to identify based on the identified fields and
we could validate them by running the vanilla workload.

6 Discussion
In this section, we reflect on our experience building Sieve

and studying the root causes of bugs it found (§5.1).
We find that all the evaluated controllers adopt mature soft-

ware testing practices and have numerous unit, integration,
and end-to-end test cases. Some even test scenarios involving
faults. However, it is prohibitively difficult for developers to
anticipate all possible cluster states that may occur, let alone
codify them into test cases. Sieve fills this gap by exhaus-
tively testing input states according to patterns of interest. For
two bugs, Sieve detects that the initial bug fixes are deficient
in covering all the conditions. We run Sieve on the patched
controllers and Sieve still detects the bugs!

154    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



We also find that it is challenging for developers to compre-
hensively check test results, given the enormous state objects
and their fields. Developers typically check a few fields of
interest but such assertions can easily miss subtle, but serious
issues (e.g., security vulnerabilities as discussed in §3.6).

We also observe that certain bugs are likely rooted in mis-
understandings of Kubernetes’ design and API semantics. For
example, some unobserved-state bugs are caused by incor-
rectly assuming that every state change can be observed by
the controller; some stale-state bugs can be prevented by us-
ing Kubernetes’ mechanisms like resource versioning and
precondition checking. We expect such problems to be more
prevalent as engineers implement more and more custom
controllers for their cluster management needs.

While cluster managers may avoid some classes of bugs,
they come with hard tradeoffs. For example, not caching state
objects at the controllers and API servers (Figure 2) could
avoid stale-state bugs. However, it would introduce significant
performance overheads to the controllers (memory accesses
become network round trips) and make the data store a scala-
bility bottleneck [26]. Also, transactions are not a solution for
intermediate-state bugs – it would complicate the state-centric
interface and prevent controllers from independently making
progress regardless of failures, a key factor for resilience.

Since there is no silver bullet to implementing reliable
controllers, we believe that automatic tools like Sieve are
critical to cluster management reliability.

7 Limitations
Like other testing tools, Sieve is neither sound nor complete.

Sieve uses specific perturbation patterns and exhaustively
drives controllers to input states according to those patterns.

Sieve’s differential oracles can yield both false negatives
and positives. Sieve only applies its oracles on cluster states
exposed by the state-centric interface. It is possible that cer-
tain application-specific states cannot be observed by the
interface, which would lead to false negatives. In addition,
Sieve reports false positives if the inconsistencies captured by
the differential oracles are caused by benign state transitions
that did not happen in the reference runs (§5.3). We found the
false positive rate low (3.5%) in our evaluation.

The way Sieve deals with nondeterminism also leads to
false negatives. Sieve excludes objects with nondeterminis-
tic metadata and masks nondeterministic field values in test
plan generation and the differential test oracles (§3.7). This
approach effectively avoids many irreproducible test plans
and false positives, but also misses bugs that are triggered by
states involving nondeterministic fields.

Lastly, Sieve depends on test workloads provided by the
user for coverage. Implementing a test workload only takes
6-12 lines of code from our experience, but it requires domain
knowledge about the controller and the system.

8 Related Work

Testing control-plane software. Modern SDNs have state-
reconciliation based elements [15, 16, 19, 73] that could be
tested using Sieve’s methodology. A body of orthogonal work
tests [28, 83] or verifies [37] how an SDN controller affects
a network topology. For example, NICE [28] focuses on the
boundary where controllers process packet-in/out events and
uses that vantage point to automatically test for bugs. To the
best of our knowledge, Sieve is the first work to focus on
automatic reliability testing for cluster-manager controllers.
Testing distributed systems. Fault-injection tools [3, 25, 32,
34,35,55,59,79] have been developed for distributed systems,
including chaos testing tools from the industry for cluster
managers [1, 2, 4, 5]. Sieve’s goals differ from those in the
fault injection literature. Sieve seeks to expose controllers to
as many input states as possible to test their reliability. For us,
faults just happen to be a good mechanism to drive controllers
to the required states. Compared to randomized chaos testing
approaches that are unaware of cluster state transitions, Sieve
can precisely force specific bug-triggering state transitions
and consistently reproduce bugs. Furthermore, unlike prior
art [32, 55, 87], Sieve is not based on an expert’s hypotheses
about vulnerable regions in the code under test.

A few prior tools can, in principle, expose some bugs found
by Sieve. For example, concurrency-testing tools [61, 64, 65,
88] may expose bugs triggered by unobserved states (which
in essence occur due to reordering of events). Similarly, tools
that check for crash safety [22, 32, 55, 67] could expose bugs
caused by the intermediate states. Finally, tools that inject
network partitions [3], with expert guidance, could find some
bugs caused by the stale-state pattern, i.e., a partition might
force a controller to talk to a lagging API server (after talking
to an up-to-date one). In contrast to these tools, Sieve does not
target one class of bugs. Through exhaustive state perturba-
tions, Sieve finds many kinds of bugs, essentially combining
the power of prior targeted tools. Further, the chances that
prior tools will find the bugs Sieve does are small, as they lack
the context required to efficiently drive controllers to their
buggy corners (e.g., a network-partition injector is unlikely
to reliably orchestrate time-travel bugs).
Model checking. Sieve bears similarities to implementation-
level model checking [40, 50, 54, 56, 61, 85, 86], in that we
drive an unmodified implementation to a range of states to
find bugs. Unlike model checking, Sieve does not seek to
exhaustively cover the controller’s state space. It instead exe-
cutes developer-supplied test cases and exhaustively perturbs
these test cases according to some fault patterns. Additionally,
model checkers typically rely on a specification for correct
behavior. While Sieve intentionally does not require hand-
crafted specifications, it leans on reference traces as a partial
specification of expected correct behavior.
Automation and ease-of-use. Sieve treats automation and
ease-of-use as first-class design goals. Our automation is pri-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    155



marily enabled by state-centric interfaces, which Sieve uses to
produce perturbed states. Prior work has leveraged similar in-
terface boundaries (e.g., the system-call interface [36,67]), en-
abling a general scheme to test multiple applications. For ease
of use, Sieve does not require formal specifications [28,33,39],
special test input [3, 24], code modifications [34, 61, 65],
or whitebox analysis [54]. It also uses differential oracles
to avoid the additional effort to supply domain-specific or-
acles [3, 22, 39]. However, Sieve’s efficacy can be further
improved with such expert guidance.

9 Conclusion
We present Sieve, the first automatic reliability testing

technique for cluster management controllers. We find that
Sieve is effective and practical. Sieve’s usability and repro-
ducibility play a critical role in understanding, debugging,
and fixing reliability bugs. Sieve’s testing technique is gen-
eral and easy to extend – it separates the policy (how to per-
turb a controller’s view of state) from mechanisms (how to
realize perturbations). Hence, we are able to use the tech-
nique to detect a wide range of bugs without brittle heuristics,
specifications or hypotheses. Our goal is to make Sieve a
part-and-parcel of every controller developers’ toolkit, and
to harden the growing number of controllers that power to-
day’s data centers. We have made Sieve publicly available at
https://github.com/sieve-project/sieve.

Acknowledgement
We thank the anonymous reviewers and our shepherd, Ran-

jita Bhagwan, for their insightful comments. We thank Mar-
cos Aguilera, Sujata Banerjee, Mihai Budiu, Jon Howell, Rob
Johnson, Matthew Lentz, Darko Marinov, Davanum Srinivas,
Chaitanya Bhandari, Yinfang Chen, Lilia Tang, and Shuai
Wang for valuable feedback and discussions that helped shape
this work. We thank all the controller developers who engaged
with us and reviewed our reports and patches. This work was
funded in part by NSF SHF-1816615, CNS-2130560, CNS-
2145295, and a VMware Research Gift.

References
[1] Chaos mesh — a solution for system resiliency on ku-

bernetes. https://dzone.com/articles/chaos-mesh-a-
chaos-engineering-solution-for-system, 2020.

[2] Chaoskube: chaoskube periodically kills random pods in
your kubernetes cluster. https://github.com/linki/
chaoskube, 2020.

[3] Jepsen. https://jepsen.io/, 2020.

[4] Kubemonkey: An implementation of netflix’s chaos monkey
for kubernetes clusters. https://github.com/asobti/kube-
monkey, 2020.

[5] Pumba: Chaos testing, network emulation, and stress test-
ing tool for containers. https://github.com/alexei-led/
pumba, 2020.

[6] API Server Tracing. https://github.com/kubernetes/
kubernetes/pull/94942, 2021.

[7] Controllers and Reconciliation. https://cluster-
api.sigs.k8s.io/developer/providers/implementers-
guide/controllers_and_reconciliation.html, 2021.

[8] Decorated Syntax Tree. https://github.com/dave/dst,
2021.

[9] How finalizers work. https://kubernetes.io/
docs/concepts/overview/working-with-objects/
finalizers/#how-finalizers-work, 2021.

[10] kind: Kubernetes IN Docker - local clusters for testing Kuber-
netes. https://kind.sigs.k8s.io/, 2021.

[11] Kubernetes Components. https://kubernetes.io/docs/
concepts/overview/components/, 2021.

[12] Kubernetes Operators. https://kubernetes.io/docs/
concepts/extend-kubernetes/operator/, 2021.

[13] kubernetes-sigs/controller-runtime. https://github.com/
kubernetes-sigs/controller-runtime, 2021.

[14] kubernetes/client-go. https://github.com/kubernetes/
client-go, 2021.

[15] Open Virtual Networking. https://github.com/ovn-org/
ovn, 2021.

[16] Open vSwitch: Production Quality, Multilayer Open Virtual
Switch. https://www.openvswitch.org/, 2021.

[17] OpenShift: The developer and operations friendly Kubernetes
distro. https://github.com/openshift, 2021.

[18] Resource versions. https://kubernetes.io/docs/
reference/using-api/api-concepts/#resource-
versions, 2021.

[19] VMware NSX-T. https://docs.vmware.com/en/VMware-
NSX-T-Data-Center/index.html, 2021.

[20] vSphere: Unified Management for Containers and VMs.
https://www.vmware.com/products/vsphere.html,
2021.

[21] What is a Level Based API. https://book-v1.book.
kubebuilder.io/basics/what_is_a_controller.html,
2021.

[22] ALAGAPPAN, R., GANESAN, A., PATEL, Y., PILLAI, T. S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Correlated Crash Vulnerabilities. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’16) (Nov. 2016).

[23] ALPAR, A. Using Finalizers to Control Deletion.
https://kubernetes.io/blog/2021/05/14/using-
finalizers-to-control-deletion/, May 2021.

[24] ALQURAAN, A., TAKRURI, H., ALFATAFTA, M., AND AL-
KISWANY, S. An Analysis of Network-Partitioning Failures
in Cloud Systems. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI’18) (Oct. 2018).

156    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/sieve-project/sieve
https://dzone.com/articles/chaos-mesh-a-chaos-engineering-solution-for-system
https://dzone.com/articles/chaos-mesh-a-chaos-engineering-solution-for-system
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://jepsen.io/
https://github.com/asobti/kube-monkey
https://github.com/asobti/kube-monkey
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/kubernetes/kubernetes/pull/94942
https://github.com/kubernetes/kubernetes/pull/94942
https://cluster-api.sigs.k8s.io/developer/providers/implementers-guide/controllers_and_reconciliation.html
https://cluster-api.sigs.k8s.io/developer/providers/implementers-guide/controllers_and_reconciliation.html
https://cluster-api.sigs.k8s.io/developer/providers/implementers-guide/controllers_and_reconciliation.html
https://github.com/dave/dst
https://kubernetes.io/docs/concepts/overview/working-with-objects/finalizers/#how-finalizers-work
https://kubernetes.io/docs/concepts/overview/working-with-objects/finalizers/#how-finalizers-work
https://kubernetes.io/docs/concepts/overview/working-with-objects/finalizers/#how-finalizers-work
https://kind.sigs.k8s.io/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://github.com/kubernetes-sigs/controller-runtime
https://github.com/kubernetes-sigs/controller-runtime
https://github.com/kubernetes/client-go
https://github.com/kubernetes/client-go
https://github.com/ovn-org/ovn
https://github.com/ovn-org/ovn
https://www.openvswitch.org/
https://github.com/openshift
https://kubernetes.io/docs/reference/using-api/api-concepts/#resource-versions
https://kubernetes.io/docs/reference/using-api/api-concepts/#resource-versions
https://kubernetes.io/docs/reference/using-api/api-concepts/#resource-versions
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/index.html
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/index.html
https://www.vmware.com/products/vsphere.html
https://book-v1.book.kubebuilder.io/basics/what_is_a_controller.html
https://book-v1.book.kubebuilder.io/basics/what_is_a_controller.html
https://kubernetes.io/blog/2021/05/14/using-finalizers-to-control-deletion/
https://kubernetes.io/blog/2021/05/14/using-finalizers-to-control-deletion/


[25] BASIRI, A., BEHNAM, N., DE ROOIJ, R., HOCHSTEIN, L.,
KOSEWSKI, L., REYNOLDS, J., AND ROSENTHAL, C. Chaos
Engineering. IEEE Software 33, 3 (Mar. 2016), 35–41.

[26] BROOKER, M. The Fundamental Mechanism of Scal-
ing. http://brooker.co.za/blog/2021/01/22/cloud-
scale.html, 2020.

[27] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E.,
AND WILKES, J. Borg, Omega, and Kubernetes. Communica-
tions of the ACM 59, 5 (May 2016), 50–57.

[28] CANINI, M., VENZANO, D., PEREŠÍNI, P., KOSTIĆ, D., AND

REXFORD, J. A NICE Way to Test OpenFlow Applications.
In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI’12) (Apr. 2012).

[29] CASSANDRA-OPERATOR-398. [BUG] Reconcilation fails to
delete PVCs if missing a deletion timestamp of the Cassan-
dra pod. https://github.com/instaclustr/cassandra-
operator/issues/398, 2021.

[30] CASSKOP-370. [BUG] Casskop fails to clean up
PVCs and refuses to handle user requests after crash
and restart. https://github.com/Orange-OpenSource/
casskop/issues/370, 2021.

[31] CHEKRYGIN, I. Keep the Space Shuttle Flying: Writing Ro-
bust Operators. In KubeCon Europe (May 2019).

[32] CHEN, H., DOU, W., WANG, D., AND QIN, F. CoFI:
Consistency-Guided Fault Injection for Cloud Systems. In
Proceedings of the 35th ACM/IEEE International Conference
on Automated Software Engineering (ASE’20) (Sept. 2020).

[33] DELIGIANNIS, P., MCCUTCHEN, M., THOMSON, P., CHEN,
S., DONALDSON, A. F., ERICKSON, J., HUANG, C., LAL, A.,
MUDDULURU, R., QADEER, S., AND SCHULTE, W. Uncover-
ing Bugs in Distributed Storage Systems during Testing (not in
Production!). In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST’16) (Feb. 2016).

[34] DRĂGOI, C., ENEA, C., OZKAN, B. K., MAJUMDAR, R.,
AND NIKSIC, F. Testing Consensus Implementations Using
Communication Closure. In Proceedings of 2020 ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’20) (Nov. 2020).

[35] GANESAN, A., ALAGAPPAN, R., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Redundancy Does Not Im-
ply Fault Tolerance: Analysis of Distributed Storage Reac-
tions to Single Errors and Corruptions. In Proceedings of the
15th USENIX Conference on File and Storage Technologies
(FAST’17) (Feb. 2017).

[36] GONG, S., ALTINBÜKEN, D., FONSECA, P., AND MANIATIS,
P. Snowboard: Finding Kernel Concurrency Bugs through
Systematic Inter-Thread Communication Analysis. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP’21) (Oct. 2021).

[37] GUHA, A., REITBLATT, M., AND FOSTER, N. Machine-
Verified Network Controllers. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’13) (June 2013).

[38] GUILLOUX, S. Writing a Kubernetes Operator: the Hard Parts.
In KubeCon North America (Nov. 2019).

[39] GUNAWI, H. S., DO, T., JOSHI, P., ALVARO, P., HELLER-
STEIN, J. M., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., SEN, K., AND BORTHAKUR, D. Fate and Destini: A
Framework for Cloud Recovery Testing. In Proceedings of the
8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’11) (Mar. 2011).

[40] GUO, H., WU, M., ZHOU, L., HU, G., YANG, J., AND

ZHANG, L. Practical Software Model Checking via Dynamic
Interface Reduction. In Proceedings of the 23rd ACM Sympo-
sium on Operating Systems Principles (SOSP’11) (Oct. 2011).

[41] HAASE, S. How an Operator Becomes the Hero of the Edge.
In OperatorCon (May 2019).

[42] HALL, C. AWS, Google, Microsoft, Red Hat’s New
Registry to Act as Clearing House for Kubernetes Opera-
tors. https://www.datacenterknowledge.com/open-
source/aws-google-microsoft-red-hats-new-
registry-act-clearing-house-kubernetes-operators,
Mar. 2019.

[43] K8SPSMDB-430. [BUG] Stale deletion timestamps lead
to undesired statefulset and PVC deletion. https://jira.
percona.com/browse/K8SPSMDB-430, 2021.

[44] K8SPSMDB-433. [BUG] Sharding stateful set gets mis-
takenly deleted when reading stale field values. https:
//jira.percona.com/browse/K8SPSMDB-433, 2021.

[45] K8SPSMDB-434. [BUG] Nil pointer dereference when re-
configuring spec.sharding.enabled. https://jira.percona.
com/browse/K8SPSMDB-434, 2021.

[46] K8SPSMDB-578. [BUG] Failure of creating SSL-internal
certificates when the controller crashes and restarts at some
particular point. https://jira.percona.com/browse/
K8SPSMDB-578, 2021.

[47] K8SPXC-725. [BUG] HAproxy stateful set and services get
mistakenly deleted when reading stale spec.haproxy.enabled.
https://jira.percona.com/browse/K8SPXC-725, 2021.

[48] K8SPXC-896. [BUG] The controller fails to set up SSL-
internal certificates if a crash happens at some particular point.
https://jira.percona.com/browse/K8SPXC-896, 2021.

[49] K8SSAND-559. [BUG] PVCs can be deleted mistakenly
when reading stale deletion timestamp information. https://
k8ssandra.atlassian.net/browse/K8SSAND-559, 2021.

[50] KILLIAN, C., ANDERSON, J. W., JHALA, R., AND VAHDAT,
A. Life, Death, and the Critical Transition: Finding Liveness
Bugs in Systems Code. In Proceedings of the 4th USENIX
Conference on Networked Systems Design and Implementation
(NSDI’07) (Apr. 2007).

[51] KUMAR, H., AND ŠAFRÁNEK, J. Storage on Kubernetes -
Learning From Failures. In KubeCon North America (Nov.
2019).

[52] LAGRESLE, M. Moving to Kubernetes: the Bad and the Ugly.
In ContainerDays (June 2019).

[53] LANDER, R. Kubernetes Operators: Should You Use
Them? https://tanzu.vmware.com/developer/blog/
kubernetes-operators-should-you-use-them/, July
2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    157

http://brooker.co.za/blog/2021/01/22/cloud-scale.html
http://brooker.co.za/blog/2021/01/22/cloud-scale.html
https://github.com/instaclustr/cassandra-operator/issues/398
https://github.com/instaclustr/cassandra-operator/issues/398
https://github.com/Orange-OpenSource/casskop/issues/370
https://github.com/Orange-OpenSource/casskop/issues/370
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://jira.percona.com/browse/K8SPSMDB-430
https://jira.percona.com/browse/K8SPSMDB-430
https://jira.percona.com/browse/K8SPSMDB-433
https://jira.percona.com/browse/K8SPSMDB-433
https://jira.percona.com/browse/K8SPSMDB-434
https://jira.percona.com/browse/K8SPSMDB-434
https://jira.percona.com/browse/K8SPSMDB-578
https://jira.percona.com/browse/K8SPSMDB-578
https://jira.percona.com/browse/K8SPXC-725
https://jira.percona.com/browse/K8SPXC-896
https://k8ssandra.atlassian.net/browse/K8SSAND-559
https://k8ssandra.atlassian.net/browse/K8SSAND-559
https://tanzu.vmware.com/developer/blog/kubernetes-operators-should-you-use-them/
https://tanzu.vmware.com/developer/blog/kubernetes-operators-should-you-use-them/


[54] LEESATAPORNWONGSA, T., HAO, M., JOSHI, P., LUKMAN,
J. F., AND GUNAWI, H. S. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems.
In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14) (Oct. 2014).

[55] LU, J., LIU, C., LI, L., FENG, X., TAN, F., YANG, J., AND

YOU, L. CrashTuner: Detecting Crash-Recovery Bugs in
Cloud Systems via Meta-Info Analysis. In Proceedings of
the 26th ACM Symposium on Operating System Principles
(SOSP’19) (Oct. 2019).

[56] LUKMAN, J. F., KE, H., STUARDO, C. A., SUMINTO, R. O.,
KURNIAWAN, D. H., SIMON, D., PRIAMBADA, S., TIAN, C.,
YE, F., LEESATAPORNWONGSA, T., GUPTA, A., LU, S., AND

GUNAWI, H. S. FlyMC: Highly Scalable Testing of Complex
Interleavings in Distributed Systems. In Proceedings of the
14th EuroSys Conference 2019 (EuroSys’19) (Mar. 2019).

[57] MACCÁRTHAIGH, C. PID loops and the art of keeping
systems stable. https://www.infoq.com/presentations/
pid-loops/, June 2019.

[58] MACE, J., ROELKE, R., AND FONSECA, R. Pivot Tracing: Dy-
namic Causal Monitoring for Distributed Systems. In Proceed-
ings of the 25th Symposium on Operating Systems Principles
(SOSP’15) (Oct. 2015).

[59] MAJUMDAR, R., AND NIKSIC, F. Why is Random Testing
Effective for Partition Tolerance Bugs? In Proceedings of the
45th ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL’18) (Jan. 2018).

[60] MUSAJI, M. Why Operators are essential for Kubernetes.
https://www.redhat.com/en/blog/why-operators-are-
essential-kubernetes, Apr. 2021.

[61] MUSUVATHI, M., QADEER, S., AND BALL, T. CHESS: A
Systematic Testing Tool for Concurrent Software. Tech. Rep.
MSR-TR-2007-149, November 2007.

[62] NIFIKOP-49. [BUG] NiFi configuration cannot be reloaded
if the controller crashes and restarts in the middle of a rec-
onciliation. https://github.com/konpyutaika/nifikop/
issues/49, 2021.

[63] NIFIKOP-79. [BUG] Nifikop fails to scale down NiFi cluster
due to a crash in the middle of reconcileNifiPod. https://
github.com/konpyutaika/nifikop/issues/79, 2022.

[64] OZKAN, B. K., MAJUMDAR, R., NIKSIC, F., BEFROUEI,
M. T., AND WEISSENBACHER, G. Randomized Testing of
Distributed Systems with Probabilistic Guarantees. In Proceed-
ings of 2018 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’18) (Nov. 2018).

[65] OZKAN, B. K., MAJUMDAR, R., AND ORAEE, S. Trace
Aware Random Testing for Distributed Systems. In Proceed-
ings of 2019 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’19) (Oct. 2019).

[66] PERCONA DISTRIBUTION FOR MONGODB OPERATOR

DOCUMENTATION. Transport Layer Security (TLS).
https://www.percona.com/doc/kubernetes-operator-
for-psmongodb/TLS.html, 2021.

[67] PILLAI, T. S., CHIDAMBARAM, V., ALAGAPPAN, R., AL-
KISWANY, S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-consistent Applications.
In Proceedings of the 11th Symposium on Operating Systems
Design and Implementation (OSDI’14) (Oct. 2014).

[68] PIPES, J., HAUSENBLAS, M., AND TABER, N. In-
troducing the AWS Controllers for Kubernetes (ACK).
https://aws.amazon.com/cn/blogs/containers/aws-
controllers-for-kubernetes-ack/, Aug. 2020.

[69] RABBITMQ-OPERATOR-648. [BUG] Reading stale Rab-
bitMQ cluster information leads to unexpected StatefulSet dele-
tion. https://github.com/rabbitmq/cluster-operator/
issues/648, 2021.

[70] RABBITMQ-OPERATOR-782. [BUG] PVC expansion fails
if the controller crashes in the middle of a reconcilia-
tion. https://github.com/rabbitmq/cluster-operator/
issues/782, 2021.

[71] RATIS, P. Lessons Learned using the Operator Pattern to build
a Kubernetes Platform. In USENIX SREcon (Oct. 2021).

[72] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M.,
AND WILKES, J. Omega: Flexible, Scalable Schedulers for
Large Compute Clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems (EuroSys’13) (Apr.
2013).

[73] SCOTT, C., WUNDSAM, A., RAGHAVAN, B., PANDA, A., OR,
A., LAI, J., HUANG, E., LIU, Z., EL-HASSANY, A., WHIT-
LOCK, S., ACHARYA, H., ZARIFIS, K., AND SHENKER, S.
Troubleshooting Blackbox SDN Control Software with Min-
imal Causal Sequences. In Proceedings of the 2014 ACM
SIGCOMM Conference (SIGCOMM’14) (Aug. 2014).

[74] SOSA, C., AND BHATIA, P. Application management made
easier with Kubernetes Operators on GCP Marketplace. https:
//cloud.google.com/blog/products/containers-
kubernetes/application-management-made-easier-
with-kubernete-operators-on-gcp-marketplace, May
2019.

[75] SUN, X., CHENG, R., CHEN, J., ANG, E., LEGUNSEN, O.,
AND XU, T. Testing Configuration Changes in Context to Pre-
vent Production Failures. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’20) (Nov. 2020).

[76] SUN, X., SURESH, L., GANESAN, A., ALAGAPPAN, R.,
GASCH, M., TANG, L., AND XU, T. Reasoning about Modern
Datacenter Infrastructures Using Partial Histories. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems
(HotOS’21) (June 2021).

[77] TANG, C., YU, K., VEERARAGHAVAN, K., KALDOR, J.,
MICHELSON, S., KOOBURAT, T., ANBUDURAI, A., CLARK,
M., GOGIA, K., CHENG, L., CHRISTENSEN, B., GARTRELL,
A., KHUTORNENKO, M., KULKARNI, S., PAWLOWSKI, M.,
PELKONEN, T., RODRIGUES, A., TIBREWAL, R., VENKATE-
SAN, V., AND ZHANG, P. Twine: A Unified Cluster Manage-
ment System for Shared Infrastructure. In Proceedings of the
14th USENIX Conference on Operating Systems Design and
Implementation (OSDI’20) (Nov. 2020).

158    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.infoq.com/presentations/pid-loops/
https://www.infoq.com/presentations/pid-loops/
https://www.redhat.com/en/blog/why-operators-are-essential-kubernetes
https://www.redhat.com/en/blog/why-operators-are-essential-kubernetes
https://github.com/konpyutaika/nifikop/issues/49
https://github.com/konpyutaika/nifikop/issues/49
https://github.com/konpyutaika/nifikop/issues/79
https://github.com/konpyutaika/nifikop/issues/79
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/TLS.html
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/TLS.html
https://aws.amazon.com/cn/blogs/containers/aws-controllers-for-kubernetes-ack/
https://aws.amazon.com/cn/blogs/containers/aws-controllers-for-kubernetes-ack/
https://github.com/rabbitmq/cluster-operator/issues/648
https://github.com/rabbitmq/cluster-operator/issues/648
https://github.com/rabbitmq/cluster-operator/issues/782
https://github.com/rabbitmq/cluster-operator/issues/782
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace


[78] TANG, Z., LI, X., AND GUO, F. Demystifying
Kubernetes as a service – How Alibaba cloud
manages 10,000s of Kubernetes clusters. https:
//www.cncf.io/blog/2019/12/12/demystifying-
kubernetes-as-a-service-how-does-alibaba-cloud-
manage-10000s-of-kubernetes-clusters/, Dec. 2019.

[79] TSEITLIN, A. The Antifragile Organization. Communications
of the ACM 56, 8 (Aug. 2013), 40–44.

[80] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER,
D., TUNE, E., AND WILKES, J. Large-Scale Cluster Man-
agement at Google with Borg. In Proceedings of the 10th Eu-
ropean Conference on Computer Systems (EuroSys’15) (Apr.
2015).

[81] VMWARE. Introducing vSphere Lifecycle Manage-
ment (vLCM). https://core.vmware.com/resource/
introducing-vsphere-lifecycle-management-
vlcm#section1.

[82] VMWARE. What is intent-based networking (IBN)?
https://www.vmware.com/topics/glossary/content/
intent-based-networking.html.

[83] XU, L., HUANG, J., HONG, S., ZHANG, J., AND GU, G. At-
tacking the Brain: Races in the SDN Control Plane. In Proceed-
ings of the 26th USENIX Conference on Security Symposium
(SEC’17) (Aug. 2017).

[84] XU, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND

PASUPATHY, S. Early Detection of Configuration Errors to
Reduce Failure Damage. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’16) (Nov. 2016).

[85] YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUN-
CAK, V. CrystalBall: Predicting and Preventing Inconsisten-

cies in Deployed Distributed Systems. In Proceedings of the
6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’09) (Apr. 2009).

[86] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H.,
YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. MODIST:
Transparent Model Checking of Unmodified Distributed Sys-
tems. In Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI’09) (Apr.
2009).

[87] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G., ZHAO,
X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Simple Testing
Can Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-intensive Systems. In Proceedings
of the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI’14) (Oct. 2014).

[88] YUAN, X., AND YANG, J. Effective Concurrency Testing
for Distributed Systems. In Proceedings of the 25th Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS’20) (Mar. 2020).

[89] ZHANG, Y., YANG, J., JIN, Z., SETHI, U., RODRIGUES, K.,
LU, S., AND YUAN, D. Understanding and Detecting Software
Upgrade Failures in Distributed Systems. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP ’21) (Oct. 2021).

[90] ZOOKEEPER-OPERATOR-314. [BUG] Reading stale
ZooKeeper cluster status can lead to undesired pod and
PVC deletion. https://github.com/pravega/zookeeper-
operator/issues/314, 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    159

https://www.cncf.io/blog/2019/12/12/demystifying-kubernetes-as-a-service-how-does-alibaba-cloud-manage-10000s-of-kubernetes-clusters/
https://www.cncf.io/blog/2019/12/12/demystifying-kubernetes-as-a-service-how-does-alibaba-cloud-manage-10000s-of-kubernetes-clusters/
https://www.cncf.io/blog/2019/12/12/demystifying-kubernetes-as-a-service-how-does-alibaba-cloud-manage-10000s-of-kubernetes-clusters/
https://www.cncf.io/blog/2019/12/12/demystifying-kubernetes-as-a-service-how-does-alibaba-cloud-manage-10000s-of-kubernetes-clusters/
https://core.vmware.com/resource/introducing-vsphere-lifecycle-management-vlcm#section1
https://core.vmware.com/resource/introducing-vsphere-lifecycle-management-vlcm#section1
https://core.vmware.com/resource/introducing-vsphere-lifecycle-management-vlcm#section1
https://www.vmware.com/topics/glossary/content/intent-based-networking.html
https://www.vmware.com/topics/glossary/content/intent-based-networking.html
https://github.com/pravega/zookeeper-operator/issues/314
https://github.com/pravega/zookeeper-operator/issues/314




ListDB: Union of Write-Ahead Logs and Persistent SkipLists
for Incremental Checkpointing on Persistent Memory

Wonbae Kim† Chanyeol Park§,¶ Dongui Kim§,£ Hyeongjun Park§

Young-ri Choi† Alan Sussman‡ Beomseok Nam§

UNIST† Naver¶ Line£ University of Maryland, College Park‡ Sungkyunkwan University§

Abstract
Due to the latency difference between DRAM and non-

volatile main memory (NVMM) and the limited capacity
of DRAM, incoming writes are often stalled in LSM tree-
based key-value stores. This paper presents ListDB, a write-
optimized key-value store for NVMM to overcome the gap
between DRAM and NVMM write latencies and thereby,
resolve the write stall problem. The contribution of ListDB
consists of three novel techniques: (i) byte-addressable Index-
Unified Logging, which incrementally converts write-ahead
logs into SkipLists, (ii) Braided SkipList, a simple NUMA-
aware SkipList that effectively reduces the NUMA effects
of NVMM, and (iii) Zipper Compaction, which moves down
the LSM-tree levels without copying key-value objects, but
by merging SkipLists in place without blocking concurrent
reads. Using the three techniques, ListDB makes background
compaction fast enough to resolve the infamous write stall
problem and shows 1.6x and 25x higher write throughputs
than PACTree and Intel Pmem-RocksDB, respectively.

1 Introduction
Non-Volatile Main Memory (NVMM) is a new tier in the

memory/storage hierarchy. NVMM has latency comparable
to DRAM, but ensures non-volatility of data, similarly to sec-
ondary storage. Because NVMM is installed in the memory
slot, it is byte-addressable and operates at memory bus speeds.

In order to locate and retrieve data from large datasets
in NVMM, an efficient persistent index that takes into ac-
count the characteristics of NVMM is required. In the past
few years, various NVMM-only persistent indexing struc-
tures [11,13,24,35,45,49,56,63] and hybrid DRAM+NVMM
persistent indexing structures [38, 40, 49, 63] have been pro-
posed. In addition, several key-value stores that manage
large datasets using such persistent indexes and background
worker threads have been developed [12, 29, 30, 57, 60].
While NVMM-only indexing structures such as Fast and Fair
B+tree [24], CCEH [45], and PACTree [32] provide orders
of magnitude higher performance than their disk-based coun-
terparts, their performance is still lower than a DRAM index

because commercial NVMM products, e.g., Intel’s Optane
DC Persistent Memory Module, a.k.a., DCPMM [26], fall
short of the performance of DRAM. Specifically, DCPMM
has (i) latency higher than DRAM, (ii) bandwidth lower than
DRAM, (iii) high sensitivity to NUMA effects, and (iv) a
larger media access granularity (i.e., 256-byte XPLine) [62],
which transforms a small write into a larger read-modify-write
operation.

To benefit from DRAM performance and avoid the short-
comings of NVMM, the hybrid DRAM+NVMM indexing
structures and key-value stores proposed in previous stud-
ies [12,49,57,60] place the complexity of indexing in volatile
DRAM. In this work, we question whether such a hybrid
approach that ignores the byte-addressability, keeps the en-
tire index in DRAM, and uses NVMM only as log space is
desirable, because it has two major limitations. First, the ca-
pacity of DRAM is small. If a dataset’s index does not fit in
small DRAM, or if DRAM is shared with the working sets
of other processes, the existing hybrid DRAM+NVMM ap-
proaches may suffer from memory swapping of large indexes.
Second, a volatile DRAM index needs to be reconstructed
from scratch when recovering from a system failure. If a large
number of key-value objects are stored without a persistent in-
dex that can survive system crashes, the recovery time can be
significant. To improve the recovery performance, a volatile
index can be periodically checkpointed [12]. However, such a
periodic synchronous checkpointing results in very high tail
latency because it blocks concurrent writes.

We advocate asynchronous incremental checkpointing,
merging small, high-performance DRAM indexes into a per-
sistent index in the background for data recovery. ListDB is a
write-optimized LSM (log-structured merge) tree-based key-
value store for NVMM. ListDB achieves high performance
comparable to DRAM indexes, and prevents a DRAM in-
dex from growing indefinitely by flushing to NVMM at high
throughput exceeding that of a DRAM index. ListDB buffers
bulk insertions in a small DRAM index, and runs background
compaction threads to incrementally checkpoint the buffered
writes to NVMM without data copy. Instead, ListDB restruc-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    161



tures log entries as a SkipList rather than flushing the entire
volatile index to NVMM. Simultaneously, such SkipLists are
merged in place, reducing NUMA effects, without blocking
concurrent read queries.

Specifically, ListDB proposes the following three novel
techniques - Index-Unified Logging, Zipper Compaction, and
Braided SkipList. Our contributions are as follows.

• Fast Write Buffer Flush: ListDB unifies the write-ahead
log with SkipList. Using Index-Unified Logging (IUL),
ListDB writes each key-value object to NVMM only once,
as a log entry. Taking advantage of NVMM’s byte address-
ability, IUL converts a log entry into a SkipList element
in a lazy manner, which masks the logging and MemTable
flush overhead. Therefore, it makes the MemTable flush
throughput higher than the write throughput of the DRAM
index, thus resolving the write stall problem.

• Reducing NUMA Effects: Braided SkipList effectively re-
duces the number of remote NUMA node accesses by mak-
ing the upper layer pointers point only to the SkipList ele-
ments on the same NUMA node.

• Fast Compaction with In-Place Merge-Sort: Zipper
compaction merge-sorts two SkipLists in-place without
blocking read operations. By avoiding copy, Zipper com-
paction alleviates the write amplification [21, 41, 53] prob-
lem and reduces the number of SkipLists fast and efficiently
to improve read and recovery performance.
Our performance study shows that the write performance of

ListDB outperforms state-of-the-art NVMM-based key-value
stores. For read performance, ListDB relies on classic caching
techniques.

The rest of the paper is organized as follows. In Section
2, we present the background and motivation. In Section 3,
we present the design of ListDB. In Section 4, we compare
the performance of ListDB against state-of-the-art key-value
stores. Finally, we conclude the paper in Section 5.

2 Background and Motivation
2.1 Hybrid DRAM+NVMM Key-Value Store

Intel’s Optane DCPMM is much faster than block device
storage. However, its performance is still worse than that of
DRAM in terms of latency, bandwidth, NUMA sensitivity,
and access granularity [62]. Furthermore, byte-addressable
persistency complicates failure-atomicity (i.e., reusability af-
ter a system crash) because the CPU cache replacement mech-
anism may evict dirty cachelines that are not ready to be
persisted. When a system recovers, such prematurely written
cachelines may corrupt data structures. To guarantee failure-
atomicity despite such unexpected cacheline flushes, NVMM-
only data structures carefully order machine instructions using
memory fence instructions and call expensive clflush in-
structions frequently to persist dirty cachelines, which incurs
significant overhead in NVMM [24, 39, 56]. To avoid this,

several hybrid DRAM+NVMM indexing structures and key-
value stores have been proposed. For example, NV-tree [63]
and FP-tree [49] are variants of B+tree that store internal tree
nodes in DRAM and leaf nodes in NVMM. The internal nodes
are lost upon a system crash but can be reconstructed from
persistent leaf nodes. With this approach, writes to internal
nodes do not need to be failure-atomic.

FlatStore [12] takes a rather radical approach, i.e., NVMM
is used only as a log space where key-value objects are ap-
pended in insert order rather than key order, whereas the index
resides in DRAM. Therefore, FlatStore has to reconstruct a
volatile index from persistent log entries after a system crash.
To mitigate the expensive recovery overhead, FlatStore pro-
poses to checkpoint the DRAM index onto NVMM period-
ically. However, a naive synchronous checkpointing, as in
FlatStore, takes a global snapshot while blocking incoming
writes, leading to unacceptably high tail latency.

2.2 Log-Structured Merge Tree
2.2.1 Asynchronous Incremental Checkpointing
A better approach is asynchronous incremental checkpoint-
ing [28], which checkpoints only the difference between
the current checkpoint and the last checkpoint state. Log-
Structured Merge (LSM) tree [47] is a classic index that con-
solidates checkpoint data over time [10, 17, 20, 33, 36, 48, 54].

2.2.2 Write in LSM Tree
An LSM tree buffers multiple write operations in an in-
memory buffer space called MemTable, which sorts key-value
objects using an ordered index such as SkipList [10,17,20,33,
36, 48, 54]. Since a MemTable is volatile, a key-value object
is written to a write-ahead log (WAL) for crash consistency
before it is inserted into the MemTable. If the MemTable size
exceeds a certain threshold, it is marked as immutable and a
new MemTable is created so that the new MemTable can serve
incoming clients’ requests while a background thread trans-
forms the immutable MemTable into a sorted array called
SSTable (Sorted String Table), flushes it to disk, and then
deletes the corresponding log entries. This design leverages
the high performance of DRAM for random writes and the
high sequential write bandwidth of block devices.

The key range of a MemTable is not disjoint with those
of SSTables on disk. If a large number of MemTables are
converted into SSTables and the overlap between SSTa-
bles increases, background threads merge-sort them to in-
crementally construct fewer, eventually into one large sorted
array for fast search. This process, called compaction, is
the most significant performance bottleneck because the
same key-value object is repeatedly written to new SSTa-
bles [2, 9, 21, 29, 37, 41–43, 46, 53, 55].

2.2.3 Search in LSM Tree
For a read query, an LSM tree looks up a mutable MemTable,
immutable MemTables, and then SSTables from level 0 to

162    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 1: Two-Level LSM Tree without Level 0 Buffer Indexes

the upper levels, i.e., the recently stored objects are searched
first. The search performance of LSM trees is affected by the
degree of overlap between SSTables within and across levels
because a read query searches all SSTables whose key range
overlaps the search key until it finds a matched key. To reduce
the overlap and improve the search performance, compaction
threads merge-sort SSTables despite the high cost. Due to
overlap and multiple levels, the read performance of LSM
trees is worse than B+trees [27]. Nevertheless, LSM trees are
more popular than B+trees in NoSQL systems because simple
caching techniques can improve read performance. However,
improving write performance is not easy.

2.2.4 Side Effect of Write Buffer: Write Stall
The in-memory MemTable is effective in buffering writes.

However, despite buffering write bursts in the MemTable, tail
latency can be very high if the workload is write-intensive
because incoming writes can be blocked by artificial gov-
ernors [31]. For instance, if compaction is slow, immutable
MemTables will not be flushed to storage fast enough and
the number of immutable MemTables will increase. Sim-
ilarly, if SSTables are not merge-sorted quickly, the num-
ber of overlapping SSTables will increase, and search per-
formance will degrade. Most LSM tree-based key-value
stores [10, 17, 20, 33, 36, 48, 54] block clients from inserting
new objects into the MemTable until compaction finishes and
makes space for a new MemTable. This write stall problem
occurs frequently in disk-based LSM tree-based key-value
stores because of the high latency of the disk. If the write
stall problem occurs, the insertion throughput is bounded by
persistent storage performance, failing to benefit from the fast
write buffer (DRAM) performance.

2.2.5 Write Amplification in LSM Trees
2.2.5.1 Multi-Level vs. Two-Level Compaction

As SSTables accumulate in storage, LSM trees perform
compaction to merge-sort SSTables and reduce the overlap.
Compaction is particularly expensive in disk-based key-value
stores because they copy key-value objects between SSTable
files. That is, compaction threads select a set of overlapping
SSTables at level k and another set of SSTables that overlap at
the next level k+1, and merge-sort them to create a new set of
SSTables at level k+1. Such copy-based compaction allows
concurrent read queries to access old SSTables while new
SSTables are being created. However, copy-based compaction
requires the same objects to be repeatedly copied to new

Figure 2: Three-Level LSM Tree with Level 0 Buffer Indexes

SSTables. The number of times a key-value object is copied to
a new file, called write amplification factor, has been reported
to be as high as 40 [41, 53, 55]. The write amplification is
particularly serious if key-value stores use leveled compaction
and a large number of levels [53,55]. The leveled compaction
limits the number of SSTables per level and prevents any
overlap between the SSTables at the same level.

NVMM allows byte-addressable updates. Therefore, there
is an opportunity to avoid write amplification and improve
compaction performance by replacing multiple levels of SSTa-
bles with a high-performance single-level persistent index. In
particular, SLM-DB [29] uses two levels, i.e., MemTables
and a single persistent B+tree in NVMM. Using the two-level
design (shown in Figure 1), MemTables buffer multiple key-
value objects and later insert them into a large persistent index
in ascending order of keys, such that the large persistent index
is traversed only once for multiple writes and it yields a higher
write throughput than a single persistent index.

2.2.5.2 Decoupling Merge-Sort from Flush

The main problem with the two-level design is that the size
of the persistent index affects the performance of merging
volatile indexes into a persistent index, i.e., it fails to make
write performance independent of NVMM performance. This
is because MemTables are not flushed1 as-is, but merge-sorted
into the large, slow persistent index. Because NVMM has
higher latency than DRAM, merge-sort throughput is much
lower than insert throughput of volatile indexes, especially
when the persistent index is large.

To alleviate this problem, most key-value stores including
LevelDB [36] and RocksDB [54] employ an intermediate
persistent buffer level (level 0, L0) in storage. That is, they
flush MemTables to the intermediate buffer level without do-
ing merge-sort. Figure 2 shows such a three-level design. By
separating merge-sort from flush, MemTables can be flushed
to NVMM faster; the flush throughput becomes independent
of the database size.

A drawback of this design is that it results in a large num-
ber of overlapping SSTables, which hurts search performance.
Given its poor indexing performance, the intermediate per-
sistent buffer level does not appear to be very different from
write-ahead log. Furthermore, key-value objects are written

1To avoid confusion with the cacheline flush instruction (e.g., clflush),
writing a MemTable to NVMM is henceforth referred to as flush, and the
cacheline flush is referred to as persist.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    163



Figure 3: ListDB Architecture

to storage at least twice, i.e., once for WAL and once again
for MemTable flush.

TRIAD [3], WiscKey [41], and FlatStore [12] prevent the
same key-values (or just values) from being repeatedly writ-
ten. TRIAD is particularly inspiring because it considers the
commit log as an unsorted L0 SSTable. To enable efficient
search in the unsorted L0 SSTables (the commit log), TRIAD
creates a small index file for each L0 SSTable. The index
file does not store keys and values, only the offsets for each
object in sorted order of the keys. Although TRIAD reduces
the I/O traffic, each MemTable flush creates an index file and
calls the expensive fsync() to make it durable. However,
given the high overlap between L0 SSTables and also the fact
that L0 SSTables will be quickly merged into L1 SSTables,
it is questionable whether a separate index file for each L0
SSTable should be created and persisted at a very high cost.

2.3 NUMA Effects
NVMM is more sensitive to NUMA effects than DRAM
because of its lower bandwidth (1/6 for writes and 1/3 for
reads) [16,57,62]. As such, state-of-the-art persistent indexes,
such as FAST and FAIR B+tree [24] and CCEH [45] do not
scale with the number of threads due to irregular cacheline
accesses and NUMA effects [32, 57].

To mitigate the NUMA effects, Daase et al. [16] sug-
gest limiting the number of write threads to 4-6 per socket.
Nap [57] hides NUMA effects by overlaying a DRAM index
on top of NVMM-resident indexes such that the DRAM in-
dex can absorb remote NUMA node accesses. However, data
stored in NVMM is already in the memory address space, and
NVMM has latency comparable to DRAM. Therefore, using
DRAM as a fast cache layer over NVMM and copying data
between DRAM and NVMM back and forth can be wasteful.
For example, NVMM file systems such as EXT4-DAX and
NOVA [61] do not use the page cache but directly access
NVMM.

To mitigate NUMA effects in DRAM, various approaches,
including Delegation with hash-based sharding [4, 6, 7, 44]

and Node Replication (NR) [7] methods, have been investi-
gated. In Delegation methods, a designated worker thread is
assigned for all operations on a specific range of keys. There-
fore, client threads have to communicate with worker threads
and delegate operations using message passing. Due to the
significant message passing overhead, Delegation performs
sub-optimal, especially for lightweight tasks such as index-
ing operations [7]. Node Replication (NR) [7] implements a
NUMA-aware shared log, which is used to replay the same
operations for the data structures replicated across NUMA
nodes. However, this consumes memory for replicating the
same data structure across multiple NUMA nodes. Besides,
the performance falters due to cross-node communication, as
the number of NUMA nodes increases [7]. Considering that
the bandwidth of Optane DCPMM is much lower than that
of DRAM [62], replication can aggravate the low bandwidth
problem.

3 Design of ListDB
ListDB is a write-optimized key-value store with an LSM

tree structure that resolves the write stall problem. In this
section, detailed descriptions of ListDB’s key designs are
provided. First, the overall architecture of ListDB is pre-
sented (§3.1). Then, its key designs, i.e., Index-Unified Log-
ging (§3.2), NUMA-aware Braided SkipList (§3.3), in-place
Zipper Compaction (§3.4), lookup cache (§3.5), and recovery
algorithm (§3.6) are presented.

3.1 Three-Level Architecture
Figure 3 shows the three-level architecture of ListDB-

volatile MemTables, and L0 and L1 Persistent MemTables
(PMTables). MemTables and PMTables are essentially the
same SkipLists, but the node structure of PMTable has ad-
ditional metadata that MemTable does not need because
PMTable is a data structure transformed from the write-ahead
log. ListDB uses SkipList as the core data structure for all
levels because it enables byte-addressable in-place merge-sort
and avoids the write amplification problem [21, 41, 53], as
will be presented throughout the paper.

ListDB employs an intermediate persistent buffer level -
L0 (level 0) in NVMM. With level 0, a MemTable is flushed
to NVMM without being merge-sorted, making the flush
throughput independent of the next level persistent index size.
MemTables accumulated at L0 (L0 PMTables) are gradually
merged into the large L1 PMTable by compaction. To man-
age multiple PMTables, ListDB uses a metadata object called
MANIFEST to point to the beginning of each SkipList.

3.2 Index-Unified Logging
ListDB aims to flush MemTables to NVMM without copy-

ing key-value objects. As discussed in Section 2.2.5.2, all
key-value objects in MemTables are already persisted in the
commit log in NVMM [3]. Besides, L0 indexes are known to
have very poor indexing performance due to large overlap.

164    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 4: Index-Unified Log Entry Layout

Figure 5: Index-Unified Logging

3.2.1 Conversion of IUL into SkipList

Index-Unified Logging (IUL) unifies write-ahead log en-
tries and SkipList elements by allocating and writing log
entries in the form of SkipList elements. Figure 4 shows the
structure of an IUL entry, which serves both as a log entry and
as a SkipList element. When a key-value object is inserted
into a MemTable, the object and its metadata (i.e., operation
code op_code and log sequence number LSN) are written and
persisted as a log entry in NVMM with SkipList pointers
initialized to NULL (Algorithm 1). Later, when a compaction
thread flushes its corresponding MemTable from DRAM, the
log entry is converted into a SkipList (L0 PMTable) element,
reusing the key and value stored in the log entry.

The information that L0 PMTable needs, but the log does
not have, is the sorted order of keys, which is managed as
SkipList pointers in MemTables. When converting the log into
an L0 PMTable, the addresses of the corresponding MemTable
elements are simply translated into NVMM addresses, i.e., the
log entry offsets, as shown in Algorithm 2. When the SkipList
pointers in IUL entries are set to NVMM addresses, the IUL
entries become SkipList elements.

Finally, the MANIFEST is updated to validate the new
L0 PMTable and invalidate the immutable MemTable in a
failure-atomic transaction.

3.2.2 MemTable Flush without clflush

When writing SkipList pointers to log entries, there is no
need to call persist instructions (e.g.,clflush) because the
key-value objects are already persistent in the log, and be-
cause the order of keys can be recovered without difficulty
in case of a crash. Instead of explicitly persisting cachelines
for updated pointers, Index-Unified Logging leaves that to
the CPU cache replacement mechanism, i.e., it waits until the
CPU evicts updated pointers from its cache. Through the CPU
cache replacement mechanism, multiple pointer updates to
the same 256-byte XPLine can be buffered and batched. That
is, each 8-byte small write is not eagerly transformed into a
256-byte read-modify-write operation. Not only does it defer
the read-modify-write problem, but also prevents background

Algorithm 1 Put(kvObject)
1: mutex.lock();
2: iul_entry← iul_tail;
3: iul_entry.LSN← GetNextLSN(); /* log sequence number */
4: iul_entry.height← RandomHeight(); /* SkipList element height */
5: iul_tail← iul_tail + sizeof(kvObject) + height∗8 + 8;
6: mutex.unlock();
7: iul_entry.op_code← OP_INSERT; /* operation type (insert, delete) */
8: iul_entry.kvObject← kvObject;
9: iul_entry.next[0..height]← NULL; /* initialize pointers */

10: pmem_persist(iul_entry, sizeof(iul_entry)); /* calls clwb */
11: memTable.Insert((SkipListElement)iul_entry); // classic SkipList insert

Algorithm 2 FlushImmutableMemTable(memTable)
1: element← memTable.head[0].next[0]; // smallest MemTable element
2: while element6=NULL do
3: L0_element← element.iul_address;
4: lookup_cache.Insert(L0_element);
5: for layer← 0; layer < element.height; layer++ do
6: L0_element.next[layer]← element.next[layer].iul_address;
7: /* no need to persist */
8: end for
9: end while

10: new_L0.iul_address← memTable.head[0].next[0].iul_address;
11: new_L0.next←MANIFEST.L0List().GetFront();
12: MANIFEST.L0List().PushFront(new_L0); /* CAS */
13: freeMemTable(memTable);

compaction threads from being affected by the read-modify-
write problem and high NVMM write latency.

3.2.3 Walk-Through Example
Let us walk through MemTable flush illustrated in Figure 5.

Suppose foreground client threads insert keys into the cur-
rently mutable MemTable in the order of 503, 912, and 3.
Each client thread persists the object, its metadata, and NULL
pointers in the log before it commits. Then, a background
thread marks the MemTable as immutable and creates a new
MemTable. Client threads insert two more keys, 716 and 217,
into the new mutable MemTable.

When a background compaction thread flushes the im-
mutable MemTable, i.e., (3, 503, 912), the pointers of each
MemTable element are simply translated into the IUL off-
sets of the corresponding log entries and the NULL pointers
are replaced with the IUL offsets so that the log entries be-
come a SkipList, as shown in Figure 6(a). As described in
Section 3.2.2, the updated pointers in the new L0 PMTable
may remain in the CPU cache and may be lost upon a system
crash, but the pointers are not required for crash consistency.

3.2.4 Checkpointing L0 PMTable
Although the log entries are now converted to L0 PMTable el-
ements, the boundary between logging space and L0 PMTable
space (denoted as a thick dotted line in Figure 6(a)) has not
moved, because it is not guaranteed that the pointers of the
new L0 PMTable are persistent. The boundary can only move
if clflush instructions are explicitly called for the updated
pointers. In our implementation, a background thread per-
sists dirty cachelines for L0 PMTables in batches. This op-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    165



(a) NVMM Layout Before Checkpointing

(b) NVMM Layout After Checkpointing

Figure 6: NVMM Layout of Index-Unified Logging

eration is referred to as checkpointing. Figure 6(b) shows
the NVMM layout after the pointers are explicitly persisted.
Once a PMTable is checkpointed, it is possible to move the
boundary of the logging space to reduce the number of log
entries to recover, as shown in Figure 6(b).
3.2.4.1 Lazy Group Checkpointing

Checkpointing reduces recovery time. However, ListDB
defers checkpointing as much as possible, because calling
clflush instructions is very expensive. Even if L0 PMTables
are not persisted at all, it does not affect crash consistency
because all the elements in all L0 PMTables will be treated
as log entries if the system crashes, and the key order of L0
PMTable elements can be reconstructed from the log.

In our implementation, multiple L0 PMTables are grouped
and dirty cachelines for them are persisted in batches. We call
this lazy group checkpointing. Note that there is a trade-off
between lazy group checkpointing and recovery time. Infre-
quent checkpointing increases the log size and it takes longer
to recover. In contrast, if checkpointing frequency is high,
recovery will be fast, but flush throughput degrades.

Zipper compaction, which will be described in Section 3.4,
persists pointers fast enough to prevent the number of L0
PMTables from increasing. That is, even if IUL does not
persist any L0 PMTable, Zipper compaction persists pointers
fast when merging an L0 PMTable into the L1 PMTable, and
the recovery time of IUL is much shorter than synchronous
checkpointing, as will be shown in Section 4.

3.3 NUMA Effects for SkipList
ListDB employs a NUMA-aware data structure, which is
more scalable and effective in minimizing NUMA intercon-
nect contention than Delegation and Node Replication [7].
3.3.1 NUMA-aware Braided SkipList
A SkipList has the invariant that the list at each layer2 is a
sorted sub-list of the bottom layer [52]. Unless this invariant

2To avoid confusion with the level of LSM trees, the level of SkipList
will be referred to as layer.

Figure 7: NUMA-aware Braided SkipList

is violated, correct search results are guaranteed because the
upper layer pointers are probabilistic shortcuts, which do not
affect the correctness of search results. However, an upper
layer does not need to be a sub-list of the next layer, as long
as it is a sub-list of the bottom layer. Even if a search does
not find a key closer to the search key in an upper layer, the
search falls back to a lower layer and eventually to the bottom
layer which contains all sorted keys.

The Braided SkipList of ListDB leverages this property to
mitigate NUMA effects in a simple and effective way. Upper
layer pointers ignore SkipList elements in remote NUMA
nodes; i.e., upper layer pointers of each element point to an
element with a larger key in the same NUMA node. Com-
pared to NUMA-oblivious conventional SkipLists, Braided
SkipList reduces the number of remote memory accesses to
1/N, where N is the number of NUMA nodes, as will be shown
in Section 4.

Figure 7 illustrates an example (The upper layers in NUMA
node 1 are illustrated upside down for ease of presentation).
Observe that the second layer pointer of element 3 on NUMA
node 0 points to element 7 on the same NUMA node, instead
of element 5 on NUMA node 1. Nonetheless, a correct search
is guaranteed. For example, suppose a client thread running
on NUMA node 0 searches for element 5. It will follow the
top layer to element 3, then 9. Since 9 is greater, the thread
moves down one layer in element 3, and then the search visits
element 7. Since 7 is greater than 5, the thread moves down
again and follows the bottom layer pointer to element 4. Since
the search key is greater than 4, it follows the bottom layer to
a remote SkipList element 5. The search then completes.

In our implementation of Braided SkipList, a NUMA ID is
embedded in the extra 16 bits of the 64-bit virtual address, as
in pointer swizzling [59], such that it can use 8-byte atomic
instructions instead of expensive PMDK transactions [50]. For
direct reference, Braided SkipList restores the virtual memory
address of a SkipList element by masking the extra 16 bits.

3.4 Zipper Compaction
With byte-addressable NVMM, Zipper compaction merge-
sorts L0 and L1 PMTables in-place by only updating pointers,
but without blocking concurrent read queries. The in-place
merge-sort avoids write amplification, thus it improves the
compaction throughput.

Leveraging the SkipList invariant (§3.3.1), various lock-
free SkipLists have been studied in the literature [22, 23],
and the Java™ SE ConcurrentSkipListMap class has been

166    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



(a) Scan Phase (b) Merge Step 1 (c) Merge Step 2 (d) Merge Step 3,4

(e) Merge Step 5 (f) Merge Step 6 (g) Merge Step 7,8 (h) Compaction Done

Figure 8: Zipper Compaction: Merging SkipLists from Tail to Head

shown to perform well in practice [34]. Zipper compaction
algorithm allows concurrent read operations to access L0
and L1 PMTables while merging them without violating the
invariant of SkipList.

A classic lock-free SkipList avoids locks for multiple writ-
ers. In contrast, ListDB does not perform concurrent writes;
the only writers are the compaction threads, and ListDB coor-
dinates them to avoid write-write conflicts. For parallelism,
multiple compaction threads write to disjoint shards. A shard
is a disjoint key range from an element with the maximum
height to the next element with the maximum height in L1
PMTable. To merge L0 elements into L1, a compaction thread
must acquire a lock on the corresponding shard.

Zipper compaction proceeds in two phases; (i) a forward
scan from head to tail and (ii) a backward merge from tail
to head, hence the name. To guarantee correct search results
without blocking concurrent readers, L0 PMTable elements
are merged into L1 PMTable from tail to head while concur-
rent read operations are traversing them from head to tail.

3.4.1 Scan Phase
In the forward scan phase, a compaction thread traverses L0
and L1 PMTables from head to tail and determines where each
L0 PMTable element should be inserted in the L1 PMTable.
However, in this phase, it does not make any change to the
PMTables but pushes necessary pointer updates on a stack.
The backward merge phase pops the stack to apply and persist
the updates to the L1 PMTable.

The scan phase follows the bottom layer of L0 PMTable.
For each L0 element, it searches the L1 PMTable to find
where to insert the L0 element. For this, it keeps track of
the rightmost element smaller than the current search key
(L0 element) in each layer to avoid repeatedly traversing L1
PMTable. Since keys are sorted in both PMTables, the next
larger key in L0 PMTable can reuse the previous rightmost
elements, and backtrack to the top-layer rightmost element for

the next search. Therefore, the complexity of the scan phase
is O(n0 + logn1) where n0 and n1 are the sizes of L0 and L1
PMTables, respectively.

Algorithm 3 shows the pseudo-code of Zipper com-
paction. For NUMA-aware Braided SkipLists, Zip-
per compaction requires a two-dimensional array -
rightmost[numa_id][layer] to keep as many rightmost
elements in each layer as the number of NUMA nodes for
Braided SkipList. But, note that a Braided SkipList element
does not need more pointers than a conventional SkipList
element as it embeds NUMA node ID in the 8-byte address.

Figure 8(a) shows an example of Zipper scan. For ease
of presentation, all SkipList elements are assumed to be on
the same NUMA node. The first element A in L0 will be
placed in the first position in L1. Hence, H0 and H1 of the
head element in L1 are the current rightmost pointers that
need to be updated for A. This information is stored on the
stack. Note that A0 and A1 need to point to B, but they are
not pushed onto the stack because B is pointed by the current
rightmost elements that are already pushed on the stack. Each
L0 element is inserted between two L1 elements and only the
previous (i.e., rightmost) element in each layer needs to be
pushed on the stack because the next element can be found
from the previous elements. Next, the scan phase visits the
second element D in L0 and searches L1. Inserting D requires
updating B2, C1, and C0. Again, they are pushed onto the stack.
Finally, it visits the last element E in L0 and searches L1. Note
that L1 PMTable has not changed and the current rightmost
pointers are still B2, C1, and C0. Thus, the scan phase pushes
C1 and C0 on the stack to make them point to E.

3.4.2 Merge Phase
The merge phase applies pointer updates from tail to head.
When a compaction thread pops a pointer update XN → Y
from the stack, the Nth layer pointer in element Y is updated
to the current value of XN . Then, XN is set to the address of Y .

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    167



Algorithm 3 BraidedZipperCompaction(L0SkipList, L1SkipList)
1: LogZipperCompactionBegin(L0SkipList); // micro-logging
2: L0_element← L0SkipList.head[0].next[0]; // smallest L0 element
3: local_numa_id← DecodeNumaId(L0_element); // not always 0
4: for i← 0; i < NumNUMA; i++ do
5: rightmost[i][]← L1SkipList.head[i].next[]; // array copy
6: end for
7: bottom_L1_element← L1SkipList.head[0].next[0];
8: L1_element← L1SkipList.head[local_numa_id]; // local head
9: // I. scan phase: from head to tail

10: while L0_element6=NULL do
11: // NUMA-aware local search for upper layer pointers
12: for layer← L0_element.height−1; layer > 0; layer−− do
13: while L1_element.next[layer] 6= NULL &&

L1_element.next[layer].key < L0_element.key do
14: L1_element← L1_element.next[layer];
15: // update the rightmost for the current layer
16: rightmost[local_numa_id][layer]← L1_element;
17: end while
18: end for
19: // NUMA-oblivious search for bottom-layer pointer, i.e., layer = 0
20: L1_element← bottom_L1_element;
21: <<same while loop with line 13–17 >>
22: // push an array of NUMA local upper-layer pointers and a NUMA-

oblivious bottom layer pointer
23: stack.push(L0_element, rightmost[local_numa_id][]);
24: // fetch the next L0_element and update local NUMA ID
25: L0_element← L0_element.next[0];
26: local_numa_id← DecodeNumaId(L0_element);
27: bottom_L1_element← L1_element;
28: L1_element← rightmost[local_numa_id][L0_element.height−1];
29: end while
30: // II. merge phase: from tail to head
31: while stack is not empty do
32: (L0_element, rightmost2update[])← stack.pop();
33: for layer← 0; layer < L0_element.height; layer++ do
34: // Pop and apply the updates without worries about NUMA IDs
35: L0_element.next[layer]← rightmost2update[layer].next[layer];
36: if layer = 0 then
37: persist(L0_element.next[layer]);
38: end if
39: rightmost2update[layer].next[layer]← L0_element;
40: if layer = 0 then
41: persist(rightmost2update[layer].next[layer]);
42: end if
43: end for
44: second_chance_cache.Insert(L0_element);
45: end while
46: MANIFEST.L0List().PopBack(); /* CAS */
47: LogZipperCompactionDone(L0SkipList); // micro-logging

In the example, shown in Figure 8(b), the compaction thread
pops C0→E and sets E0 to F, which is the current value of C0.
At this point, the upper layer pointer of element E (E1) is not
pointing to element F. However, as described earlier, upper
layer pointers are probabilistic shortcuts, which do not affect
the correctness of search. Therefore, there is no need to update
E0 and E1 atomically. In the next step, shown in Figure 8(c),
the compaction thread sets C0 to the address of E. In the
next step, shown in Figure 8(d), the compaction thread pops
C1→E, sets E1 to F, and makes C1 point to E. Each pointer
update is removed from the stack one by one, and is applied
in order, as shown in Figures 8(e), 8(f), 8(g), and 8(h). Zipper
compaction assumes 8-byte pointer updates are atomic. To

make the updates failure-atomic, it persists each bottom layer
update immediately using memory fence and cacheline flush
instructions. In the final step, the compaction thread deletes
the head element of L0 PMTable from the MANIFEST object,
thus completing compaction.

3.4.3 Lock-Free Search
Zipper compaction does not violate the correctness of concur-
rent search, i.e., a read thread will not miss its target SkipList
element without acquiring a lock. This is because a read
thread accesses PMTables from head to tail and from L0 to
L1, whereas a compaction thread merges them from tail to
head. During Zipper compaction, every element is guaran-
teed to be pointed by at least one head. Consider the example
shown in Figure 8, which shows how a sequence of atomic
store instructions merges the two example SkipLists. Even if
a concurrent read thread accesses the PMTables in any state
shown in Figure 8, it returns a correct result.

The algorithm remains correct even if a read thread is
suspended during compaction thread is making changes to
SkipLists. For example, suppose a read is suspended while
accessing an L0 element. When it resumes, the element might
have been merged into L1. When the read thread wakes up,
it will continue traversing to the tail if it does not find the
search key. Once it reaches the tail, it is done with L0 and
will start searching L1, into which L0 elements have been
merged. Consequently, the read thread might visit the same
elements multiple times, but it will never miss the element it
is searching. Multiple visits might hurt search performance.
To avoid this, a read stops searching the L0 if it detects the
level of the current element is L1.

3.4.4 Updates and Deletes
An update in LSM trees duplicates the same key because
writes are buffered in MemTables and gradually flushed to the
last level. ListDB does not eagerly delete the older version in
L1. Instead, when a compaction thread scans L0 and L1 levels
for Zipper compaction, it marks the older version in L1 obso-
lete. Similarly, a delete in ListDB does not physically delete
an object but inserts a key-delete object into the MemTable.
If an LSM tree physically deletes the most recent version of a
key from MemTables or L0 PMTables, older versions of the
key will come back to life. Zipper compaction places a more
recent key-value or key-delete object before its corresponding
old objects. Therefore, a read query always accesses the more
recent object before older ones, and thus returns a correct
search result.

3.4.5 Fragmentation and Garbage Collection
Using libpmemobj library [50], ListDB allocates and deallo-
cates a memory chunk (e.g., 8 MB) for multiple IUL entries
in PMDK’s failure-atomic transaction so that the number of
calls to expensive PMDK transactions can be reduced. ListDB
deallocates a memory chunk if all elements in the chunk are
marked obsolete or deleted. Note that ListDB does not re-
locate SkipList elements for garbage collection. To address

168    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the lasting fragmentation, a compaction thread may perform
CoW-based garbage collection. We leave this optimization
for our future work.

Memory management for lock-free data structures is a hard
problem because there is no easy way to detect whether deal-
located memory space is still being accessed by concurrent
reads [5, 14, 19]. ListDB employs a simple epoch-based recla-
mation [14]; ListDB does not deallocate memory chunk im-
mediately but waits long enough for short-lived read queries
to finish accessing the deallocated memory chunk. A back-
ground garbage collection thread periodically checks and
reclaims a memory chunk if all objects in the memory chunk
are obsolete or deleted. For obsolete objects, the garbage col-
lection thread checks its newer version’s LSN. If it is also old
enough, it considers the obsolete objects are not accessed by
any reads, removes them from L1 PMTable, and physically
deallocates the memory chunk.

3.4.6 Linearizability
Theorem 1. Zipper compaction is linearizable with a single
writer and multiple readers.

Proof. For some element e, there is a single linearization
point [23] for a writer when its level changes from L0 to L1,
by atomic update of the bottom-layer next pointer. We denote
this linearization point as e.merge_to_L1.

There are two linearization points e.search_L0 and
e.search_L1 for a reader, as it searches L0 and then L1
PMTable in order. Let a→ b if an event a happens before
another event b. There are three cases to consider.

1. e.merge_to_L1→ e.search_L0→ e.search_L1
2. e.search_L0→ e.merge_to_L1→ e.search_L1
3. e.search_L0→ e.search_L1→ e.merge_to_L1
In case 1, e.search_L1 will find e in L1. In case 2,

e.search_L0 will find e in L0. If the search does not stop after
finding e in L0, e.search_L1 will also find e in L1. In case 3,
similarly, e.search_L0 will find e. Since all three cases suc-
ceed in finding e, Zipper compaction is linearizable, meaning
a read always succeeds in finding an element if the element
was inserted by a committed write transaction, regardless of
whether the element is in L0 or L1 PMTable.

3.5 Look-up Cache
ListDB requires that a read query accesses at least two in-

dexes, i.e., a mutable MemTable and L1 PMTable. Therefore,
the read throughput of ListDB is significantly lower than a
highly-optimized persistent B+tree, as we show in Section 4.

To mitigate this problem, ListDB uses a lookup cache in
DRAM. Flushing a MemTable hashes each element into a
fixed-sized static hash table. Unlike disk-based designs, the
lookup cache does not duplicate the element in it, but only
stores its NVMM address because the element in NVMM is
already in the memory address space and its address never
changes. Hence, regardless of the level at which the PMTable
element is present, the lookup cache can locate the PMTable

Algorithm 4 Get(key)
1: iter←MANIFEST.GetTableIterator();
2: table← iter.GetTable(); // get mutable MemTable
3: while table 6= NULL && table.IsPMTable() = false do
4: value← table.Search(key); // SkipList lookup
5: if value 6= NULL then
6: return value; // Found: return value
7: end if
8: table← (++iter).GetTable(); // immutable MemTables
9: end while

10: /* L0 Cache Lookup */
11: cached← lookup_cache.Lookup(key);
12: if cached 6= NULL && cached.GetElement().key = key then
13: return cached.GetElement().value;
14: end if
15: /* L0 Search */
16: while table 6= NULL && table.Level() = 0 do
17: value← table.Search(key); // SkipList lookup
18: if value 6= NULL then
19: return value; // Found: return value
20: end if
21: table← (++iter).GetTable(); // L0 PMTables
22: end while
23: /* L1 Search */
24: rightmost← second_chance_cache.Lookup(key);
25: value← table.SearchFromElement(key, rightmost);
26: if value 6= NULL then
27: return value; // Found: return value
28: end if
29: return NOT_FOUND;

element. SkipList pointers are frequently updated by com-
paction threads in ListDB. By caching immutable addresses,
not mutable content, the lookup cache can avoid frequent
cache invalidation. If a hash collision occurs on a bucket, the
old address is overwritten (i.e., FIFO replacement policy).

ListDB constructs a SkipList in DRAM as a second chance
lookup cache for tall elements evicted from the hash table. The
purpose of the second chance lookup cache is to accelerate
PMTable search. Even if a key is not found in the second
chance cache, a query can start the search from the closest
PMTable element found in the cache. Algorithm 4 shows how
a read query uses the lookup caches. Suppose a read searches
for key 100 but finds element 85 is the closest smaller element
in L1. Then, the search continues from element 85 in L1
PMTable instead of the beginning of L1. ListDB does not use
the second chance lookup cache for L0 search because small
L0 PMTables are merged into L1 fast, and L0 elements are
mostly cached in the lookup hash table, The second chance
lookup cache uses the SIZE replacement policy [58], i.e., it
compares heights and evicts elements with shorter heights.

3.6 Recovery
A system may crash while L0 and L1 PMTables are being

merged by Zipper compaction. To recover from such failures,
a compaction thread performs micro-logging to keep track of
which L0 PMTable is being merged into L1 PMTable. When a
system restarts, ListDB checks the compaction log to redo un-
finished compactions. For redo operations, Zipper compaction
has to check duplicate entries since many entries in the tail of

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    169



Algorithm 5 RecoverDB()
1: ScheduleUnfinishedZipperCompactionJob();
2: curr_table← NULL;
3: while log_iter.Valid() do
4: iul_entry← log_iter.GetIULEntry();
5: table_id← GetTableIdByLSN(iul_entry.LSN);
6: if curr_table = NULL || table_id 6= curr_table.Id() then
7: curr_table←MANIFEST.GetTableById(table_id);
8: curr_table.ResetSkipListHead();
9: end if

10: curr_table.InsertEntry(iul_entry); /* SkipList Insert */
11: log_iter.Next(); /* from old to latest */
12: end while

L0 PMTable can be shared with L1 PMTable.
The recovery algorithm of ListDB, shown in Algorithm 5,

is similar to that of conventional LSM trees. First, a recovery
process locates the boundary of WAL, which is recorded by
compaction threads in the compaction log. Then, it sorts log
entries and restores L0 PMTables. At this point, the system
returns to the normal execution mode and starts processing
clients’ queries. Compaction between L0 and L1 will be done
in the background as normal.

As for the lookup cache, ListDB can process clients’
queries without restoring the cache although the search perfor-
mance will be poor until the cache is populated. By avoiding
the reconstruction of DRAM cache and index, the recovery
performance of ListDB is superior to synchronous checkpoint-
ing [12], as we show in Section 4.

4 Evaluation

4.1 Experimental Setup
Experiments are conducted on a four-socket NUMA server
with Intel Xeon Gold 5215 CPU (2.50 GHz, 20 vCPUs) per
socket, 256 GB of DDR4 DRAM (16x 16 GB), and 2 TB (16x
128 GB) Optane DCPMM (4 DCPMM’s and 4 DRAM’s per
each socket) in app-direct mode. Our testbed server supports
only the directory coherence protocol, but not snoop protocol,
despite its known NUMA bandwidth meltdown issues [32].

All implementations are compiled using gcc 7.5.0 with
-O3 optimization. Using PMDK [50], ListDB creates an
auto-growing directory-based persistent memory poolset
(pmempool) on each NUMA node [50]. For NUMA-oblivious
designs, we use the device mapper to create a single persistent
memory poolset interleaved on four sockets.

We evaluate the performance of ListDB3 using two in-
dividual sets of experiments. First, the performance effects
of each part of the design of ListDB are quantified. Sec-
ond, the performance of ListDB is compared against that
of state-of-the-art persistent indexes, including FAST and
FAIR B+tree [24] and PACTree [32], and LSM tree-based key-
value stores for NVMM, i.e., NoveLSM [30], SLM-DB [29],
and Intel’s industry-optimized Pmem-RocksDB [51]. Pmem-
RocksDB [51] is a variant of RocksDB for NVMM that Intel

3Source code is available at http://github.com/DICL/listdb.

Figure 9: Low Flush Throughput Results in Write Stalls

has optimized in two respects. First, Pmem-RocksDB sepa-
rates keys and values to mitigate write amplification issues, as
in WiscKey [41]. Second, Pmem-RocksDB mmaps SSTables
and writes directly to NVMM by using non-temporal stores
(i.e., ntstore) to bypass the cache hierarchy and eliminate
context switching.

Our experiments use YCSB [15] and the Facebook bench-
mark [8]. The Facebook benchmark generates more realistic
workloads than YCSB as it emulates real-world RocksDB
workloads in Facebook/Meta datacenters. Specifically, the
Facebook benchmark adds mathematical models (e.g., sine
distribution) to db_bench [18] such that it can vary key sizes,
value sizes, and query arrival rates over time.

4.2 Evaluation of Index-Unified Logging
4.2.1 IUL vs. WAL: Flush Throughput
This section compares the performance effect of IUL to stan-
dard WAL with respect to write stalls. For the experiments
shown in Figure 9, a single YCSB [15] client thread (Load
A) and a single compaction thread are used to evaluate how
fast a MemTable absorbs bursts of 20 million writes (8-byte
key and 8-byte value objects), and how fast a single back-
ground compaction thread flushes MemTables to NVMM. To
prevent memory usage from increasing indefinitely, the max-
imum number of immutable MemTables is set to 4. Zipper
compaction threads are disabled to evaluate only the effect
of IUL, i.e., L1 is not used. put denotes the client’s query
processing throughput over time (i.e., the number of records
inserted into MemTables per second), and flush denotes how
many records are flushed from MemTables to NVMM by the
compaction thread.

Figure 9 (a) shows that with standard WAL, put throughput
is higher than flush throughput because inserting key-value
objects into a SkipList in DRAM is much faster than flushing
(i.e., copying key-value objects from DRAM to NVMM) and
persisting a SkipList in NVMM. Each spike in put throughput
indicates that a new empty mutable MemTable was created;
it takes about 5 seconds to fill a 64 MB MemTable. In 40
seconds, the number of MemTables exceeds the threshold,
and subsequent writes are blocked. Even if the threshold is set
to a higher value than four, it is only a matter of time before a
write is stalled, because flush throughput is lower than put
throughput.

In contrast, Figure 9 (b) shows that with IUL, flush
throughput is much higher than put throughput. flush
throughput of IUL fluctuates because each flush takes less
time than filling a MemTable, i.e., the compaction thread be-

170    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



(a) Load A (b) Workload A (c) Workload B (d) Workload C (e) Workload D

Figure 10: Performance Effect of Index-Unified Logging

comes idle. This high flush throughput is because IUL does
not copy key-value objects from DRAM to NVMM and does
not call cacheline flush instructions. So, write stalls do not
occur and the compaction thread often becomes idle, allowing
the CPU to perform other work.

4.2.2 Evaluation of IUL using YCSB
The experiments shown in Figure 10 compare the perfor-
mance of IUL to standard WAL with varying the number
of client threads for YCSB workloads. The number of back-
ground compaction threads is set to half the number of client
threads. The MemTable size and the maximum memory usage
for MemTables are set to 256 MB and 1 GB, respectively, i.e.,
a maximum of 4 MemTables are allowed. We set the lookup
cache size to 1 GB (979 MB hash-based lookup cache and
45 MB for the second chance lookup cache). For the experi-
ments, Braided SkipList and Zipper compaction are enabled
so that L0 PMTables are merged into L1 PMTable and read
queries can run faster. The Load A workload populates the
database with 100 million records (8-byte keys and 8-byte
values). All other workloads submit 100 million queries each.

Figure 10(a) shows that increasing the number of client
threads increases the write throughput of both logging meth-
ods, up to 80 threads. With 80 client threads, the throughput
of IUL (14.513 million ops/sec) is approximately 1.8x higher
than that of WAL (8.101 million ops/sec). However, when the
number of client threads exceeds the number of logical cores
throughput degrades due to the high overcommit rate. That
is, 100 client threads and 50 background compaction threads
compete for 80 logical cores. Still, the throughput of IUL is
99% higher than WAL.

For Workload B (95% reads), Workload C (100% reads),
and workload D (read latest), WAL has similar or slightly
better performance than IUL because WAL does copy-on-
writes to store records in ascending order of keys, and read
operations benefit from higher memory access locality than
IUL. Nevertheless, IUL outperforms WAL in Workload A
(50:50 Read:Write) due to its better write performance.

4.3 Evaluation of Braided SkipList
This section evaluates NUMA effects in NVMM using a sin-
gle PMTable. The performance of the NUMA-aware Braided
SkipList (denoted as BR) is compared with three other meth-
ods that were discussed in Section 2.3; i.e., (i) NUMA-
oblivious SkipList (denoted as Obl), (ii) delegating client

(a) Memory Access Count (b) Response Time Breakdown

Figure 11: PUT Performance (80 Clients)

(a) Memory Access Count (b) Response Time Breakdown

Figure 12: GET Performance (80 Clients)

queries to a worker thread, using shared memory (denoted as
Deleg), and (iii) a write-optimal local SkipList (denoted as
Local), which manages a SkipList per NUMA node. BR and
Obl manage one large PMTable, whereas Deleg and Local
create four smaller PMTables. Deleg partitions key-value
records according to hash keys, but Local allows a write
client to insert data into the SkipList on its local NUMA node
regardless of the key. Consequently, a read query has to search
all four SkipLists. Even if a key is found in the local index, it
must search remote indexes because a remote index may have
a more recent update. Therefore, when there are n NUMA
nodes, the ratio of local accesses is always 1/n.

Our experiments, shown in Figures 11 and 12, run YCSB
Load A (100 million inserts, 5-25 bytes string keys, 100-byte
values) and Workload C (10 million queries).

PUT: Figure 11(b) shows that Local has the lowest write
response time because it always inserts into the local PMTable.
This eliminates remote NUMA node access for writes as
shown in Figure 11(a). Braided SkipList (denoted as BR) has
a higher write response time than Local because BR accesses
remote NVMM via bottom layer pointers. Figure 11(a) shows
that most NVMM accesses using BR are local, unlike NUMA-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    171



(a) WAL (b) WAL+Zipper (c) WAL+Braided (d) WAL+Zipper+Braided

(e) IUL (f) IUL+Zipper (g) IUL+Braided (h) IUL+Zipper+Braided

Figure 13: Put/Flush/Compaction Throughput over Time (YCSB Load A)

oblivious SkipList (20.1% vs. 74.1% remote accesses). Obl
and BR access NVMM more than Deleg and Local.

Similar to Local, Deleg also completely removes remote
NVMM access, but the write response time is significantly
higher due to delegation overhead. That is, threads use slow
atomic instructions to access the shared queue and make a
memory copy for queries and results. Figure 11(b) shows that
the queueing delay accounts for 77.1% of query response time
with 80 client threads. Because put/get operations on a lock-
free index are very lightweight, the synchronization overhead
incurred by delegation dominates the overall response time.

GET: Figure 12(a) shows that the response time of BR for
read queries is lower than the other methods. While Local
outperforms BR for writes, the read response time of Local
is about 4x higher than BR because Local must search all
4 PMTables. Although BR avoids visiting a more efficient
search path that follows remote elements, Figures 11(a) and
12(a) show that it has almost no effect on the traversal length.
Deleg shows the fewest memory accesses. However, due to
synchronization overhead, its query response time is about 2x
higher than BR, so its performance is even lower than Obl.

4.4 Putting It All Together
Figure 13 presents a factor analysis for ListDB. 4 We en-
able and disable each design feature of ListDB and measure
write throughput (denoted put), flush throughput (MemTable
→ L0 PMTable, denoted flush), and compaction through-
put (L0→ L1 PMTable, denoted comp.) over time. We run
80 client threads and 40 background compaction threads for
YCSB Load A, inserting 500 million 8-byte keys and 8-byte
values. Figure 13(a) shows that disabling all three optimiza-
tions causes client threads to stall for more than 50 seconds.
Enabling Zipper compaction improves the L0→ L1 com-

4Note that the scale of the x axis differs between the subfigures.

paction throughput as shown in Figure 13(b), but the write
stall problem still occurs because of the memory copy over-
head for flushing the MemTable. If Braided SkipList is used,
accessing remote NUMA nodes can be avoided when flushing
the MemTable. Therefore, flush throughput doubles, which
results in less frequent write stalls, as shown in Figure 13(c).
Enabling both Zipper compaction and Braided SkipList re-
sults in shorter write stall times, and the workload completes
in less than 120 seconds (Figure 13(d))

If IUL is used instead of WAL, flush throughput becomes
comparable to put throughput, as shown in Figure 13(e). By
avoiding expensive memory copy, write stalls are less frequent
than WAL. However, note that compaction throughput is
much lower than flush throughput. This increases the number
of L0 PMTables and degrades search performance. As shown
in Figure 13(f), if additionally IUL and Zipper compaction
are enabled, the NVMM bandwidth improves by reducing
the number of memory copies. Thus, it improves compaction
and flush throughput. Enabling IUL and Braided SkipList,
as shown in Figure 13(g), avoids NUMA effects, which im-
proves both compaction and flush throughput. Finally, with
all three optimizations enabled, the workload completes in
under 65 seconds with virtually no write stalls (Figure 13(h))
compared to 300 seconds in figure 13(a).

4.5 Recovery Performance
We evaluate the recovery performance of asynchronous incre-
mental checkpointing for ListDB and periodic synchronous
checkpointing. Using the Facebook benchmark, we populate
a database with 100 million objects and measure the time to
recover using a checkpoint and write-ahead log entries. De-
spite using the same workload, the recovery performance of
synchronous checkpointing is affected by the checkpointing
interval, whereas asynchronous checkpointing is only affected
by the query arrival rate. This is because the number of the

172    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 14: Recovery Performance Figure 15: Comparison with Other Designs

Figure 16: Comparison
with NoveLSM and
SLM-DB

log entries varies with asynchronous checkpointing, which
background compaction threads have not yet merged into L1.
If the query arrival rate is higher than the Zipper compaction
throughput, the number of the IUL entries increases and the
recovery process has to create a larger L0 PMTable with more
log entries.

Figure 14 shows that a synchronous checkpointing takes
about 90 seconds to serialize and flush the in-memory B+tree
using the binary_oarchive class from the Boost library.
This causes concurrent queries to block for 90 seconds while
the checkpointing is being performed, resulting in unaccept-
ably high tail latency. To alleviate the problem, checkpointing
can be performed less frequently, but that increases the recov-
ery time (i.e., the time to restore the checkpointed index and
insert log entries to it) as more log entries accumulate.

In contrast, Figure 14 (b) shows that ListDB recovers in-
stantly if it crashes when the write query arrival rate is lower
than 3 million insertions/sec. If the query arrival rate varies
between 7 and 9 million insertions/sec, ListDB takes about
19 seconds to recover. With a higher query arrival rate, the
recovery time of ListDB increases.

4.6 Comparison with Other Designs
The experiments shown in Figure 15 compare the perfor-
mance of ListDB with state-of-the-art persistent indexes; i.e.,
BzTree [1], FP-tree [49], FAST and FAIR B+tree [24], and
PACTree [32], We run the experiments on a two-socket ma-
chine, because PACTree is hardcoded for two sockets. The
two-socket machine has the same Intel Xeon Gold 5215 CPUs
(40 logical cores in total), 128 GB DRAM (8x 16GB), and
1 TB (8x 128 GB) DCPMM. The database is pre-loaded with
100 million key-value records and then 40 clients submit
10 million queries with uniform distribution (generated from
YCSB Workload A) with various read-write ratios. These tree-
structured indexes are not optimized for (or do not support)
large variable-length string keys and values. Therefore, we
generated 8-byte numeric keys and 8-byte pointer values for
the workload, which is favorable for tree-structured indexes
with large fanouts.

Figure 15 shows that ListDB outperforms tree-structured
persistent indexes for write-intensive workloads. For the write-

only workload, ListDB(0GB) shows 79x, 17x, 2.3x and 1.6x
higher throughput than BzTree, FPTree, FAST and FAIR
B+tree, and PACTree, respectively. However, for the read-
only workload, tree-structured indexes benefit from faster
search performance. In particular, FAST and FAIR B+tree
and PACTree show 3.88x and 4.61x higher search throughputs,
respectively, than ListDB(0GB). With the lookup cache en-
abled, ListDB outperforms or shows comparable performance
to tree-structured indexes. The numbers in parentheses in the
graph key show the lookup cache size. With a lookup cache
larger than 768 MB, ListDB outperforms PACTree unless the
read ratio is higher than 80%.

These results confirm that standard caching techniques
can easily improve read performance. However, the lookup
cache that indexes the location of key-value records cannot be
used for PACTree, FAST FAIR B+tree, FPTree, etc. because
they frequently relocate key-value records to different tree
nodes due to tree rebalancing operations. That is, employing
a DRAM cache for a tree-structured persistent index is not
as simple as our address-only lookup caching. For example,
Nap [57] has a very complicated caching mechanism.

4.6.1 Write Amplification
Although LSM trees have better write performance than tree-
structured indexes, they have higher write amplification, as
a critical limitation in block device storage [21, 41, 53]. To
compare write amplification, we used Intel PMwatch [25]
to measure the total number of accessed bytes in the experi-
ments shown in Figure 15. All indexing methods suffer from
high write amplification. DCPMM’s internal write combining
buffer transforms a small write (8-byte key and 8-byte value)
into a 256-byte read-modify-write operation, resulting in at
least 16x write amplification. In ListDB, the writes are further
amplified by merge-sort operations in L0 and L1 PMTables.
However, the write amplification of ListDB (104.4) is lower
than that of FAST and FAIR B+tree (126.789) and compa-
rable to that of PACTree (91.5) because ListDB merge-sorts
SkipLists in-place.

4.7 Comparison with NoveLSM and SLM-DB
Figure 16 shows the single-threaded read and write through-
put of NoveLSM, SLM-DB, Pmem-RocksDB, and ListDB.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    173



The experiments run a single client thread (db_bench, 100
million random 8-byte keys and 1 KB values) because Nov-
eLSM crashes when multiple threads concurrently access
the database. NoveLSM and SLM-DB were designed to use
NVMM as an intermediate layer on top of the block device
file system, but our experiments store all SSTables in NVMM
formatted with EXT4-DAX for a fair comparison.

NoveLSM shows the worst performance, not because of
its design but because it is implemented on top of LevelDB,
which is known to have poor performance. SLM-DB is also
implemented on top of LevelDB but shows better performance
because it uses FAST and FAIR B+tree as its core index. Since
SLM-DB is not yet ported to use PMDK, it has no overhead
imposed by run-time flushing or transactional updates, i.e.,
it shows DRAM performance and does not survive a system
crash. Nonetheless, SLM-DB does not show better perfor-
mance than Pmem-RocksDB, a fully persistent key-value
store. Compared to Pmem-RocksDB, ListDB(0GB) shows
twice the write throughput, but read performance is slightly
worse unless the lookup cache is enabled. This is because
Pmem-RocksDB benefits from memory locality by storing
keys contiguously in NVMM in sorted order, whereas ListDB
does not relocate data.

4.8 Comparison with Pmem-RocksDB
Finally, we compare the performance of ListDB with Intel’s
Pmem-RocksDB using the Prefix Dist workload in the Face-
book benchmark. The experiments shown in Figure 17 run
80 client threads and use the default key and value sizes of
the benchmark (48-byte string keys and variable-length val-
ues ranging from 16 bytes to 10 KB). The workload submits
queries according to a query arrival rate (QPS parameter) that
follows a sine distribution with a noise factor of 0.5. The
put/get ratio of the workload is 3 to 7.

For various parameter settings, ListDB consistently outper-
forms Pmem-RocksDB. The results of two different settings
are presented in Figure 17 - an idle workload (0.1 ∼ 0.3 mil-
lion write queries and 0.2∼ 0.7 million read queries arrive per
second; 200 million queries in total), in which the throughput
of Pmem-RocksDB is saturated, and a heavy workload (2.4∼
7.2 million write queries and 5.6∼ 16.8 million queries arrive
per second; 5 billion queries in total), in which the through-
put of ListDB is saturated. The lookup cache is disabled for
ListDB while setting the maximum DRAM usage for both
key-value stores to 1 GB and allowing Pmem-RocksDB to
use the default 8 MB block cache.

For the idle workload, Pmem-RocksDB suffers from ex-
cessive NVMM writes, so its put throughput saturates at
200 Kops. For the Facebook benchmark, a get query has
to wait for its previous put query to commit. Therefore, the
get throughput of Pmem-RocksDB saturates at 400 Kops
in the experiment. In contrast, Figure 17(b) shows that the
throughput of ListDB follows the sine distribution, i.e., the
query arrival rate, without blocking queries.

(a) Pmem-RocksDB (idle) (b) ListDB (idle)

(c) Pmem-RocksDB (heavy) (d) ListDB (heavy)

Figure 17: Throughput over Time (Facebook Benchmark)

For the heavy workload, Pmem-RocksDB’s throughput
is still saturated. On the other hand, the put throughput of
ListDB is 25x higher than that of Pmem-RocksDB, i.e., 5
million ops. Similarly, the get throughput of ListDB is up to
22x higher than that of Pmem-RocksDB (i.e., 13 million vs.
0.6 million ops). As such, ListDB completes the workload
19.4x faster than Pmem-RocksDB (i.e., 380 vs. 7400 seconds).

5 Conclusion
In this work, we design and implement ListDB - a key-value
store that leverages the byte-addressability to avoid data
copies by restructuring data in-place and high-performance
of NVMM to reduce the write amplification and avoid write
stalls. We show that ListDB significantly improves write per-
formance via asynchronous incremental checkpointing and
in-place compaction. With its three-level structure, ListDB
outperforms state-of-the-art persistent indexes and NVMM-
based key-value stores in terms of write throughput. A stan-
dard lookup cache can help mitigate the problem of having
multiple levels. For future work, we are exploring the possibil-
ity of improving search performance by introducing another
level, namely L2 PMTable, to opportunistically rearrange L1
PMTable elements for spatial locality and garbage collection.

Acknowledgement
We would like to give special thanks to our shepherd Dr.
Marc Shapiro and to the anonymous reviewers for their valu-
able comments and suggestions. This research was supported
in part by Samsung Electronics, and also by the R&D pro-
gram of National Research Foundation of Korea (NRF) (grant
No. NRF2018R1A2B3006681) and IITP (grant No. 2018-0-
00549 and 2021-0-01817) and Electronics and Telecommuni-
cations Research Institute (ETRI) grant (grant No. 20ZS1310)
funded by the Korean government. The corresponding author
is Beomseok Nam.

174    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas,
and Per-Ake Larson. BzTree: A High-Performance
Latch-Free Range Index for Non-Volatile Memory. Pro-
ceedings of the VLDB Endowment, 11(5):553–565, jan
2018.

[2] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and
Larry L. Peterson. HashCache: Cache storage for the
next billion. In Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 123–136, 2009.

[3] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating Synergies
Between Memory, Disk and Log in Log Structured Key-
Value Stores. In Proceedings of the 2017 USENIX An-
nual Technical Conference (USENIX ATC), pages 363–
375, 2017.

[4] Sergey Blagodurov, Sergey Zhuravlev, Mohammad
Dashti, and Alexandra Fedorova. A Case for NUMA-
Aware Contention Management on Multicore Systems.
In Proceedings of the 2011 USENIX Annual Technical
Conference (USENIX ATC), 2011.

[5] Trevor Brown. Reclaiming Memory for Lock-Free Data
Structures: There has to be Better Way. In Proceed-
ings of the 34th ACM Symposium on the Principles of
Distributed Computing (PODC’15), 2015.

[6] Irina Calciu, Justin Gottschlich, and Maurice Herlihy.
Using Elimination and Delegation to Implement a Scal-
able NUMA-Friendly Stack. In Proceedings of the 5th
USENIX Workshop on Hot Topics in Parallelism (Hot-
Par 13), June 2013.

[7] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and
Marcos K. Aguilera. Black-Box Concurrent Data Struc-
tures for NUMA Architectures. In Proceedings of the
22nd International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), page 207–221, 2017.

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, Modeling, and
Benchmarking RocksDB Key-Value Workloads at
Facebook. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), pages 209–223, 2020.

[9] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. HashKV: Enabling Efficient Updates in
KV Storage via Hashing. In Proceedings of the 2018
USENIX Annual Technical Conference (USENIX ATC),
pages 1007–1019, 2018.

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
BigTable: A Distributed Storage System for Structured
Data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2006.

[11] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-
Volatile Main Memory. Proceedings of the VLDB En-
dowment, 8(7):786–797, 2015.

[12] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the 25th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), page
1077–1091, 2020.

[13] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo.
Lock-free Concurrent Level Hashing for Persistent
Memory. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC), pages 799–812,
July 2020.

[14] Nachshon Cohen and Erez Petrank. Efficient Memory
Management for Lock-Free Data Structures with Opti-
mistic Access. In Proceedings of the 27th ACM sym-
posium on Parallelism in Algorithms and Architectures
(SPAA’15), 2015.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC), pages
143–154, 2010.

[16] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson,
and Tilmann Rabl. Maximizing Persistent Memory
Bandwidth Utilization for OLAP Workloads. In Pro-
ceedings of the 2021 International Conference on Man-
agement of Data (SIGMOD), page 339–351, 2021.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In Proceedings of the 21th ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP).

[18] Facebook. db_bench. https://github.com/
facebook/rocksdb/wiki/Benchmarking-tools.

[19] Thomas E. Harta, Paul E. McKenneyb, Angela Demke
Brown, and Jonathan Walpole. Performance of Memory

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    175

https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools


Reclamation for Lockless Synchronization. Journal
of Parallel and Distributed Computing, 67:1270–1285,
2007.

[20] HBase. https://hbase.apache.org/.

[21] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. The Unwritten Con-
tract of Solid State Drives. In Proceedings of the 12th
European Conference on Computer Systems (EuroSys),
pages 127–144, 2017.

[22] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir
Shavit. A Simple Optimistic Skiplist Algorithm. In
Proceedings of the 14th International Conference on
Structural Information and Communication Complexity
(SIROCCO), pages 124–138, 06 2007.

[23] Maurice Herlihy and Nir Shavit. The Art of Multipro-
cessor Programming. Morgan Kaufmann Publishers,
2008.

[24] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-Addressable Persistent B+-Tree. In Proceedings
of the 16th USENIX Conference on File and Storage
Technologies (FAST), pages 187–200, 2018.

[25] Intel. PMWatch. https://github.com/intel/
intel-pmwatch.

[26] Intel Optane Persistent Memory. https:
//www.intel.com/content/www/us/
en/architecture-and-technology/
optane-dc-persistent-memory.html.

[27] Varun Jain, James Lennon, and Harshita Gupta. LSM-
Trees and B-Trees: The Best of Both Worlds. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data (SIGMOD), page 1829–1831, 2019.

[28] Ashok Joshi, William Bridge, Juan Loaiza, and
Tirthankar Lahiri. Checkpointing in Oracle. In Pro-
ceedings of the 24th International Conference on Very
Large Data Bases (VLDB), page 665–668, 1998.

[29] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young ri Choi. SLM-DB: Single-
Level Key-Value Store with Persistent Memory. In Pro-
ceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST), pages 191–205, 2019.

[30] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In Proceedings of the 2018 USENIX Annual
Technical Conference (USENIX ATC), pages 993–1005,
2018.

[31] Dongui Kim, Chanyeol Park, Sang-Won Lee, and Beom-
seok Nam. BoLT: Barrier-Optimized LSM-Tree. In
Proceedings of the 21st International Middleware Con-
ference (Middleware), page 119–133, 2020.

[32] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. PACTree: A
High Performance Persistent Range Index Using PAC
Guidelines. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP),
page 424–439, 2021.

[33] Avinash Lakshman and Prashant Malik. Cassandra:
A Decentralized Structured Storage System. ACM
SIGOPS Operating Systems Review, 44(2):35–40, April
2010.

[34] D. Lea. Java Platform SE 8,
java.util.concurrent.ConcurrentSkipListMap. https:
//docs.oracle.com/javase/8/docs/api/java/
util/concurrent/ConcurrentSkipListMap.html.

[35] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In Pro-
ceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST), pages 257–270, 2017.

[36] LevelDB. https://github.com/google/leveldb.

[37] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. SILT: A Memory-efficient, High-
performance Key-value Store. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(SOSP), pages 1–13, 2011.

[38] Jihang Liu, Shimin Chen, and Lujun Wang. LB+Trees:
Optimizing Persistent Index Performance on 3DX-
Point Memory. Proceedings of the VLDB Endowment,
13(7):1078–1090, mar 2020.

[39] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee,
Michael L. Scott, Sam H. Noh, and Changhee Jung. iDO:
Compiler-Directed Failure Atomicity for Nonvolatile
Memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–
270, 2018.

[40] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable Hashing on Persistent Memory. Pro-
ceedings of the VLDB Endowment, 13(8):1147–1161,
apr 2020.

[41] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST), pages 133–148, 2016.

176    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://hbase.apache.org/
https://github.com/intel/intel-pmwatch
https://github.com/intel/intel-pmwatch
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://github.com/google/leveldb


[42] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, and Raju Rangaswami. NVMKV: A Scalable,
Lightweight, FTL-aware Key-Value Store. In Proceed-
ings of the 2015 USENIX Annual Technical Conference
(USENIX ATC), pages 207–219, 2015.

[43] Fei Mei, Qiang Cao, Hong Jiang, and Lei Tian Tintri.
LSM-tree Managed Storage for Large-scale Key-value
Store. In Proceedings of the 2017 Symposium on Cloud
Computing (SoCC), pages 142–156, 2017.

[44] Zviad Metreveli, Nickolai Zeldovich, and M. Frans
Kaashoek. CPHASH: A Cache-Partitioned Hash Table.
In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), page 319–320, 2012.

[45] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In Proceedings of the
17th USENIX Conference on File and Storage (FAST),
pages 31–44, 2019.

[46] Suman Nath and Aman Kansal. FlashDB: Dynamic Self-
tuning Database for NAND Flash. In Proceedings of the
6th International Conference on Information Processing
in Sensor Networks (IPSN), pages 410–419, 2007.

[47] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The Log-structured Merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, June 1996.

[48] Oracle Berkeley DB. https://www.oracle.com/
technetwork/database/database-technologies/
berkeleydb/overview/index.html.

[49] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Stor-
age Class Memory. In Proceedings of the 2016 Interna-
tional Conference on Management of Data (SIGMOD),
pages 371–386, 2016.

[50] Persistent Memory Development Kit (PMDK). https:
//pmem.io/pmdk/.

[51] PMEM-RocksDB. https://github.com/pmem/
pmem-rocksdb.

[52] William Pugh. Skip Lists: A Probabilistic Alterna-
tive to Balanced Trees. Communications of the ACM,
33(6):668–676, June 1990.

[53] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores Using Fragmented Log-Structured Merge Trees.
In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), pages 497–514, 2017.

[54] RocksDB. https://rocksdb.org/.

[55] Subhadeep Sarkar, Dimitris Staratzis, Ziehen Zhu, and
Manos Athanassoulis. Constructing and Analyzing the
LSM Compaction Design Space. Proceedings of the
VLDB Endowment, 14(11):2216–2229, jul 2021.

[56] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. Consistent and Durable
Data Structures for Non-Volatile Byte-Addressable
Memory. In Proceedings of the 9th USENIX confer-
ence on File and Storage Technologies (FAST), 2011.

[57] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A
Black-Box Approach to NUMA-Aware Persistent Mem-
ory Indexes. In Proceedings of the 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 93–111, July 2021.

[58] Stephen Williams, Marc Abrams, Charles R. Standridge,
Ghaleb Abdulla, and Edward A. Fox. Removal Policies
in Network Caches for World-Wide Web Documents.
In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), 1996.

[59] Paul R. Wilson. Pointer Swizzling at Page Fault Time:
Efficiently Supporting Huge Address Spaces on Stan-
dard Hardware. SIGARCH Computeer Architecture
News, 19(4):6–13, jul 1991.

[60] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-
NVM Memory Systems. In Proceedings of the 2017
USENIX Annual Technical Conference (USENIX ATC),
pages 349–362, 2017.

[61] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main
Memories. In Proceedings of the 14th USENIX Confer-
ence on File and Storage Technologies (FAST), pages
323–338, February 2016.

[62] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Mem-
ory. In Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST), pages 169–182,
February 2020.

[63] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
and Khai Leong Yong. NV-Tree: Reducing Consistency
Const for NVM-based Single Level Systems. In Pro-
ceedings of the 13th USENIX conference on File and
Storage Technologies (FAST), 2015.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    177

https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmem-rocksdb
https://rocksdb.org/




Odinfs: Scaling PM Performance with Opportunistic Delegation

Diyu Zhou Yuchen Qian Vishal Gupta Zhifei Yang Changwoo Min† Sanidhya Kashyap

EPFL †Virginia Tech

Abstract
Existing file systems for persistent memory (PM) exploit its
byte-addressable non-volatile access with low latency and
high bandwidth. However, they do not utilize two unique PM
properties effectively. The first one is contention awareness,
i.e., a small number of threads cannot thoroughly saturate
the PM bandwidth, while many concurrent accesses lead to
significant PM performance degradation. The second one is
NUMA awareness, i.e., exploiting the remote PM efficiently,
as accessing remote PM naively leads to significant perfor-
mance degradation.
We present Odinfs, a NUMA-aware scalable datapath

PM file system that addresses these two challenges using a
novel opportunistic delegation scheme. Under this scheme,
Odinfs decouples the PM accesses from application threads
with the help of background threads that access PM on behalf
of the application. Because of PM access decoupling, Odinfs
automatically parallelizes the access to PM across NUMA
nodes in a controlled and localized manner. Our evaluation
shows that Odinfs outperforms existing PM file systems up
to 32.7× on real-world workloads.

1 Introduction
Persistent memory (PM), a storage-class memory, breaks the
traditional dichotomy of storage and memory. It offers byte
addressability, non-volatility, low latency, and high band-
width [8, 14, 23, 43]. Recent characterization studies show
that PM has many subtle performance characteristics [18–
20, 23, 27, 29, 37, 39, 40, 43], posing a significant challenge
for storage stacks to utilize PM performance efficiently.
Such a challenge arises from two unique PM character-

istics. The first factor is the tension between concurrent
accesses and PM performance. In particular, a small number
of threads underutilize PM bandwidth, while a high num-
ber of concurrent access threads1 lead to PM performance
meltdown [39]. The meltdown happens because a high num-
ber of concurrent access threads render the caching and

1In this paper, we use the term “access thread” to denote a thread that
directly accesses PM. It could be an application thread or a kernel thread.

0

50

100

150

200

0 50 100 150 200 250
0

10

20

30

40

50

60

70

0 50 100 150 200 250

Ba
nd

w
id
th

(G
iB
/s
)

# threads

(a) read

# threads

ext4

PMFS

NOVA

WineFS

ext4(RAID0)

Odinfs

(b) write

Figure 1: Themaximal PM read andwrite bandwidth of four PM file
systems and Odinfs. ext4(RAID0): ext4mounted on a RAID0 built
from PM across all NUMA nodes. Benchmark: fio, in which each
thread accesses a private file at the granularity of 2MB sequentially,
on an eight-socket machine.

prefetching in PM inefficient [14, 43]. The second factor
is the pronounced NUMA impact on PM, as several prior
works found that remote NUMA accesses on PM are much
slower than DRAM, leading to at least 2× bandwidth re-
duction [14, 27, 38]. Supporting multiple NUMA domains is
currently the primary way to increase PM’s capacity and ag-
gregated bandwidth. Unfortunately, the pronounced NUMA
impact defeats the purpose of PM NUMA architecture.

Several proposed PM file systems exploit various charac-
teristics of PM [10, 12, 16, 17, 24, 25, 28, 34, 41]. However,
none of the existing PM file systems considers the tension be-
tween concurrent accesses and PM performance. Moreover,
the conventional approach to mitigate the PM NUMA impact
is to migrate data to CPUs or vice versa [25, 42], which in-
curs a high migration overhead, and cannot efficiently utilize
the aggregated PM bandwidth. Figure 1 illustrates the issues
for several PM file systems [2, 17, 25, 41]. The bandwidth of
these file systems highly depends on the thread counts. Ex-
cept for ext4(RAID0) performing the read workload, the read
and write bandwidth of these file systems collapse after the
thread count exceeds a certain threshold. In summary, exist-
ing PM file systems cannot efficiently utilize PM in a NUMA
setup and incur performance collapse if multiple threads of

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    179



the application (e.g., file server software and video streaming
software) access PM concurrently.
This paper presents Odinfs: (Opportunistic DelegatIoN

File System), a NUMA-aware PM file system that maximizes
PM performance by controlling concurrent accesses, mini-
mizing the NUMA impact, and parallelizing PM accesses to
utilize the aggregated bandwidth. To design Odinfs, we first
holistically analyze the behavior of existing PM file systems
on an eight-socket NUMA machine. We analyze two issues
specifically: maintaining maximum PM performance within
a NUMA node and minimizing the PM NUMA impact. For
the first issue, we find that both read and write performance
of PM collapse with high thread counts, while prior work
only reports the write performance collapse [14, 43]. For the
second issue, we provide a detailed analysis and quantita-
tively confirm that placing the access threads in the same
NUMA node as PM minimizes the NUMA impact.

Motivated by our performance analysis, we designOdinfs
with three major design goals: (1) Limit concurrent PM
accesses (access arbitration): Odinfs controls the number
of PM access threads to maintain the maximal PM perfor-
mance within a NUMA node. (2) Localized PM accesses
(NUMA-awareness): Odinfs ensures threads always access
the local PM within a NUMA node, thereby avoiding the PM
NUMA impact. (3) Automatic parallel PM accesses (auto-
matic parallelization): Odinfs automatically parallelizes
applications’ PM access requests across all NUMA nodes
without application modification. Odinfs thus efficiently
utilizes aggregated PM bandwidth, thereby improving appli-
cation performance.

Odinfs achieves these goals by proposing a new
approach—opportunistic delegation—that decouples PM
data accesses from application threads. Specifically, on each
NUMA node, Odinfs creates multiple background kernel
threads (delegation threads) that access PM on behalf of
the application threads. Therefore, Odinfs limits the max-
imum concurrency within PM by controlling the number
of delegation threads. Moreover, the delegation threads are
local to each NUMA node, leading to NUMA-aware local-
ized accesses. Odinfs thus departs from the conventional
NUMA-mitigation approaches in PM file systems that mainly
involve data or thread migration.

Furthermore, the delegation threads enable servicing bulk
data requests by efficiently utilizing aggregated PM band-
width across all NUMA nodes. Specifically, Odinfs first
stripes the file data across PM in all NUMA nodes. Exploit-
ing the well-designed system call interface, Odinfs services
data system calls (e.g., read() and write()) by transparently
dividing them into multiple disjoint access requests based on
the stripe size and sending such access requests to the cor-
responding delegation threads. The delegation threads thus
access PM in different NUMA nodes in parallel to serve the
system call. We further enhance Odinfs with fine-grained
parallelism for data operations. Our evaluation shows that

Odinfs outperforms other file systems by up to 32.7× for
real-world workloads and has up to two orders of magnitude
performance improvement for scalability microbenchmarks.
This paper makes the following contributions:
• Analysis.We thoroughly analyze the behavior of ex-
isting PM file systems on a large NUMA machine and
reveal two new findings.

• Opportunistic delegation.We propose an opportunis-
tic delegation scheme for PM file systems that decou-
ples PM data accesses from application threads, thus
efficiently utilizing both local and remote PM.

• Odinfs We design and implement Odinfs: a PM file
system that builds on the opportunistic delegation
scheme with state-of-the-art concurrency control mech-
anisms.Odinfsmaximizes the performance and further
scales data operations with increasing threads.

2 PM Performance Analysis
Prior study has shown that the underlying architecture of
PM is quite complicated [39], and PM has limited bandwidth
and higher latency compared to DRAM [14, 40]. Moreover,
naively utilizing PM in NUMA machines often underutilizes
PM or leads to performance collapse [14, 25, 27, 38]. To show-
case the issues of concurrent NUMA accesses in PM, we first
provide an overview of the current hardware (§2.1). We then
analyze why existing PM file systems fail to handle many
concurrent requests (§2.2) and the impact of different types
of accesses in a NUMA machine (§2.3).
2.1 Intel Optane internals
The Intel Optane [8] PM is the only publicly available non-
volatile memory technology so far. A memory controller
accesses PM at the granularity of a cache line (64 bytes). How-
ever, the access size of the internal 3D-Xpoint storage media
is 256 bytes. Such an access size mismatch results in read or
write amplification. The 3D-Xpoint media includes a buffer
(XPBuffer) and an associated prefetcher (XPPrefetcher) to ad-
dress this issue and mitigate its long latency. The XPBuffer
combines adjacent accesses to PM, and the XPPrefetcher
prefetches blocks in the 3D-Xpoint media to XPBuffer based
on the access pattern. In addition, the 3D-Xpoint media also
stores the inter-NUMA node coherence information [6, 27].
Hence, inter-NUMA accesses may involve writing to the 3D-
Xpoint media to update the coherence information, which is
the root cause of the slow inter-NUMA PM accesses (§2.3).
2.2 Concurrent accesses to PM
Prior work [14, 43] finds that PM performance depends on
the access size and the number of concurrent access threads.
The impact of access size is well understood. Applications
accessing PM perform well as long as the access size is large
enough to stress all the interleaved PM DIMMs. To under-
stand the impact of concurrent access threads, we run fio [4],
in which each pinned thread sequentially accesses a private
1GB file at a 2MB granularity. We evaluate on an eight-socket

180    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0

6

12

18

24

30

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

Ba
nd

w
id
th

(G
iB
/s
)

# threads

(a) read

A
m
pl
ifi
ca
tio

n
ra
te

# threads

ext4

PMFS

NOVA

WineFS

Ampl.

(b) write

Figure 2: PM read and write bandwidth of PM file systems with
increasing threads for sequential 2MB access size. Results show that
both read and write performance collapse after exceeding a specific
limit. We observe a dramatic increase in read/write amplification
due to cache thrashing in the PM storage device.

NUMAmachine, with each socket having six interleaved Op-
tane DIMMs and a processor with 28 cores.
Figure 2 shows the read and write bandwidth of PM file

systems with increasing threads. Both read and write reach
their peak bandwidth with sixteen and eight threads, respec-
tively. After that, increasing threads severely degrades the
overall bandwidth. Specifically, with 224 threads, the read
and write bandwidth degrades by 3.7× and 17.2× compared
to the peak bandwidth, respectively.
Such performance collapse occurs because high concur-

rent accesses thrash the underlying cache of PM.2 Specifically,
a mismatch exists between the CPU access size (64 bytes)
and the underlying PM storage access size (256 bytes). PM
minimizes the read/write amplification overhead by batching
writes (XPBuffer) and prefetching (XPPrefetcher) (§2.1). How-
ever, with high concurrent accesses, the sequential accesses
from different threads convert into non-adjacent accesses.
These accesses arrive at the PM simultaneously, which re-
duces the efficiency of both caching and prefetching. As a
result, it increases read and write amplification, as XPBuffer
cannot keep up with the requests and the underlying PM
media latency starts to dominate for fetching or writing data,
leading to performance collapse. The read collapse threshold
is higher than write since reads perform better than writes
with the 3D-Xpoint media. Thus, PM can sustain the read
bandwidth despite reducing caching and prefetching effi-
ciency up to two NUMA nodes.

We find that both read and write bandwidth crashes after a
certain point. The results for writes are consistent with prior
works [14, 43]. However, we find that read bandwidth also
starts to collapse after two NUMA nodes. This is contrary
to prior work, which reports that the read bandwidth scales
with increasing threads.
Insight #1. Afile systemmust control the number of threads
that concurrently access PM for both reads and writes to
preserve the maximal performance within a NUMA node.

2We verify that the performance collapse is not due to the scalability
bottleneck in the file systems by confirming that most of the CPU cycles
are spent in accessing PM.

0

5

10

15

20

25

30

All-
loca

l
PM-

loca
l
PM-

rem
ote

PM-
rem

ote-

2nd

0

2

4

6

8

10

All-
loca

l
PM-

loca
l
PM-

rem
ote

Th
ro
ug

hp
ut

(G
iB
/s
)

Read thp
PM IO read
PM IO write

Write thp

(a) read

Ra
w
PM

IO
(G
iB
/s
)

(b) write

Figure 3: Application throughput and the raw PM I/O for reading
data from PM (left) and writing data to PM (right) with the same
workload in §3.6 and the following configurations. All-local: Access
threads, PM, and DRAM (I/O buffer) are in NUMA node 0. PM-local:
Access threads and PM are in NUMA node 0; DRAM is in NUMA
node 1. PM-remote: PM is in NUMA node 0; access threads and
DRAM are in NUMA node 1. PM-remote-2nd: A consecutive run
with PM-remote.

2.3 NUMA impact on PM

We now analyze the NUMA effect on PM. WineFS [25] pro-
poses to migrate a thread to a PM NUMA node to mitigate
the NUMA impact [25]. Unfortunately, there is no in-depth
analysis of the effectiveness of this mechanism. Specifically,
suppose a thread copies data between remote PM and local
DRAM. In this case, migrating the thread to the respective
PM NUMA node still involves remote memory access, and
thus it is not clear why or how the thread migration can
improve performance.

We answer the aforementioned question by investigating
the performance impact of NUMA placements of thread,
DRAM, and PM. We configure fio with three setups. In
the All-local setup, threads, PM, and DRAM (i.e., I/O buffer)
are in the same NUMA node (node 0), which serves as the
best-case scenario. In the PM-local setup, threads and PM
are in the same NUMA node (node 0), while DRAM is in a
remote NUMA node (node 1). In the PM-remote setup, PM is
in NUMA node 0, while threads and DRAM are in the same
NUMA node (node 1). We evaluate this experiment using
PMFS with 28 threads for read and 8 threads for write. Other
file systems or thread counts produce similar results.

Figure 3 shows the PM read and write throughput with the
three setups. We note that both PM-local and PM-remote per-
form the same task of copying data between PM on NUMA
node 0 and DRAM on NUMA node 1. However, PM-local
achieves nearly 19.1× and 2.1× higher throughput than PM-
remote. Furthermore, PM-local achieves 60% and almost 100%
of All-local read and write throughput, respectively. The
above results are due to the implementation of the directory
coherence protocol in Intel machines [6, 27]. Specifically, Intel
maintains intra-NUMA and inter-NUMA directory informa-
tion separately [5]. The processor cache and memory store
the intra-NUMA directory and inter-NUMA directory infor-
mation, respectively. With the PM-local setup, the PM cache
blocks become NUMA-local: data is written to the processor

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    181



cache; while the DRAM cache block moves between NUMA
nodes. Hence, the system updates the PM directory locally,
while writing to DRAM to update its directory information.
However, with the PM-remote setup, the processor updates
DRAM directory information on the processor cache, while
updating its directory information on PM. Hence, the per-
formance difference between DRAM and PM leads to the
performance difference between PM-local and PM-remote.

To verify the above claim, we used Intel PCM [7] to mea-
sure the PM device level read/write IO, as shown in Figure 3.
For All-local and PM-local, the total bytes written and read
from the PM device match the actual I/O bandwidth, indicat-
ing no directory information update. However, PM-remote
incurs extra read and write traffic to the PM device. Further-
more, a consecutive read with PM-remote (PM-remote-2nd)
can restore the performance, while a consecutive write in
PM-remote still suffers from NUMA impact. The above evi-
dence confirms that PM-remote involves directory coherence
updates. Specifically, the extra read and write traffic is due
to updating the coherence information. The PM-remote-2nd
setup can only restore the read performance since, in this
case, coherence information update is not needed for read but
is still required for write. In summary, our performance anal-
ysis quantitatively confirms that placing the access threads
and PM in the same NUMA node minimizes the NUMA im-
pact on PM.
Insight #2. To minimize the pronounced PM NUMA impact,
and efficiently utilize remote PM, a file system should place
the access threads local to the PM.

3 Odinfs Design
Following our performance analysis on PM (§2), we present
Odinfs, a NUMA-aware PM file system that maximizes PM
performance within and across NUMA nodes through op-
portunistic delegation. This section first presents the design
goals that enableOdinfs tomaximize PM performance (§3.1),
an overview of Odinfs (§3.2), followed by the design of each
individual component.
3.1 Odinfs Design Goals
We design Odinfs to meet the following goals:

• Limiting concurrent PM access (access arbitration).
To avoid the PM performance collapse with many con-
current PM accesses (§2.2),Odinfs should limit the con-
currency to maximize PM performance within a single
NUMA node.

• Localized PM access (NUMA-awareness). To avoid
the performance collapse due to the PM NUMA impact,
Odinfs only allows threads to access local PM (§2.3).
This minimizes the PM NUMA impact and opens the
opportunity for Odinfs to utilize remote PM efficiently.

• Automatic parallel PM access (automatic paral-
lelization). The access arbitration and NUMA-aware
design goals allow Odinfs to maximize the local and
remote PM performance. To fully benefit from the aggre-

D
R
A
M

P
M Inode table

Journal

CPU CPU CPU ... ... CPU...

Dir index
Block allocator

Inode allocator

PM 0 ...

PM 0

PM 1

PM 2

PM N

...

PM N

Inode table

Journal

Inode table

Journal

Inode table

Journal

Dir index
Block allocator

Inode allocator

Dir index
Block allocator

Inode allocator

Dir index
Block allocator

Inode allocator

Per-inode
Range lock

Per-inode
Rwsem

zZZ

Super Block

Figure 4: Odinfs architecture. Odinfs maintains per-CPU data
structures to minimize the synchronization overhead. Furthermore,
Odinfs maintains the directory index, block allocator, and inode
allocator in DRAM to maximize performance. Odinfs enhances the
per-inode readers-writer semaphore with our optimized range lock
to increase concurrency.

gated PM bandwidth, Odinfs further parallelizes large
PM accesses across all NUMA nodes automatically with-
out application changes.

• Scalability. Scalability is the overarching goal of
Odinfs. Modern machines have multiple NUMA nodes
and hundreds of CPUs. The above three design goals
allow Odinfs to scale PM performance with an increas-
ing core count. Beyond that, Odinfs should maximize
concurrent accesses within the same file.

3.2 Odinfs Architecture
Figure 5 shows the key components of Odinfs and their
typical workflow. We next present the key design of Odinfs
and explain how they meet the design goals of Odinfs (§3.1).
(1) NUMA-striped data layout for cumulative PM band-
width utilization. Unlike other NUMA-aware PM file sys-
tems that try to localize file accesses within a single PM
NUMA node [25, 42], Odinfs stripes the data of every file
across PM on each NUMA node in a round-robin manner.
Odinfs makes this design choice since it can minimize the
PMNUMA impactwith delegation, as detailed below. Further-
more, stripping file data across PM enablesOdinfs to exploit
all available PM bandwidth to handle application requests,
which opens the door for automatic request parallelization.
(2) Delegation-based PM accesses to maximize PM per-
formance. A key insight in Odinfs is that the access ar-
bitration, NUMA-awareness, and automatic parallelization
design goals can be simultaneously achieved by decoupling
PM data accesses from application threads through dele-
gation. In particular, for each NUMA node, Odinfs creates
several background threads (delegation threads). Only the
delegation threads can access PM. When the application
thread needs to access PM, it first checks which NUMA node
the PM address belongs to and then sends the PM access re-
quests to one of the delegation threads on that NUMA node.
The delegation thread performs the access on behalf of the

182    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



22
copy b3
to 0x20000

copy b2
to 0x18000

copy b0
to 0x8000

copy b1
to 0x10000

NUMA 3NUMA 2NUMA 1NUMA 0

Application

Delegation
threads

2

read("a.txt", 0x8000, 128KB) Return

a.txt:0 PM 0 a.txt:1 PM 1 a.txt:2 PM 2 a.txt:3 PM 3

1 4

CopyCopy Copy

a.txt:0 a.txt:1 a.txt:2 a.txt:30x8000 DRAM

Copy3 333

2

Odinfs

Figure 5: Overview of Odinfs. Each NUMA node has delega-
tion threads that access local PM on behalf of application threads.
Odinfs stripes the file data across all PM NUMA nodes. 1 An ap-
plication thread issues a read system call. 2 Odinfs divides the
system call into multiple access requests based on the stripe size
and sends them to the delegation threads. 3 The delegation threads
read from PM in different NUMA nodes in parallel to service the
access requests. 4 The application thread returns.

application thread and informs the application thread when
the access completes.
Since only the delegation threads can access PM, they

effectively act as a central entity to arbitrate PM access. Re-
gardless of the application thread count, delegation threads
decide the level of concurrent accesses to PM. Thus, Odinfs
accesses PM with a thread count that avoids the PM perfor-
mance collapse with many concurrent access threads (§2.2).
This effectively achieves the arbitration design goal. Since
the delegation threads are in the same NUMA node as PM,
Odinfs always access PM locally, in either All-local or PM-
local setup (§2.3). Thus, Odinfs minimizes the PM NUMA
impact, achieving the NUMA-aware design goal.
(3) Automatic parallelization at the system call bound-
ary. The data striping and the delegation threads allow
Odinfs to serve IO requests from applications in parallel
across all the NUMA nodes. Moreover, the POSIX inter-
face enables Odinfs to automatically parallelize the requests
without modifying applications. Specifically, Odinfs divides
all data system call (e.g., read, write, pread, writev) requests
into multiple independent sub-requests based on the stripe
size, and sends them to the corresponding delegation threads.
The delegation threads then execute these requests by ac-
cessing PM in different NUMA nodes in parallel. Figure 5
illustrates the case. In this way, Odinfs achieves the auto-
matic parallelization design goals.
(4) High scalability with full PM performance. Delegat-
ing PM access allows Odinfs to maximize PM performance.
Odinfs further maximizes concurrent accesses to ensure
applications can benefit from the performance gains even
under the high contention case. Specifically, most existing
PM file systems globally protect the inode [2, 17, 25, 41].
Odinfs further increases the disjoint data access parallelism

with a readers-writer range lock for each inode. This enables
concurrent writes to disjoint regions and concurrent reads
from the same file region. The use of range lock poses a sig-
nificant challenge for enforcing crash consistency. Odinfs
overcomes this issue by preserving the whole inode lock and
falling back to it for concurrency control if needed. (§3.7).
Odinfs design novelty. To the best of our knowledge,
Odinfs is the first PM file system that addresses the goal of
access arbitration and automatic parallelization. While some
NUMA-aware file systems mitigate PM NUMA impact [25],
they either move computation to data [25], or move data
to computation [42]. Odinfs proposes a fundamentally dif-
ferent approach by using the delegation to minimize the
NUMA impact. Furthermore, Odinfs extends the scope of
the NUMA-aware file systems. Instead of focusing only on
minimizing the NUMA impact, Odinfs takes a radical ap-
proach of parallelizing and striping data across all PMNUMA
nodes for the best performance. Moreover, our controlled
PM access approach also minimizes I/O amplification (§2.2),
leading to lowwrite amplification. Lower write amplification
further increases the life of the PM device and minimizes the
long latency that happens due to wear leveling [39].
3.3 Handling system calls
Odinfs is a POSIX-compliant in-kernel file system. A key
novelty in Odinfs is the PM access delegation. However,
since delegation incurs communication overhead, Odinfs
does not delegate small PM accesses (§3.5). As a result, the
delegation threads only perform data operations, while the
metadata operations (e.g., open, close) are handled by ap-
plication threads. Furthermore, application threads directly
access PM for small data operations.
Handling bulk data operations with delegation. After
issuing a data system call (e.g., write) and entering into the
kernel space, the application thread divides the requests into
multiple sub-requests, each consisting of a data stripe (§3.4).
For each access request, the application thread walks the
indexing structure and obtains the corresponding address
on PM and the NUMA domain. It then enqueues the request
(e.g., source and destination memory address, access length)
on a corresponding ring buffer of the PM NUMA node. Af-
ter enqueueing all requests, the application thread waits for
delegation threads to complete and then returns to the user
space. Meanwhile, a delegation thread receives the request
via the ring buffer. The delegation thread dequeues the re-
quest and accesses PM on behalf of the application thread
by copying the data between PM and the specified DRAM
buffer. After completing the request, the delegation threads
notify the application threads.
3.4 NUMA-aware PM allocation

NUMA-aware allocator. To operate onmultiple PMNUMA
nodes and stripe file data across them (§3.2),Odinfs designs a
NUMA-aware PM allocator. Odinfs inherits the performant
and scalable allocator design from NOVA and WineFS and ex-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    183



tends the allocator design to handle multiple PM NUMA
nodes. Odinfs uses a per-CPU allocator residing on DRAM,
in which each CPU owns multiple private PM pools, each
corresponding to one PM NUMA node (Figure 4). Block allo-
cation works as follows: The allocator receives the allocation
request with a block size and a NUMA node as arguments.
It first tries to serve the request from its own per-CPU PM
pool. If that fails, it tries to serve the requests from the pool
in the specified NUMA node having the largest free space. If
both attempts fail, the allocator returns an error.

Layout policy. Odinfs employs different layout policies
for file data, indexing structure, and other metadata. Odinfs
stripes the file data across all PM NUMA nodes to enable
parallel access (§3.2). Since Odinfs does not delegate small
PM accesses (§3.5), it optimizes for small files by placing the
first stripe of each file in the local PM node as the creation
thread, if possible. This assumes that the following accesses
are likely from the same NUMA node thanks to temporal lo-
cality. Odinfs places the remaining stripes in a round-robin
fashion across all PM NUMA nodes. With our system, the
memory controller in each NUMA node interleaves six PM
DIMMs at 4KB granularity. Therefore, we set the stripe size
as 32KB to maximize PM performance. Since Odinfs does
not delegate access to the indexing structure, Odinfs places
it in PM local to the CPU that creates the file, leveraging
temporal locality. Regarding other metadata, Odinfs places
the superblock in the first PM NUMA node and per-CPU
metadata (e.g., journaling) in the local PM node (Figure 4).

3.5 Opportunistic delegation

Since delegating PM accesses involves communication over-
head, it is not always beneficial, especially for small accesses.
Thus,Odinfs performs opportunistic delegation only for PM
accesses that might improve the performance. Based on our
performance analysis (§2), Odinfs uses different delegation
policies for PM reads and writes.

Write access. Odinfs always delegates write accesses with
an access size larger than 256 bytes (XPBuffer size) to limit
the performance collapse and minimize the NUMA impact.

Read access. Unlike writes, Odinfs chooses a more re-
laxed policy for delegating reads. Specifically, PM read per-
formance starts to collapse with a high thread count (> 56).
Furthermore, the PM read performance can be restored af-
ter repetitive remote reads (PM-remove vs. PM-remote-2nd
in Figure 3). Thus, Odinfs checks the number of threads
that read from each PM NUMA node for every fixed inter-
val. If it finds that for one PM NUMA node, the number of
threads is constantly higher than the collapse threshold (56),
Odinfs arbitrates access to that PM device by using the same
policy as write. Otherwise, Odinfs only delegates the read
accesses that may benefit from the automatic parallelization
(i.e., those with access size larger than the stripe size: 32KB).
We find this policy is enough to achieve good performance.

Saving CPU cycles. A delegation thread uses a variant of
the spin-then-park strategy to 1) avoid wasting CPU cycles
when there is no request and 2)minimize the long latency due
to naively parking and waking up threads [26]. Odinfs uses
the IO size of application threads as a heuristic to decide the
length that a delegation thread should spin before parking.
The spinning is inversely proportional to the IO request
size. For example, for large IO requests, delegation threads
spin for a shorter duration because they can amortize the
parking/wake-up latency by handling long requests. On the
other hand, delegation threads spin for a longer duration for
small IO requests, since we assume that application threads
are likely to issue sparse requests in this case. We find that
this heuristic works well for every evaluated workload.
3.6 Concurrency control
Prior in-kernel PM file systems [17, 25, 41] rely on VFS’s
inode lock for concurrency control. Inspired by recent
works [12, 36], Odinfs increases fine-grained access to a
file with a per-inode readers-writer range lock. The lock
allows parallel writes to disjoint regions, while concurrent
reads on the same region in a file. The existing concurrency
control mechanisms still protect other operations.
3.7 Crash consistency

Consistency mode. Odinfs currently supports two consis-
tency modes: POSIX and sync [24]. The POSIX mode guar-
antees that all metadata operations are synchronous and
atomic (e.g., ext4). The sync mode is the default setup that in
addition to POSIX mode, further ensures that all data opera-
tions are synchronous but not atomic. Specifically, when the
system call returns, the data is guaranteed to persist on PM.
However, a crash may cause data operations being partially
completed. This provides the same guarantee as PMFS and the
“relaxed mode” of NOVA. If required, we can extend Odinfs to
provide other consistency modes [24, 25, 41].
Atomic updates and per-CPU journaling. Odinfs pro-
vides metadata crash consistency with atomic updates [17]
and per-CPU journaling [41]. Intel architecture only sup-
ports 8 bytes as atomic updates and (aligned) 16 bytes with
the double compare-and-exchange operation. Odinfs lever-
ages this to update simple metadata whenever possible. For
complex metadata updates, Odinfs leverages journaling for
crash consistency. Note thatOdinfs does not need to journal
file data for its current consistency models. Odinfs inher-
its the per-CPU undo journal design from WineFS [25]. As
detailed below, Odinfs ensures a file can only be in one per-
CPU journal at any time. Hence, Odinfs can recover from
the per-CPU journals by using a global transaction ID.
Ensuring crash consistency with range locks. Since
the range lock allows multiple threads to access the same
file (§3.2), ensuring crash consistency becomes a challenge.
Odinfs addresses this issue by maintaining an invariant that
a file can only be in one per-CPU journal. The key idea is
that if a thread performs any operation that requires jour-

184    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



naling, it must acquire the writer lock of the whole inode
lock for exclusiveness, even if this may reduce concurrency.
Specifically,we classify data operations into three types: read,
overwrite (writes to an existing file block), and unallocated
write (writes to an unallocated file block, such as appending
a file or writing to holes in a sparse file). Only the metadata
stored in the inode, such as access ormodification time, needs
to be updated for read and overwrite. Following PMFS strat-
egy, Odinfs stores these fields in a 16-byte PM block and
updates them atomically without journaling. Hence, Odinfs
can allow concurrent reads and overwrites to the same file.
However, an unallocated write updates both inode and mul-
tiple blocks in the indexing structure and thus requires jour-
naling. Hence, Odinfs only allows one thread to perform
unallocated write at a time to maintain the invariance.

Thus, for reads, Odinfs acquires the reader lock of the
whole inode lock and reader lock of the relevant range in
the range lock. For writes, Odinfs distinguishes between
overwrite and unallocated write. Odinfs first acquires the
reader lock of the whole inode lock and walks the indexing
structure to identify whether the write involves writing to
unallocated blocks. No journaling is required if the write only
updates allocated blocks (i.e., overwrite). Hence, the thread
can proceed by acquiring the writer lock of the relevant
range in the range lock. Otherwise, it is an unallocated write
and requires journaling. The thread then upgrades from the
reader lock to the writer lock of the whole inode lock to
ensure the inode is only in one per-CPU journal.

4 Odinfs implementation

File system implementation. We modify and extend
PMFS [17] to design and implement Odinfs, while also re-
ferring to NOVA [41] and WineFS [25]. In summary, the inode
table consists of multiple blocks forming a linked list. The
directory data structure is similar to a linked list. The in-
dexing structure of a regular file is a B-tree. Crash consis-
tency is achieved with atomic updates and undo journaling
(§3.7). Odinfs maintains the inode allocator, block alloca-
tor, and cached directory entries in DRAM with red-black
trees. The state of the inode and block allocator needs to
persist across power cycles. Thus, Odinfs writes their state
to PM during unmount and reads from PM during mount.
Upon crash, Odinfs recovers the state by scanning used
inodes and their indexing structures. To minimize the syn-
chronization overhead, inode allocator, block allocator, inode
table, and journaling use per-CPU data structures. To han-
dle complex metadata operations, such as rename or mmap,
Odinfs follows PMFS by using the synchronization mech-
anisms in both VFS and the file system. We implemented
Odinfs as a kernel module for the 5.13.13 Linux kernel and
thus, its deployment challenges andmanageability are similar
to other in-kernel file systems. Odinfs is publicly available
at https://github.com/rs3lab/Odinfs.

Efficient communication with delegation threads. Ap-
plication and delegation threads communicate via a ring
buffer (§3.3). To minimize communication overhead, we
adopt the scalable ring buffer implementation from Sol-
ros [32]. Furthermore, each delegation thread has its private
ring buffer to reduce the contention. The application threads
send requests to a random delegation thread in the target
NUMA node to load balancing delegation threads. We choose
this algorithm since it incurs minimal runtime overheadwith-
out central coordination while achieving good performance.
For PM access request notification, we use a pair of per-
NUMA counters: issued counter and completed counter. The
application thread increases the issued counter for each re-
quest, and sends the pointer of the completed counter. After
issuing all the requests, the application thread waits until
the number of issued request count on each NUMA node
equals the per-NUMA completed count, which is atomically
updated by delegation threads.
Accessing userspacememory via delegation. Delegation
threads do not have access to the application address space,
even though both of them are in the kernel space when
handling a system call. We resolve this issue by first letting
the application thread pre-faults and pins the user buffer
pages in the kernel. It then passes the user buffer along with
its root page table information (mm->pgd) to the delegation
thread. Upon receiving the request, the delegation thread
walks the page table for each user buffer page to figure out the
physical page. Since the Linux kernel maps all physical pages
into its address space linearly, the delegation threads can
obtain the corresponding kernel virtual address by adding
an offset. The delegationt threads can then access the user
buffer with the kernel virtual address.
Minimizing synchronization overhead. To achieve the
scalability design goal (§3.1), Odinfs further adopts state-of-
the-art synchronization mechanisms to minimize the syn-
chronization overhead. Specifically, Odinfs enhances the
readers-writer range lock (§3.6) with BRAVO [15]. BRAVO op-
timizes the reader side performance of a readers-writer lock
by leveraging a hash table, thus avoiding updating the shared
reader counters. As discussed in §3.7, since a thread only ac-
quires the writer lock of the whole inode lock for unallocated-
write, we use the readers-writer semaphore in [30] for the
whole inode lock. The per-CPU readers-writer semaphore
optimizes the reader side performance of the semaphore with
a per-CPU counter.
CPU usage fairness with delegation. To ensure fair-
ness, Odinfs charges the request serving time of delegation
threads to the application thread. Specifically, the applica-
tion thread passes a pointer to its CPU usage time (vruntime)
in each request, and the delegation threads thus atomically
update it accordingly.
Implementation limitations. In the current implemen-
tation, we pin each delegation thread on a particular CPU.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    185

https://github.com/rs3lab/Odinfs.


Furthermore, with the current Linux scheduler, if application
threads are also pinned to the same CPU, both the delega-
tion and the application threads’ performance will degrade.
We plan to explore a lightweight and more efficient thread
scheduling algorithm to address this issue.

5 Evaluation
We evaluate Odinfs by answering the following questions:

• How does opportunistic delegation affect Odinfs’ per-
formance? (§5.2)

• What is the I/O amplification factor of Odinfs? (§5.3)
• Does Odinfs scale with different delegation thread
counts and PM NUMA nodes? (§5.4)

• Does Odinfs scale data operations? (§5.5)
• How does Odinfs perform with real-world applica-
tions? (§5.6)

5.1 Evaluation methodology
Evaluation environment.We conduct our evaluation on an
eight-socket server. Each socket equips a 28-core Intel Xeon
processor (224 cores in total) and six 128GB Intel Optane
DIMMs interleaved at 4KB (768GB on each NUMA node).
The machine has a total DRAM size of 768GB, with two A100
and two A5000 Nvidia GPUs. The server is running Linux
kernel v5.13.13 and hyper-threading is disabled.
Odinfs configuration and target comparisons. Unless
otherwise mentioned, we configure Odinfs to run on all
eight NUMA nodes with twelve delegation threads on each
NUMAnode. We evaluate and compareOdinfswith four PM
file systems: ext4 [2], PMFS [17], NOVA [41], and WineFS [25].
We configure ext4with the DAX option and all the other file
systems with the default setup. They provide weaker or the
same level of consistency as Odinfs (§3.7). Since these four
file systems operate on a single PM NUMA node, we further
include one setup: ext4(RAID0). Specifically, we create a
RAID0 across all eight PM NUMA nodes using dm-stripe [1]
and mount ext4 on top of it. We cannot run RAID0 with the
other file systems because unlike ext4, other PM file systems
access the PM storage device by memory mapping it into the
kernel address space and accessing it with load and store. The
RAID0 device created by PM block devices does not support
memory mapping to the kernel address space. Because of
this, existing PM file systems crash at the time of mounting.
To the best of our knowledge, ext4(RAID0) is the only

available setup that utilizes all the PM NUMA nodes.3 How-
ever, we further emulate a non-existent setup: NOVA(MN)
(NOVA with multiple nodes) to estimate the performance of a
NUMA-aware NOVA. Specifically, we mount a single instance
of the NOVA file system on each NUMA node and evenly dis-
tribute the testing files among instances.
Workload. Our workloads include a wide range of file
system use cases, covering both data- and metadata-
intensive ones. For microbenchmarks, we chose fio [4] and

3WineFS crashed when mounting on multiple PM NUMA nodes on our
server.

FxMark [31] to measure throughput, latency, and scalabil-
ity, respectively. We configure fio to let each thread access
a 1GB private file. We only show the results of sequential
access due to space limitations and confirm that random ac-
cess yields similar results. We evaluate fio with both small
(4KB) and large (2MB) access sizes. For macrobenchmarks,
we use Webserver, Fileserver, Videoserver, and Varmail in
Filebench [3] and DNN checkpointing.
5.2 Throughput and latency

0

40

80

120

160

200

240

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

10

20

30

40

50

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

30

60

90

120

150

180

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0
10
20
30
40
50
60
70

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

0.5

1

1.5

2

2.5

ext4 PMF
S
NO

VA
WineF

S
ext4

(rai
d)

Odi
nfs

0

4

8

12

16

ext4 PMF
S
NO

VA
WineF

S
ext4

(rai
d)

Odi
nfs

Th
ro
ug

hp
ut

(G
iB
/s
) ext4

PMFS

NOVA

WineFS

(a) 4K read

ext4(RAID0)

NOVA(MN)

Odinfs

(b) 4K write

Th
ro
ug

hp
ut

(G
iB
/s
)

# threads

(c) 2M read

# threads

(d) 2M write

Th
ro
ug

hp
ut

(G
iB
/s
)

(e) 4K-one-thread

Read
Write

(f) 2M-one-thread

Figure 6: Throughput of evaluated file systems with up to 224
threads. Odinfs scales and outperforms others by up to 24.7×, as it
utilizes all PM NUMA nodes and controls concurrent PM accesses.
Throughput. We use fio to evaluate Odinfs’s throughput
and latency. Figure 6 shows the throughput of all evaluated
file systems. For 4K-read, when the thread count is low (≤
28), all the evaluated file systems perform similarly. How-
ever, only Odinfs and NOVA(MN) scale beyond one NUMA
node, outperforming other file systems by 9.4× with 224
threads. For 4K-write, when the thread count is less than
eight, Odinfs suffers from the communication overhead due
to delegation and is up to 62% slower than other file systems.
However, when the thread count reaches a certain thresh-
old, the throughput of ext4, PMFS, and NOVA starts to collapse
due to the reducing efficiency of XPBuffer and XPPrefetcher
(§2.2). Instead, Odinfs can maintain its throughput thanks
to limiting PM accesses, outperforming others by up to 8.1×.

With the 2MB access size, Odinfs benefits from accessing
all PM NUMA nodes in parallel to serve IO requests. As a
result, Odinfs outperforms other file systems even with a

186    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



low thread count. Odinfs allows applications to utilize most
PM bandwidth with eight threads for write and 28 threads for
read. Odinfs similarly scales both read and write through-
put, outperforming other file systems by 1.1× to 24.7×, and
up to 14.8× for 2M-read, and 2M-write, respectively. The
throughput drop in Odinfs with 2M-read is likely due to
the increasing contention in the ring buffer or the shared
counters §4. We plan to address this issue by investigating
mechanisms to further increase the scalability of the com-
munication mechanisms.

Odinfs scales because (1) Odinfs utilizes all the PM
NUMA nodes in the system , and (2) it limits the num-
ber of PM access threads to avoid the performance col-
lapse. ext4(RAID0) and NOVA(MN) similarly utilize all the PM
NUMA nodes and thus performs closest to Odinfs. How-
ever, ext4(RAID0) and NOVA(MN) only scale read operations.
ext4(RAID0) cannot scale 4K-read due to a scalability bot-
tleneck in small reads (§5.5). With 2M-read, they only reach
the throughput of Odinfs with a high thread count.
Summary: For small I/O requests, Odinfs incurs overhead
with a small thread count but preserves PM performance
with a large thread count. For large I/O requests, Odinfs
benefits from handling them by paralleling accesses to PM
NUMA nodes. This allows an application to utilize most of
the PM bandwidth even if it has a small thread count. In
summary, Odinfs scales both read and write operations for
both small and large I/O sizes.

0

10

20

30

40

50

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

80

160

240

320

400

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

300

600

900

1200

1500

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

1000

2000

3000

4000

5000

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

La
te
nc
y
(µ
s)

ext4

PMFS

NOVA

(a) 4K read-50%

WineFS

ext4(RAID0)

Odinfs

(b) 4K read-99%

La
te
nc
y
(µ
s)

# threads

(c) 4K write-50%

# threads

(d) 4K write-99%

Figure 7: The median and 99 percentile latency of the evaluated
file systems with a 4KB access size. Odinfs constantly maintains
the low latency due to delegating PM accesses, avoiding the perfor-
mance collapse within and across NUMA nodes.

Latency. Figure 7 presents the mean and the 99 percentile
latency of all the evaluated file systems. For all the other
file systems, increasing threads lead to either contention on
PM or suffering from PM NUMA impact, resulting in sky-
rocketing latency. Thanks to delegation, Odinfs constantly

maintains low latency. Its median and 99 percentile are 2.8µs
and 5.7µs for 4K-read, 5.4µs to 12.0µs and 6.3µs to 32.4µs for
4K-write, respectively, outperforming the other file systems
by up to 190×. Odinfs consistency has lower latency than
ext4(RAID0). The lowest median latency of other file sys-
tems is 1.6µs for 4K-read and 2.6µs for 4K-write with one
thread. However, their latency quickly worsens after sixteen
read threads and eight write threads. With a 2MB access size,
the trend is similar. The performance advantage of Odinfs
is even higher due to parallelization.
Summary : Delegating PM accesses enablesOdinfs to main-
tain low latency.
5.3 IO amplification

0.5

1

1.5

2

2.5

0 50 100 150 200 250
0.5

1

1.5

2

2.5

0 50 100 150 200 250

IO
am

pl
ifi
ca
tio

n

# threads

ext4

NOVA

PMFS

(a) 2M read

# threads

WineFS

Odinfs

(b) 2M write

Figure 8: The read and write IO amplification of the evaluated file
systems. Odinfs achieves low IO amplification since delegation
maintains the caching/prefetching efficiency.

The conventional wisdom is that IO amplification is rel-
evant for traditional storage devices (especially SSD) but
not for PM since it is byte-addressable. However, due to the
access size mismatch between the memory controller and
the PM storage media, PM also suffers from IO amplifica-
tion if the internal caching/prefetching becomes inefficient
(§2.2). A high IO amplification reduces the PM lifetime and
causes a latency spike triggered by the internal wear-leveling
operation [43]. Thus, a PM file system must reduce it.
We report the I/O amplification as the number of bytes

read from (or written to) the underlying PMmedia divided by
the number of bytes requested (or issued) by the CPUs. We
use Intel PMWatch [9] to obtain the relevant data. Figure 8
shows the I/O amplification for different file systems with the
same setup in §5.2. Odinfs constantly achieves a low IO am-
plification (i.e., less PM-level IO incurred for the same work-
loads) with increasing threads since delegation limits con-
current accesses and thus preserves the caching/prefetching
efficiency. All other file systems suffer from a high IO am-
plification rate (i.e., more PM-level IO incurred for the same
workload), validating their low throughput (Figure 6) and
high latency (Figure 7).
Summary : I/O amplification is still relevant for PM. Odinfs
maintains a balance of amplification and high PM utilization.
Our delegation scheme limits concurrent accesses, which
maintains the caching/prefetching efficiency.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    187



5.4 Sensitivity analysis

This section presents how delegation thread counts and PM
NUMA nodes affect Odinfs’s performance. We use the same
experimental setup in §5.2.

0
30
60
90

120
150
180
210
240

0 50 100 150 200 250
0

10

20

30

40

50

0 50 100 150 200 250

0

40

80

120

160

200

0 50 100 150 200 250
10

20

30

40

50

60

70

0 50 100 150 200 250

Th
ro
ug

hp
ut

(G
iB
/s
) 4 threads

8 threads
12 threads

(a) 4K read

14 threads
20 threads

(b) 4K write

Th
ro
ug

hp
ut

(G
iB
/s
)

# threads

(c) 2M read

# threads

(d) 2M write

Figure 9: Odinfs’s throughput with different delegation threads.

Odinfs with varying delegation threads. The optimal
number of delegation threads for Odinfs depends on many
factors, such as the relative speed between the processor
and PM. Thus, we run experiments that vary the delegation
thread counts to find the optimal one for our system.
Figure 9 shows the results. With 4K-read, the delegation

thread counts have no impact because Odinfs does not del-
egate read accesses (§3.5). With 2M-read, the throughput is
close to being saturated with twelve delegation threads but
continues to increase until twenty delegation threads. With
4K-write and 2M-write, the throughput of Odinfs increases
with up to eight or twelve delegation threads, respectively.
Hence, we chose twelve delegation threads as the default
setup for Odinfs since it performs well in all four setups.

Summary : The optimal delegation thread number in
Odinfs depends on many factors and thus should be de-
cided with experiments. Twelve delegation threads achieve
a balanced performance in our system.
Odinfs with varying PM NUMA nodes. Figure 10 shows
Odinfs’s throughput with a different number of PM NUMA
nodes. For 4K-read, Odinfs enables delegation to prevent
throughput collapse after 56 threads with one PM NUMA
node and 112 threads with two PM NUMA nodes (§3.5). For
the other three setups,Odinfs always delegates PM accesses.
The results show that (1) Odinfs can maintain the through-
put with a high thread count for different numbers of PM
NUMA nodes, and (2) Odinfs scales PM performance with
increasing PM NUMA nodes.

0

40

80

120

160

200

0 50 100 150 200 250
0

10

20

30

40

50

0 50 100 150 200 250

0

30

60

90

120

150

180

0 50 100 150 200 250
0

10
20
30
40
50
60
70

0 50 100 150 200 250

Th
ro
ug

hp
ut

(G
iB
/s
) 1 PM node

2 PM nodes

(a) 4K read

4 PM nodes
8 PM nodes

(b) 4K write

Th
ro
ug

hp
ut

(G
iB
/s
)

# threads

(c) 2M read

# threads

(d) 2M write

Figure 10: Odinfs with different numbers of PM NUMA nodes.

Name Description

DRBL Each thread reads a private block in a private file.
DRBM Each thread reads a private block in a shared file.
DRBH Each thread reads a shared block in a shared file.
DWOL Each thread overwrites a private block in a private file
DWSL Same as DWOL plus an fsync() after each writes
DWAL Each thread appends to a private file
DWOM Each thread writes to a private block in a shared file

Table 1: Summary of microbenchmarks in the FxMark suites [31].
Each thread repetitively performs the corresponding operations in
each microbenchmark.

Summary : Odinfs scales PM performance with increasing
PM NUMA nodes because of its efficient delegation scheme,
showing the generality of its design.
5.5 Datapath scalability
To test whether Odinfs achieves the scalability design goal,
we evaluate it with FxMark [31] microbenchmark suites.
Odinfs mainly focuses on data operations and partially
reuses the scalable data structures in NOVA and WineFS for
metadata scalability. Hence, we focus on evaluating the scal-
ability of data operations. Table 1 summarizes the FxMark
microbenchmarks used in the evaluation. We use all the
data operation microbenchmarks from FxMark except DWTL,
where each thread concurrently truncates a private file; DWTL
does not involve typical data operations (i.e., read or write),
and thus we view it as a metadata microbenchmark.

Figure 11 shows the scalability results of the evaluated file
systems. Among the compared file systems, only PMFS and
NOVA can scale one microbenchmark: DRBL. Instead, Odinfs
scales all seven evaluated microbenchmarks. For read mi-
crobenchmarks, Odinfs is 12% slower than PMFS in DRBL.
However, Odinfs outperforms other file systems by around
233× and 269× in DRBM and DRBH, respectively. For DRBM
and DRBH, all other evaluated file systems suffer from the

188    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0

100

200

300

400

500

600

0 50 100 150 200 250
0

100

200

300

400

500

600

0 50 100 150 200 250

0

100

200

300

400

500

0 50 100 150 200 250
0
1
2
3
4
5
6
7
8

0 50 100 150 200 250

0

0.5

1

1.5

0 50 100 150 200 250
0

1

2

3

4

0 50 100 150 200 250

op
s/

µs

ext4

PMFS

NOVA

DRBL

WineFS

ext4(RAID0)

Odinfs

DRBM

op
s/

µs

DRBH DWOL

op
s/

µs

DWOM DWAL

Figure 11: Scalability of data operations with the evaluated file
systems. DWSL is not shown since its result is the same as DWOL.
Other evaluated file systems only scale DRBL while Odinfs scales
all microbenchmarks, thanks to controlling PM accesses, scalable
metadata structures and concurrency control mechanisms, and the
unique readers-writer range lock.

default readers-writer semaphore implementation in the
Linux kernel, resulting in high locking overhead. The scal-
ability of Odinfs comes from the unique scalable synchro-
nization mechanisms (per-CPU readers-writer semaphore
and BRAVO on top of the range lock) that minimize the
synchronization overhead (§3.6, §4).

For write microbenchmarks, Odinfs outperforms other
file systems by 53.8×, 8.2×, and 8.3× in DWOL (DWSL)4, DWAL,
and DWOM, respectively. Odinfs scales DWOL and DWSL due to
arbitrating PM accesses and thus prevents performance col-
lapse caused by concurrent writes.Odinfs scales DWOL due to
arbitrating PM accesses and the scalable allocator design. In
addition to arbitrating PM accesses and the scalable allocator,
Odinfs scales DWOM with the readers-writer range lock.

Summary : While other evaluated file systems only scale
DRBL, Odinfs scales all seven evaluated microbenchmarks
with PM access control, scalable metadata structures, scalable
concurrency control mechanisms, and the unique readers-
writer range lock.

Name # Files Avg. file size I/O size (r/w) R/W

Fileserver 10K 2MB 1MB / 256KB 1:2
Webserver 20K 4MB 1MB / 256KB 10:1
Videoserver 226 512MB 1MB / 1MB 27:1
Varmail 100K 16KB 1MB / 16KB 1:1

Table 2: Configuration of the Filebench workloads. Fileserver, Web-
server, and Videoserver is data-intensive with large I/Os. Varmail
is metadata-intensive with small I/Os, representing the worst case
for Odinfs. Webserver and Varmail are write-intensive while File-
server and Videoserver are read-intensive.

5.6 Macrobenchmarks
We use a set of benchmarks from Filebench [3] as mac-
robenchmarks to evaluate Odinfs. We select four bench-
marks: Fileserver, Webserver, Videoserver, and Varmail with
configurations shown in Table 2. We configure Fileserver,
Webserver, and Videoserver to work on relatively large files,
reflecting the trend of growing sizes with these types of files.
Varmail works on a large number of small files and performs
small IO, representing the worst case for Odinfs. Webserver
and Videoserver are read-intensive while Fileserver and Var-
mail are write-intensive. For Videoserver, since not all the
threads are doing the same task, we measure the overall
read and write throughput. For the other benchmarks, we
measure the number of operations per second.
Figure 12 shows the result. For Fileserver, Odinfs out-

performs other file systems by 4.8× to 25.3×. For Web-
server, Odinfs outperforms all the single PM file systems
and ext4(RAID0) by at least 3.8× and 1.6× to 3.1×, re-
spectively. For Videoserver, Odinfs outperforms single PM
file systems by around 6.6× and at least 5.4× for read
and write throughput, respectively. Odinfs outperforms
ext4(RAID0) by up to 2.3× for read throughput and around
7.3× for write. For these benchmarks, Odinfs’s perfor-
mance advantage comes from delegating PM accesses to
preserve the maximum performance and utilizing the band-
width of all the PM NUMA nodes. For read-intensive bench-
marks: Webserver and Videoserver, ext4(RAID0)’s perfor-
mance matches Odinfs with large thread counts, which is
consistent with results in §5.2. However, Odinfs still out-
performs ext4(RAID0) by 1.6× with 224 threads for Web-
server. ext4(RAID0) achieves the same read throughput for
Videoserver with high thread counts. However, this is be-
causeOdinfs still maintains around 4GiB/s write throughput
while ext4(RAID0) completely starves the write threads.

Varmail is the worst case forOdinfs since delegating small
I/Os incurs large communication overhead. However, the
results show that Odinfs can maintain the similar perfor-
mance as NOVA and WineFS. Odinfs outperforms PMFS, ext4,
and ext4(RAID0) by 6.0× to 32.7×. The performance advan-
tage of Odinfs, NOVA, and WineFS comes from the scalable

4The DWSL result is the same as DWOL since all evaluated file systems treat
fsync() as a no-op.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    189



0

40

80

120

160

200

0 50 100 150 200 250
0

30

60

90

120

150

0 50 100 150 200 250

0
20
40
60
80

100
120
140

0 50 100 150 200 250
0

2

4

6

8

10

0 50 100 150 200 250

0

100

200

300

400

0 50 100 150 200 250

KO
ps
/s
ec

ext4

PMFS

NOVA

WineFS

ext4(RAID0)

Odinfs

(a) Fileserver (b) Webserver

Th
ro
ug

hp
ut

Gi
B/
s

(c) Videoserver-read

# threads

(d) Videoserver-write

KO
ps
/s
ec

# threads

(e) Varmail

Figure 12: Results of the Filebench benchmarks. See Table 2 for
configurations. Results show that Odinfs continue to scale PM
performance with macrobenchmarks. Odinfs behaves the same as
NOVA in the worst-case scenario: Varmail.

metadata structures (e.g., in-memory directory indexing and
per-CPU inode table).

Model VGG16-ImageNet1K BERT-SQuAD
Frequency (Steps/ckpt) 34 86
Checkpoint Size (MB) 1055 3828

Table 3: Machine learning checkpointing workloads setup. We use
the same frequencies as [33]. A step refers to a training mini-batch.

Machine learning checkpointing. We also evaluate
Odinfs with deep neural networks (DNN) checkpointing.
DNN training is a time-consuming process and thus must
checkpoint its state into persistent storage for fast failure
recovery [33]. PM allows high frequency checkpointing and
thus minimizes the window of losing work. Table 3 lists
models and datasets we use. We measure the end-to-end ex-
ecution time of training one epoch with checkpointing and
the time spent in the file systems. Figure 13 shows the result.
Odinfs results in end-to-end execution time reduction over
the evaluated file systems by at least 2.6% on VGG16 and
12.3% on BERT. When looking into the time spent in the file
systems, Odinfs outperforms evaluated file systems by at
least 3.9× on VGG16 and 5.7× on BERT.

0

1

2

3

4

5

6

7

BERT VGG16
0

1000

2000

3000

4000

5000

6000

7000

BERT VGG16

Ti
m
e
pe
rc

he
ck
po

in
t(
s)

Odinfs
PMFS

NOVA

WineFS

ext4

ext4(RAID0)

(a) Time spent in file system

Ti
m
e
(s)

(b) End-to-end time for training 1 epoch

Figure 13: Machine learning checkpointing benchmark.

Summary :Odinfs continues to scale PM performance with
macrobenchmarks. Odinfs achieves similar performance to
state-of-the-art PM file systems in its worst-case scenario.

6 Discussion
6.1 PM I/O scheduling
The Videoserver result in §5.6 indicates that PM file systems
similarly need to employ I/O scheduling as traditional file
systems do to, for example, ensure fairness among applica-
tions [21, 44]. An I/O scheduling algorithm can be imple-
mented in the system call, page cache, or block layer. Prior
research has shown that an I/O scheduling algorithm is more
effective if implemented across the various layers of the stor-
age stack [44]. Existing PM file systems [2, 17, 25, 41] bypass
the page cache and access PM directly with loads and stores.
Hence, they can only implement the I/O scheduling algo-
rithm in the system call layer, limiting the effectiveness of
the scheduling algorithm.
Since Odinfs forces application threads to delegate bulk

PM accesses to the delegation threads, the delegation threads
thus become a central entity to access PM, acting similarly
to the block layer in the traditional storage stack. Hence, the
delegation enablesOdinfs to perform I/O scheduling in both
the system call layer and block layers. Exploiting this unique
feature, we plan to extend Odinfs to support various I/O
scheduling algorithms to ensure fairness or prevent head-of-
line blocking to further improve its performance.
6.2 Comparison against RAID0
Odinfs’s data layout policy is similar to RAID0 in that it
stripes data across multiple PM NUMA nodes in a round-
robin manner (§3.4). However, unlike RAID0, Odinfs em-
ploys PM-specific optimizations for small files (i.e., put the
first file stripe in the local PM of the creation threads). Fur-
thermore,Odinfs stripes in the file level while RAID0 stripes
in the disk level. Odinfs thus maximizes parallelization by
ensuring adjacent file stripes are highly unlikely in the same
PM NUMA node.
A fundamental difference between Odinfs and RAID0 is

that Odinfs delegates PM access. As discussed across the
paper, this enables Odinfs to avoid the bandwidth collapse
with many access threads, minimize the PM NUMA impact,

190    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



and access PM in parallel, thus maximizing the PM perfor-
mance. A typical RAID0 implementation achieves none of
the above tasks. As a result,Odinfs consistently outperforms
ext4(RAID0) with the evaluated benchmarks (§5).
6.3 Applicability to future PM hardware
Two of Odinfs’s design goals: localized PM access and ac-
cess arbitration, are based on the current implementation of
PM hardware (§2). Although there is a possibility that future
PM hardware may mitigate the above issues, we believe that
many of Odinfs’ designs will remain effective. Specifically,
the PM NUMA impact is mostly due to the implementation
of directory coherence information. Some of the recent Intel
two-socket machines support snoop protocol for PM, and a
prior work [27] has reported that the snoop protocol can sig-
nificantly mitigate the PM NUMA impact. However, we find
that many (large) multi-socket machines, only support direc-
tory coherence protocol. Hence, we believe that localized PM
access is still a practically important design consideration.

Excessive concurrent access leads to performance collapse
since it renders the on-DIMM caching and prefetching ineffi-
cient (§2.2). Furthermore, the access size mismatch between
the CPU (64 bytes) and the underlying storage media (256
bytes) exacerbates the performance collapse. It also reduces
the lifetime of the PM device due to the incurred I/O am-
plification. While it is difficult to predict the feasibility of
changing the PM access sizes in future PM hardware, we
expect that such changes would be non-trivial, especially
making the PM access size as small as the CPU access size.
This would require changes to other critical components in
a PM DIMM, such as the address indirection table (AIT) and
the DIMM-level prefetching logic. Furthermore, despite the
reduced PM access size, limiting concurrent access might
still be needed to avoid the performance degradation caused
by DIMM-level cache thrashing.

In summary, we expect that both localized PM access and
access arbitration will still be relevant for future PM hard-
ware. Moreover, since Odinfs only incurs a small delegation
overhead, it provides a “cost-effective” solution to the above
problems without hardware changes. In addition, Odinfs’
automatic parallelization design will remain useful to utilize
the aggregated PM bandwidth across NUMA nodes without
modifying the application code. We believe that the auto-
matic parallelization design can be further generalized to
other present or future storage systems (e.g., CCIX-based
storage systems [13]).

7 Limitations
Extra CPU usage. Odinfs’s design incurs additional CPU
usage due to parallelizing large PM accesses and the commu-
nication between the application thread and the delegation
thread. Odinfs’s current design reduces the CPU usage by
pausing the delegation threads if there is no incoming re-
quest (§3.5). In addition, Odinfs can further trim down the
CPU usage by (1) offloading PM accesses to I/OAT DMA and

(2) disabling the delegation when there is no idle CPU on
one NUMA node.
Stripping overhead. Odinfs stripes the data of a file across
all NUMA nodes so that even a single-threaded application
can benefit from the aggregated PM bandwidth through au-
tomatic parallelization (§3.2). However, since the stripping
often involves remote access, while the delegation mecha-
nism already significantly mitigates the NUMA impact, the
stripping may reduce the best-case throughput and latency.
Specifically, without stripping, a best-case scenario occurs
when the application and the PM data are in the same NUMA
node. However, benefiting from such a scenario requires ex-
tra code development to remember the NUMA node where
the data resides and pin application threads to the NUMA
node, which also limits scheduling flexibility.

If an application does not benefit from the automatic par-
allelization and wishes to enjoy the best-case performance,
we expectOdinfs can work without stripping by placing the
data of a file on a single NUMA node. In this case, Odinfs
still achieves the other two design goals: (1) limiting con-
current accesses and (2) minimizing the PM NUMA impacts.
Large I/O accesses can still be parallelized to one NUMA
node but not all NUMA nodes as before.
Memory mapping. Due to stripping, Odinfs’s memory
mapping (mmap) performance is lower than other single-
NUMA-node PM file systems in the best-case scenario as
described above. To optimize this, Odinfs can use a copy-
then-mmap model similar to NOVA [41]. Specifically, upon
mmap, Odinfs allocates PM pages in the same NUMA node,
copies the file content in remote NUMA nodes to these pages,
and mmap the PM pages to the applications. Upon msync or
munmap,Odinfs propagates the changes in the replicated PM
pages back to the files.

8 Related work
PM file system. Unlike Odinfs, most existing PM file sys-
tems are designed to work on a single PM NUMA node and
do not limit the number of access threads [12, 16, 17, 24,
28, 34, 41], leading to PM performance collapse. In terms
of NUMA-aware PM file systems, Xu et al. proposed a new
ioctl command that allows applications to specify the pre-
ferred NUMA node of a file [42]. This approach requires
application changes and relies on the application to avoid
the NUMA impact. WineFS [25] assigns a home NUMA node
to each application thread and migrates the thread to the
home NUMA node before writing to PM. As acknowledged
by the authors, threadmigration is expensive. Furthermore, it
still suffers from the NUMA impact when two threads from
different home nodes share the same file. Unlike Odinfs,
none of these works focuses on utilizing both local and re-
mote PM simultaneously asOdinfs does. ext4(RAID0) [1, 2]
does not control the number of access threads nor resolve
the PM NUMA impact, leading to lower performance than
Odinfs in most cases.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    191



OtherNUMA-aware PM systems. PACTree uses the snoop
protocol to minimize the PM NUMA impact [27]. However,
the snoop protocol is unlikely to scale on large NUMA ma-
chines and may thus impact the performance of memory-
intensive applications. Nap caches frequently accessed items
in DRAM to avoid remote PM accesses [38]. However, Nap
relies on a skewed access pattern to benefit from caching and
still suffers from the PM NUMA impact upon cache misses.
Odinfs proposes a fundamental different approach that uses
delegation to address the PM NUMA impact.
Scalable file system. There are scalable file systems for both
traditional storage devices [11, 30, 36] and PM [12, 41]. NOVA
designs several scalable metadata structures, and Odinfs in-
herits them. Similar to Odinfs, there are file systems scaling
the data operations with range locks [12, 36]. The closest
work to Odinfs is KucoFS [12]. KucoFS is a PM file system
that scales metadata operations through bypassing the VFS
and scales data operations with range locks and versioned
read. However, KucoFS shows that it cannot scale data oper-
ation benchmarks in FxMark beyond fifteen threads, while
Odinfs scales all of them up to 224 threads. The difference is
that (1) Odinfs uses delegation to prevent PM performance
collapse while minimizing the NUMA impact. (2) Odinfs
uses state-of-the-art concurrency mechanisms which mini-
mize the synchronization overhead.
Localized I/O threads. Since PCIe devices also conform to
NUMA topology, utilizing localized I/O threads (i.e., placing
I/O threads in the same NUMA code as the I/O devices) is a
relatively common design in many non-PM systems [22, 35,
45]. To realize the old wisdom in PM systems, Odinfs has
encountered and resolved many unexplored challenges (§3,
§4), leading to a design significantly departs from the other
PM systems (§3.2).

9 Conclusion
This paper presentsOdinfs, a file system that maximizes PM
performance in NUMA machines. A key novelty in Odinfs
lies in decoupling the PM data accesses from the application
threads by offloading them to a set of delegation threads
in each NUMA node. Such decoupling simultaneously al-
lows Odinfs to preserve the maximum PM performance
with a single NUMA node, efficiently utilize PM in remote
NUMA nodes, and service system calls by accessing PM
in all NUMA nodes in parallel, thus maximizing the PM
performance. Odinfs further includes fine-grained synchro-
nization control mechanisms to scale all typical file system
data operations. Extensive evaluation shows that Odinfs
constantly outperforms existing PM file systems by several
times to orders of magnitude.

Acknowledgments
We sincerely thank our shepherd Oana Balmau and the
anonymous reviewers for their insightful feedback. Yunxin
Sun contributed to the evaluation. This work was in part

supported by Institute for Information and communications
Technology Promotion (IITP) grant funded by the Korean
government (MSIT) (No. 2014-3-00035).

References

[1] Device Mapper. https://www.kernel.org/doc/html/latest/
admin-guide/device-mapper/striped.html.

[2] Direct Access for files. https://www.kernel.org/doc/
Documentation/filesystems/dax.txt.

[3] Filebench - A Model Based File System Workload Generator . https:
//github.com/filebench/filebench.

[4] Flexible I/O Tester. https://github.com/axboe/fio.
[5] Directory Structure in Skylake Server CPUs, . https:
//community.intel.com/t5/Software-Tuning-Performance/
Directory-Structure-in-Skylake-Server-CPUs/td-p/
1185376.

[6] Intel® 64 and IA-32 Architectures Optimization
Reference Manual, . https://www.intel.com/
content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf.

[7] Intel Processor Counter Monitor (PCM), . https://github.com/
opcm/pcm.

[8] Intel Optane Persistent Memory, . https://www.intel.
com/content/www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[9] Intel PMWatch. https://github.com/intel/intel-pmwatch.
[10] T. E. Anderson, M. Canini, J. Kim, D. Kostic, Y. Kwon, S. Peter, W. Reda,

H. N. Schuh, and E. Witchel. Assise: Performance and Availability via
Client-local NVM in a Distributed File System. In Proceedings of the
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), Virtual, Nov. 2020.

[11] S. S. Bhat, R. Eqbal, A. T. Clements, M. F. Kaashoek, and N. Zeldovich.
Scaling a file system to many cores using an operation log. In Pro-
ceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP), Shanghai, China, Oct. 2017.

[12] Y. Chen, Y. Lu, B. Zhu,A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
J. Shu. Scalable Persistent Memory File System with Kernel-Userspace
Collaboration. In Proceedings of the 19th USENIX Conference on File
and Storage Technologies (FAST), Virtual, Feb. 2021.

[13] T. C. Consortium. Home Is Where the Memory Is, 2022. https://
www.ccixconsortium.com/home-is-where-the-memory-is/.

[14] B. Daase, L. J. Bollmeier, L. Benson, and T. Rabl. Maximizing Persistent
Memory Bandwidth Utilization for OLAP Workloads. In Proceedings
of the 2021 ACM SIGMOD/PODS Conference, Xi’an, Shaanxi, China,
May 2021.

[15] D. Dice and A. Kogan. BRAVO: Biased Locking for Reader-Writer
Locks. In Proceedings of the 2019 USENIX Annual Technical Conference
(ATC), Renton, WA, July 2019.

[16] M. Dong, H. Bu, J. Yi, B. Dong, and H. Chen. Performance and Protec-
tion in the ZoFS User-space NVM File System. In Proceedings of the
27th ACM Symposium on Operating Systems Principles (SOSP), Ontario,
Canada, Oct. 2019.

[17] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson. System Software for Persistent Memory.
In Proceedings of the 9th European Conference on Computer Systems
(EuroSys), Amsterdam, The Netherlands, Apr. 2014.

[18] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali. Single Machine
GraphAnalytics onMassive Datasets using Intel Optane DC Persistent
Memory. In Proceedings of the 46th International Conference on Very
Large Data Bases (VLDB), Tokyo, Japan, Aug. 2020.

192    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/striped.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/striped.html
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://github.com/axboe/fio
https://community.intel.com/t5/Software-Tuning-Performance/Directory-Structure-in-Skylake-Server-CPUs/td-p/1185376
https://community.intel.com/t5/Software-Tuning-Performance/Directory-Structure-in-Skylake-Server-CPUs/td-p/1185376
https://community.intel.com/t5/Software-Tuning-Performance/Directory-Structure-in-Skylake-Server-CPUs/td-p/1185376
https://community.intel.com/t5/Software-Tuning-Performance/Directory-Structure-in-Skylake-Server-CPUs/td-p/1185376
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/intel/intel-pmwatch
https://www.ccixconsortium.com/home-is-where-the-memory-is/
https://www.ccixconsortium.com/home-is-where-the-memory-is/


[19] S. Gugnani, A. Kashyap, and X. Lu. Understanding the Idiosyncrasies
of Real Persistent Memory. In Proceedings of the 46th International
Conference on Very Large Data Bases (VLDB), Tokyo, Japan, Aug. 2020.

[20] T. Hirofuchi and R. Takano. The Preliminary Evaluation of a
Hypervisor-based Virtualization Mechanism for Intel Optane DC Per-
sistent Memory Module. arXiv preprint arXiv:1907.12014, 2019.

[21] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal. Rearchitecting
Linux Storage Stack for µs Latency and High Throughput. In Proceed-
ings of the 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Virtual, July 2021.

[22] Intel. Storage Performance Development Kit, 2021. SPDK.io.
[23] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.

Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic
PerformanceMeasurements of the Intel Optane DC PersistentMemory
Module. arXiv preprint arXiv:1903.05714, 2019.

[24] R. Kadekodi, S. K. Lee, S. Kashyap,T. Kim,A. Kolli, andV. Chidambaram.
SplitFS: Reducing Software Overhead in File Systems for Persistent
Memory. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), Ontario, Canada, Oct. 2019.

[25] R. Kadekodi, S. Kadekodi, S. Ponnapalli, H. Shirwadkar, G. R. Ganger,
A. Kolli, and V. Chidambaram. WineFS: a hugepage-aware file system
for persistent memory that ages gracefully. In Proceedings of the 28th
ACM Symposium on Operating Systems Principles (SOSP), Virtual, Oct.
2021.

[26] S. Kashyap, C. Min, and T. Kim. Scalable NUMA-aware Blocking
Synchronization Primitives. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC), Santa Clara, CA, July 2017.

[27] W.-H. Kim, R. M. Krishnan, X. F. S. Kashyap, and C. Min. PACTree: A
High Performance Persistent Range Index Using PAC Guidelines. In
Proceedings of the 28thACMSymposium onOperating Systems Principles
(SOSP), Virtual, Oct. 2021.

[28] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson.
Strata: A Cross Media File System. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP), Shanghai, China,
Oct. 2017.

[29] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm. Evaluating Per-
sistent Memory Range Indexes. In Proceedings of the 45th International
Conference on Very Large Data Bases (VLDB), Los Angeles, CA, Aug.
2019.

[30] X. Liao, Y. Lu, E. Xu, and J. Shu. Max: A Multicore-Accelerated File
System for Flash Storage. In Proceedings of the 2021 USENIX Annual
Technical Conference (ATC), Virtual, July 2021.

[31] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim. Understanding
Manycore Scalability of File Systems. In Proceedings of the 2016 USENIX
Annual Technical Conference (ATC), Denver, CO, June 2016.

[32] C. Min, W.-H. Kang, M. Kumar, S. Kashyap, S. Maass, H. Jo, and T. Kim.
SOLROS: A Data-Centric Operating System Architecture for Hetero-
geneous Computing. In Proceedings of the 13th European Conference
on Computer Systems (EuroSys), Porto, Portugal, Apr. 2018.

[33] J. Mohan, A. Phanishayee, and V. Chidambaram. CheckFreq: Frequent,
Fine-Grained DNN Checkpointing. In Proceedings of the 19th USENIX
Conference on File and Storage Technologies (FAST), Virtual, Feb. 2021.

[34] I. Neal, G. Zuo, E. Shiple, T. A. Khan, Y. Kwon, S. Peter, and B. Kasikci.
Rethinking File Mapping for Persistent Memory. In Proceedings of
the 19th USENIX Conference on File and Storage Technologies (FAST),
Virtual, Feb. 2021.

[35] T. L. F. Projects. DPDK, 2021. https://www.dpdk.org/.
[36] Y. Ren, C. Min, and S. Kannan. CrossFS: A Cross-layered Direct-Access

File System. In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Virtual, Nov. 2020.

[37] A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper. Persistent
Memory I/O Primitives. In Proceedings of the International Workshop
on Data Management on New Hardware, Amsterdam, The Netherlands,
July 2019.

[38] Q. Wang, Y. Lu, J. Li, and J. Shu. Nap: A Black-Box Approach to NUMA-
Aware Persistent Memory Indexes. In Proceedings of the 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Virtual, July 2021.

[39] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao. Char-
acterizing andModeling Non-Volatile Memory Systems. In Proceedings
of the 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Virtual, Oct. 2020.

[40] M. Weiland, H. Brunst, T. Quintino, N. Johnson, O. Iffrig, S. Smart,
C. Herold,A. Bonanni,A. Jackson, andM. Parsons. An Early Evaluation
of Intel’s Optane DC Persistent Memory Module and its Impact on
High-Performance Scientific Applications. In Proceedings of the 2019
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Denver, CO, Nov. 2019.

[41] J. Xu and S. Swanson. NOVA: A Log-structured File System for Hy-
brid Volatile/Non-volatile Main Memories. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies (FAST), Santa Clara,
CA, Feb. 2016.

[42] J. Xu, J. Kim, A. Memaripour, and S. Swanson. Finding and Fixing
Performance Pathologies in Persistent Memory Software Stacks. In
Proceedings of the 23th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Providence, RI, Apr. 2019.

[43] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson. An
Empirical Guide to the Behavior and Use of Scalable Persistent Mem-
ory. In Proceedings of the 18th USENIX Conference on File and Storage
Technologies (FAST), Santa Clara, CA, Feb. 2020.

[44] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krishnamurthy,
S. Al-Kiswany, R. T. Kaushik, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Split-Level I/O Scheduling. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[45] D. Zheng, R. Burns, and A. S. Szalay. Toward Millions of File System
IOPS on Low-Cost, Commodity Hardware. In Proceedings of the 2013
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Denver, CO, Nov. 2013.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    193

SPDK.io
https://www.dpdk.org/




DURINN: Adversarial Memory and Thread Interleaving
for Detecting Durable Linearizability Bugs

Xinwei Fu
Virginia Tech

Dongyoon Lee
Stony Brook University

Changwoo Min
Virginia Tech

Abstract
Non-volatile memory (NVM) has promoted the develop-

ment of concurrent crash-consistent data structures, which
serve as the backbone of various in-memory persistent appli-
cations. Durable linearizability defines the correct semantics
of NVM-backed concurrent crash-consistent data structures,
in which linearizability is preserved even in the presence of
a crash event. However, designing and implementing a cor-
rect durable linearizable data structure remain challenging
as developers are to manually control durability (persistence)
using low-level cache flush and store fence instructions.

We present DURINN, to the best of our knowledge, the
first durable linearizability checker for concurrent NVM data
structures. DURINN is based on the novel observation on
the gap between linearizability point – when the changes to
a concurrent data structure become publicly visible – and
durability point – when the changes become persistent. From
the detailed gap analysis, we derive three durable lineariz-
ability bug patterns that render a linearizable data structure
not durable linearizable. To tame the huge NVM states and
thread interleaving test space, DURINN statically identifies
likely-linearization points and actively constructs adversarial
NVM state and thread interleaving settings that increase the
likelihood of revealing durable linearizability bugs. DURINN
effectively detected 27 (15 new) durable linearizability bugs
from 12 concurrent NVM data structures without a test space
explosion problem.

1 Introduction
Non-volatile memory (NVM) is becoming widely adopted in
various computer systems thanks to its storage-and-memory-
like characteristics. Like storage, NVM is persistent across
a power cycle and has a high density. Like memory, NVM
provides byte-addressability and low-latency properties. A
program can persist data in NVM using load and store in-
structions without paying storage stack overhead. Notably,
Intel’s Optane DC Persistent Memory [13, 47] has already
been deployed in cloud [3] and supercomputer [2]. ARM also
has announced its support for NVM [12, 14]. The upcoming

Compute Express Link (CXL) [20] standard introduces cache-
coherent CXL-attached NVM card with on-device cache.

The persistence and low-latency properties of NVM have
promoted the development of various NVM-backed concur-
rent crash-consistent data structures, which serve as the key
enabler of the application-level crash-consistency guarantee.
For instance, concurrent NVM hash table is the backbone
of NVM-backed memcached [7] and redis [10]. Concurrent
NVM B+tree and hash map are the cores of pmemkv [4].
Concurrent NVM B-trees are used in NVM-backed file sys-
tems [19, 24–26]. In the event of an application or system
crash, or a sudden power failure (a crash hereafter for brevity),
an NVM program built on crash-consistent data structures can
seamlessly resume its execution from the (recovered) NVM
state as if nothing has happened.

Durable linearizability [40] defines the correct semantics
of NVM-backed concurrent crash-consistent data structures,
as linearizability [33] is the norm correctness standard for
traditional (non-NVM) concurrent data structures. At a high
level, durable linearizability requires that the effects of com-
pleted operations before a crash should remain completed
and visible (like linearizability). Additionally, durable lin-
earizability requires that the operation upon a crash be either
fully executed (“all” semantic) or not at all executed (“noth-
ing” semantic). However, designing and implementing correct
durable linearizable data structures remain very challenging.

The fundamental challenge in developing a durable lin-
earizable NVM data structure lies in the gap between the
linearization point (visibility) and the durability point (persis-
tence). Concurrent data structures use a synchronization op-
eration (e.g., compare-and-swap (CAS) in lock-free ones and
lock/unlock in lock-based ones) as the linearization point to
make one thread’s effect visible to other threads. However, the
completion of a synchronization operation does not guarantee
durability. When the new value of a store (or CAS) instruction
reaches a cache, it becomes visible, but it is not yet durable
until it is written back to the NVM. A data staying in a volatile

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    195



cache1 (as a dirty line) is lost upon a crash, and a cache may
evict cache lines in an arbitrary order that is different from
the program (store) order. As a result, the durability point
may come later in time and may appear in a different order
with respect to the preceding stores within the same thread
or the remote loads from other threads. To ensure durable
linearizability, developers have to manually control durability
using cache line flush and store fence instructions (e.g., clwb
and sfence in x86 architecture), making durable linearizable
NVM programming error-prone.

Unfortunately, existing solutions are not sufficient in test-
ing durable linearizability of concurrent NVM data structures.
Prior linearizability testing tools [15, 63] do not consider
crash and recovery semantics. NVM-specific crash consis-
tency testing tools either require user-defined custom ora-
cles [22,31,35,43,45,46,51] or are limited to single-threaded
NVM programs [30]. It is non-trivial to extend them for
durable linearizability because testing space grows exponen-
tially in two dimensions: crash states and thread interleaving.

This paper presents DURINN, an active and scalable
durable linearizability checker for concurrent NVM data struc-
tures. DURINN is based on the novel observation on the gap
between linearizability point where the changes to a data struc-
ture becomes visible and durability point where the changes
become persistent and thus remain visible even after a crash.
After analyzing what could go wrong if a crash occurs before,
after, or between the linearizability and durability points, we
derive three durable linearizability (DL) bug patterns that
render a linearizable data structure not durable linearizable.

To tame the huge test space, DURINN uses two novel tech-
niques: 1) adversarial crash state and thread interleaving con-
struction, and 2) likely-linearization point inference. DURINN
serves as an adversary of the three DL bug patterns, and
actively constructs adversarial crash scenarios that specify
which stores to (or not to) persist and which thread inter-
leaving to consider. The intuition behind adversarial crash
state construction is to maximize the difference between a
constructed crash state and a consistent state preserving DL
conditions, thus increasing the likelihood of revealing DL
bugs. Furthermore, DURINN employs static program analysis
to identify likely-linearization points and focuses on testing a
program crash before and after those linearization points.

We evaluate DURINN with 13 concurrent NVM data struc-
tures, which are highly optimized for NVM and have shown to
be more scalable than (simple) NVM hash tables and B-trees
used in memcached, redis, pmemkv, etc. DURINN detected 27
(15 new) durable linearizability bugs in 12 data structures. 7
of 15 new bugs have been confirmed by the developers so far.
Our evaluation also shows that DURINN can detect concurrent
DL bugs (better detection effectiveness) with fewer tests (bet-
ter scalability), compared to Witcher [30], the state-of-the-art
NVM crash-consistency bug detector.

1We discuss the implications of (future) persistent cache later in §7.2.

The paper makes the following scientific contributions:
• We present three durable linearizability bug patterns after

performing detailed analysis on how a linearizable data
structure may violate durable linearizability.

• To our best knowledge, DURINN is the first durable lin-
earizability checker designed for concurrent NVM data
structures. The proposed adversarial crash state and thread
interleaving construction and likely-linearization point in-
ference allow DURINN to detect DL bugs in an active and
scalable manner.

• DURINN reports 27 (15 new) bugs and outperforms the
state-of-the-art NVM testing tool in terms of bug detection
effectiveness and test space reduction.

2 Background
In this section, we first provide background on linearizability
(§2.1) and durable linearizability (§2.2), and then discuss the
persistence model used in this paper (§2.3).

2.1 Linearizability
Linearizability [33] is the widely-used correctness standard
for concurrent data structures. Formally, linearizability is de-
fined over an existence of an equivalent legal sequential his-
tory. Informally, a concurrent data structure is linearizable if
each operation appears to take effect instantaneously at some
moment between the operation begin and end events. If one
operation precedes another, then the earlier operation must
have taken effect before the next one. If two operations over-
lap, then their order can be serialized in any arbitrary order.
Some pending operations can be thought to be complete.

A linearization point (LP) is a program point where an
operation takes effect and its effects become visible to other
operations. In a lock-based data structure, a critical section
(or an unlock point) often serves as the linearization point. In
a lock-free data structure, the linearization point is typically a
single-step atomic instruction (e.g., CAS) that makes its change
visible to others. We refer to the variable used to make an
operation’s effect visible as a synchronization variable (SV).
Atomically updating SV is a linearization point for a writer
operation (e.g., insert), while reading SV is a linearization
point for a reader operation (e.g., get).

2.2 Durable Linearizability
Durable linearizability [40] extends linearizability with the
notion of a crash. With durable linearizability, a history may
include a system-wide crash event (which does not belong to
a specific thread) in addition to the operation begin and end
events. The definition of precedence order is also extended
to incorporate a crash. In durable linearizability, an operation
makes its effects visible to others at the linearization point
(like linearizability). Additionally, an operation makes its
effects persisted at the durability point (DP) so that its effects
remain completed and visible after a crash.

A completed operation refers to an operation whose in-
structions are all executed, end event is observed, and result

196    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



insert (k, v1)
get (k) 

time

insert (k, v2)

Case 1: returns v1

crash

get (k) 
returns ?

recovery

Case 2: returns v2

T1:
T2:

Figure 1: Durable linearizability example. The result of the second
get (after a crash) depends on the result of the first get (before a
crash), which also determines if the crashed insert takes effect.

is returned. Some crash-consistent programs that can recover
from inconsistent NVM state using a custom crash consis-
tency protocol may not require a completed operation to be
fully durable.

Durable linearizability requires the following conditions:
• (C1) Without a crash, all operations are linearizable.
• (C2) If a crash happens, all previously completed operations

(before a crash) should remain completed and their effects
should remain visible after a crash.

• (C3) The operations that have not completed upon a crash
could be considered either completed or not. When con-
sidered completed, its effect should be visible. In other
words, the crashed operation should provide all-or-nothing
semantics (fully executed or not at all executed).
Figure 1 illustrates a durable linearizable example. Thread

T1’s first insert completes before a crash, so it should remain
visible even after a crash by (C2). If T2’s first get returns v1
before a crash, the second get after the crash could return
either v1 or v2, with a flexibility to follow all or nothing se-
mantics in (C3). However, if T2’s first get returns v2 (i.e., it
completes) before a crash, then the second get after the crash
should return v2, according to (C1) and (C2).

Prior works such as Line-up [15] and Round-up [63] have
demonstrated the practicality of (C1) linearizability testing.
DURINN assumes a data structure under test is linearizable
without a crash, and focuses on checking if it satisfies the (C2)
and (C3) conditions in the presence of a crash.
2.3 Persistence Model
This paper assumes a volatile cache. This is the case for the
current Intel x86 architecture with Optane NVM [39, 58] and
ARM [12, 14]. The future Compute Express Link (CXL) [20]
standard also introduces a cache-coherent interconnect and a
CXL-attached NVM card with a volatile on-device cache. We
will discuss the implications of persistent cache later in §7.2.

Given a volatile cache, dirty cache lines are lost upon a
crash. To control durability, Intel provides cache flush in-
structions such as clflush, clflushopt, and clwb. When the
asynchronous flush clwb instruction is used for performance,
the store fence sfence instruction should be used together
to ensure the completion of preceding clwb instructions [58].
Similarly, ARM supports dc cvap cache flush and dsb fence
instructions [12, 14]. CXL introduces Global Persistent Flush
(GPF) to enforce the persistence ordering on emerging CXL-

Linearization
Point (LP)

operation

time

Durability
Point (DP)

R1 R2 R3

not visible visible but 
not durable

both visible 
and durable

Figure 2: Linearization point and durability point split an operation
into three-time intervals as per its visibility and durability guarantees.

attached NVM card [20].

3 Durable Linearizability Bugs
This section discusses the gap between linearization point and
durability point (§3.1), and presents three durable lineariz-
ability bug patterns derived from the gap analysis, along with
real-world examples detected by DURINN (§3.2-§3.4).
3.1 The Gap Between LP and DP
As illustrated in Figure 2, the duration of an operation can
be partitioned into three regions (R1, R2, and R3) based on the
linearization point (LP) and the durability point (DP). At LP,
the effect of an operation becomes visible to other threads. At
DP, the effect of an operation becomes durable (persisted) so
that it can survive a crash and remain visible after a crash.

The bug patterns presented in this section assume that LP is
known given an operation. We later in §5.2 discuss the static
methods we used to identify likely-linearization points. For
example, a lock-free insert() operation often uses an atomic
instruction on a synchronization variable to make its effect
visible in a single step. The atomic update (e.g., CAS) forms
LP, and the following cache line flush and fence instructions
(e.g., clwb and sfence) become DP.

The gap between LP and DP leads to different visibility
and durability guarantees. Before LP (region R1), the effect
of an operation is neither visible nor durable. Between LP
and DP (region R2), the effect of an operation is visible but
not durable. After DP (region R3), the effect of an operation
is visible as well as durable. Durable linearizability defines
different correct/wrong behaviors depending on when a crash
occurs: after DP (region R3), before DP (regions R1 and R2),
and between LP and DP (region R1). From the classification,
we derive the following three DL bug patterns.
3.2 DL Bug Pattern 1: An Incompletely-Durable Bug
The first Incompletely-Durable bug pattern considers a crash
after DP (in region R3). As a crash happens after DP, all the
changes made by the crashed operation should be completed
and persisted as if no crash has happened. In other words, the
crashed operation should provide the “all” (fully-executed)
semantic guarantee. After resuming from a crash, if another
operation may observe incompletely durable effects, then it
may produce wrong output violating durable linearizability.
Figure 3 illustrates the Incompletely-Durable bug pattern.
Since the crash happens after DP of T1’s insert(K,V), to be

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    197



LPT1: insert(K, V)

T2: get(K) 
incorrectly returns NULL
(correctly returns V)

time

recovery
W(K) W(V) CAS(T)

R(NULL)
incompletely

durable

DP

flush
fence

Figure 3: An Incompletely-Durable bug pattern. If a crash occurs
after DP, the insert operation should make all its effects durable
completely. Otherwise, the get operation after a crash may not be
able to see its effect, producing wrong output.

LPT1: insert(K, V)

T2: get(K) 
incorrectly returns V
(correctly returns NULL)

time

recovery
W(K) W(V) CAS(T)

R(V)
unrecovered

Figure 4: An Unrecovered-Durable bug pattern example. If a crash
happens before DP, the insert operation should recover (undo) any
partially durable effect. Otherwise, the get operation after a crash
may see its partial effect, producing wrong output.

LPT1: insert(K, V)

T2: get(K) 
incorrectly returns NULL
(correctly returns V)

time

recovery
W(K)W(V)CAS(T)

R(NULL)
T2: get(K) 
returns visible-but-not-durable V

R(V)

Figure 5: A Visible-But-Not-Durable bug pattern. For a crash be-
tween LP and DP of insert, the concurrent get may observe and
return the visible-but-not-durable value. However, the second get
after a crash may not be able to return the same value as the effect
of insert is not durable.

durable linearizable, T2’s get(K) should return V after the
recovery.

To avoid Incompletely-Durable bugs, all the preceding
stores must be persisted before the store (or CAS) on a synchro-
nization variable becomes persisted (DP), using cache line
flush and fence instructions. This is analogous to the lineariz-
ability programming idiom in which all the preceding stores
must be visible before the store (or CAS) on a synchronization
variable become visible (LP), using a fence instruction.

Figure 6(a) shows a part of rehashing code in P-CLHT [44],
a concurrent NVM hash table. The code first allocates a new
hash table (line 4), updates/persists the new hash table (lines
6-7), and then atomically sets the root pointer h to the new
hash table, making its effect visible (line 11, which is LP).
However, clflush_next_check at line 8 does not flush all
the updated NVM data in the new hash table and leaves a
part unpersisted (an Incompletely-Durable bug). If a crash
happens after DP – after persisting the root pointer h (line 13),
the inserted key-value data after a crash may be lost, violating
durable linearizability.

// @clht_lb_res.c:632 (CLHT 5b4cf3e)
 1  int ht_resize_pes(clht_t* h) {
 2       // ...
 3       // create a new hash table
 4       clth_hastable_t* ht_new = 
 5                    clht_hashtable_create();
 6       // initialize the new hash table
 7       // ...
 8       clflush_next_check(ht_new);
 9       fence();
 10       // ...
 11     SWAP_U64(h,  ht_new);
 12
 13     clflush(h, sizeof(uint64_t), true);
 

(a) Incompletely-Durable bug

// @btree.h:616 (Fast-Fair c86f5fb)
 14 page* store(btree* bt, ...) {
 15     // ...
 16     // create a new node
 17     page* sibling = new page(); 
 18     // initialize the new node 
 19     // ...
 20
 21     // add new node to sibling 
 22     hdr.sibling_ptr = sibling;
 23     clflush((char*) &hdr, ...);
 24     // ... 
 25     bt→root = (char*) new_root;
 26
 27      
 28     clflush(&(bt→root), ...);

(b) Unrecovered-Durable bug

// @btree.h:784 (Fast-Fair c86f5fb)
 36 char* linear_search(key_t key) {
 37   if ((k = records[0].key) == key)
 38     if ((t = records[0].ptr) != NULL))
 39       if (k == records[0].key)
 40         return t;

// @btree.h:474 (Fast-Fair c86f5fb)
 29 page* store(btree* bt, ...) { 
 30     hdr.mtx→lock();
 31     new_entry = &records[0]; 
 32     new_entry→ key = key;
 33     new_entry→ptr = ptr;

 34     clflush((char*) this, ...);
 35     hdr.mtx→unlock();

(c) Visible-But-Not-Durable bug

Figure 6: Durable linearizability bug examples in P-CLHT [44] (a)
and Fast-Fair [34] (b) and (c). A red circle represents LP; green
represents DP; and a red lightning bolt represents a crash.

3.3 DL Bug Pattern 2: An Unrecovered-Durable Bug
The second Unrecovered-Durable bug pattern considers a
crash before DP (in regions R1 and R2). As a crash happens be-
fore DP, any temporal change made by the crashed operation
should not be visible after the resumption. That is, the crashed
operation should support the “nothing” (not-at-all-executed)
semantic. After resuming from a crash, if another operation
may observe unrecovered durable effects, it may produce
wrong output violating durable linearizability. Figure 4 illus-
trates the Unrecovered-Durable bug pattern. Since the crash
happens before DP of T1’s insert(K,V), to be durable lin-
earizable, T2’s get(K) should not return V after the recovery.

To avoid Unrecovered-Durable bugs, a durable linearizable
data structure may opt to buffer/undo the effects of preceding
stores before DP, or embed a custom logic to safely ignore
partial NVM updates: e.g., read key K and value V only if
token T is set. This pattern is called “guarded protection” [30]
and we discuss it in detail in §5.2.

Figure 6(b) shows an Unrecovered-Durable bug from Fast-
Fair [34], a lock-based NVM B+tree. While splitting a node, it
first creates a new node (line 17) and initializes the new node

198    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



(lines 18-19). Then it adds the new node to the sibling of the
current node (line 22) and persists the change (line 23). Later,
it sets the new root (line 25, which is LP). The new_root in
line 25 is the new root node of the B+tree after a node split.
The node, which the hdr belongs to, is a child of the new
root. If a crash happens before persisting the new root node
(line 28, DP), the B+tree will be in an illegal state in which
the root node has a sibling node. Any further operation leads
to a program crash and will lose all previously completed
operations, violating durable linearizability.

3.4 DL Bug Pattern 3: A Visible-But-Not-Durable Bug

The last Visible-But-Not-Durable bug pattern considers a
crash between LP and DP (in region R2). If a crash happens
between them, the effect of the current operation may be vis-
ible but not yet durable. As it is visible, another concurrent
operation can see the effect and take an action based on the
observation: e.g., returning a non-durable value.

Figure 5 illustrates an example. While thread T1 is perform-
ing an insert(K,V) operation and just finishes executing its
LP but not DP, thread T2 performs a concurrent get(K) oper-
ation. The concurrent get(K) sees the non-durable effect of
insert(K,V) and returns the value V. As the get(K) is com-
pleted before a crash, to be durable linearizable, T2’s second
get(K) after the recovery should return V as well, but it cannot
as the effect of insert(K,V) has not been persisted. Note that
Visible-But-Not-Durable bugs may also occur between con-
current writers, say two insert(A) and insert(B) operations
in a sorted linked list. The later insert(B) operation in the
linearizable order may see the effect of the earlier insert(A)
operation, adding B after A. Durable linearizability may be vi-
olated if a crash occurs after insert(B) completes but before
insert(A) finishes.

To avoid Visible-But-Not-Durable bugs, an operation (later
in the linearizable order) may be designed to wait until the
earlier operation passes its DP. Alternatively, a lock-free de-
sign may use a “persistence-helping” mechanism [21, 28].
Suppose operation A updated X but did not persist it yet. An-
other concurrent operation B wants to take actions (e.g., takes
a different branch, persists other data) based on the value
of X. Then B “helps” persist X on behalf of A. If a lock-free
data structure does not implement a similar helping mecha-
nism correctly and if B relies on unpersisted updates from A,
then a Visible-But-Not-Durable bug may happen. The helping
logic is analogous to the linearizability programming idiom in
which one thread helps fix temporal inconsistency on behalf
of another thread.

Figure 6(c) shows a Visible-But-Not-Durable bug from
Fast-Fair [34]. The left code (store) and the right code
(linear_search) are parts of insert and get operations, re-
spectively. An insert operation first acquires the lock (line
30) then writes key and ptr (lines 31-33). It then persists
the writes (line 34) and releases the lock at the end (line 35).
Since Fast-Fair allows concurrent (non-blocking) get oper-

ations while splitting a node, linking a new node is LP for
insert (line 33). On the other hand, the get operation refers
to ptr (line 38, which is LP for get) while checking if there
is any key change in-between by reading it twice (lines 37,
39). Suppose linear_search is scheduled between the LP
(line 33) and DP (line 34) of store as shown in the figure.
The concurrent get operation can read visible-but-not-durable
data. If the crash happens before insert’s DP (line 34). After
the recovery, the previously returned data cannot be accessed
anymore because unpersisted data will be lost upon a crash.
Thus, Fast-Fair violates durable linearizability.

4 Overview of Our Approach
In this section, we will first discuss the huge testing space as
the main challenge in detecting durable linearizability bugs
(§4.1). We then provide an overview of our two major tech-
niques – (1) adversarial NVM state and thread interleaving
construction (§4.2) and (2) likely-linearization point inference
(§4.3) – designed to address the test space challenge.

4.1 Challenges in Detecting DL Bugs
Existing solutions are not sufficient in testing durable lin-
earizability of concurrent NVM data structures. Traditional
linearizability testing tools, such as Line-up [15] and Round-
up [63], do not consider crash and recovery semantics. Most
NVM-specific crash consistency bug detection tools (e.g.,
Yat [43], PMTest [46], XFDetector [45], Agamotto [51],
Jaaru [31], and PMDebugger [22]) are not designed for
durable linearizability, and instead require user-defined cus-
tom oracles or consistency checkers. Some (e.g., Witcher [30])
are limited to testing single-threaded NVM programs. We dis-
cuss related work in detail in §9.

It is non-trivial to extend existing NVM testing tools such
as Yat and Witcher for durable linearizability because testing
space grows exponentially in two dimensions: NVM crash
states and thread interleaving. The crash state test space is
huge since a crash can happen any time during an execution
and a volatile cache can evict cache lines in an arbitrary order.
For example, Yat [43], an exhaustive crash consistency testing
tool, attempts to test 1031 crash states for an NVM hash table
with 2000 operations [30]. Moreover, the number of thread
interleaving grows exponentially (nk) with the number of
threads (n) and the number of steps (k) in each thread.

4.2 Adversarial NVM State and Thread Interleaving
We propose an adversarial technique to effectively explore the
huge testing space in finding durable linearizability bugs. In-
stead of exhaustively or randomly exploring the testing space,
we actively construct adversarial NVM states and adversar-
ial thread interleavings, which are likely to trigger the three
DL bug patterns discussed in §3. To the best of our knowl-
edge, DURINN is the first work using an adversarial testing
approach for bug detection in NVM programs.
Adversarial NVM state construction. For each DL bug
pattern and a given crash location (e.g., before or after DP),

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    199



Program

Test 
case

Tracing
Mem

Access
(§5.1)

Likely-LP
Inference

(§5.2)

DL
Validation

(§5.4)

DL
Bugs

Likely
LPsTrace

Adversarial Test: 
NVM States

Thread Interleave
(§5.3)

NVM
States

Thread
Interleave

Trace

Figure 7: The overall architecture of DURINN.

DURINN determines which preceding stores should be or
should not be persisted to increase the likelihood of triggering
the DL bugs. For example, when testing an Incompletely-
Durable bug after DP, DURINN adversarially constructs the
(worst-case) NVM state where an update on a synchroniza-
tion variable is persisted (at DP) but the preceding stores are
not as persisted as possible. This way, DURINN can maximize
the incompleteness of durability of a target operation, increas-
ing the chance to break its “all” (fully-executed) semantic
guarantee. Note that DURINN constructs only feasible NVM
states while obeying the persistence model of a processor and
program order semantics (e.g., TSO for x86).

Adversarial thread interleaving construction. DURINN
constructs adversarial thread interleaving only when thread
interleaving is indispensable to trigger the DL bug patterns.
The Incompletely-Durable and Unrecovered-Durable bugs
do not require concurrent operations to trigger, so DURINN
tests those bug patterns in a single-threaded mode. On the
other hand, Visible-But-Not-Durable requires concurrent op-
erations. The main challenge in triggering the Visible-But-
Not-Durable bug is that two (or more) concurrent operations
must be precisely scheduled in a very narrow window be-
tween LP and DP. DURINN adversarially constructs a thread
interleaving such that a concurrent operation is scheduled
between LP and DP of another operation.

4.3 Likely-Linearization Point Inference

Our adversarial NVM state and thread interleaving construc-
tion requires the knowledge of LP locations. Manual annota-
tion of LPs would be error-prone and it makes DURINN not
automatic. A naive approach, considering all stores as LPs,
would lead to too many tests.

To address the problem, DURINN infers likely-LPs from
source code based on the common concurrent NVM program-
ming practices: (1) atomic instructions are used in concur-
rent programs for synchronization; (2) concurrent programs
usually make a memory region visible to other threads after
initialing the memory region; (3) NVM programs usually
use guarded-protection [30] to ensure persistence atomic-
ity. DURINN employs static program analysis to identify the
above programming practices and infer likely-LPs. They are
then fed to our adversarial NVM state and thread interleaving
construction. The inferred likely-LPs are not necessary to be
precise. A false positive LP will only lead to more tests. As
far as we know, DURINN is the first work that statically infers
linearization points from concurrent NVM programs.

// writer
 1   *key_ptr = key;
 2   *val_ptr  = val;
 3   flush(key_ptr);
 4   flush(val_ptr);
 5   fence();
 6
 7   flag = 1; // set guardian
 8   flush(&flag);
 9   fence();

// reader
 10  // guardian read
 11  if ( flag == 1) 
 12     func(key_ptr, val_ptr);

(a) Guarded-Protection

 1   // Memory allocation
 2   Node* new_node = alloc(sz);
 3   // Initialization
 4   new_node→key = key;
 5   new_node→val =  val;
 6   new_node→next = NULL;
 7   flush(&new_node→key);
 8   flush(&new_node→val);
 9   flush(&new_node→next);
 10 fence();
 11
 12 // Add node to the core
 13  core→tail = new_node;
 14  flush(&core→tail);
 15  fence();

(b) Publish-after-Initialization

Figure 8: Examples for Guarded-Protection and Publish-after-
Initialization from (a) CCEH [50] and (b) NVTraverse [28]. Likely-
linearization points are at line 7 and 13 in (a) and (b), respectively.

5 Design of DURINN

We present the overall architecture of DURINN at Figure 7.
DURINN takes as input a target NVM data structure and a
test case (a sequence of operations, such as insert, delete,
and get) and reports detected durable linearizability bugs.
DURINN first instruments a program and runs a test case to
collect a memory trace (§5.1). DURINN then infers likely-
linearization points from the trace (§5.2). Given the memory
trace and the identified likely-linearization points, DURINN
performs adversarial NVM state and thread interleaving con-
struction (§5.3) to generate a collection of crashed NVM im-
ages and thread schedules to test. Lastly, DURINN validates
the generated crashed NVM images along with the generated
thread schedules to detect durable linearizability bugs (§5.4).

5.1 Tracing Memory Accesses

DURINN instruments all NVM memory accesses (load,
store2) and NVM heap allocation. DURINN also traces con-
trol flow transfers (branch, function call) because our likely-
linearization point inference (§5.2) relies on program depen-
dence analysis. To track the persistent state (i.e., whether
an NVM address is persisted or not) for adversarial NVM
state construction (§5.3), we instrument all flush and memory
fence instructions. We also trace lock operations for adver-
sarial thread interleaving construction (§5.3). For durable
linearization validation (§5.4), we trace the value of each
store instruction.

We implement an LLVM compiler pass [11] for the instru-
mentation and execute the instrumented binary with a test
case to collect an execution trace. To ensure the total order-
ing in the execution trace for the analysis of multi-threaded
programs, we protect our tracing code using a global mutex.

200    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



5.2 Likely-Linearization Point Inference

DURINN infers likely-linearization points by analyzing three
concurrent NVM programming practices: Atomic instruction,
Guarded-Protection and Publish-after-Initialization.

Atomic Instruction. In lock-free data structures, atomic in-
structions are typically used to update a synchronization vari-
able and to make the effect of an operation atomically visible
to other threads. Thus, DURINN identifies atomic instructions
(e.g., CAS, fetch-and-add) as likely-linearization points for
lock-free writer operations (e.g., insert).

Guarded-Protection. Guarded protection is a widely used
NVM programming pattern (e.g., key-value store, persistent
data structure, file systems) to ensure atomic persistence of
data [30]. A flag variable called “guardian” denotes whether
the “guarded data” is valid or not. Thus, writing or reading a
guardian is a linearization point. In Figure 8(a), for instance,
a writer ensures that key and value are persisted before the
flag, a guardian, is persisted. Also, a reader check if the flag
(line 11) is set before reading the key and value (“guarded
read”). Writing to the flag (line 7) is writer’s linearization
point since the changes become visible after setting the flag.

Based on this observation, DURINN performs program anal-
ysis to identify any stores to guardians. DURINN first finds
out the guarded read pattern in the code to identify guardian
candidates from conditional branch instructions. From the
branch condition variables, DURINN performs the backward
dataflow analysis to identify NVM memory addresses that
are data-dependent on the branch condition variables. Then
DURINN marks the stores to those NVM memory addresses
as likely-linearization points.

Publish-after-Initialization. As an optimization to reduce
persistence overhead, many NVM program follows so-called
publish-after-initialization steps when adding a new memory
object in the global data structure: (1) first allocating an NVM
memory, (2) initializing the memory, and finally (3) linking
(publishing) the memory to the global structure. For example,
in Figure 8(b), a node is allocated first (line 2), then initialized
(lines 4-10), finally is linked to the global list (core→tail
at lines 13-15). The benefit of the publish-after-initialization
idiom is that any writes to the new memory (lines 4-10) are not
externally visible so that the persistence ordering of the writes
in the initialization phase is relaxed until the new memory is
published (line 13), improving performance (only one fence
is needed at line 10).

Based on this NVM programming idiom, we filter out all
the stores to newly allocated memory regions within an oper-
ation, and exclude them from likely-linearization points. We
found that this pruning is highly useful for operations requir-
ing many writes, such as node split/merge operations for a
tree and a rehashing operation for a hash table.

2Non-temporal stores are supported/modeled as store+flush.

LPT1: insert(K, V)

time

W(K) W(V) CAS(T)

DP

flush
fence

All preceding stores
are NOT persisted

SV store
is persisted

(a) Incompletely-Durable test.

LPT1: insert(K, V)

time

W(K) W(V) CAS(T)

All preceding stores
are persisted

SV store is
NOT persisted

(b) Unrecovered-Durable test.

LPT1: insert(K, V)

time

W(K) W(V) CAS(T)

All preceding stores and SV 
store are NOT persisted Returns visible-but-not durable V

R(V)

T2: get(K)

R(T)

(c) Visible-But-Not-Durable test.

Figure 9: Adversarial test strategies for Incompletely-Durable,
Unrecovered-Durable, and Visible-But-Not-Durable bugs. LP: lin-
earization point. DP: durability point. SV: synchronization variable.

5.3 Adversarial NVM State and Thread Interleaving
Construction

In this section, we first describe our adversarial construc-
tion approaches for each DL bug pattern (§5.3.1, §5.3.2, and
§5.3.3). We then introduce our cache/NVM simulations to
generate feasible NVM states (§5.3.4) for the validation.

5.3.1 Incompletely-Durable Bug Pattern

Testing Incompletely-Durable bugs can be performed for each
operation in isolation without considering concurrent opera-
tions. When a crash happens after DP, to be durable lineariz-
able, the crashing operation should provide the “all” (fully-
executed) semantic and ensure that its effect remains visible
after a crash (Figure 3). Then, the adversarial NVM state that
increases the chance to trigger Incompletely-Durable bugs for
a crash after DP would be to make all the preceding stores as
unpersisted as possible. In other words, we artificially attempt
to create a feasible yet worst NVM state that many updates
made by an operation are not persisted.

Figure 9a illustrates our adversarial NVM state construc-
tion for insert(K,V) in which an atomic update to a synchro-
nization variable T serves as LP and persisting it serves as DP.
The adversarial NVM state would be to make the change to T
persisted, but leave the changes to key and value unpersisted
so that the new key and value data is not visible after a crash
even though the synchronization variable T says differently.
Note that we attempt to leave stores unpersisted only if pos-
sible. We do not force. We obey memory consistency and
persistence model (e.g., the semantics of fence, flush).

5.3.2 Unrecovered-Durable Bug Pattern

Testing Unrecovered-Durable bugs can also be performed for
each operation in isolation. If a crash happens before DP, for
durable linearizability, the crashing operation should provide
the “nothing” (not-at-all-executed) semantic and ensure that
any partial update is not visible after a crash (Figure 4). Then,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    201



the adversarial NVM state that stress-tests the data structure
under test to expose Unrecovered-Durable bugs for a crash
before DP would be to make all the preceding stores as per-
sisted as possible. That is, we are interested in constructing a
feasible yet worst NVM state that many updates made by an
operation are persisted, stress-testing its recovery logic.

Figure 9b shows our adversarial NVM state construction
for the same insert(K,V) example in which CAS(T) is LP
and persisting it is DP. We construct the adversarial NVM
state such that the changes to key and value are persisted,
but not the synchronization variable T. This way, the new
key and value data may be visible after a crash when the
synchronization variable T says they should not.

5.3.3 Visible-But-Not-Durable Bug Pattern

The Visible-But-Not-Durable bugs are related to the case
where an operation takes an action after observing a visible-
yet-not-durable state of another concurrent operation (Fig-
ure 5). Unlike the prior two bug patterns, testing Visible-But-
Not-Durable bugs should be performed in a context sensitive
manner. Figure 9c illustrates our adversarial NVM state and
thread interleaving method for Visible-But-Not-Durable bugs,
which requires the following three conditions.
Requirements. First, DURINN needs (1) racy operations. In
Figure 9c, thread T1’s insert(K,V) writes (CAS) on T and
T2’s get(K) reads T. Second, DURINN needs some (2) prefix
operations (a sequence of other operations to execute before
testing racy operations) that construct the preconditions for
a race condition to be triggered. For example, an NVM data
structure should be in a certain state (e.g., initiating a resizing
or node splitting process) to exhibit a race condition. Last,
DURINN needs to control (3) precise thread interleaving in
which a thread makes a progress based on another thread’s
visible-but-not-durable effect and a crash happens between
LP and DP as illustrated in Figure 9c.
Challenges. However, constructing the test scenarios that
satisfy all the three conditions is very challenging because
not only search space is huge but also the three conditions are
inter-dependent. For example, two racy operations with one
sequence of prefix operations may not be racy any more with
another sequence of prefix operations.
Our Approach. We propose techniques to find out adversar-
ial (1) racy operations, (2) prefix operations, and (3) thread in-
terleaving in a scalable manner by analyzing a single-threaded
execution trace. Figure 10 shows the overall workflow. First,
DURINN detects potentially racy two operation by analyzing
a single-threaded memory trace. Second, if two racy opera-
tions are not consecutive, DURINN reorders the operations
of the test case, places the two operations consecutively, and
checks whether the same race can be triggered: i.e., the new
memory trace with the re-ordered operations still include the
same race. Last, if two re-ordered operations are still racy,
DURINN generates adversarial thread interleaving for these
two operations. In the rest, we discuss each step in detail.

  W(K)
  W(V)
  CAS(T)
  ……  

op 1-9

  R(T)
  if (K==…)
      return V

op 10

op 11-19

op 20

op 21- ...

W(K)
W(V)
CAS(T)  

     R(T)
     if (K==…)
         return V

Main Thread

Thread 1

Thread 2

op 11-19

  W(K)
  W(V)
  CAS(T)
  ……  

  R(T)
  if (K==…)
      return V

op 10

op 20

op 1-9

Figure 10: The workflow of adversarial NVM state and thread inter-
leaving construction for Visible-But-Not-Durable bugs.

(1) Finding racy operations. The first step is to find po-
tentially race operations. The inputs for the analysis are a
single-threaded execution trace (§5.1) and the inferred likely-
linearization points (§5.2). DURINN finds a pair of potentially
racy operations that write-write or write-read synchronization
variables (updated at likely-linearization points). These two
potentially racy operations are not necessary to be consec-
utive in a single-threaded execution trace. In Figure 10 (1),
operation 10 and 20 are such potentially racy operations.
(2) Finding prefix operations. A pair of potentially racy
operations from the first step may not be racy when run in
parallel. One main reason is that these two operations ran
with different preceding operations (i.e., prefix operations).
In Figure 10 (1), the prefix of operation 10 is operation 1-9 but
the prefix operations of operation 20 is operation 1-19. Hence,
the precondition of an NVM data structure when running
these two operations may be different, so these two operations
may not be racy when run in parallel.

To filter out such spurious racy operations, DURINN re-
orders operations such that the two operations have the com-
mon prefix operations and places two potentially racy op-
erations consecutively. In Figure 10 (2), operations 1-9 and
11-19 becomes the prefix of operation 10 and 20. We then run
the instrumented program with the prefix and the two racy
operations in a single thread and generate a new execution
trace. If two candidates (operation 10 and 20) are still racy
with the re-arranged operations, the prefix and racy operations
will be fed in to the last step to construct thread interleaving
of the two racy operations.
(3) Controlling thread interleaving and generating NVM
state. For a given prefix operations, DURINN should precisely
control thread interleaving of two concurrent racy operations.
For example, in Figure 10 (3), thread 1 writes synchronization
variable T first, which is LP, then thread 2 preempts and reads
T then returns V to user. A crash should happen right after
when the operation in thread 2 finishes and before thread 1
executes DP to trigger a Visible-But-Not-Durable bug.

In order to precisely control thread interleaving, DURINN
uses a runtime technique using breakpoints. DURINN sets

202    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



breakpoints at the load and store of the synchronization vari-
able (e.g., T in Figure 10). After executing the prefix opera-
tions in a single-threaded manner, DURINN lets thread 1 run
until reaching to the breakpoint of the store instruction to
the synchronization variable. Then DURINN lets thread 2 run
until it reaches the breakpoint of the load instruction of the
synchronization variable. Then DURINN lets thread 2 resume
and injects a crash right after finishing its operation.

Upon the crash, DURINN leaves all stores in thread 1 un-
persisted as an adversarial NVM state. Note that thread 2 may
not be able to finish its operation if other synchronization
with thread 1 is involved (e.g., deadlock). DURINN detects
such a case with a timeout, and regards such thread interleav-
ing infeasible. DURINN generates a gdb command script to
automate the whole process. Using a hardware breakpoint
makes DURINN’s adversarial thread interleaving control effi-
cent, though DURINN serializes a multi-threaded execution.

5.3.4 Cache and NVM Simulation

DURINN generates NVM crash images according to the adver-
sarial NVM state and thread interleaving testing methods. To
consider only feasible NVM states, DURINN simulates cache
behaviors while obeying processor’s memory consistency and
persistence models. DURINN starts from the empty cache and
NVM states and simulate the effects of store, flush, and
fence instructions along an execution trace. Particularly, we
implemented Intel’s x86-64 architecture model following total
store order (TSO) memory model consistency model [39, 56].

5.4 Durable Linearizability Validation

DURINN runs the NVM data structure under test from an
NVM crash image (generated in §5.3) and checks if it violates
durable linearizability by executing a sequence of validating
operations. At a high level, the validating operations checks
whether all operations before crash take effects (DL’s C2
condition in §2.2); and whether the crashed operation is either
fully executed or not at all executed (C3 condition). DURINN
runs recovery code before running validation operations.

More specifically, for an NVM index data structure (e.g.,
hash table, B-tree), the validating operations comprise:

1. A list of get operations to check all previously inserted
but not deleted key-values exist,

2. A get operation to check the crash operations follows all
or nothing semantics,

3. A list of delete operations for all inserted keys, and
4. A list of get operations to check all the deleted keys in the

previous step are indeed deleted.

Note that for each crashed image, a list of completed op-
erations and the crashing operation are known, so we know
which key has been inserted or deleted. DURINN provide sim-
ilar validating operations for other data structures: e.g., array
and queue.

6 Implementation
We implemented tracing and data flow analysis in LLVM [11].
We automatically generated gdb command files based on the
locations of breakpoints. To control the progress of each
thread in gdb, we set scheduler-locking on. Our LLVM-
related code comprises around 1900 lines of C++ code. Other
DURINN components are written in 2700 lines of Python
code. Our current prototype supports an NVM program built
on PMDK libpmem or libpmemobj libraries to create/load an
NVM image from/to disk. To ensure the virtual address of
the mmap-ed NVM heap are the same across different execu-
tions, we set PMEM_MMAP_HINT environment variable [38]. The
DURINN prototype is available at https://github.com/
cosmoss-jigu/durinn.

7 Discussion
7.1 False Negatives and False Positives in DURINN

DURINN may have false negatives (i.e., missing bugs) for
three reasons. First, DURINN is a trace-based dynamic tool
that takes a test case as input. DURINN may miss DL bugs
that did not appear in a trace.

Second, DURINN’s likely-LP inference is based on heuris-
tics and may miss true LPs in theory. Missing LP means no
adversarial testing, so DURINN may miss DL bugs. However,
the proposed heuristics are built on common NVM program-
ming practices, namely Guarded-Protection and Publish-after-
Initialization presented in §5.2. As a result, our empirical
study (§8.4) shows that the inferred likely-LPs do not miss
manually-identified (true/oracle) LPs and DURINN does not
miss any DL bugs detected with the oracle LPs.

Last, DURINN performs adversarial testing and does not
explore all possible NVM states and thread interleaving. In
theory, for Incompletely-Durable and Unrecovered-Durable
bugs, some more complex combinations of persisted and un-
persisted stores may be required to trigger a DL bug. For
Visible-But-Not-Durable bugs, more than two concurrent
thread interleaving may be needed to expose a DL bug. How-
ever, our empirical study (§8.5) shows that DURINN detects
all the bugs reported by the state-of-the-art Witcher [30] and
indeed found more new bugs with significantly fewer tests.

On the other hand, for a given trace under test, DURINN
does not have false positives as DURINN performs durable
linearizability validation (§5.4). Any crash NVM image (con-
structed by adversarial testing) that violates durable lineariz-
ability is indeed a definite clue of a true DL bug (by definition).
We note that multiple durable linearizability violations may
stem from one root cause.

7.2 Persistent Cache
Intel architecture is expected to adopt eADR support (Ex-
tended Asynchronous DRAM Refresh) [37] that includes a
cache into the persistent domain. For an eADR-enabled Intel
architecture, there will be no gap between LP and DP because
once the effect of a store reaches a cache, it is guaranteed to

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    203

https://github.com/cosmoss-jigu/durinn
https://github.com/cosmoss-jigu/durinn


be written back to the NVM.

We expect DURINN remain useful when eADR is avail-
able for the following three reasons. First, eADR is unlikely
to be added to all product lines due to the high cost of bat-
tery size. In the current Intel platforms (Optane 200), eADR
support is optional and requires an additional backup bat-
tery [36]. As eADR is not expected to be available in all
machines, NVM programmers would need to write a code
to support both eADR and non-eADR machines. Second,
eADR is not the panacea if non-temporal stores (ntstores)
are used. Ntstores place data in the store buffer and bypass
caches, which is outside eADR persistent domain. For ex-
ample, PMDK pmemcpy() prefers to use movnstore for better
performance. An NVM program may lead to an inconsistent
state when data in a store buffer is not flushed into NVM
before a crash. Last, the Unrecovered-Durable bug pattern is
still an issue even with eADR because it requires recovering
or tolerating any partial updates made before linearization
point. eADR has nothing to do with such a recovery logic.
Developers still need to design and implement inconsistency-
recoverable data structures.

7.3 Relationship to ACID

Three DL bug patterns can be disucssed using tradi-
tional database/filesystem’s ACID terms. One can view
Incompletely-Durable and Unrecovered-Durable bugs
as ACID-atomicity/consistency/durability violations
Incompletely-Durable bug pattern considers a crash after
DP and tests ACID-atomicity/consistency/durability’s fully-
executed “all” semantic. Unrecovered-Durable bug pattern
considers a crash before DP and tests ACID-atomicity’s
not-at-all-executed “nothing” semantic.

On the other hand, Visible-But-Not-Durable bug is related
to ACID-isolation violation. Visible-But-Not-Durable bug
pattern considers a crash before DP. However, a concurrent
operation observed unpersisted data, and it completed, vio-
lating ACID-isolation and forcing the crashed operation to
ensure the “all” semantic. A naive durability checker cannot
detect Visible-But-Not-Durable bugs because they require a
completed, ACID-isolation-violating, concurrent operation.

8 Evaluation

For evaluation, we first present our methodology (§8.1), then
present the following experimental results.

• We report and analyze the DL bugs detected by DURINN
(§8.2) along with detailed statistics, including the number
of tests and testing time (§8.3).

• We evaluate the effectiveness and (empirical) soundness of
DURINN’s likely-linearization inference technique (§8.4).

• We compare DURINN with other NVM crash-consistency
testing tools in terms of bug detection effectiveness and test
space reduction (§8.5).

Application Version Type Concurrency Persistence
P-LF-BST [28] 5fa1dee binary search tree lock-free LL
P-LF-Hash [28] 5fa1dee hash table lock-free LL
P-LF-List [28] 5fa1dee linked list lock-free LL

P-LF-Skiplist [28] 5fa1dee skiplist lock-free LL
P-LF-Queue [29] 08fecfb queue lock-free LL

CCEH [50] d53b336 hash table lock-based LL
Fast Fair [34] c86f5fb B+ tree lock-based LL
P-ART [44] 5b4cf3e radix tree lock-based LL

P-CLHT [44] 5b4cf3e hash table lock-based LL
P-Hot [44] 5b4cf3e trie lock-based LL

P-Masstree [44] 5b4cf3e B tree + trie lock-based LL
pmdk-array [5] v1.8 array lock-based LL
pmdk-queue [6] v1.8 queue lock-based TX

LL: low-level persistence primitives TX: transactional persistence

Table 1: Tested concurrent NVM data structures

8.1 Evaluation Methodology

Tested NVM data structures. We evaluate DURINN with
13 concurrent NVM data structures, as listed in Table 1 with
tested version, data structure type, its concurrency control
mechanism, and persistence programming model. There are
two concurrency control mechanisms: lock-free and lock-
based. For persistence (durability) control, most data struc-
tures use low-level (LL) persistence primitives such as flush
and fence instructions, while pmdk-queue uses PMDK’s trans-
actional (TX) persistence programming model.

All the tested data structures have been highly optimized for
NVM, and most of them have shown to be more scalable than
(simple) NVM hash tables and B-trees used in NVM-backed
key-value stores such as memcached, redis, pmemkv, etc. All
tested data structures use libpmemobj, the PMDK library for
persistent memory allocation or transaction. As some data
structures originally used a volatile memory allocator and
emulated NVM using DRAM, we modified them to use the
PMDK’s persistent NVM memory allocator. Our changes do
not add or delete any new/existing persistence primitives, or
memory operations. Thus, the changes do not affect the bug
detection evaluation.

Test Cases. We use AFL++ fuzzer [1] to generate a test
case for our evaluation. We first feed a randomly generated
seed into ALF++ fuzzer. Our random seed generator assigns a
higher probability to create a new unused key for insert; and
to reuse existing keys for other dependent operations such as
delete, update, query. Then we run the fuzzer and picked
the generated test case with the highest code coverage, which
consists of 1,000 operations. We found that 1,000 operations
are large enough to achieve a reasonable and stable code
coverage (50%-80%) for our tested NVM data structures.
Missing code coverage is due to unused features (e.g., garbage
collection) and debugging codes. The generated test cases are
used for both likely-LP inference and adversarial testing.

Experimental setup. We ran all experiments on a 64-bit
Fedora 29 machine with two 16-core Intel Xeon Gold 5218
processors (2.30GHz), 192 GB DRAM, and 512 GB NVM.

204    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Name (Total #Bugs) Bug ID New Confirm Code Type Description Impact Fix strategy
P-LF-BST (1) 1 ✓ ✓ BSTAravindTraverse.h:331 DL1 Missing persistence primitives Points to garbage add persistence primitives
P-LF-Hash (1) 2 ✓ ✓ ListTraverse.h:212 DL1 Missing persistence primitives Points to garbage add persistence primitives
P-LF-List (1) 3 ✓ ✓ ListTraverse.h:212 DL1 Missing persistence primitives Points to garbage add persistence primitives
P-LF-Skiplist(1) 4 ✓ ✓ SkiplistTraverse.h:218 DL1 Missing persistence primitives Points to garbage add persistence primitives
P-LF-Queue(1) 5 ✓ ✓ DurableQueue.h:L74 DL1 Missing persistence primitives Points to garbage add persistence primitives
CCEH (2) 6 ✓ CCEH_MSB.cpp:280 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist

7 ✓ CCEH_MSB.cpp:103 DL2 Atomicity in rehashing Unable to recover inconsistency-recoverable design
FAST-FAIR (5) 8 ✓ ✓ btree.h:955,979 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist

9 ✓ ✓ btree.h:955,1007 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
10 ✓ btree.h:224 DL1 Missing persistence primitives Lost key-value add persistence primitives
11 ✓ btree.h:213 DL2 Partial inconsistency is never recovered unable to recover inconsistency-recoverable design
12 ✓ btree.h:576 DL2 Atomicity in node splitting unable to recover logging/transaction

P-ART (4) 13 ✓ Tree.cpp:35,258 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
14 ✓ Tree.cpp:35,384 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
15 ✓ N16.cpp:15 DL2 Atomicity between metadata and key-value Unable to recover inconsistency-tolerable design [8]
16 ✓ N4.cpp:17 DL2 Atomicity between metadata and key-value Unable to recover inconsistency-tolerable design [8]

P-CLHT (3) 17 ✓ clht_lb_res.c:315,370 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
18 ✓ clht_lb_res.c:315,468 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
19 ✓ clht_lb_res.c:166 DL1 Missing persistence primitives Lost key-value add persistence primitives [9]

P-HOT (4) 20 ✓ HOTRowex.hpp:61,84 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
21 ✓ TwoEntriesNode.hpp:30 DL1 Missing persistence primitives Points to garbage add persistence primitives [9]
22 ✓ HOTRowexNode.hpp:315 DL1 Missing persistence primitives Points to garbage add persistence primitives [9]
23 ✓ HOTRowex.hpp:270 DL1 Missing persistence primitives Points to garbage add persistence primitives [9]

P-Masstree (3) 24 ✓ masstree.h:1837,744 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
25 ✓ masstree.h:1837,941 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
26 ✓ masstree.h:1378 DL2 Atomicity in node splitting Unable to recover logging/transaction

pmdk-array (1) 27 ✓ array.c:486 DL2 Atomicity between metadata and data Unable to recover logging/transaxtion

DL1: Incompletely-Durable DL2: Unrecovered-Durable DL3: Visible-But-Not-Durable

Table 2: List of Durable Linearizability bugs detected by DURINN. In total, 27 (15 new) durable linearizability bugs were detected from 12
NVM data structures. There were 10 Incompletely-Durable bugs, 7 Unrecovered-Durable bugs, and 10 Visible-But-Not-Durable bugs.

App # stores # LPs # DL1
tests

# DL2
tests

# DL3
tests

Execution
time

P-LF-BST 10086 656 656 656 46 1m26s
P-LF-Hash 4604 547 547 547 5 1m44s
P-LF-List 4604 547 547 547 1623 7m15s

P-LF-Skiplist 26692 1040 1040 1040 491 4m3s
P-LF-Queue 9710 2000 2000 2000 7155 39m45s

CCEH 3631 1280 1280 1280 37 1m36s
Fast Fair 12989 10599 10599 10599 1585 8m37s
P-ART 12553 1112 1112 1112 287 2m34s

P-CLHT 2885 711 711 711 55 2m6s
P-HOT 32600 640 640 640 420 3m35s

P-Masstree 1403 1058 1058 1058 984 4m58s
pmdk-array 20505 3097 3097 3097 0 4m14s
pmdk-queue 57000 3000 3000 3000 0 2m51s

Total 199262 26287 26287 26287 12688 1h23m18s

DL1: Incompletely-Durable DL2: Unrecovered-Durable
DL3: Visible-But-Not-Durable

Table 3: The detailed statistics of DURINN bug finding.

8.2 Detected Durable Linearizability Bugs
In summary, DURINN detected 27 (15 new) durable lineariz-
ability bugs from 12 NVM data structures. There were 10
Incompletely-Durable bugs, 7 Unrecovered-Durable bugs and
10 Visible-But-Not-Durable bugs. 7 out of 15 new bugs have
been confirmed by the developers so far. Table 2 shows the
source code locations, impacts and fix strategies of the de-
tected bugs.

(DL1) Incompletely-Durable bugs. DURINN detected 10
Incompletely-Durable bugs. Figure 6(a) discussed in §3.2
is a representative example (Bug ID 19) found in P-CLHT,
leading to a lost key-value. As another instance, in P-LF-List

(Bug ID 3), a new node is not fully persisted before it is added
to the list using a CAS operation (which is LP). If a crash
happens before DP (and after LP in this particular case), the
list may contain a garbage node leading to an inconsistent
structure. To fix Incompletely-Durable bugs, developers need
to persist all the changes using additional cache line flush and
fence instructions before DP.
(DL2) Unrecovered-Durable bugs. DURINN detected 7
Unrecovered-Durable bugs. Figure 6(b) illustrates a case
detected in Fast-Fair (Bug ID 12). For another example, in
CCEH (Bug ID 7), if a crash happens while rehashing the
table and before adding a new segment into the table, the
hash table will be in an illegal state: i.e., all the metadata
assumes there is a new segment added but it is not. To fix
Unrecovered-Durable bugs, an NVM data structure should be
able to recover from or tolerate partial updates before LP of
an operation. Designing an inconsistency-recoverable design
is one solution. Using logging or transaction is another.
(DL3) Visible-But-Not-Durable bugs. DURINN detected
10 Visible-But-Not-Durable bugs. Figure 6(c) shows a Visible-
But-Not-Durable bug in Fast-Fair (Bug ID 8). For another
example, Bug ID 6 from CCEH is due to incorrect usage
of locks. While both insert and get operations use a lock
to protect a critical section, the write to the synchronization
variable (LP) is inside the critical section but the persistence
of the synchronization variable (DP) is ensured outside the
critical section in insert. Since the DP is not protected by a
lock, the get operation is able to observe the visible but not
durable writes from a concurrent insert operation. We ob-
served two ways to fix Visible-But-Not-Durable bugs. Some

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    205



choose to fix the concurrency control mechanism to guarantee
that every data read by concurrent threads is persisted. Others
made one operation that reads unpersisted data help persist
the data on behalf of another concurrent operation.

8.3 Statistics of DL Bug Detection
Table 3 shows the detailed statistics of DURINN when tested
with 1000 operations. The second column reports the number
of stores and the third column lists the number of inferred
likely linearization points. On average, using static analysis
described in §5.2, DURINN infers about 2,000 likely-LPs,
which is 13% of 15.3K NVM stores traced while running
1000 tested operations. More detailed analysis on likely-LP
inference will follow in §8.4.

The next three columns show the number of DL tests per-
formed by DURINN to detect three DL bug patterns. The num-
ber of Incompletely-Durable and Unrecovered-Durable tests
are the same as the number of inferred LPs because for each
LP, DURINN performs one adversarial test for Incompletely-
Durable bugs and for Unrecovered-Durable bugs. On the
other hand, the number of Visible-But-Not-Durable tests de-
pends on the number of co-schedulable racy operations. The
second last column shows that the number of Visible-But-
Not-Durable tests varies by data structures up to a few thou-
sand. Intuitively, lock-free data structures tend to have more
co-schedulable racy operations than (coarse-grained) lock-
based ones, requiring more tests. The last column reports
the execution time, which mostly depends on the number of
tests. Testing all three test cases typically takes a few minutes.
P-LF-Queue took the most time (around 40 mins) due to the
large number of concurrent Visible-But-Not-Durable testing.

Lastly, for each test case violating durable linearizability,
we manually analyze each case and report the details in Ta-
ble 2. DURINN provides sufficient information for root cause
analysis, including execution trace, crash location, persisted
and unpersisted writes, and a crash NVM image. We loaded
the crash image in gdb and followed the DURINN-generated
schedule to inspect the root causes of detected DL bugs.

8.4 Likely-Linearization Point Inference
DURINN infers likely-linearization points using Guarded-
Protection and Publish-after-Initialization heuristics de-
scribed in §5.2. The number of likely-LP determines the
number of DL tests that DURINN performs, so in terms of
scalability, the less the better. At the same time, ideally, likely-
LPs should not miss true LPs because missing LPs may lead
to missing true DL bugs (false negatives).

We performed a detailed case study with CCEH and Fast-
Fair in which we manually analyzed the true LPs (oracle)
for comparison. They both use lock-based concurrency con-
trol in which the store instructions serving as LPs are not
explicit. They are non-trivial concurrent data structures in-
cluding balancing operations such as rehashing (CCEH) and
node split/merge (Fast-Fair) operations.

Figure 11 shows the effectiveness of the proposed likely-

CCEH Fast-Fair

Nu
m

be
r o

f L
Ps

3631

12989

1923

12047

1927

11112

1280

10599

637

5000

Total Stores
only Guarded-Protection
only Publish-after-Initialization
Durinn
Manual

Figure 11: A case study of likely-linearization point inference.

LP inference techniques, compared to the manually identified
LPs. The first bar represents the number of total stores. The
second and third bar represent the number of likely-LPs when
only Guarded-Protection or Publish-after-Initialization heuris-
tics is used, respectively. The fourth bar shows the number
of likely-LPs of DURINN where both are considered. The
last bar is the number of LPs from our manual source code
analysis. The result shows that DURINN effectively reduces
the number of likely-LPs using two heuristics. The number
of likely-LPs inferred by DURINN is twice as the number of
manually-identified LPs. Note that as listed in Table 3, CCEH
and Fast Fair are the most difficult data structures in terms of
the reduction ratio between the stores and the likely-LPs.

Additionally, we compared the bug detection effective-
ness and found that DURINN’s inferred likely-LPs detect the
same DL bugs as manually-identified (true) LPs. Though
DURINN’s likely-LP inference heuristics do not guarantee
soundness in theory, this experiment empirically shows that
likely-LP inference did not miss true LPs (at least) for the
CCEH and Fast-Fair. We believe the same case for other data
structures given that the heuristics are designed based on
common NVM programming patterns.

8.5 Comparison with Other Tools
We present the detailed comparison with Witcher [30], the
state-of-the-art NVM crash-consistency bug detector, and
Yat [43], an exhaustive crash-consistency testing tool.
Bug Detection. We compared the bug detection effectiveness
with Witcher. In their paper, Witcher claims that it can detect
all the crash-consistency bugs that prior tools (e.g., PMTest,
XFDetector and Agamotto) found for a common set of NVM
programs, along with some new bugs. For comparison, we
run Witcher with the same test case with 1000 operations
for six common data structures: CCEH, Fast-Fair, P-ART, P-
CLHT, P-HOT and P-Masstree. Both Witcher and DURINN
detected 11 bugs in common. Beyond them, DURINN reports
10 Visible-But-Not-Durable bugs that Witcher missed. De-
tecting Visible-But-Not-Durable bugs requires scheduling
concurrent operations, which is not supported by Witcher.
Test Space Reduction. We compare the number of tests

206    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0 250 500 750 1000
# ops

2500

5000

7500

10000

# 
te

st
s

CCEH
Durinn
Witcher
Yat

0 250 500 750 1000
# ops

2500

5000

7500

10000

# 
te

st
s

Fast-Fair

0 250 500 750 1000
# ops

2500

5000

7500

10000

# 
te

st
s

P-ART

0 250 500 750 1000
# ops

2500

5000

7500

10000

# 
te

st
s

P-CLHT

Figure 12: Test space comparison.

performed by DURINN, Yat, and Witcher over the same 1000
operations. Figure 12 shows how the number of tests grows (y-
axis) as the number of tested operations increases (x-axis) for
four data structures: CCEH, Fast Fair, P-ART, and P-CLHT.
The other NVM data structures demonstrate a similar pattern.
Yat is an exhaustive testing tool, so the test space explodes
within the first ten operations. Witcher performs several times
more tests than DURINN. The sudden spike in P-CLHT is
due to a rehashing operation. On the other hand, DURINN
performs adversarial testing for three DL bug patterns, reduces
the number of tests, yet still detects more bugs than Witcher.

9 Related Work
File system/database Consistency Checking. File system
consistency checking [17, 18, 32, 41, 48, 49, 54, 57, 60–62]
deals with block-grained files, and logging/journaling is the
norm for crash consistency. On the other hand, DURINN deals
with concurrent data structures backed by byte-addressable
NVM. DURINN analyzes load/store instructions along with
cacheline flush and fence instructions, controlling durability
in NVM. NVM data structures often come with custom (log-
free) crash consistency and lock-free logic, making NVM
test space huge. For file systems, CrashMonkey [49] bounds
search space using heuristics learned from a bug study. EX-
PLODE [61] and FiSC [62] use in-situ model checking. In
contrast, DURINN reduces test space with adversarial crash
state and thread interleaving construction.

For correctness conditions, strict serializability and durable
linearizability are equivalent from the ACID properties per-
spective. (PMDK “transaction” does not provide “isolation”,
though). Yet, we believe durable linearizability is the appro-
priate framework to use as many NVM data structures are
derived from volatile concurrent data structures, where lin-
earizability is the norm. Others [28, 42] also use durable
linearizability. Equivalently, the asynchronous commit mech-
anism in database systems (Salt [59] and Hekaton [23]) can
be mapped to “buffered durable linearizability” [40]. For per-

formance, both do not eagerly make the changes durable as
long as they can resume from one of the old consistent states.
Linearizability Checker. Line-up [15] is the first complete
and automatic checker for deterministic linearizability. It
detects thread-safety violations by comparing the concur-
rent execution to linearizable executions of a test. Similarly,
Round-up [63] checks quasi linearizability. Quasi linearizabil-
ity intentionally introduces non-determinism into the parallel
computations and exploits such non-determinism to improve
the performance. Pradel et al. [53] detects concurrency bugs
in thread-safe classes. It generates tests in which multiple
threads call methods on a shared instance of the tested class
and check if the execution matches any linearizable execution.
Bug Detector for NVM Software. Most existing NVM bug
detectors are not designed for durable linearizability bugs.
PMDebugger [22] targets universal bugs such as missing per-
sistence primitives. To detect application-specific bugs, such
as persistence ordering/atomicity bugs, Yat [43], PMTest [46],
XFDetector [45] and Agamotto [51] require user-defined cus-
tom oracles or consistency checkers. Jaaru [31] only identifies
bugs that have visible manifestation, such as a segment fault
or an assertion failure. Witcher [30] leverages all or noth-
ing semantics for validation like DURINN, but it is limited to
single-threaded NVM programs.
Active Testing. AtomFuzzer [52] is a randomized active
atomicity violation detector, which modifies the thread sched-
uler behavior to create atomicity violations with high proba-
bility. RaceFuzzer [55] uses potential data race information
obtained from an existing dynamic analysis technique to con-
trol a random scheduler of threads for actively detecting race
conditions. Jumble [27] uses adversarial memory to classify
race conditions as destructive or benign on systems with re-
laxed memory models. Relaxer [16] detects sequential con-
sistency violations in a relaxed memory model by actively
leading execution to predicted violations.

10 Conclusion
We present DURINN, the first durable linearizability checker
for concurrent NVM data structures. We explore the gap be-
tween linearizability point and durability point, and define
three novel durable linearizability bug patterns. We propose
adversarial crash state and thread interleaving construction
and likely-linearization point inference to detect durable lin-
earizability bugs in an active and scalable manner. DURINN
detected 27 (15 new) durable linearizability bugs.

Acknowledgments
We thank the anonymous reviewers and Murat Demirbas (our
shepherd) for their insightful comments and feedback. This
work was partly supported by Institute for Information &
communications Technology Promotion (IITP) grant from the
Korean government (MSIT) (No. 2014-3-00035) and by the
National Science Foundation under the grants CNS-2029720
and CCF-2153747.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    207



References
[1] American Fuzzy Lop plus plus (AFL++). URL: https:
//github.com/AFLplusplus/AFLplusplus.

[2] Argonne National Lab’s Aurora Exascale Sys-
tem. URL: https://www.intel.com/content/
www/us/en/customer-spotlight/stories/
argonne-aurora-customer-story.html.

[3] Available first on Google Cloud: Intel
Optane DC Persistent Memory. URL:
https://cloud.google.com/blog/topics/
partners/available-first-on-google-cloud_
intel-optane-dc-persistent-memory.

[4] Key/Value Datastore for Persistent Memory. URL:
https://github.com/pmem/pmemkv.

[5] Persistent array in PMDK. URL: https:
//github.com/pmem/pmdk/tree/stable-1.8/
src/examples/libpmemobj/array.

[6] Persistent queue in PMDK. URL: https:
//github.com/pmem/pmdk/tree/stable-1.8/
src/examples/libpmemobj/queue.

[7] Pmem-Memcached. https://github.com/lenovo/
memcached-pmem.

[8] RECIPE commit to fix reported bugs. URL: https:
//github.com/utsaslab/RECIPE/commit/
4b0c27674ca7727195152b5604d71f47c0a0a7a2.

[9] RECIPE commit to fix reported bugs. URL: https:
//github.com/utsaslab/RECIPE/commit/
950ae0ea5ed23ce28840615976e03338b943d57a.

[10] Redis v3.2. https://github.com/pmem/redis/
tree/3.2-nvml.

[11] The LLVM Compiler Infrastructure. URL: https://
llvm.org/.

[12] Mohammad Alshboul, Prakash Ramrakhyani, William
Wang, James Tuck, and Yan Solihin. Bbb: Simplifying
persistent programming using battery-backed buffers. In
Proceedings of the 27rd IEEE Symposium on High Per-
formance Computer Architecture (HPCA), pages 111–
124, Seoul, South Korea, February 2021.

[13] Anandtech. Intel Launches Optane DIMMs
Up To 512GB: Apache Pass Is Here!, 2018.
URL: https://www.anandtech.com/show/
12828/intel-launches-optane-dimms_
up-to-512gb-apache-pass-is-here.

[14] ARM Limited. ARM architecture reference manual
armv8, for armv8-a architecture profile, 2020.

[15] Sebastian Burckhardt, Chris Dern, Madanlal Musu-
vathi, and Roy Tan. Line-up: A complete and
automatic linearizability checker. In Proceed-
ings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion, PLDI ’10, page 330–340, New York, NY,
USA, 2010. Association for Computing Machin-
ery. URL: https://doi.org/10.1145/1806596.
1806634, doi:10.1145/1806596.1806634.

[16] Jacob Burnim, Koushik Sen, and Christos Stergiou. Test-
ing concurrent programs on relaxed memory models. In
Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 122–132,
Toronto, Canada, July 2011.

[17] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay İleri, Adam Chlipala, M Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 270–286, 2017.

[18] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M Frans Kaashoek, and Nickolai Zeldovich. Using
crash hoare logic for certifying the fscq file system. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles, pages 18–37, 2015.

[19] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and
Derrick Coetzee. Better i/o through byte-addressable,
persistent memory. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP),
Big Sky, MT, October 2009.

[20] CXL Consortium. Compute Express Link™: The
Breakthrough CPU-to-Device Interconnect. https:
//www.computeexpresslink.org/.

[21] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui,
and Igor Zablotchi. Log-free concurrent data structures.
In Proceedings of the 2018 USENIX Annual Technical
Conference (ATC), Boston, MA, July 2018.

[22] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast,
flexible and comprehensive bug detection for persistent
memory programs extended abstract. In Proceedings of
the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Virtual, April 2021.

208    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://www.intel.com/content/www/us/en/customer-spotlight/stories/argonne-aurora-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/argonne-aurora-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/argonne-aurora-customer-story.html
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud_intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud_intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud_intel-optane-dc-persistent-memory
https://github.com/pmem/pmemkv
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/array
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/array
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/array
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/queue
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/queue
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/queue
https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem
https://github.com/utsaslab/RECIPE/commit/4b0c27674ca7727195152b5604d71f47c0a0a7a2
https://github.com/utsaslab/RECIPE/commit/4b0c27674ca7727195152b5604d71f47c0a0a7a2
https://github.com/utsaslab/RECIPE/commit/4b0c27674ca7727195152b5604d71f47c0a0a7a2
https://github.com/utsaslab/RECIPE/commit/950ae0ea5ed23ce28840615976e03338b943d57a
https://github.com/utsaslab/RECIPE/commit/950ae0ea5ed23ce28840615976e03338b943d57a
https://github.com/utsaslab/RECIPE/commit/950ae0ea5ed23ce28840615976e03338b943d57a
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/pmem/redis/tree/3.2-nvml
https://llvm.org/
https://llvm.org/
https://www.anandtech.com/show/12828/intel-launches-optane-dimms_up-to-512gb-apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms_up-to-512gb-apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms_up-to-512gb-apache-pass-is-here
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1145/1806596.1806634
http://dx.doi.org/10.1145/1806596.1806634
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/


[23] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake
Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma,
and Mike Zwilling. Hekaton: SQL Server’s Memory-
optimized OLTP Engine. In Proceedings of the 2013
ACM SIGMOD/PODS Conference, pages 1243–1254,
New York, USA, June 2013. ACM.

[24] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong,
and Haibo Chen. Performance and protection in
the zofs user-space nvm file system. In Proceed-
ings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP ’19, page 478–493, New York,
NY, USA, 2019. Association for Computing Machin-
ery. URL: https://doi.org/10.1145/3341301.
3359637, doi:10.1145/3341301.3359637.

[25] Mingkai Dong and Haibo Chen. Soft updates made sim-
ple and fast on non-volatile memory. In Proceedings of
the 2017 USENIX Annual Technical Conference (ATC),
Santa Clara, CA, July 2017.

[26] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the 9th European Conference on
Computer Systems (EuroSys), Amsterdam, The Nether-
lands, April 2014.

[27] Cormac Flanagan and Stephen N Freund. Adversarial
memory for detecting destructive races. In Proceedings
of the 2010 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
pages 244–254, Toronto, Canada, June 2010.

[28] Michal Friedman, Naama Ben-David, Yuanhao Wei,
Guy E Blelloch, and Erez Petrank. NVTraverse: In
NVRAM Data Structures, the Destination Is More Im-
portant Than the Journey. In Proceedings of the 2020
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 377–392, Vir-
tual, June 2020.

[29] Michal Friedman, Maurice Herlihy, Virendra Marathe,
and Erez Petrank. A persistent lock-free queue for non-
volatile memory. In Proceedings of the 21st ACM Sym-
posium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 28–40, wien, Austria, March 2018.

[30] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi,
Mohannad Ismail, Sunny Wadkar, Dongyoon Lee, and
Changwoo Min. Witcher: Systematic crash consistency
testing for non-volatile memory key-value stores. In
Proceedings of the 28th ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 100–115, Virtual,
October 2021.

[31] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky.
Jaaru: Efficiently model checking persistent memory
programs. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual,
April 2021.

[32] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dussea, and Ben Li-
blit. EIO: Error handling is occasionally correct. In
Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST), pages 14:1–14:16, 2008.

[33] Maurice P Herlihy and Jeannette M Wing. Linearizabil-
ity: A correctness condition for concurrent objects. In
Proceedings of the ACM Transactions on Programming
Languages and Systems, pages 463–492, 1990.

[34] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-addressable Persistent B+-tree. In Proceedings of
the 16th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 187–200, Oakland, California,
USA, February 2018.

[35] Intel. pmreorder, 2019. URL: https:
//pmem.io/pmdk/manpages/linux/master/
pmreorder/pmreorder.1.html.

[36] INTEL. Third Generation Intel® Xeon® Proces-
sor Scalable Family Technical Overview, 2020.
URL: https://www.intel.com/content/
www/us/en/developer/articles/technical/
intel-xeon-processor-scalable-family-overview.
html.

[37] Intel. eADR: New Opportunities for
Persistent Memory Applications, 2021.
https://www.intel.com/content/www/
us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent_
memory-applications.html.

[38] INTEL. PMDK man page: libpmem - persistent mem-
ory support library, 2021. URL: https://pmem.io/
pmdk/manpages/linux/v1.0/libpmem.3.html.

[39] Intel Corporation. Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, 2021. https://software.
intel.com/en-us/articles/intel-sdm.

[40] Joseph Izraelevitz, Hammurabi Mendes, and Michael L
Scott. Linearizability of persistent memory objects un-
der a full-system-crash failure model. In Proceedings of
the 30st International Conference on Distributed Com-
puting (DISC), pages 313–327, Paris, France, September
2016.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    209

https://doi.org/10.1145/3341301.3359637
https://doi.org/10.1145/3341301.3359637
http://dx.doi.org/10.1145/3341301.3359637
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-xeon-processor-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-xeon-processor-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-xeon-processor-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-xeon-processor-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent_memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent_memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent_memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent_memory-applications.html
https://pmem.io/pmdk/manpages/linux/v1.0/libpmem.3.html
https://pmem.io/pmdk/manpages/linux/v1.0/libpmem.3.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm


[41] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding semantic bugs
in file systems with an extensible fuzzing framework. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 147–161, 2019.

[42] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. PACTree: A
High Performance Persistent Range Index Using PAC
Guidelines. In SOSP ’21: 28th ACM Symposium on Op-
erating Systems Principles, October 25-28, 2021. ACM,
2021.

[43] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Ra-
jesh Sankaran, and Jeff Jackson. Yat: A validation frame-
work for persistent memory software. In Proceedings of
the 2014 USENIX Annual Technical Conference (ATC),
Philadelphia, PA, June 2014.

[44] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. RECIPE:
Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
Ontario, Canada, October 2019.

[45] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas
Wenisch, Aasheesh Kolli, and Samira Khan. Cross-
Failure Bug Detection in Persistent Memory Programs.
In Proceedings of the 25th ACM International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), page
1187–1202, Lausanne, Switzerland, April 2020.

[46] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. PMTest: A Fast and Flexible Testing
Framework for Persistent Memory Programs. In Pro-
ceedings of the 24th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 411–425, Provi-
dence, RI, April 2019.

[47] Micro. 3D XPoint Technology, 2019. URL:
https://www.micron.com/products/
advanced-solutions/3d-xpoint-technology.

[48] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee,
Chengyu Song, and Taesoo Kim. Cross-checking se-
mantic correctness: The case of finding file system bugs.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 361–377, 2015.

[49] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Find-
ing Crash-Consistency Bugs with Bounded Black-Box
Crash Testing. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), page 33–50, Carlsbad, CA, October
2018.

[50] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In Proceedings of the
17th USENIX Conference on File and Storage Technolo-
gies (FAST), Boston, MA, February 2019.

[51] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn,
Youngjin Kwon, Simon Peter, and Baris Kasikci. AG-
AMOTTO: How persistent is your persistent mem-
ory application? In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 1047–1064. USENIX Association,
November 2020. URL: https://www.usenix.org/
conference/osdi20/presentation/neal.

[52] Chang-Seo Park and Koushik Sen. Randomized active
atomicity violation detection in concurrent programs. In
Proceedings of the 16th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), pages
135–145, Atlanta, GA, November 2008.

[53] Michael Pradel and Thomas R. Gross. Fully
automatic and precise detection of thread safety
violations. SIGPLAN Not., 47(6):521–530, June
2012. URL: https://doi.org/10.1145/2345156.
2254126, doi:10.1145/2345156.2254126.

[54] Cindy Rubio-González, Haryadi S. Gunawi, Ben Lib-
lit, Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-
Dusseau. Error propagation analysis for file systems.
In Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 270–280, Dublin, Ireland, June 2009.

[55] Koushik Sen. Race directed random testing of con-
current programs. In Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 11–21, Tucson,
AZ, June 2008.

[56] Peter Sewell, Susmit Sarkar, Scott Owens,
Francesco Zappa Nardelli, and Magnus O Myreen.
x86-tso: a rigorous and usable programmer’s model
for x86 multiprocessors. Communications of the ACM,
53(7):89–97, 2010.

[57] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file systems
via crash refinement. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 1–16, 2016.

210    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://doi.org/10.1145/2345156.2254126
https://doi.org/10.1145/2345156.2254126
http://dx.doi.org/10.1145/2345156.2254126


[58] Steve Scargall. Programming Persistent Memory: A
Comprehensive Guide for Developers, 2020. https:
//pmem.io/book/.

[59] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang,
Navid Yaghmazadeh, Lorenzo Alvisi, and Prince Ma-
hajan. Salt: Combining acid and base in a distributed
database. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Broomfield, Colorado, October 2014.

[60] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning
Tseng, and Taesoo Kim. Fuzzing file systems via two-
dimensional input space exploration. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 818–
834. IEEE, 2019.

[61] Junfeng Yang, Can Sar, and Dawson Engler. explode: A
lightweight, general system for finding serious storage
system errors. In Proceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 10–10, Seattle, WA, November 2006.

[62] Junfeng Yang, Paul Twohey, and Dawson. Using model
checking to find serious file system errors. In Proceed-
ings of the 6th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 273–
288, San Francisco, CA, December 2004.

[63] Lu Zhang, Arijit Chattopadhyay, and Chao Wang.
Round-up: Runtime checking quasi linearizability of
concurrent data structures. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE’13, page 4–14. IEEE Press,
2013. URL: https://doi.org/10.1109/ASE.2013.
6693061, doi:10.1109/ASE.2013.6693061.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    211

https://pmem.io/book/
https://pmem.io/book/
https://doi.org/10.1109/ASE.2013.6693061
https://doi.org/10.1109/ASE.2013.6693061
http://dx.doi.org/10.1109/ASE.2013.6693061




SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute

Ningxin Zheng1*, Bin Lin1,2*, Quanlu Zhang1, Lingxiao Ma1, Yuqing Yang1, Fan Yang1, Yang Wang1,
Mao Yang1, Lidong Zhou1

1Microsoft Research, 2Tsinghua University

Abstract
Sparsity is becoming arguably the most critical dimension

to explore for efficiency and scalability, as deep learning mod-
els grow significantly larger and more complex. After all,
the biological neural networks, where deep learning draws
inspirations, are naturally sparse and highly efficient.

We advocate an end-to-end approach to model sparsity
via a new abstraction called Tensor-with-Sparsity-Attribute
(TeSA), which augments the default Tensor abstraction that
is fundamentally designed for dense models. TeSA enables
the sparsity attributes and patterns (e.g., for pruning and quan-
tization) to be specified, propagated forward and backward
across the entire deep learning model, and used to create
highly efficient, specialized operators, taking into account the
execution efficiency of different sparsity patterns on different
(sparsity-aware) hardware. The resulting SparTA framework
can accommodate various sparsity patterns and optimization
techniques, delivering 1.7x∼8.4x average speedup on infer-
ence latency compared to seven state-of-the-art (sparse) solu-
tions with smaller memory footprints. As an end-to-end model
sparsity framework, SparTA facilitates sparsity algorithms to
explore better sparse models.

1 Introduction

As deep neural network (DNN) models become large and
complex, they are inevitably getting sparse (or made sparse)
for efficiency, just as manifested in the highly sparse biologi-
cal neural networks [89]. A DNN model is usually modeled
as a data flow graph (DFG), where each node is an operator
with one or multiple input and output tensors. Model sparsity
involves introducing some sparsity patterns on the tensors;
for example, to quantize some tensors with lower precision
(e.g., 16 to 8-bit); to prune the model by setting the value
of some (or all) parts of some tensors to zero (e.g., block

*: Equal contribution.

sparsity [61, 63] or fine-grained sparsity [43, 54, 55]); or to
apply the combination of pruning and quantization to a model.
With careful pruning and quantization, a DNN model can be
compressed into a smaller memory footprint without losing
too much accuracy. With DNN operators customized for the
sparsity patterns, the resulting model will, hopefully, come
with a lower inference latency.

Unfortunately, deep learning systems are not yet effective
in exploiting sparsity: the increase in sparsity might not trans-
late into actual gains in efficiency for a variety of reasons.
First, the computation kernels for general sparse operations
remain far from optimal. For example, cuSPARSE [3], the
CUDA library for sparse matrix operations, has been shown
to underperform cuBLAS, its dense counterpart, even when
the sparsity of the matrices reaches 98% (Table 1). Second, as
DNN computation usually takes multiple stages, the sparsity
pattern might vary significantly across stages, making it hard
to develop sparsity-aware optimizations for end-to-end gains.
Finally, any effective sparsity-aware optimization might in-
volve additional support across the vertical stack, from the
deep learning framework, compiler, optimizer, operators and
kernels, and all the way to hardware. Insufficient support at
any of the layers could lead to inefficiency.

We therefore propose SparTA, a new framework that treats
sparsity as a first-class citizen, with the following design prin-
ciples. The design is customizable and extensible to accom-
modate new innovations on model sparsity; it is end-to-end
and covers the whole-stack, rather than being limited to one
operator or to one layer; it aims for extreme performance with-
out sacrificing general applicability; it can facilitate existing
sparsity algorithms to explore sparse models more efficiently.

At the core of SparTA is a new abstraction, Tensor-with-
Sparsity-Attribute or TeSA, which augments the standard ten-
sors with attributes to describe sparsity properties and patterns.
Examples include low-precision weights, block (structured)
sparsity, and fine-grained (unstructured) sparsity. A set of
TeSA propagation rules guides the forward and backward
propagation of sparsity attributes for end-to-end coverage.
The rules can either be defined by the proposed TeSA algebra,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    213



Table 1: Speed of matrix multiplication (1024×1024×1024)
in cuSPARSE and cuBLAS on NVIDIA 2080Ti (unit: us).

Sparsity Ratio 50% 90% 95% 99%
cuSPARSE 1652.5 633.9 463.0 181.7

cuBLAS 208.3 208.3 208.3 208.3

or be inferred in a probabilistic way (§3.2).
With the sparse attributes in TeSA, SparTA can generate

an efficient execution plan, taking into account the sparsity-
aware hardware and specific sparse operators/kernels in cer-
tain sparsity patterns and conditions. SparTA may transform
an execution plan to decompose complex sparsity attributes
into a combination of simple ones with known effective opti-
mizations. In the execution plan, SparTA can perform code
specialization to generate efficient kernels for simple and reg-
ular sparse attributes, instead of resorting to generic but less
efficient sparse kernels. This is how SparTA achieves extreme
efficiency without sacrificing generality (§3.3).

Due to the whole-stack support (all the way to the codegen
on accelerators), SparTA is able to provide the ground-truth
performance metrics (e.g., latency) that can help evaluate
different execution plans given a TeSA with fixed sparsity
attributes and also offer valuable feedback for practitioners to
search for the set of sparsity attributes with the ideal tradeoff
between performance and accuracy (§5.4).

SparTA is highly customizable and extensible. With TeSA,
one can define new sparsity properties and patterns for new
ways of exploiting sparsity, provide new TeSA propagation
rules, and incorporate new sparsity-aware operators, kernels,
and (sparsity-aware) hardware accelerators.

We have implemented SparTA based on Rammer [60], a
state-of-the-art open-source DNN compiler with no special
support for sparsity. We extensively evaluate SparTA on three
popular DNN models with four representative sparsity pat-
terns on three accelerators (i.e., CUDA GPU, ROCm GPU,
Intel CPU). Our evaluation shows that SparTA achieves up
to 8.4x average speedup on model inference latency with less
memory consumption, compared to seven state-of-the-art so-
lutions (§5). We have also used SparTA to speed up sparse
DNN model training and achieved more than 2x speedup than
previous solutions (§5.5). By open sourcing SparTA1, we
hope that this work can bring the community together in this
extensible and unified framework to accelerate innovations
on model sparsity.

2 Background and Motivation

The size of deep neural networks grows significantly over the
past years [25, 37], which incurs large inference latency and
heavy memory burden. Model sparsity is arguably the most
critical dimension to explore for efficiency and scalability.

1Code available at https://github.com/microsoft/SparTA

T2
Batch
Norm ReLU

Propagated attributes
Initial attributes

WT

Matmul

W5

T5 T6

W3

T3 T4T1

W1 W2

Matmul Matmul

Figure 1: The sparsity attribute of one tensor can be propa-
gated along the deep learning network.

Various forms of sparsity. Deep learning model sparsity is
an active and extensively studied research topic. Currently,
there are various sparsity patterns being studied. Structured
(coarse-grained) sparsity, including channel-granularity spar-
sity, and block sparsity [56, 59, 61, 63], involves pruning a
channel or a sub-block of tensors (e.g., weight or activation
tensor) associated with some operators. With unstructured
(fine-grained) sparsity, any element of a tensor [43, 54, 55]
might be pruned. Quantization algorithms represent models at
different levels of precision (e.g., binarized models [31], 8-bit
models [52, 92]), and even with different, mixed precision
across neural network layers [36, 57, 77] or within a single
tensor [66, 84]. Some research further combines pruning and
quantization in order to achieve high accuracy under the strict
latency and memory constraints [42, 74, 75, 78, 83, 90]. Over-
all, pruning and quantization have been shown effective in
reducing the size and computation complexity of certain deep
learning models, sometimes by more than 10 times, without
losing much accuracy [42, 76].
The myth of FLOPs. Model sparsity does not translate
directly into performance benefits. The existing practice of
using “proxy metric” (e.g., FLOPs, or Floating point opera-
tions) to evaluate the effect of their proposals such as model
inference latency is flawed and leads to inaccurate results. For
example, when an operator’s weight is pruned by 50% with
fine-grained sparsity, even though in theory its FLOPs can
be reduced by half, the actual inference latency may become
higher with a default sparse kernel (§5.3).

One reason is the sub-optimal implementation of current
generic sparse kernels. A generic sparse kernel tends to ap-
ply a few default sparse encoding schemes (e.g., Compressed
Sparse Row [26]) to any sparse tensors. This may miss opti-
mization opportunities in a tensor with a specific sparsity pat-
tern, such as structured sparsity. As a result, a generic sparse
kernel library like cuSPARSE [3] can outperform cuBLAS,
its dense counterpart [2], only in some extreme sparse case
(98%), as shown in Table 1. This motivates the need to find a
general framework to implement specialized kernels tailored
for individual sparsity schemes.
The diminishing end-to-end returns. Sparsity algorithms
often focus on exploring the sparsity of a certain DNN op-
erator (e.g., convolution [64]). However, when placed in an
end-to-end deep learning model, the sparsity pattern across
the whole model can be impacted by each of the operators
in the model. This may introduce sophisticated sparsity pat-

214    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



DNN Model (DFG)

Initial Tensor 
Sparsity Attribute

Tensor Sparsity 
Attribute 

Propagation

Propagation 
Rules

Pruning Rule
DNN Model (DFG) with 

Tensor Attribute

Quantization 
Rule

Attribute Propagation

Final Executable DNN Model

Execution Plan Generation & 
Transformation 

TeSA-Aware Code Specialization

Code Generation

Traditional DNN compiling pass

Figure 2: The system architecture of SparTA.

terns that are difficult for existing solutions to understand
or optimize, leading to diminishing end-to-end return from
sparsity.

In Figure 1, tensor W2 illustrates a fine-grained sparsity
pattern (63% sparsity). Such an initial sparsity pattern of W2
incurs ripple effects. W2 would propagate its sparsity attribute
to the down-stream and up-stream tensors, including W1, T2,
T3, T4, T5, and W5. For example, because the second column
of W2 is pruned, the second column of T3 is destined to be all
zero, hence can be pruned too (as T2×W2 = T3). Likewise,
as the third row of W2 is pruned, the third column of T2 can
also be pruned. It is therefore desirable for a deep learning
compiler to understand such propagation of sparsity so as for
further sparsity-aware optimization.
Across-stack sparsity innovations in silos. Due to the
above limitations, sparsity innovations either are constrained
to individual operators and evaluated with proxy metrics with-
out knowing the end-to-end effects, or have to be implemented
manually on a few neural models, difficult to be ported to other
models [42, 77]. More problematically, individual solutions
are hard to be extended to or combined with other proposals.
All these motivate SparTA, a common foundation to facilitate
sparsity innovations, which can be evaluated end-to-end.

3 SparTA Design

Figure 2 summarizes the overall architecture of SparTA. At
the core of SparTA is the TeSA abstraction, which augments
the existing tensor abstraction with sparsity attribute (§3.1).
An algorithm designer can specify the sparsity patterns in
selected tensors of a deep learning model as “Initial Tensor
Sparsity Attribute”.

Given the initial sparsity attribute, SparTA performs at-
tribute propagation to infer the sparsity attributes of all other
tensors in the deep learning model, according to the propaga-
tion rules (§3.2). Sparsity attribute propagation exposes more
optimization opportunities than the original sparse tensors, as
shown, for example, in Figure 1.

After attribute propagation, SparTA runs a multi-pass com-
pilation process to generate efficient end-to-end code (§3.3).
Compared to a traditional DNN compiler, SparTA conducts

two additional compilation passes to exploit model sparsity
fully. The first pass transforms the original execution plan of a
DNN model into a new one that takes advantage of the given
sparsity patterns. A further compilation pass then performs
sparsity-aware code specialization. The awareness of tensor
sparsity patterns allow SparTA to generate highly customized
code. This process may be iterated for further improvement.

Finally, with the final compiled code, model designers can
profile the DNN model to obtain authentic performance met-
rics, including memory consumption and inference latency.
Given the feedback, model designers may further update the
sparsity attributes in some tensors and repeat this process
iteratively to find the best tradeoff. Thus SparTA enables a
feedback loop, facilitating the innovation in model sparsity.

3.1 The TeSA abstraction
TeSA augments a traditional tensor with an additional tensor
with the same shape, where each element is a scalar value, rep-
resenting the sparsity attribute of the corresponding element
in the original tensor. This allows a user to specify arbitrary
sparsity patterns in a tensor, a key requirement of the evolving
research on model sparsity [40, 47, 72]. Figure 3 shows an ex-
ample of TeSA. The left shows the original dense tensor. The
right shows the corresponding sparsity attribute, where one
prunes the second row in the tensor, uses 8-bit to quantize the
bottom-right element and 4-bit for the remaining elements.
This example shows that TeSA can unify tensor quantiza-
tion and pruning in one abstraction. The unified abstraction
facilitates the co-optimization of pruning and quantization,
e.g., picking the right block size to cover (represent) the re-
maining (non-pruned) elements while aligning with low-bit
hardware instructions (e.g., wmma [5]). With TeSA, SparTA
can understand the sparsity pattern at compile time, which
enables further optimizations. Note that the sparse attribute
will only be used in the compile phase, thus it does not impose
additional resource burden to the actual compute phase.

3.2 Sparsity Attribute Propagation
The number of tensors in a deep learning model is usually
large. A user can only set the sparsity attribute for a subset
of the tensors. To maximize end-to-end sparsity, SparTA per-
forms attribute propagation along the DFG of the DNN model

Values Sparsity Attribute

TeSA: Tensor with Sparsity Attribute

0.4

0.0 0.0

0.5

1.9

4 4 4

0 0 0

4 4 8
4: unit4
8: unit8
0: pruned

0.6

0.5 0.7

0.0

Figure 3: An example of TeSA. Sparsity Attribute denotes
the sparsity pattern, including quantization (4 means uint4, 8
means uint8) and pruning (0 means the element is pruned).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    215



Algorithm 1: TeSA attribute propagation.
Data: G: DFG of TeSA annotated DNN model.
Result: G with updated TeSAs.

1 Function Propagate(G):
2 S = Set(AllNodesOf(G));
3 while S 6= /0 do
4 N = S.PopOne() ; /* can start from any node */

/* Is (Os) is node N’s input (output) TeSA */
5 Is, Os = TeSAOf(N);
6 Iupdated , Oupdated = PropOneNode(N, Is, Os);
7 foreach T ∈ ( Iupdated ∪Oupdated ) do
8 B = NeighborNodesOf(T);
9 S.Insert(B.Remove(N));

10 return G;

Matmul

W1 × W2

(a) (b) (c)

W2W1

W3

Matmul Matmul

W2W1

W3

W2W1

W3

W1 × W2
W1 × W2

Initial sparsity attributes Resulting sparsity attributes Propagation direction

Figure 4: The propagation of sparsity attribute. The gray
blocks are propagated sparsity attributes.

to derive the TeSA of other tensors, shown in Algorithm 1.
Given a node, if the TeSA of any input or output tensor of a
node is updated (TeSAOf in Line 5), PropOneNode (Line 6)
updates the TeSA of other tensors associated with this node,
according to a certain propagation rule (as discussed later, the
propagation could be bidirectional). The propagation repeats
until no TeSA requires further update.

Note that if being propagated multiple times, a sparsity
attribute will be updated to increase the sparsity until con-
vergence. Multiple pruning updates lead to the union of the
pruned elements in all the updates (The tensor W3 in Fig-
ure 4(c) is an example). For quantization, the attribute will be
converged to the fewest quantization bits (or 0-bit, i.e., being
pruned). As each propagation monotonically increases spar-
sity and both the propagations of pruning and quantization
are commutative and associative, Algorithm 1 is guaranteed
to terminate.
Intra-operator propagation. The propagation behavior of
PropOneNode varies across different type of operators and at-
tributes. In Figure 4(b), the pruned element [0,0] in tensor W3
cannot propagate to W1 and W2 through the operator Matmul,
while it does propagate to upstream tensor if the operator is
element-wise computation like ReLU. Propagation could be
bidirectional. Figure 4(a) shows that the input W2 can affect
the output W3 and another input W1. And in Figure 4(b), W2
becomes sparse due to the TeSA of the output W3.

The sparsity attribute of the quantization type propagates

Type Computation Computation in TeSA Algebra
Unary

f (x)⇒ y
sin,cos,

|x|,ReLU, . . .
(x = φ)→ (y = φ)
(x = α)→ (y = α)

Binary
f (x,y)⇒ z

+,− ((x = φ)∧ (y = φ))→ (z = φ)
((x = α)∨ (y = α))→ (z = α)

×,÷,xy ((x = φ)∨ (y = φ))→ (z = φ)
((x = α)∧ (y = α))→ (z = α)

Table 2: TeSA algebra on a set of attribute values. φ and α

represent pruned and non-pruned element respectively.

differently. If an output tensor has a low precision (e.g., 4bit)
while the input tensor’s precision is high (e.g., 16bit), the
input may use fewer quantization bits with little impacts on
output (i.e., information bottleneck [73]).

Next, we show two propagation rules used by SparTA for
pruning and quantization attribute. Note that it is possible
to extend PropOneNode to support more rules as shown in
line 27-line 36 of Algorithm 2. New propagation rules can be
registered and invoked in PropOneNode.
Pruning rule. The propagation of pruning attributes depends
on the computation logic of an operator (e.g.,+,× in Matmul).
To capture such property, SparTA defines a TeSA algebra that
maps the an operator’s element-wise computation to a set
with two elements, {pruned, non-pruned}. The TeSA algebra
is shown in Table 2. Given an input TeSA, its output TeSA
can be computed using the TeSA algebra, following the same
computation flow of the operator. Note that Table 2 can be
extended to support new operators.

SparTA also proposes Tensor Scrambling, a probabilistic
propagation rule that handles black-box or complex opera-
tors, where the detailed computation logic is unavailable or
unclear. This rule derives the pruned elements of a tensor by
scrambling the values of other related tensors. Specifically,
the rule sets the pruned elements in the input tensor to zeros,
and assigns random values to the remaining elements (i.e.,
scrambling). It then runs the operator to obtain its output
tensor (assuming at least the dense version of the operator is
available). By repeating this process enough times (see §5.2),
the rule treats those elements that always stay zero as pruned
elements in an output tensor.

In addition, the sparsity also propagates from the output
to the input, or from one input tensor to another. To achieve
this, SparTA leverages the auto differentiation (AD) of DNN
computation. An operator’s backward operator is also avail-
able for the back-propagation in the AD. Let I1...n and O1...n
denote an operator’s inputs and outputs respectively. Its back-
ward operator’s inputs are I1...n and gO1...n, with its outputs
being gI1...n, where the prefix g denotes the gradient of the
corresponding tensor. According to AD’s property, gIi and
gOi should have the same TeSA of Ii and Oi (both shape and
value). To infer the TeSA propagated from tensor Ii (or Ot ) to
I j, SparTA applies TeSA algebra or Tensor Scrambling to the
backward operator: using the TeSAs of I1...n and gO1...n as the
input, SparTA applies either rule to compute (PropOneNode)

216    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Algorithm 2: TeSA attribute propagation rules.
Data: N: a node in DFG, Is: node N’s inputs, Os: node N’s outpus.
Result: Updated input/ouput TeSAs after propagation on N.

11 Function PruningPropRule(N, Is, Os):
12 Supdated = /0;
13 foreach T ∈ ( Is ∪Os ) do
14 Tupdated = TensorScrambling(N, (Is ∪Os)\T );
15 if Tupdated != T then
16 Supdated .Update(Tupdated );
17 return SplitToIsOs(Supdated );
18 Function QuantizationPropRule(N, Is, Os):
19 Supdated = /0; S = ( Is ∪Os );
20 Dcalib = GetCalibrationDataOf (N);
21 foreach T ∈ ( Is ∪Os ) do
22 Tupdated = LowerBitAndFinetune(N, S, T , Dcalib);
23 if Tupdated != T then
24 S.Update(Tupdated );
25 Supdated .Update(Tupdated );
26 return SplitToIsOs(Supdated );
27 RegisterPropRule(PruningPropRule);
28 RegisterPropRule(QuantizationPropRule);
29 Function PropOneNode(N, Is, Os):
30 Iupdated = Oupdated = /0;
31 foreach RegisteredPropRule do
32 Iproped ,Oproped = RegisteredPropRule(N, Is, Os);
33 Is.Update(Iproped ); Os.Update(Oproped );
34 Iupdated .Update(Iproped );
35 Oupdated .Update(Oproped );
36 return Iupdated , Oupdated ;

gI j’s TeSA, which has the same shape and value of that of I j.
We use Operator Y = AX +B as an example to illustrate

output-to-input and input-to-input propagation, where Y is
output tensor, and A, B, and X are input tensors. To derive the
TeSA of A, B, X , we take the derivative of the operator with
respect to A, B, and X, i.e., gA = gY ×XT , gB = gY , gX =
AT ×gY , respectively. The sparsity propagation from output
tensor Y to input tensor A uses gA= gY×XT . gY has the same
TeSA as Y . Given the TeSA of Y and X , gA’s TeSA can be
inferred using either TeSA algebra or Tensor Scrambling. The
propagation from X to A also uses this backward computation,
which is input-to-input propagation. Similarly, the TeSA of
B and X can be inferred from Y using gB = gY and gX =
AT ×gY , respectively. It is obvious from gB = gY that B has
the same TeSA as Y .

The propagation rule of pruned elements can be realized in
line 11 of Algorithm 2. Every input/output TeSA of node N
is computed (line 14), i.e., propagating the sparsity in other
TeSAs (i.e., (Is∪Os)\T ) to this TeSA (i.e., T ). This function
returns the updated input and output TeSAs separately (i.e.,
line 17). Note that here Tensor Scrambling can be replaced
with tensor algebra.
Quantization rule. For propagation of quantization at-
tributes, the key is to find tensors with unnecessarily high
quantization precision. SparTA defines a quantization rule
(line 18 of Algorithm 2) that borrows the idea of knowledge
distillation [45,46] to identify such tensors. That is, to identify
whether the information passed through an operator can be

Operator

Execution Plan 
Transformation

TeSA Code 
Specialization

Kernel 
Implementation

Weight 
( )

Input 
( )

X

X X

void matmul_block_sparse_uint8(
float *A,float *B, float *C){

… …
}

void matmul_sparse_float32(
float *A,float *B, float *C){

… …
}

8 bits values 32 bits values

Figure 5: Two-pass compilation to generate an efficient kernel
for an operator (MatMul).

distilled into a lower precision with acceptable information
loss. Since the information loss can be measured through the
operator’s input and output tensors, we first perform inference
on the corresponding DNN model using train/test dataset, and
collect the resulting input and output tensors of that operator
to construct calibration data (line 20). Next, we gradually
reduce the quantization precision (e.g., 32-bit to 16-bit) of
one tensor of this operator while keeping other tensors un-
changed. The operator is then quantized and fine-tuned using
the calibration data under the new precision. The fine-tuning
is to minimize Mean Squared Error (MSE) between the out-
put tensors in calibration data and the output tensors of that
operator after lowering the precision. If the drop of model ac-
curacy is smaller than a predefined threshold (e.g., 1% in our
experiment), the new quantization attribute of that operator
is accepted (line 22). The process repeats for other tensors in
the operator, until all tensors are evaluated. To reduce the cost
of collecting calibration data, SparTA works through all the
operators in a DNN model in a topological order and caches
the activations computed in earlier quantization propagations.
Collecting an operator’s calibration data only needs partial
inference from the nearest cached activations to this operator.
For example, consider a sequential model with two layers
La and Lb. The propagation on La has collected its output
activations in its calibration data. When working on Lb, its
calibration data can be collected by doing partial inference
from the collected output activations of La. Our evaluation
results in §5.2 show the effectiveness of this propagation rule.

3.3 Code Generation with TeSA
After attribute propagation, tensors in the DNN model may
show a mixture of different sparsity patterns [42, 57, 74, 84].
Such complex patterns make it difficult to generate efficient
kernel code. SparTA therefore transforms a tensor with a
complex sparsity pattern to multiple tensors, each with a sim-
pler sparsity pattern. Correspondingly, SparTA rewrites the
execution plan of the associated operator to accommodate

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    217



new operators that compute the transformed tensors. Finally,
SparTA performs code generation for the transformed execu-
tion plan, with sparsity-aware specialization.

Figure 5 shows an example of such a two-pass compila-
tion process for Matmul. The weight tensor W is a tensor
with a mixed precision, where two structured blocks use 8bit
quantization and one fine-grained element uses 32bit. SparTA
transforms W into W1 and W2, each using a simpler quantiza-
tion scheme. Consequently, two operators are introduced to
compute W1× I and W2× I, respectively, using the hardware
instructions fit for the specific sparsity attribute. As a result,
the original execution plan with one operator is transformed
into a new plan that requires more tensor operations.
Execution-plan transformation. This compilation pass
transforms a tensor with a complex sparsity pattern to “regular”
(simple) sparsity patterns, which facilitates further optimiza-
tions in later passes. In SparTA, a regular sparsity pattern
means the TeSA of a tensor shows only one type of quantiza-
tion attribute and one block size of pruning attribute.

The detailed execution plan transformation for a DNN
model is performed operator-by-operator, shown in Algo-
rithm 3. For simplicity, we assume the operator has m in-
puts and a single output. The process starts from the op-
erator’s input and output TeSAs, each of which could be
transformed to one or multiple TeSAs using TransformTeSA.
Correspondingly, the operator is transformed to |To|∏m

i=1 |Ti|
sub-operators, which are the Cartesian product of those de-
composed TeSAs. The sub-operator usually has the same
computation logic as the original operator (e.g., the operators
that can be expressed with Einstein summation [7]), an ap-
proach that has also been taken in the context of DNN model
partitioning [82]. The system performs code generation for
each sub-operator (line 45), profiles the resulting kernel in the
real hardware, and records the profiled result (line 47).

Note that the transformation is a repetitive search process.
Given a TeSA, TransformTeSA may have multiple transfor-
mation plans. The process iterates over each plan to find the
satisfied one (line 38). Figure 6 shows an example. On the
left, a mixed precision TeSA can be decomposed to multi-

0 0
0 0+ +

Bit: 8
Block: 4x4

Bit: 32
Block: 1x1

Bit: 32
Block: 2x2

Bit: 32
Block: 1x1

Bit: 32
Block: 2x2

…Option 1 Option 2

Specialization hints

8-bit 32-bit Pruned

Bit: 32
Block: 4x4

Option 1 Option 2

Figure 6: Multiple transformation plans produced by a trans-
formation policy. The specialization hints are used by the
second pass compilation for code specialization.

Algorithm 3: Transform an operator’s execution plan.
Data: N: An m inputs single output operator to be transformed; P: A

transformation policy.
37 Function TransformOp(N):

/* HasBudget determines the number of
transformation options that can be searched */

38 while P.HasBudget() and P.PerfNotSatisfied() do
/* loop body is one transformation option */

39 S = [];
40 I1, . . . , Im, O = InputsOutputsTeSAOf(N);
41 foreach i ∈ 1, . . . ,m do
42 Ti = P.TransformTeSA(Ii);
43 To = P.TransformTeSA(O);
44 foreach 〈t1, . . . , tm, to〉 ∈ T1×·· ·×Tm×To do
45 Nsub = SpecializeOp(op=N, in=t1, . . . , tm, out=to);
46 S.Append(Nsub);
47 P.RecordPerf(G=ComposeToGraph(S), Profile(G));
48 return P.BestTransformation();
49 Function P::TransformTeSA(T):

/* return a new transformation option per run */
50 Ttrans f ormed = [];

/* BitOption: (i) 4 and 8, (ii) only 8, if
hardware natively supports 4-bit and 8-bit */

51 T1, . . . ,Tk = self.BitRounding(T , self.SampleBitOption());
52 foreach i ∈ 1, . . . ,k do
53 T 1

i , . . . ,T
j

i = self.WeightedBlockCover(Ti);
54 Ttrans f ormed .Extend(T 1

i , . . . ,T
j

i );
55 return Ttrans f ormed ;
56 Function P::WeightedBlockCover(T):
57 Bchosen = [];

/* covering non-pruned elements to blocks using
every available block size, to produce B */

58 B = self.AllCoveredBlocks(T , self.AvailableBlockSizes());
59 while not AllElementsCovered(T , Bchosen) do
60 Bcost = self.UpdateBlockCost(B);
61 b = BlockWithMinCost(Bcost );
62 Bchosen.Append(b);
63 B = B−b;

/* decompose T to the TeSAs with different block
sizes based on Bchosen */

64 return DecomposedTeSAs(T , Bchosen);

ple TeSAs each of which has one precision. It can also be
transformed to one TeSA where all the elements are aligned
to the highest precision. Similarly, for the right example, the
sparse TeSA can be decomposed to two TeSAs, one with a
block size of 2x2 and the other with a block size of 1x1. It
can also be transformed to one TeSA of block size 2x2 with
the pruned elements set to zero, or transformed to one TeSA
of block size 1x1. Note that the algorithm may decide not to
decompose a tensor and choose a block size of 1x1, indicating
that the TeSA has a fine-grained sparsity that is hard to be
transformed to regular sparsity.
TransformTeSA (line 49) implements the logic of trans-

forming a TeSA. It first decomposes TeSA in BitRounding,
based on both the quantization bit width that the TeSA con-
tains and the possible quantization bit width supported by the
hardware. For example, if the hardware supports both 4-bit
and 8-bit instructions, there are at least two rounding options:
(i) rounding to 4-bit and 8-bit accordingly, (ii) all rounding

218    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



to 8-bit. For each TeSA returned by BitRounding, function
WeightedBlockCover chooses one or multiple proper block
sizes to cover the non-pruned elements, which we treat as a
weighted set cover problem [19]. The weight of each block
size corresponds to the cost of computation with the block
size on the underlying hardware (see §4 for details). We use
a simple greedy algorithm to pick the blocks with the lowest
cost (i.e., block_weight

num_covered_elements ), until all non-pruned elements
are covered (line 56).

Transformation policy P can be further customized to in-
corporate new optimizations (e.g., supporting Sparse Tensor
Cores [1] detailed in §5.3).

To help codegen, each transformed TeSA is attached with
the information about the bit width and block size, named as
specialization hints (illustrated in Figure 6). The hints will be
passed to the second pass, elaborated next.
TeSA code specialization. The second compilation pass
specializes kernel code for each (sub)operator (i.e., line 45
in Algorithm 3). The specialization hints generated from the
previous pass guide the specialization strategy. For example,
the bit-width of an operator suggests whether to leverage a
specific hardware instruction (e.g., DP4A). And the loop tiling
of the operator should be aligned with the block size for effec-
tive dead code elimination (DCE). In addition, SparTA can
leverage traditional DNN compilers for dense computation.
For example, some intra-block computation is dense and thus
can use a dense implementation generated by existing DNN
compilers [29, 60, 91].

The specialization process starts from a dense version of
the operator, implemented as multi-level loops generated by
a traditional DNN compiler [29]. It first specializes under
the guidance of the block size in the specialization hints. It
searches from the outermost loop until the level (say l) of
inner loop body aligns with the block size. Since the pruning
sparsity attribute is specified at the granularity of block size,
many runs of the loop body within level l are dead compu-
tation. To eliminate the dead computation, we introduce a
new schedule primitive dismantle that jointly performs loop
unrolling and DCE. When dismantle is applied on a loop,
this loop and all its outer loops are unrolled and specialized
with the given sparsity attribute. An example is shown in Fig-
ure 7(b). dismantle is applied on the third loop, thus the top
three loops are unrolled, generating eight small Matmuls (i.e.,
[2,2]x[2,2]). According to the sparsity pattern in Figure 7(a),
six of them are dead computation and can be eliminated. In
essence, dismantle embeds a specific sparsity pattern into
the code, which eliminates the need of sparsity encoding,
e.g., compressed sparse row (CSR) [26]. As the index to the
non-pruned blocks/elements is specialized in the code, the
overhead of indirect addressing on the index is removed.

Given a different transformation plan (and the specification
hints), the code can be specialized differently. The hint in
Figure 7(c) show a smaller block size. In this case, the loop
body is a smaller Matmul (i.e., [2,1]x[1,1]), which enables

Matmul

T: m*k

Pruned elements

Kept elements
W: k*n

O: m*n

Specialization hints: T: {Bit: 32, Block: 2x2}, W: {Bit: 32, Block: 2x2}

for (m1: int, 0, 2)
for (n1: int, 0, 2)
for (k1: int, 0, 2){
… … // [2,2] x [2,2]

}

O0 += T0 * W0
O0 += T1 * W2
O1 += T0 * W1
O1 += T1 * W3
O2 += T2 * W0
O2 += T3 * W2
O3 += T2 * W1
O3 += T3 * W3

Specialized

Specialization hints: T: {Bit: 32, Block: 2x1}, W: {Bit: 32, Block: 1x1}

for (m1: int, 0, 2)
for (n1: int, 0, 4)
for (k1: int, 0, 4){
… … // [2,1] x [1,1]

}

O[0:2,0] += T[0:2,2] * W2,0

O[0:2,0] += T[0:2,3] * W3,0

O[0:2,1] += T[0:2,2] * W2,1

O[0:2,1] += T[0:2,3] * W3,1
O[0:2,2] += T[0:2,2] * W2,2
O[0:2,2] += T[0:2,3] * W3,2

O[0:2,3] += T[0:2,2] * W2,3

O[0:2,3] += T[0:2,3] * W3,3

T1

T2 T3

T0

W1

W2W3

W0

O1

O2 O3

O0

Specialized

(a)

(b)

(c)

dismantle

dismantle

Figure 7: Sparsity-aware code specialization, leveraging spe-
cialization hints generated during execution plan transforma-
tion. (a) is a sparse Matmul, (b) and (c) are its specialized
kernel code with different transformation plans. T [x : y,z] de-
notes the elements on row x to y and column z, Wx,y denotes
the value on row x and column y of W .

more DCEs. Besides the dead computations eliminated in the
previous case, four computations of the small Matmul can be
removed. Furthermore, as the small Matmul only accesses one
value in W , the value can be directly specialized to the code
(i.e., Wx,y) without maintaining a sparse tensor W in memory.

A specialization hint could also specify the block size equal
to the tensor’s shape (i.e., one block covers the whole tensor).
In this case, SparTA can directly use the existing state-of-the-
art general sparse kernel implementation (e.g., cuSPARSE [3],
taco [53]) or even use the dense kernel implementation if it
perform better. SparTA’s specialization framework is general
to incorporate any sparsity-aware techniques, including the
off-the-shelf sparse kernel and even its dense version.

Specializing operators with quantization attributes also
works on the multi-level loops, but starting from the inner-
most loop. SparTA picks a proper hardware instruction based
on the bit-width denoted in TeSA, e.g., DP4A [13] or wmma [5]
for 8bit, wmma for 4bit. The specialized tiling of the innermost
loop(s) is then aligned to the computation shape of the in-
struction. For example, one supported computation shape of
wmma is the Matmul [16,16]x[16,16]. To specialize for this
instruction, the tiling should rearrange the innermost loop
body to align with the shape, and then replace the rearranged
loop body with the instruction. The tiling for the instruction
DP4A with a shape [1,4]x[4,1] can be done similarly.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    219



4 Implementation
We implemented SparTA on Rammer [60], a state-of-the-
art open-source DNN compiler with no special support for
sparsity. We implemented sparsity attribute propagation as a
dedicated compilation pass over Rammer. A DNN model is
converted to an ONNX graph [14] before compiling. Each
TeSA element has a two-byte attribute: 7 bits record the bit
width of the element, 4 bits specify the element’s data format
(e.g., unsigned int, float32, bfloat16), and the rest 5 bits are
reserved. The bit-width zero means the element is pruned.
TeSA exists only during compile time and therefore incurs no
runtime memory cost. We implemented the execution plan
transformation within Rammer, with an additional compila-
tion pass that rewrites the graph with a better execution plan.
The specialized sub-operators are injected into Rammer’s
kernel DB for constructing the whole executable.

For the efficient execution of weighted block cover in ex-
ecution plan transformation (§3.3), SparTA calculates the
weight of different block sizes. Specifically, we implemented
a kernel template for block sparsity, and evaluated 13 dif-
ferent block sizes on that template. The overhead of each
block size is profiled by measuring the latency of the kernel
with zero sparsity and dividing the latency with the number
of blocks. The overhead is used as the weight of the block
sizes. When an operator is too sparse to saturate available
cores, the weights may become less accurate. In such cases,
we enumerate all the combinations of block sizes to run the
weighted block cover algorithm and pick the best one. For
kernel specialization, we implement the dismantle primitive
based on loop unrolling. When a loop is unrolled with dis-
mantle, we read the corresponding TeSA and eliminate dead
computations accordingly.

SparTA, as a full-stack solution for model sparsity, has
supported 21 model sparsity algorithms, including 16 pruning
algorithms and 5 quantization algorithms (full list omitted
due to page limit). Those algorithms can run on SparTA with
little code modifications, and benefit from SparTA not only
on sparsity exploration but also on model fine tuning, which
will be demonstrated in §5.4.

5 Evaluation
We evaluate SparTA on three popular DNN models with four
different sparsity patterns on NVIDIA GPU, AMD GPU, and
Intel CPU. Overall, our key findings include:

• SparTA significantly reduces the inference latency of
sparse DNN models with less memory consumption.
The speedup is up to 10.6x, 5.0x, 7.5x, 20.1x, 5.8x, 5.6x,
1.7x over PyTorchJIT, TensorRT, TVM, TVM sparse2,
Rammer, Rammer sparse3, and OpenVINO (CPU), re-
spectively. The average speedup is 3.8x, 2.6x, 4.2x, 8.4x,
3.0x, 3.2x, 1.7x. (§5.1)

2Excluding cases where kernel tuning failed for TVM and TVM sparse.
3The state-of-the-art sparse kernels wrapped in Rammer.

Model Type Sparsity Ratio Acc (%)

BERT
[34]

NLP
{Matmul}

Structured [87] 95% 89.7->88.49
Unstructured [43] 95% 89.7->88.67

Structured+8bit [52] 95% 89.7->88.03
Mixed Sparsity [48, 84] 94.99% 89.7->88.63

MobileNet
[49]

CV
{Conv}

Structured [94] 60% 78.27->75.62
Unstructured [43] 95% 78.27->64.15

Structured+8bit [52] 60% 78.27->75.13

HuBERT
[50]

Speech
{Conv,

Matmul}

Structured [56, 62] 80% 95.61->95.1
Unstructured [43] 95% 95.61->95.55

Structured+8bit [52] 80% 95.61->94.3

Table 3: Evaluated DNN models with different sparsity pat-
terns and their resulting accuracy. The second column lists the
major operators of each model. The column Ratio denotes
the initial sparsity ratio for pruned weights.

• Sparsity attribute propagation increases the end-to-end
sparsity ratio by up to 39.7%. With execution plan trans-
formation and code specialization, SparTA can achieve
up to 6.7x speed up over the state-of-the-art sparse kernel
implementation for a sparse DNN operator (e.g., Mat-
mul) with complex sparsity patterns. (§5.2, §5.3)

• SparTA facilitates the development and exploration of
sparse DNN models, producing DNN models with lower
inference latency and/or higher accuracy. (§5.4)

5.1 End-to-End Experiments

We evaluate SparTA on the inference latency and memory
usage of three popular DNN models across different task
domains, shown in Table 3. We evaluate four representative
sparsity patterns, covering different pruning and quantization
schemes and their combination. Unstructured sparsity prunes
model weights in the granularity of an element in weight ten-
sors to reach the desired sparsity ratio [43, 54, 55]. Structured
sparsity prunes weights in the granularity of column, row,
channel, or block, depending on specific models [44, 56, 59].
We apply different sparsity patterns to the three selected
models to show SparTA’s effectiveness under various pat-
terns. BERT is pruned in row combined with a block of size
32x32 [87]; MobileNet gets pruned in the output channel [94];
for HuBERT, it is a combination of channel pruning in the
Conv layer and head pruning in the transformer layer [56,62].
To further demonstrate the powerful expressiveness of TeSA,
we apply structured sparsity, based on which 8bit quantiza-
tion is further applied on the remaining tensor elements to
construct the third sparsity pattern, i.e., Structured+8bit. Fi-
nally, we introduce an even more complicated Mixed Sparsity
for BERT. On top of the Structured+8bit sparsity, we apply
unstructured sparsity with 32bit quantization back to 0.01%
of the pruned elements [48, 84]. This leads to a total sparsity
ratio of 94.99%.

We trained the models (BERT on dataset QQP [51], Mo-
bileNet on ImageNet-Dogs [33], HuBERT on SUPERB [85])
applied with the above sparsity patterns, the accuracy change

220    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



of those sparse models is shown in the Acc column of Table 3.
Overall, the accuracy drops are consistent to those reported
in the corresponding papers. The accuracy of sparse BERT
drops around 1%. Mixed sparsity has the accuracy of 88.63%
at 94.99% sparsity, nearly the same accuracy as unstructured
sparsity, but is much easier to be accelerated. For MobileNet,
unstructured sparsity has a higher accuracy drop, as its sparsity
is high (i.e., 95%). For HuBERT, 95% unstructured sparsity
can outperform the structured ones with 80% sparsity ratio.

The models are evaluated on three types of accelerators:
NVIDIA GeForce RTX 2080 Ti, AMD Radeon VII, and In-
tel Xeon Silver 4210 CPU. We compare SparTA with seven
representative solutions, including one popular deep learn-
ing framework: PyTorch (v1.7) with JIT [67], two vendor-
specific toolkits: TensorRT (v7.2) for NVIDIA GPUs [18]
and OpenVINO (v2021.4.1) for Intel CPUs [15], two DNN
compilers: TVM (0.9.dev0) [29] and Rammer [60] (which
offers the state-of-the-art performance). To evaluate the state-
of-the-art sparse kernels/libraries in an end-to-end model, we
create Rammer sparse (or Rammer-S) by wrapping in Ram-
mer these sparse kernel libraries/implementations, including
cuSPARSE [3], taco [53], and Sputnik [39] for NVIDIA GPU,
hipSPARSE [17] for AMD GPU, MKL Sparse Linear Alge-
bra [12] for Intel CPU. For TVM, we also evaluate its sparsity
support [22] (denoted by TVM-S). Each model on TVM is
tuned with 1,000 trials per task using Ansor [91], aligned
with the common practice [91]. The batch size we used in the
end-to-end experiments (except Figure 12) is 32.

5.1.1 SparTA on CUDA GPUs

Structured sparsity. The first row of Figure 8 shows the in-
ference latency of the three models on the structured sparsity.
PyTorch, TensorRT, TVM, and Rammer treat them as three
dense models. TensorRT performs the best among them. Com-
pared to TensorRT, SparTA is 3.7x, 2.9x, 2.4x faster on BERT,
MobileNet, and HuBERT, respectively. TVM-S and Rammer-
S are aware of sparsity. TVM-S incurs high inference latency,
as the kernel templates it uses cannot efficiently support dif-
ferent sparsity patterns. Rammer-S performs marginally bet-
ter than TensorRT on MobileNet and HuBERT. The SOTA
sparse kernel uses Sputnik, which performs better than cuS-
PARSE and taco on those models. SparTA performs 1.7x,
2.6x, and 2.3x faster than Rammer-S. Its performance gain
comes mainly from sparsity propagation, which increases the
whole model’s sparsity (see §5.2) and sparsity transformation,
i.e., covered with different block sizes on different layers (see
§5.3).

Memory footprints in the inference are shown in the first
row of Figure 9. SparTA shows the smallest footprint. For Mo-
bileNet, PyTorch and TensorRT consume much more memory,
because they use cuDNN, which requires additional memory
to store weights and activations. SparTA’s memory usage is
smaller than TVM-S and Rammer-S due to sparsity propaga-
tion, which increases the sparsity ratio.

BERT0

100

La
te

nc
y 

(m
s)

MobileNet0
4
8

12

HuBERT0
50

100
150

BERT0

100

La
te

nc
y 

(m
s)

MobileNet0
4
8

12

HuBERT0
50

100
150

BERT0

100

La
te

nc
y 

(m
s)

MobileNet0
4
8

12

HuBERT0
50

100
150

215

Structured Sparsity

Unstructured Sparsity

Structured+8bit Sparsity

PyTorch
TensorRT

TVM
TVM-S

Rammer
Rammer-S

SparTA

Figure 8: Inference latency of different models with three
sparsity patterns on NVIDIA 2080 Ti.

BERT0

3000

5000
M

em
or

y 
(M

B)

MobileNet0

2000
3000

HuBERT0

1000

2000

BERT0

3000

5000

M
em

or
y 

(M
B)

MobileNet0

2000
3000

HuBERT0

1000

2000

BERT0

3000

5000

M
em

or
y 

(M
B)

MobileNet0

2000
3000

HuBERT0

1000

2000

Structured Sparsity

Unstructured Sparsity

Structured+8bit Sparsity

PyTorch
TensorRT

TVM
TVM-S

Rammer
Rammer-S

SparTA

Figure 9: GPU memory usage of different models with three
sparsity patterns on NVIDIA 2080 Ti.

Unstructured sparsity. For unstructured sparsity (i.e., sec-
ond row of Figure 8), TensorRT also performs the best
among those dense baselines, marginally better than Rammer.
SparTA is 1.6x, 2.2x, 1.5x faster than TensorRT on BERT,
MobileNet, HuBERT, respectively. Rammer-S still uses Sput-
nik. SparTA outperforms Rammer-S by 1.13x, 2.4x, 1.3x on
BERT, MobileNet, HuBERT, respectively. The speedup on
MobileNet is high because the sparsity is easier to be propa-
gated on depthwise and pointwise convolution even with un-
structured sparsity. On BERT and HuBERT, the performance
gain over Rammer-S mainly comes from code specialization
(i.e., weight values are embedded into kernel code). For the
memory usage (i.e., the second row of Figure 9), SparTA
shows a usage similar to TVM-S and Rammer-S, and per-
forms better than the other baselines.
Structured+8bit. Shown in the third row of Figure 8, Ten-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    221



2080Ti0

50

100

130

   
La

te
nc

y 
(m

s)

ROCM GPU0

50

100

CPU500

1000

1500

2000
1550
1600

PyTorch
TensorRT

TVM
TVM-S

Rammer
Rammer-S

SparTA
OpenVINO

Figure 10: Mixed Sparsity end-to-end latencies.

sorRT performs much better than PyTorch, TVM, and Ram-
mer, because it supports low-bit computations with Tensor
Cores. SparTA outperforms TensorRT by 2.3x, 1.7x, 2.2x on
BERT, MobileNet, HuBERT, respectively. This is because,
besides leveraging the hardware instruction wmma of Tensor
Core, SparTA further combines the optimization for struc-
tured sparsity. Compared to Rammer-S (also using Sputnik),
SparTA is 2.3x, 4.3x, 5.6x faster on BERT, MobileNet, Hu-
BERT, respectively, because Rammer-S has limited optimiza-
tion (e.g., missing low-bit instructions) for each single sparse
operator, while SparTA does holistic optimizations on the
model, e.g., sparsity propagation, operator transformation and
specialization. The speedup shows the combined gain from
structured sparsity (i.e., the first row of Figure 8) and low-bit
instructions. The memory usage of SparTA (i.e., the third row
of Figure 9) is the lowest: the memory saving comes from
both low-bit values and pruned elements. This highlights the
benefit of SparTA and in particular TeSA that uses a unified
abstraction for pruning and quantization to make such a joint
optimization possible.
Mixed sparsity. The left figure in Figure 10 shows the
latency of BERT with Mixed Sparsity. SparTA is 5.9x,
5.0x, 6.8x, 8.7x, 5.2x, 2.2x faster than PyTorch, TensorRT,
TVM, TVM-S, Rammer, Rammer-S, respectively. Unlike
structured+8bit, TensorRT shows slight advantage over other
baselines on mixed sparsity, although most elements are 8-bit.

Latency Breakdown. Figure 11 shows the performance
breakdown of BERT on the four sparsity patterns. “+Sparse
Kernel” applies our generated sparse kernels following the
original sparsity ratio without operator transformation and
kernel specialization. It can be treated as Rammer-S. “+Prop-
agation” applies sparsity propagation on the model and regen-
erates the sparse kernels without transformation and special-
ization. “+Transformation” tunes the block size for covering
non-pruned elements of each sparse operator, and for mixed
sparsity it also decomposes sparse tensors to multiple ones.
“+Specialization” tunes intra-block implementation and em-
beds values into codes when necessary.

For mixed sparsity, the latency reduction brought by each
optimization is 55.8%, 19.7%, 37.7%, and 12.6%, respectively.
The other three sparsity patterns could be viewed as a type
of breakdown of mixed sparsity. In structured sparsity and
structured+8bit, transformation brings 20.5% and 26.5% la-

tency reduction, respectively, while propagation brings 19.7%
and 15.8% latency reduction, respectively. Finally, intra-block
specialization brings 8.2%, 11.4%, and 13.7% latency reduc-
tion for structured, unstructured, and structured+8bit, respec-
tively. The significance of a certain optimization depends on
DNN models and sparsity patterns. For BERT in Figure 11,
“+Sparse Kernel” brings 2.1x gain on average, SparTA brings
an extra 2x gain. For MobileNet to be illustrated in §5.2,
“+Propagation” brings the most gain (e.g., increasing sparsity
from the 50% to 89.7%).
Latency of different batch sizes. Figure 12 shows the per-
formance of BERT under different batch sizes on NVIDIA
2080Ti. When batch size varies from 8 to 64, SparTA is on av-
erage 4.1x-4.6x, 2.4x-2.7x, 4.2x-6.3x, 5.9x-13.8x, 3.6x-4.1x,
2.2x-2.6x faster than PyTorch, TensorRT, TVM, TVM-S, Ram-
mer, Rammer-S, respectively on three sparsity patterns. The
overall speedup of SparTA is similar across different batch
sizes. The range of the speedup over TVM-S is relatively
large, because large batch size induces large tuning space that
makes the kernel tuning in TVM less effective.
Compiling overhead. The overhead of SparTA comes from
the compiling phase, which consists of three parts: propaga-
tion, transformation, specialization. The overhead is positively
related to the number of operators in the model. Taking BERT
as an example, the propagation, transformation, and special-
ization take 3 minutes, 2 hours and 1.5 hours respectively
using a single thread. It is possible to reduce the overhead
by leveraging more prior knowledge in transformation policy
and pre-tuned kernels. We leave it as future work.

5.1.2 SparTA on Other Accelerators

ROCm GPU. Figure 13 shows inference latency of the three
models on AMD Radeon VII. The speedup of SparTA over
PyTorch on the three sparsity patterns is up to 3.5x, 4.2x,
2.2x for BERT, MobileNet, and HuBERT, respectively. The
kernel tuning of TVM on ROCm GPUs does not function
properly (always stuck in Debug mode), the performance of
TVM and TVM-S on BERT and HuBERT suffers a lot. They
show reasonable performance on MobileNet, because they

Structured SparsityUnstructured Sparsity Structured+8bit Mixed Sparsity
10

45
70
80

La
te

nc
y 

(m
s)

Rammer
+Sparse Kernel

+Propagation
+Transformation

+Specialization

Figure 11: Performance breakdown of SparTA for different
sparsity patterns of BERT on 2080 Ti. Each bar shows the
result of applying the additional optimization labeled on this
bar from the previous one.

222    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



batchsize=80

40

La
te

nc
y 

(m
s)

batchsize=160

50

batchsize=640

500

batchsize=80

40

La
te

nc
y 

(m
s)

batchsize=160

40

batchsize=640

250

batchsize=80

40

La
te

nc
y 

(m
s)

batchsize=160

50

batchsize=640

500

150 150

Structured Sparsity

Unstructured Sparsity

Structured+8bit Sparsity

PyTorch
TensorRT

TVM
TVM-S

Rammer
Rammer-S

SparTA

Figure 12: Inference latency of BERT under different batch
sizes on NVIDIA 2080Ti.

BERT0
100

La
te

nc
y 

(m
s)

MobileNet0

10

HuBERT0

200

BERT0

100

La
te

nc
y 

(m
s)

MobileNet0

10

HuBERT0
100

BERT0
100

La
te

nc
y 

(m
s)

MobileNet0

10

HuBERT0

200

1600
1650

5775
5800

50010001500
5775
5800

1550
1600
1650

5775
5800

Structured Sparsity

Unstructured Sparsity

Structured+8bit Sparsity

PyTorch TVM TVM-S Rammer Rammer-S SparTA

Figure 13: Inference latency of different models with three
sparsity patterns on AMD Radeon VII.

have provided reasonably good default kernel schedules for
some popular DNN models including MobileNet. Compared
to Rammer, SparTA is up to 3.4x, 4.1x, 2.4x faster for BERT,
MobileNet, and HuBERT, respectively, on the three sparsity
patterns. Rammer-S uses hipSPARSE on ROCm GPU, the
speedup of SparTA over Rammer-S is up to 4.7x, 4.6x, 5.0x
for BERT, MobileNet, and HuBERT, respectively.

For mixed sparsity of BERT shown in the middle of Fig-
ure 10, SparTA is 3.3x, 56.7x, 54.1x, 3.2x, 4.4x faster than Py-
Torch, TVM, TVM-S, Rammer, and Rammer-S, respectively.
Although Rammer-S with hipSPARSE has higher latency than
Rammer, it has a lower memory footprint.
Intel CPU. We evaluated mixed sparsity pattern of BERT
on CPU, the result is shown in the right of Figure 10. Com-
pared to OpenVINO, a high-performance inference engine
for Intel CPUs, SparTA achieves 1.7x speedup. For PyTorch,
TVM, TVM-S, the speedup of SparTA is 1.8x, 1.6x, 1.5x, re-
spectively. Rammer-S uses the MKL library, which leverages

Structured Sparsity
0.5

0.7

0.9
1.0

Sp
ar

sit
y 

Ra
tio

50% 70% 90%

0 10 20
Layer Index

0.5

0.7

0.9
1.0

Sp
ar

sit
y 

Ra
tio

UnStructured Sparsity

Figure 14: Propagated sparsity across the layers for different
sparsity patterns on MobileNet

the sparsity, thus faster than other baselines. SparTA still has
1.4x performance gain over Rammer-S, because it leverages
low-bit instruction (i.e., AVX512 VNNI [10]) and further op-
timizes the model with sparsity propagation and execution
plan transformation in a holistic way.

5.2 Sparsity Attribute Propagation

Propagation of pruned elements. The performance gain
brought by propagation on BERT has been illustrated in Fig-
ure 11. The propagation has higher potentials on MobileNet,
as convolution’s filter size is small (e.g., 3x3). Figure 14 shows
how sparsity is propagated across layers on MobileNet, which
increases each layer’s sparsity ratio. In this experiment, we
tested three sparsity ratios (i.e., 50%, 70%, 90%) pruned by
the same algorithm used in the end-to-end experiment. For
each sparsity ratio, we prune every layer of MobileNet to the
target ratio. Then the propagation rule is applied. The accu-
racy results of inference on train/test dataset are exactly the
same before and after propagation, as the propagation rule for
pruned elements does not affect computation logic.

For structured sparsity, the total sparsity ratio is increased
from 50% to 89.7% after propagation. The curve’s zigzag
is caused by different propagation potential of the interleav-
ing depthwise convolution and pointwise convolution in Mo-
bileNet. Interestingly, when the original sparsity ratio is 90%,
after propagation the sparsity ratio becomes 100%, which ex-
plains the anomaly that, although there are 10% filters left on
each convolution (before propagation), the model’s accuracy
is similar to a random image classifier. The propagation abil-
ity on unstructured sparsity is lower. Only high sparsity ratio
could bring an obvious increase of sparsity ratio. For example,
with 90% original sparsity, the total sparsity is increased to
95.3% after propagation. With Tensor Scrambling, our ex-
periences show 256 randomly sampled tensors can identify
sparsity correctly.
Propagation of quantization bit. In this experiment, we
evaluate the propagation rule for quantization described in
§3.2. We follow the same approach proposed in HAQ [77] to
quantize MobileNet. Specifically, it uses reinforcement learn-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    223



0 10 20
Layer Index

4

6

8

Bi
t W

id
th

Before Propagation After Propagation

Figure 15: The quantization (bit width) of each layer in Mo-
bileNet before and after propagation.

70%-block80%-block90%-block

0.05

0.15

0.25

La
te

nc
y 

(m
s)

70%-block(8bit)
80%-block(8bit)

90%-block(8bit)

0.05

0.15

0.25

BlockSparse Kernel Sputnik SparTA

Figure 16: The performance of execution plan transformation
for mixed sparsity patterns. B is sparsified for the matrix
multiplication A×B (1024x1024x1024). “X%-block” means
X% block sparsity mixed with 1% unstructured sparsity.

ing to explore the bit width on each weight and activation ten-
sor. The candidate bit width is between 0 to 8. After exploring
50 different configurations of bit width, we pick the best one,
whose accuracy on ImageNet is 64.6%. The propagation rule
is then applied to that configuration. The experiment result is
shown in Figure 15: 18 out of 28 layers reduces its bit width
(from 7bit to around 4bit), while the model accuracy after
propagation only drops slightly, from 64.6% to 64.2%. From
another point of view, our propagation rule for quantization is
complementary to the search algorithm (e.g., reinforcement
learning, simulated annealing [58]) on quantization bits. A
proper combination of them could improve search efficiency,
which is an interesting future work.

5.3 Efficient Code Generation with TeSA
Effectiveness of execution plan transformation. The
sparsity-aware execution plan transformation in SparTA could
handle complex sparsity patterns efficiently. We test two
sophisticated sparsity patterns: (1) Mix of structured spar-
sity with block size 32x32 and unstructured sparsity (i.e.,
1x1) [48, 53]. There are 1% unstructured elements, and the
structured sparsity ratio varies from 70% to 90%. (2) Based
on the first sparsity pattern, we further make the structured
sparsity 8bit, and make unstructured sparsity 32bit [84]. To
show the effectiveness of transformation, we compare SparTA
with two baselines: one is our specialized kernel for structured
sparsity (denoted by BlockSparse), where the unstructured
elements are covered with 32x32 blocks; the other is Sputnik,
which is optimized for unstructured sparsity.

The results are shown in Figure 16. For the first sparsity pat-

50% 60% 70% 80% 90%
Sparsity Ratio

0

200

400

 L
at

en
cy

 (u
s)

cuBLAS BlockSparse Kernel Sputnik SparTA

Figure 17: The performance of execution plan transformation
leveraging Sparse Tensor Cores. B is sparsified with different
sparsity ratios for A×B (1024x1024x1024).

tern, SparTA transforms the operator into two sub-operators
with structured sparsity and unstructured sparsity, respectively.
After transformation, SparTA becomes 2.5x, 3.3x, 5.4x faster
than BlockSparse on the three sparsity ratios, respectively.
The performance of BlockSparse has little change, because
the blocks to cover those unstructured elements construct
the major of the blocks in the computation. The speedup of
SparTA over Sputnik is 3.2x, 3.1x, 2.8x, respectively. Sputnik
performs the worst on 70%-block, because it treats each block
as 1,024 unstructured elements, missing optimization oppor-
tunities. For the second sparsity pattern, the performance gain
of SparTA is much higher, i.e., 4.1x, 5.1x, 6.7x faster than
BlockSparse, 5.2x, 4.7x, 3.5x faster than Sputnik. This is be-
cause SparTA further leverages low-bit instructions for the
computation of those 32x32 blocks.

The transformation can effectively leverage special hard-
ware like Sparse Tensor Core [1]. Sparse Tensor Core has a
strict requirement on tensor’s sparsity pattern, e.g., one ele-
ment should be pruned in a [1×2] tile (50% sparsity ratio).
To leverage Sparse Tensor Cores for the generic unstructured
sparsity, we develop a new transformation policy to decom-
pose an unstructured sparse tensor into two: one follows the
sparsity requirement of Sparse Tensor Cores, the other con-
tains the elements not included in the first one. The first one
uses Sparse Tensor Cores, while the other uses our specialized
sparse kernel. To evaluate the transformation, we randomly
generate an unstructured sparse tensor whose sparsity ratio
ranges from 50% to 90% in one input of Matmul. The experi-
ment runs on NVIDIA A100, the result is shown in Figure 17.
SparTA performs better than both BlockSparse and Sputnik,
as it leverages cuSPARSELt [6], a library optimized for Sparse
Tensor Cores, for sub-Matmul that costs around 40 us. The
other sub-Matmul has 12.5%, 8%, 4.5%, 2.0%, 0.5% sparsity
ratio respectively. BlockSparse shows a similar performance
to cuBLAS. As the sparsity is randomly introduced, it actually
computes a dense Matmul.

Sparsity Pattern 1 2 3 4 5
Origin Latency(ms) 1.293 0.361 2.808 1.263 0.189

SparTA Latency(ms) 0.436 0.191 0.599 0.569 0.101
Best Block Size 32x128 128x32 32x128 32x64 128x64

Table 4: Block size transformation

During the transformation, SparTA also finds the best

224    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



block size to cover those non-pruned elements. We picked 5
sparse tensors with different sparsity patterns in BERT, ap-
ply WeightedBlockCover to find the best block size of the
5 tensors. Table 4 shows the found block sizes. The chosen
block sizes are all different from the original 32x32 block size
and they all perform much better than the kernel implemented
with the original block size. Essentially, the block covering
makes a trade-off between the efficiency that a certain block
size is optimized for the underlying hardware and the ratio of
the computation wasted using that block size.
Effectiveness of TeSA code specialization. We evaluate
SparTA’s specialized matrix multiplication kernel under dif-
ferent unstructured sparsity ratios, ranging from 50% to
99%. We compare the specialized kernels with cuSPARSE,
taco [16, 53], and Sputnik [39]. The result is shown in Fig-
ure 18. At 99% sparsity, cuSPARSE outperforms cuBLAS,
but incurs 2.2x slowdown at 95% sparsity. In most cases,
cuSPARSE performs much worse than cuBLAS on latency,
although it has a lower memory footprint due to encoded
sparse tensors. taco performs worse than cuSPARSE due to
its inefficient utilization of shared memory [70]. It is 15.6x
slower than cuSPARSE for 99% sparsity; the slowdown is
reduced to 4.0x when the sparsity is 50%. SparTA is up to
6.0x faster than cuSPARSE. It outperforms cuBLAS when
the sparsity is only 70%. Sputnik also performs better than
cuSPARSE and taco. SparTA is up to 1.7x faster than Sputnik.

50% 70% 80% 90% 95% 99%
Sparsity Ratio

0

500

 L
at

en
cy

 (u
s)2500

5000

cuBLAS cuSparse taco Sputnik SparTA

Figure 18: Comparison of cuSPARSE, taco, Sputnik, and
SparTA on matrix multiplication (1024x1024x1024) with fine-
grained sparsity under different sparsity ratios. B is sparse for
A×B.

5.4 Augmented Model Sparsity Exploration
SparTA, as a full-stack solution for model sparsity, facilitates
the exploration of existing model sparsity algorithms. In this
section, we demonstrate this from the following two aspects.
Actual latency vs. FLOPS as proxy-metric for latency re-
duction in model pruning. In this experiment, we use Sim-
ulated Annealing [58] to prune MobileNet to reduce 30% and
40% inference latency, respectively, i.e., the two dash lines
in Figure 19. Our baseline uses FLOPS as the metric to filter
out the disqualified models: the model whose FLOPS is larger
than 70% of the original FLOPS. In contrast, SparTA uses the
real latency to filter models. The result is shown in Figure 19.
The best sparse models found by the two approaches have

similar accuracy. However, the model found via FLOPS does
not meet the latency target, 23.8% and 51.4% higher than
the target, respectively. This shows FLOPS cannot faithfully
reflect real inference latency. In contrast, the sparse models
found by the algorithm on SparTA successfully satisfy the
latency requirement.

30% 40%
1.0

1.7
2.0

2.5

In
fe

re
nc

e 
La

te
nc

y 
(m

s)

Acc:91.96% Acc:91.77%

Acc:91.38% Acc:91.18%
FLOPS Based
SparTA Based

Figure 19: The comparison of using real latency or FLOPS as
metric to explore sparse models by Simulated Annealing.

Speeding up sparsity exploration. With high-performance
sparse kernels, SparTA can speed up the exploration process
of a sparsity algorithm, which usually searches for a spar-
sity pattern iteratively [58, 86]. In each iteration, the algo-
rithm “sparsifies” a proportion of the model (e.g., 30%) and
fine-tunes it. It repeats the iteration until achieving the tar-
geted sparsity (e.g., 90%). In this process, model fine-tuning
consumes significant exploration time. With SparTA, model
fine-tuning can be accelerated. Figure 20 runs Simulated An-
nealing, an iterative sparsity algorithm, on ResNet50. The
algorithm prunes 50% of the remaining weights and fine-tune
300 epochs in each iteration. SparTA reduces 31.8% of the
total exploration time, compared to the baseline that always
uses the original dense model.

5.5 Accelerating Sparse Model Training
In addition to model pruning and quantization, some DNN
models are designed to be sparse from the beginning, e.g.,
sparse attention [72]. SparTA can also be used to speed up
the training process of such sparse models.

We show this by applying SparTA to the training of
NÜWA [81], a state-of-the-art visual synthesis pretrain model
that adopts a novel 3D Nearby Attention (3DNA) mechanism.
In 3DNA, each token computes the attention to the nearby
tokens within a small 3D window, instead of to all the tokens
(i.e., full attention).

We implement 3DNA using SparTA and compare the per-
formance with its previous PyTorch implementation (a dense
version), and another version implemented using OpenAI’s
Triton (v1.1.1) [21], a compiler that supports sparse atten-
tion. As the two baselines are PyTorch-based, we integrate
SparTA-based 3DNA into PyTorch for a fair comparison. The
result is shown in Figure 21. Both Triton and SparTA per-
form much faster than the default PyTorch version, and con-
sume less GPU memory. The default PyTorch version en-
counters out-of-memory when the batch size grows beyond
16. SparTA is 2.15∼2.24x faster than Triton across different

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    225



0 200 400 600 800
Training Epoch

30
40
50
60
70

Tr
ai

ni
ng

 T
im

e
Pe

r E
po

ch
(s

)
With SparTA Without SparTA

Figure 20: The improvement on exploration time when using
SparTA-accelerated sparse model.

8 16 32 64
Batchsize

0

20

40

80

   
  T

im
e 

(m
s)

XX

8 16 32 64
Batchsize

0

2000

4000

6000

8000

   
  M

em
or

y(
M

B)

XX

Pytorch Triton SparTA

Figure 21: The time of training one batch and GPU memory
consumption of 3DNA on NVIDIA 2080Ti.

batch sizes, mainly because SparTA specializes the block sizes
(e.g., 32x64, 32x32) covered on non-zero values in the matrix
multiplications of 3DNA. The memory usage of SparTA and
Triton are similar. As the SparTA-based version currently
relies on PyTorch for the management of some intermediate
tensor, it is possible to further improve the memory usage by
moving it to the SparTA side.

6 Related Works
Sparsity support in DNN frameworks and compilers.
Deep learning frameworks like PyTorch [67] and Tensor-
Flow [23] or compilers like TVM/Ansor [29, 91] exploit
sparsity by vendor-specific libraries like cuSPARSE/cuS-
PARSELt [3] or user-provided sparsity kernel templates [29].
The lack of understanding to the specific sparsity pattern
across a sparse model leads to a subpar performance. In
contrast, with TeSA, SparTA can capture arbitrary sparsity
patterns and enable various sparsity-aware optimizations to
generate efficient end-to-end code.

SparTA’s design incorporates several classic compiler tech-
niques. For example, sparsity attribute propagation is similar
to type qualifiers [38] and type inference [32]. OpenMP [35]
also leverages attribute propagation in a different problem do-
main with a different mechanism. Code specialization based
on value profiling [27] is also a well-known technique. Ze-
roploit [69] and PGZ [71] also use a similar idea, but focus
on gaming applications. Instead of values, SparTA uses more
general attributes for code specialization. And SparTA offers
a complete framework for DNN model sparsity.
Sparsity acceleration of DNN models. Sparse matrix mul-
tiplication has been studied for decades in scientific comput-
ing [68,80]. With the emerging accelerators (e.g., GPU [8,20],
TPU [4], FPGA [11], GraphCore [9]), some research op-
timizes sparse matrix multiplication for a certain type of

hardware [24, 26, 39, 80, 95]. Another type of works study
an efficient sparse data format (e.g., CSR, CSB, and DIA)
to reduce memory footprint and improve cache efficiency.
taco [30, 53, 70] generalizes various sparse data formats with
a unified expression. It generates sparse kernel code using the
proper data format best fit for a class of sparsity pattern (e.g.,
99% sparsity). Unlike taco, SparTA proposes a holistic frame-
work for sparsity, including sparsity propagation, execution
plan transformation, and code specialization.

To optimize sparse kernels on GPU, SparseRT [79] embeds
sparse weight values into kernel codes rather than stored in
a sparse data format. It can be seen as a special case of code
specialization in SparTA, i.e., unrolling all the loops. Hong
et. al [48] reorders elements in a sparse tensor and uses an
adaptive tiling strategy to enhance the performance of sparse
matrix multiplication. These optimizations are complemen-
tary to SparTA.

Some works [28, 88] co-design sparsity algorithms with
hardware, which balance sparsity for efficient parallel exe-
cution on a GPU. Similar design has been incorporated in
Sparse Tensor Core [93]. EIE [41] designs a new data en-
coding/decoding node and a new Processing Element (PE) to
speed up matrix-vector multiplication. SCNN [65] designs
another architecture of PE, which supports sparse convolution
in a compressed format. SparTA can leverage these new accel-
erators with new transformations and specialization passes.
Sparsity exploration on DNN models. Research on both
neural science and deep learning suggests that a deep neu-
ral network is sparse [54, 89]. Various model compression
algorithms are shown to construct sparse models with little
accuracy degradation. Unstructured pruning prunes model
weights without a regular pattern [43, 54, 55], while other
works prune DNN models in a regular granularity, such
as in the filter [44], channel [56, 59] in CNN, and block
level [61, 63]. Quantization is another way to sparsify a
model, including single-precision [31,52,92], mixed-precision
among layers [36, 57, 77], and mixed-precision within each
tensor [66, 84]. Recent works further combine the pruning
and quantization techniques [42, 74, 75, 78, 83, 90]. SparTA’s
TeSA abstraction could capture the sparsity patterns in all
these works and generate efficient code for the sparse model.

7 Conclusion
SparTA takes a principled system approach to model spar-
sity in deep learning, centered on the new TeSA abstraction.
SparTA is designed to accommodate a rich set of sparsity
patterns, work end-to-end and across the stack to support
propagation of sparsity patterns and the optimizations that
take advantage of those patterns, and leverage compiler tech-
nology and hardware support, all in an extensible framework.
SparTA can not only contribute to superior sparsity-induced
speedup, but also accelerate model sparsity innovations within
a unified framework, for the first time.

226    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Accelerating inference with sparsity using the nvidia
ampere architecture and nvidia tensorrt. https://de
veloper.nvidia.com/blog/accelerating-infer
ence-with-sparsity-using-ampere-and-tensor
rt/, 2021.

[2] The api reference guide for cublas, the cuda basic linear
algebra subroutine library. https://docs.nvidia.co
m/cuda/cublas/index.html, 2021.

[3] The api reference guide for cusparse, the cuda sparse
matrix library. https://docs.nvidia.com/cuda/c
usparse/index.html, 2021.

[4] Cloud tpu: Train and run machine learning models faster
than ever before. https://cloud.google.com/tpu,
2021.

[5] Cuda c++ programming guide. https://docs.nvidi
a.com/cuda/cuda-c-programming-guide/index.
html#wmma, 2021.

[6] cusparselt: A high-performance cuda library for sparse
matrix-matrix multiplication. https://docs.nvidia.
com/cuda/cusparselt/index.html, 2021.

[7] Einstein notation. https://en.wikipedia.org/wik
i/Einstein_notation, 2021.

[8] Geforce rtx 2080 ti. https://www.nvidia.com/e
n-us/geforce/graphics-cards/rtx-2080-ti/,
2021.

[9] Graphcore. https://www.graphcore.ai/, 2021.

[10] Intel advanced vector extensions 512 (intel avx512). ht
tps://www.intel.com/content/www/us/en/arch
itecture-and-technology/avx-512-overview.h
tml, 2021.

[11] Intel fpgas and programmable devices. https://www.
intel.com/content/www/us/en/products/progr
ammable.html, 2021.

[12] Intel oneapi math kernel library. https://www.intel.
com/content/www/us/en/developer/tools/onea
pi/onemkl.html, 2021.

[13] Mixed-precision programming with cuda 8. https:
//developer.nvidia.com/blog/mixed-precisio
n-programming-cuda-8/, 2021.

[14] Open neural network exchange. https://onnx.ai/,
2021.

[15] Openvino: Deploy high-performance, deep learning in-
ference. https://www.intel.com/content/www/us
/en/developer/tools/openvino-toolkit/overv
iew.html, 2021.

[16] Reproducing oopsla 2020 results. https://github
.com/tensor-compiler/taco/tree/oopsla2020,
2021.

[17] Rocm sparse marshalling library. https://github.c
om/ROCmSoftwarePlatform/hipSPARSE, 2021.

[18] The sdk for high-performance deep learning inference.
https://docs.nvidia.com/deeplearning/tenso
rrt/, 2021.

[19] Set cover problem. https://en.wikipedia.org/w
iki/Set_cover_problem, 2021.

[20] The world’s first 7nm gaming gpu. https://www.am
d.com/en/products/graphics/amd-radeon-vii,
2021.

[21] Triton. https://github.com/openai/triton.git,
2021.

[22] Tvm sparsity code. https://github.com/apache/
tvm/blob/254563a3140cf63fe77a46058688209de
3aa213c/python/tvm/topi/cuda/sparse.py#L96,
2021.

[23] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} symposium on operating systems de-
sign and implementation ({OSDI} 16), pages 265–283,
2016.

[24] Nathan Bell and Michael Garland. Efficient sparse
matrix-vector multiplication on cuda. Technical report,
Citeseer, 2008.

[25] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[26] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R
Gilbert, and Charles E Leiserson. Parallel sparse matrix-
vector and matrix-transpose-vector multiplication using
compressed sparse blocks. In Proceedings of the twenty-
first annual symposium on Parallelism in algorithms
and architectures, pages 233–244, 2009.

[27] Brad Calder, Peter Feller, Alan Eustace, et al. Value
profiling and optimization. Journal of Instruction Level
Parallelism, 1(1):1–6, 1999.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    227

https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://cloud.google.com/tpu
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cusparselt/index.html
https://docs.nvidia.com/cuda/cusparselt/index.html
https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Einstein_notation
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.graphcore.ai/
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://onnx.ai/
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://github.com/tensor-compiler/taco/tree/oopsla2020
https://github.com/tensor-compiler/taco/tree/oopsla2020
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://docs.nvidia.com/deeplearning/tensorrt/
https://docs.nvidia.com/deeplearning/tensorrt/
https://en.wikipedia.org/wiki/Set_cover_problem
https://en.wikipedia.org/wiki/Set_cover_problem
https://www.amd.com/en/products/graphics/amd-radeon-vii
https://www.amd.com/en/products/graphics/amd-radeon-vii
https://github.com/openai/triton.git
https://github.com/apache/tvm/blob/254563a3140cf63fe77a46058688209de3aa213c/python/tvm/topi/cuda/sparse.py#L96
https://github.com/apache/tvm/blob/254563a3140cf63fe77a46058688209de3aa213c/python/tvm/topi/cuda/sparse.py#L96
https://github.com/apache/tvm/blob/254563a3140cf63fe77a46058688209de3aa213c/python/tvm/topi/cuda/sparse.py#L96


[28] Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao,
Lanshun Nie, Dechen Zhan, Yunxin Liu, Ming Wu, and
Lintao Zhang. Efficient and effective sparse lstm on
fpga with bank-balanced sparsity. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 63–72, 2019.

[29] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}:
An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 18),
pages 578–594, 2018.

[30] Stephen Chou, Fredrik Kjolstad, and Saman Amaras-
inghe. Automatic generation of efficient sparse tensor
format conversion routines. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 823–838, 2020.

[31] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural net-
works: Training deep neural networks with weights
and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[32] Luis Damas and Robin Milner. Principal type-schemes
for functional programs. In Proceedings of the 9th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 207–212, 1982.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[35] Johannes Doerfert and Hal Finkel. Compiler opti-
mizations for openmp. In International Workshop on
OpenMP, pages 113–127. Springer, 2018.

[36] Ahmed Elthakeb, Prannoy Pilligundla, FatemehSadat
Mireshghallah, Amir Yazdanbakhsh, Sicuan Gao, and
Hadi Esmaeilzadeh. Releq: An automatic reinforcement
learning approach for deep quantization of neural net-
works. In NeurIPS ML for Systems workshop, 2018,
2019.

[37] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models
with simple and efficient sparsity. arXiv preprint
arXiv:2101.03961, 2021.

[38] Jeffrey S Foster, Manuel Fähndrich, and Alexander
Aiken. A theory of type qualifiers. ACM SIGPLAN
Notices, 34(5):192–203, 1999.

[39] Trevor Gale, Matei Zaharia, Cliff Young, and Erich
Elsen. Sparse GPU kernels for deep learning. In Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
SC 2020, 2020.

[40] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network infer-
ence. arXiv preprint arXiv:2103.13630, 2021.

[41] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A Horowitz, and William J Dally. Eie:
efficient inference engine on compressed deep neural
network. ACM SIGARCH Computer Architecture News,
44(3):243–254, 2016.

[42] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

[43] Song Han, Jeff Pool, John Tran, and William J Dally.
Learning both weights and connections for efficient neu-
ral networks. arXiv preprint arXiv:1506.02626, 2015.

[44] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolu-
tional neural networks acceleration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4340–4349, 2019.

[45] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li,
and Song Han. Amc: Automl for model compression
and acceleration on mobile devices. In Proceedings of
the European Conference on Computer Vision (ECCV),
pages 784–800, 2018.

[46] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[47] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry-
den, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training
in neural networks. arXiv preprint arXiv:2102.00554,
2021.

[48] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa,
Kunal Singh, and P Sadayappan. Adaptive sparse tiling
for sparse matrix multiplication. In Proceedings of the
24th Symposium on Principles and Practice of Parallel
Programming, pages 300–314, 2019.

228    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[49] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[50] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrah-
man Mohamed. Hubert: Self-supervised speech repre-
sentation learning by masked prediction of hidden units.
arXiv preprint arXiv:2106.07447, 2021.

[51] Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al.
First quora dataset release: Question pairs. data. quora.
com, 2017.

[52] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training
of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2704–
2713, 2018.

[53] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David
Lugato, and Saman Amarasinghe. The tensor algebra
compiler. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1–29, 2017.

[54] Yann LeCun, John S Denker, and Sara A Solla. Opti-
mal brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

[55] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on con-
nection sensitivity. arXiv preprint arXiv:1810.02340,
2018.

[56] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. Pruning filters for efficient con-
vnets. arXiv preprint arXiv:1608.08710, 2016.

[57] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.
Fixed point quantization of deep convolutional networks.
In International conference on machine learning, pages
2849–2858. PMLR, 2016.

[58] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang,
Jian Tang, and Jieping Ye. Autocompress: An automatic
dnn structured pruning framework for ultra-high com-
pression rates. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 4876–4883,
2020.

[59] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning effi-
cient convolutional networks through network slimming.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 2736–2744, 2017.

[60] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 20), pages 881–897,
2020.

[61] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu
Liu, Yu Wang, and William J Dally. Exploring the reg-
ularity of sparse structure in convolutional neural net-
works. arXiv preprint arXiv:1705.08922, 2017.

[62] Paul Michel, Omer Levy, and Graham Neubig. Are
sixteen heads really better than one? arXiv preprint
arXiv:1905.10650, 2019.

[63] Sharan Narang, Eric Undersander, and Gregory Diamos.
Block-sparse recurrent neural networks. arXiv preprint
arXiv:1711.02782, 2017.

[64] Keiron O’Shea and Ryan Nash. An introduction
to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[65] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara,
Antonio Puglielli, Rangharajan Venkatesan, Brucek
Khailany, Joel Emer, Stephen W Keckler, and William J
Dally. Scnn: An accelerator for compressed-sparse con-
volutional neural networks. ACM SIGARCH Computer
Architecture News, 45(2):27–40, 2017.

[66] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo.
Energy-efficient neural network accelerator based on
outlier-aware low-precision computation. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 688–698. IEEE,
2018.

[67] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[68] Ali Pinar and Michael T Heath. Improving performance
of sparse matrix-vector multiplication. In SC’99: Pro-
ceedings of the 1999 ACM/IEEE Conference on Super-
computing, pages 30–30. IEEE, 1999.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    229



[69] Ram Rangan, Mark W Stephenson, Aditya Ukarande,
Shyam Murthy, Virat Agarwal, and Marc Blackstein.
Zeroploit: Exploiting zero valued operands in interactive
gaming applications. ACM Transactions on Architecture
and Code Optimization (TACO), 17(3):1–26, 2020.

[70] Ryan Senanayake, Changwan Hong, Ziheng Wang,
Amalee Wilson, Stephen Chou, Shoaib Kamil, Saman
Amarasinghe, and Fredrik Kjolstad. A sparse iteration
space transformation framework for sparse tensor alge-
bra. Proceedings of the ACM on Programming Lan-
guages, 4(OOPSLA):1–30, 2020.

[71] Mark Stephenson and Ram Rangan. Pgz: automatic
zero-value code specialization. In Proceedings of the
30th ACM SIGPLAN International Conference on Com-
piler Construction, pages 36–46, 2021.

[72] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. Efficient transformers: A survey. arXiv preprint
arXiv:2009.06732, 2020.

[73] Naftali Tishby, Fernando C Pereira, and William Bialek.
The information bottleneck method. arXiv preprint
physics/0004057, 2000.

[74] Frederick Tung and Greg Mori. Clip-q: Deep net-
work compression learning by in-parallel pruning-
quantization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7873–
7882, 2018.

[75] Frederick Tung and Greg Mori. Deep neural network
compression by in-parallel pruning-quantization. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(3):568–579, 2018.

[76] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Ef-
ficient sparse attention architecture with cascade token
and head pruning. In 2021 IEEE International Sym-
posium on High-Performance Computer Architecture
(HPCA), pages 97–110. IEEE, 2021.

[77] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song
Han. Haq: Hardware-aware automated quantization
with mixed precision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 8612–8620, 2019.

[78] Ying Wang, Yadong Lu, and Tijmen Blankevoort. Dif-
ferentiable joint pruning and quantization for hardware
efficiency. In European Conference on Computer Vision,
pages 259–277. Springer, 2020.

[79] Ziheng Wang. Sparsert: Accelerating unstructured spar-
sity on gpus for deep learning inference. In Proceedings
of the ACM International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 31–42,
2020.

[80] Samuel Williams, Leonid Oliker, Richard Vuduc, John
Shalf, Katherine Yelick, and James Demmel. Optimiza-
tion of sparse matrix-vector multiplication on emerging
multicore platforms. In SC’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, pages 1–12.
IEEE, 2007.

[81] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,
Daxin Jiang, and Nan Duan. NÜWA: Visual synthe-
sis pre-training for neural visual world creation. arXiv
preprint arXiv:2111.12417, 2021.

[82] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
Gspmd: General and scalable parallelization for ml
computation graphs. arXiv preprint arXiv:2105.04663,
2021.

[83] Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu.
Automatic neural network compression by sparsity-
quantization joint learning: A constrained optimization-
based approach. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 2178–2188, 2020.

[84] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping
Tak Peter Tang, and Andrew Tulloch. Mixed-precision
embedding using a cache. arXiv e-prints, pages arXiv–
2010, 2020.

[85] Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-
I Jeff Lai, Kushal Lakhotia, Yist Y Lin, Andy T Liu, Jia-
tong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb:
Speech processing universal performance benchmark.
arXiv preprint arXiv:2105.01051, 2021.

[86] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang,
Alec Go, Mark Sandler, Vivienne Sze, and Hartwig
Adam. Netadapt: Platform-aware neural network adap-
tation for mobile applications. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pages
285–300, 2018.

[87] Zhewei Yao, Linjian Ma, Sheng Shen, Kurt Keutzer, and
Michael W Mahoney. Mlpruning: A multilevel struc-
tured pruning framework for transformer-based models.
arXiv preprint arXiv:2105.14636, 2021.

[88] Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang,
and Lanshun Nie. Balanced sparsity for efficient dnn in-
ference on gpu. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 5676–5683,
2019.

[89] Takashi Yoshida and Kenichi Ohki. Natural images are
reliably represented by sparse and variable populations

230    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



of neurons in visual cortex. Nature communications,
11(1):1–19, 2020.

[90] Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins,
and Cheng-Zhong Xu. Focused quantization for sparse
cnns. arXiv preprint arXiv:1903.03046, 2019.

[91] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning.
In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20), pages 863–
879, 2020.

[92] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou,
He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

[93] Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie.
Sparse tensor core: Algorithm and hardware co-design
for vector-wise sparse neural networks on modern gpus.
In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 359–371,
2019.

[94] Michael Zhu and Suyog Gupta. To prune, or not to prune:
exploring the efficacy of pruning for model compression.
arXiv preprint arXiv:1710.01878, 2017.

[95] Ling Zhuo and Viktor K Prasanna. Sparse matrix-vector
multiplication on fpgas. In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pages 63–74, 2005.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    231



A Artifact Appendix

Abstract

SparTA proposes the new TeSA abstraction which enables
the sparsity optimization across the compiler stack. This
artifact reproduces the main results of the evaluation on
NVIDIA 2080Ti and A100.

Scope

This artifact will validate the following claims:

• End-to-end performance: By reproducing the experi-
ments of Figure 8, 9, 10, 11, we can validate the end-to-
end latency and memory footprint of SparTA claimed in
§5.1.

• Effectiveness of the propagation: By reproducing the
experiments of Figure 14, 15, we can validate the effec-
tiveness of the propagation.

• Effectiveness of the transformation: By reproducing the
experiments of Figure 16, 17, we can validate the effec-
tiveness of the transformation.

• Effectiveness of the specialization: By reproducing the
experiments of Figure 18, we can validate the effective-
ness of the specialization.

• Augmentation of model sparsity exploration: By repro-
ducing the experiments of Figure 20, we can validate
that SparTA can augment the model sparsity exploration
for the algorithms.

Contents

In this artifact, we will reproduce the Figure 8-11, 14-18, 20
on NVIDIA 2080Ti and A100. Each figure has a shell script
to reproduce and visualize the experimental results automati-
cally. In addition, there are many baselines compared in our
evaluation, therefore, we also provide a Dockerfile containing
all dependent environments for 2080Ti and A100 respectively.
Users can quickly set up the experiment environment with the
Dockerfile we provided.

Hosting

The artifact is hosted at https://github.com/microso
ft/SparTA/tree/sparta_artifact. To get the code,
please git clone the SparTA repository and checkout to the
sparta_artifact branch.

Requirements
• Hardware requirements: Figure 17 requires a NVIDIA

A100 GPU and the other Figures requires a NVIDIA
2080Ti GPU.

• Software requirements: Please use docker to build the
image/Dockerfile to set up the environment for 2080Ti
and image/Dockerfile.a100 to set up the environment for
A100.

• CUDA Driver: Larger than 11.2.

Tutorial
Environment setup To set up the environment, please first
clone the code and build the docker image based the Docker-
file we provided. Second, please start a docker instance and
install the SparTA in the python environment. Finally, please
run the init_env.sh to initialize the environment variables and
download the datasets. Listing 1 shows the commands used
to set up the experiment environment.

Listing 1: Commands to set up the environment
1 # get the source code
2 git clone -b sparta_artifact https://github.com/microsoft

/SparTA.git
3 cd SparTA/image
4 # build the docker image
5 sudo docker build . -t artifact
6 # start a docker instance
7 sudo docker run -it --gpus all --shm-size 16G artifact
8
9 # Execute following commands in the docker

instance
10 # install the sparta
11 mkdir workspace && cd workspace
12 git clone https://github.com/microsoft/SparTA && cd

SparTA && git checkout sparta_artifact
13 conda activate artifact
14 python setup.py develop
15 # initialize the environment
16 cd script && bash init_env.sh

Run experiments SparTA provides the end-to-end scripts
to reproduce all the experiments with one command on
NVIDIA 2080Ti and A100 respectively. Listing 2 shows the
commands to start all the experiments. The reproduced results
will be visualized and saved automatically.

Listing 2: Commands to run the experiments
1 # go into the script directory
2 cd script
3 # for 2080Ti
4 bash run_all_2080ti.sh
5 # for A100
6 bash run_all_a100.sh

232    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/microsoft/SparTA/tree/sparta_artifact
https://github.com/microsoft/SparTA/tree/sparta_artifact


ROLLER: Fast and Efficient Tensor Compilation for Deep Learning

Hongyu Zhu†⋄∗ Ruofan Wu‡⋄∗ Yijia Diao$⋄∗ Shanbin Ke¶⋄∗ Haoyu Li§⋄∗ Chen Zhang£⋄∗

Jilong Xue⋄ Lingxiao Ma⋄ Yuqing Xia⋄ Wei Cui⋄ Fan Yang⋄ Mao Yang⋄

Lidong Zhou⋄ Asaf Cidon § Gennady Pekhimenko †

†University of Toronto ‡Renmin University of China $Shanghai Jiao Tong University
¶UCSD §Columbia University £Tsinghua University ⋄Microsoft Research

Abstract
Despite recent advances in tensor compilers, it often takes

hours to generate an efficient kernel for an operator, a
compute-intensive sub-task in a deep neural network (DNN),
on various accelerators (e.g., GPUs). This significantly slows
down DNN development cycles and incurs heavy burdens
on the development of general kernel libraries and custom
kernels, especially for new hardware vendors. The slow com-
pilation process is due to the large search space formulated by
existing DNN compilers, which have to use machine learning
algorithms to find good solutions.

In this paper, we present ROLLER, which takes a differ-
ent construction-based approach to generate kernels. At the
core of ROLLER is rTile, a new tile abstraction that encap-
sulates tensor shapes that align with the key features of the
underlying accelerator, thus achieving efficient execution by
limiting the shape choices. ROLLER then adopts a recursive
rTile-based construction algorithm to generate rTile-based
programs (rProgram), whose performance can be evaluated
efficiently with a micro-performance model without being
evaluated in a real device. As a result, ROLLER can generate
efficient kernels in seconds, with comparable performance
to the state-of-the-art solutions on popular accelerators like
GPUs, while offering better kernels on newer accelerators
like IPUs.

1 Introduction

Deep neural networks (DNN) have been used extensively in
intelligent tasks like computer vision and natural language
understanding. As DNN computation is known for its com-
plexity, the compute intensive sub-tasks (e.g., matrix multipli-
cation) in a DNN model are abstracted as operators and im-
plemented as kernels, executed on modern accelerators (e.g.,
GPUs, TPUs) to speed up the computation. DNN compilers
play an important role in producing high-performance kernels
for the development of DNN models. It reduces the burden of

*Work is done during the internship at Microsoft Research.

(often hand-crafted) library-based kernel development (e.g.,
cuDNN [6] and cuBLAS [2]) and provides a flexible way to
cover the fast-growing number of custom operators, which
libraries struggle to catch up with and optimize, a growing
pain especially for new hardware vendors.

DNN compilers treat a DNN operator as tensor compu-
tation, which is then translated into nested multi-level loops
iterated over the computation on each tensor element along dif-
ferent axes (dimensions). Compiler optimization techniques
like loop partitioning/fusion/reordering are applied to nested
loops. Due to the inherent complexity of loop rearrangement,
it is a combinatorial optimization problem to find a good
solution among a large search space, often with millions of
choices. Therefore, advanced compilers [15, 33, 35] propose
to adopt machine learning algorithms to search for a good
solution. This usually takes thousands of search steps, each
evaluated in a real accelerator, to find a reasonable solution.
Our own experience shows that tuning an end-to-end DNN
model using state-of-the-art compilers [15, 33] often requires
days, if not weeks. The tuning time may be even longer if
the DNN model runs on less mature accelerators (e.g., AMD
GPU or Graphcore IPU [4]) (§2). To make the matter worse,
a DNN model need to re-compile whenever its structure, op-
erator types, tensor shapes and configurations are changed.
This is often required when trying different configurations
in model training or inference. Given that an operator could
have arbitrary input shapes and configurations, such compi-
lation could significantly slow down the overall DNN model
development cycle.

In this paper, we propose ROLLER, a deep learning tensor
compiler that addresses the problem in a radically different
way. ROLLER is built on the following insights. First, instead
of multi-level nested loops, ROLLER treats the computation
in a DNN operator as a data processing pipeline, where data
tiles (a fraction of a tensor) are moved and processed in an
abstracted hardware with parallel execution units and multi-
layer memory hierarchy. The goal of generating efficient ker-
nel programs then becomes that of improving the throughput
of the pipeline.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    233



Second, for an accelerator to execute efficiently, the shape
of a data tile should align with the hardware characteristics,
including memory bank, memory transaction length, and min-
imum schedulable unit (e.g., warp size in GPUs). To achieve
the full alignment across multiple hardware features, the avail-
able tile shapes are limited. More importantly, with alignment
as a constraint, to maximize the throughput of a pipeline, one
only needs to construct an aligned tile shape that saturates
the execution unit of the accelerator. This construction pro-
cess is significantly more efficient than solving the original
unconstrained combinatorial optimization problem.

Third, the performance of an aligned pipeline is highly pre-
dictable. Key performance metrics under the aligned pipeline
(e.g., memory throughput) can be derived from the hardware
specification (or through micro-benchmarking). This greatly
simplifies the performance evaluation under various aligned
configurations, eliminating the need of a complex cost model
and/or expensive hardware-based evaluation on each aligned
configuration.

With these insights, ROLLER proposes rTile, a new ab-
straction that encapsulates data tile shapes that align with
the key features of the hardware accelerator and the input
tensor shapes (§3.1). A data processing pipeline can then be
described as an rTile-based program (a.k.a. rProgram) com-
posed by three interfaces: Load, Store, and Compute, acted
against rTile. To construct an efficient rProgram, ROLLER fol-
lows a scale-up-then-scale-out approach. It first performs the
scale-up process, which adopts a recursive rTile-based con-
struction algorithm (Figure 8) to gradually increase the size
of the rTile shape to construct an rProgram that saturates a
single execution unit of the accelerator (e.g., an SM, a stream-
ing multi-processor in a NVIDIA GPU). It then performs
the scale-out process, which simply replicates the resulting
rProgram to other parallel execution units, thanks to the ho-
mogeneity of both the computation pattern of deep learning
and the parallel execution units in an accelerator.

ROLLER can evaluate the performance of different rTiles
without significant overheads. The peak (saturate) compute
throughput can simply be measured once per operator type.
And due to the alignment, other key performance factors
like memory pressure of an rTile can be derived analytically
from hardware specifications. This leads to an efficient micro-
performance model, avoiding the expensive online profiling
on each configuration required by existing DNN compilers,
thereby significantly speeding up the compilation process. In
addition, due to the strict alignment requirements, the recur-
sive construction process can produce a few desired rTiles
(and rProgram) quickly. Combined, ROLLER can generate
efficient kernels in seconds.

We have implemented ROLLER on top of TVM [15] and
Rammer [26], and open-sourced the code1. Our evaluation
on 6 types and 119 popular DNN operators from several

1https://github.com/microsoft/nnfusion/tree/osdi22_artifact/artifacts

total reads: 5mnk
wasted reads: 3mnk

memory unaligned

m

nk

k

A

B

C

total reads: 1.25mnk
wasted reads: 0

memory aligned

m

nk

k

total reads: 0.5mnk
wasted reads: 0

better data reuse

m

nk

k

(a) (b) (c)

Figure 1: Access pattern of different tile shape. Matrix multi-
plication, Cm,n = Am,k ×Bk,n.

mainstream DNN models shows that ROLLER can generate
highly-optimized kernels in seconds, especially for large ex-
pensive custom operators. This achieves three orders of mag-
nitude improvement on compilation time. The performance of
ROLLER-generated kernels is comparable to and often better
than the state-of-the-art tensor compilers and even vendor-
provided DNN libraries. With the three rTile-based interfaces
(Load, Compute, Store) describing an rProgram, ROLLER
can easily adapt to different accelerators like AMD GPU and
Graphcore IPU. ROLLER has been used to develop custom
DNN kernels internally and shown to significantly speed up
our development cycle. It offers potentially disruptive oppor-
tunities to new players in the compute accelerator market,
who previously have to spend significant engineering efforts
on efficient kernels.

2 Motivation and Key Observations

Excessive compilation time. Our own experience in a set of
DNN operators (detailed setting in §5) shows that the average
compile time for a single operator using Ansor [33], a state-
of-the-art tensor compiler, is 0.65 hours. Among them, one
convolution operator in ResNet model takes 2.17 hours. A
DNN model may contain hundreds of operators, thus it easily
takes days to compile the model. For example, to compile
a NASNet model (§5), we reach only 32% of the overall
searching progress after tuning for 41.8 hours. Our experience
also shows the compilation speed is even worse on less mature
devices, the compiler takes much longer time for a kernel.
Observation and insights. We observe that there exists a
different view to the computation of an DNN operator. Tak-
ing matrix multiplication (MatMul), Cm,n = Am,k ×Bk,n, as an
example to illustrate our observation. Unlike existing com-
pilers that treat MatMul as a 3-level loop iterated over each
axis m,k,n, the computation process is also a data processing
pipeline. One can Load each sub-matrix (i.e., a tile) from A
and B, Compute the two tiles, and Store the resulting tile
of C to memory. Thus, the performance of the computation
depends on how fast one can move the data tiles in the Load-
Compute-Store pipeline.

The key factor affecting the performance in all steps in the
pipeline is the shape of tiles and the corresponding layout

234    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



DNN models (TensorFlow, PyTorch, ONNX)

Tensor Expression

Hardware Abstraction Layer

Device A Device B Device C

…
…

Tensor 
shapes

rTiles

rProgram

Construct 
algorithm

CodegenHardware 
specs

Micro
performance

1 2

3

Figure 2: System overview of ROLLER.

in the one-dimension memory space. Figure 1(a) illustrates
the computation of one element in C (in the top part) and the
memory accessing pattern (in the bottom part). Assuming all
matrices stored in a row-major layout, loading a column from
B causes strided accesses in length of 1. Suppose the memory
transaction length is 4, there will be 3/4 of total redundant
data reads. Thus, the data tile shape should align with the
memory transaction length for efficient memory access. In
Figure 1(b), when computing B in the granularity of 1×4 tile,
there will be no memory bandwidth waste. Besides memory
alignment, the tile shape should also align with the hardware
execution unit, e.g., the parallel threads number, to avoid waste
in computing cycles. Moreover, the tile shape also affects
data reuse opportunities due to caching, a common feature in
modern accelerators. For example, Figure 1(a) needs 2mnk
data reads when computing a 1×1 tile each time. However,
in Figure 1(b), only 1.25mnk reads are required, as one read
from A can be reused 4 times. If setting the tile size along M
dimension to 4×4, as shown in Figure 1(c), the total reads can
be reduced to 0.5mnk. A 10× improvement over Figure 1(a).

These observations motivate ROLLER, a system that iden-
tifies the aligned tile shapes and constructs an efficient tile
processing pipeline to improve the end-to-end throughput.

3 System Design

Figure 2 shows the system overview. ROLLER takes an op-
erator described as a tensor expression (§3.1). The expres-
sion is generated by users or from a graph-level DNN com-
piler [15, 26, 33], which might further fuse multiple operators
into a single expression. ROLLER extracts the tensor shapes
from the tensor expression and leverage hardware specifi-
cations to construct rTiles, i.e., a hardware-aligned building
block (§3.1). Based on rTiles, ROLLER proposes a scale-up-
then-scale-out recursive construction algorithm to generate
efficient tensor programs (named rProgram) that describes the
data processing pipeline (§3.2). When generating rProgram,
the construction algorithm identifies good rTile configurations
by evaluating the performance of a constructed rProgram

class rTile {
TensorExpr expr;
TileShape shape;
TileShape storage_padding;
vector <TileShape > GetInputDataTiles();
vector <TileShape > GetOutputDataTiles();

};

Figure 3: The data structure of rTile.

rTile.shape: [i, j, k]

DataTile: [i, k] DataTile: [k, j]

ComputeTile: [i, j, k]

DataTile: [i,j]

Figure 4: The data tiles and computing tile inferred by an
rTile for MatMul expression.

through a micro-performance model. It is built on top a device
described through a hardware abstraction layer exposing only
rTile-related interfaces: Load, Compute, and Store (§3.3).
The constructed rProgram is finally realized through a code
generator to emit the final kernel code corresponding to the
specific device.

3.1 Tensor Expression and rTile
ROLLER takes input of a tensor computation as an index-

based lambda expression, i.e., tensor expression [15, 27]. It
describes how each element in the output tensor is computed
based on the corresponding elements in the input tensors. For
example, a MatMul operator with output tensor C of the shape
M×N can be expressed as,

C = compute((M,N), lambda i,j:sum(A[i,k]*B[k,j])),

where the element indexed by (i, j) in C is computed by a
sum reduction over the elements in row i of A and column j
of B, and k is the reduction axis. Such an expression can cover
the majority of operators in DNN models and is widely used
in existing DNN compilers including TVM [15], Ansor [33],
and FlexTensor [35].

ROLLER introduces RollingTile (rTile for short) as the
basic computing unit to compose a tensor computation. As
shown in Figure 3, an rTile encapsulates a multi-dimensional
tile shape defined along each loop axis of a given tensor ex-
pression expr. Given shape and expr, an rTile can statically
infer the involved input and output data tiles. For example,
a tile shape [4,4,2] along axes i, j,k denotes an rTile for the
above MatMul expression, where each rTile loads a 4×2 data
tile from A and a 2×4 tile from B, conducts total 4×4×2
multiply-add computations, and stores a 4×4 data tile to C,
as illustrated in Figure 4.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    235



Transaction length

Leading dimension

Aligned load

…

Bank# 0-3

Padded store

load w/o conflict

(a) (b)

Figure 5: Illustration of (a) transaction aligned memory load
and (b) bank conflict-free padding.

A unique property of an rTile is that it must align with both
the underlying hardware features and the tensor shapes in a
given tensor expression. All these alignments are controlled
by the rTile shape and the storage_padding fields in Figure 3,
which represent the logical form and the physical layout of
an rTile, respectively. We elaborate the detailed requirements
of alignment next.
Alignment with the hardware execution unit. First, the
shape of an rTile must align with the parallelism of the exe-
cution unit it runs on. For example, if running on a warp of
threads in a GPU, the size of shape in the rTile should be a
multiple of the warp size, e.g., 32, for maximal computing
efficiency. When using TensorCore in NVIDIA GPUs, the
rTile shape should be a multiple of 16×16×16. Similarly, an
rTile executed on a streaming multi-processor (SM) should
align its size as a factor of execution unit number on the SM.
Alignment with memory transaction. Second, a data tile’s
shape should align with the length of memory transaction for
optimal memory access. Specifically, for each data tile of an
rTile, we should guarantee that its leading dimension (e.g., the
inner-most dimension in a row-major tensor) is a multiple of
the memory transaction length, as illustrated in Figure 5(a). In
ROLLER, tensors are allocated in a cache-aligned way. Thus,
an rTile can avoid any wasted transaction read, as its shape is
aligned with the memory transaction.
Alignment with memory bank. Third, the memory layout
of a data tile should align its stride with the memory bank to
avoid read conflicts. For example, a [3,4] data tile is kept in
the memory across 4 banks and is read by an upper-memory-
layer tile with a shape of [3,1], as shown in Figure 5(b). A
naive approach that stores all the [3,1] values in the same
bank will result in conflicted loading. rTile avoids such in-
efficiency by padding a data tile. Given a data tile with a
leading dimension of size N, which is read by another tile
with a leading dimension of size n, we add a padding size of
(BL−N%(BL)+L⌈n/L⌉)%(BL) along N when storing this
tile, where B and L are the bank number and the bank width,
respectively. The padding sizes along each axis are calculated
and stored in the storage_padding field in Figure 3. For the
case in Figure 5(b), by a padding size of 1, all the [3,1] values
are distributed in different banks and can be read efficiently.

Alignment with tensor shape. Finally, an rTile’s shape
should align with the tensor shape of an input tensor expres-
sion. Otherwise, the computation cannot be evenly partitioned
by the rTile, wasting compute resources or incurring heavy
boundary checking overheads. A simple solution is to add
a padding size Pi along a tensor dimension i with size of Ni,
which makes Ni+Pi a multiple of the rTile shape’s dimension
size at axis i. However, a large padding might waste computa-
tion. ROLLER therefore restricts tensor padding under a range
ε, where an rTile’s shape dimension size Si has to satisfy that
Si−Ni%Si

Ni
≤ ε, where Ni is the tensor size at dimension i. This

ensures the wasted percentage of computation is bounded by
ε. With this restriction, we can enumerate all the valid rTile
shapes that satisfy this condition.
Deriving all rTiles. Given the above alignment requirements,
for a specific tensor expression and hardware device, ROLLER
incrementally derives all the conforming rTiles using the
following interface:
vector<int> GetNextAlignedAxisSize(rTile T, Dev d),

which returns the next aligned size for each axis in the shape
of rTile T given the specific device specification d. This is
calculated by gradually increasing the dimension size along
each axis until it satisfies all the alignment requirements.
The rTile abstraction allows ROLLER to be extended to sup-
port new alignment requirements (e.g., new hardware fea-
tures). This is achieved by adding new alignment rules to the
GetNextAlignedAxisSize interface.
Calculating data reuse score. An interesting property of
rTile is that we can implicitly control the memory traffic by
adjusting its shape. Increasing the rTile size usually brings
more data reuse opportunities at the cost of occupying more
memory space. Given an rTile T and its next aligned size in
each axis, we can calculate the data reuse score Si for axis
i by Si =

Q(T )−Q(T ′
i )

F(T ′
i )−F(T ) , where T

′
i is a newly enlarged rTile by

replacing the dimension size at axis i with the next aligned size
from GetNextAlignedAxisSize. Functions Q(T ) and F(T )
calculate the memory traffic and memory footprint when the
computation is executed in the granularity of T , which can
be directly inferred based on the given tensor expression and
hardware memory specification (§3.3). A larger Si means
better cost-efficiency, i.e., more memory traffic can be saved
with the same memory usage. The memory reuse score plays
a critical role in constructing an efficient rProgram (using
rTiles), as shown in the next subsection.

3.2 Tensor Program Construction

rTile program. Given rTile and the hierarchical memory
structure of modern accelerators, a tensor computation can
be naturally treated as a streaming data processing pipeline.
The computation loads data tiles (specified in rTile) from the
lowest memory layer through the memory hierarchy to the
highest layer, performs rTile computation on the execution

236    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



for L1_iter in L2_rtile.split(L1_rtile):
L1_input_tiles = Load(L1_iter); //L2 to L1
for L0_iter in L1_rtile.split(L0_rtile):

L0_input_tiles = Load(L0_iter) //L1 to L0
L0_out_tile = Compute(L0_input_tiles);
Store(L0_out_tile , L2_out_tile);//L0 to L2

Figure 6: The pseudo code of an rProgram on a device with a
3-layer memory hierarchy (Bottom-up: layer L2 to layer L0).

A

B

TEU

𝐿0

A

B

C

(a)

(c)

rProgram:
Load : L2->L1->L0
Compute: L0
Store: L0->L2
rTile : L1=[4, 8, 4], L0= [2, 2, 1]

(b)

𝐿1

𝐿2

Compute:[2, 2, 1]

[4,8][4,4] 

[2,1] [1,2]

C

[2,2]

Figure 7: ROLLER computation model. (a) An rTile program;
(b) rTiles on matrix multiplication; (c) Execution of the rTile
program on a hardware memory hierarchy.

units of the accelerator, and stores the resulting data tiles back
to the lowest memory. For each memory layer, a specific rTile
is defined to align with the characteristics of this memory
layer. Thus, ROLLER describes tensor computation as a data
processing pipeline with a hierarchical rTile configuration,
which is called an rTile program (i.e., rProgram).

Figure 6 shows an rProgram on a device with three memory
layers (L0, L1 and L2). The rProgram is described by the rTile
at each layer and the rTile instructions (i.e., Load, Store, and
Compute) at each memory layer. Figure 7(a) shows a MatMul
rProgram illustrated in Figure 7(b). Figure 7(c) illustrates how
the rProgram is mapped to each memory layer of a device.
Specifically, each time it loads a [4,4] data tile in A and a
[4,8] tile in B from memory L2 to L1; and then it loads the
data tiles from memory L1 to memory L0 (i.e., registers) in
shapes of [2,1] and [1,2]. After each Compute, the resulting
[2,2] tile will be directly stored from L0 to L2.

Given a data processing pipeline, the optimization goal of
the corresponding rProgram is to maximize the throughput
of the pipeline. The goal can be translated into three condi-
tions: 1) the computation and memory movement should fully
leverage the hardware features; 2) the throughput should satu-
rate the bottleneck stage; and 3) there needs to be sufficient
parallelism to leverage all the parallel execution units. Thus,
ROLLER proposes the following rProgram construction pol-
icy: first scale-up on one core by constructing a single-core
rProgram to saturate the core’s hardware utilization and then

1 Func ConstructProg(expr:TensorExpr, dev:Device):
2 T = rTile(expr);
3 Results = [];
4 EnlargeTile(T , dev.MemLayer(0), rProg());

5 Func EnlargeTile(T:rTile, mem:MemLayer, P:rProg):
6 if mem.IsLowestLayer()
7 Results.append(P);
8 if (Results.Size() > TopK) Exit();
9 Return();

10 for T ′ : GetNextRTileShapes(T , mem) do
11 if Visited(T ′)
12 Return();
13 if MemFootprint(T ′) > mem.Capacity()
14 P.Add(mem, T );
15 EnlargeTile(T , mem.Next(), P);
16 else
17 if MemPerf(T ′) > MaxComputePerf(T ′.expr)
18 P.Add(mem, T ′);
19 EnlargeTile(T ′, mem.Next(), P);
20 EnlargeTile(T ′, mem, P);

21 Func GetNextRTileShapes(T:rTile, mem:MemLayer)
22 alignedSizes = GetNextAlignedAxisSize(T , mem);
23 SortedRTiles = OrderedMap();
24 for d : T.Dimensions() do
25 T ′ = T .Replace(d, alignedSizes[d]);
26 SortedRTiles.Insert({T ′, DataReuseScore(T ′)});
27 Return SortedRTiles;

Figure 8: ROLLER’s rProgram constructing algorithm
for a single core (e.g., an SM).

scale-out to leverage the multi-core parallelism by replicating
the constructed single-core rProgram.
Scaling up an rProgram. Since the alignment properties
of rTile ensure hardware efficiency, ROLLER can just focus
on maximizing the throughput at each memory layer by con-
structing the right rTile shape. By leveraging the data reuse
score defined in §3.1, the single-core rProgram construction
algorithm starts from an initial rTile and gradually enlarges
it towards the most cost-effective axis in the rTile (i.e., with
the maximum data reuse score). Note that the construction
algorithm does not require an absolute data reuse score, it
just picks the largest one to maximize the throughput. Dur-
ing the process, the memory performance improves until it
hits the computational bound or the maximal memory capac-
ity. The above process repeats for each memory layer from
top to bottom, until a desired rProgram is constructed. Note
that if the data reuse score remains constant for some tensor
expressions, e.g., element-wise operators, ROLLER will just
construct rTiles for the top layer and loads them directly from
the bottom layer memory.

Figure 8 shows the detailed construction algorithm. Given
a tensor expression expr and a target device dev, the algo-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    237



rithm constructs an initial rTile T at the top memory layer
and enlarges T recursively (EnlargeTile in line 4). At each
step, it enumerates the next larger rTile T ′ that improves the
data reuse score most (GetNextRTileShapes in line 10). If
T ′ hits the memory capacity (line 13) or the data tile load-
ing throughput MemPer f (T ′) exceeds the peak computing
throughput MaxComputePer f (T ′) (line 17), the algorithm
records the current rTile T and goes on to EnlargeTile at
the next memory layer. Otherwise, it continues to enlarge
T ′ at the current layer (line 20). The construction finishes at
the lowest memory layer (line 6), producing one result and
repeating, until it obtains K (e.g., 5-20) rPrograms (to tolerate
the hidden factors affected by the device compiler). Note that
MemPer f (T ′) and MaxComputePer f (T ′) are derived based
on dev, based on the micro-performance model (§3.3).
Scaling out an rProgram. Given the homogeneity of both
the computation pattern of most DNN operators and the par-
allel execution units in an accelerator, ROLLER simply repli-
cates the rProgram constructed on one execution unit to other
units, by uniformly partitioning the computation into rTiles
of the size equals to the lowest layer rTile. We achieve this
by distributing all the partitions evenly to all execution units.
Note that ROLLER prefers to assign the partitions split along
a reduction axis on the same execution unit, as they can share
the reduction results in the higher memory layers. Note that
ROLLER does not assume an rProgram will exclusively oc-
cupy all computing units, the system can explicitly control
the parallelism of a rProgram when scaling out.
Small operator and irregular tensor shape. The scale-out
algorithm inherently favors operators with sufficient paral-
lelism, e.g., where the partition number is significantly larger
than the number of execution units. For a small operator, the
overall performance of the algorithm could suffer from the
low utilization of parallel execution units. In general, this
can be addressed by co-scheduling with other operators in
compilers like Rammer [26], if there exists sufficient inter-
operator parallelism. Otherwise, for each rProgram, ROLLER
will try to shrink its rTiles along the axis that has the smallest
data reuse score to achieve sufficient parallelism. Note that
this enumerating process returns the next aligned tile size
each time just like other alignment rules, which is an efficient
process and incurs negligible costs compared to the overall
construction process.

In addition, a large operator may contain irregular tensor
shapes with small dimensions, whereas ROLLER might not
generate a sufficient number of rPrograms due to the align-
ment requirements. To address this issue, ROLLER transforms
a tensor expression into a canonical form by an axis fusion
pass. Specifically, for all the involved tensors, if there exist
two adjacent axes in one tensor, which are either both existing
and still adjacent or both missing in all other tensors, ROLLER
can safely merge these two axes. For example, an element-
wise operator with the tensor shape [17,11,3] in both input
and output tensors, ROLLER will transform it into the tensor

// compute interface
int Load(T* src, rTile st, T* dst, rTile dt);
int Store(T* dst, rTile dt, T* src, rTile st);
int Compute(TensorExpr e, rTile t, T** args);

Spec GetDeviceSpec(); // Spec query interface

// interfaces of the micro-performance model
size_t MemFootprint(rTile t);
size_t MemTraffic(rTile t);
double MaxComputePerf(TensorExpr expr);
double MemPerf(rTile t);

Figure 9: The interface of ROLLER’s hardware abstraction

shape [561](17× 11× 3) by fusing the three axes. Besides
axis fusion, ROLLER will also try to greedily increase the
parameter ε in the tensor padding mechanism (§3.1) until K
rPrograms have been constructed.

3.3 Efficient Evaluation of an rProgram
In the construction algorithm, ROLLER needs to evaluate the
performance of rProgram. Instead of evaluating the end-to-
end rProgram in a real hardware device, ROLLER only needs
to evaluates the performance of the corresponding rTile, e.g.,
MemPerf and MaxComputePerf in Figure 8.

To this end, ROLLER builds a micro-performance model
against a device described in a hardware abstraction layer
(HAL). The HAL models an accelerator as multiple parallel
execution units with a hierarchical memory layer. The HAL
exposes three rTile-based interfaces: Load, Compute, and
Store (Figure 9). An execution unit is abstracted as an rTile
Execution Unit (TEU), which computes the data tiles through
the Compute interface. Multiple TEUs can be organized as a
group, which Load and Store tiles cooperatively. The HAL
treats different memory layers, e.g., register, shared memory,
DRAM, as an unified type exposing the hardware specifi-
cations that affect the performance of tile movement. The
specifications include memory capacity, transaction lengths,
cache line size, and number of memory banks, which can be
obtained by the GetDeviceSpec interface in Figure 9.
Micro performance model. With the hardware abstraction
layer, ROLLER can easily derive the performance of a rTile
(and hence the rProgram). First, given an rTile, the incurred
memory footprint (including padding) and the memory traf-
fic volume across different layer can be statically inferred
from the rTile’s tensor expression expr and the shape, i.e.,
the MemFootprint and MemTraffic interfaces in Figure 9.
They are used to calculate the data reuse scores and check if
an rTile exceeds the memory capacity. Second, to calculate
MaxComputePerf of an rTile, ROLLER conducts a one-time
profiling to measure the peak compute throughput by aggres-
sively enlarging the compute tiles (e.g., multiple of warp size
in an SM) to saturate the TEU. This performance data is
cached in ROLLER for future query in the construction al-

238    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



gorithm. Finally, for a given rTile, ROLLER also estimates
MemPerf, the performance on loading data tiles from a mem-
ory layer to a higher layer. Given the aligned memory access
in rTile, the latency of loading a regular chunk of data can be
simply modeled by the division of the total traffic to the mem-
ory bandwidth. For the memory layer shared by all TEUs, we
split the bandwidth evenly. For the smaller accessing sizes,
ROLLER also conducts a one-time offline profiling for each
device type and cache the results. It is worth noting that the
micro-performance model only needs to be accurate when the
tile shapes are fully aligned, a key requirement of ROLLER.

4 Implementation

Our implementation of ROLLER is based on TVM [15] and
Rammer [26], two open-source DNN compilers. ROLLER’s
core mechanisms, including expression optimization, con-
struction algorithm, micro-performance model, etc., are imple-
mented with 8K lines of code. ROLLER’s compilation pipeline
is as follows. Its input is an ONNX graph [9] or a TensorFlow
frozen graph [13]. ROLLER first leverages Rammer to con-
duct graph level optimizations (e.g., inter- and intra-operator
co-scheduling). Next ROLLER derives the TVM tensor expres-
sions for each (fused) operator extracted from the optimized
graph, and generates corresponding rProgram by ROLLER’s
construction algorithm, and performs kernel generation. Fi-
nally, the generated kernels are injected to Rammer’s runtime
and generate the end-to-end model code.
Code generation. Given the fixed code structure in an
rProgram (in Figure 6), ROLLER generates the kernel code
through a predefined template, implemented as a TVM sched-
ule with its built-in scheduling primitives. Loading and storing
data tiles at each memory layer are implemented by TVM’s
cache_read and cache_write primitives. Partitioning on
rTile is done through split and fuse. Some primitive rTile
computation is implemented with TVM’s intrinsic API. With
the template, a given rProgram can be directly generated into
device codes, e.g., CUDA kernels.
Tensor padding. ROLLER relies on tensor padding to align
rTiles with tensor shape. In practice, most tensors in the
lowest memory (e.g., DRAM) are allocated by external pro-
gram (e.g., DNN framework), thus we just apply padding
in the upper layer memory (e.g., shared memory). Our ten-
sor padding currently requires the input tensor expression
to specify whether it allows to pad, as well as the default
padding value (e.g., 0 for MatMul operator). For the storage
padding for memory bank alignment, we leverage TVM’s
storage_align primitive to add padding.
Performance profiling. ROLLER implements two profil-
ers: a micro-performance profiler and a kernel profiler. The
former generates device specifications, e.g., memory band-
width, computing throughput, etc., through a set of micro-
benchmarks, which is a one-time offline profiling for each
device type and tensor expression types (regardless of the

tensor shapes). The latter profiles the fastest kernels among
the top K rPrograms and is used for each compilation result
if the K is larger than 1. In practice, the performance of a
specific kernel code is also slightly affected by some device-
compiler and hardware related hidden factors, which ROLLER
can hardly control. These factors include instruction density
of different instruction types, register allocation behaviors,
device compiler optimizations, warp scheduling overhead, etc.
Particularly, on NVIDIA GPUs, ROLLER relies on nvcc [3]
to compile the generated CUDA codes into machine code.
However, nvcc’s proprietary optimizations might undesirably
affect the program execution behaviors. Thus, ROLLER lever-
ages the kernel profiler to quickly evaluate top performing
rPrograms and select the best one. A larger K could generally
increase kernel quality. After evaluating the top 10, 20, and
50 results, our experiences show that top 10 could recall the
optimal results for most cases. Note that ROLLER’s kernel pro-
filer differs from the evaluation process driven by a machine
learning algorithm in previous compilers [15,33,35]. The ML-
based approach usually requires hundreds even thousands of
sequential evaluation steps, while ROLLER only profiles tens
of candidates in parallel. In future, we plan to implement
assembly-level code generation to alleviate the hidden issues
in a high-level device compiler.

ROLLER’s HAL allows us to support different accelerators
easily. User can configure the corresponding HAL for each
device type. ROLLER also provides built-in configurations
for most common device types. Some detailed configurations,
e.g., memory bandwidth, rely on micro-benchmark profiling
or derive from published device specifications. Next, we share
our experiences in implementing the HAL on several popular
DNN accelerators, including NVIDIA GPUs, AMD GPUs
and Graphcore IPU.
ROLLER on NVIDIA CUDA GPUs. An NVIDIA GPU
usually employs a centralized memory architecture. We imple-
ment ROLLER on V100 and K80, two CUDA GPUs with dif-
ferent architectures on the streaming multi-processors (SMs).
Their memory architecture contains global memory, L2 cache,
L1 cache, shared memory, and register. In ROLLER’s HAL,
we abstract them into 3 memory layers: L2 layer for global
memory and L2 cache, L1 layer for only the shared memory,
and the L0 layer for register. We ignore L1 cache because it
shares the space with shared memory and cannot be controlled
by user programs. The memory bandwidths of all levels are
measured by our micro-benchmarks. The transaction length
at the global memory layer is set to 32 Bytes, i.e., 8 float
elements, for both GPUs. For V100 GPUs, the bank number
and the bank length of the shared memory is 32 and 4 Bytes
respectively. For K80 GPUs, the bank length is 8 Bytes. The
shared memory capacities are set as 48KB for both GPUs
(based on deviceQuery).

We implement the TEU on CUDA GPUs as a warp of 32
threads, which is also the basic unit to execute the TensorCore
WMMA instructions. The size of a TEU Group on a HAL

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    239



(e.g., a SM) is set to the warp scheduler number, which is 4
for both GPUs. The SM number is 80 for V100 [21] and 13
for K80. On CUDA GPUs, each thread has a limited register
capacity, e.g., 255 registers for V100. Exceeding this limit
will lead to register spilling, causing significant performance
degradation. This sets a limit to the size of an rTile at register
layer. We notice that the nvcc compiler will implicitly declare
more registers (for loop variables or other purposes). Given
that this behaviour is hard to predict, we reduce the register
limit empirically to only 96 registers for both V100 and K80
per thread to avoid unexpected performance impacts.
ROLLER on AMD ROCm GPUs. We also implement
ROLLER on MI50 [12], AMD’s second-generation Vega series
GPU. MI50 shares a similar memory architecture as V100:
the centralized global memory can be accessed by all compute
units (CUs). Like SMs in NVIDIA GPU, each CU has its own
scratchpad memory, registers, and computation cores. The
data movement of a ROCm [1] kernel program is also similar.
The memory transaction size for the global memory is set as
64 Bytes. The memory bank number is 32 and bank length
is also 4 Bytes. We also implement the TEU as a warp of
threads, which is 64 threads on MI50 GPUs. The maximal
register size is empirically limited to 70 registers per thread.
All other specifications such as the memory bandwidths at
each layer, peak computing throughput, etc., are measured
with our micro-benchmark.
ROLLER on Graphcore IPUs The Graphcore IPU [22]
is a massive parallel MIMD processor with 1216 parallel
processing cores. Distinct from NVIDIA and AMD GPUs,
an IPU employs a distributed memory architecture. There is
only 256KB on-chip local memory attached per core, and no
unified global memory. When the local memory is unable
to hold all the input data, by default, the initial data of a
kernel program is stashed in the on-chip local memory and
evenly distributed across the nodes. Thus, ROLLER’s HAL
for IPUs also abstracts three memory layers: L2 for all the
remote memories across all cores, L2 for the local memory on
each core, and L0 for the register. We take advantage of prior
benchmarking work [22], which has successfully measured
peak memory bandwidth and computation throughput. The
size of the register files per IPU core is not publicly available.
Considering that we have no prediction for behaviours of the
IPU program compiler, we allow each upper-level rTile to
use only 10 registers, which safely guarantee that the tiling
algorithm does not emit invalid tiling configurations.

5 Evaluation

We evaluate ROLLER on both DNN operator benchmarks and
end-to-end models by comparing with state-of-the-art DNN
compilers and frameworks. We first summarize our findings:
1) ROLLER achieves three orders of magnitude speedup on
compilation time, compared to TVM and Ansor. On V100
GPU, the most expensive operator takes 43 seconds, while

Operator Configuration Note
MatMul M=65536,K=2,N=1024 M0
MatMul M=128,K=4032,N=1000 M1
MatMul M=65536,K=1024,N=4096 M2
Conv2D D=(128,128,28,28), K=(128,128,3,3),S=1 C0
Conv2D D=(128,128,58,58), K=(128,128,3,3),S=2 C1
Conv2D D=(128,256,30,30), K=(256,256,3,3),S=2 C2
DepthwiseConv D=(128,84,83,83), K=(84,84,5,5),S=2 D0
DepthwiseConv D=(128,42,83,83), K=(42,42,5,5),S=1 D1
DepthwiseConv D=(128,84,21,21), K=(336,336,1,1),S=1 D2
Element(Relu) I=(128,1008,42,42) E0
Element(Relu) I=(128,256,14,14) E1
Element(Relu) I=(128,1024,14,14) E2
Avgpool D=(128,168,83,83),K=1,S=2,VALID P0
Avgpool D=(128,617,21,21),K=3,S=2,SAME P1
Avgpool D=(128,42,83,83),K=3,S=1,SAME P2
ReduceMean I=(128, 512, 1024), axis=[2] R0
ReduceMean I=(65536, 1024),axis=[1] R1
ReduceMean I=(128, 4032, 11, 11), axis=[2,3] R2

Table 1: A subset of operator configurations in our benchmark.

all other operators take only around 13 seconds to compile.
2) ROLLER matches the state-of-the-art performance of ven-
dor libraries and other compilers on a wide range of opera-
tors. It even outperforms others for more than 50% of opera-
tors. 3) For operators with smaller sizes and irregular shapes,
ROLLER’s results are sub-optimal because of the difficulty
in aligning with the hardware. However, their kernel execu-
tion time is usually small (around or below 1ms). 4) We have
conducted the most extensive evaluations (119 ops in total)
covering different operator types over different accelerators.
Experimental setup. ROLLER is evaluated on four types of
servers equipped with different accelerators. The CUDA GPU
evaluations use two types of servers: an Azure NC24s_v3 VM
equipped with Intel Xeon E5-2690v4 CPUs and 4 NVIDIA
Tesla V100 (16GB) GPUs and an Azure NC24_v1 VM with
24 Intel(R) Xeon(R) CPU E5-2690v3 CPUs and 4 NVIDIA
Tesla K80 GPUs. Both running on Ubuntu 16.04 with CUDA
10.2 and cuDNN 7.6.5. The AMD ROCm GPU evaluations
use a server equipped with Intel Xeon CPU E5-2640 v4 CPU
and 4 AMD Radeon Instinct MI50 (16GB) GPUs, installed
with Ubuntu 18.04 and ROCm 4.0.1 [1]. The IPU evalua-
tions use an Azure ND40s_v3 VM equipped with Intel Xeon
Platinum 8168 CPUs and 16 IPUs with Poplar-sdk 1.0.

We compare ROLLER against other tensor compilers, ven-
dor libraries and DNN frameworks, including TVM [15]
(v0.8) and Ansor [33] (v0.8), two state-of-the-art tensor com-
pilers; cuDNN, cuBLAS, rocBLAS (ROCm GPUs), POPLAR
library (Graphcore IPU), which are vendor libraries; Tensor-
Flow (v1.15), a state-of-the-art DNN framework; TensorFlow-
XLA a state-of-the-art DNN full-model compilers; and Ten-
sorRT (v7.0) (with TensorFlow integration version), a vendor-
specific inference library for NVIDIA GPUs. We validate our
compilation results by comparing them against Ansor’s.
Benchmarks. Our evaluation benchmark uses four typical
DNN models, including ResNet-50 [19] (CNN), LSTM [20]
(RNN), NASNet [36] (a state-of-the-art CNN model obtained

240    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 1

 10

 100

 1000

C10 C24 C32 C33 C39 C40 C43 D16 D20 E0 E4 M3 M4 M5 M6

 0
 1
 2
 3
 4
 5
 6

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C25 C26 C27

 0
 1
 2
 3
 4
 5

C28 C29 C30 C31 C34 C35 C36 C37 C38 C41 C42 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

 0

 1

 2

 3

D15 D17 D18 D19 D21 D22 E1 E2 E3 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21

 0

 1

 2

 3

E22 E23 E24 E25 E26 E27 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 R0 R1 R2 R3 M0 M1 M2

TF(CudaLib) TVM Ansor Roller-Top1 Roller-Top10

Figure 10: Operator performance on V100 GPUs (y-axis: average kernel execution time in ms).

by the neural architecture search), and BERT-Large [17]
(transformer-based). We set the default batch size of each
model to 128. From each model, we choose the most-
frequently used operators to construct our operator bench-
mark. It contains 6 classes of operator type with total 119
operator instances with different configurations (7 MatMul
operators, 44 Conv2D operators, 23 DepthwiseConv opera-
tors, 28 element-wise operators, 13 pooling operators, and 4
reduction operators). Table 1 lists a representative subset of
operators as well as their configurations. The last column lists
the corresponding abbreviation of each operator. The full list
of the operator configurations is omitted due to page limit.

5.1 Evaluation on NVIDIA GPUs

This section first evaluates ROLLER’s operator performance,
compilation time, and scalability on large operators by com-
paring against the state-of-the-art tensor compilers and vendor
libraries. We also evaluate the performance of ROLLER on
TensorCore. Finally, we show the end-to-end model perfor-
mance compared to existing DNN compilers and framework.
Operator performance. We first evaluate the performance
of ROLLER generated kernels by comparing against TVM
(i.e., AutoTVM with XGBoost tuning algorithm [16]), Ansor,
cuBLAS (for matrix multiplication operators) and cuDNN
(for convolution operators). Vendor libraries like cuBLAS
and cuDNN are wrapped in TensorFlow to evaluate the per-
formance. For the rest of operators (e.g., element-wise, re-
duce), we use TensorFlow’s built-in kernel implementations.
To amortize the overhead of data feeds/fetches in Tensor-

Flow’s session, we repeat the kernel running for 1,000 times
in each session and calculate the average. We set the tuning
steps for TVM and Ansor to 1,000 for each operator, same as
Ansor’s evaluation setup [33], and report the best results. We
compare both the top-1 and the best from the top-10 kernels
constructed by ROLLER, the latter can tolerate some hidden
performance impacts from device compilers.

Figure 10 plots the average kernel performance for all
the 119 operators in our benchmark, ordered by the oper-
ator type and ID. We plot the large operators (e.g., kernel
time is larger than 5ms) in the top sub-figure in a log-scale
for y-axis, and the other medium and small operators in the
bottom 4 sub-figures 2. First, compared to CUDA libraries
(CudaLib), ROLLER could get comparable performance (i.e.,
within 10% performance) for 81.5% of the total operators,
and can be even faster for 59.7% of them. We observe that the
majority of operators that ROLLER performs worse are convo-
lution operators with 3×3 or larger filters, which are usually
implemented with a more efficient numerical algorithm (e.g.,
Winograd [23]) in cuDNN and hard to be expressed by the
tensor expression. This is the reason Ansor and TVM are also
slower than CudaLib in these cases. Second, compared to
TVM and Ansor, ROLLER could also get comparable perfor-
mance for 72.3% and 80.7% of the total operators respectively.
The rest 27.7% and 19.3% of them are mainly small oper-
ators or with irregular tensor shapes, which are by natural
hard to align with the hardware. However, these operators
usually have relatively short kernel time, e.g., only 1.65ms
and 1.16ms on average. Among 54.6% and 65.5% of the total

2Please find the complete results in our artifact.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    241



 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 1x106

 0  20  40  60  80  100  120

C
om

pi
le

 ti
m

e 
(s

)

Operator ID (sorted by compilation time)

TVM
Ansor

Roller-top1
Roller-top10

Figure 11: Compilation time for each operator.

 0.1

 1

 10

 100

 1000

512 1K 2K 4K 8K 16K

K
er

ne
l t

im
e 

(m
s)

M dimension size

TF(CudaLib)
TVM
Ansor

Roller-top1
Roller-top10

Figure 12: Kernel time for MatMul operator with different
sizes of M in BERT-Large model, K=1024, N=4096.

operators, ROLLER can even produce faster kernels than TVM
and Ansor, respectively. We observe that the majority of these
operators are large and time-consuming ones. As it shows in
the top sub-figure where operators are larger than 5ms (up to
343ms), ROLLER could achieve better performance for most
of these operators, e.g., by 1.85× and 1.27 × speedup over
TVM and Ansor on average.
Compilation time. Given the comparable kernel perfor-
mance, the major advantage of ROLLER is its fast compilation.
Figure 11 compares ROLLER’s compilation time against TVM
and Ansor for all the operators. The operator ID is sorted by
the compilation time for each line. The average operator com-
pilation time for TVM is 0.65 hours and up to 7.89 hours. For
the first 40 operators, which are mainly the element-wise, re-
duction, and pooling operators, TVM’s compilation takes less
than 10 seconds. This is because TVM’s manually-written
code templates for these operators can directly emit code
without searching. However, Ansor generates search spaces
for all the operators. Its compilation time takes 0.66 hours on
average and up to 2.17 hours. In contrast, ROLLER’s top-1
kernel results can be generated in 1 second for most operators
and in 0.43s on average, which is more than three orders of
magnitude faster. The major time is spent on the recursive con-
structing algorithm, which increases slightly with the growth
of operator size, but quickly stabilizes as the recursive depth
(to enlarge the rTiles) is bounded by the limited memory ca-
pacity. To get the optimal kernels from the top-10 candidates,
ROLLER’s average compilation time is only 13.3 seconds.
The major cost comes from the kernel code compilation with
the device compiler and the evaluation on target devices.
Scale-out with operator size. We evaluate the scalability of
ROLLER on larger operators by comparing with both CUDA

 0.1
 1

 10
 100

 1000

128 256 512 1024 2048 4096 8192

K
er

ne
l t

im
e 

(m
s)

Batch size

TF(CudaLib)
TVM
Ansor

Roller-top1
Roller-top10

Figure 13: Kernel time for Conv2d operator with different
batch sizes of N, where C=1024, H=14, F=2048, K=1, S=2.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

M
512

M
1K

M
2K

M
4K

M
8K

M
16K

C128
C256

C512
C1K

C2K
C4K

C8K

C
om

pi
le

 ti
m

e 
(s

)

TVM
Ansor

Roller-top1
Roller-top10

Figure 14: Compilation time for both MatMul and Conv2d
operator with different batch sizes.

libraries, TVM, and Ansor. We select a MatMul operator from
the BERT model and a Conv2D operator from the ResNet
mode, and scale them by setting different batch sizes. Fig-
ure 12 and Figure 13 show the performance comparisons. For
the MatMul operator, both Ansor and ROLLER have a linear
scalability over the batch sizes and comparable performance
with CudaLib (i.e., cuBLAS). However, TVM’s performance
is relatively non-stable. For example, ROLLER can outperform
TVM by average 11.2× and up to 36.1× for the batch size of
1024. For Conv2D operators, ROLLER can still achieve linear
scalability over the batch size, and get slightly better perfor-
mance than Ansor and TVM (by 1.25 and 1.54× on average).
Note that Anosr is unable to search for a valid kernel for the
batch size over 2048 using its default configurations. TVM
can generate valid kernels, but the performance is scaled sub-
linearly for the larger batch sizes, e.g., ROLLER can achieve
more than 1.9 × speedup for batch sizes greater than 2048.

Finally, Figure 14 compares the compilation time for the
two operators with different batch sizes. The average com-
pilation time of TVM and Ansor is 2.36 (up to 9.55) hours
and 1.19 (up to 3.0) hours respectively. Moreover, their com-
pilation time grows constantly with the growing of batch size.
This is because that they are both based on ML-based search
approach, whose search space usually increases exponentially
with the operator size. In contrast, ROLLER produces the top-
1 kernel in 1 second, and 16 seconds (up to 34 seconds) on
average for the top-10 kernel.
Compile on TensorCore. ROLLER could easily support
hardware tensor ISAs (e.g., TensorCore) by aligning the
rTile shape with the hardware instruction shape. We use the
16×16×16 WMMA instruction in ROLLER. We remove An-

242    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 1

 10

 100

M3 M4 M5 M6

K
er

ne
l t

im
e 

(m
s)

TF(cuBlas)
TVM

Roller-top1
Roller-top10

Figure 15: Matmul kernel time on TensorCore.

 0
 0.5

 1
 1.5

 2

M1 M2

K
er

ne
l t

im
e 

(m
s)

TVM
Ansor

Roller-O
Roller-S

Figure 16: Performance for small operators.

sor in this experiment as it does not support TensorCore to our
best knowledge. We select 4 large MatMul operators that are
friendly to TensorCore in this experiment. Figure 15 shows
the performance comparisons. As it shows, by constructing
from the aligned rTile shape, ROLLER can quickly produce
good kernels on TensorCores, e.g., within a 43% performance
gap to cuBLAS. Note that cuBLAS is highly optimized with
a lot of hand-crafted optimizations on TensorCore. As a com-
parison, TVM fails to generate valid kernels for 3 of the 4 total
operators with the default configurations. We try to increase
the tuning steps from 1,000 to 10,000, it is still unable to find
a legitimated kernel due to its poorly-defined search space.
Small operators and irregular tensor shape. ROLLER opti-
mizes performance for small operators by shrinking the rTile
when there is insufficient parallelism. We demonstrate the per-
formance of this optimization for the two small MatMul opera-
tors. Figure 16 compares the performance of the original rTile
configuration without sufficient parallelism (Roller-O), and
the shrunken rTile configuration (Roller-S) which matches
the SM parallelism. As it shows, shrinking rTile could sig-
nificantly improve performance than the original kernel, e.g.,
by 2.3× on average. However, ROLLER is still slower than
Ansor, e.g., by 50% on average, on small operators, even it
is significantly faster than TVM by 6.6×. For such operators,
we can further leverage search-based approach to fine-tune
the configurations to obtain a better performance.

ROLLER compiles operators with irregular tensor shapes
with two optimizations: i.e., axis fusion and tensor padding
with bound parameter ε. We demonstrate their benefits on a
representative set of irregular convolution operators, as shown
in Figure 17. We compare the performance of ROLLER with-
out any optimizations (Roller-B), with axis fusion (Roller-F),
and further with tensor padding of ε from 0.4 to 1.0 (Roller-
P0.4 and Roller-P1.0). All ROLLER’s performances are the
best one selected from the top-10 candidates. First, with axis
fusion optimization, ROLLER is able to have more rTiles
that aligns with the tensor shapes, which improves the kernel
performance by 1.5× on average. Moreover, with the tensor

 0
 2
 4
 6
 8

C9 C12 C13 C15 C28 C36

K
er

ne
l t

im
e 

(m
s) Ansor

Roller-B
Roller-F

Roller-P0.4
Roller-P1.0

Figure 17: Performance for operators with irregular shapes.

 0
 200
 400
 600
 800

 1000

D
R

A
M

 (
G

B
/S

)

Measured Throughput Modeled Throughput

 0
 4000
 8000

 12000
 16000

S
R

A
M

 (
G

B
/S

)

 0
 4000
 8000

 12000
 16000

T
=

32,B
=

10
T

=
32,B

=
20

T
=

32,B
=

40
T

=
32,B

=
80

T
=

32,B
=

160
T

=
32,B

=
320

T
=

32,B
=

640
T

=
32,B

=
1280

T
=

32,B
=

2560
T

=
64,B

=
10

T
=

64,B
=

20
T

=
64,B

=
40

T
=

64,B
=

80
T

=
64,B

=
160

T
=

64,B
=

320
T

=
64,B

=
640

T
=

64,B
=

1280
T

=
64,B

=
2560

T
=

128,B
=

10
T

=
128,B

=
20

T
=

128,B
=

40
T

=
128,B

=
80

T
=

128,B
=

160
T

=
128,B

=
320

T
=

128,B
=

640
T

=
128,B

=
1280

T
=

128,B
=

2560
T

=
256,B

=
10

T
=

256,B
=

20
T

=
256,B

=
40

T
=

256,B
=

80
T

=
256,B

=
160

T
=

256,B
=

320
T

=
256,B

=
640

T
=

256,B
=

1280
T

=
256,B

=
2560

T
=

512,B
=

10
T

=
512,B

=
20

T
=

512,B
=

40
T

=
512,B

=
80

T
=

512,B
=

160
T

=
512,B

=
320

T
=

512,B
=

640
T

=
512,B

=
1280

T
=

512,B
=

2560
T

=
1024,B

=
10

T
=

1024,B
=

20
T

=
1024,B

=
40

T
=

1024,B
=

80
T

=
1024,B

=
160

T
=

1024,B
=

320
T

=
1024,B

=
640

T
=

1024,B
=

1280
T

=
1024,B

=
2560

C
om

pu
te

 (
G

F
L

O
P

S
)

Figure 18: Memory throughput (DRAM and shared memory)
and compute throughput from our micro-performance model
and real measurement (X-axis: kernel configurations with
different number of threads per block (T) and blocks (B)).

padding optimizations (e.g., at ε of 1.0), ROLLER can further
improve performance than Roller-F by 1.4×. This is mainly
because the number of legitimated kernels is very limited with
smaller ε for irregular shapes. Increasing the ε allows ROLLER
to have chance to select from more candidate kernels.
Micro-performance model. We conduct extensive exper-
iments to validate the micro-performance model, including
global memory throughput, shared memory throughput, and
compute throughput, under different kernel configurations
(i.e., different thread block and grid size). Figure 18 compares
the performance estimated by our micro-performance model
with that measured on real device. As shown, when the config-
uration is not aligned with the parallelism of execution units,
i.e., thread number per block is less than 128 (4 warps), our
model produces a relatively estimation error, especially for
the DRAM throughput. This is also the case when there is
insufficient parallelism (i.e., block number is less than 80).
Thus, we can see our micro-performance model is accurate
only for those shape-aligned configurations (i.e., rTiles), as
they fully exploit hardware efficiency. This also motivates us
to choose only the aligned rTiles, which greatly reduces the
complexity of micro-performance model.
Kernel performance. We further study how close the per-
formance of ROLLER generated kernels can approach the
optimal. Since ROLLER’s data pipeline model can naturally
identify the bottleneck layer, e.g., DRAM, shared memory, or

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    243



Resource utilization 60-70% 70-80% 80-90% 90-100%
Operator # 6 13 22 78
Percentage 5% 11% 18% 66%

Table 2: The distribution of resource utilization at the satu-
rated layer for different kernels.

Baseline MemAlignn EUAlign ShapeAlign BankAlign
1.0x 1.42x 1.88x 1.92x 1.94x

Table 3: Average accumulated performance improvement with
different alignment optimization.

computation, we profile each generated kernel and compare
the corresponding resource utilization at the saturated layer
with the theoretical hardware limit. Table 2 lists the distri-
bution of the resource utilization for the total 119 operators.
The table shows most kernels saturate hardware resources,
e.g., 66% of them utilize more than 90% of the theoretical
limit. For the few under-utilized kernels, especially whose
utilization is less than 80%, our investigation shows that they
are mostly small operators with insufficient parallelisms.

To understand the impact of different alignment rules, we
incrementally turn on each alignment optimization and evalu-
ate its performance improvement. Table 3 shows the average
speedup compared with the baseline (without any optimiza-
tion). For example, EUAlign shows the kernels with the align-
ment on execution units and memory transaction alignment
(MemAlign) can together improve the performance by 1.88x
than the baseline. Bank alignment (BankAlign) has relatively
small improvement because most kernels are already bank
conflict free.
End-to-end model performance. We evaluate the end-to-
end model performance of ROLLER by comparing against Ten-
sorFlow (TF), TensorFlow-XLA (TF-XLA), TensorRT (TF-
TRT), and Ansor, which represent the state-of-the-art DNN
framework, graph-level compiler, vendor-provided DNN en-
gine, and DNN compiler with tensor compilation, respectively.
Note that TensorRT is also the core engine in NVIDIA Tri-
ton inference server [8]. We omit TVM in this experiment
as it usually requires an order of magnitude longer compi-
lation time on tuning end-to-end models than Ansor [33].
ROLLER’s end-to-end model compilation is implemented in
Rammer (i.e., Rammer+Roller) by feeding the generated ker-
nels into it. To create a fair baseline, we manually feed both
the TVM and Ansor generated kernels for the same set of
operators into Rammer, which are denoted as Rammer+TVM
and Rammer+Ansor.

Table 4 lists the model execution time for each model com-
piled or executed by each compiler and framework. Note
that TF-XLA fails to compile the BERT-Large and NASNet
model (out-of-memory). TF-TRT also fails to run the BERT-
Large model due to exceeding the maximum protobuf size
limit (2GB) in its graph loading stage. For Ansor, we set the
total tuning steps as 1,000 multiplied with the number of sub-
graphs for each model. However, Ansor also fails to produce

BERT-Large ResNet NASNet LSTM
TF 5,186 131 1,041 141
TF-XLA OOM 112 OOM 98
TF-TRT N/A 137 883 31
Ansor 46,847 (TVM) 122 927 84
Rammer+TVM 17,730 143 1,168 43
Rammer+Ansor 5466 137 1036 48
Rammer+Roller 4,850 142 1,005 20
Ansor compile-time 30.9h (TVM) 33.4 h 41.8h 11.3 h
Roller compile-time 371s 352s 668s 298s

Table 4: End-to-end model execution time (in milliseconds)
and compilation time on V100 GPUs.

TF(CudaLib) TVM Ansor
Better Performance 82.4% 65.5% 71.4%

Perf. within 5% 82.4% 67.2% 75.6%
Perf. within 10% 83.2% 73.1% 79.0%
Perf. within 50% 99.2% 93.3% 94.1%
Perf. within 90% 100.0% 100.0% 100.0%

Table 5: The percentage of better and comparable performant
operators on NVIDIA K80 GPUs.

a legitimate program for BERT-Large models. Thus, for this
case, we use TVM to compile the model. Note that, the per-
formance of TVM for BERT-Large is about 2.6× slower than
Rammer+TVM, as the default layout of the dense operator in
TVM (i.e., NT) is different from that in Rammer (i.e., NN).
First, for the ResNet and NASNet models, ROLLER can only
achieve comparable and mostly slower performance than TF,
TF-XLA, and TF-TRT (up to 26.7% slower compared to TF-
XLA for ResNet). This major overhead in ROLLER is caused
by the less efficient convolution kernels compared to cuDNN
as explained before. However, for the BERT-Large and LSTM
models, ROLLER can outperform all other frameworks and
compilers, e.g., by 1.07× and 1.55× faster than the state-of-
the-arts, i.e., TF for BERT-Large and TensorRT for LSTM.
This mainly due to ROLLER’s kernel construction favors large
and regular operator shape, which are heavily used in the
BERT-Large model. For both the BERT and LSTM models,
since ROLLER can control to generate resource-efficient ker-
nels by the scaling-up policy, it provides more opportunities
for Rammer to co-schedule parallel kernels on the parallel
SMs on GPUs. They together produce an efficient end-to-end
program, which can even outperform TF-TRT by 1.55× for
LSTM. Among all the implementations, Ansor can also pro-
duce very efficient programs for all the rest 3 models except
for the BERT. However, it requires a long compilation time
(29.3 hours on average). For the NASNet model, it reaches
only 32% of the overall searching progress after tuning for
41.8 hours. In contrast, ROLLER only takes 422s on average
to compile these models. This includes the graph-level op-
timization and the full-model compilation time in Rammer,
which occupies about 41% of the total time on average.

Operator performance on K80 GPUs. We also evaluate
ROLLER on the K80 GPUs. Table 5 shows the percentage of
better or comparable performing operators (e.g., within 10%

244    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



TF(RocLib) TVM Ansor
Better Performance 73.1% 58.8% 70.6%

Perf. within 5% 79.0% 62.2% 72.3%
Perf. within 10% 81.5% 62.2% 73.9%
Perf. within 50% 94.1% 84.0% 86.6%
Perf. within 90% 100% 100% 100%

Table 6: The percentage of better and comparable performant
operators on AMD ROCm MI50 GPUs.

 0.01

 0.1

 1

 10

M0 M1 M2 M3 M4 C0 C1 C2 C3

K
er

ne
l t

im
e 

(m
s) PopART

Ansor
Roller-top10

Figure 19: Operator performance on Graphcore IPU (y-axis
in log-scale).

differences or 1.1× slow down) ROLLER generates for our
operator benchmarks. Compared to CUDA libraries, TVM,
and Ansor, ROLLER produces 82.4%, 65.5% and 71.4% bet-
ter kernels for the whole operator benchmark. The percent-
age is relatively low for TVM mainly because the manual-
crafted element-wise kernel templates in TVM are already
highly-optimized. Finally, the average compilation time for
all operators is 0.65 hours for TVM and 0.95 hours for Ansor
respectively. In contrast, ROLLER’s average compilation time
is only 5.24 milliseconds for top-1 kernel and 12.3 seconds
for top-10 kernel.

5.2 Evaluation on Other Accelerators.

Operator performance on AMD ROCm GPUs. We evalu-
ate ROLLER on AMD ROCm GPUs by comparing it against
ROCm libraries, TVM, and Ansor. Table 6 shows the percent-
age of operators that ROLLER can produce better or compara-
ble performance (e.g., within 5% and 10% differences) in our
operator benchmarks. Compared to the ROCm libraries (e.g.,
rocBlas), 73.1% of the total operators ROLLER can produce
better kernels. This percentage is much higher than that on
CUDA GPUs (59.7% and 54.6% for V100 and K80 GPUs).
This is mainly because the libraries on CUDA GPUs are more
mature than the ROCm GPUs, where ROLLER can help sig-
nificantly. Compared to TVM and Ansor, ROLLER can also
produce 58.8% and 70.6% better kernels. Similar to CUDA
GPUs, the kernels that are slower by more than 10% are
mostly small operator and those with irregular tensor shapes:
the average execution time of these kernels are only 1.69ms
and 1.57ms for TVM and Ansor, respectively. Finally, the
average compilation time for all operators is 0.85 (up to 4.2)
hours for TVM and 0.99 (up to 3.4) hours for Ansor, respec-
tively. In contrast, ROLLER’s average compilation time is 0.24
(up to 0.63) seconds for top-1 kernel and 7.69 (up to 49.0)
seconds for top-10 kernel.

Operator performance on Graphcore IPU. We evaluate
ROLLER on Graphcore IPUs. Due to the limited on-chip
memory capacity, we only evaluate a set of small MatMul and
Conv2D operators with different configurations. Figure 19
shows the average kernel time of each operator in log-scale,
comparing against the Poplar-sdk library (i.e., PopART) pro-
vided by Graphcore and Ansor. Since TVM and Ansor do
not have Graphcore backends, we use a modified version of
Ansor in this experiment. As it shows, ROLLER can generate
faster kernels than PopART for all operators, with an average
of 3.1× and up to 9.2× speedup. Even comparing to Ansor,
ROLLER can still construct comparable or even better kernels
in most of operators, i.e., 2.9% average improvement. Note
that Ansor still requires hours of tuning for each operator,
as the device compiler on IPUs could take up to minutes to
compile a program. However, ROLLER usually produce good
kernels from the top-10 constructed candidates in several min-
utes. This time is mainly bottle-necked by the less-matured
device compiler. It also brings more challenges to adopt the
ML-based tensor compilers on these devices.

6 Discussion and Future Work

Optimization space compared with loop-based compiler.
The abstraction of rTile and data processing pipeline al-
lows ROLLER to construct an optimization space overlapped
with, but different from, existing DNN compilers (e.g., An-
sor) [15, 33, 35]. As mentioned previously, these compilers
view tensor compilation as nested loop optimizations. For
example, Ansor allows only divisible tiling sizes along a ten-
sor dimension to partition a loop axis evenly. This makes
it usually perform worse for tensor shapes with prime di-
mensions. ROLLER instead focuses on maximizing hardware
efficiency from the data-processing-pipeline view, allowing
more aggressive optimizations, e.g., exploring non-divisible
but hardware-aligned tiling sizes with fused adjacent axis
and padded tensor shapes. Driven by our observation that
most DNN operators are memory-bound, ROLLER fundamen-
tally differs from existing DNN compilers by first optimizing
data-tile throughput, i.e., maximizing reuse score rewards
and aligning with hardware features, and then for parallelism.
Such a trade-off inherently leads to fast compilation and good
performance for operators with sufficient parallelism.

Optimization trade-off. ROLLER’s design philosophy is
based on an observation: large and dense operators tend to
be major contributors to the execution time. This leads to
a design trade-off: optimizing data reuse (i.e., maximizing
pipeline throughput) as the primary optimization goal, and
turning other hardware related optimizations into alignment
constraints. Such trade-off results in fast compilation and high
kernel quality for a majority of operators in mainstream work-
loads. For small operators, ROLLER further employs some
adaptive mechanisms to trade-off among different optimiza-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    245



tion goals, e.g., using a threshold to limit redundant work
(§3.1) when there are insufficient results, employing an adapt-
ing rTile shrinking process to increase parallelism (§3.2),
etc.

Future work. ROLLER currently relies on high level device
compiler, e.g., nvcc, to compile kernel code to executable.
This sometimes introduces undesirable performance impacts
and forces ROLLER to allocate registers conservatively. This
is because the device compiler will implicitly allocate regis-
ters for intermediate values (e.g., loop variables). ROLLER
cannot detect implicit register allocation beforehand, hence it
is difficult to estimate and decide the precise register usage.
One of our future work is to generate assembly (e.g., PTX for
NVIDIA GPUs) code directly to avoid the side effects from
the high level device compiler.

Moreover, although the key hardware information that af-
fects performance, including memory bandwidth, capacity,
and transaction length, is often available in the hardware spec-
ification, there are still some devices (e.g., mobile GPUs)
lacking such information. Another future work is to leverage
some profiling techniques [25] to disclose and quantify those
hardware features.

ROLLER’s HAL assumes hardware contains homogeneous
computing units and symmetric memory accessing. However,
we also observe that some devices have NUMA architecture.
This makes it difficult for the micro-performance model to
estimate rTile performance, as the same tile will perform
differently at different locality under NUMA architecture. We
leave this issue as future work.

Finally, the optimization for sparse kernel may also violate
the assumption of homogeneous workload in a DNN kernel
and make the micro-performance model inaccurate. Some
tiles with a larger degree of sparsity may perform differently
from dense tiles. ROLLER assumes a higher level, sparsity-
aware compiler (e.g., SparTA [34]) will address this issue.

7 Related Work
Most tensor compilers treat DNN operators as nested multi-
level loop computation, which essentially defines a large space
with a combinatorial complexity. TVM [15] inherits the in-
sight from Halide [27] and describes DNN operators as loop
optimization schedule primitives. Later, AutoTVM [16] ex-
tends TVM to apply an ML-method to search for the best con-
figurations from manually written code templates. FlexTen-
sor [35] proposes to automatically explore the space without
manual templates. Ansor [33] further advances such automa-
tion. It generates an even larger search space considering a
hierarchical code structure and adopts an evolution algorithm
to find performant kernels. Compilers like Tiramisu [14],
AKG [32], and Tensor Comprehensions [29] apply polyhedral-
based techniques to loop optimization, which transforms the
loop into an integer programming problem and finds a good

configuration with a solver. All these approaches rely on a
huge search space to provide good kernel, which leads to
long compilation/solving time. ROLLER explores a different
approach to construct rTiles that align with hardware features.

Tensor Processing Primitives (TPPs) [18] define a set of
2D-tensor operators to compose complex operators on high-
dimensional tensors, providing limited expressiveness. In con-
trast, ROLLER does not limit the dimension of tile shape and
can be applied to general tensor expressions. The OpenAI
Triton [28] is a programming framework and compiler for de-
veloping block-based GPU kernels. Triton relies on program-
mers to decide the block size and block scheduling, while this
is the key problem ROLLER addressed by considering both
hardware features and tensor shapes. MLIR [5] and Tensor
IR [10] plan to support block-level (i.e., tile) computation rep-
resentation in their IRs. ROLLER’s rTile abstraction and the
rProgram construction are compatible with these initiatives.

Graph-level DNN compilers like XLA [11], TVM [15],
and Rammer [26] focus on cross-operator optimizations, e.g.,
operator fusion/co-scheduling. ROLLER’s kernel generation is
compatible with these compilers. ROLLER’s rTile abstraction
complements the rTask concept in Rammer [26] as it provides
an efficient way to construct an rTask.

Finally, some works focus on operator-specific optimiza-
tions. CUTLASS [7] is a template for implementing matrix-
multiplication. An analytical model [24] is proposed to find
the best loop-level optimization configuration only for con-
volution operators on multi-core CPUs. And DREW [30]
proposes a new way to optimize Winograd convolution using
data compression [31]. ROLLER’s optimization approach is
general for DNN operators on various devices.

8 Conclusion
ROLLER takes an unconventional approach to deep learning
compiler. Instead of relying on costly machine learning algo-
rithms to find a good solution in a large search space, ROLLER
generates efficient kernels using a recursive construction-
based algorithm that leverages the new rTile abstraction with
much fewer shapes that align with multiple hardware fea-
tures. The constructed program can be evaluated by a micro
performance model, without running on a real device every
time. As a result, ROLLER can compile high-performance
kernels in seconds, even in less mature accelerators. More
importantly, ROLLER offers a unique and significantly more
efficient approach for new AI hardware vendors to build com-
petent vendor-specific DNN libraries, bridging the ecosystem
gap to market leaders and thereby facilitating innovations in
AI accelerators.

Acknowledgments
We thank anonymous reviewers and our shepherd, Prof.Yufei
Ding, for their extensive suggestions.

246    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] AMD ROCm Platform. https://github.com/
RadeonOpenCompute/ROCm.

[2] CUDA Basic Linear Algebra Subroutine library. https:
//docs.nvidia.com/cuda/cublas/index.html.

[3] CUDA NVCC. https://docs.nvidia.com/cuda/
cuda-compiler-driver-nvcc/.

[4] IPU PROGRAMMER’S GUIDE. https://www.
graphcore.ai/docs/ipu-programmers-guide.

[5] MLIR. https://mlir.llvm.org/.

[6] NVIDIA cuDNN. https://developer.nvidia.com/
cudnn.

[7] NVIDIA cutlass. https://github.com/NVIDIA/
cutlass.

[8] NVIDIA TRITON INFERENCE SERVER.
https://developer.nvidia.com/
nvidia-triton-inference-server.

[9] ONNX. https://onnx.ai/.

[10] TensorIR. https://discuss.tvm.apache.org/
t/rfc-tensorir-a-schedulable-ir-for-tvm/
7872.

[11] XLA. https://www.tensorflow.org/xla.

[12] AMD Radeon Instinct™ MI50 Accelerator, accessed
2018 Nov. https://www.amd.com/en/products/
professional-graphics/instinct-mi50.

[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A System for
Large-Scale Machine Learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, GA, 2016. USENIX Associ-
ation.

[14] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2019, page 193–205. IEEE
Press, 2019.

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, 2018. USENIX Association.

[16] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 3389–
3400. Curran Associates, Inc., 2018.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[18] Evangelos Georganas, Dhiraj D. Kalamkar, Sasikanth
Avancha, Menachem Adelman, Cristina Anderson,
Alexander Breuer, Narendra Chaudhary, Abhisek Kundu,
Vasimuddin Md, Sanchit Misra, Ramanarayan Mohanty,
Hans Pabst, Barukh Ziv, and Alexander Heinecke. Ten-
sor processing primitives: A programming abstraction
for efficiency and portability in deep learning workloads.
CoRR, abs/2104.05755, 2021.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural Comput., 9(8):1735–1780,
November 1997.

[21] Zhe Jia, Marco Maggioni, Benjamin Staiger, and
Daniele P Scarpazza. Dissecting the nvidia volta gpu
architecture via microbenchmarking. arXiv preprint
arXiv:1804.06826, 2018.

[22] Zhe Jia, Blake Tillman, Marco Maggioni, and
Daniele Paolo Scarpazza. Dissecting the graphcore ipu
architecture via microbenchmarking. arXiv preprint
arXiv:1912.03413, 2019.

[23] Andrew Lavin and Scott Gray. Fast algorithms for con-
volutional neural networks. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 4013–4021, 2016.

[24] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas
Rountev, and P. Sadayappan. Analytical characterization

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    247

https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://www.graphcore.ai/docs/ipu-programmers-guide
https://www.graphcore.ai/docs/ipu-programmers-guide
https://mlir.llvm.org/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://onnx.ai/
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://www.tensorflow.org/xla
https://www.amd.com/en/products/professional-graphics/instinct-mi50
https://www.amd.com/en/products/professional-graphics/instinct-mi50


and design space exploration for optimization of cnns. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2021, page 928–942,
New York, NY, USA, 2021. Association for Computing
Machinery.

[25] Rendong Liang, Ting Cao, Jicheng Wen, Manni Wang,
Yang Wang, Jianhua Zou, and Yunxin Liu. Romou:
Rapidly generate high-performance tensor kernels for
mobile gpus. In The 28th Annual International Confer-
ence On Mobile Computing And Networking (MobiCom
2022). ACM, February 2022.

[26] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 881–897.
USENIX Association, November 2020.

[27] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’13, pages 519–530,
New York, NY, USA, 2013. ACM.

[28] Philippe Tillet, H. T. Kung, and David Cox. Triton: An
Intermediate Language and Compiler for Tiled Neural
Network Computations, page 10–19. Association for
Computing Machinery, New York, NY, USA, 2019.

[29] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

[30] Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng,
Xiaoyong Du, and Xipeng Shen. Drew: Efficient wino-
grad cnn inference with deep reuse. In Proceedings
of the ACM Web Conference 2022, WWW ’22, page
1807–1816, New York, NY, USA, 2022. Association for
Computing Machinery.

[31] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and
Xiaoyong Du. Poclib: A high-performance framework
for enabling near orthogonal processing on compression.
IEEE Transactions on Parallel and Distributed Systems,
33(2):459–475, 2022.

[32] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei
Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun Cheng,
Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. Akg:
Automatic kernel generation for neural processing units
using polyhedral transformations. In Proceedings of the
42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI
2021, page 1233–1248, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[33] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 863–879. USENIX Association,
November 2020.

[34] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma,
Yuqing Yang, Fan Yang, Yang Wang, Mao Yang, and
Lidong Zhou. Deep-learning model sparsity via tensor-
with-sparsity-attribute. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’22), 2022.

[35] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor com-
putation on heterogeneous system. pages 859–873, 03
2020.

[36] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 8697–8710, 2018.

248    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Walle: An End-to-End, General-Purpose, and Large-Scale Production System for
Device-Cloud Collaborative Machine Learning

Chengfei Lv
Zhejiang University & Alibaba Group

Chaoyue Niu∗

Shanghai Jiao Tong University & Alibaba Group

Renjie Gu, Xiaotang Jiang, Zhaode Wang, Bin Liu, Ziqi Wu, Qiulin Yao, Congyu Huang,
Panos Huang, Tao Huang, Hui Shu, Jinde Song, Bin Zou, Peng Lan, Guohuan Xu

Alibaba Group

Fei Wu
Zhejiang University

Shaojie Tang
University of Texas at Dallas

Fan Wu, Guihai Chen
Shanghai Jiao Tong University

Abstract
To break the bottlenecks of mainstream cloud-based machine
learning (ML) paradigm, we adopt device-cloud collabora-
tive ML and build the first end-to-end and general-purpose
system, called Walle, as the foundation. Walle consists of a
deployment platform, distributing ML tasks to billion-scale
devices in time; a data pipeline, efficiently preparing task
input; and a compute container, providing a cross-platform
and high-performance execution environment, while facilitat-
ing daily task iteration. Specifically, the compute container is
based on Mobile Neural Network (MNN), a tensor compute
engine along with the data processing and model execution
libraries, which are exposed through a refined Python thread-
level virtual machine (VM) to support diverse ML tasks and
concurrent task execution. The core of MNN is the novel
mechanisms of operator decomposition and semi-auto search,
sharply reducing the workload in manually optimizing hun-
dreds of operators for tens of hardware backends and further
quickly identifying the best backend with runtime optimiza-
tion for a computation graph. The data pipeline introduces
an on-device stream processing framework to enable process-
ing user behavior data at source. The deployment platform
releases ML tasks with an efficient push-then-pull method
and supports multi-granularity deployment policies. We eval-
uate Walle in practical e-commerce application scenarios to
demonstrate its effectiveness, efficiency, and scalability. Ex-
tensive micro-benchmarks also highlight the superior perfor-
mance of MNN and the Python thread-level VM. Walle has
been in large-scale production use in Alibaba, while MNN
has been open source with a broad impact in the community.

1 Introduction

To provide intelligent services for millions or even billions
of smartphone users in industry, the mainstream paradigm
lets mobile devices send requests with raw data and lets the
cloud return results after data processing and model execution.
However, this paradigm encounters three major bottlenecks:

∗Chaoyue Niu is the corresponding author (rvince@sjtu.edu.cn).

(1) High Latency: The network latency between each mobile
device and the cloud plus the request processing latency of the
cloud is in seconds, which is unacceptable for some real-time
interactive applications. For example, the practical latency
requirements of computer vision (CV), natural language pro-
cessing (NLP), and recommendation tasks are in hundreds
or even tens of milliseconds; (2) High Cost and Heavy Load:
On the device side, uploading raw data will incur high cel-
lular data usage, if Wi-Fi is not available. On the cloud side,
receiving and storing enormous amounts of raw data from
a massive number of mobile devices, processing data with
diverse and sophisticated ML algorithms, and returning re-
sults in time, inevitably cause high overhead. For example, the
size of 60s-long video or audio is in tens of MB, and the size
of raw data for recommendation per user per day is in MB.
Further multiplied by the scale of mobile devices, the total
size of raw data is huge; and (3) Data Security and Privacy:
Uploading the raw data with sensitive contents (e.g., personal
information and user behaviors) may raise serious security
and privacy concerns of users. Storing and processing raw
data on the cloud may suffer from the risk of data breach.

By deconstructing the cloud-based ML paradigm, we can
find that it simply regards mobile devices as interactive inter-
faces, but ignores the fact that mobile devices after 10 years of
development can now undertake an appropriate load of data
processing and model execution. Therefore, it does not lever-
age the natural device-side advantages of being close to users
and data sources, thereby reducing latency and communica-
tion cost, mitigating the cloud-side load, and keeping private
data on local devices. To overcome the bottlenecks of the
mainstream cloud-based ML paradigm, the device-cloud col-
laborative ML paradigm emerged, which advocates offloading
part of ML tasks to mobile devices and letting the cloud and
the mobile devices collaboratively accomplish the ML tasks.
Existing work tends to focus on the algorithmic decisions
(e.g., device-cloud task splitting strategy [29] and collabora-
tion/interaction paradigm [34]) in either inference or training
phase and normally for a specific application (e.g., video ana-
lytics [6,11,31], text processing [5], recommendation [17,44]).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    249

mailto:rvince@sjtu.edu.cn


Developer

ML Task Scripts

Pre-Processing

Post-Processing
Model Execution

Walle’s 
Runtime

Walle’s 
Runtime

Real-Time 
Tunnel

Walle’s 
Deployment 

Platform

Figure 1: Walle from the perspective of an ML task developer.

However, practical industrial scenarios tend to involve the full
cycle of diverse CV, NLP, and recommendation applications
to serve millions or even billions of mobile devices, building
a general-purpose system to put device-cloud collaborative
ML in large-scale production becomes a new requirement.

We build an end-to-end system, called Walle, the overall
goal of which is to support general device-cloud collaboration
(e.g., single device-cloud and multiple devices-cloud) in each
phase of diverse ML tasks through exchanging any necessary
content (e.g., data, feature, sample, model, model update, and
intermediate result). As shown in Figure 1, Walle supports the
whole cycle of ML tasks (i.e., pre-processing, model training
and model inference, and post-processing) on both mobile
devices and cloud servers in both development (e.g., the prac-
tical need of frequent experimentation and deployment for
daily ML task iteration) and runtime (i.e., ML task execu-
tion and device-cloud data transfer) stages. By following the
philosophy of building a general-purpose system rather than
integrating massive application-specific or platform-specific
solutions, Walle functions as a fundamental ML infrastructure
with standard APIs and keeps the light-weight limit of mo-
bile APPs, having supported 1,000+ kinds of CV, NLP, and
recommendation tasks in large-scale production.

During building Walle, we encounter several practical re-
quirements and challenges that motivate our design decisions.
Walle is oriented by ML tasks and consists of a deployment
platform, a data pipeline, and a compute container, catering to
ML task deployment, input preparation, and execution, respec-
tively. (1) For the compute container, one major requirement
is to decouple ML task iteration from the monthly/weekly
update of mobile APPs, making the classical method of in-
tegrating new functionalities into APPs infeasible. Another
key requirement is to support diverse ML tasks with high
performance across different operating systems (OS) and het-
erogeneous hardware of mobile devices and cloud servers.
This requires to build a tensor compute engine in C/C++ and
do operator-level and computation graph-level optimizations
for each hardware backend. Two dominant strategies are man-
ual optimization (e.g., in almost all ML engines), the work-
load of which is quite heavy that only some common cases
can be covered; and auto tuning (e.g., in TVM [9]), which
cannot support runtime optimization and is infeasible in in-
dustrial scenarios that involve massive heterogeneous devices
or require frequent/quick ML task iteration. Based on the
tensor compute engine, the libraries should be implemented

to cover pre-processing, model training and inference, and
post-processing as well as mobile devices and cloud servers
in a unified way, rather than in a separate and incomplete
way, like NumPy, OpenCV, TensorFlow (Lite), and PyTorch
(Mobile). Without integrated design, the high performance
of the tensor compute engine cannot be exposed to different
libraries, the workload of optimizing each library on hetero-
geneous backends is heavy, and the package is large; (2) for
the data pipeline, the overarching goal is to prepare raw data,
which can come from different sources and are structured in
various formats, as device-side or cloud-side ML model input.
The mainstream paradigm of uploading all the device-side
raw data to the cloud for aggregate processing is inefficient
and error-prone; and (3) for the deployment platform, its key
requirement is to manage, release, and deploy ML tasks for
numerous mobile devices in a fine-grained, timely, and ro-
bust way, given massive ML task deployment requirements,
intermittent device availability, and potential task failure.

We overcome the key challenges above and build Walle.
(1) We choose dynamically-typed, widely-used Python as the
script language for developing ML tasks in Walle and imple-
ment a Python VM as the core of the compute container by
refining CPython in two aspects: one is to abandon the global
interpreter lock (GIL) and support task-level multi-threading
with VM isolation and data isolation; and the other is to per-
form tailoring for practical device-side need. Such design
enables daily ML task iteration. At the bottom of the compute
container, we implement a tensor compute engine along with
standard data processing and model execution libraries, called
MNN [2]. MNN first introduces a novel geometric computing
mechanism to decompose the transform and composite op-
erators into atomic operators, thereby dramatically reducing
the workload of manually optimizing hundreds of operators
for tens of backends; and then introduces a novel semi-auto
search mechanism to quickly identify the best backend with
runtime optimization for a series of operators. At the top of
the compute container, we expose MNN to Python thread-
level VM as standard APIs, supporting the whole cycle of
diverse ML tasks with standard data input. (2) For the data
pipeline in Walle, we mainly build a new on-device stream
processing framework to enable processing user behavior
data at source. The key novelty is managing the trigger condi-
tions of multiple stream processing tasks to generate different
features with a trie structure for concurrent triggering. We
also establish a real-time tunnel to transfer device-side fresh
features to the cloud for use. (3) Regarding the deployment
platform of Walle, we propose to manage task entity with git,
categorize task-related files into shared and exclusive ones
to facilitate multi-granularity deployments, and release tasks
with an efficient push-then-pull method and in steps.

Walle is now part of Alibaba’s ML backbone infrastructure,
being invoked more than 153 billion times per day and sup-
porting more than 0.3 billion daily active users, 30+ mobile
APPs, and 300+ kinds of ML tasks. MNN is open source now

250    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



with 6,600+ stars and 1,300+ forks on GitHub, and also is in
production use in 10+ other companies. Evaluation of Walle
in example real applications (i.e., livestreaming and recom-
mendation) and platform statistics demonstrate effectiveness,
efficiency, and scalability. Micro-benchmarks of MNN and
Python thread-level VM show superiority.

We summarize the key contributions as follows: (1) Walle
is the first end-to-end, general-purpose, and large-scale pro-
duction system for device-cloud collaborative ML, masking
hardware and software heterogeneity at the bottom, and sup-
porting diverse ML tasks with daily iteration cycle and high
performance at the top; (2) the compute container in Walle
comprises MNN, which introduces geometric computing to
sharply reduce the workload of manual operator-level opti-
mization, and semi-auto search to identify the best backend
with runtime optimization; and a Python VM, which is the
first to abandon GIL and support task-level multi-threading,
and also is the first to be ported to mobile devices; (3) the data
pipeline in Walle introduces on-device stream processing with
trie-based concurrent task triggering to enable processing user
behavior data at source; and (4) the deployment platform in
Walle supports fine-grained task release and deployment to
billion-scale devices with strong timeliness and robustness.

2 Preliminaries

In this section, we first expound the background and motiva-
tion of building a general-purpose system for device-cloud
collaborative ML. We then elaborate on the major design
challenges. We finally draw the system requirements.

2.1 Background and Motivation
Machine Learning Task. From a developer’s perspective, an
ML task comprises scripts (e.g., codes in Python), resources
(e.g., data, models, and dependent libraries), and configura-
tions (e.g., trigger conditions mainly for specifying where
and when to trigger the ML task). The whole workflow of
an ML task can be divided into three phases or sub-tasks1:
pre-processing, model execution, and post-processing. In the
pre-processing phase, raw data from multiple sources are
cleaned, integrated, and processed to extract features and gen-
erate samples, which are then fed into models. In the model
execution phase, a model is loaded to do training or inference.
In the post-processing phase, the results of model inference
are processed (e.g., by applying some ranking policies or
business rules) to finally serve users.

Motivating Industrial Applications for Walle. In Alibaba,
there are now at least hundreds of online ML tasks to serve
billion-scale daily active users with mobile devices in tens of
business scenario, where CV, NLP, and recommendation tasks
roughly account for 30%, 10%, and 60% of the total tasks and
run billion, one hundred billion, and billion times every day,

1We call ML sub-tasks also as ML tasks for convenience.

respectively. In particular, (1) typical CV-type application sce-
narios include livestreaming, visual image search, short video
analysis, augmented reality, and security checkup, where the
major tasks include key frame detection, image segmentation
and classification, item recognition, facial recognition and ef-
fects, human keypoint and pose detection, and porn detection;
(2) typical NLP-type application scenarios include livestream-
ing and voice navigation, where the major tasks include auto-
matic speech recognition, text to speech, text analysis, and text
generation; and (3) typical recommendation-type application
scenarios include item re-ranking, intelligent refresh, mes-
sage popping, and page rearrangement, where the key tasks
include click-through-rate prediction, click-conversion-rate
prediction, user state recognition, and user intent detection.

Need for Device-Cloud Collaborative System. The ap-
plications raise strict latency requirements on ML tasks. In
general, (1) CV tasks need to process each image in 30ms;
(2) NLP tasks require to process a 5s-long audio segment
in 500ms or process an audio stream with latency less than
100ms; and (3) recommendation tasks need to generate out-
puts in 300ms. In addition, the raw data from massive users
input to ML tasks are huge. For example, (1) for CV tasks, the
size of a 60s-long, 1080p, and 8Mbps video is roughly 60MB;
(2) for NLP tasks, the size of a 60s-long WAV/PCM audio is
around 10MB; and (3) for recommendation tasks, one user
normally generates thousands of pieces of raw data per day,
each piece in the size of KB. Furthermore, raw user data are
more or less sensitive, raising security and privacy concerns.

The practical requirements above make the mainstream
cloud-based ML paradigm infeasible and motivate us to adopt
device-cloud collaborative ML. The key principle is that an
ML task can be executed not only on the cloud but also on
mobile devices, rather than purely on the cloud. During the
execution of an ML task, mobile devices can work as a relay
of the cloud, and vice versa. The choice of which side to
execute which phase is flexible and should incorporate the
practical need of the ML task and the characteristics of the
cloud and mobile devices. For example, choosing which side
for pre-processing should consider whether the side is near
data source. Further observing the industrial need to support
diverse ML tasks and massive devices, we are motivated to
build an end-to-end and general-purpose system that can put
device-cloud collaborative ML in large-scale production.

2.2 Practical Challenges
A device-cloud collaborative ML system faces some practical
challenges that span the execution, input preparation, and
deployment stages of ML tasks as follows.

Execution Challenges. (1) Long Iteration Cycle: The com-
mon update cycle of a mobile APP includes development,
testing, and integration of new functionalities (e.g., ML tasks
to be deployed in our context), as well as APP store review and
release to massive mobile devices in batches. As a result, most
APPs is updated weekly, while some super APPs (e.g., Mobile

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    251



Taobao, a shopping APP owned by Alibaba with 0.3 billion
daily active users) are updated monthly. However, ML tasks
require frequent experiments/deployments in nature, such
that the effectiveness of different ML algorithms and models
can be quickly verified, and the optimal feature combination
and hyper-parameters can be identified; (2) Heterogeneous
Backends: The cloud servers and mobile devices significantly
differ in hardware (e.g., CPU, GPU, NPU, instruction set ar-
chitecture (ISA), and memory) and OS (e.g., Android, iOS,
Windows, and Linux). Among mobile devices, the ecosystem
is even more fragmented; (3) Diverse ML Tasks: Industrial ap-
plications involve many kinds of ML tasks, requiring diverse
model structures (e.g., convolutional neural network (CNN),
recurrent neural network (RNN), transformer, generative ad-
versarial network (GAN), and deep interest network (DIN)).
Meanwhile, pre-processing and post-processing also involve
lots of image, text, and numerical processing methods; and
(4) Limited Device Resources: Each mobile APP has only
one process. For Mobile Taobao, the maximum RAM is only
200MB, and the package size cannot exceed 300MB.

Input Preparation Challenges. (1) Atypical User Behav-
ior Data: For CV and NLP tasks, most raw data (e.g., im-
age, video, text, and audio) are in standard formats, the pre-
processing of which can be supported by standard libraries.
Another major data source, the pre-processing of which can-
not be directly supported, is each user’s diverse behaviors in
time and page series during interacting with a mobile APP and
is essential to many ML (especially, recommendation) tasks.
Conventionally, all the users’ behavior data are uploaded to
the cloud, far away from source, for stream processing with
Flink. To enable pre-processing at source, there, however,
does not exist an on-device stream processing framework;
(2) Diverse Trigger Conditions: ML tasks tend to need many
features. Each feature corresponds to a stream processing task
and its trigger condition. How to efficiently manage multiple
trigger conditions for concurrent task triggering is non-trivial.

Deployment Challenges. (1) Massive Task Deployment
Requirements: In Alibaba, the size of active ML tasks is at
least in hundreds, and the mobile devices to be covered can
reach the scale of billion. The release of each ML task also
needs to incorporate APP versions, device-side and user-side
differentiation; (2) Intermittent Device Availability: Mobile
devices are with unstable wireless connections and allow only
one APP to run on the foreground, while users tend to switch
APPs frequently. Therefore, from the perspective of a certain
APP, each device’s availability is dynamic. Conventional push
(e.g., based on persistent connection) or pull (e.g., based on
polling) deployment method cannot guarantee timeliness and
incurs high load on the cloud; (3) Potential Task Failure: A
mobile APP runs as a single process. The failure of any task
will lead to the crash of the whole APP, seriously impacting
user experience. Further, due to the massive task deployment
requirements, it is impractical to test each pre-release task on
all relevant types of real devices.

Deployment Platform

Task Release & Deployment
Task Management

Standard APIs
Compute Container

Tensor Compute Engine
Backends (Device & Cloud)

Device-Cloud Tunnel
Data Pipeline

On-Device Stream 
Processing Framework

User Behavior Data 

Python Thread-Level VM
Data & Model Related Libraries

CV NLP Recommendation

Figure 2: Architecture of Walle.

2.3 System Requirements
Given the challenges above, the design of an device-cloud
collaborative ML system should meet some requirements.

The ML task execution environment needs to satisfy: (1)
Quick Task iteration: ML tasks can be iterated daily on a
mobile APP, reliving the dependence on the APP’s original
update cycle; (2) Cross Platform: OS-level and hardware-
level heterogeneity should be masked; (3) High Performance:
Optimization need to be specific to heterogeneous hardware
backends of mobile devices and cloud servers; (4) Univer-
sality: Diverse CV, NLP, and recommendation tasks should
be supported. The pre-processing, model execution, and post-
processing phases of each ML task should be supported in an
end-to-end way; and (5) Light Weight: The whole package
size needs to be small, especially for mobile devices.

The ML task input preparation pipeline needs to first in-
troduce a new on-device stream processing framework with
concurrent task triggering ability to enable processing user
behavior data at source. To enable the cloud to consume the
generated features (e.g., for feature fusion or model inference)
far away from source with low latency, a real-time tunnel
between mobile devices and the cloud also needs to be built.

The ML task deployment platform should guarantee: (1)
Multi-Granularity: Task release needs to support uniform,
device-level grouping, user-level grouping, or even extremely
device-specific policy; (2) Timeliness: A large number of mo-
bile devices can be covered in short time; and (3) Robustness:
Task deployment must put stability in the first place.

3 Walle: Architecture and Design Rationale

Guided by the system requirements, we build Walle. We first
introduce the whole architecture and then design rationale.

3.1 Architecture Overview
As shown in Figure 2, the compute container in Walle com-
prises: (1) a cross-platform and high-performance tensor com-
pute engine at the bottom; (2) data processing and model
execution libraries based on the tensor compute engine; (3) a

252    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Standard APIs

Python Thread-Level VM

Data Processing & Model Execution Libraries
MNN-Matrix MNN-CV MNN-Inference MNN-Training

Tensor Compute Engine
Geometric Computing Semi-Auto Search

OS & Hardware
Android/iOS Linux/Windows/MacOS/Docker

CPU/GPU/NPU

Backends
ARM v7/v8/v8.2 CUDAOpenCL/Vulkan/Metal x86 AVX/AVX-512

C/C++
cross-platform

high-performance

Python
dynamically-typed

widely used 

ML Task Scripts
decouple daily task iteration from weekly/monthly mobile APP update

Figure 3: Architecture of compute container.

Python thread-level VM; and (4) standard APIs at the top. The
data pipeline introduces: (1) an on-device stream processing
framework; and (2) a real-time device-cloud tunnel. The de-
ployment platform in Walle comprises: (1) a task management
module; and (2) a task release and deployment module.

3.2 Design Rationale
Rationale of Compute Container. As shown in Figure 3,
on the top, we choose Python as the script language, because
Python is widely used in developing ML algorithms and also
is a dynamically-typed and interpreted language. To support
executing the Python scripts of ML tasks on different plat-
forms, especially on resource-constraint mobile devices, we
implement a Python VM by refining CPython and perform
tailoring for the practical need of a mobile APP. Further con-
sidering the characteristics of ML task execution, including
concurrent triggering of many tasks, independence across dif-
ferent tasks, and sequential execution of different phases in
each individual ML task, we abandon GIL in Python VM and
support task-level multi-threading by first binding each ML
task with a thread and then conducting thread isolation. Such
Python VM-based design endows the compute container with
the capability of dynamic task delivery, decoupling daily ML
task iteration from monthly/weekly mobile APP update.

At the bottom, we implement a tensor compute engine in
C/C++ for cross-platform and high-performance consider-
ations. The cores are the novel mechanisms of geometric
computing and semi-auto search, as shown in Figure 5. In par-
ticular, geometric computing extracts a new atomic operator
from transform operators, by leveraging the nature of coor-
dinate transformation as well as the linear mapping between
an element’s coordinate and its memory address. As a result,
all the transform and composite operators, accounting for
roughly 49% of all the operators, can be decomposed to the
atomic operators, reducing 46% of the workload of manually
implementing and optimizing 124 operators for 16 kinds of
backends from algorithm, ISA, memory, and assembly. Then,
to quickly identify the backend available on a mobile device
or a cloud server to execute a computation graph with a series

Basic 
Events

Tunnel

Cloud

Device

page enter
page scroll
exposure

click
page exit Compute Container

Stream Processing
Features

Walle’s New Data PipelineMainstream Data Pipeline

Raw Data FeaturesML Tasks

Offline
Tunnel

Event 
Sequence

Task Triggering
& Execution

Real-Time
Tunnel

Data Preprocessing 
Task Delivery

Figure 4: Architecture of data pipeline.

of operators at the minimum cost, semi-auto search is applied
in runtime to find the optimal implementation algorithm with
the optimal parameters for each operator on each available
backend. The parameter search is converted to solving a con-
strained optimization problem, by incorporating the hardware
properties of the backend and the sizes of the implementa-
tion algorithm’s inputs. Based on the tensor compute engine,
we implement the libraries of scientific computing, image
processing, model inference, and model training, and expose
them to Python VM as standard APIs, supporting the whole
cycle of diverse ML tasks with standard data input.

Rationale of Data Pipeline. The architecture is depicted
in Figure 4. First, a user’s behaviors are naturally recorded as
a time-level event sequence, based on which the page-level
event sequence can be created by aggregating the events in the
same pages. Then, the trigger condition of a stream process-
ing task can be specified by a sequence of event/page ids. To
support concurrent triggering, we model matching multiple
trigger conditions with the event sequence as a string match-
ing problem with multiple wildcard patterns and propose to
organize trigger conditions with a trie, such that if a new event
comes, all the triggered tasks can be picked out for execution.
Given a stream processing task can be triggered frequently
over the continuously generated event sequence, while the
size of one-time output is small, we design a collective stor-
age mechanism to reduce the frequency of write. Finally, to
upload the output of on-device stream processing with low
latency, we leverage persistent connection to implement a
real-time tunnel, transferring up to 30KB data within 500ms.

Rationale of Deployment Platform. We first manage the
task entity with git and categorize task-related files into shared
and exclusive ones, according to how many devices can use
the files in common. The file categorization further facilitates
the uniform and customized policies of task deployment. To
guarantee the timeliness of task deployment, we propose a
novel push-then-pull method based on transient connection,
where the push functionality reuses the existing client-side
http request for business services, while the pull functionality
is via content delivery network (CDN) and Alibaba cloud
enterprise network (CEN). For the robustness of task deploy-
ment, we introduce task simulation test with the cloud-side

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    253



Trans

Conv

Unary

Slice

Pool

MatMul

Unary

Region

Region

Region

Region

Pool

Decomposition

GEMM

Raster

Raster

Unary

Raster

Pool

Merging

Geometric Computing Semi-Auto Search

GEMM

Raster

Raster

Unary

Raster

Pool

Runtime Optimization

For Transform & Composite Operators  

alg1

alg2

args

algx

algx

algx

algx

algx

algx

opt

algx

algx

algx

algx

algx

algx

Backend 1 Backend 2

Figure 5: Geometric computing and semi-auto search.

compute container before release and enforce releasing task
in steps, while allowing rollback in the case of task failure.

In what follows, we present the design and implementation
details of the compute container in Section 4, the data pipeline
in Section 5, and the deployment platform in Section 6.

4 Compute Container in Walle

We introduce the compute container in a bottom-up way:
MNN, a tensor compute engine along with the data processing
and model execution libraries; Python thread-level VM; and
standard APIs of MNN.

4.1 Tensor Compute Engine
Tensor computation can be viewed as the basis of data process-
ing and ML, and the operators of underlying tensor computa-
tion can be divided into four categories: (1) Atomic Operators,
which function as the basic unit of backend optimization, such
as some common unary operators (e.g., taking square) and
binary operators (e.g., addition, subtraction, multiplication,
and division); (2) Transform Operators, which change the
shape and/or reorder the elements, such as transpose, slicing,
concatenation, and permutation; (3) Composite Operators,
which can be decomposed into the atomic and transform op-
erators, such as 3D convolution and pooling, normalization,
exponential linear unit, and long short-term memory cell; and
(4) Control-Flow Operators, including if and while.

Geometric Computing. Currently, MNN can support
Naop = 61 atomic operators, Ntop = 45 transform operators,
Ncop = 16 composite operators, and N f op = 2 control-flow
operators. The workload of implementing and optimizing the
operators for all Nba = 16 backends in MNN is O((Naop +
Ntop +Ncop)×Nba +N f op = 1954). Further considering the
workload involving the atomic and control-flow operators is
unavoidable, we turn to reducing the workload involving the
transform and composite operators, which roughly accounts
for half of the whole load and will grow in the future (e.g., as
more composite operators are required to support more kinds
of deep neural network (DNN)). Our key idea is to extract a

new atomic operator, called “raster”, from the transform oper-
ators. Then, both the transform operators and the composite
operators can be decomposed into the raster operator and the
atomic operators. Since only the atomic and raster operators
need to be optimized for each backend, the whole workload
becomes O((Naop +1)×Nba +Ntop +Ncop +N f op = 1055),
reducing roughly 46% of the workload. Now, the problems
become what is the raster operator and how to implement it.
We propose a geometric computing mechanism as follows.

In essence, the basic functionality of the transform opera-
tors is to move an element from a memory address to another
memory address, or from geometry, is to transform the co-
ordinate of the element to another coordinate. In addition,
the memory address is a deterministic linear function of the
coordinate. Moreover, given a certain transform operator, the
formula of coordinate transformation can be determined. As
a result, with the coordinate of an element in the input or
output tensor, typically the element’s index in the input or
output tensor, the original memory address and the memory
address after movement can also be determined. The raster
operator is introduced to move the elements between the input
and output tensors according to the memory addresses and
by traversing the coordinates. We take slicing for example.
A is a 2×4 matrix, placed in contiguous memory addresses
with a unique identifier/pointer. The slicing of A by leaving
only the second row is denoted as B, which is a 1×4 matrix.
For an element Bi, j with the row index i and the column in-
dex j (i.e., the coordinate (i, j)) in B, its memory identifier
relative to B’s unique identifier is i× 4+ j, which is linear
with the coordinate, where the coefficients (4,1) are called
the strides. According to the definition/rule of slicing (i.e.,
Bi, j = Ai+1, j), the coordinate of the corresponding element
Ai+1, j in A is (i+1, j), and the relative memory identifier is
(i+1)×4+ j = 4i+ j+4, where the coefficients (4,1) are
the strides, and the intercept 4 is called offset. The raster op-
erator can realize the functionality of slicing by iterating the
coordinates {(i, j)|0 ≤ i < 1,0 ≤ j < 4, i, j ∈ Z} and moving
each Ai+1, j to Bi, j using their memory addresses.

In practical implementation of the raster operator, we intro-
duce a supporting concept, called “region”, which contains
an input tensor, the range of coordinate, as well as the linear
mappings between an element’s coordinate and its memory
addresses in the input and output tensors, which are called
“views” and can be specified by the strides and offsets. In ad-
dition, after operator decomposition, some raster operations
can be merged for optimization. One policy is called verti-
cal merging, which mainly deals with two successive raster
operations, skips indirect references, and operates on the orig-
inal tensor; and the other policy is called horizontal merging,
which handles two parallel raster operations with the same
region and keeps only one raster operation.

Atomic Operator Optimization. Specific to the atomic
operators, including the raster operator, we incorporate hard-
ware heterogeneity and optimize the implementation from the

254    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



perspectives of algorithm, ISA, memory, and assembly. (1)
The algorithm-level optimization is specific to some compute-
intensive operators, typically convolution and matrix multipli-
cation. We take more efficient algorithms, including Winograd
and Strassen algorithms, to sharply reduce the number of mul-
tiplications; (2) the ISA-level optimization leverages single
instruction multiple data (SIMD), such as ARM Neon and
x86 AVX512, for speedup. To adequately exploit data-level
parallelism in SIMD, we carefully design data layout and data
packing. Specifically, we take a new NC/4HW4 layout [35]
and a channel-major packing for convolution; (3) the memory-
level optimization focuses mainly on reducing the number of
read and write as well as improving the contiguity of memory
allocation. In particular, for matrix multiplication, we apply
tiling and memory reordering; and (4) the assembly-based
optimization can achieve instruction-level speedup. We im-
plement core operators with hand-written assembly codes and
carefully apply some optimizations, such as loop unrolling,
software pipelining, and instruction reordering.

Semi-Auto Search. Data processing and model execution
normally involve a series of operators (i.e., the atomic, raster,
and control-flow operators after decomposition). Meanwhile,
different backends have different implementations and opti-
mizations for the operators, and a mobile device or a cloud
server tends to have several backends available. The global
goal of semi-auto search is to identify the backend with the
minimum cost. The cost of each backend is the sum of all the
operators with the optimal implementations. To identify the
optimal implementation algorithm for a certain operator on
a certain backend, the optimal parameters of each possible
algorithm need to be found. This is converted to a constrained
optimization problem that can be quickly solved, where the
objective is computation or memory cost, and the constraints
incorporate the hardware constraints of the backend and the
sizes of the algorithm’s inputs. We formulate the whole pro-
cess of semi-auto search and introduce the details as follows.

We let BA denote the set of all available backends and let
op1 → op2 → . . .→ opn denote the series of n operators for
execution. The cost of a backend ba ∈ BA is defined as

Cba =
n

∑
i=1

Copi,ba, (1)

where Copi,ba denotes the cost of the operator opi with the
optimal implementation on the backend ba. The goal of semi-
auto search is to find the backend with the minimum cost,
which can be expressed as

argminba∈BACba. (2)

Then, the problem is how to compute each Copi,ba. For each
operator opi and the backend ba, we let algs(opi,ba) denote
all feasible implementation algorithms with the optimal pa-
rameters. Then, Copi,ba is defined as

Copi,ba = min
alg∈algs(opi,ba)

Qalg

Pba
+Salg,ba, (3)

where (1) Qalg denotes the number of elementary calculations
in the algorithm alg, which can be obtained given the (“op-
timal” here) parameters and the sizes of the inputs; (2) Pba
represents the performance of the backend Ba. In MNN, for
a CPU-type backend, if the backend ba supports ARMv8.2-
FP16, Pba empirically takes 16 times the frequency; otherwise,
Pba takes 8 times the frequency. For a GPU-type backend, Pba
is empirically set to the number of floating point operations
per second (FLOPS) by manual testing; and (3) Salg,ba denotes
the scheduling cost of the algorithm alg on the backend ba.
In MNN, for a CPU-type backend, Salg,ba is set to 0; and for a
GPU-type backend, Salg,ba is empirically set and mainly con-
siders the time of data transfer. Now, the remaining problem
is for an operator opi, a backend ba, an implement algorithm
alg, and the sizes of the inputs, how to determine the optimal
parameters of the algorithm. In practice, we formulate it into
a constrained optimization problem, where the objective is
to minimize the computation or memory cost, and the con-
straints mainly include the width of SIMD unit, the number
of registers, the number of threads, and the sizes of the inputs.
In addition, we focus mainly on optimizing the following
parameters: the packing size in SIMD, the tile size in ma-
trix multiplication, the block unit in the Winograd algorithm,
and the reduction of the elementary calculations using the
Strassen algorithm. We take the optimization of the title size
in matrix multiplication for example. We let A denote an a×e
matrix, let B denote an e×b matrix, let te denote the tile size
along the axis with the equal size, let tb denote the tile size
along the axis of B’s columns, and let Nr denote the number of
registers. The optimization objective is minimizing the times
of memory read and write. The formula of the optimization
problem is given as follows:

min
te,tb

e
te
× b

tb
× (a× te +a× tb + te × tb) ,

s.t. te × tb + te + tb ≤ Nr,

(4)

which can be solved efficiently in runtime.
Compared with manual search, which optimizes the imple-

mentation algorithms with some common parameters for each
operator case by case, semi-auto search not only can sharply
reduce the workload but also can find the optimal parameters
with higher probabilities. Regarding why not adopt auto tun-
ing in TVM, it does not exploit manual experience in operator
optimization, consumes long time of static compilation due
to the large search space at the operator and graph levels for
a certain backend, and cannot support runtime optimization.
Most importantly, given the restriction on executable files and
just-in-time (JIT) compilation on iOS devices for security [4],
the compiled models generated by TVM must be linked into
mobile APPs with monthly/weekly update and cannot be daily
iterated as desired. Therefore, TVM is infeasible in industrial
applications that involve a large number of heterogeneous
devices or require frequent/quick task iteration (e.g., updating
the deployed ML models). In contrast, our design of the tensor

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    255



compute engine essentially leverages manual operator-level
optimization for heterogeneous backends to narrow down the
space of semi-auto search, thereby supporting deploying mod-
els as regular resource files and further facilitating runtime
optimization and daily ML task iteration in Python VM. An-
other benefit is that the package size of mobile APPs will not
increase in the long term for more and more ML tasks.

4.2 Data and Model Related Libraries
With the tensor compute engine, we implement the libraries
of scientific computing and image processing for the pre-
processing and post-processing phases of an ML task, as well
as the libraries of model inference and model training. In
particular, the scientific computing and image processing li-
braries can be regarded as the optimized implementations of
NumPy [21] and OpenCV [28] in terms of light weight and
high performance. The light weight means that the sizes of
libraries can be reduced without manual tailoring. The origi-
nal sizes of NumPy 1.9.3 and OpenCV 3.4.3 are 2.1MB and
1.2MB, and decrease to 51KB and 129KB in MNN, respec-
tively. The high performance indicates that the performance
optimization of the underlying tensor compute engine can be
inherited to the libraries, avoiding the extra workload. We
introduce the implementations of the libraries as follows.

Scientific Computing & Image Processing. We use the
atomic, raster, and control-flow operators to support array
creation and manipulation routines, binary operations, linear
algebra, logic functions, padding arrays, random sampling,
mathematical functions, etc, in the scientific computing li-
brary; and to support image filtering, geometric and miscella-
neous image transformations, drawing functions, color space
conversions, etc, in the image processing library.

Model Inference & Model Training. We currently provide
two modes of model inference in MNN, called session and
module. The module mode can support the control-flow oper-
ators, which are required by transformer, dynamic RNN, etc,
whereas the session mode cannot. The session-based model
inference can be divided into four steps: (1) load a model,
create a session, arrange all the operators in the computation
graph according to the topological ordering, and apply for
the tensors that all the operators need; (2) given the shape of
each input tensor and the definition of each operator, compute
the shapes of all the tensors; (3) perform geometric comput-
ing, particularly, first decompose the transform and composite
operators into the atomic and raster operators, and then do
vertical and horizontal merging for raster operators; and (4)
identify the optimal backend with semi-auto search, request
memory for each operator and execute in sequence, and re-
turn the inference result. In the second step, the control-flow
operators require the intermediate result to determine the fol-
lowing execution order and thus cannot be supported in the
session mode. To solve this problem, when loading the model
in the first step, the module mode splits the computation graph
into modules (i.e., sub-graphs) iteratively, according to the

CPU

Core 1

Core 2

Core 3

Intepreter

Data Space

VM Isolation
Data Isolation

CPU

Core 1

Core 2

Core 3

Intepreter 1
Data Space 1

Intepreter 2
Data Space 2

Intepreter 3
Data Space 3

Thread 1

Thread 2

Thread 3

Task 1

Task 2

Task 3

Thread 1

Thread 3

Task 1

Thread 2
Task 2

Task 3

GIL

Figure 6: Python thread-level virtual machine.

positions of the control-flow operators. Then, the execution
of each module is the same as that of the session.

We implement model training by adding two common op-
timizers: stochastic gradient descent (SGD) and adaptive mo-
ment estimation (ADAM). At the bottom, we add the gradient
operators of all the atomic operators and one raster operator.

4.3 Python Thread-Level Virtual Machine
Most ML tasks are implemented in Python and require a
Python VM to execute the Python scripts. We choose the
official and the most widely-used Python compiler and in-
terpreter, called CPython [43]. However, there exist two key
problems in the porting process of CPython, especially for
resource-constraint mobile devices. The first problem is that
the size of the package is large. For example, CPython 2.7.15
contains 500+ scripts in C and 1,600+ libraries, including
many redundant functionalities for mobile APPs. The second
problem is that CPython cannot support multi-threading to
improve efficiency. CPython originally cannot support concur-
rent programming and introduces GIL for multi-processing.
GIL allows only one thread to be processed at one time within
a process. However, each mobile APP has only one process
and does not allow multi-processing. How to support task-
level multi-threading in Python VM becomes a problem.

To reduce the package size, we tailor the functionalities, li-
braries, and modules for the practical need of Mobile Taobao.
(1) Functionality Tailoring: CPython first compiles Python
code into bytecode with the file suffix “.pyc” and then in-
terprets the bytecode for execution. By leaving the compile
phase on the cloud and sending only the bytecode to mobile
devices for execution, we can delete all the compile modules,
saving 17 scripts in C. (2) Library and Module Tailoring:
We keep 36 necessary libraries (e.g., abc, type, re, and func-
tools) and 32 modules (e.g., zipimport, sys, exceptions, and
gc). After package tailoring, we implement a light-weight
Python interpreter for mobile devices, which is the first in
industry. For example, on ARM64-based iOS, the package
size decreases from 10MB+ to only 1.3MB.

Regarding multi-threading, we abandon GIL and further de-
sign and implement the first Python thread-level interpreter in

256    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



industry, supporting the concurrent execution of many tasks.
As shown in Figure 6, each task is scheduled to a certain
thread, which creates an independent VM and contains the
VM runtime and task-related data. For thread safety, the key
is to perform thread-level VM isolation and data isolation,
which pin a VM to its thread and further pin the context of
VM runtime to the thread. (1) VM Isolation: The lifecycle of
the original Python VM is pinned to the process, each pro-
cess having one VM. We need to modify the creation of VM
instances such that a process can hold multiple thread-level
VMs, each VM having its independent lifecycle. In CPython,
VM is defined as a struct in C, called PyInterpreterState. When
CPython starts, one PyInterpreterState instance will be ini-
tialized. We modify the initialization of CPython, particularly
creating and initializing a PyInterpreterState instance for each
thread. (2) Data Isolation: Besides VM itself, the context
of VM runtime (e.g., type system, module, and task-related
data) should also be isolated on the level of thread, avoid-
ing the concurrency problem of multi-threading without the
protection of GIL. We adopt the thread-specific data (TSD)
technique for data isolation, such that each thread has its own
data space, and different threads cannot access the same data
simultaneously. We mainly apply TSD to type system, buffer
pool, object allocation, and garbage collection.

4.4 Standard APIs
We expose the cross-platform libraries of data processing and
model execution through Python VM to support ML tasks. For
pre-processing and post-processing, the scientific computing
and image processing APIs are consistent with the original
APIs of NumPy and OpenCV to be developer-friendly, such
as matmul, swapaxes, concatenate, split, resize, warpAffine,
warpPerspective, cvtColor, GaussianBlur, etc. For model in-
ference and model training, the APIs of common model-level
and data-level operations are exposed, such as data loading,
model loading and saving, session creation and execution,
optimizers, hyper-parameter setting, loss computing, etc.

5 Data Pipeline in Walle

We detail the on-device stream processing framework and the
real-time device-cloud tunnel in the data pipeline.

5.1 On-Device Stream Processing Framework
The key design goal is to support stateful computation over
unbounded data stream on single device. A user’s behav-
ior data in a mobile APP tracked with accurate timestamps
form stream. The processing of user behavior data is state-
ful, where the intermediate results are buffered in memory
or stored locally for later usage. The resources of single de-
vice are limited, which implies that the trigger conditions of
many stream processing tasks should be well managed. We
introduce on-device stream processing from event sequence

Event Tracking & Event Sequence Creation

Trigger Engine in On-Device Stream Processing

Trie-Based Trigger 
Management

Compute 
ContainerPage-Level Stream

Time-Level Stream

    ··     · · · · · …
…

User BehaviorsPre-Processing Tasks

Matching with 
Event Sequence

Concurrent Triggering

·· · · ·    ··

Trigger 
Condition

Task

·    ·

    ··     · · · ·    ·

Triggered 
Tasks

Data 
Streams

  ··
    · · · ·

   ·

+

+

Features

x x x x
x x x x

x x x x
x x x x

x x
x x

x x x
x x x

Wildcard 
Pattern 

Matching

Figure 7: Workflow of on-device stream processing.

creation, trigger management, task triggering, task execution,
and collective storage. The workflow is depicted in Figure 7.

Event Sequence Creation. When a user interacts with a
mobile APP, the user’s behaviors will be tracked as events.
There are five major kinds of basic events: page enter, page
scroll, exposure, click, and page exit. Each kind of event is
recorded with a unique event id, a page id, a timestamp, and
event contents (e.g., the item id for exposure-type event and
the graphical widget id for click-type event). Since a user’s
behaviors are naturally in time series, the time-level event
sequence can be directly created. To further benefit processing
the events within a certain page or cross pages, the page-level
event sequence is created by aggregating the events between
the enter and exit events of the same pages.

Trigger Management. A stream processing task over the
event sequence contains scripts and configurations, where the
scripts implement the data processing algorithm, and the con-
figurations mainly include a trigger condition. In particular,
the trigger condition can be specified by a sequence of trigger
ids, where a trigger id can be an event id or a page id.

For a certain mobile device, it needs to efficiently maintain
multiple pre-processing tasks to generate different features
for diverse ML tasks, such that as an event comes, all relevant
tasks can be triggered immediately. The key is to organize
trigger conditions for quick matching. The trivial method of
storing trigger conditions in a list is inefficient, because of the
need to traverse the entire list each time. In fact, the matching
of multiple trigger id sequences with the event sequence (with
both event and page ids) can be modeled as a string match-
ing problem with multiple wildcard patterns. Therefore, we
leverage the data structure of prefix tree, called a trie, for effi-
cient trigger management. More specifically, the trie has three
kinds of nodes: start, middle, and end nodes. The trie’s root is
the unique start node. A trigger id is a middle node. An end
node, which stores the stream processing tasks, is a leaf node
of the trie, and vice versa. When a new stream processing task
comes, the trigger id sequence will be extracted as a sequence

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    257



of middle nodes, and a pair of start and end nodes will be
added to the first and the last places of the node sequence,
respectively. Then, the depth-first search is performed over
the current trie from the root. If a path is completely matched
with the node sequence, then the stream processing task will
be added to the leaf node; otherwise, the mismatched nodes
will be added to the trie as a new sub-tree, the root of which
is the last matched node in the depth-first search process. We
note that each path of the trie corresponds to a unique trigger
condition, and the leaf node stores the stream processing tasks
with the same trigger condition. If two trigger id sequences
have common prefixes, then they will be put in the same sub-
tree, and the middle nodes in the path from the trie’s root to
the sub-tree’s root correspond to the common trigger ids.

Task Triggering. When a new event (with an event id and
a page id) comes, the set of triggered tasks will be returned.
First, two lists of trie nodes are introduced to record the con-
current matching states of multiple trigger conditions and to
avoid being blocked by wildcard pattern matching. The static
pending list stores all the children of the trie’s root, which
correspond to the first trigger ids in all the trigger conditions
and always keep active for matching. The dynamic pending
list stores the desired next nodes of the trigger conditions
in the ongoing matching. For an event in the stream, if its
event/page id matches the trigger id of any node in the static
or dynamic list, then each child of the node will be checked
for whether it is an end node. If the child is an end node, then
the stream processing tasks in the end node will be returned;
otherwise, the child, as a new desired next node, will be added
to a buffer of the dynamic list. At the end of task triggering
for the event, the dynamic list will be replaced by the buffer,
and the buffer will be refreshed.

Task Execution. When a task is triggered, the scripts will
be run in the compute container to process relevant events.
Besides standard data processing and mode execution APIs of
the compute container, to facilitate the extraction of relevant
events from the event sequence and the processing of event
contents, the stream processing framework also provides some
basic functions as follows: (1) KeyBy, which returns the events
matched with a given key; (2) TimeWindow, which returns the
events in a given time window; (3) Filter, which returns the
events filtered by a defined rule; and (4) Map, which processes
the event contents with a defined function.

Collective Storage. For each stream processing task, its
outputs, typically features, are saved as a table using SQLite.
Considering the fact that a stream processing task can be
triggered for several times, while the size of one-time output
is small, a collective data storage API is encapsulated over
SQLite to reduce the number of write, thereby improving
performance. In particular, a buffering table will be created
in memory, and the output of a stream processing task is first
written to the buffering table. If the number of write reaches a
certain threshold or a read operation is invoked, the buffering
table will be written into the database once.

Deployment Strategy

Uniform Deployment

Shared Resources

Coarse-Grained Grouping
Mobile App Version

Release

Test
Beta Gray Release Monitor

Exception Statistics Rollback

Real-Time Reach

Push 
ServiceCDN

Pull 
Service

Decode Monitor

Query

Store
Execute

Device

CEN

Customized Deployment

Exclusive Resources

Fine-Grained Grouping

User-Side Information

Device-Side Information

Figure 8: Workflow of deployment platform.

5.2 Real-Time Device-Cloud Tunnel
Besides for local use, the output of on-device stream process-
ing can also be uploaded to the cloud for real-time use. We
implement a device-cloud tunnel based on the persistent con-
nection. The secure sockets layer (SSL) protocol is optimized
to reduce the time of connection establishment, encryption,
and decryption. The data are compressed before transfer and
are decompressed after transfer. To deal with high throughput,
a fully asynchronous service framework is built on the cloud.

6 Deployment Platform

We introduce the details of ML task management, release, and
deployment. The whole workflow is shown in Figure 8.

Task Management. Git [41] is adopted to achieve the
isolation of different tasks and the version control of a certain
task, while supporting collaborative development with access
control. In particular, the entire task management is regarded
as a git group; each business scenario corresponds to a git repo
(repository); each task in a business scenario corresponds to a
branch; and each version of a task corresponds to a tag.

Besides the management of task entity, the task-related
files, especially the resources (e.g., data and model) which
can be large in size, are also managed in a fine-grained way to
support uniform and customized deployments. The files are
divided into two categories: one is the shared files, which can
be used by a large number of mobile devices (e.g., the devices
with a certain version of APP); and the other is the exclusive
files, which can be used only by a small number of devices or
even a specific device. The shared and exclusive files can be
requested efficiently via CDN and CEN, respectively.

Task Release & Deployment. A uniform or customized
policy can be taken to deploy tasks on targeted devices. The
uniform policy supports task release grouped by the APP ver-
sion, while the customized policy can further support group-
ing by device-side information (e.g., OS and its version or
device performance) and user-side information (e.g., age or
habit). According to the number of devices in a group, the
coarse-grained uniform deployment normally involves only
shared files, whereas the fine-grained customized task deploy-
ment not only can involve shared files but also can involve
exclusive files. In the extremely personalized scenarios, the

258    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



customized policy supports deploying a certain kind of task
but with user-specific/exclusive files to each individual device.

Regarding task release, we take a novel push-then-pull
method. We reuse the existing client-side business request to
implement push, by adding a mobile device’s local task profile
into the http header and letting the cloud compare it with the
latest task profile. If a new task needs to be released and takes
the uniform deployment policy, then the cloud responds with
the CDN address of the shared task files. If the new task takes
the customized deployment policy, the cloud first determines
which group the mobile device belongs to by rule matching
and then responds with the CDN address of the shared files
or the CEN address of the exclusive files. After receiving
the response from the cloud, the mobile device can pull the
task files using the CDN or CEN address from the nearest
node. Considering the fact that the client-side business request
is frequent, while the speeds of CDN and CEN are fast in
practice, the timeliness of task deployment can be guaranteed.

To guarantee the stability of task release and deployment,
the simulators of the mobile APP with different versions for
different OS can be created with the compute container on the
cloud for testing a pre-release task extensively. Upon passing
the simulation testing, a beta release is conducted to deploy
the task only on a few targeted devices. After passing the
beta release, the gray release is forced to be performed in
steps, covering all the targeted devices incrementally. The
deployment platform is also equipped with an exception han-
dling module, which can monitor the failure rate of the task
in real time and also can rollback immediately if the failure
rate exceeds a certain threshold.

7 Evaluation of Walle

We evaluate Walle in two major application scenarios of Al-
ibaba. We also extensively conduct benchmark testing for
MNN, Python thread-level VM, and real-time tunnel. We
finally report the statistics of the deployment platform.

7.1 Performance in E-Commerce Scenarios
Compute Container in Livestreaming. E-commerce live-
streaming has brought a brand new form of online shopping
to billion-scale users. In 2020, the gross merchandise value
(GMV) of livestreaming in Mobile Taobao exceeded 400
billion RMB. One key ML task in this scenario is highlight
recognition, which is to locate the time points of a streamer
in introducing attractive information about items.

Under the conventional cloud-based ML paradigm, a video
stream is uploaded from each streamer’s mobile device to the
cloud for highlight recognition, which mainly includes the
detection and recognition of items as well as the facial detec-
tion and the voice detection of streamers. Due to the large
number of online streamers, the long length of their video
streams, and the stringent latency requirement of highlight
recognition, the load of the cloud is so heavy that only part of

Feature Map DB Item Pool

Feature Map Highlights
Item ID
Item Position
Timestamp

Matching

?

         Cloud-Based Recognition with Big Model

On-Device Recognition with Small Model 
CV Task

NLP Task

√ √

Figure 9: Workflow of device-cloud collaborative highlight
recognition in e-commerce livestreaming.

Table 1: Model information and inference latency in device-
side highlight recognition.

Item
Detection

Item
Recognition

Facial
Detection

Voice
Detection

Model FCOS [40] MobileNet [25] MobileNet [25] RNN
Parameter Size 8.15M 10.87M 2.06M 8K

Huawei P50 Pro 56.92ms 25.68ms 41.42ms 0.07ms
iPhone 11 33.71ms 29.74ms 22.58ms 0.01ms

video streams and only a few sampled frames can be analyzed,
which becomes a key bottleneck in practice.

With Walle, we can offload the highlight recognition task
with light-weight models to a streamer’s mobile device and
implement a device-cloud collaborative workflow, as shown
in Figure 9. If the device-side models can recognize the high-
lights in a video stream with high confidences, then these
highlights can be directly shown to users after post-processing.
Only those highlights, which are recognized with low confi-
dences on the mobile device and account for roughly 12% in
practice, need to be processed by cloud-side large models. Af-
ter passing cloud-side recognition, the rate of which is around
15%, the highlights will be delivered to the mobile device.

Through device-cloud collaboration, the numbers of stream-
ers and video streams covered with highlight recognition dra-
matically increase, while the load of the cloud is also sharply
relived. In particular, business statistics show that compared
with the cloud-based paradigm, the new device-cloud col-
laborative workflow increases the number of streamers with
highlight recognition by 123%; reduces the computing load
of the cloud per highlight recognition by 87%; and increases
the size of daily recognized highlights per unit of cloud cost
by 74%. We also evaluate the performance of the compute
container in Walle, when supporting highlight recognition on
Huawei P50 Pro and iPhone 11. The total latency is 130.97ms
and 90.42ms, respectively. In particular, the network archi-
tectures, the parameter sizes, and the inference latency of
the adopted models are listed in Table 1. The results above
demonstrate the high performance of our compute container
and the practical effectiveness of device-cloud collaboration.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    259



MNN TensorFlow (Lite) PyTorch (Mobile)Inference Time (ms)

R
es

N
et

18
R

es
N

et
 5

0
M

ob
ile

N
et

 V
2

Sq
ue

ez
eN

et
 V

1.
1

Sh
uf

fle
N

et
 V

2
B

ER
T-

SQ
uA

D
 1

0

Huawei P50 Pro (Android) iPhone 11 (iOS) Server (Linux)

47.9 43.5 
23.8 19.7 

109.2 107.6 109.2 

68.4 56.1 57.2 

0
50
100
150

ARMv7 ARMv8 ARMv8.2 OpenCL

FP16
✕

OpenCL
✕

35.8 
16.5 10.0 

67.2 64.7 

25.1 

error error error0

50

100

ARMv8 ARMv8.2 Metal

13.7 
7.4 

1.2 

45.1 

26.7 

6.0 

18.8 17.5 

3.4 
0
20
40
60

AVX256 AVX512 CUDA

140.0 131.6 

67.2 43.8 

235.6 241.8 242.8 

81.0 

149.7 144.9 

0
100
200
300

ARMv7 ARMv8 ARMv8.2 OpenCL

FP16
✕

OpenCL
✕

107.3 

47.6 
19.1 

156.7 157.8 

48.8 

error error error0

100

200

ARMv8 ARMv8.2 Metal

29.5 
18.4 

2.0 

86.4 
67.3 

12.1 

54.4 
45.4 

7.5 
0

50

100

AVX256 AVX512 CUDA

18.1 17.2 
8.9 9.9 

32.5 30.3 30.2 
20.6 

40.6 40.8 

0
20
40
60

ARMv7 ARMv8 ARMv8.2 OpenCL

FP16
✕

OpenCL
✕

12.6 
6.4 8.7 

40.8 

19.7 16.1 

error error error0
20
40
60

ARMv8 ARMv8.2 Metal

4.8 3.6 0.8 

59.3 

29.8 
10.6 14.7 11.2 5.6 

0

50

100

AVX256 AVX512 CUDA

15.4 12.9 
6.7 

11.8 

22.2 20.6 20.6 
15.1 

24.4 
27.3 

0

20

ARMv7 ARMv8 ARMv8.2 OpenCL

FP16
✕

OpenCL
✕

9.0 

4.8 
6.7 

15.3 
13.4 

10.0 

error error error0

10

20

ARMv8 ARMv8.2 Metal

4.3 2.8 
0.6 

15.7 
12.4 

3.6 

10.8 12.2 

1.5 
0

10

20

AVX256 AVX512 CUDA

10.5 8.6 
4.5 

17.9 
14.2 13.0 13.1 

33.1 

20.9 18.1 

0

20

40

ARMv7 ARMv8 ARMv8.2 OpenCL

FP16
✕

OpenCL
✕

6.2 
3.5 

8.2 8.9 8.6 
10.2 

error error error0
5
10
15

ARMv8 ARMv8.2 Metal

4.4 3.6 
0.9 

23.2 24.1 

8.2 

15.3 13.8 

5.5 

0
10
20
30

AVX256 AVX512 CUDA

1232.8 1149.9 

589.4 

1690.1 1668.6 
1284.8 1297.6 

0

1000

2000

ARMv7 ARMv8 ARMv8.2 OpenCL

FP16
✕

OpenCL
✕errorerror error

798.4 

423.2 

1229.7 

860.9 

error error error0

500

1000

1500

ARMv8 ARMv8.2 Metal
error error

151.7 123.9 
8.0 

239.2 137.0 
20.8 

617.8 

225.4 

17.1 
0

500

1000

AVX256 AVX512 CUDA

0.20 

0.25 

0.01 

0.02 

0.01 

0.17 

0.49 

0.60 

0.04 

0.03 

0.01 

0.29 

0.12 

0.13 

0.13 

0.11 

0.12 

0.25 

01

967.09 

1777.00 

2391.58 

1275.25 

1289.20 

2889.71 

5774.09 

2905.25 

4503.81 

4301.45 

958.20 

921.04 

1036.85 

1139.95 

982.59 

423.61 

0 2000 4000 6000 8000

Huawei P50 Pro (ARMv8) iPhone 11 (ARMv8) RTX 2080 Ti (CUDA)

TVMMNN

Timeout Crash
Timeout Crash

ResNet 18

MobileNet V2

SqueezeNet V1.1

ShuffleNet V2

BERT-SQuAD 10

ResNet 50

Tuning + Compiling Time (s)Semi-Auto Search Time (s)

43.5 35.8 

1.2 

96.2 

48.4 51.5 

0
25
50
75

100

Huawei P50
Pro (ARMv8)

iPhone 11
(ARMv8)

RTX 2080 Ti
(CUDA)

ResNet 18
131.6 107.3 

2.0 

254.0 

108.6 
60.9 

0

100

200

300

Huawei P50
Pro (ARMv8)

iPhone 11
(ARMv8)

RTX 2080 Ti
(CUDA)

ResNet 50

17.2 
12.6 

0.8 

26.5 

14.8 
19.3 

0

10

20

30

Huawei P50
Pro (ARMv8)

iPhone 11
(ARMv8)

RTX 2080 Ti
(CUDA)

MobileNet V2

12.9 
9.0 

0.6 

21.6 

11.4 
14.6 

0

10

20

30

Huawei P50
Pro (ARMv8)

iPhone 11
(ARMv8)

RTX 2080 Ti
(CUDA)

SqueezeNet V1.1

8.6 
6.2 

0.9 

13.4 

7.7 
10.2 

0

5

10

15

Huawei P50
Pro (ARMv8)

iPhone 11
(ARMv8)

RTX 2080 Ti
(CUDA)

ShuffleNet V2

1149.9 798.4 8.0 

8494.5 

2649.3 
1188.9 

0
2500
5000
7500
10000

Huawei P50
Pro (ARMv8)

iPhone 11
(ARMv8)

RTX 2080 Ti
(CUDA)

BERT-SQuAD 10

MNN TVMInference Time (ms)

Figure 10: MNN vs. TensorFlow (Lite), PyTorch (Mobile), and TVM on different backends of mobile devices and cloud servers.

Data Pipeline in Recommendation. In Alibaba’s cloud-
side and device-side recommendation models, item page-view
(IPV) feature, which records a user’s behaviors (e.g., add-
favorite, add-cart, and purchase) in the detailed page of an
item, is of significant importance. To generate IPV feature,
under the conventional cloud-based paradigm, all the users’
raw event data are uploaded to the cloud for stream processing
and mixed with user ids for explicit identification. The time-
level event sequence from each mobile device is split into
multiple homogeneous sequences, one sequence containing
a certain kind of event. To obtain the IPV feature of each
individual user, the cloud performs join operations with user
id and page id as keys over all the users’ events, which is quite
time-consuming, resource-consuming, and error-prone.

With the on-device stream processing framework in the
data pipeline, each mobile device needs to process only a
small size of the corresponding user’s local events, which is
more efficient and more natural. In fact, the IPV feature in-
vokes the generation process of the page-level event sequence.
The input is the time-level event sequence. The trigger condi-
tion is the page exit event. The triggered stream processing
task is to aggregate all the events (i.e., to cluster the same
kind of events and gather statistics between the enter event
and the exit event of the page). Since the raw contents in each
event contain redundant fields (e.g., device status), a filtering
is applied to the event contents. Further considering the fact
that the IPV feature is first encoded (e.g., through RNN) in
recommendation models, by using the model inference API
of the compute container, the encoding process can also be
offloaded to mobile devices.

We first show the size reductions from raw event data, to
IPV feature, and to IPV encoding. On average, one IPV fea-
ture is around 1.3KB in size, involving 19.3 raw events in
the size of 21.2KB, and one IPV encoding is only 128 bytes.
This indicates that compared with the conventional paradigm
of transferring raw event data to the cloud for stream pro-
cessing, our new IPV data pipeline can save more than 90%
of communication cost. Besides communication efficiency,
we also compare the latency of on-device and cloud-based
stream processing. By analyzing over 10,000 practical cases
(randomly sampled from the case pool of 2 million online
mobile clients) of processing raw events into IPV features, the
average on-device latency is only 44.16ms. In contrast, using
Alibaba’s internal version of Flink, called Blink, the average
latency of producing one IPV feature is 33.73s. In particular,
the cloud-based stream processing is over 2 million online
users’ raw events and consumes 253.25 compute units (CU),
where 1 CU denotes 1 CPU Core plus 4GB memory; the
error rate of IPV feature generation is 0.7%; and the average
latency is analyzed over 10,000 randomly sampled normal
cases. These results reveal that compared the mainstream
cloud-based data pipeline, Walle’s new data pipeline can in-
deed reduce device-cloud communication cost and cloud-side
load, while improving the timeliness and validity of feature.

7.2 Benchmark Testing
We first compare MNN with TensorFlow (Lite) and PyTorch
(Mobile) on Android and iOS devices as well as Linux servers.
For device-side testing, we use Huawei P50 Pro and iPhone
11, covering the backends of ARMv7, ARMv8, and ARMv8.2

260    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



52.11%

144.36%

25.70%
0%

30%

60%

90%

120%

150%

Light-Weight
[0, 100) ms

Middle-Weight
[100, 500) ms

Heavy-Weight
[500, 1200) ms

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Task Category

Figure 11: Python thread-level VM vs.
CPython (30 million ML task executions).

0.00E+00

4.00E+07

8.00E+07

1.20E+08

1.60E+08

2.00E+08

50
150
250
350

450
550

0 3 6 9 12 15 18 21 24 27 30

C
ou

nt
 o

f U
pl

oa
ds

D
el

ay
 (m

s)

Data Size (KB)

Average Delay Median Delay
 2.0 × 108

 0

 1.6 × 108

 1.2 × 108

 8.0 × 107

 4.0 × 107

Count

Figure 12: Delay of real-time tunnel
(analyzed over 364 million uploads).

0.0E+00

4.0E+06

8.0E+06

1.2E+07

1.6E+07

2.0E+07

2.4E+07

0 2 4 6 8 10 12 14 16 18 20

C
ov

er
ed

 D
ev

ic
es

Elapsed Time (minutes)

Online Devices 
100% Covered

Gray Release
Coverin

g Incoming Device
s

 2.4 × 107

 2.0 × 107

 1.6 × 107

 1.2 × 107

 8 × 106

 4 × 106

 0

Figure 13: Timeliness of ML task
deployment (22 million devices).

with single thread as well as OpenCL and Metal. For server-
side testing, we use AMD Ryzen 9 3900X (x86), Alibaba
Cloud’s ecs.g6e.4xlarge (Intel Xeon (Cascade Lake) Platinum
8269CY, 16 vCPU, 64GiB memory), and NVIDIA GeForce
RTX 2080 Ti, covering the backends of AVX256 and AVX512
with 4 threads, and CUDA, respectively. We take ResNet
18 [22], ResNet 50 [22], MobileNet V2 [38], SqueezeNet
V1.1 [27], ShuffleNet V2 [33], BERT-SQuAD 10 [10], and
DIN [46], as the testing models, which are commonly used in
CV, NLP, and recommendation applications. The input size of
CV models is set to 1×3×224×224, the input size of BERT-
SQuAD 10 is set to (1×256,1×256,1×256,1), while the
input size of DIN is set to 1×100×32. We show the inference
time of the CV and NLP models in the left part of Figure
10, and omit the results of DIN, which are quite low (e.g.,
less than 0.2ms on iPhone 11 using MNN). We can observe
that MNN significantly outperforms TensorFlow (Lite) and
PyTorch (Mobile) in almost all the test cases. Besides higher
performance, MNN is also more full-featured on the side of
mobile devices, given that MNN can support all the models
on each device-side backend, whereas TensorFlow Lite and
PyTorch Mobile fail to support some backends and/or models.

We continue to compare MNN with TVM. We take Mac-
Book Pro 2019 and NVIDIA GeForce RTX 2080 Ti as the
host machines of TVM to do auto-tuning and compiling for
the mobile devices and the GPU server, respectively. The
number of trials in TVM auto-tuning is set to 30. Since TVM
auto-tuning for BERT-SQuAD 10 on two mobile devices in-
curs timeout crash, we take the default parameter settings for
model inference. From the evaluation results depicted in the
right part of Figure 10, one key observation is that the auto-
tuning and the compiling of TVM roughly cost thousands of
seconds. In contrast, the semi-auto search of MNN for runtime
optimization costs roughly hundreds of milliseconds. Further
incorporating the comparative analysis in Section 4.1, we can
draw that MNN can support the industrial scenarios that in-
volve numerous heterogeneous devices and require frequent
and quick task iteration, whereas TVM cannot. The second
key observation is that the inference time of MNN is lower
than TVM for each model on each backend, especially on the
GPU server. Such superiority is mainly due to the manual
operator-level, backend-level optimization in MNN.

We next compare Walle’s Python thread-level VM with the
original Python VM (i.e., CPython with GIL) using roughly
30 million online ML task executions. We define performance
as the reciprocal of task execution time and show the average
performance improvement in Figure 11. For the light-weight,
middle-weight, and heavy-weight tasks, Python thread-level
VM gains 52.11%, 144.36%, and 25.70% of performance
improvement, respectively. We can draw that task-level multi-
threading without GIL is the key of performance boosting.

We finally evaluate the latency of the real-time tunnel over
roughly 364 million uploads. Figure 12 shows the latency and
the number of uploads for varying data sizes. We can observe
that more than 90% uploads are under 3KB with less than
250ms on average. Even when the sizes of 0.1% uploads grow
to 30KB, the average delay increases only to around 450ms.

7.3 Deployment Platform Statistics
The deployment platform in Walle has supported 30+ mo-
bile APPs (e.g., Mobile Taobao, AliExpress, Xianyu, Youku,
Cainiao Guoguo) in Alibaba since the end of 2017, running
for roughly 1,500 days. It has deployed 1,000+ kinds of ML
tasks in total, each with 7.2 versions on average. Currently, the
deployment platform is maintaining and monitoring 348 kinds
of active tasks on more than 0.3 billion mobile devices. To
demonstrate the timeliness of task deployment, we randomly
select an ML task, monitor its release process, and depict in
Figure 13 how the number of covered devices changes as the
elapsed time grows. The first segment of the curve shows the
gray release stage, which takes 7 minutes to cover all the 6
million online devices. In particular, roughly 4 million de-
vices are incrementally covered within the last minute. Then,
the number of covered devices increases as more mobile de-
vices become online. Until 19 minutes later, almost 22 million
devices have been covered. The statistics show the scalability
and timeliness of the deployment platform in Walle.

8 Related Work
In this section, we briefly review some related work in both
academia and industry.

Cloud-Based ML System. Many companies have built
their ML systems on the cloud, which are backed by their

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    261



cloud computing platforms, such as Amazon Web Services,
Microsoft Azure, Alibaba Cloud, and Google Cloud. The
architecture is clear and comprises the standard modules of
data storage (e.g., HBase [14] and HDFS [13]), batch and
stream processing (e.g., Storm [42], Spark [45], and Flink [7]),
ML engines (e.g., TensorFlow [1], PyTorch [36], and MXNet
[8]), virtualization and containerization (e.g., KVM [37] and
docker [26]), and elastic orchestration (e.g., Kubernetes [15]).

On-Device ML System. Some modules are open source
with rapid development in terms of well balancing light
weight, necessary functionality, and high performance, in-
cluding on-device inference engines (e.g., TensorFlow Lite
[16], PyTorch Mobile [12], Core ML [3], and NCNN [39]);
and SQLite [24], which is a small and self-contained SQL
database engine. However, the whole architecture is still in
the dark, and several core capabilities are absent, such as an
on-device execution environment that supports quick devel-
opment and concurrent execution of multiple ML tasks, and
light-weight data processing and model training libraries for
diverse CV, NLP, and recommendation tasks.

Device-Cloud Collaborative ML. The concept can stretch
back to edge/mobile computing, but focuses on the collabo-
ration of the cloud and mobile devices in executing complex
ML tasks, rather than offloading simple data analysis tasks
from the cloud to edge servers or mobile devices. Previous
work focused on the algorithmic framework or solution and
was normally specific to a certain kind of application. In
contrast and in parallel, Walle targets at the general-purpose
and large-scale production system support. We review some
representative work as follows.

An initial paradigm is to keep model training on the cloud
but offload model inference (e.g., facial recognition, photo
beautification, and question answering) to mobile devices, val-
idating the on-device advantages in reducing latency and pro-
tecting privacy. The key of this paradigm’s proliferation is the
advances of model compression algorithms to reduce model
size and optimize model structure, such as quantization [19],
pruning and sparification [20], knowledge distillation [23],
and neural architecture search [47]. Later, Mistify [18] auto-
mated the cloud-to-device model porting process given the
customized requirements of heterogeneous mobile devices,
while some work designed more reasonable task splitting
strategies rather than offloading the full inference task. For
example, Neurosurgeon [29] was proposed to automatically
partition DNN computation between a mobile device and the
cloud at the granularity of DNN layers.

Besides inference, the popular cross-device federated learn-
ing (FL) framework [34] elegantly generalizes the conven-
tional parameter server framework [30] and enables multiple
mobile devices to collaboratively train a global model under
the coordination of a cloud server. The tenet of FL is to keep
user data on local devices, thereby protecting data security
and privacy. The device-cloud collaboration in FL is purely
through exchanging model and its update periodically. The

task splitting strategy is that mobile devices conduct model
training, and the cloud aggregates model updates. Google has
experimentally deployed FL on its Android keyboard, called
Gboard, to polish language models [5].

Finally, many application-specific solutions were proposed
under the principle of device-cloud collaboration. FilterFor-
ward [6] and Reducto [31] considered how to effectively and
efficiently do camera-side frame filtering with ML techniques
to facilitate cloud-side video analytics. DDS [11] adopted
an interactive workflow, where a camera first uploads a low-
quality video stream and re-sends a few key regions with
higher quality according to the cloud’s feedback to improve
inference accuracy. COLLA [32] studied the user behavior
prediction task with RNN and leveraged knowledge distil-
lation to mutually and continuously transfer the knowledge
between the device-side small models and the cloud-side large
model, thereby mitigating data heterogeneity and data drift
over time. DDCL [44] and CoDA [17] focused on recommen-
dation. DDCL relied on patch learning for on-device model
personalization and adopted model distillation to integrate the
patches from mobile devices into the cloud-side global model.
CoDA, instead, was proposed to retrieve similar samples from
the cloud’s global pool to augment each mobile device’s lo-
cal dataset for training personalized recommendation models.
Backed by Walle, CoDA was deployed in Mobile Taobao.

9 Conclusion

In this work, we have built the first end-to-end, general-
purpose, and large-scale production system, called Walle, for
device-cloud collaborative ML. Walle is oriented by the life-
cycle of ML tasks and consists of a cross-platform, high-
performance, and quickly iterative compute container; a more
reasonable and efficient data pipeline; and a scalable, timely,
and robust deployment platform. Evaluation of Walle in prac-
tical e-commerce scenarios and extensive micro-benchmarks
have demonstrated the necessity of device-cloud collabora-
tion and the superiority of each ingredient. Walle has been
deployed in Alibaba for wide scale production use, serving
billion-scale users with mobile devices every day.

Acknowledgments

We sincerely thank our shepherd, Wenjun Hu, for her in-
sightful and thorough guidance. We thank the anonymous
OSDI reviewers for their constructive feedback. We thank
Kai Liu, Hansong Liu, Hao Jiang, Zhijie Cao, and Yan Chen
from Alibaba for their great support. This work was sup-
ported in part by National Key R&D Program of China
No. 2019YFB2102200, China NSF grant No. 62025204,
62072303, 61972252, 61972254, 61832005, and 62141220,
and Alibaba Innovation Research (AIR) Program. The opin-
ions, findings, conclusions, and recommendations expressed
in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies or the government.

262    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorFlow: A system for large-scale machine learn-
ing. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 265–283,
2016. https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf.

[2] Alibaba. MNN, 2019. https://github.com/
alibaba/MNN.

[3] Apple. Core ML, 2017. https://developer.apple.
com/machine-learning/core-ml/.

[4] Apple. App store review guidelines: Section 2.5.2,
2021. https://developer.apple.com/app-store/
review/guidelines/#software-requirements.

[5] Kallista A. Bonawitz, Hubert Eichner, Wolfgang
Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzoc-
chi, Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. Towards
federated learning at scale: System design. In Ma-
chine Learning and Systems (MLSys), 2019. https:
//proceedings.mlsys.org/book/271.pdf.

[6] Christopher Canel, Thomas Kim, Giulio Zhou, Cong-
long Li, Hyeontaek Lim, David G. Andersen, Michael
Kaminsky, and Subramanya Dulloor. Scaling video
analytics on constrained edge nodes. In Proceed-
ings of Machine Learning and Systems (MLSys), 2019.
https://proceedings.mlsys.org/book/273.pdf.

[7] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
Flink™: Stream and batch processing in a single en-
gine. IEEE Data Engineering Bulletin, 38(4):28–
38, 2015. http://sites.computer.org/debull/
A15dec/p28.pdf.

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A flexible and efficient
machine learning library for heterogeneous distributed
systems. arXiv: 1512.01274, 2015. https://arxiv.
org/pdf/1512.01274.pdf.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan,

Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-to-
end optimizing compiler for deep learning. In Andrea C.
Arpaci-Dusseau and Geoff Voelker, editors, USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 578–594, 2018. https://www.
usenix.org/system/files/osdi18-chen.pdf.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding.
arXiv:1810.04805, 2018. https://arxiv.org/pdf/
1810.04805.pdf.

[11] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha
Chowdhery, Qizheng Zhang, Henry Hoffmann, and
Junchen Jiang. Server-driven video streaming for deep
learning inference. In Annual conference of the ACM
Special Interest Group on Data Communication on
the applications, technologies, architectures, and proto-
cols for computer communication (SIGCOMM), pages
557–570, 2020. https://dl.acm.org/doi/pdf/10.
1145/3387514.3405887.

[12] Facebook. PyTorch Mobile, 2019. https://pytorch.
org/mobile/home/.

[13] Apache Software Foundation. Apache Hadoop, 2006.
https://hadoop.apache.org/.

[14] Apache Software Foundation. HBase, 2008. https:
//hbase.apache.org/.

[15] Google. Kubernetes, 2014. https://kubernetes.
io/.

[16] Google. TensorFlow Lite, 2017. https://www.
tensorflow.org/lite.

[17] Renjie Gu, Chaoyue Niu, Yikai Yan, Fan Wu, Shao-
jie Tang, Rongfeng Jia, Chengfei Lv, and Guihai Chen.
On-device learning with cloud-coordinated data aug-
mentation for extreme model personalization in recom-
mender systems. arXiv: 2201.10382, 2022. https:
//arxiv.org/pdf/2201.10382.pdf.

[18] Peizhen Guo, Bo Hu, and Wenjun Hu. Mistify: Au-
tomating DNN model porting for on-device inference
at the edge. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages
705–719, 2021. https://www.usenix.org/system/
files/nsdi21-guo.pdf.

[19] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. Deep learning with limited nu-
merical precision. In International Conference on Ma-
chine Learning (ICML), pages 1737–1746, 2015. http:
//proceedings.mlr.press/v37/gupta15.html.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    263

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://developer.apple.com/machine-learning/core-ml/
https://developer.apple.com/machine-learning/core-ml/
https://developer.apple.com/app-store/review/guidelines/#software-requirements
https://developer.apple.com/app-store/review/guidelines/#software-requirements
https://proceedings.mlsys.org/book/271.pdf
https://proceedings.mlsys.org/book/271.pdf
https://proceedings.mlsys.org/book/273.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://arxiv.org/pdf/1512.01274.pdf
https://arxiv.org/pdf/1512.01274.pdf
https://www.usenix.org/system/files/osdi18-chen.pdf
https://www.usenix.org/system/files/osdi18-chen.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://dl.acm.org/doi/pdf/10.1145/3387514.3405887
https://dl.acm.org/doi/pdf/10.1145/3387514.3405887
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://hadoop.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/
https://kubernetes.io/
https://kubernetes.io/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://arxiv.org/pdf/2201.10382.pdf
https://arxiv.org/pdf/2201.10382.pdf
https://www.usenix.org/system/files/nsdi21-guo.pdf
https://www.usenix.org/system/files/nsdi21-guo.pdf
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html


[20] Song Han, Jeff Pool, John Tran, and William J.
Dally. Learning both weights and connec-
tions for efficient neural networks. In Confer-
ence on Neural Information Processing Systems
(NeurIPS), pages 1135–1143, 2015. https:
//proceedings.neurips.cc/paper/2015/hash/
ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.
html.

[21] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Al-
lan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–
362, 2020. https://www.nature.com/articles/
s41586-020-2649-2.pdf.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. https:
//doi.org/10.1109/CVPR.2016.90.

[23] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. arXiv:
1503.02531, 2015. https://arxiv.org/pdf/1503.
02531.pdf.

[24] Dwayne Richard Hipp. SQLite, 2000. https://www.
sqlite.org/.

[25] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. MobileNets: Efficient
convolutional neural networks for mobile vision applica-
tions. arXiv: 1704.04861, 2017. https://arxiv.org/
pdf/1704.04861.pdf.

[26] Solomon Hykes. Docker, 2013. https://www.docker.
com/.

[27] Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5mb model size. arXiv:1602.07360,
2016. https://arxiv.org/pdf/1602.07360.pdf.

[28] Intel. OpenCV, 2000. https://opencv.org/.

[29] Yiping Kang, Johann Hauswald, Cao Gao, Austin
Rovinski, Trevor N. Mudge, Jason Mars, and Lingjia
Tang. Neurosurgeon: Collaborative intelligence be-
tween the cloud and mobile edge. In International

Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
615–629, 2017. https://dl.acm.org/doi/pdf/10.
1145/3037697.3037698.

[30] Mu Li, David G. Andersen, Jun Woo Park, Alexan-
der J. Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J. Shekita, and Bor-Yiing Su. Scal-
ing distributed machine learning with the parameter
server. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 583–598,
2014. https://www.usenix.org/system/files/
conference/osdi14/osdi14-paper-li_mu.pdf.

[31] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei
Wang, Guoqing Harry Xu, and Ravi Netravali. Re-
ducto: On-camera filtering for resource-efficient real-
time video analytics. In Annual conference of the
ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and pro-
tocols for computer communication (SIGCOMM), pages
359–376, 2020. https://dl.acm.org/doi/pdf/10.
1145/3387514.3405874.

[32] Yan Lu, Yuanchao Shu, Xu Tan, Yunxin Liu, Mengyu
Zhou, Qi Chen, and Dan Pei. Collaborative learning
between cloud and end devices: An empirical study on
location prediction. In ACM/IEEE Symposium on Edge
Computing (SEC), pages 139–151, 2019. https://dl.
acm.org/doi/pdf/10.1145/3318216.3363304.

[33] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun. ShuffleNet V2: Practical guidelines for efficient
CNN architecture design. In European Conference on
Computer Vision (ECCV), pages 122–138, 2018. https:
//doi.org/10.1007/978-3-030-01264-9_8.

[34] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentral-
ized data. In International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), pages 1273–
1282, 2017. http://proceedings.mlr.press/v54/
mcmahan17a.html.

[35] NVIDIA. Data layout formats, 2022.
https://docs.nvidia.com/deeplearning/
cudnn/developer-guide/index.html#
data-layout-formats.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie

264    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://www.nature.com/articles/s41586-020-2649-2.pdf
https://www.nature.com/articles/s41586-020-2649-2.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/pdf/1503.02531.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://www.sqlite.org/
https://www.sqlite.org/
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://www.docker.com/
https://www.docker.com/
https://arxiv.org/pdf/1602.07360.pdf
https://opencv.org/
https://dl.acm.org/doi/pdf/10.1145/3037697.3037698
https://dl.acm.org/doi/pdf/10.1145/3037697.3037698
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf
https://dl.acm.org/doi/pdf/10.1145/3387514.3405874
https://dl.acm.org/doi/pdf/10.1145/3387514.3405874
https://dl.acm.org/doi/pdf/10.1145/3318216.3363304
https://dl.acm.org/doi/pdf/10.1145/3318216.3363304
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#data-layout-formats
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#data-layout-formats
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#data-layout-formats


Bai, and Soumith Chintala. PyTorch: An imperative
style, high-performance deep learning library. In
Conference on Neural Information Processing Sys-
tems (NeurIPS), pages 8024–8035, 2019. https:
//proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.
html.

[37] Qumranet, Inc. Kernel-based virtual machine, 2007.
http://www.linux-kvm.org/.

[38] Mark Sandler, Andrew G. Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted residuals and linear bottlenecks. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 4510–4520, 2018. https://doi.org/
10.1109/CVPR.2018.00474.

[39] Tencent. NCNN, 2017. https://github.com/
Tencent/ncnn/.

[40] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He.
FCOS: Fully convolutional one-stage object detection.
In IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9626–9635, 2019. https://
ieeexplore.ieee.org/document/9010746.

[41] Linus Torvalds. Git, 2005. https://git-scm.com/.

[42] Ankit Toshniwal, Siddarth Taneja, Amit Shukla,
Karthikeyan Ramasamy, Jignesh M. Patel, Sanjeev
Kulkarni, Jason Jackson, Krishna Gade, Maosong
Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal,
and Dmitriy V. Ryaboy. Storm@Twitter. In ACM

International Conference on Management of Data
(SIGMOD), pages 147–156, 2014. https://dl.acm.
org/doi/pdf/10.1145/2588555.2595641.

[43] Guido van Rossum. CPython, 1994. https://github.
com/python/cpython.

[44] Jiangchao Yao, Feng Wang, Kunyang Jia, Bo Han, Jin-
gren Zhou, and Hongxia Yang. Device-cloud collabo-
rative learning for recommendation. In ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing (KDD), pages 3865–3874, 2021. https://dl.acm.
org/doi/pdf/10.1145/3447548.3467097.

[45] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Clus-
ter computing with working sets. In USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud),
2010. https://www.usenix.org/legacy/events/
hotcloud10/tech/full_papers/Zaharia.pdf.

[46] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li,
and Kun Gai. Deep interest network for click-through
rate prediction. In ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD),
pages 1059–1068, 2018. https://dl.acm.org/doi/
pdf/10.1145/3219819.3219823.

[47] Barret Zoph and Quoc V. Le. Neural architecture
search with reinforcement learning. In International
Conference on Learning Representations (ICLR), 2017.
https://openreview.net/pdf?id=r1Ue8Hcxg.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    265

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://www.linux-kvm.org/
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://github.com/Tencent/ncnn/
https://github.com/Tencent/ncnn/
https://ieeexplore.ieee.org/document/9010746
https://ieeexplore.ieee.org/document/9010746
https://git-scm.com/
https://dl.acm.org/doi/pdf/10.1145/2588555.2595641
https://dl.acm.org/doi/pdf/10.1145/2588555.2595641
https://github.com/python/cpython
https://github.com/python/cpython
https://dl.acm.org/doi/pdf/10.1145/3447548.3467097
https://dl.acm.org/doi/pdf/10.1145/3447548.3467097
https://www.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf
https://www.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
https://openreview.net/pdf?id=r1Ue8Hcxg




Unity: Accelerating DNN Training Through Joint Optimization of
Algebraic Transformations and Parallelization

Colin Unger†♠ Zhihao Jia‡♭♠ Wei Wu∗⋄ Sina Lin§ Mandeep Baines♭

Carlos Efrain Quintero Narvaez♭ Vinay Ramakrishnaiah∗ Nirmal Prajapati∗

Pat McCormick∗ Jamaludin Mohd-Yusof∗ Xi Luo♯ Dheevatsa Mudigere♭

Jongsoo Park♭ Misha Smelyanskiy♭ Alex Aiken†

Stanford University† Carnegie Mellon University‡ Los Alamos National Lab∗

NVIDIA⋄ Microsoft§ Meta♭ SLAC National Accelerator Laboratory♯

Abstract
This paper presents Unity, the first system that jointly op-
timizes algebraic transformations and parallelization in dis-
tributed DNN training. Unity represents both parallelization
and algebraic transformations as substitutions on a unified
parallel computation graph (PCG), which simultaneously ex-
presses the computation, parallelization, and communication
of a distributed DNN training procedure.

Optimizations, in the form of graph substitutions, are au-
tomatically generated given a list of operator specifications,
and are formally verified correct using an automated theorem
prover. Unity then uses a novel hierarchical search algorithm
to jointly optimize algebraic transformations and paralleliza-
tion while maintaining scalability. The combination of these
techniques provides a generic and extensible approach to op-
timizing distributed DNN training, capable of integrating new
DNN operators, parallelization strategies, and model architec-
tures with minimal manual effort.

We evaluate Unity on seven real-world DNNs running on
up to 192 GPUs on 32 nodes and show that Unity outperforms
existing DNN training frameworks by up to 3.6× while keep-
ing optimization times under 20 minutes. Unity is available
to use as part of the open-source DNN training framework
FlexFlow at https://github.com/flexflow/flexflow.

1 Introduction
Deep neural networks (DNNs) are becoming progressively
larger and computationally more expensive to train, and as
they have grown, so has interest in optimizing their execu-
tion to reduce training times and improve scalability. Two
key classes of optimizations shown to yield significant perfor-
mance improvements across diverse model architectures are
algebraic transformations and parallelization.

Algebraic transformations exploit operator identities to
perform the underlying computation in a more efficient way,
but ignore parallelization and distribution of training. Com-
mon examples of algebraic transformations include operator

♠ Contributed equally.

fusion, which merges two operators into a single semantically-
equivalent operator whose computation is more efficient, and
operator reordering, where the associativity or commutativity
of sets of operators allows them to be reordered into more
efficient configurations or to expose further optimization op-
portunities. More explanation of algebraic transformations,
along with examples, is provided in Section 2.2.

Parallelization, in contrast, distributes operators over mul-
tiple devices, but does not change the way in which the un-
derlying computation is performed. DNN training exploits a
class of parallelism named partition-n-reduce [59], in which
every distributed subcomputation of an operator must perform
the same computation, and may only differ in the input data
it consumes. The tensor computations in DNN training are
particularly well-suited to this form of parallelism, and many
parallelism dimensions along which to divide distributed op-
erators have been identified, such as data [6], model [13],
spatial [27], reduction [50], and pipeline [39]. For a detailed
overview of these various approaches, see Section 2.1.

When applied effectively, these two techniques can improve
training times by more than an order of magnitude. However,
effective application is nontrivial. Rewriting the computation
graph for maximum speedup can require many transforma-
tions, some of which may harm performance except in the
context of a longer sequence of transformations [26]. The
optimal parallel execution strategy for a model often requires
simultaneously exploiting multiple parallelization dimensions
and using different parallelization schemes for each opera-
tor [24]. Early work relied on the programmer to manually
determine the correct optimizations to apply [6]. While man-
ual optimization allows fine-grained control over the model’s
performance, it requires many hours of tuning by experts to
achieve good performance. As the pace of new developments
in model design has increased, manual optimization has strug-
gled to scale beyond the most commonly used models.

Recent work has focused on automating optimizations.
MetaFlow [26], TASO [25], and PET [58] propose algo-
rithms for automatically generating and applying algebraic
transformations by posing optimization as a search problem.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    267

https://github.com/flexflow/flexflow


Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MatMul

ReLU

MatMul

ReLU

Input 
Channels 

(𝒄𝒊)

Batch 
(𝒃)

Hidden 
Dimension 
(𝒉)

Input 
Channels (𝒄𝒊)

Output 
Channels (𝒄𝒐)Hidden 

Dimension (𝒉)

Batch 
(𝒃)

Hidden 
Dim (𝒉)

Hidden 
Rep.

Batch 
(𝒃)

Output 
Channels (𝒄𝒐)

Output

Weight 1Input

Weight 2

Figure 1: Computation graph for a 2-layer MLP.

FlexFlow [27], automap [48], Tofu [59], and Whale [23] bring
a similar approach to parallelism. These works present im-
pressive benchmarks, yielding the impression that automating
algebraic and parallelization optimization is a solved problem.

However, to reduce training time as much as possible, we
want to apply both of these optimizations, but the most ef-
fective way to combine algebraic and parallelization opti-
mizations is not obvious. The simplest solution is to apply
them independently, in one of two orders: algebraic optimiza-
tion followed by parallelization, or the reverse. The reverse
order turns out to be problematic: since algebraic transfor-
mations can introduce new operations or replace existing
ones, running algebraic optimization after parallelizations
have been assigned can lead to the final solution having op-
erations without assigned parallelizations (if the operation
was created) or invalid parallelizations (if the operation was
replaced). Workarounds can be used to fix invalid solutions by
using default parallelization strategies or copying the strate-
gies of nearby operators, but it is easy to find cases in which
these workarounds lead to suboptimal solutions. As such,
applying algebraic optimization before parallelization is the
only option, but as we see in the next example, it can miss
significant optimization opportunities.

Consider the computation graph shown in Figure 1, which
represents a 2-layer multilayer perceptron (MLP). If we are
optimizing independently (also referred to as “sequentially”),
we start by applying algebraic transformations without con-
sidering parallelism. A typical algebraic optimizer will fuse
the MatMul and ReLU operators to remove redundant memory
loads and stores. The model is then parallelized (we con-
sider only 2 GPUs for simplicity) resulting in Figure 2a: data
parallelism is used for both operators and thus the weight
gradients must be synchronized with an AllReduce. Since
weight 1 has size cih and weight 2 has size hco, the total com-
munication is 2(cih+ hco). Using a set of parameters for a
basic image classification model for MNIST (b= 64, h= 512,
co = 10, ci = 28×28 = 784) yields a total communication of
813,056d bytes, where d is the element size.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MatMul + 
ReLU

MatMul + 
ReLU

𝒊

MatMul + 
ReLU

MatMul + 
ReLU

𝒊GPU 1 GPU 2

𝒐 𝒐

AllReduce
Required

(a) Sequential optimization.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ReLU

MatMul

ReLU

MatMul + 
ReLU

𝒊

𝒊

AllReduce
Required

MatMul

MatMul + 
ReLU

𝒊

𝒐𝒐

𝒐 𝒐

GPU 1 GPU 2

𝒊

(b) Joint optimization.

Figure 2: Comparing joint and sequential optimizations.

Instead of independently applying algebraic transforma-
tions and parallelization, we can combine them and solve a
single joint optimization problem that discovers the solution
in Figure 2b. By not fusing the first MatMul and ReLU, more
efficient reduction parallelism can be used. This requires syn-
chronizing the activation and gradient of the first MatMul’s
output, but not the weights: a total inter-GPU communication
of 4bh, or 131,072d bytes for our MNIST example. Joint op-
timization reduces communication by 6×, which far exceeds
the cost of not fusing the first ReLU.

As this example shows, joint optimization is necessary to
maximize performance. However, it also poses significant
challenges. The first is representation: existing frameworks
perform optimizations on a model’s computation graph. As
discussed above, algebraic transformations can leave oper-
ators in the computation graph with unassigned or invalid
parallelizations. To prevent such invalid solutions from aris-
ing during search, we need a representation that allows alge-
braic transformations to consider the current parallelization
before being applied. Further discussion of the representation
challenges is in Section 3.4.

The second challenge is scalability: existing search-based
approaches already struggle to scale up to large models and
GPU counts. Improvements have been made for algebraic
transformations alone [62], but the complexity of these solu-
tions makes adding parallelization a daunting task. Simultane-

268    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



ously considering both optimization classes only exacerbates
this problem by exponentially increasing the search space
size. For joint optimization to be practical, search algorithms
must improve on the scalability of past techniques.

1.1 Unity’s Approach
The key idea behind Unity is to represent both algebraic trans-
formations and parallelization as graph substitutions on a uni-
fied parallel computation graph, and then to use a hierarchical
search algorithm to efficiently identify which combination of
substitutions yields the best performance. Figure 3b shows an
overview of Unity, which differs from existing frameworks
in the following ways:

Unified graph representation. We introduce the parallel
computation graph (PCG)1 as a unified representation of
distributed DNN training that simultaneously expresses com-
putation, parallelism, and data movement. All parallelization
strategies used in existing frameworks can be represented as
specific PCGs, and parallelization and algebraic transforma-
tions as sequences of graph substitutions. pONNX [57] previ-
ously proposed merging computation and parallelism into a
single graph, but certain design decisions prevent Unity-style
joint optimization. For a detailed comparison, see Section 3.4.

Transformation generation and verification. Unity does
not require users to explicitly define possible parallelization
strategies for DNN training. Unlike prior work that automat-
ically generates parallelization strategies [59] or algebraic
transformations [25], by using the PCG Unity is able to gen-
erate both kinds of transformations with a single approach, as
well as hybrid algebraic-parallelization optimizations absent
in prior automated approaches. Automatically generating and
verifying transformations greatly reduces the engineering ef-
fort required to support different parallelism dimensions and
enables extensibility to new operators.

Joint optimization. Unity uses a hierarchical search algo-
rithm to discover highly optimized PCG substitutions and
device placements while maintaining scalability to models
with hundreds of operators distributed over hundreds of GPUs.
Unity’s cost model includes both computation and communi-
cation time, and the search algorithm handles custom network
topologies and heterogeneous compute devices. Despite the
exponentially larger search space being considered, Unity out-
performs existing search-based approaches (see Section 6).

The rest of this paper provides additional background (Sec-
tion 2), discusses Unity’s design and implementation (Sec-
tions 3, 4, and 5), and evaluates its performance on seven
real-world DNNs (Section 6). For widely-used DNNs highly
optimized by existing frameworks, such as BERT [14], Unity
matches the performance of existing expert-designed strate-
gies while being completely automated. For complex DNN

1To prevent ambiguity, we use the term computation graph strictly to
refer to the conventional computation graph used in prior work, and parallel
computation graph or PCG to refer to Unity’s new unified representation.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comp. Graph

Graph 
Optimizer

Parallelization 
Optimizer

Algebraic 
Transformations

Parallelization 
Strategies

Distributed 
Runtime

(a) Existing approach.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comp. Graph

Joint 
Optimizer

Parallel Comp. 
Graph (PCG)

Operator 
Specification

Substitution 
Generator

Parallelization + 
Algebraic

Transformations

Distributed 
Runtime

(b) Unity’s approach.

Figure 3: Comparing existing DNN frameworks and Unity.

architectures with a mixture of compute- and communication-
intensive operators, such as DLRM [41] and CANDLE-
Uno [1], Unity is up to 3.6× faster than existing frameworks.

2 Background
We first provide a brief overview of the two classes of op-
timizations that Unity exploits, parallelization (Section 2.1)
and algebraic transformations (Section 2.2), as well as a dis-
cussion of how they are represented in existing systems (Sec-
tion 2.3). For a discussion of how Unity interacts with other
classes of optimizations, see Section 8.

2.1 Parallelization
The massively parallel nature of tensor algebra creates many
opportunities for parallelizing DNN training. We identify six
primary forms of parallelism leveraged in DNN systems:

1. Data parallelism is the most common approach used in
existing frameworks [6, 9, 42]. Data parallelism keeps a
replica of the entire DNN model on every device and as-
signs each a subset of the training data.

2. Model parallelism divides a DNN model into disjoint sub-
models and trains each sub-model on a dedicated device.

3. Spatial parallelism2 divides the spatial dimensions of a
tensor (e.g., the height and width of images) into mul-
tiple partitions, each of which is assigned to a specific
device [27]. Spatial parallelism often requires synchroniz-
ing the shared elements (e.g., the shared pixels along the
boundary of different sub-images) between devices.

4. Reduction parallelism exploits the linearity of tensor alge-
bra operators. For a matrix multiplication C = A×B, re-
duction parallelism splits A along its columns and B along
its rows as follows: A = [A1, . . . , An], B = [BT

1 , . . . , BT
n ]

T

The matrix multiplication is distributed across n devices,
with the i-th device computing Ci = Ai ×Bi. An extra re-
duction afterward recovers the original result: C = ∑i Ci.

2Spatial parallelism was called attribute parallelism in [27].

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    269



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Input Weight

MatMul

ReLU

Output

Input Weight

MatMul
+ReLU

Output

(a) Basic operator fusion.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

InputWeight

Add

DWC 3×3

Weight

Output

DWC 3×3

WeightInput

DWC 3×3

Add

Weight

Output

(b) A more complex algebraic transformation.

Figure 4: Example algebraic transformations. DWC stands for
DepthwiseConv (i.e., depth-wise separable convolution).

5. Pipeline parallelism exploits the opportunity to parallelize
across different training iterations [39].

6. Operator-specific parallelism. The introduction of new
DNN operators provides operator-specific parallelization
opportunities. For example, the following equation shows
the batched matrix multiplication used in Transformer [54]:
output(s,h,o) = ∑i input(s,h, i)×weight(h,o, i). This dif-
fers from typical matrix multiplication in that it applies a
different weight for each input sample. As a result, these
batched matrix multiplications across attention heads can
be run in parallel (i.e., the h dimension) without any tensor
replication or synchronization.

Most parallelizations are not pure performance optimiza-
tions, but are instead trade-offs among different cost metrics.
For example, applying data parallelism reduces per-device
computation time at the cost of increased memory usage and
data movement for storing and synchronizing model parame-
ters. Thus, DNN operators typically require a combination of
these forms of parallelism to achieve optimal performance.

2.2 Algebraic Transformations
Algebraic transformations are very diverse and are not as
easily categorized as the forms of parallelism, so we instead
provide examples. For a more comprehensive exploration of
algebraic transformations, see [25].

The most basic algebraic transformation is operator fusion,
shown in Figure 4a. Unfused, the device needs to load and
store activations to and from memory twice, once before and
after each operator. If the two operators are fused, however,
the combined kernel can compute the ReLU operation as it
stores the outputs of the MatMul back to memory.

For a more complex example, see Figure 4b. By exploiting
DepthwiseConv’s linearity, a computation that previously
required two DepthwiseConv operations now only requires
one plus an additional Add, effectively halving the amount of
computation needed.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University
Out

Concat

  𝑾𝟑   𝑾𝟒

  𝑰𝟏
  𝑾𝟏

DWC 3×3

  𝑰𝟐
  𝑾𝟐

DWC 5×5

0-pad 5×5

Out

  𝑾𝟑   𝑾𝟒

  𝑰𝟏
  𝑾𝟏

DWC 5×5

  𝑰𝟐
  𝑾𝟐

DWC 5×5

Out

  𝑾𝟑   𝑾𝟒

  𝑰𝟐  𝑰𝟏
0-pad 5×5

  𝑾𝟐

  𝑾𝟏

ConcatConcat

Concat

1

2

3

Add

Out

  𝑾𝟒

Conv 1×1

  𝑰𝟏
  𝑾𝟏

DWC 3×3

Conv 1×1

  𝑰𝟐
  𝑾𝟐

DWC 5×5  𝑾𝟑

Concat

Conv 1×1

Conv 1×1Conv 1×1

DWC 5×5

Concat

Concat

Figure 5: Compositions of small algebraic transformations
can lead to significant changes.

Small algebraic transformations can be composed to cre-
ate large changes. Consider the sequence of transformations
shown in Figure 5: while each individual transformation is
relatively small, the final output is radically different from
the original computation graph. Also, notice that not all per-
formance gains are realizable in a single transformation: for
example, moving from graph 2 to graph 4 reduces the amount
of computation by reducing the number of DepthwiseConv
operations performed, but it is first necessary to pass through
graph 3 which performs worse than either graph 2 or 4.

2.3 Intermediate Representations
Most existing optimizing frameworks represent a DNN archi-
tecture as a computation graph3: a node is a mathematical
tensor operator (e.g., matrix multiplication, etc.), and an edge
is a tensor (i.e., n-dimensional array) passed between opera-
tors. An example computation graph is shown in Figure 6a.
Algebraic transformations are performed by iteratively ap-
plying graph substitutions, and the model is parallelized by
assigning each node a set of parallelism annotations.

This representation has two limitations. First, while using
distinct representations for algebraic transformations (i.e.,
graph substitutions) and parallelization (i.e., node annotations)
is convenient, it hinders joint optimization. The key issue
is that algebraic transformations can add or replace nodes
in the graph, while parallelization views the computation
graph as static and thus cannot handle these newly-created,
unannotated nodes. This prevents interleaving the two search
algorithms, since at any time a substitution can transform a
valid parallelization into an invalid one.

Second, a computation graph does not explicitly capture

3Alternative representations are discussed in Section 3.4 and Section 7.

270    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



MatMul

A B

Output

MatMul

CData
Parallelism

Model
Parallelism

(a) Computation graph.

MatMul

A

Output

Partition

Reduce

MatMul

C

Replicate

B

Partition

(b) Parallel computation graph.

Figure 6: Comparing computation graph and PCG. Both
graphs describe the same parallelization of two consecutive
matrix multiplications (A×B)×C (a simplified form of at-
tention). The green and orange boxes denote regular DNN
operators and Unity’s new parallelization operators (see Sec-
tion 3.3) respectively.

the communication costs associated with parallelism. This ab-
sence makes it difficult for algebraic transformations to reason
about the impact on the performance of the final model.

3 Parallel Computation Graph

To solve the shortcomings of the existing model represen-
tations described in Section 2.3, we introduce the parallel
computation graph (PCG) as a unified representation of dis-
tributed DNN training that is capable of simultaneously ex-
pressing computation, parallelism, and communication. The
PCG allows Unity to consider both algebraic transformations
and parallelization as graph substitutions on a common graph.
While the PCG is not the first to merge computation and
parallelization into a single graph, the PCG is tailored for
optimization and as such differs from prior unified graph rep-
resentations in key aspects, which we discuss in Section 3.4.

PCGs extend the existing computation graph representa-
tion by allowing nodes to represent changes in parallelization
in addition to mathematical tensor operations, and edges to
represent distributed movement of tensor data in addition to
data dependence. A set of parallelization operators are added
that allow PCGs to express all existing parallelization strate-
gies and provide an explicit representation of data movement
and its associated costs during training. Additionally, each
operator in a PCG is associated with a machine mapping,
denoting how the execution of the operator is mapped to indi-
vidual processors in a parallel machine. Figure 6b shows an
example of a PCG.

Sections 3.1, 3.2, and 3.3 provide a brief description of the
tensor representation, machine mappings, and parallelization
operators, respectively. Finally, Section 3.4 discusses the de-
sign decisions that make the PCG uniquely suited for joint
optimization, and how it differs from alternative unified graph
representations.

CPU

GPU
1

GPU
2

GPU
3

CPU

GPU
4

GPU
5

GPU
6

Netw
ork

(a) Hardware Architecture.

1 2 N

Data Parallelism

…

(b) 1-D Mapping.

1
2
3
4
5
6 N

M
od

el
 P

ar
al

le
lis

m

Data Parallelism

…

…

7

(c) 2-D Mapping.

1
2
3

4
5
6 N

M
od

el
 P

ar
al

le
lis

m

Data Parallelism

…

Reductio
n

Parallelism

(d) 3-D Mapping.

Figure 7: Example machine mapping for a compute node in
our evaluation. (a) shows the node’s hardware architecture,
where and orange and grey arrows denote NVLink and X-Bus.
Numbers in mapping examples denote GPU ids.

3.1 Tensor Representation
Unity models tensors as a set of data dimensions, each of
which has two fields: a size and a degree. The degree field
specifies the number of partitions the tensor has been divided
into along that dimension. Every tensor also includes a special
replica dimension, which represents the number of replicas
of that tensor’s data.

3.2 Machine Mappings
Each operator in a PCG is associated with a machine mapping,
an n-dimensional array of devices/processors that specifies on
which device to run each piece of the operator’s computation.
More formally, given an operator and a set of n applicable
parallel dimensions with degrees d1, . . . ,dn, Unity divides
the operator into d1 ×d2 × . . .×dn parallel tasks, which we
reference with tuple indices of the form (i1, . . . , in) where
0 ≤ ik < dk. A machine mapping is a map from task indices
(i1, . . . , in) to individual GPUs that will be used to run that
parallel task. For convenience, we also define the machine
mapping of an entire PCG to be the set of machine mappings
of each of its constituent operators.

Figure 7 shows some example machine mappings for the
Summit compute nodes [55] used in our evaluation. The hard-
ware architecture is depicted in Figure 7a. Figure 7b shows a
basic 1-D machine mapping for data parallelism, while Fig-
ure 7c shows a 2-D machine mapping of a hybrid paralleliza-
tion strategy combining data and model parallelism, where
model parallelism is applied across GPUs within the same
compute node and data parallelism across distinct compute
nodes. Figure 7d shows a 3-D machine mapping where we
apply model parallelism across GPUs attached to the same

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    271



Partition Combine

(a) Partition/Combine.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Replicate Reduce

(b) Replicate/Reduce.

Pipeline Batch

(c) Pipeline/Batch.

Partition Combine

Replicate Reduce

(d) Hybrid Parallelization.

Figure 8: Parallelization operators in Unity.

CPU, reduction parallelism across GPUs attached to different
CPUs but on the same compute node, and data parallelism
across different compute nodes.

Unity includes a comprehensive set of machine mappings
that capture effective usages of a parallel machine. In addition,
developers can register custom machine mappings tailored to
specific hardware architectures. For example, when node pairs
in a cluster have different network bandwidths and latencies,
an extra dimension can be added to the existing machine
mappings to represent node-level locality.

Machine mappings provide two key desirable properties:
expressiveness and scalability. All effective distributions of
parallel tasks in a PCG can be captured in just a few machine
mappings, and complex features of a machine’s hardware ar-
chitecture can be easily leveraged through adding additional
machine mappings. Machine mappings also allow Unity to
capture all effective device assignments while remaining lin-
ear in the number of devices and aid Unity’s search algorithm
by removing inefficient assignments from consideration.

3.3 Parallelization Operators
Unity uses six parallelization operators to capture the com-
putation and communication costs associated with different
parallelization strategies. These six are further divided into
three pairs, where one operator is the “back propagation” of
the other (e.g., when back propagation is done on Partition
it becomes semantically equivalent to Combine, and the same
in reverse). The three pairs are:

1. Partition and Combine: Partition and Combine change
a tensor’s degree of parallelism. More specifically,
Partition increases the parallelism degree of a tensor
dimension by splitting the dimension into multiple equal-
sized partitions, as shown in Figure 8a. Combine performs
the reverse: reducing a tensor’s degree of parallelism by
concatenating multiple partitions into one.

2. Replicate and Reduce: Replicate and Reduce control the
parallelism degree of the replica dimension by copying and
summing tensors, as shown in Figure 8b. Parameter syn-
chronization is naturally captured as the back propagation
of Replicate operations applied to weight tensors.

3. Pipeline and Batch: Pipeline splits a tensor dimension
into equal size partitions and processes one partition at
a time, while Batch aggregates tensors across iterations
(see Figure 8c). Note that Pipeline does not modify the
parallelism degree of a tensor dimension, but instead re-
duce its size.

As a basic demonstration of the PCG’s expressiveness, Fig-
ure 9 illustrates how Unity’s six parallelization operators can
represent some example parallelization strategies from Sec-
tion 2.1. These parallelization operators can also be composed
to create hybrid parallelism. Figure 8d shows an example that
applies Replicate and Partition on the same tensor di-
mension, replicating the tensor and partitioning each replica.
To improve efficiency, Unity replaces particular sequences of
parallelization operators with fused versions at run time (e.g.,
a Reduce followed by a Replicate can be implemented as
an AllReduce).

3.4 Discussion and Comparison
Unity’s decision to use the PCG instead of an annotated com-
putation graph is driven by how easily the representations
lend themselves to joint search and not a fundamental limi-
tation of annotated computation graphs. Theoretically, there
exist annotation languages isomorphic to the PCG, but at-
tempts to design such a language quickly lead to a number of
difficulties.

First, because each operator can use different forms of
parallelism, including operator-specific forms of parallelism,
the number of annotations quickly grows prohibitively large.
Which annotations are supported by which operators, along
with their semantics and composition, must then be baked
into the representation itself. By comparison, Unity’s PCG
moves this knowledge into the PCG substitutions, which are
generated automatically. This separation of concerns makes
the core of Unity simpler and easier to maintain.

Second, not explicitly representing communication forces
communication patterns along dataflow edges to be recon-
structed from their source and destination node annotations,
which is difficult due to the expressive forms of parallelism
Unity considers. Specifically, supporting n parallelism dimen-
sions requires considering up to 2n different subsets of these
dimensions and thus 2n ×2n = 4n potential communication
patterns between operators. Unity explicitly represents com-
munication patterns throughout search, obviating the need for
a complex analysis to reconstruct them. Representing these
patterns via a small set of parallelization operators also allows
Unity to easily recognize and optimize common communica-
tion patterns, such as executing a pair of Reduce-Replicate

272    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



operators as an AllReduce. In an annotated computation
graph, these optimizations become entangled with the code
for reconstructing the communication patterns themselves,
adding significant complexity and implementation effort.

Finally, jointly optimizing an annotated computation graph
is challenging, as algebraic transformations can introduce new
operators which, since they have not yet been parallelized,
lack annotations. As such, the internal representation becomes
underspecified and the cost becomes undefined. It is possible
to add an additional mechanism to “fill in” these missing anno-
tations such as inserting a random annotation, a fixed value, a
value from a neighboring node (though this becomes challeng-
ing when neighboring nodes have differing parallelizations),
or evaluating the valid parallelizations and choosing the best
one. However, Unity’s PCG avoids this additional complex-
ity by representing each parallelization strategy for the new
operator as one or multiple PCG substitutions, offering an
efficient and uniform approach to joint optimization.

pONNX. Unity is not the first to integrate computation and
parallelism into a single graph: pONNX [57] proposed do-
ing so using Split, Concat, and custom operators Send and
Recv. However, Unity focuses on optimization while pONNX
is designed as a serialization format, leading to critical differ-
ences.

First, an operator in pONNX with a parallelism degree of n
is duplicated n times, requiring an optimizer to reconstruct the
operator from multiple nodes. Unity simply adds a parallelism
operator so the operator remains a single node in a PCG.

Second, pONNX assigns every communication its own
Send/Recv node, which dramatically increases the size of
the graph. Since communication patterns in DNN training
are highly regular, Unity eschews materializing every com-
munication in favor of optimizing communication patterns
(e.g., Reduce, Replicate, etc.), which allows Unity to repre-
sent communication costs without reasoning about individual
communications.

Finally, pONNX makes device placement part of the opera-
tor, while Unity represents it separately as a machine mapping.
This allows Unity’s search to optimize device assignments
separately and to ignore the symmetries created by a large
number of compute devices with identical capabilities.

Additional unified representations have been proposed [47,
48], which are discussed in Section 7.

4 Graph Substitutions
Since Unity represents both algebraic transformations and par-
allelization as graph substitutions, the effectiveness of joint
optimization relies on having an appropriate set of graph sub-
stitutions. The number of potential substitutions increases
exponentially with size, so Unity represents large and com-
plex algebraic transformations and parallelization strategies
as compositions of small PCG substitutions. For example,
Figure 10 shows the sequence of substitutions for the hand-
tuned parallelization strategy used in Megatron-LM [50].

Batch MM

Input Weight

Output

Partition
(dim = s) Replicate

Combine
(dim = s)

(a) Data/Sample.

Batch MM

Input Weight

Output

Partition
(dim = i)

Partition
(dim = i)

Reduce

(b) Reduction.

Batch MM

Input Weight

Output

Pipeline
(dim = s)

Batch 
(dim = s)

(c) Pipeline.

Figure 9: Representing different parallelization strategies for
batched matrix multiplication with a PCG. s, i, o, and h indi-
cate the sample, input channel, output channel, and attention
head dimensions, respectively.

Substitution generation. To reduce the engineering effort
to support new parallelization strategies, Unity automatically
generates and formally verifies all valid PCG substitutions up
to a fixed size to serve as a “basis set” from which the search
algorithm can construct sophisticated optimizations. This also
allows Unity to not only automatically discover algebraic
transformations and parallelization strategies, but also to find
novel hybrids of the two missed by prior approaches. To do
so, Unity adopts TASO’s super-optimization approach [25].

As in TASO, Unity discovers substitutions in two steps:
first it uses a fast heuristic to identify candidate substitutions,
and then it uses a more expensive formal verification to ensure
correctness. To find candidate substitutions, Unity enumerates
all possible PCGs up to a fixed size. Note that this fixed size
does not limit the size of the transformations Unity can apply,
as many larger substitutions are compositions of smaller ones.

For each generated PCG, Unity computes a fingerprint: a
hash of the PCG’s output tensors generated by evaluating
the PCG on some fixed input tensors. To allow Unity to ac-
count for parallelization, we extend the fingerprint function
in TASO [25] to include the parallelism degree of each tensor
dimension. A pair of PCGs is considered a candidate substitu-
tion if both PCGs have an identical fingerprint. The addition
of parallelism causes Unity to discover 651 new candidate
substitutions beyond the 743 previously identified by TASO.

Substitution verification. Similar to TASO, Unity formally
verifies the new substitutions using an automated theorem
prover (Z3 [12] in our implementation). Operator specifi-
cations are provided in first-order logic, where an operator
is represented as a function of its inputs and configuration
parameters. For example, Reduce(d,x) defines a Reduce op-
erator with input x and parallelism degree d. The fact that
Reduce commutes with matrix multiplication is captured by
the following operator property (where Replicate(d,y) rep-
resents a Replicate with input y and parallelism degree d):

∀d,x,y. Matmul(Reduce(d,x),y) =

Reduce(d,Matmul(x,Replicate(d,y)))

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    273



Partition
(dim = h)

Partition
(dim = h)

Combine
(dim = h)

Batch MM

Softmax

Batch MM

Key Query

Value

Partition
(dim = h)

Partition
(dim = h)

Combine
(dim = h)

MatMul
Weight

Batch MM

Softmax

Batch MM

Key Query

Value

MatMul

Weight

Batch MM

Softmax

Batch MM

Key Query

Value

Partition
(dim = h)

Partition
(dim = h)

MatMul
Weight

Combine
(dim = h)

Batch MM

Softmax

Batch MM

Key Query

Partition
(dim = h)

Partition
(dim = h)

MatMul

Attention-Head
Parallelism

Operator
Associativity

Query

Partition
(dim = h)

Combine
(dim = h)

Weight

Attention-Head
Parallelism

Batch MM

Softmax

Key Query

Partition
(dim = h)

Partition
(dim = h)

Query

Partition
(dim = 2)

Batch MM

MatMul

Combine
(dim = h)

Weight

Partition
(dim = i)

Reduction
Parallelism

Reduce

(b)(a) (c) (d) (e)

Figure 10: Representing the hand-tuned parallelization strategies used in Megatron-LM [50] as a sequence of basic graph
substitutions in Unity. BatchMM and MatMul are batched and regular matrix multiplications, respectively. Each arrow denotes
a graph substitution, where the dotted subgraphs in the same color are the source and target graph of the substitution. For
Partition and Combine, the parentheses indicate the data dimension for which they are performed.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ReLU

Input

Output

ReLU

Input

Output
Partition

(dim = row)

Combine
(dim = row)

(a)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Input 1

Add

Input 2

Replicate

Output

Input 1

Concat

Input 2

Reduce

Replicate

Output

(b)

Figure 11: Substitution (a) shows that spatial parallelism
is valid for ReLU. Substitution (b) demonstrates a hybrid
algebraic-parallel transformation: transforming an Add into a
Concat followed by a Reduce allows Unity to use the more
efficient AllReduce communication pattern.

We follow TASO’s methodology for developing operators’
parallelization properties: we attempt to formally verify all
candidate substitutions using Z3, and when a substitution can-
not be verified but is correct, we add the missing operator
properties. This procedure was repeated until all 651 new
substitutions discovered by Unity were verified. Overall, we
introduced 33 operator properties in addition to the 43 proper-
ties from TASO [25, Table 2] to verify all PCG substitutions.

Combined, the substitution generation and verification pro-
cess takes a total of 30 minutes. Since the available substitu-
tions only change on the addition of new operators or forms of
parallelism, this process can be run entirely offline so as not to
impact the execution time of Unity’s joint search algorithm.

Example Substitutions. Most new substitutions generated
by Unity simply state the parallelism valid for an operator. For
instance, the substitution in Figure 11a indicates that ReLU

supports spatial parallelism in the row dimension. However,
combining algebraic transformations and parallelization also
yields novel hybrids, such as the example shown in Figure 11b,
where Unity identifies that an Add operator is equivalent to a
Concat followed by a Reduce. In the left PCG, when Input
1 and Input 2 are located on separate devices and Output
is required to be replicated across those same devices, Input
1 and Input 2 would have to be sent to and from a single
device to be added. By applying this transformation, Unity
is able to merge the input tensors into a single distributed
tensor through a Concat (which moves no data) and replace
the communication with a Reduce followed by a Replicate
(which is implemented as an AllReduce).

5 Joint Optimization
This section describes Unity’s search algorithm for jointly
optimizing algebraic transformations and parallelization. The
core problem is as follows: given a PCG (Section 3), a set of
operator-level machine mappings (Section 3.2), and a set of
PCG substitutions (Section 4), find (1) a sequence of PCG
substitutions and (2) a machine mapping for the resulting
PCG that minimize the per-iteration training time. A key
challenge is the exponentially larger search space created by
unifying algebraic transformations and parallelization. The
search must also scale to both complex DNNs (i.e., a large
input PCG) and large numbers of compute devices (i.e., a
large set of operator-level machine mappings).

Unity uses a three-level hierarchical search algorithm, de-
picted in Figure 12. In simplified form, Unity breaks an input
PCG into subgraphs, determines an optimized sequence of
substitutions for each subgraph (which requires determining
the optimized machine mapping for each candidate), and then

274    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Machine 
Mapping

⁞
+

Optimized 
PCG

Input
PCG

Graph Splitting (5.3)

Substitution 
Selection (5.1)

Substitution 
Selection (5.1)

…

Machine 
Mapping
Selection

(5.2)

… …
⁞⁞

⁞
+

⁞
+

Machine 
Mapping
Selection

(5.2)

Machine 
Mapping
Selection

(5.2)

Machine 
Mapping
Selection

(5.2)

Figure 12: High-level depiction of Unity’s hierarchical search.

combines these sub-solutions to produce the final output. This
allows Unity to scale to DNNs with over 300 operators and
machines with 192 GPUs while keeping search times below
20 minutes, which is negligible compared to the hours or days
needed to train modern DNNs.

In the following section, we provide a more detailed
description of Unity’s search algorithm. Sections 5.1, 5.2,
and 5.3 describe the three levels of Unity’s search algorithm,
starting from the middle layer (substitution selection), then
the lowest (machine mapping selection), and finally introduc-
ing the highest level (graph splitting) as an optimization to
help Unity scale to large DNNs. Afterward, we briefly address
Unity’s cost estimation and how the search algorithm can be
tweaked to integrate pipeline parallelism.

5.1 Substitution Selection
Unity uses the cost-based backtracking search algorithm from
TASO [25] to identify a sequence of substitutions that mini-
mizes the execution time of an input PCG. Unity maintains a
queue of candidate PCGs sorted by their execution times, and
until the queue is emptied or a fixed budget is exceeded, Unity
iteratively removes the best candidate from the queue and
uses it to generate new candidates by applying every available
substitution at every location in the PCG whenever applicable.
Candidate PCGs with execution times that are a threshold
factor times worse than the best candidate PCG seen so far
are pruned, while the rest are inserted into the queue. The
threshold factor allows the user to balance the search time and
amount of exploration. In our experiments, we use a threshold
factor of 1.05.4

This algorithm allows Unity to explore arbitrary sequences
of substitutions, but requires an accurate cost estimator to
evaluate the execution time of each candidate PCG. Since a
PCG contains only the parallelization of each operator but not
the devices to which it is assigned (i.e., the machine mapping),
this cost estimator must first determine an optimized machine
mapping. An efficient algorithm must be used to identify this

4This specific value was chosen to match [25].

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Conv 1×1

Output

1

2

ReLU

Gr. Conv 3×3

6

7ReLU

Gr. Conv 1×1
5

4

3

Combine

Add

Input

Partition

ReLU

Conv 1×1

8

9

ReLU
0

Figure 13: Applying sequence and parallel graph splits on a
data-parallel ResNeXt module. Horizontal and vertical dotted
lines refer to sequence and parallel splits, respectively, and
numbers indicate the order they are applied.

mapping, as the cost estimator is called for every candidate
PCG. Section 5.2 introduces our algorithm to find optimized
machine mappings.

5.2 Finding Optimized Machine Mappings
The lowest level of Unity’s search algorithm identifies the
optimized machine mapping for a candidate PCG. The key
observation behind this level is that most modern DNN archi-
tectures consist of linear chains of independent strands of par-
allel computation. For example, ResNeXt [19] is built around
two parallel strands of convolutions (see Figure 13), which are
repeated to form the final model. Unity leverages this structure
by recursively decomposing these linear chains and parallel
strands into independent subgraphs through sequence and par-
allel graph splits respectively. Figure 13 demonstrates how
sequence and parallel graph splits can be iteratively applied to
decompose a ResNeXt module into recursive sub-problems
which can be solved via dynamic programming.

A sequence graph split partitions an input PCG G by find-
ing a postdominator node n, such that all paths from the inputs
to the outputs of G go through n. This post-dominator node
splits G into two disjoint subgraphs G1 and G2. Since all of
G2 depends on n, and n depends on all of G1, every operator
in G1 must complete before any in G2 can start. This reduces
the task of finding an optimized machine mapping for G to
optimizing machine mappings for G1, G2, and n. For example,
for split 1 in Figure 13, assuming no other splits (such as 0 )
had already been applied, n would be the Add node, G1 would
be all the nodes from Input up to but not including Add, and
G2 would be all the nodes after the Add until Output.

A parallel graph split partitions a PCG G into independent
subgraphs whose computations can be performed in parallel.
In this case, Unity considers two potential ways of running the
sides G1 and G2: in sequence (with access to the full machine
resources) or in parallel (with each side given a disjoint share
of the available resources) and chooses the faster one. Unity

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    275



does not allow combinations of serial and parallel execution,
in which branches are run partially in parallel and partially
in serial. While this eliminates certain strategies, consider-
ing them would significantly reduce Unity’s scalability as it
requires analyzing exponentially many interleavings of op-
erators, and as evidenced by the results in Section 6, these
strategies are not necessary to achieve good performance.
To determine how to partition the available resources when
running in parallel, Unity iterates over all possible resource
quantities that can be assigned to each side. By considering
resource quantities, Unity ignores redundant divisions that
differ only in which GPUs are assigned and not in the number
and location of these GPUs, replacing an exponential search
over all subsets of devices with a quadratic search over re-
source quantities.

As an additional optimization, Unity maintains a cache
of the selected machine mappings for all subgraphs. Since
substitution selection generates a new candidate for each sub-
stitution, and each substitution modifies only a small part of
a PCG, many candidate PCGs have most of their subgraphs
in common with other candidates. This allows Unity to skip
computing the cost and machine mapping of all but the part
of the PCG modified by the substitution under consideration.

5.3 Scaling to Large Graphs
Even with the dynamic programming algorithm and cross-
invocation caching, the search algorithm described so far fails
to scale to large models. To understand why, we examine how
the number of candidate PCGs in substitution selection scales
with the size of the input PCG.

As described in Section 5.1, at each iteration Unity gener-
ates a candidate PCG for every possible application of each
substitution. In the worst case this would require examining
O (2gs) candidates, where g is the number of nodes in the
PCG and s is the number of substitutions Unity considers. In
practice s has limited impact on search time as only a small
fraction of the substitutions Unity considers can be applied to
any one model, but for large models the exponential behavior
of g becomes problematic.

To solve this, we borrow from Section 5.1 and decompose
the PCG into independent sequential subgraphs. However,
this approach prevents applying substitutions across these
splits, which is problematic since Unity uses substitutions to
represent parallelization. Thus, naive graph splitting would
reduce the parallelism degree across all splits to 1, eliminating
many common and important parallelization strategies, such
as using data parallelism across the entire model.

Unity addresses this issue by explicitly searching for the op-
timal parallelization across every split location. More specif-
ically, for every possible partitioning of the tensor commu-
nicated across the split, Unity optimizes the resulting two
subgraphs under the condition that the first subgraph’s output
and the second subgraph’s input must both match the partition-
ing under consideration. When either subgraph does not meet

this condition, parallelization operators are inserted to ensure
any communication cost arising from a change in partitioning
is accounted for.

This method works for Partition and Combine but en-
counters a problem with Replicate and Reduce. For exam-
ple, consider the case of the tensor crossing the split location
having its replica degree fixed to 2 by the search algorithm.
To coerce the first subgraph to output a tensor in this format,
the search algorithm could insert a Replicate as its final
operation, and the algorithm similarly could insert a Reduce
as the first operation of the second subgraph. However, this
will incorrectly scale the tensor by a factor of 2! The core
issue is that unlike Partition and Combine, Replicate and
Reduce are not inverses of each other. Fortunately, since re-
duction parallelism that spans many nodes of a computation
graph is rarely useful in practice, we limit the partitionings
across splits to only those with a replica degree of 1.

To reduce the number of algebraic transformations these
splits prevent, Unity follows MetaFlow [26] and chooses split
locations that disrupt the fewest substitutions while maintain-
ing a minimum subgraph size k.5 Thus graph splitting reduces
the worst-case number of candidate PCGs from exponential
in g to linear in g, specifically from O (2gs) to O

( gp
k ×2ks

)
where p is the number of valid tensor partitionings.

Cost estimation. To estimate operator run times and com-
munication costs we use similar methods as prior work [24,
27]. More accurate cost models are possible [47], but we have
not noticed any issues caused by inaccuracies in our model.

Pipeline parallelism. When considering pipeline paral-
lelism, Unity adopts the 1F1B schedule (i.e., interleaving
forward and backward micro-batches on each device) and the
weight update semantics from PipeDream-2BW [40], which
achieves both high training throughput and low memory foot-
print. To reduce the search space, Unity only considers strate-
gies where pipeline parallelism is applied to all operators in
a PCG, since a non pipeline-parallel operator in the PCG
would disable the benefits of pipeline parallelism. In addi-
tion, similar to prior work [20, 39, 65], Unity only considers
sequential pipeline parallelism where each stage only com-
municates with a single next stage in the pipeline (except for
the last stage, which directly performs back propagation after
forward processing). Unity also follows prior work [16,20,53]
in assuming that the number of micro-batches in a mini-batch
is much larger then the number of pipeline stages so the ad-
ditional latency introduced by pipeline initialization can be
ignored. These constraints allow Unity to explore a compre-
hensive search space that includes existing pipeline paral-
lelism strategies while maintaining reasonable search time.
The search algorithm is also slightly modified: instead of
using per-iteration run time as a proxy for throughput, we

5Our experiments use k = 10 as it strikes a balance between keeping
subgraph sizes small enough for good scalability while blocking relatively
few substitutions.

276    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Task Architecture Dataset
Image ResNeXt-50 [60] ImageNet [46]
Classification Inception-v3 [51] ImageNet [46]
Language Models BERT-Large [14] WikiText-2 [35]
Recommendation DLRM [41] Criteo Kaggle [4]
Systems XDL [28] Criteo Kaggle [4]
Precision Medicine CANDLE-Uno [3] Dose response data [1]
Regression MLP [17] Synthetic data

Table 1: Overview of the seven DNNs evaluated.

maximize the throughput directly.

6 Evaluation
6.1 Implementation and Experimental Setup
Unity is implemented on top of FlexFlow [27], a distributed
multi-GPU runtime for DNN training. We modified FlexFlow
to represent models with PCGs, added support for Unity’s
additional forms of parallelism, and replaced FlexFlow’s ran-
domized search with the algorithm described in Section 5.
The substitution generator (Section 4) is implemented on top
of TASO [25], and extends its fingerprint function to con-
sider parallelization. We also add 33 parallelization-specific
properties that are used by the substitution verifier as axioms
capturing the semantics of the parallelization operators.

All experiments were performed on the Summit supercom-
puter [2, 56]. Each compute node is equipped with two IBM
POWER9 CPUs, 512 GB main memory, and six NVIDIA
Volta V100 GPUs. Three of the GPUs within a node are
connected to the same CPU and interconnected via NVLink.
Nodes are connected with Mellanox EDR 100Gb InfiniBand.

DNNs. Table 1 summarizes the seven DNN models used in
our evaluation. ResNeXt-50 [60] and Inception-v3 are com-
monly used DNNs for image classification. BERT [14] is
a language model with state-of-the-art accuracy on a spec-
trum of language tasks. DLRM [41] and XDL [28] are deep
learning recommendation models for personalization and ads
recommendation. CANDLE-Uno [3] is a DNN architecture
for precision medicine. Multi-layer perceptron [17] (MLP)
is a widely used architecture for a variety of regression tasks
and a core component in many DNNs.

We follow prior work in setting hyperparameters for train-
ing (e.g., batch sizes, learning rates) [3, 14, 38, 41, 60]. We
report per-GPU minibatch size B: for runs with n GPUs, the
global minibatch size is n×B. The global minibatch sizes are
consistent with those reported in the literature. We use a per-
GPU minibatch size of 64 for ResNeXt-50 and Inception-v3,
4 for BERT-Large, 1024 for DLRM and XDL, and 256 for
CANDLE-Uno and MLP. The MLP model includes 16 dense
layers, each of which has a hidden dimension of 8192. We
use Adam [29] with a learning rate of 0.0001 for BERT-Large,
and SGD [18] with a learning rate of 0.01 for the other DNNs.

Unless stated, pipeline parallelism is disabled when com-
paring against frameworks that do not support this feature.

We evaluate the impact of pipeline parallelism in Figure 15a.

Search Time. For all DNNs except Inception-v3, Unity’s
search times are under 10 minutes even for the largest GPU
count (i.e., 192). Even for Inception-v3, the most complex
architecture in our evaluation with 323 operators, search termi-
nates within 20 minutes. These times are negligible compared
to the hours or days needed to train these DNNs.

6.2 End-to-end Evaluation
We compare the end-to-end training performance of Unity
and existing frameworks such as Megatron [50] and Deep-
Speed [43]. We also compare against using TASO [25] and
FlexFlow [27] to perform sequential optimization (i.e., TASO
first and FlexFlow second). Since Megatron [50] and Deep-
Speed [43] require the user to manually optimize each model,
these baselines are only present for a subset of the models,
while the automated approaches of FlexFlow and Unity can
be used across all seven. Figure 14 shows the results.

BERT-Large has been highly optimized by existing frame-
works such as Megatron and DeepSpeed which use expert-
designed strategies combining multiple forms of parallelism.
As such, Unity is not expected to outperform these strategies.
Instead, the primary purpose of this evaluation is to determine
if Unity can re-discover these hand-tuned strategies within
a few minutes of automated search. Note that since Mega-
tron and DeepSpeed require users to manually specify all
parallelism degrees for data, tensor-model, and pipeline par-
allelism, we explore different combinations of the supported
parallelism degrees and report the best performance.

Unity achieves on-par performance with Megatron and out-
performs both DeepSpeed and FlexFlow. We find that the
best strategy discovered by Unity is almost the same as the
expert-designed strategy in Megatron: the only difference is
that for some matrix multiplications Megatron uses reduc-
tion parallelism while Unity uses data parallelism, which has
a negligible impact on overall training performance. This
shows that even on highly-optimized models Unity is able
to automatically generate parallelization optimizations that
match those manually designed by domain experts. Megatron
is customized for Transformer-based language models and
does not support the other DNNs in our evaluation. The fact
that the parallelization strategy discovered by Unity matches
the expert-designed strategy in Megatron is, in our view, a
positive outcome of Unity.

DLRM and CANDLE-Uno both exceed the memory capac-
ity of a single GPU, preventing data parallel training. For both
models we use the expert-designed strategy proposed in [38]
as a baseline, which parallelizes communication-intensive
operators (e.g., embedding tables) in model parallelism and
compute-intensive operators (e.g., matrix multiplications) in
data parallelism. Unity outperforms both expert-designed
strategies and TASO+FlexFlow by up to 3.6× on DLRM
and 1.6× on CANDLE-Uno. For all other models, we com-
pare Unity against data parallelism and TASO+FlexFlow.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    277



6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

2K

4K

6K

8K

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Data Parallelism
TASO+FlexFlow
Unity

(a) ResNeXt-50.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

300

600

900

1200

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

DeepSpeed
TASO+FlexFlow
Megatron
Unity

(b) BERT-Large.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)
0

300K

600K

900K

1200K

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Expert-Designed
TASO+FlexFlow
Unity

(c) DLRM.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

100K

200K

300K

400K

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Expert-Designed
TASO+FlexFlow
Unity

(d) CANDLE-Uno.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

4K

8K

12K

16K

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Data Parallelism
TASO+FlexFlow
Unity

(e) Inception-v3.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

50K

100K

150K

200K

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Data Parallelism
TASO+FlexFlow
Unity

(f) MLP.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

300K

600K

900K

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Data Parallelism
TASO+FlexFlow
Unity

(g) XDL.

Figure 14: Training throughput comparison among existing frameworks and Unity. The experiments were performed on the
Summit supercomputer [2] with 6 GPUs per node. All numbers were measured by averaging 1,000 training iterations.

24(4) 48(8) 96(16)
Number of GPUs (Number of nodes)

0

200

400

600

800

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

1.3x

1.3x

1.4x

Data & Model Parallelism
+ Reduction Parallelism
+ Attention-Head Parallelism
+ Pipeline Parallelism

(a)

MLP CANDLE-Uno XDL DLRM0

200K

400K

600K

O
ve

ra
ll 

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

1.1x
1.1x

1.3x

1.4x

Sequential Optimization
Joint Optimization

(b)

Figure 15: (a) End to end performance of BERT-Large inte-
grating different parallelization dimensions. Speedups relative
to data+model parallelism. (b) Speedups solely attributable to
joint vs sequential optimization on 96 V100 GPUs (16 nodes).
Search space and algorithm are fixed to remove effects from
Unity’s larger search space and improved search scalability.

Unity outperforms the best existing approaches by 1.0× on
ResNeXt-50, 1.3× on Inception-v3, 2.0× on MLP, and 1.9×
on XDL. The lack of improvement on ResNeXt-50 is ex-
pected as the model’s optimal strategy (data parallelism) is
already the default used by most frameworks.

We observe that the performance improvement is achieved
by (1) supporting operator-specific parallelism and (2) jointly
optimizing algebraic transformations and parallelization. We
further analyze these details in the following experiments.

6.3 Parallelism Dimensions
To evaluate how different parallelism dimensions improve
training performance, we perform an ablation study of Unity

on BERT-Large by iteratively adding new dimensions to Unity
and measuring the training throughput. Figure 15a shows the
results. Compared to data and model parallelism, adding re-
duction parallelism does not improve training performance,
but combining reduction and attention-head parallelism in-
creases performance by up to 1.2× because optimizing the at-
tention operators in BERT-Large requires both reduction and
attention-head parallelism, as shown in Figure 10. Enabling
pipeline parallelism achieves an overall speedup of 1.4×. This
result shows that hybrid strategies and operator-specific di-
mensions are critical for DNN training performance.

6.4 Joint Optimization
To evaluate Unity’s joint optimization, we compare against
sequential optimization of algebraic transformations and par-
allelization. Results are shown in Figure 15b. Unlike the
TASO+FlexFlow baseline in Figure 14, in Figure 15b we in-
clude Unity’s additional parallelism dimensions and improved
scalability to isolate the effects of joint optimization. As a
result, the performance improvement (up to 1.4× speedup)
comes solely from the ability to optimize jointly rather than
sequentially. We study three examples in detail.

The first (Figure 16a) is a slight generalization of the ex-
ample introduced in Figure 2. By not fusing the first MatMul
and ReLU, which would be done in sequential optimization
as the algebraic optimizer would ignore parallelism, Unity is
able to significantly reduce the amount of communication by
using reduction parallelism and a more efficient AllReduce
(represented by the Reduce followed by Replicate).

The second is shown in Figure 16b. Concatenation is the
main performance bottleneck in DLRM and XDL, since it can-

278    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



MatMul + 
ReLU

MatMul +
ReLU

Partition
(dim = i)

Input

MatMul

Reduce

Replicate

ReLU

MatMul + 
ReLU

Weight

Partition
(dim = i)

Weight

Partition
(dim = o)

Input Weight

Weight

(a) Multi-layer perceptron.

MatMul + 
ReLU

Concatenation

Embedding Embedding…
MatMul

Embedding

…

Add + 
ReLU

Partition
(dim = o)

MatMul

Embedding

Partition
(dim = o)

(b) Concatenation.

Embedding
Bag

Input W1

MatMul

W2

Input W1

MatMul

W2

Embedding

Reduce
(dim = c)

Partition
(dim = c)

Replicate

(c) EmbeddingBag.

Figure 16: Example joint optimizations of computation graph and parallelization discovered by Unity. For Partition, i and o
indicate the input and output channel dimensions of a matrix multiplication.

Table 2: Search algorithm ablation study. “Scaled” numbers
are relative to the 2 GPU time with all optimizations enabled.

All w/o Split w/o Cache+Split

Time Scaled Time Scaled Time Scaled

6 GPUs (1 nodes) 57s 1× 4m 01s 4.3× 37m 01s 38.5×
12 GPUs (2 nodes) 1m 47s 1.9× 11m 15s 16.8× > 1h n/a
24 GPUs (4 nodes) 3m 00s 3.1× > 1h n/a > 1h n/a
48 GPUs (8 nodes) 5m 55s 6.1× > 1h n/a > 1h n/a

not be parallelized in the same dimension as the Embedding
operators and requires an all-to-all synchronization. The op-
timization eliminates the Concatenation by replacing the
subsequent MatMul with independent MatMuls executed using
the same model parallel strategy as the Embedding operators,
which reduces communication costs as the Embedding opera-
tors’ outputs are only used locally.

The third optimization is shown in Figure 16c. An
EmbeddingBag [15] operator computes the sum of a bag of
embeddings for each training sample. Unity discovers a joint
optimization that transforms an EmbeddingBag to a normal
Embedding to enable additional parallelization opportunities.

6.5 Search Algorithm

To evaluate the impact of the three search optimizations
(graph splitting, cross-invocation cache, and dynamic pro-
gramming) presented in Section 5, we perform an ablation
study of the search time for ResNeXt-50. With all three tech-
niques enabled (the “All” column), we see roughly linear
scaling as we move from 6 to 48 GPUs. This, along with Fig-
ure 14, demonstrates that Unity’s search algorithm scales to
nontrivial node counts.

Disabling graph splitting increases search times by 4.3-
8.8× and causes them to scale nonlinearly, while disabling
the cross-invocation cache adds an additional 8.9×. Disabling
the dynamic programming algorithm causes even the small-
est cases to time out. These results indicate that the three
proposed techniques are necessary for adequate performance.

7 Related Work

Manually-designed parallelization strategies. Manually-
designed parallelization strategies are used in most existing
DNN frameworks to optimize distributed DNN training [5, 6,
42, 43, 49]. For example, Neo [38] optimizes DLRM by using
data parallelism for compute-intensive operators and model
parallelism for communication-intensive operators. Megatron-
LM [50] proposes a model-specific customized strategy that
combines data, reduction, and attention-head parallelism for
training large language models. These strategies only work
for specific DNN models and do not generalize. We use these
expert-designed strategies as baselines in our evaluation and
show that Unity can automatically discover strategies with
improved performance.

Automated DNN parallelization. Recent work has pro-
posed automated approaches to optimizing distributed DNN
training. For example, ColocRL [36, 37] and Placeto [7] use
reinforcement learning to find efficient device placement for
model parallelism. Baechi [22] achieves fast device place-
ment for model parallelism using two memory-constrained
algorithms. FlexFlow [27] uses randomized search to opti-
mize data, model, and spatial parallelism. GSPMD [61], a
generalization of GShard [34], finds parallelization strategies
based on user-provided hints. PipeDream [39] uses dynamic
programming to find optimized strategies combining pipeline
and data parallelism. Tofu [59] uses recursive search to min-
imize communication time and automatically discovers par-
allelization dimensions via interval analysis. Tarnawski et
al. [52, 53] propose a two-level dynamic programming algo-
rithm to partition a DNN computation graph across devices
by combining data, pipeline, and tensor model parallelism.
Alpa [65] automates inter-operator (i.e., pipeline) parallelism
using dynamic programming and intra-operator (i.e., data and
tensor model) parallelism using integer linear programming.
Whale [23] uses computation-balanced partitioning to acco-
modate heterogenous compute devices and allows specifying
parallelization strategies through small parallelization primi-
tives. TensorOpt [8] introduces the cost frontier to simultane-
ously reason about multiple objectives (e.g., execution time
and cloud resource cost) in automatic parallelization. Finally,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    279



AutoSync [63] learns to optimize synchronization strategies
for data-parallel training from a few thousand samples. How-
ever, existing approaches (except Tofu) only support limited
parallelism dimensions and none jointly optimizes algebraic
transformations and parallelization. Unity supports all exist-
ing parallelism dimensions, is extensible to new operators and
forms of parallelism, and jointly optimizes algebraic transfor-
mations and parallelization.

Automated algebraic transformations. TASO [25] au-
tomatically discovers algebraic transformations for DNNs
but does not support parallelization. Unity adopts the super-
optimization idea from TASO to generate and verify PCG
substitutions. However, unlike the algebraic transformation
task considered by TASO, Unity deals with a significantly
larger search space and considers additional tasks, such as de-
vice assignments. We observe that TASO’s search algorithm
alone is incapable of exploring the larger search space. To
address this challenge, Unity introduces three novel elements
of the search technique: the dynamic programming algorithm
for finding optimized machine mappings, the subgraph cache
for exploiting the locality of graph substitutions, and the addi-
tional parallelism-compatible divide-and-conquer approach
to enabling scalability to complex models.

Automated DNN code generation. Recent work has pro-
posed approaches for generating hardware-specific code for
DNN operators. TVM [10, 11] uses a learning-based algo-
rithm to generate optimized code for a diverse set of hardware
backends. Ansor [64] extends TVM by utilizing a hierarchi-
cal search algorithm to explore a much larger search space
of program candidates. Unity optimizes DNN computation
at a higher level than these approaches. Therefore, Unity’s
optimizations are orthogonal and can be combined with ex-
isting code generation techniques. We leave integrating code
generation into Unity as future work.

Intermediate representations for DNN parallelization.
TensorFlow [?], MLIR [31, 32], Relay [45], and ONNX [33]
represent DNN computation with graph-based intermediate
representations (IRs). Distributed training of a model is rep-
resented by annotating each operator with a parallelization
strategy describing how the operator is parallelized across de-
vices. These approaches represent algebraic transformations
and parallelization separately and optimize them sequentially,
missing joint optimizations. pONNX [57], automap [48], and
DistIR [47] propose IRs that express both computation and
communication, but are too low-level to be used for Unity-
style joint optimization (see Section 3.4 for details). Unity
uses a higher-level representation better suited to optimization,
the PCG, and represents both parallelization and algebraic
transformations as graph substitutions on PCGs.

8 Limitations and Future Work
To scale to large DNNs and machines, Unity’s search algo-
rithm exploits the sequential and parallel structure of modern

DNNs (see Section 5.2). However, there exist DNN architec-
tures (e.g., NASNet [66]) that violate this structure. Extending
Unity to include these DNNs would improve generality, but
potentially at the cost of decreased scalability.

While Unity successfully optimizes two of the most promi-
nent classes of optimizations (i.e., algebraic transformations
and parallelization), there are a variety of additional optimiza-
tions currently not considered, such as tensor offloading and
rematerialization [21, 30, 44]. The PCG can be extended to
represent these optimizations, but the search algorithm as pre-
sented in Section 5 does not reason about memory usage and
therefore may generate parallelization strategies that violate
memory constraints. While these invalid strategies can be
made valid by applying the necessary tensor offloading and
rematerialization afterward, not including these optimizations
in Unity’s joint search potentially leads to suboptimal perfor-
mance. Thus, integrating memory optimizations into Unity’s
search algorithm is a promising area for future research.

Another limitation of Unity is its support for pipeline par-
allelism. While PCGs are capable of representing paral-
lelization strategies that interleave pipeline-parallel and non-
pipeline-parallel operators in a PCG, our search algorithm
excludes these cases to reduce the search space. In addition,
Unity’s search algorithm does not consider non-sequential
pipeline parallelism strategies, where a stage can have multi-
ple predecessor/successor stages.

9 Conclusion
This paper presents Unity, the first system that jointly opti-
mizes algebraic transformations and parallelization in dis-
tributed DNN training. Unity represents both parallelization
and algebraic transformations as substitutions on a unified
graph representation, uses a novel hierarchical search algo-
rithm to identify an optimized sequence of substitutions, and
scales to large numbers of GPUs and complex DNNs.

Our evaluation with seven real-world DNN benchmarks
on up to 192 GPUs show that Unity outperforms state-of-the-
art parallelization approaches by up to 3.6× while keeping
optimization times under 20 minutes. As nearly half of this
speedup is attributable solely to the use of joint optimization
over sequential optimization, Unity demonstrates that joint
optimization is practical and that future systems will need to
include it or else miss significant performance gains.

Acknowledgement
We thank the anonymous reviewers for their comments, and
are grateful to our shepherd Byung-Gon Chun for his feed-
back. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship
Program under Grant No. DGE-1656518, and an NSF award
CNS-2147909. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

280    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References
[1] CANDLE Benchmarks. https://github.com/ECP-C

ANDLE/Benchmarks, 2018. 3, 11

[2] Summit supercomputer. https://www.olcf.ornl.go
v/summit/, 2018. 11, 12

[3] Uno: Predicting tumor dose response across multiple
data sources. https://github.com/ECP-CANDLE/Be
nchmarks/tree/master/Pilot1/Uno, 2018. 11

[4] Criteo 1tb click logs dataset. https://ailab.criteo
.com/download-criteo-1tb-click-logs-datas
et/, 2021. 11

[5] Optimize and accelerate machine learning inferencing
and training. https://www.onnxruntime.ai/, 2021.
13

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI, 2016. 1, 3, 13

[7] Ravichandra Addanki, Shaileshh Bojja Venkatakrish-
nan, Shreyan Gupta, Hongzi Mao, and Mohammad Al-
izadeh. Placeto: Learning generalizable device place-
ment algorithms for distributed machine learning. CoRR,
abs/1906.08879, 2019. 13

[8] Zhenkun Cai, Xiao Yan, Kaihao Ma, Yidi Wu, Yuzhen
Huang, James Cheng, Teng Su, and Fan Yu. TensorOpt:
Exploring the Tradeoffs in Distributed DNN Training
with Auto-Parallelism. IEEE Transactions on Parallel
and Distributed Systems, 2021. 13

[9] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A flexible and efficient
machine learning library for heterogeneous distributed
systems. CoRR, abs/1512.01274, 2015. 3

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen
Shen, Eddie Q. Yan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
TVM: end-to-end optimization stack for deep learning.
CoRR, abs/1802.04799, 2018. 14

[11] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.

In Advances in Neural Information Processing Systems
31, NeurIPS’18. 2018. 14

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An ef-
ficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, 2008. 7

[13] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and
Andrew Y. Ng. Large scale distributed deep networks.
In NIPS, 2012. 1

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018. 3, 11

[15] EmbeddingBag in PyTorch. https://pytorch.org/
docs/stable/generated/torch.nn.EmbeddingBa
g.html, 2021. 13

[16] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei
Lin. Dapple: A pipelined data parallel approach for
training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’21, page 431–445, New
York, NY, USA, 2021. Association for Computing Ma-
chinery. 10

[17] Matt W Gardner and SR Dorling. Artificial neural net-
works (the multilayer perceptron)—a review of applica-
tions in the atmospheric sciences. Atmospheric environ-
ment, 32(14-15):2627–2636, 1998. 11

[18] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017. 11

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, 2016. 9

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism, 2018. 10

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    281

https://github.com/ECP-CANDLE/Benchmarks
https://github.com/ECP-CANDLE/Benchmarks
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://www.onnxruntime.ai/ 
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html


[21] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-
lami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer, and
Ion Stoica. Checkmate: Breaking the memory wall with
optimal tensor rematerialization. In I. Dhillon, D. Papail-
iopoulos, and V. Sze, editors, Proceedings of Machine
Learning and Systems, volume 2, pages 497–511, 2020.
14

[22] Beomyeol Jeon, Linda Cai, Pallavi Srivastava, Jintao
Jiang, Xiaolan Ke, Yitao Meng, Cong Xie, and Indranil
Gupta. Baechi: Fast device placement of machine learn-
ing graphs. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 416–430, New
York, NY, USA, 2020. Association for Computing Ma-
chinery. 13

[23] Xianyan Jia, Le Jiang, Ang Wang, Jie Zhang, Xinyuan
Li, Wencong Xiao, Langshi chen, Yong Li, Zhen Zheng,
Xiaoyong Liu, and Wei Lin. Whale: Scaling Deep Learn-
ing Model Training to the Trillions. arXiv:2011.09208
[cs], August 2021. 2, 13

[24] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Ex-
ploring hidden dimensions in accelerating convolutional
neural networks. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research. PMLR,
2018. 1, 10

[25] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: Optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 47–62, New York, NY, USA, 2019. Association
for Computing Machinery. 1, 3, 4, 7, 8, 9, 11, 14

[26] Zhihao Jia, James Thomas, Todd Warzawski, Mingyu
Gao, Matei Zaharia, and Alex Aiken. Optimizing dnn
computation with relaxed graph substitutions. In Pro-
ceedings of the 2nd Conference on Systems and Machine
Learning, SysML’19, 2019. 1, 10

[27] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
In Proceedings of the 2nd Conference on Systems and
Machine Learning, SysML’19, 2019. 1, 2, 3, 10, 11, 13

[28] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui
Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue
Wang, Yue Song, Liqin Zhao, Zhi Wang, Peng Sun,
Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang Zhu,
and Kun Gai. Xdl: An industrial deep learning frame-
work for high-dimensional sparse data. In Proceedings
of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data, DLP-KDD

’19, New York, NY, USA, 2019. Association for Com-
puting Machinery. 11

[29] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 11

[30] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jen-
nifer Brennan, Mike He, Jared Roesch, Tianqi Chen,
and Zachary Tatlock. Dynamic tensor rematerialization.
CoRR, abs/2006.09616, 2020. 14

[31] C. Lattner, M. Amini, U. Bondhugula, A. Cohen,
A. Davis, J. Pienaar, R. Riddle, T. Shpeisman, N. Vasi-
lache, and O. Zinenko. Mlir: Scaling compiler infras-
tructure for domain specific computation. In 2021
IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pages 2–14, 2021. 14

[32] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday
Bondhugula, River Riddle, Albert Cohen, Tatiana Sh-
peisman, Andy Davis, Nicolas Vasilache, and Oleksandr
Zinenko. MLIR: A compiler infrastructure for the end
of moore’s law. CoRR, abs/2002.11054, 2020. 14

[33] Tung D. Le, Gheorghe-Teodor Bercea, Tong Chen,
Alexandre E. Eichenberger, Haruki Imai, Tian Jin,
Kiyokuni Kawachiya, Yasushi Negishi, and Kevin
O’Brien. Compiling ONNX neural network models
using MLIR. CoRR, abs/2008.08272, 2020. 14

[34] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. CoRR, abs/2006.16668, 2020. 13

[35] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models, 2016.
11

[36] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit
Steiner, Quoc V. Le, and Jeff Dean. A hierarchical model
for device placement. In International Conference on
Learning Representations, 2018. 13

[37] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit
Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar,
Mohammad Norouzi, Samy Bengio, and Jeff Dean. De-
vice placement optimization with reinforcement learn-
ing. 2017. 13

[38] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Bas-
ant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong

282    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Ser-
hat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yin-
bin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,
Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Ki-
ran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,
Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,
Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-
tacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,
Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao.
Software-hardware co-design for fast and scalable train-
ing of deep learning recommendation models, 2021. 11,
13

[39] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 1–15, New York,
NY, USA, 2019. Association for Computing Machinery.
1, 4, 10, 13

[40] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie
Chen, and Matei Zaharia. Memory-efficient pipeline-
parallel dnn training, 2020. 10

[41] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019. 3, 11

[42] Tensors and Dynamic neural networks in Python with
strong GPU acceleration. https://pytorch.org,
2017. 3, 13

[43] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimization towards train-
ing A trillion parameter models. CoRR, abs/1910.02054,
2019. 11, 13

[44] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: De-
mocratizing billion-scale model training, 2021. 14

[45] Jared Roesch, Steven Lyubomirsky, Marisa Kirisame,
Josh Pollock, Logan Weber, Ziheng Jiang, Tianqi Chen,
Thierry Moreau, and Zachary Tatlock. Relay: A high-
level IR for deep learning. CoRR, abs/1904.08368, 2019.
14

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, Michael Bernstein, et al. Ima-
genet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision, 2015. 11

[47] Keshav Santhanam, Siddharth Krishna, Ryota Tomioka,
Tim Harris, and Matei Zaharia. DistIR: An Intermediate
Representation and Simulator for Efficient Neural Net-
work Distribution. arXiv:2111.05426 [cs], November
2021. 7, 10, 14

[48] Michael Schaarschmidt, Dominik Grewe, Dimitrios
Vytiniotis, Adam Paszke, Georg Stefan Schmid,
Tamara Norman, James Molloy, Jonathan Godwin, Nor-
man Alexander Rink, Vinod Nair, and Dan Belov. Au-
tomap: Towards Ergonomic Automated Parallelism for
ML Models. arXiv:2112.02958 [cs], December 2021.
2, 7, 14

[49] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Pe-
ter Hawkins, HyoukJoong Lee, Mingsheng Hong,
Cliff Young, Ryan Sepassi, and Blake Hechtman.
Mesh-TensorFlow: Deep Learning for Supercomputers.
arXiv:1811.02084 [cs, stat], November 2018. 13

[50] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019. 1, 7, 8, 11, 13

[51] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2016. 11

[52] Jakub Tarnawski, Amar Phanishayee, Nikhil R. Devanur,
Divya Mahajan, and Fanny Nina Paravecino. Efficient
algorithms for device placement of dnn graph operators,
2020. 13

[53] Jakub M Tarnawski, Deepak Narayanan, and Amar Phan-
ishayee. Piper: Multidimensional planner for dnn paral-
lelization. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34,
pages 24829–24840. Curran Associates, Inc., 2021. 10,
13

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. 4

[55] Sudharshan S Vazhkudai, Bronis R de Supinski,
Arthur S Bland, Al Geist, James Sexton, Jim Kahle,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    283

https://pytorch.org


Christopher J Zimmer, Scott Atchley, Sarp Oral, Don E
Maxwell, et al. The design, deployment, and evaluation
of the coral pre-exascale systems. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC. IEEE,
2018. 5

[56] Sudharshan S. Vazhkudai, Bronis R. de Supinski,
Arthur S. Bland, Al Geist, James Sexton, Jim Kahle,
Christopher J. Zimmer, Scott Atchley, Sarp Oral, Don E.
Maxwell, Veronica G. Vergara Larrea, Adam Bertsch,
Robin Goldstone, Wayne Joubert, Chris Chambreau,
David Appelhans, Robert Blackmore, Ben Casses,
George Chochia, Gene Davison, Matthew A. Ezell, Tom
Gooding, Elsa Gonsiorowski, Leopold Grinberg, Bill
Hanson, Bill Hartner, Ian Karlin, Matthew L. Leininger,
Dustin Leverman, Chris Marroquin, Adam Moody, Mar-
tin Ohmacht, Ramesh Pankajakshan, Fernando Pizzano,
James H. Rogers, Bryan Rosenburg, Drew Schmidt,
Mallikarjun Shankar, Feiyi Wang, Py Watson, Bob
Walkup, Lance D. Weems, and Junqi Yin. The design,
deployment, and evaluation of the coral pre-exascale sys-
tems. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, SC ’18. IEEE Press, 2018. 11

[57] Fei Wang, Guoyang Chen, Weifeng Zhang, and Tiark
Rompf. Parallel Training via Computation Graph Trans-
formation. In 2019 IEEE International Conference on
Big Data (Big Data), pages 3430–3439, December 2019.
3, 7, 14

[58] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 37–54. USENIX Association, July
2021. 1

[59] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting Very Large Models using Automatic Dataflow
Graph Partitioning. In Proceedings of the Fourteenth Eu-
roSys Conference 2019, EuroSys ’19, pages 1–17, New
York, NY, USA, March 2019. Association for Comput-
ing Machinery. 1, 2, 3, 13

[60] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen
Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. CoRR, abs/1611.05431,
2016. 11

[61] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, Ruom-
ing Pang, Noam Shazeer, Shibo Wang, Tao Wang,

Yonghui Wu, and Zhifeng Chen. GSPMD: General and
Scalable Parallelization for ML Computation Graphs.
arXiv:2105.04663 [cs], May 2021. 13

[62] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang,
Max Willsey, Sudip Roy, and Jacques Pienaar. Equality
Saturation for Tensor Graph Superoptimization. Pro-
ceedings of Machine Learning and Systems, 3:255–268,
March 2021. 2

[63] Hao Zhang, Yuan Li, Zhijie Deng, Xiaodan Liang,
Lawrence Carin, and Eric Xing. Autosync: Learning to
synchronize for data-parallel distributed deep learning.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 906–917. Curran
Associates, Inc., 2020. 14

[64] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor : Generating high-performance tensor
programs for deep learning. CoRR, abs/2006.06762,
2020. 14

[65] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Joseph E. Gonzalez,
and Ion Stoica. Alpa: Automating inter- and intra-
operator parallelism for distributed deep learning. CoRR,
abs/2201.12023, 2022. 10, 13

[66] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
2018. 14

284    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Trinity: High-Performance Mobile Emulation through Graphics Projection

Di Gao†∗, Hao Lin†∗, Zhenhua Li†, Chengen Huang†, Yunhao Liu†

Feng Qian§, Liangyi Gong‡, Tianyin Xu¶

†Tsinghua University §University of Minnesota ‡CNIC, CAS ¶UIUC

Abstract

Mobile emulation, which creates full-fledged software mo-

bile devices on a physical PC/server, is pivotal to the mo-

bile ecosystem, especially for PC-based mobile gaming, app

debugging, and malware detection. Unfortunately, existing

mobile emulators perform poorly on graphics-intensive apps

in terms of either efficiency or compatibility or both. To ad-

dress this, we introduce graphics projection, a novel graphics

virtualization mechanism that adds a small-size projection

space inside the guest memory of a virtual mobile device.

The projection space processes graphics operations involving

control contexts and resource handles without host interac-

tions. Novel flow control and data teleporting mechanisms are

devised to match the decoupled graphics processing rates of

the virtual device and the host GPU to maximize performance.

The resulting new Android emulator, dubbed Trinity, exhibits

an average of 93.3% native hardware performance and 97.2%

app support, in some cases outperforming other emulators

by more than an order of magnitude. It has been adopted by

Huawei DevEco Studio, a major Android IDE with millions

of developers.

1 Introduction

Mobile emulation has been a keystone of the mobile ecosys-

tem. Developers today typically debug their apps on generic

mobile emulators (e.g., Google’s Android Emulator, or GAE

for short) rather than on heterogeneous real devices. Also,

various dedicated mobile emulators (e.g., Bluestacks [14]

and DAOW [55]) are used to detect malware in app mar-

kets [21, 44, 54], to enable mobile gaming on PCs [14, 55],

and to empower the emerging notion of cloud gaming [36].

1.1 Motivation

To create full-fledged software mobile devices on a physical

PC/server, mobile emulators usually adopt the classic virtu-

alization framework [33, 40, 45, 46] where a mobile OS runs

in a virtual machine (VM), referred to as the guest, hosted

on a PC/server, referred to as the host. However, traditional

virtualization techniques are initially designed to work on

headless servers or common PCs without requiring strong

UI interactions within the VM, while real-world mobile apps

∗ Co-primary authors. Zhenhua Li is the corresponding author.

are highly interactive [37] and thus expecting mobile emu-

lators to have powerful graphics processing capabilities (as

provided by real mobile phones) [55]. This capability gap is

further aggravated by the substantial architectural differences

between the graphics stacks of desktop and mobile OSes [15].

Over the years, several approaches have been proposed to

fill the gap. Perhaps the most intuitive is solely relying on

a CPU to carry out a GPU’s functions. For example, as a

user-space library residing in mobile OSes (e.g., Android),

SwiftShader [26] helps a CPU mimic the processing routines

of a GPU. This achieves the best compatibility since any

mobile app can thus seamlessly run under a wide variety of

environments even without actual graphics hardware, but at

the cost of poor efficiency since a CPU is never suited to

handling the highly parallel (graphics) rendering tasks.

To improve the emulation efficiency, a natural approach is

multiplexing the host GPU within a PC/server through API

remoting [18, 50], which intercepts high-level graphics API

calls at the guest and then executes them on the host GPU with

dedicated RPC protocols and guest-host I/O pipes. Unfortu-

nately, the resulting products (e.g., GAE) cannot smoothly

run many common apps, let alone “heavy” (i.e., graphics-

intensive) apps for AR/VR viewing and 3D gaming. This

shortcoming stems from frequent VM Exits to the host to

execute API calls, introducing a considerable “tromboning”

effect [19] on the control and data flows. This results in addi-

tional idle waiting at the guest, as it must wait not only for the

API call to complete, but also for the added process of exiting

to the host and returning back to the guest.

To mitigate the issue, device emulation [17] moves the vir-

tualization boundary from the API level to the driver level.

It forwards guest-side graphics driver commands to the host

with a shared memory region inside the guest kernel to realize

their effects with the host GPU. Compared to high-level APIs,

driver commands are much fewer, more capable, and mostly

asynchronous [17], so device emulation effectively reduces

guest-host control/data exchanges and idle waiting. However,

the translation from API calls to driver commands degrades

critical high-level abstractions such as windows and threads

to low-level memory addresses and register values. Due to

the loss of high-level information, driver commands must

be sequentially executed at the host, degrading guest-side

multi-threaded rendering to host-side single-threaded render-

ing. Hence, the resulting emulators (e.g., QEMU-KVM) can

smoothly run regular apps but not heavy ones.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    285



Another approach is to break guest-host isolation by re-

moving the virtualization layer so apps can directly use the

GPU, as embodied in DAOW [55]. This requires manually

translating Linux system calls used by Android to Windows

ones. Unfortunately, many apps cannot run on DAOW be-

cause many (∼46%) system calls are not translated due to the

huge engineering efforts required for full system calls’ trans-

lation. Also, the supported apps must run under the protection

of additional sophisticated security defenses to compensate

for the lack of guest-host isolation.

1.2 Contribution

We present Trinity, a novel mobile emulator that simultane-

ously achieves high efficiency and compatibility. Our guiding

principle is to decouple the guest-host control and data ex-

changes and make them as asynchronous as possible when

multiplexing the host GPU under the virtualization frame-

work, so that frequent VM Exits for synchronous host-side

execution of API calls can be largely reduced. For this pur-

pose, we propose to add a projection space inside the guest

memory, where we selectively maintain a “projected” subset

of control contexts (termed shadow contexts) and resource

handles. Such contexts and handles are derived but different

from the real ones required by a physical GPU to perform ren-

dering, so as to reflect and reproduce the effects of guest-side

graphics operations (i.e., API calls). Thus, the vast majority

(99.93%) of graphics API calls do not need synchronous exe-

cution at the host, while consuming less than 1 MB memory

for even a heavy 3D app.

Concretely, when an Android app wants to draw a trian-

gle on a physical phone, it sequentially issues three types of

graphics API calls: context setting (Type-1), resource manage-

ment (Type-2), and drawing (Type-3). Type-1 prepare the can-

vas and bind resource handles; Type-2 populate the handles’

underlying resources with the triangle’s vertex coordinates,

filling colors/patterns, etc.; Type-3 instruct the GPU to render

and display the triangle. In contrast, as shown in Figure 1,

when the app runs in Trinity, Type-1 and Type-2 calls are first

executed only in the projection space, i.e., their effects are

temporarily reflected on the shadow contexts and resource

handles. Later upon drawing calls (Type-3), their effects are

delivered to the host to realize actual rendering.

Combined with graphics projection, an elastic flow control

algorithm is devised in Trinity to orchestrate the execution

speeds of control flows at both the guest and host sides. Re-

garding the guest-host data flows, we find that the major chal-

lenge of rapidly delivering them lies in the high dynamics

of system status and data volume (e.g., bursty data flows are

common in graphics operations). To this end, we find that the

dynamic situations in fact follow only a few patterns, each

of which requires specific data aggregation, persistence, and

arrival notification strategies. Therefore, we implement all

the required strategies, and utilize static timing analysis [12]

App

Projection Space

Shadow 

Contexts

Resource

Handles

Host GPU

Contexts Resources

GPU 

Rendering

Guest Host

Virtualization Boundary

Type-1 

Graphics 

API Call

Type-2 

Graphics 

API Call

Type-3 

Graphics 

API Call

Type-1

Type-2

Figure 1: Basic workflow of Trinity.

to estimate which strategy is best suited to a data flow. With

these efforts, we achieve high emulation efficiency for Trinity.

Similar to GAE, Trinity is also implemented atop QEMU

(for general device extensibility) and hosts the Android OS,

with 118K lines of C/C++ code. We evaluate its performance

using standard graphics benchmarks, the top-100 3D apps

from Google Play, and 10K apps randomly selected from

Google Play. We also compare the results with six mainstream

emulators: GAE, QEMU-KVM, Windows Subsystem for An-

droid, VMware Workstation, Bluestacks, and DAOW. The

evaluation shows that Trinity can achieve 80%∼110% (aver-

aging at 93.3%) native hardware performance, outperforming

the other emulators by 1.4× to 20×. For compatibility, Trinity

can run the top-100 3D apps and 97.2% of the 10K randomly

selected apps. To our knowledge, Trinity is the first and the

only Android emulator that can smoothly run heavy 3D apps

without losing compatibility (or security).

Software/Code/Data Availability. Trinity has recently been

adopted by Huawei DevEco Studio [28], a major Android

IDE (integrated development environment) with millions of

developers. Currently, it is going through the beta test run for

minor functional adjustments and bug fixes. The binary, code,

and measurement data involved in this work are released at

https://TrinityEmulator.github.io/.

2 Understanding Mobile Graphics APIs

We first delve into the three types of APIs in OpenGL ES, the

de facto graphics framework of Android (§2.1), and then mea-

sure real-world 3D apps to obtain an in-depth understanding

of their graphics workloads (§2.2).

2.1 Background

Figure 2 shows a basic OpenGL ES program for drawing a

triangle. The program creates a graphics buffer in a GPU’s

graphics memory using a Type-2 API—glGenBuffers, pop-

ulates the buffer with the coordinate data of the triangle’s

286    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://TrinityEmulator.github.io/
https://TrinityEmulator.github.io/


float vertices[9] = {  0.0f,  0.5f,  0.0f, // First vertex

                      -0.5f, -0.5f,  0.0f, // Second vertex

                       0.5f, -0.5f,  0.0f  // Third vertex

};  // Triangle vertices’ (x, y, z) coordinates

float *vtx_mapped_buf; // Address of the mapped buffer

void populate_buffer() {

 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), 

 0, GL_DYNAMIC_DRAW);

    ...

 // Type-2: query the buffer size

    int buf_size;

    glGetBufferParameteriv(GL_ARRAY_BUFFER, 

 GL_BUFFER_SIZE, &buf_size);

 // Type-2: map the buffer to main memory space

    vtx_mapped_buf = glMapBufferRange(GL_ARRAY_BUFFER, 

                       0, buf_size, GL_MAP_WRITE_BIT);

    memcpy(vtx_mapped_buf, vertices, buf_size);

    // Type-2: unmap the buffer

    glUnmapBuffer(GL_ARRAY_BUFFER);

}

(a) Populate the bound graphics buffer by latent mapping.

uint vertex_buffer_handle; // Graphics buffer handle

void draw() {

    ...

    // Type-2: allocate a buffer and generate its handle

    glGenBuffers(1, &vertex_buffer_handle);

    // Type-1: bind the buffer to context

    glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_handle);

    populate_buffer();

    ...

    // Type-3: draw the triangle

    glDrawArrays(GL_TRIANGLES, 0, 3);

    ...

}

1. The buffer’s handle is bound to the context

2. All subsequent 

operations do not 

need to specify the 

handle again

(b) Draw the triangle.

Figure 2: OpenGL ES code snippet for drawing a triangle.

vertices through a Type-1 API—glBindBuffer and a Type-

2 API—glMapBufferRange, and then instructs the GPU to

draw the triangle using a Type-3 API—glDrawArrays.

Type-1: Context Setting. To manipulate or use the allocated

graphics buffer, instead of passing the buffer’s handle to every

API call, the program first calls glBindBuffer, which binds

the handle to a thread-local context, i.e., the transparent, global

state of the thread. Then, all the subsequent buffer-related API

calls (e.g., the buffer population call glBufferData and the

drawing call glDrawArrays that uses the buffer data to draw)

will be directly applied to the bound buffer, without needing

to specify the buffer handle in their call parameters.

The above process is called context setting, which config-

ures critical information of the current thread’s context. This

programming paradigm avoids repeatedly transferring context

information from the main memory to the GPU, particularly

when the information is rarely modified. In general, the con-

text information that requires setup includes the current oper-

ation target, render configurations, and resource attributes.

The operation target identifies the object that subsequent API

calls will affect, e.g., in Figure 2 the buffer handle becomes

the operation target of subsequent API calls after it is bound

to the context. Render configurations define certain rendering

behaviors, e.g., whether to perform validation of pixel values

after a frame is rendered. Resource attributes correspond to

resources’ internal information, e.g., formats of images and

data alignment specifications.

Type-2: Resource Management. Resources involved in

graphics rendering include graphics buffers that store ver-

tice and texture data (“what to draw”), shader programs that

produce special graphics effects such as geometrical transfor-

mation (“how to draw”), and sync objects that set time-wise

sync points (“when to draw”). Graphics buffers hold most of

the graphics data and thus require careful management. To

populate a buffer with graphics data, there are mainly two

approaches—immediate copy and latent mapping.

With regard to immediate copy, data are passed into the

glBufferData API’s third call parameter and copied from

the main memory to the bound graphics buffer, i.e., the buffer

underlying vertex_buffer_handle. This approach is easy

to implement but involves synchronous, time-consuming

memory copies. In contrast, Figure 2 shows the latent map-

ping approach, where glBufferData is called but no data are

passed to it; glMapBufferRange instead maps the graphics

buffer to a main memory address, i.e., vtx_mapped_buf. The

data can then be directly stored in the mapped main memory

space, without needing to synchronously trigger memory-to-

GPU copies. The data are latently copied to the graphics

buffer by the GPU’s hardware copy engine (a DMA device)

usually when glUnmapBuffer is called to release the address

mapping, thus being more flexible and efficient.

Type-3: Drawing. After the contexts and resources are pre-

pared, the drawing phase is usually realized with just a few

API calls, e.g., glDrawArrays as shown in Figure 2. Such

APIs are all designed to be asynchronous in the first place, so

that the graphics processing throughput of a hardware GPU

can be maximized. When a drawing call is issued, the call is

simply pushed into the GPU’s command queue rather than

being executed synchronously.

Apart from the above operations for rendering a single

frame, graphics apps often need to render continuous frames

(i.e., animations) in practice. To this end, a modern graphics

app usually follows the delta timing principle [16] of graphics

programming, where the app measures the rendering time of

the current frame (referred to as the frame’s delta time) to

decide which scene should be rendered next. For example,

when a game app renders the movement of a game character,

the app would measure the delta time of the current frame to

compute how far the character should move (i.e., the charac-

ter’s coordinate change) in the next frame based on the delta

time and the character’s moving speed.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    287



0 5K 10K 15K 20K 25K
Number of API Calls

0.2

0.4

0.6

0.8

1.0

C
D

F Mean=2,188
Median=1,587
Min=39
Max=27,609

Figure 3: Number of API calls issued

for rendering a single frame.

0 20 40 60 80 100
Percentage (%)

0.2

0.4

0.6

0.8

1.0

C
D

F

Mean=49.10
Median=49.91
Min=3.18
Max=95.36

Mean=44.09
Median=44.32
Min=1.39
Max=96.80

Mean=6.81
Median=5.78
Min=0.00
Max=40.77

Type-1 Type-2 Type-3

Figure 4: Percentages of specific types

of API calls for the top-100 3D apps.

0 25 50 75 100 125 150 175
Size (MB)

0.2

0.4

0.6

0.8

1.0

C
D

F Mean=22.15
Median=0.99
Min=0.03
Max=1,090.49

Figure 5: Graphics data amount gener-

ated per second by top-100 3D apps.

Graphics APIs beyond OpenGL. While the above descrip-

tions focus on OpenGL (ES), we find that the API seman-

tics of other existing graphics frameworks (such as Vulkan)

have similar characteristics. Their APIs can also be cate-

gorized into the aforementioned three types. For example,

in Vulkan VKInstance is used for managing context infor-

mation, vkCreateBuffer is called for allocating buffer re-

sources, and vkCmdDraw issues drawing commands.

This is not surprising, but stems from a common GPU’s in-

ternal design. Like a CPU, a GPU usually leverages dedicated

state registers for determining the current operation targets

and parameters (i.e., contexts), based on which an array of

computation cores perform rendering and computing tasks in

parallel. Special high-bandwidth graphics memory is often

embedded in a GPU for holding a large amount of graphics

resources (e.g., vertex and texture), therefore mitigating the

memory wall issue observed in a CPU [53], i.e., the speed

disparity between memory accesses and computations. Cor-

respondingly, the three types of graphics API calls are then

used for manipulating these essential hardware components

throughout a rendering thread’s lifecycle.

2.2 Real-World Graphics Workloads

To obtain a deeper understanding of modern graphics work-

loads in terms of both control flow and data flow, we measure

the top-100 3D apps (which are all game apps) from Google

Play as of 11/20/2021 [51] by examining the distributions of

their API calls and the sizes of their generated graphics data.

We instrument vanilla Android 11’s system graphics library

to log the API calls and count the graphics data of a test app

during its run time. For each game app, we play a full game

set (whose specific operations depend on the app’s content) to

record the runtime API invocation data. The experiments are

conducted on a (middle-end) Google Pixel 5a device, which

is equipped with a Qualcomm Snapdragon 765G SoC, 6 GB

memory, 128 GB storage, and 1080p display.

Figure 3 shows that an average of 2,187 API calls are issued

for rendering a single frame. For most (88%) of the frames,

the number of API calls is larger than 1,000. Figure 4 depicts

the percentages of specific types of API calls. As shown,

the distribution is quite skewed—Type-1 and Type-2 occupy

the vast majority (around 94% on average), while Type-3

take up merely 6% on average. Additionally, we find that

despite being the majority, most Type-1 and Type-2 calls do

not have immediate effects on the final rendering results until

Type-3 calls are issued. For example, graphics data stored

in a graphics buffer are usually not used by the GPU before

certain drawing calls are issued.

With respect to data flow, there also exists considerable

disparity in the graphics data amount generated per second,

as indicated in Figure 5. While 90% of the graphics data

generated per second are less than 60 MB in size, the peak data

rate can be as high as 1.06 GB/second, revealing significant

data rate dynamics in real-world graphics workloads.

2.3 Implications for Mobile Emulation

Type-1 and Type-2 calls are relatively cheap when executed

natively, but this may not be the case in a virtualized environ-

ment. If a Type-1 or Type-2 call is synchronously executed on

the host GPU, it can be expensive to first exit the guest, then

wait for the host to execute the call, and then return back to

the guest. This “tromboning” process adds substantial latency

to what might otherwise be an inexpensive call, especially

when Type-1 and Type-2 calls are very frequent.

To mitigate the problem, an intuitive approach is using a

buffer to batch void API calls, i.e., calls that do not return any

values, so that not only the void Type-1 and Type-2 calls are

delayed, but the asynchronous nature of Type-3 calls (which

are all void calls) can also be exploited. However, the resulting

efficiency improvement is limited by the proportion of void

API calls, i.e., only 41.4% according to our measurement.

Thus, it is no wonder that GAE, which takes this approach to

improve efficiency, cannot smoothly run many common apps.

In hopes of fundamentally addressing the problem, we

make the following key observation—resource-related opera-

tions (involving all Type-2 and most Type-1 operations) are

fully handle-based. That is to say, these operations only in-

teract with indirect, lightweight resource handles in the main

288    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



memory, rather than the actual resources lying in the GPU’s

graphics memory. As demonstrated in Figure 2, a resource

handle is merely an unsigned integer. In hardware GPU envi-

ronments, this greatly facilitates the manipulation of graphics

resources (without actually holding them in the main mem-

ory), thus avoiding frequently exchanging a large volume of

graphics data between the main memory and the graphics

memory. Note that the two memories are isolated hardware

components connected via a relatively slow PCI bus.

We can exploit this key insight to accelerate mobile emula-

tion, given that guest and host are also isolated by virtualiza-

tion. We “project” a selective subset of contexts and resource

handles, which are necessary for realizing actual rendering at

the host GPU, onto the address spaces of guest processes; the

resulting contexts after projection are termed shadow contexts.

With the help of shadow contexts and resource handles, most

(void and non-void) APIs can be asynchronously executed

at the host. Moreover, certain Type-1 and Type-2 API calls

(mostly used for querying context and resource information)

can be directly accomplished within the projection space,

completely eliminating their execution at the host.

3 System Overview

Figure 6 depicts Trinity’s system architecture. It uses virtu-

alization to isolate guest and host execution environments

to retain strong compatibility and security. At the heart of

Trinity lies a small-size graphics projection space, which is

allocated inside the memory of a guest app/system process.

Within the space, we maintain a special set of shadow contexts

and resource handles which correspond to a subset of control

contexts and resources inside a hardware GPU (cf. §4).

Once Type-1 or Type-2 API calls issued from a guest pro-

cess are executed in the projection space, the shadow contexts

and resource handles will reflect and preserve their effects.

Control flow then returns to the guest process for executing its

next program logic without synchronously waiting for host-

side execution of the API calls (as conducted by API remot-

ing). Meanwhile, the host contexts are asynchronously aligned

with the shadow contexts; mappings are asynchronously es-

tablished between resource handles and host resources.

Since synchronous host-side API execution is avoided,

rather than exiting to the host to deliver data, the host can

choose to asynchronously fetch the guest data required for

API execution from the guest memory space through polling

(cf. §6.1), thus reducing frequent VM Exits. Later when the

guest process issues Type-3 API calls, they are also asyn-

chronously executed at the host as they are designed to be

asynchronous. In this manner, the originally time-consuming

guest-host interactions can be effectively decomposed into

interleaved and mostly asynchronous guest-projection inter-

actions and projection-host interactions.

For example, when running the program in Figure 2, Trinity

directly generates a buffer handle upon the Type-2 API call

Host

 01011

11010 

 01011

11010 

APP

Operation 

Target

Resource 

Attributes

Render 

Configs

Buffer 

Handle

Shader 

Handle

Sync 

Handle

Projection Space

Shadow Contexts

Resource Handles

Type-1

Type-2

Type-3

Graphics

API

Customized Graphics Library

Guest 

Kernel

...
Guest

Userland

Data 

Queue

Flow Control

Rendered 

Pixels

Hardware GPU

Execution 

StatusTrinity 

Window

Operation 

Target

Resource 

Attributes

Render 

Configs

Teleporting

Render 

EngineGraphics 

Buffer

Shader 

Program

Sync 

Object

Figure 6: Architectural overview of Trinity.

glGenBuffers, which is then sent to the host. When the pro-

gram finishes sending the handle, its control flow continues;

meanwhile, the host asynchronously allocates a buffer and

its handle by also calling glGenBuffers in a dedicated host

rendering thread using the host-side desktop OpenGL library,

whose APIs are a superset of OpenGL ES APIs.

The relation between the host handle and the guest one is

recorded in a hash table at the host. When glBindBuffer

(Type-1) is called with the guest handle, Trinity adjusts the

shadow context information of the currently bound buffer han-

dle, and then sends the bound guest handle to the host. When

the guest finishes sending the handle, the host asynchronously

looks up the corresponding host handle in the hash table, and

then calls glBindBuffer at the host to bind the host buffer

(handle) in the rendering thread.

When glMapBufferRange (Type-2) is called, Trinity al-

locates a guest memory space and returns it to the guest

program. When glUnmapBuffer (Type-2) is called, Trinity

transfers the data in the guest memory space to the host, as

no further modifications can be made to the data then. At the

host side, the real buffer is then asynchronously populated

with the data also through glMapBufferRange. Finally, upon

glDrawArrays (Type-3), Trinity asynchronously executes it

at the host rendering thread, so as to instruct the host GPU to

realize actual rendering with the graphics buffer’s data.

To sum up, Trinity’s projection space provides two key

advantages. First, it helps to avoid synchronous host-side

execution of APIs (as in API remoting), even for non-void

calls (such as glGenBuffers) that need to be processed im-

mediately, so that expensive VM Exits can also be reduced.

Second, it can resolve the API calls for querying context and

resource information, such as glGetBufferParameteriv

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    289



in Figure 2, without sending them to the host. Quantitatively,

99.93% calls do not need synchronous host-side API exe-

cution, among which 26% are directly resolved at the guest

(cf. §8.3). Although the projection space can involve pro-

cessing certain calls twice—once at the guest and once at

the host, this is done with relatively cheap operations whose

extra costs are more than outweighed by the savings from

reduced synchronous host-side execution of the APIs and the

accompanied VM Exits.

To maximize Trinity’s graphics processing throughput, all

the above guest-side and host-side operations are coordinated

by an elastic flow control algorithm (§5). Furthermore, the

projection-host interactions are accomplished via a data tele-

porting method (§6) that attempts to maximize the data deliv-

ery throughput under high data and system dynamics.

4 Graphics Projection

We present the construction and maintenance of shadow con-

texts (§4.1) and resource handles (§4.2), i.e., the key data

structures that format the projection space.

4.1 Shadow Context

In §2.1, we have introduced that Type-1 APIs are usually used

to manipulate three types of context information: 1) operation

target, 2) render configurations, and 3) resource attributes.

Apart from the above, as shown in Figure 6, context infor-

mation in a real GPU environment also includes 4) rendered

pixels and 5) execution status. Here rendered pixels refer to

the rendered pixels stored in graphics memory, and execution

status is the current status of the GPU’s command queues.

For a shadow context, we carefully select to maintain

the following three types of context information: 1) oper-

ation target, 2) render configurations, and 3) resource at-

tributes. Consequently, with the above information, subse-

quent reads of context information can be directly fulfilled

with the shadow contexts without resorting to the host. The

shadow context is maintained based on Type-1 calls issued

by a guest process. For example, when the process calls

glBindBuffer (as shown in Figure 2) to bind a buffer han-

dle (vertex_buffer_handle) as the current operation tar-

get, the operation target maintained in the shadow context

(usually an integer) will be modified to the buffer handle.

The other two pieces of context information we choose

not to maintain, i.e., rendered pixels and execution status, are

related to a hardware GPU’s internal states. Managing such

information requires frequent interactions with the host GPU,

thus incurring prohibitively high overhead. If such informa-

tion is actually required, it will be retrieved from the host

synchronously. Fortunately, such cases occur with a pretty

low (0.07% on average) probability during an app’s rendering

(according to our measurement in §2.2). Even when such

cases occur, we make considerable efforts to minimize the

incurred time overhead by carefully designing the data tele-

porting method, which will be detailed in §6.

Similar to a CPU context, a rendering context is tightly

coupled with the thread model of an OS. At any given point

of time, a thread is bound to a single rendering context, while

a rendering context can be shared among multiple rendering

threads of a process to realize cooperative rendering. Thus,

in the graphics projection space of a process, we maintained

shadow contexts on a per-thread basis, while keeping a refer-

ence to the possible shared contexts.

4.2 Resource Handle

As introduced in §2.1, resources involved in graphics ren-

dering include graphics buffers, shader programs and sync

objects. Compared to contexts, the allocation of resource

handles and management of actual resources often require

more judicious data structure and algorithm design, as well

as guest-host cooperation, since they can easily induce in-

efficient memory usage and implicit synchronization, thus

impairing system performance.

Handle Allocation. As mentioned before, all the graphics

resources are managed through resource handles by modern

GPUs. Guided by this, when a guest process requests for a

resource allocation, we directly return a handle generated by

us, which is not backed with a real host GPU resource upon

handle generation. Then, after the control flow is returned

to the guest process, the host will perform actual resource

allocation in a transparent and asynchronous manner, and

record the mapping between the guest handle and the host

one in a host-side hash table. To make the guest-side handle

allocation efficient, we adopt a bitmap for managing each

type of resource handle, with which all the resource creation

and deletion can be done in O(1) time complexity, and we

can maintain good memory density through handle recycling.

Resource Management. After allocating resource handles

for a guest process, we also need to properly manage the ac-

tual resources underlying the allocated handles. In particular,

the management of buffer resources is critical to system per-

formance as they hold most of the graphics data. As discussed

in §2.1, there are two approaches to populating a graphics

buffer with data, i.e., immediate copy and latent mapping.

For the former, developers would call glBufferData and

pass the data’s memory address to the API to initiate copying

the data from the main memory to the graphics buffer. In

this case, we need to immediately transfer the data (upon the

API call) to the host as required by the API. For the latter,

as discussed in §3, the data transfer is conducted when the

guest memory space is unmapped (i.e., glUnmapBuffer is

called) by the guest process. When the data are transferred

to the host, we need to populate the actual host-side graphics

buffer with the data. To this end, we first ensure that the host

context is aligned with the shadow context so that the correct

290    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



buffer is bound and populated. Then, to efficiently populate

the buffer, we copy the data to a graphics memory pool we

maintain at the host, which maps a pre-allocated graphics

memory space to a host main memory address also using

latent mapping. In this way, modern GPUs’ DMA copy engine

can still be fully utilized to conduct asynchronous graphics

buffer population without incurring implicit synchronization

(cf. §2.1). After this, the allocated guest memory space will

be released, avoiding redundant memory usages.

5 Flow Control

With the guest and host control flows becoming mostly de-

coupled with the help of the projection space, their execution

speeds also become highly uncoordinated. This is because

a guest process’ operations at the projection space usually

only involve lightweight adjustments to the shadow contexts

and resource handles, thus being much faster than host-side

operations (i.e., actual rendering using the hardware GPU).

At first glance, this should not raise any problems since

guest API calls that require (synchronous or asynchronous)

host-side executions can simply queue up at a guest block-

ing queue—if the queue is filled up, the guest process would

block until the host render engine finishes prior operations.

However, we find that in practice this could easily lead to

control flow oscillation. From the guest process’ perspective,

a large amount of API calls are first quickly handled by the

projection space when the data queue is not full. Soon, when

the queue is filled up, a subsequent call would suddenly take

a significantly longer time to complete as the queue is waiting

for the (slower) host-side actual rendering. The long process-

ing time further leads to a long delta time of the current frame

as discussed in §2.1. As a result, the guest process may gener-

ate abnormal animations following the delta timing principle,

e.g., a game character could move an abnormally long dis-

tance in just one frame due to the long delta time, leading to

poor user-perceived smoothness.

To resolve this problem, instead of solely relying on a

blocking queue, we orchestrate the execution speeds of con-

trol flows at both the guest and host sides. Our objective is

the fast reconciliation of the guest-side and host-side con-

trol flows, so that the overall performance of Trinity can be

staying at a high level. To this end, we design an elastic flow

control algorithm based on the classic MIMD (multiplicative-

increase/multiplicative-decrease) algorithm [31] in the com-

puter networking area, which promises fast reconciliation of

two network flows. To adapt MIMD to our graphics rendering

scenario, we regulate control flows’ execution speeds at the

fine granularity of each rendered frame.

In detail, when a guest rendering thread finishes all the

graphics operations related to a frame’s rendering, we let

it sleep for Ts milliseconds and wait for the host GPU to

finish the actual rendering. Ts is then calculated as Ts =
N′

N
×

(Th −Tg), where N′ is the current difference in the number

of rendered frames between the guest’s and host’s rendering

threads, N is the desirable maximum difference set by us (N is

currently set to 3 in Trinity as we use the widely-adopted triple

buffering mechanism for smooth rendering at the host), Th is

the host’s average frame time (for executing all the graphics

operations related to a frame) for the nearest N frames, and

Tg is the guest’s average frame time also for the nearest N

frames. Th and Tg are calculated by counting each frame’s

rendering time at the host and the guest sides.

Specifically, if N′
> N (i.e., the guest is too fast), Ts will

be multiplicatively increased to a longer time to approximate

the host’s rendering speed. Otherwise, Ts will be multiplica-

tively decreased, striving to maintain the current frame num-

ber difference at the desirable value. Typically, Ts lies between

several milliseconds and tens of milliseconds depending on

the guest-host rendering speed gap. In this way, Trinity can

quickly reconcile the guest-side and host-side control flows.

6 Data Teleporting

Fast guest-host data delivery is critical for keeping projection-

host interactions efficient. To realize this, we first analyze

system and data dynamics (§6.1) that constitute a major ob-

stacle to the goal, and then describe the workflow of our data

teleporting method (§6.2), which leverages static timing anal-

ysis to accommodate the dynamic situations.

6.1 System and Data Dynamics

When control flows are synchronously accompanied by data

flows, the guest-host data delivery mechanism can be very

simple. For example, in API remoting, VM Exits/Enters are

leveraged to achieve control handover and data exchange at

the same time. In Trinity, however, data flows are decoupled

from control flows (thanks to the graphics projection space),

so we are confronted with complicated situations as well

as design choices. Among these data flows, projection-host

data exchanges are the most likely to become a performance

bottleneck due to their crossing the virtualization boundary.

By carefully analyzing the projection-host data exchanges

when running top-100 3D apps, we find that the major chal-

lenge of rapidly delivering them lies in the high dynamics of

system status and data volume (abbreviated as system dynam-

ics and data dynamics respectively). With regard to system

dynamics, the major impact factors are the available memory

bandwidth and current CPU utilizations, which are not hard to

understand. As to data dynamics, call data of APIs that require

synchronous host execution are sensitive to end-to-end latency

(i.e., the delay until host-side executions of the calls), while

asynchronous ones require high processing throughput. Fur-

ther, we pay special attention to distinct data sizes and bursty

data exchanges (i.e., bulk data exchange during a short period

of time) which are common in modern graphics workloads as

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    291



Guest Userland

Data

APP
Guest Virtual Memory

. . . . . . . . .

Aggregate?
Y

Aggregation Buffer
N,

Write

Guest Kernel Driver

Guest Physical Memory

. . .

Persistent Space

Y

N,

Add to Ring

Host

Ring

Buffer

Data

Fetcher
Notify

Poll

Exit?
Y,

VM Exit

Done!

Persistent?

Add to Ring

Render

Engine

. . . . . .

N

Figure 7: Workflow of data teleporting.

shown in Figure 5. In general, we can classify the dynamic

situations into ∼16 patterns, roughly corresponding to the

combinations of 1) high/low CPU utilization, 2) high/low

available memory bandwidth, 3) synchronous/asynchronous

API call data, and 4) large/small data sizes.

To accommodate the dynamic situations, our key observa-

tion is that the guest-host data delivery process can be decom-

posed into three stages, i.e., data aggregation, data persistence

and arrival notification, as the data travel through the guest

user space, the guest kernel space and the host. Moreover, in

each of the stages, we find that there are mainly two different

data delivery strategies, which make opposing tradeoffs under

different dynamic situations as discussed below.

• Data Aggregation. As exercised in GAE, aggregating non-

void API calls with a user-space buffer can usually reduce

the frequency of user/kernel switches. This is also the case

for Trinity since host-side execution of API calls is mostly

asynchronous. However, if the data to be transferred are

particularly large (e.g., in bursty data exchanges), mem-

ory copies during data aggregation could bring larger time

overhead compared to user/kernel switches; hence, the data

should be delivered to the kernel as early as possible with-

out any aggregation.

• Data Persistence. For the data of a guest rendering thread,

we need to ensure their persistence until they are fetched

by the host. To this end, a simple strategy is blocking the

thread’s control flow until the data delivery is done (as

adopted by GAE). In Trinity, we realize that there is an

alternative strategy by using a special persistent space (e.g.,

in the guest kernel) to maintain the guest thread’s data,

so that there is no need to block the thread’s control flow.

Intuitively, this strategy is most suited to small data delivery,

which does not incur long-time memory copies.

• Arrival Notification. To notify the host to fetch the data that

have arrived, we can simply leverage the VM Exit-based

strategy (adopted by GAE), whose incurred delays can be as

low as tens of microseconds. This, however, can lead to the

guest core’s being completely stopped. Alternatively, for

asynchronous data fetching, we can utilize a data polling-

based strategy at the host, which does not incur the guest

world’s stopping but would introduce millisecond-level

delay due to the thread sleeping and CPU scheduling delays

of a common time-sharing host OS.

6.2 Workflow

Given that there is no single strategy that can accommodate

every dynamic situation, we implement in Trinity all the com-

binations of strategies. Almost all of them are implemented at

the guest side, except that data polling is realized by the host.

To decide the proper strategy during each stage of data de-

livery, we adopt the static timing analysis [12] method, which

calculates the expected delay of each timing step (i.e., stage)

incurred by different data delivery strategies. As mentioned

before, the stages include data aggregation, data persistence,

and arrival notification. Suppose a guest app wishes to deliver

a data chunk of size Sdata, the current copy speed of the guest

memory is Vguest , the current copy speed of the host memory

is Vhost . Below we elaborate on the workflow of data teleport-

ing which selects the suitable strategy in each data delivery

stage based on static timing analysis.

Data Aggregation. As shown in Figure 7, if the data to be

delivered are asynchronous API call data (i.e., call data of

APIs that do not need synchronous host-side execution), we

can aggregate them in a user-space buffer to reduce projection-

host interactions. However, aggregating the data in the buffer

incurs a memory copy, resulting in a delay of
Sdata
Vguest

. Otherwise,

an individual write system call will be invoked to write the

data to our kernel character device driver (cf. §7), whose time

overhead is Twrite. Obviously, if
Sdata
Vguest

< Twrite, we choose to

aggregate the data; else, we choose not to.

In contrast, for synchronous API call data we should always

avoid data aggregation since synchronous calls should be

immediately delivered to the host for executions. Then, along

with these non-aggregation data, the aggregation buffer will

also be written to our kernel driver and then cleared. We next

enter the data persistence stage.

Data Persistence. In this stage, our kernel driver will decide

whether to block the guest app’s control flow, or utilize an ad-

ditional persistent space for ensuring the persistence of a guest

thread’s data until the data are fetched by the host. Unlike the

user-space data aggregation buffer that serves to reduce the

frequency of entering the kernel and interacting with the host,

the kernel persistent space allows the app’s control flow to

quickly return to the user space for executing its next logic.

In practice, if we resort to the control flow blocking strategy,

the blocking time will consist of four parts: 1) the delay of

adding the data to a ring buffer shared by the guest and the

host for realizing data delivery—Tring, 2) the delay of host

notification—Thn, 3) the time for a host-side memory copy to

fetch data (detailed later in Data Fetching)—
Sdata
Vhost

, and 4) the

292    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



delay of host-to-guest notification through interrupt injection

for returning the control flow to the guest app—Tgn. Here

the ring buffer does not directly store the data; instead, to

transfer a large volume of data, it holds a number of (currently

1024) pointers, each of which points to another ring buffer of

the same size, whose buffer item stores the data’s physical

addresses. Therefore, the blocking strategy’s time overhead

Tblocking is the sum of them: Tblocking = Tring+Thn+
Sdata
Vhost

+Tgn

Here we encounter a challenge: Thn is dependent on the arrival

notification strategy which we have not decided yet. Fortu-

nately, we find that when the control flow blocking strategy is

adopted, the app thread’s execution flow has already stopped.

Thus, a VM Exit’s side effect no longer matters in this case,

but its advantage of short delay makes it an appropriate choice.

We then naturally take the VM Exit-based arrival notification

strategy, so Thn generally equals the delay of a VM Exit.

On the other hand, if we choose to leverage a kernel per-

sistent space for data persistence, the time overhead comes

from 1) a memory copy to the persistent space and 2) adding

the data to the ring buffer, i.e., Tpersistent =
Sdata
Vguest

+Tring. After

the above are finished, the guest app’s control flow is immedi-

ately returned to its user space for executing its next program

logic, while the host asynchronously polls for data arrival and

fetches data (as to be detailed later).

Based on the calculated Tblocking and Tpersistent , we can then

choose the data persistence strategy with a smaller delay. Also,

for synchronous API call data, we directly choose the blocking

strategy because during synchronous calls the control flow

is naturally blocked until host-side executions. With respect

to the parameters used in the above analysis, they can be

either directly obtained (e.g., Sdata) or statistically estimated

by monitoring their recent values and calculating the average

(e.g., Vguest and Vhost ).

Arrival Notification. After the data are added to the ring

buffer, we then need to choose a proper strategy for notifying

the host of data arrival. In practice, we find that the arrival

notification strategy is closely related to the data persistence

strategy. Specifically, control flow blocking is particularly

sensitive to the arrival notification delay, and thus should be

coupled with VM Exits. On the contrary, the persistent space-

based strategy allows arrival notification and data fetching to

be asynchronous, and thus the polling-based strategy should

be selected; the polling is performed by a host-side data fetch-

ing thread (referred to as Data Fetcher) every millisecond.

Data Fetching. When Data Fetcher is notified of data ar-

rival, it would read the ring buffer to acquire the data. If the

data are contiguous in the guest physical memory (and thus

contiguous in the host virtual memory), the data can be di-

rectly accessed without further memory copy; otherwise, they

should be copied to a contiguous host buffer. The fetched

data are then distributed to the host render engine’s rendering

threads for realizing actual rendering.

7 Implementation

To realize Trinity, we make multiple modifications to the guest

Android system and QEMU. First, we find that Android (as

well as many UI-centric systems) clearly separates its versa-

tile user-level graphics frameworks/libraries [6, 49] from the

underlying system graphics library that realizes actual ren-

dering. This enables us to effectively delegate every graphics

API call by customizing only the system graphics library. At

the guest user space, we replace the original system graph-

ics library (i.e., libGLES) with our customized one, which

maintains the projection space and conducts flow control. The

library exposes the standard OpenGL ES interfaces to apps,

allowing them to seamlessly run without modifications.

To execute the delegated Type-1 and Type-2 APIs in the

projection space, we implement all of them in the system

graphics library, involving a total of 220 Type-1 APIs, 128

Type-2 APIs and 10 Type-3 APIs, which fully cover the stan-

dard OpenGL ES APIs from OpenGL ES 2.0 to the latest

OpenGL ES 3.2. Additionally, we implement all the 54 An-

droid Native Platform Graphics Interface (EGL) [5] functions

to interface with the Android native window system. In prac-

tice, many APIs have similar functions, simplifying their im-

plementations, e.g., glUniform has 33 variants used for data

arrays of different sizes and data types, such as glUniform2f

for two floats and glUniform3i for three integers.

At the guest’s kernel space and the host, we realize data

teleporting via a QEMU virtual PCI device and a guest kernel

driver. As a typical character device driver, our kernel driver

mounts a device file in the guest filesystem, where the user-

space processes can read from and write to so as to achieve

generic data transferring. With this, API calls that require

host-side executions are compacted in a data packet and dis-

tributed to our host-side render engine. The render engine

then leverages the desktop OpenGL library to perform actual

rendering using the host GPU.

Trinity is implemented on top of QEMU 5.0 in 118K lines

of (C/C++) code (LoC). In total, the projection space, flow

control and data teleporting involve 113K LoC, 220 LoC

and 5K LoC, respectively. Among all the code, only around

2K LoC are OS-specific, involving kernel drivers and native

window system interactions.

Trinity hosts the Android-x86 system (version 9.0). Since

our modifications to QEMU and Android-x86 are dynamic

libraries and additional virtual devices, they can be easily ap-

plied to higher-version QEMU and Android. Trinity can run

on most of the mainstream OSes (e.g., Windows 10/11 and ma-

cOS 10/11/12) with both Intel and AMD x86 CPUs. It utilizes

hardware-assisted technologies (e.g., Intel VT and AMD-V)

for CPU/memory virtualization. For the compatibility with

ARM-based apps, Trinity incorporates Intel Houdini [29] into

the guest system for dynamic binary translation.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    293



8 Evaluation

We evaluate Trinity with regard to our goal of simultaneously

maintaining high efficiency and compatibility. First, we de-

scribe our experiment setup in §8.1. Next, we present the

evaluation results in §8.2, including 1) Trinity’s efficiency

measurement with standard 3D graphics benchmarks, 2) Trin-

ity’s smoothness situation with the top-100 3D apps from

Google Play, and 3) Trinity’s compatibility with 10K apps

randomly selected from Google Play. Finally, we present the

performance breakdown in §8.3 by removing each of the three

major system mechanisms—projection space, flow control

and data teleporting.

8.1 Experiment Setup

To understand the performance of Trinity in a comprehen-

sive manner, we compare it with six mainstream emulators,

including GAE, QEMU-KVM, VMware Workstation, Blues-

tacks, and DAOW, as well as Windows Subsystem for Android

(WSA)—a Hyper-V-based emulator released in Windows 11.

Their architectures and graphics stacks are shown in Table 1.

We use their latest versions as of Dec. 2021.

Software and Hardware Configurations. Regarding the

configurations of these emulators, we set up all their instances

with a 4-core CPU, 4 GB RAM, 64 GB storage, and 1080p

display (i.e., the display width and height are 1920 pixels and

1080 pixels, respectively) with 60 Hz refresh rate. However,

since WSA does not allow customizing configurations, we use

its default settings which utilize the host system’s resources

to the full extent. For other options (e.g., network) in the

emulators, we also leave them as default.

Our evaluation is conducted on a high-end PC and a middle-

end PC. The former has a 6-core Intel i7-8750H CPU @2.2

GHz, 16 GB RAM (DDR4 2666 MHz), and a NVIDIA GTX

1070 MAX-Q dedicated GPU. The latter has a 4-core Intel i5-

9300H CPU @2.4 GHz, 8GB RAM (DDR4 2666 MHz), and

an Intel UHD Graphics 630 integrated GPU. Their storage

devices are both 512 GB NVME SSD. Regarding the host OS,

we run most of the abovementioned emulators on Windows

11 (latest stable version) given that WSA, Bluestacks, and

DAOW are Windows-specific. However, since QEMU-KVM

is Linux-specific, we run it on Ubuntu 20.04 LTS which is

also the latest stable version as of Dec. 2021.

Workloads and Methodology. We use three different work-

loads to drive the experiments, in order to dig out the multi-

aspect performance of Trinity. First, we use representative

3D graphics benchmark applications: 3DMark [34] and

GFXBench [32], both of which are widely used for evaluating

mobile devices’ GPU performance. Together they provide

three specific benchmarks, which are referred to as Sling-

shot Unlimited Test 1 (3DMark), Slingshot Unlimited Test

2 (3DMark) and Manhattan Offscreen 1080p (GFXBench).

Table 1: Comparison of the evaluated emulators.

Mobile Emulator System Architecture Graphics Stack

GAE [23]
x86 Android on

customized QEMU
API remoting

WSA [41]
x86 Android on

Windows Hyper-V
API remoting

QEMU-KVM [46]
Android-x86

on QEMU
Device emulation

VMware

Workstation [52]

Android-x86 on

VMware Workstation
Device emulation

Bluestacks [14]
Android-x86

on VirtualBox
Proprietary

DAOW [55]
Direct Android

emulation on Windows

API translation

with ANGLE [22]

These benchmarks generate complex 3D scenes in an off-

screen manner, i.e., the rendering results are not displayed on

the screen and thus is not limited by the screen’s refresh rate,

so the graphics system’s full potential can be tested. In detail,

we run each benchmark on every emulator and hardware envi-

ronment for five times, and then calculate the average results

together with the error bars. Also, since the benchmarks come

with Windows versions as well, we further run them directly

on Windows to figure out the native hardware performance.

Second, to understand Trinity’s performance on real apps,

we run the top-100 3D (game) apps from Google Play as

of 11/20/2021 [51], which are the same 100 apps discussed

in §2.2. Concretely, for each of the apps, one of the authors

manually runs a (same) full game set on every emulator, and

repeats the experiment five times. During an app’s running, we

log the FPS (Frames Per Second) values of the app, which is a

common indicator of a mobile system’s running smoothness.

We then use the average FPS value of the five experiments

as the final FPS value of the app. Generally, we find that for

all the studied apps, the standard deviations of the five experi-

ments are all less than 4 FPS, indicating that the workloads

are mostly consistent among different experiments. Since all

the apps adopt the V-Sync mechanism to align their framer-

ates with the screen’s refresh rate (which is 60 Hz), their FPS

values are always smaller than 60.

Third, to further evaluate Trinity’s compatibility, we ran-

domly select 10K apps from Google Play in Trinity. We use

the Monkey UI exerciser [24] to generate random input events

for each app for one minute, and monitor possible app crashes.

8.2 Evaluation Results

Graphics Benchmark. Figure 8 and Figure 9 illustrate the

graphics benchmarks’ results obtained on the high-end PC

and the middle-end PC, respectively. Results of DAOW and

WSA are not complete because they cannot successfully run

all the benchmarks due to missing graphics APIs or abnormal

API behaviors as complained by the benchmark apps. As

shown, compared to the other emulators, Trinity can achieve

the best efficiency on all the three benchmarks with both PCs.

294    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Native PC Trinity DAOW Bluestacks GAE VMware WSA QEMU-KVM0

100

200

300

400

500
Fr

am
es

 P
er

 S
ec

on
d

Slingshot Unlimited Test 1 (3DMark)
Slingshot Unlimited Test 2 (3DMark)
Manhattan Offscreen 1080p (GFXBench)

Figure 8: Benchmark results on the high-end PC.

Native PC Trinity DAOW Bluestacks GAE VMware WSA QEMU-KVM0

10

20

30

40

50

60

70

Fr
am

es
 P

er
 S

ec
on

d

Slingshot Unlimited Test 1 (3DMark)
Slingshot Unlimited Test 2 (3DMark)
Manhattan Offscreen 1080p (GFXBench)

Figure 9: Benchmark results on the middle-end PC.

Specifically, on the high-end PC that is equipped with a

dedicated GPU, Trinity can outperform DAOW by an average

of 40.5%, and reach 93.3% of the high-end PC’s native hard-

ware performance. In particular, for Slingshot Unlimited Test

1 we can achieve 110% native performance. This is attributed

to the graphics memory pool (§4.2) maintained by Trinity at

the host which can fully exploit the host GPU’s DMA capa-

bility. Instead, the native version of the benchmark leverages

synchronous data delivery into the GPU rather than a DMA-

based approach, causing suboptimal performance. Further on

the middle-end PC, we observe that Trinity can outperform

the other emulators by at least 12.7%, indicating that Trinity

can still maintain decent efficiency even on an integrated GPU

with much poorer performance.

Top-100 3D Apps. Figure 10 depicts the average FPS of

the top-100 3D apps from Google Play on different emulator

platforms, when the apps are ranked by their FPS values on

the corresponding emulator. Particularly, if an app cannot be

successfully executed on (i.e., is incompatible with) an em-

ulator, its FPS value is taken as zero. Thus, the FPS values

can reflect both the compatibility and efficiency of different

emulators. In this regard, Trinity outperforms the other emu-

lators by an average of 22.4%∼538% on the evaluated PCs.

We next look into the compatibility and efficiency aspects of

the evaluated emulators, respectively.

For compatibility, the numbers of compatible apps of Trin-

ity, DAOW, Bluestacks, GAE, WSA, VMware, and QEMU-

1 10 20 30 40 50 60 70 80 90 100
Apps by Increasing FPS

0

10

20

30

40

50

60

Fr
am

es
 P

er
 S

ec
on

d

Best
GAE

Trinity
WSA

DAOW
VMware

Bluestacks
QEMU-KVM

(a) High-end PC.

1 10 20 30 40 50 60 70 80 90 100
Apps by Increasing FPS

0

10

20

30

40

50

60

Fr
am

es
 P

er
 S

ec
on

d

Best
GAE

Trinity
WSA

DAOW
VMware

Bluestacks
QEMU-KVM

(b) Middle-end PC.

Figure 10: Average FPS of the top-100 3D apps across dif-

ferent emulators on the high-end and middle-end PCs. The

“Best” line represents the highest FPS among the evaluated

emulators of each app. If an app cannot run normally on an

emulator, its corresponding FPS value is taken as zero.

KVM are 100, 82, 89, 91, 55, 35 and 36, respectively. Delv-

ing deeper, we find that the root causes of other emulators’

worse performance vary significantly. In detail, VMware and

QEMU-KVM show the worst compatibility, mostly because

their guest-side graphics stacks are both built atop the open-

source desktop Linux graphics library Mesa [39], whose API

behaviors sometimes differ from that of a typical Android

graphics library. For GAE, its incompatibility with apps in

fact roots in its poor efficiency—many incompatible apps

become unresponsive for a long time during a game set, thus

leading to Application Not Responding (ANR) [4]. For WSA,

the problem is generally the same as GAE, as we find that

WSA reuses most of the GAE’s host-side and guest-side sys-

tem components. Differently, its lack of Google Play Service

(essential for many apps’ running) in the guest system intro-

duces more compatibility issues. For Bluestacks, its stable

version runs an outdated Android 7.0 guest system, and thus

cannot run some recent apps. Notably, despite the selective

translation of system calls (cf. §1.1) that compromises com-

patibility, DAOW’s compatibility with the 100 game apps is

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    295



only slightly worse than GAE, because it focuses on translat-

ing system calls frequently used by games [55].

For efficiency, we conduct a pairwise comparison between

Trinity and each of the emulators in terms of the FPS of the

apps that Trinity and the compared emulator can both suc-

cessfully execute. On the high-end PC, Trinity outperforms

DAOW, Bluestacks, GAE, WSA, VMware and QEMU-KVM

in terms of the compatible apps by an average of 6.1%, 9.8%,

164.8%, 34.1%, 8.6%, and 132.2%, respectively. We observe a

significant visual difference between Trinity and GAE, WSA,

and QEMU-KVM across all apps. We observe less visual dif-

ference between Trinity and DAOW, Bluestacks, and VMware

for many apps. However, the visual difference is very notice-

able especially on apps where Trinity performs more than 15

FPS better, for which there were 9, 12, and 5 apps for DAOW,

Bluestacks, and VMware, respectively. Regarding the average

FPS values of individual apps, we find that Trinity shows the

best efficiency on 76 of the apps. For the 24 apps that Trinity

shows worse efficiency, we find that the differences in the

apps’ average FPS values are all less than 6 FPS, with 12

of them are in fact less than 1 FPS. On these apps, we find

that there is not any notable smoothness difference between

Trinity and the emulators that yield the best FPS.

Similar situations can also be observed on the middle-end

PC (as demonstrated in Figure 10b). Trinity outperforms

DAOW, Bluestacks, GAE, WSA, VMware and QEMU-KVM

on the middle-end PC in terms of the compatible apps by an

average of 4.9%, 16.1%, 168.7%, 84.6%, 17%, and 137.7%,

respectively. Also, although there are more (42) apps where

Trinity does not yield the best efficiency, the FPS differences

are still mostly insignificant, with 36 of them being less than

5 FPS. For the remaining 6 apps, DAOW has the best FPS

and outperforms Trinity by 6 to 9 FPS, though we could not

perceive any visual difference between the two. Careful ex-

amination of the apps’ runtime situations shows that they tend

to heavily stress the CPU as its graphics scenes involve many

physics effects such as collisions and reflections, which re-

quire the CPU to perform heavy computations such as matrix

transformations. Thus, DAOW’s directly interfacing with the

hardware CPU without the virtualization layer allows it to

perform better than Trinity (as well as the other emulators),

particularly given the middle-end PC’s rather weak CPU. In

comparison, Trinity performs better than DAOW for all the 6

apps on the high-end PC.

Compatibility with Random 10K Apps. For the apps ran-

domly selected from Google Play, we can successfully install

all of them and run 97.2% of them without incurring app

crashes. For the apps we cannot run, we find that some (2.3%)

of them have also exhibited crashes on real devices; In addi-

tion, 0.43% require special hardware that Trinity currently has

not implemented, e.g., GPS, NFC and various sensors, which

is not hard to fix given the general device extensibility of

QEMU that Trinity is built on. Finally, the remaining 0.07%

seem to actively avoid being run in an emulator by closing

themselves when they notice that certain hardware configura-

tions (e.g., the CPU specification listed in /proc/cpuinfo)

are that of an emulator as complained in their runtime logs.

8.3 Performance Breakdown

To quantitatively understand the contributions of the proposed

mechanisms to Trinity’s efficiency, we respectively remove

each of the three major mechanisms of Trinity (i.e., projection

space, flow control and data teleporting), and measure the re-

sulting efficiency degradations when running the top-100 3D

apps on the high-end PC. In detail, removing projection space

degrades Trinity to API remoting, whose guest-host control

and data exchanges are still backed by our data teleporting

mechanism. Removing data teleporting disables all the static

timing analysis logics apart from data aggregation, which al-

lows us to retain at least the data transferring performance of

GAE since it also adopts a moderate buffer to batch void API

calls. For data persistence and arrival notification, we adopt

control flow blocking and VM Exit following GAE’s design.

Further, to fully demonstrate the efficiency impacts of the

three mechanisms, we also measure the performance break-

down when the maximum framerate restriction (which is 60

FPS) of the apps is removed. Note that we do not remove

this restriction when evaluating the top-100 3D apps in §8.2

since this requires source code modifications to the emulators,

while many of the emulators are proprietary (e.g., DAOW

and Bluestacks). Figure 11 depicts the average FPS values

of the top-100 3D apps in the breakdown experiments with

the 60-FPS framerate restriction, while Figure 12 shows the

results without the framerate restriction.

Projection Space. After the projection space is removed, the

average FPS drops by 6.1× (8.6×) with (without) the framer-

ate restriction, providing the most significant efficiency bene-

fits. This is not surprising as our in-depth analysis of the API

call characteristics (by instrumenting our system graphics li-

brary as discussed in §2.2 during the breakdown experiments)

shows that with the projection space, 99.93% of graphics API

calls do not require synchronous host-side executions. The

remaining 0.07% API calls are Type-1 calls related to the

context information we do not maintain in shadow contexts,

including the rendered pixels and execution status of a GPU

as discussed in §4.1.

Among these asynchronously-executed calls, 26% are di-

rectly resolved at the projection space (with our maintained

context and resource information), fundamentally avoiding

their needs for any host-side executions. Such calls are mostly

related to context manipulation and context/resource informa-

tion querying. For the remainder (74%), they involve APIs

for resource allocations and populations, as well as drawing

calls. We also measure the memory consumption of the added

projection space when running the top-100 3D apps by mon-

itoring the maximum memory consumed by our provided

296    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 10 20 30 40 50 60 70 80 90 100
Apps by Increasing FPS

0

10

20

30

40

50

60

Fr
am

es
 P

er
 S

ec
on

d

Trinity
w/o Flow Control

w/o Projection Space
w/o Teleporting

Figure 11: Performance breakdown with

regard to the top-100 3D apps with fram-

erate restriction.

1 10 20 30 40 50 60 70 80 90 100
Apps by Increasing FPS

0

50

100

150

200

Fr
am

es
 P

er
 S

ec
on

d

Trinity
w/o Flow Control

w/o Projection Space
w/o Teleporting

Figure 12: Performance breakdown with

regard to the top-100 3D apps without

framerate restriction.

4 K
B
8 K

B
16

 KB
32

 KB
64

 KB

12
8 K

B

25
6 K

B

51
2 K

B
1 M

B
2 M

B
4 M

B
8 M

B
16

 M
B
32

 M
B
64

 M
B

12
8 M

B

Data Chunk Size

0

4

8

12

16

20

Th
ro

ug
hp

ut
 (G

B/
s)

Data Teleporting 1 thread
Data Teleporting 2 threads
goldfish-pipe 1 thread
goldfish-pipe 2 threads

Figure 13: Throughput of data teleporting

and goldfish-pipe, with one and two

threads.

4 K
B
8 K

B
16

 KB
32

 KB
64

 KB

12
8 K

B

25
6 K

B

51
2 K

B
1 M

B
2 M

B
4 M

B
8 M

B
16

 M
B
32

 M
B
64

 M
B

12
8 M

B

Data Chunk Size

0

4

8

12

16

20

Th
ro

ug
hp

ut
 (G

B/
s)

Data Teleporting 3 threads
Data Teleporting 4 threads
goldfish-pipe 3 threads
goldfish-pipe 4 threads

Figure 14: Throughput of data teleporting

and goldfish-pipe, with three and four

threads.

4 K
B
8 K

B
16

 KB
32

 KB
64

 KB

12
8 K

B

25
6 K

B

51
2 K

B
1 M

B
2 M

B
4 M

B
8 M

B
16

 M
B
32

 M
B
64

 M
B

12
8 M

B

Data Chunk Size

4

8

12

16

Th
ro

ug
hp

ut
 (G

B/
s)

Data Teleporting 1 thread
Data Teleporting 2 threads
Strategy Exhaustion 1 thread
Strategy Exhaustion 2 threads

Figure 15: Throughput of data teleporting

using strategy exhaustion and static tim-

ing analysis, with one and two threads.

4 K
B
8 K

B
16

 KB
32

 KB
64

 KB

12
8 K

B

25
6 K

B

51
2 K

B
1 M

B
2 M

B
4 M

B
8 M

B
16

 M
B
32

 M
B
64

 M
B

12
8 M

B

Data Chunk Size

8

12

16

20

Th
ro

ug
hp

ut
 (G

B/
s)

Data Teleporting 3 threads
Data Teleporting 4 threads
Strategy Exhaustion 3 threads
Strategy Exhaustion 4 threads

Figure 16: Throughput of data teleporting

using strategy exhaustion and static tim-

ing analysis, with three and four threads.

system graphics library at the guest side. We find that the

projection space only takes an average of 466 KB (at most

1021 KB) memory for an app. The memory consumption is

small because the shadow contexts and resource handles are

mostly small integers, and our careful resource management

has prevented redundant memory usages.

Flow Control. On the other hand, flow control contributes

2.7% (5%) FPS improvement on average with (without) the

framerate restriction. This is because flow control mainly

serves to mitigate the control flow oscillation problem (cf.

§5), thus contributing less to the running smoothness as mea-

sured by FPS. To quantify the actual effects of flow control,

we further measure the occurrences of control flow oscil-

lations during the apps’ running. As a result, without flow

control, control flow oscillation occurs 20× more frequently

on average. When that happens, as discussed in §5, the apps’

animations will look extremely unsmooth from users’ per-

spective since many essential frames of the animations are

skipped (i.e., not rendered) by the apps as dictated by the delta

timing principle, while the total number of frames rendered

per second (i.e., FPS) remains mostly unchanged.

Data Teleporting. Finally, when data teleporting is disabled,

the fixed data delivery strategy cannot well adapt to system

and data dynamics, leading to 1.7× (2.2×) FPS degradation

with (without) the framerate restriction. To demystify the effi-

ciency gains brought by data teleporting, we further examine

its throughput under diverse system and data dynamics on

the high-end PC. Specifically, we develop a benchmark app

that synthesizes data chunks ranging from 4 KB (a contin-

uous memory page space) to 128 MB, and doubles the size

for each successive experiment. In each experiment, the app

writes the data chunk to our kernel character device file (cf.

§7) to transfer it to the host 1,000 times with one, two, three,

or four threads; here the number of threads varies from one

to four (the number of the emulator’s CPU cores) to mimic

different system dynamics. By measuring the time consumed

for data transfer, we can calculate the final throughput result.

In comparison, we conduct the same experiments on GAE’s

guest-host I/O pipe called goldfish-pipe, which is GAE’s

core infrastructure for sending API call data from the guest to

the host and realizing API remoting. To this end, we customize

GAE to include a dedicated graphics API for throughput

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    297



measurement, which our benchmark app can call to transfer

guest data to the host as described above. This API is made

to be a void API so that GAE’s buffer for batching void APIs

can take effect. Consequently, as shown in Figure 13 and

Figure 14, data teleporting’s throughput clearly exceeds that

of goldfish-pipe under all the data and thread settings. On

average, data teleporting’s throughput is 5.3 times larger than

that of goldfish-pipe.

Furthermore, we wish to know the effectiveness of static

timing analysis. For this purpose, we measure the perfor-

mance of the data teleporting mechanism using the above

experiments when we adopt every possible strategy. Then,

we compare the highest throughput produced by the above

strategy exhaustion with that produced by the static timing

analysis. As shown in Figure 15 and Figure 16, the through-

put values produced by strategy exhaustion and static timing

analysis are very close (4% average deviation). More in detail,

static timing analysis can make the most suitable strategy

choice in 95.4% of the data delivery tasks.

9 Related Work

Commercial Mobile Emulators. A plethora of commercial

mobile emulators have similar architectures to the ones we

evaluate in §8. For instance, Anbox [3], which directly runs

Android’s Framework layer on a Linux PC, leverages the con-

tainer technique to achieve lightweight guest-host isolation,

and reuses GAE’s graphics stack—all the guest-side graph-

ics operations are sent to a host-side daemon for execution,

thus requiring synchronous inter-process communications.

Accordingly, its efficiency is similar to that of GAE.

LDPlayer [35], MEmu [38], NoxPlayer [42] and Genymo-

tion [20] all adopt the AOVB (Android-x86 on VirtualBox)

architecture (as in Bluestacks). To realize graphics rendering,

they also reuse some of the graphics libraries of GAE, e.g.,

libGLESv2_enc at the guest that encodes OpenGL ES API

calls into a data packet, and ANGLE [22] at the host that

translates guest-side OpenGL ES calls to desktop OpenGL

or Direct3D calls. Prior measurements [13, 55] show that the

performance of such AOVB-based emulators is close to that

of Bluestacks, probably due to their similar architectures.

GPU Virtualization. In PC/server virtualization, GPU mul-

tiplexing is typically achieved through hardware-assisted

GPU passthrough [1, 2] or mediated passthrough [27, 30, 43],

which allow a virtual machine (VM) to directly access the

host GPU by remapping its DMA channels and interrupts to

the guest. Differently, GPU passthrough monopolizes the host

GPU, while the mediated approach allows sharing the GPU

among multiple VMs through GPU context isolation.

However, the substantial differences between the graphics

stacks of desktop OSes and mobile OSes significantly hinder

their adoption by mobile emulators, as host GPUs’ drivers are

missing in mobile systems and developing them for mobile

environments is extremely complicated (since mainstream

desktop GPUs’ specifications are often proprietary). Hence,

we take a completely different approach of graphics projection

to address the problem of multiplexing the host GPU, which

is agnostic to the underlying hardware specifications and thus

should also be beneficial to PC/server GPU virtualization.

Cross-OS and Cross-Device Graphics Stacks. Trinity fo-

cuses on Android emulation on a PC, while several researches

have explored running iOS apps on Android graphics stacks

based on their similarities in OpenGL ES libraries [7,8]. This

suggests that Trinity’s graphics projection mechanism might

also be applicable to the emulation of iOS apps on a PC.

Also, various approaches remote graphics processing from

one device to another over a network [9–11, 25, 47, 48]. For

them, data exchanges over network often constitute a ma-

jor bottleneck, which is similar to the bottleneck of frequent

cross-boundary control/data exchanges in the virtualization

setting. Thus, our idea of decoupling guest/host control and

data flows via graphics projection should also be useful to

relevant studies and applications, e.g., cloud/edge gaming.

10 Conclusion

In this paper we present the design, implementation, perfor-

mance, and preliminary deployment of the Trinity mobile

emulator. It substantially boosts the efficiency of mobile emu-

lation while retaining high compatibility and security through

graphics projection, a novel approach that minimizes the cou-

pling between the guest-side and host-side graphics process-

ing. This unique design, together with strategic flow control

and data teleporting, make Trinity a first-of-its-kind emula-

tor that can smoothly run heavy 3D mobile games (achiev-

ing near-native hardware performance) and meanwhile retain

comprehensive app support and solid guest-host isolation.

As part of a major commercial Android IDE, Trinity is

expected to be used by millions of Android developers in

the near future, contributing vibrantly to the ecosystem. We

believe that many lessons and experiences gained from this

work could also be applied to (graphics-heavy) PC emulation

and cloud/edge gaming, as to be explored in our future work.

Acknowledgements

We would like to express our deepest appreciation to our

shepherd, Jason Nieh, who was very responsive during our

interactions with him and provided us with valuable sugges-

tions, which have significantly improved our paper. We also

thank the anonymous reviewers for their constructive sug-

gestions. We thank Wei Liu and Xinlei Yang for their help

in data collection and analysis. This work is supported in

part by the National Key R&D Program of China under grant

2021YFB2900100, as well as the National Natural Science

Foundation of China (NSFC) under grant 61902211.

298    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A Artifact Appendix

Abstract

Trinity’s artifact is publicly available at GitHub. To facilitate

developing and using Trinity, we provide step-by-step instruc-

tions in the form of both documentations and videos. Please

refer to our README file at https://github.com/Tri

nityEmulator/TrinityEmulator for details.

Scope

The artifact can be used to reproduce all the major results,

including those of the graphics benchmarks and 3D apps.

Contents

Trinity’s artifact includes code of the host emulator, binary of

the guest Android system, and our evaluation scripts/data.

Hosting

We host the code/binary and data in two repositories (both in

the main branch). We also provide a DOI for the artifact.

• Trinity Code and Binary.

Link: https://github.com/TrinityEmulator/Tri

nityEmulator.

• Evaluation Data and Figure Plotting Script.

Link: https://github.com/TrinityEmulator/Eva

luationScript.

• DOI for the Artifact.

DOI: 10.5281/zenodo.6586575

References

[1] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger,

G. Regnier, R. Sankaran, I. Schoinas, R. Uhlig,

B. Vembu, and J. Wiegert. Intel Virtualization Technol-

ogy for Directed I/O. Intel Technology Journal, 2006.

[2] AMD. I/O Virtualization Technology Specification Re-

vision 1.26. AMD White Paper, 1:2–11, 2009.

[3] Anbox.com. Anbox: Container-based Android Emula-

tor, 2021. https://anbox.io/.

[4] Android.org. Application Not Responding of Android,

2021. https://developer.android.com/topic/

performance/vitals/anr.

[5] Android.org. GraphicBuffer: Android’s Na-

tive Window Buffer Implementation, 2021.

https://android.googlesource.com/platf

orm/frameworks/native/+/jb-mr0-release/l

ibs/ui/GraphicBuffer.cpp.

[6] Android.org. View: Basic Building Blocks for Android

User Interface, 2021. https://developer.androi

d.com/reference/android/view/View.

[7] J. Andrus, N. AlDuaij, and J. Nieh. Binary Compatible

Graphics Support in Android for Running iOS Apps. In

Proc. of ACM/IFIP/USENIX Middleware, pages 55–67,

2017.

[8] J. Andrus, A. Van’t Hof, N. AlDuaij, C. Dall, N. Viennot,

and J. Nieh. Cider: Native Execution of IOS Apps on

Android. In Proc. of ACM ASPLOS, pages 367–382,

2014.

[9] Apple.com. AirPlay: Share Mutimedia Contents across

Devices, 2021. https://www.apple.com/airpla

y/.

[10] R. A. Baratto, L. N. Kim, and J. Nieh. THINC: A

Virtual Display Architecture for Thin-Client Computing.

In Proc. of ACM SOSP, pages 277–290, 2005.

[11] R. A. Baratto, S. Potter, G. Su, and J. Nieh. MobiDesk:

Mobile Virtual Desktop Computing. In Proc. of ACM

MobiCom, pages 1–15, 2004.

[12] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer.

Statistical Timing Analysis: From Basic Principles to

State of The Art. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27(4):589–

607, 2008.

[13] Bluestacks.com. Benchmark Performance Compari-

sions among Bluestacks, LDPlayer, Memu, and Nox,

2021. https://www.bluestacks.com/bluestack

s-vs-ldplayer-vs-memu-vs-nox.html.

[14] Bluestacks.com. Bluestacks: Modern Android Gaming

Emulator, 2021. https://www.bluestacks.com/.

[15] T. Capin, K. Pulli, and T. Akenine-Moller. The State of

the Art in Mobile Graphics Research. IEEE Computer

Graphics and Applications, 28(4):74–84, 2008.

[16] S. Cook. CUDA Programming: A Developer’s Guide to

Parallel Computing with GPUs. Newnes, 2012.

[17] M. Dowty and J. Sugerman. GPU Virtualization on

VMware’s Hosted I/O Architecture. ACM SIGOPS Op-

erating Systems Review, 43(3):73–82, 2009.

[18] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S.

Quintana-Ortí. rCUDA: Reducing the Number of GPU-

Based Accelerators in High Performance Clusters. In

Proc. of IEEE HPC, pages 224–231, 2010.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    299

https://github.com/TrinityEmulator/TrinityEmulator
https://github.com/TrinityEmulator/TrinityEmulator
https://github.com/TrinityEmulator/TrinityEmulator
https://github.com/TrinityEmulator/TrinityEmulator
https://github.com/TrinityEmulator/EvaluationScript
https://github.com/TrinityEmulator/EvaluationScript
https://anbox.io/
https://developer.android.com/topic/performance/vitals/anr
https://developer.android.com/topic/performance/vitals/anr
https://android.googlesource.com/platform/frameworks/native/+/jb-mr0-release/libs/ui/GraphicBuffer.cpp
https://android.googlesource.com/platform/frameworks/native/+/jb-mr0-release/libs/ui/GraphicBuffer.cpp
https://android.googlesource.com/platform/frameworks/native/+/jb-mr0-release/libs/ui/GraphicBuffer.cpp
https://android.googlesource.com/platform/frameworks/native/+/jb-mr0-release/libs/ui/GraphicBuffer.cpp
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View
https://www.apple.com/airplay/
https://www.apple.com/airplay/
https://www.bluestacks.com/bluestacks-vs-ldplayer-vs-memu-vs-nox.html
https://www.bluestacks.com/bluestacks-vs-ldplayer-vs-memu-vs-nox.html
https://www.bluestacks.com/


[19] A. Edmundson, R. Ensafi, N. Feamster, and J. Rexford.

A First Look into Transnational Routing Detours. In

Proc. of ACM SIGCOMM, pages 567–568, 2016.

[20] Genymotion.com. Genymotion: Android as a Service,

2021. https://www.genymotion.com/.

[21] L. Gong, Z. Li, F. Qian, Z. Zhang, Q. A. Chen, Z. Qian,

H. Lin, and Y. Liu. Experiences of Landing Machine

Learning onto Market-Scale Mobile Malware Detection.

In Proc. of ACM EuroSys, pages 1–14, 2020.

[22] Google.com. Almost Native Graphics Layer Engine,

2021. https://github.com/google/angle.

[23] Google.com. Android Emulator: Simulates Android

Devices on Your Computer, 2021. https://develo

per.android.com/studio/run/emulator.

[24] Google.com. Monkey: Automatic UI/Application Ex-

erciser, 2021. https://developer.android.com/

studio/test/monkey.

[25] Google.com. Stream Content with Chromecast,

2021. https://store.google.com/us/product/

chromecast?hl=en-US.

[26] Google.com. SwiftShader: A CPU-Based Implementa-

tion of Graphics APIs, 2021. https://github.com

/google/swiftshader.

[27] A. Herrera. NVIDIA GRID: Graphics Accelerated VDI

with the Visual Performance of a Workstation. NVIDIA

Corp, pages 1–18, 2014.

[28] Huawei.com. Huawei’s DevEco Studio, 2021.

https://developer.harmonyos.com/en/devel

op/deveco-studio/.

[29] Intel.com. Houdini: Translate The ARM Binary Code

into the x86 Instruction Set, 2021. https://www.in

tel.com/content/www/us/en/products/docs/

workstations/resources/accelerate-game-d

evelopment-houdini-optane-memory.html.

[30] Intel.com. Intel GVT-g: Full GPU Virtualization with

Mediated Pass-through, 2021. https://github.com

/intel/gvt-linux/wiki/GVTg_Setup_Guide.

[31] T. Kelly. Scalable TCP: Improving Performance in

Highspeed Wide Area Networks. In Proc. of ACM

SIGCOMM, pages 83–91, 2003.

[32] Kishonti Ltd. GFXBench: A Unified Graphics Bench-

mark Based on DXBenchmark, 2021. https://gfxb

ench.com/.

[33] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.

KVM: the Linux Virtual Machine Monitor. In Proc. of

the Linux Symposium, volume 1, pages 225–230, 2007.

[34] U. Laboratories. 3DMark: Popular Benchmarks for

Gamers, Overclockers, and System Builders, 2021.

https://www.3dmark.com/.

[35] LDPlayer.com. LDPlayer: Free Android Emulator for

PC, 2021. https://www.ldplayer.net/.

[36] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev,

S. Grizan, A. Wolman, and J. Flinn. Outatime: Using

Speculation to Enable Low-Latency Continuous Inter-

action for Mobile Cloud Gaming. In Proc. of ACM

MobiSys, pages 151–165, 2015.

[37] M. Li, H. Lin, C. Liu, Z. Li, F. Qian, Y. Liu, N. Sun,

and T. Xu. Experience: Aging or Glitching? Why Does

Android Stop Responding and What Can We Do About

It? In Proc. of ACM MobiCom, pages 1–11, 2020.

[38] MEmu.com. MEmu: The Most Powerful Android Emu-

lator, 2021. https://www.memuplay.com/.

[39] Mesa.org. The Mesa 3D Graphics Library, 2021.

https://www.mesa3d.org/.

[40] Microsoft.com. Introduction to Hyper-V on Windows,

2021. https://docs.microsoft.com/en-us/vi

rtualization/hyper-v-on-windows/about/.

[41] Microsoft.com. Windows Subsystem for Android,

2021. https://docs.microsoft.com/en-us/wi

ndows/android/wsa/.

[42] NoxPlayer.com. NoxPlayer: The Perfect Android Em-

ulator to Play Mobile Games on PC, 2021. https:

//www.bignox.com/.

[43] NVIDIA.com. vGPU: Security Benefits of Virtual-

ization as well as the Performance of NVIDIA GPUs,

2021. https://www.nvidia.com/en-us/data-c

enter/virtual-solutions/.

[44] J. Oberheide and C. Miller. Dissecting The Android

Bouncer. SummerCon2012, New York, 95:110, 2012.

[45] Oracle.com. VirtualBox: A Powerful x86 and

AMD64/Intel64 Virtualization Product, 2021. https:

//www.virtualbox.org/.

[46] QEMU.org. QEMU: A Generic and Open Source

Machine Emulator and Virtualizer, 2021. https:

//www.qemu.org/.

[47] RealVNC.com. VNC; Remote Desktop Access, 2021.

https://www.realvnc.com/en/.

[48] S. Shi and C.-H. Hsu. A Survey of Interactive Remote

Rendering Systems. ACM Computing Surveys, 47(4):1–

29, 2015.

300    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.genymotion.com/
https://github.com/google/angle
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://store.google.com/us/product/chromecast?hl=en-US
https://store.google.com/us/product/chromecast?hl=en-US
https://github.com/google/swiftshader
https://github.com/google/swiftshader
https://developer.harmonyos.com/en/develop/deveco-studio/
https://developer.harmonyos.com/en/develop/deveco-studio/
https://developer.harmonyos.com/en/develop/deveco-studio/
https://www.intel.com/content/www/us/en/products/docs/workstations/resources/accelerate-game-development-houdini-optane-memory.html
https://www.intel.com/content/www/us/en/products/docs/workstations/resources/accelerate-game-development-houdini-optane-memory.html
https://www.intel.com/content/www/us/en/products/docs/workstations/resources/accelerate-game-development-houdini-optane-memory.html
https://www.intel.com/content/www/us/en/products/docs/workstations/resources/accelerate-game-development-houdini-optane-memory.html
https://github.com/intel/gvt-linux/wiki/GVTg_Setup_Guide
https://github.com/intel/gvt-linux/wiki/GVTg_Setup_Guide
https://gfxbench.com/
https://gfxbench.com/
https://www.3dmark.com/
https://www.3dmark.com/
https://www.ldplayer.net/
https://www.memuplay.com/
https://www.mesa3d.org/
https://www.mesa3d.org/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/windows/android/wsa/
https://docs.microsoft.com/en-us/windows/android/wsa/
https://www.bignox.com/
https://www.bignox.com/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.realvnc.com/en/
https://www.realvnc.com/en/


[49] Skia.org. Skia: 2D Graphics Rendering Library, 2021.

https://skia.org/.

[50] Y. Suzuki, S. Kato, H. Yamada, and K. Kono. GPUvm:

Why Not Virtualizing GPUs at the Hypervisor?

[51] Trinity.github. List of Top-100 3D Apps, 2021.

https://github.com/TrinityEmulator/Evalu

ationScript/#4-top-100-3d-apps.

[52] VMware.com. VMware Workstation Pros: Run Win-

dows, Linux and BSD Virtual Machines on a Windows

or Linux Desktop, 2021. https://www.vmware.com

/products/workstation-pro.html.

[53] W. A. Wulf and S. A. McKee. Hitting the Memory Wall:

Implications of the Obvious. ACM SIGARCH Computer

Architecture News, 23(1):20–24, 1995.

[54] Y. Yan, Z. Li, Q. A. Chen, C. Wilson, T. Xu, E. Zhai,

Y. Li, and Y. Liu. Understanding and Detecting Overlay-

based Android Malware at Market Scales. In Proc. of

ACM MobiSys, pages 168–179, 2019.

[55] Q. Yang, Z. Li, Y. Liu, H. Long, Y. Huang, J. He, T. Xu,

and E. Zhai. Mobile Gaming on Personal Computers

with Direct Android Emulation. In Proc. of ACM Mobi-

Com, pages 1–15, 2019.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    301

https://skia.org/
https://skia.org/
https://github.com/TrinityEmulator/EvaluationScript/#4-top-100-3d-apps
https://github.com/TrinityEmulator/EvaluationScript/#4-top-100-3d-apps
https://github.com/TrinityEmulator/EvaluationScript/#4-top-100-3d-apps
https://www.vmware.com/products/workstation-pro.html
https://www.vmware.com/products/workstation-pro.html




ORION and the Three Rights: Sizing, Bundling, and Prewarming
for Serverless DAGs

Ashraf Mahgoub
Purdue University

Edgardo Barsallo Yi
Purdue University

Karthick Shankar
Carnegie Mellon University

Sameh Elnikety
Microsoft Research

Somali Chaterji
Purdue University

Saurabh Bagchi
Purdue University

Abstract
Serverless applications represented as DAGs have been grow-
ing in popularity. For many of these applications, it would
be useful to estimate the end-to-end (E2E) latency and to
allocate resources to individual functions so as to meet prob-
abilistic guarantees for the E2E latency. This goal has not
been met till now due to three fundamental challenges. The
first is the high variability and correlation in the execution
time of individual functions, the second is the skew in exe-
cution times of the parallel invocations, and the third is the
incidence of cold starts. In this paper, we introduce ORION
to achieve this goal. We first analyze traces from a produc-
tion FaaS infrastructure to identify three characteristics of
serverless DAGs. We use these to motivate and design three
features. The first is a performance model that accounts for
runtime variabilities and dependencies among functions in a
DAG. The second is a method for co-locating multiple paral-
lel invocations within a single VM thus mitigating content-
based skew among these invocations. The third is a method
for pre-warming VMs for subsequent functions in a DAG
with the right look-ahead time. We integrate these three in-
novations and evaluate ORION on AWS Lambda with three
serverless DAG applications. Our evaluation shows that com-
pared to three competing approaches, ORION achieves up to
90% lower P95 latency without increasing $ cost, or up to
53% lower $ cost without increasing P95 latency.

1 Introduction
Serverless computing (a.k.a., FaaS) has emerged as an at-

tractive model for running cloud software for both providers
and tenants. Recently, serverless environments are becoming
increasingly popular for video processing [12, 58], machine
learning [18,55], and linear algebra applications [32,48]. The
requirements of these applications can vary from latency-
strict (e.g., Video Analytics for Amber Alert responders [61])
to latency-tolerant but cost-sensitive (e.g., Training ML mod-
els [28]). Accurate latency estimation is essential to meet
the requirements for both, as the cost in FaaS platforms is
based on resource usage and runtime. The workflow of these

serverless pipelines is usually represented as a directed acyclic
graph (DAG) in which nodes represent serverless functions
and edges represent data flow dependencies between them.

Serverless platforms experience high performance variabil-
ity [4, 27, 35, 40, 42, 56] due to three primary reasons: First,
some function invocations have cold starts. Second, there is
skew in the execution time of various functions because of
different content characteristics that the functions operate on.
Third, there exists skew in the execution time due to variabil-
ity in infrastructure resources (e.g., network bandwidth for
an allocated VM). Because of this variance in performance,
predicting the mean (or median) execution time of individ-
ual functions is not sufficient to meet percentile-specific la-
tency requirements (e.g., P95) for serverless DAGs. Rather, a
distribution-aware modeling technique is essential to capture
this variability and provide accurate latency SLOs.
Key Idea. We propose ORION, a novel technique for perfor-
mance modeling of serverless DAGs to estimate the end-to-
end (E2E) execution time (synonymously, E2E latency). We
leverage this model to enable system optimizations such as
allocating resources to each function to reduce E2E latency
while keeping $ costs low and utilization high. The differ-
ent components of ORION are shown in Figure 1. We derive
insights about serverless DAGs from analysis of production
traces at Azure Durable Functions [13]. This analysis drives
our performance model and the design features.

First, we observe the inherent performance variability in
serverless DAGs and therefore represent the latency of a sin-
gle function, as well as that of the entire DAG, as a distribution
rather than a single value. For example, Figure 5 shows the
variance in execution times for the top-5 most frequently
invoked DAG-based applications. The execution times of in-
vocations of the same DAG vary significantly, and the P95
latency is 80X of the P25 latency, averaged over the 5 applica-
tions. Thus, our performance model profiles the latency distri-
bution for each function in the DAG and builds a performance
model to capture the impact of varying the resource alloca-
tion to that function on its latency distribution. Afterward, we
estimate the DAG E2E latency distribution by applying a se-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    303



User-defined DAG

Start

𝐹 , 𝐹 , 𝐹 ,

𝐹 ,𝐹 ,𝐹 ,

𝐹

𝐹

End

𝐹 ,

𝐹 ,

Performance 
Modeling

E2E Latency 
Model

𝐹  
VM
size

𝐹
VM
size

E2E Latency CDF

Optimization: Right-sizing, Bundling, 
And Right Pre-warming

Latency
Objective

VM size 
Optimizer 

Best VM sizes

Bundling Best Bundle sizes

Pre-warming
Optimizer

Best Pre-warming 
delays….

Figure 1: ORION Overview. ORION profiles the DAG, estimates E2E latency CDF using CONV and MAX,
and performs three system optimizations — right-sizing, bundling, and right pre-warming.

30

DAG structure: short but wide
– Max Depth: 47 in-series stages

– Max Width: 10.9K in-parallel invocations

Workload Characterization (2/3)

Start

,,,

End

,

Depth=3

Width=4

Figure 2: Illustration of DAG Depth (i.e.,
number of in-series stages) and Width (i.e.,

Maximum fanout degree).

ries of two statistical combination operations, convolution
and max, for in-series and in-parallel functions, respectively.
Moreover, we observe it is essential to consider the correlation
between the workers across stages and within the same stage
to accurately estimate the joint distributions. Our performance
model does not require expensive profiling, as is needed for
the leading technique, Bayesian Optimization [3, 5, 15].

We then use our performance model to design three op-
timizations for serverless DAGs. (1) Right-sizing: Finding
the best resource configurations for each function to meet
an E2E latency objective (e.g., 95-th percentile latency < X
sec) with the minimum cost. (2) Bundling: Identifying stages
where co-locating multiple parallel instances of a function
together to be executed on a single VM will be beneficial.
The benefit arises when there is computation skew among
the parallel workers caused by different content inputs. (3)
Right pre-warming: The VMs to execute the functions in the
DAG are pre-warmed just right, ahead of time, so that cold
starts can be avoided while keeping provider-side utilization
of resources high. With these three optimizations, ORION
accurately meets latency SLOs while reducing execution cost
(Figure 3).

ORION can be deployed by either the cloud service provider
or by the end consumer. For the former, the use case is to pro-
vision its resources better to meet client SLOs. For the latter,
the driving force is the appropriate resource provisioning to
minimize E2E latency while minimizing execution cost.
Evaluation and Insights. We evaluate ORION on three server-
less applications on AWS Lambda: two variants of Video An-
alytics [35], an ML Pipeline [17], and an NLP Chatbot [44]
application. Our evaluation, comparing to three approaches:
Best-Memory [2, 59], Speculative-Execution [30], and Cher-
ryPick [5], shows that the benefits of ORION persist across the
different applications with different DAG structures, skews in
execution times, and invocation frequencies. Our evaluation
brings out the following insights:
(1) Latency correlation across stages and within a stage is
important (Tables 1 and 2). Even when correlations are weak,
not taking them into account can introduce significant error in
the latency estimations. Further, to make the solution scalable,

we have to compute the E2E latency estimation using just the
right degree of correlation.
(2) Selecting the best VM sizes for serverless functions in
a DAG is challenging (Table 3). This is because different
resources in a VM scale up differently with their size. For
example, for AWS-λ, CPU cores go from fractional to a max-
imum of six, network bandwidth only increases till a level,
and disk capacity stays constant.
(3) Bundling multiple parallel instances of a function within a
single VM helps when there is content skew and the functions
are scalable, i.e., they can make use of additional resources
(Figure 16). Here also, the degree of bundling has to be care-
fully determined so as not to cause resource contention.
(4) Using the DAG structure and the function latency model,
we can estimate the right time to pre-warm VMs and thus
mitigate cold starts (Figure 15). With pre-warming, lower P95
latency is achieved with higher resource utilization.

In summary, the main contributions of ORION are the fol-
lowing: (1) Workload characterization for serverless DAGs
seen by Azure Durable Functions. (2) A performance model
for E2E latency of serverless DAGs; (3) A method for as-
signing the right resources for serverless DAGs to meet the
E2E latency requirements within a reduced $ cost; (4) An
application-independent way to bundle multiple function in-
vocations to mitigate skews. (5) A method for deciding when
to start pre-warming VMs for functions in a serverless DAG
to minimize initialization latency while providing acceptable
resource utilization.

ORION is open sourced and we release its code, the work-
load characterization data, and the evaluation applications at:
https://github.com/icanforce/Orion-OSDI22

2 Motivation
2.1 Workload Characterization

Definitions. A DAG is a chain of two or more serverless
function stages that execute in-series. A stage consists of one
or more parallel invocations (a.k.a. instances) of the same
serverless function. DAG depth is the number of stages in
the DAG. DAG width is the max number of parallel worker
functions (a.k.a. fanout degree) across all stages in the DAG.

304    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/icanforce/Orion-OSDI22


0

500

1,000

1,500

2,000

2,500

0
5

10
15
20
25
30
35
40

Min-Cost Min-Latency Orion

Pr
ic

e 
($

)

P9
5 

La
te

nc
y 

(s
ec

)

Target: P95 < 15 sec

Latency (sec)

ORIONMin-LatencyMin-Cost

Price of 1K executions ($)

Figure 3: ORION improves both latency and cost of Video Analytics DAG.
Executions with min VM size (i.e., Min-Cost) and max VM size (i.e.,

Min-Latency) are for reference, and all latencies are for warm executions.

A DAG with width = 1 means it is a chain of sequential
function invocations, whereas a DAG with width > 1 means
it has at least one parallel stage. We show an illustration of
DAG depth and width in Figure 2. Finally, we define skew
in a parallel stage as the ratio of the execution times of the
slowest to the fastest worker function.
Analysis. In this section, we characterize the workload of
serverless DAGs from Azure Durable Functions. We collect a
subset of the logs of DAG executions from six datacenters —
three located in the US, two in Europe, and one in Asia from
10/19/21 to 10/25/21 (1 week). The workload we analyze
includes 20M-30M DAG executions/day. From our charac-
terization, we draw the following conclusions, which in turn
motivate various design decisions of ORION.
(1) DAG Structure and Execution Time. We study the depth
and width of serverless DAGs and their distributions in Fig-
ure 4. We account for the DAG invocation frequencies — if
a DAG is invoked N times, its width and depth are included
N times in the CDFs. First, we notice that DAG depth is low,
with a median of 3 stages and a P95 of 8 stages. Second,
although 65% of the DAGs are linear chains (no fanout), the
width can grow to as high as 37 in the 95th percentile. We
also study the execution time of DAGs and find that they
can range from 10 ms to 112 min, with a median of 3.7 sec
and a mean (weighted by invocation frequencies) of 48 sec.
This motivates the need for considering DAG structure while
minimizing the E2E latency.
(2) DAG Invocation Frequency and Relation to Cold Starts.
Figure 7 shows the frequency of invocations/day for each
DAG and the corresponding percentages of cold starts. We no-
tice that the frequency of invocations is heavily skewed, with
the top-5 most frequent DAGs accounting for 46% of all in-
vocations. Thus, the optimized executions of these frequently
invoked DAGs result in higher cost savings. We also notice
that the percentage of cold starts decreases with higher invoca-
tion frequency. For example, DAGs invoked ≥ 100 times/day
have very low percentages of cold start with a median of
0.35%. However, most of the DAGs are rarely invoked: 80%
of the DAGs have an invocation frequency of < 100 times/day,
and these experience a high percentage of cold starts with a
median of 50%. This shows an increase in the proportion of

infrequent serverless applications (DAG-based in our case)
compared to a prior study [47], which showed that 55% of the
serverless applications are invoked less than 100 times/day.

Hence, using keep-alive policies (as done by most major
FaaS platforms) for those DAGs will not be sufficient and pre-
warming becomes essential to mitigate cold starts. Even for
the DAGs that are not the most frequently invoked, keeping
E2E latency low is a desirable feature.
(3) Variance in DAG Execution Time. Figure 5 shows a
boxplot for the execution time of the top-5 most frequently
invoked DAGs (which contribute 46% of all invocations). We
notice that the variance in execution times across different
invocations of the same DAG is high. For example, the P95
latency is 80X the P25 latency, averaged over the five DAGs.
We also notice that the distribution of execution times can be
heavily skewed. For example, P50 is not centered between
MIN and MAX, or between P25 and P75. Hence, it is essential
to represent E2E latency of serverless DAGs as a distribution
when modeling their performance to capture this variability.
(4) Degree of Skew. Figure 6 shows the skew distribution for
parallel stages for different ranges of DAG widths. We notice
that skew among parallel worker functions is at least 2× for
98.2% of the DAGs and increases as the width increases. This
motivates the need for a mechanism to mitigate latency skew
of parallel worker functions to reduce the E2E latency.

2.2 Performance Modeling
Modeling Latency as a Distribution rather than a Single
Statistic. To estimate the E2E latency and cost of a serverless
DAG, it is essential to model the latency of each component as
a distribution. For example, the latency of the image classifica-
tion function (Classify-Frame) in the Video Analytics DAG
can vary by up to 2× when processing different frames, even
when keeping the VM-size fixed to 1 GB. Although similar
performance variability can be observed in server-centric plat-
forms, our model is geared to serverless platforms due to their
ability to scale resources according to demand virtually un-
boundedly and hence showing negligible queuing times [56].
Now consider a simple stage of two Classify-Frame func-
tions running in parallel. Let X and Y be random variables
representing the latency of each. The E2E latency of the two
workers combined is given as P(Z ≤ z) = P(X ≤ z,Y ≤ z),
which depends on the slowest of the two and hence know-
ing their median or even their P99 latencies is not sufficient
to estimate their combined CDF. In fact, we need the entire
distribution of both components to estimate the E2E latency
distribution. Moreover, simply using statistical tail bounds
is not suitable for our purpose. For example, Chebyshev’s
inequality uses the mean and variance to establish a loose tail
bound and it is not known how to combine tail bounds for
in-series and in-parallel functions with their correlations.
Modeling Correlation. To accurately estimate the combined
latency distribution for in-series or in-parallel functions, we
need to capture the correlation between their execution times.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    305



0%

20%

40%

60%

80%

100%

1 10 100 1,000 10,000

CD
F

Depth, width, and total in terms of # functions

Depth

Width

Total
3 8

50%

95%

37

Figure 4: Characterization of depth (number of
stages), width (degree of parallelism), and total
number of nodes. Depth is low (P50 = 3; P95 =
8). 65% of DAGs are linear chains (no fanout)

and width reaches 37 at the 95th percentile.

Figure 5: Latency distributions for the top-5 most
frequent applications executed by Azure Durable
Functions over a period of 1 week. We notice that

the execution time varies significantly across
different invocations of the same application.

0%

20%

40%

60%

80%

100%

1 10 100 1,000

CD
F

Skew Ratio

Width [2,64]

Width >= 64

5.82
1.8%

Figure 6: Skew CDF for stages with different
width ranges. 98.2% of the DAGs have a skew ≥

2X, and skew increases for wider DAGs.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0 1000 2000 3000 4000 5000

Pe
rc

en
ta

ge
  o

f C
ol

d 
St

ar
ts

 

To
ta

l i
nv

oc
at

io
ns

 p
er

 d
ay

 
(lo

g 
sc

al
e)

DAG ID

DAG invocation
Frequency
Percentages of Cold
Starts

Lower Invocation Freq

More cold starts

Figure 7: DAG invocation frequency (Blue solid) and its impact on the
percentage of cold starts (Red dashed). DAGs with low invocation rate (e.g.,
once per day) always experience a cold start, whereas very frequent DAGs

(e.g., ≥ 500 invocations per day) have very rare cold starts.

Extract Classify

CONV

Extract-
Classify

=

Extract-
Classify

MAX(N)

Extract-
Classify-N

Extract-
Classify-N

CONV

Split

=

E2E

=1

2

3

Figure 8: Video Analytics DAG. Split function downloads input video
and splits it into chunks. Each chunk is passed to an instance of

Extract function — extracting a representative frame, sent either to
Classify function (Variant #1), or sent to Pre-process function and

then Classify (Variant #2). The steps of estimating E2E latency
distribution for Variant #1 are on the right.

Ignoring correlation by assuming statistical independence
leads to over-estimating the combined distribution for in-
parallel functions, while it leads to under-estimation for in-
series functions. In our evaluation, we give quantitative evi-
dence of these effects (§ 5.4.2) and show that a performance
model that is distribution-agnostic (e.g., SONIC [40]), or
correlation-agnostic (e.g., [26]), fails to provide accurate E2E
latency estimates.

3 Design

We first describe the performance model and E2E latency
estimation. Then, we describe how we use the performance
model to perform our three optimizations.

3.1 Modeling E2E Latency Distribution
Modeling Functions Runtimes. We represent the runtime
of a function as the sum of its initialization and execution
times. Since both phases have a high variance, we represent
them as separate distributions. This separation allows us to
estimate the gains from each optimization. Allocating the
right resources and bundling mainly impacts the execution
times, whereas pre-warming reduces initialization times.
Combining Latency Distributions. Given a latency distribu-
tion for every function, ORION applies a series of statistical
operations to estimate the DAG E2E latency distribution.

For two in-series functions with latency distributions rep-
resented as random variables X and Y , we use Convolution
to estimate their combined distribution as: P(Z = z) =

∑∀k P(X = k,Y = z− k).
If X and Y are independent, we simplify the computation:
P(Z = z) = ∑∀k P(X = k) ·P(Y = z− k).

The latter is simpler to estimate since it only requires the
marginal distributions of the two components, which can be
profiled separately, rather than jointly.

On the other hand, if the two functions execute in parallel,
then their combined latency distribution will be defined by
the max of the two. Therefore, we use the Max operation to
combine their CDFs as follows: P(Z ≤ z) = P(X ≤ z,Y ≤ z).
Similar to the Convolution operation, a simpler form can be
used when X and Y are independent: P(Z ≤ z) = P(X ≤ z) ·
P(Y ≤ z), which uses the marginal CDFs of the two functions,
rather than their joint CDF.
Handling Correlation Among Functions.

We consider two types of statistical correlation in the DAG:
in-series and in-parallel correlation. For example, our Video
Analytics application (Figure 8) has high correlation between
Pre-process and Classify stages, and also high correlation
between parallel Extract invocations or parallel Classify in-
vocations. (Table 1). By analyzing the correlation between
the stages as well as the correlation between the parallel in-
vocations in the same stage, ORION identifies both types of
correlation. We consider a Pearson correlation coefficient
value > experimental parameter θ, as an indication of correla-
tion. This then determines whether to apply the independent

306    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



or dependent formulation for the CONV or the MAX operation.
In our experiments, we find that the performance of ORION
is relatively insensitive for θ ∈ (0.2,0.5) and we run all the
experiments with θ = 0.4.

To determine the length of correlation chains (pairwise,
etc.), ORION uses conditional entropy measurements of the ex-
ecution time and compares the reduction in entropy by includ-
ing additional terms. Thus, if marginal entropy of stage Y is
H(Y )≫ H(Y |Xi)≈ H(Y |Xi,X j)≈ H(Y |Xi,X j, ...,Xs), where
Xi denotes the random variable of invocation i’s execution
time, then ORION infers that correlations across stages are at
most pairwise. We find that correlations in all our application
DAGs across stages are at-most pairwise. Our formulation,
however, can handle any degree of correlation, not just pair-
wise. Only the amount of profiling data needed will increase
with higher degrees of correlation.

In case of high correlation between N parallel invocations
in the same stage, the max operation can be expanded by the
chain rule: P(Z ≤ z) = P(X1 ≤ z).P(X2 ≤ z|X1 ≤ z).....P(XN ≤ z|X1 ≤
z,X2 ≤ z, . . . ,XN−1 ≤ z), which is further simplified in case of
pairwise correlations by only conditioning on one invocation,
hence all conditional terms reduce to: P(Xi ≤ z|Xi−1 ≤ z).

Since all components within a stage are identical, we esti-
mate the above equation as follows:

P(Z ≤ z) = P(Xi ≤ z).[P(Xk ≤ z|Xi ≤ z)]n−1 ,k ̸= i (1)

Therefore, we use two distributions to model the max for any
number of parallel components — the marginal distribution
and the conditional distribution.

In practice, all individual components are used to estimate
the marginal distribution and all pairs of components are used
to estimate the conditional distribution, as all marginal distri-
butions are identical and so are all conditional distributions.

Using this performance model, ORION designs three op-
timizations for serverless DAGs, which we describe next
— Right-sizing in § 3.2, Bundling in § 3.3, and Right pre-
warming in § 3.4.

3.2 Allocating the Right Resources
The target of this optimization is to assign the right re-

sources for each function in the DAG so that the entire DAG
meets a latency objective with minimum cost. Normally, the
user picks the VM-size for each function, and the VM-size
controls the amount of allocated CPU, memory, and network
bandwidth capacities. What makes this problem challenging
is twofold — the scaling of multiple orthogonal resources
is coupled together and the scaling of different resources is
not linear. As an example, the Classify-Frame function in
the Video Analytics DAG has a small memory footprint (540
MB). However, increasing its VM-size above 1,792 MB (as
that size comes with a full vCPU [7]) reduces latency. This
is because larger sizes come with a fraction of a second core
up to six cores, which this function utilizes. The first step in
this optimization is to map a given configuration candidate
(i.e., a vector of VM-sizes, with one entry per stage) to the

corresponding latency distribution. To achieve this, we build
a per-function performance model that maps VM-sizes to
latency distributions. Next, we combine these distributions to
estimate the E2E latency distribution.
Per-function Performance Model. For each function in the
DAG, we collect the latency distributions for the following
VM sizes: min (the minimum VM size needed for this func-
tion to execute), 1,024 MB, 1,792 MB, and max. We pick
1,024 MB as it is the point of network-bandwidth saturation
(increasing VM-size beyond it does not provide more band-
width), and 1,792 MB as it comes with one full CPU core.
Hence, this initial profiling divides the configuration space
into 3 regions: [Min, 1024), [1024, 1792), and [1792, Max].

In order to estimate latency distribution for intermediate
VM-sizes, we use percentile-wise linear interpolation. For
example, the P50 for 1408 MB is interpolated as the average
between the P50 for 1,024 MB, and the P50 for 1,792 MB
settings. This generates a prior distribution for these interme-
diate VM-size settings. To verify the estimation accuracy in a
region, ORION collects a few test points using the midpoint
VM-size in that region to measure its actual CDF (i.e., the pos-
terior distribution) and compares it with the prior distribution.
If the error between the prior and posterior CDFs is high,
ORION collects more data for the region midpoint and adds
it to its profiling data. In summary, this approach divides the
space of a potentially non-linear function into a set of approx-
imately linear functions, and hence, more complex functions
get divided into more regions, with a profiling cost overhead.
In practice, we find that 5 to 6 regions accurately model the
latency distributions for all functions in our applications.
Optimizing Resources for a Latency Objective. Since the
performance model estimates the E2E latency distribution of
the DAG, we can use it to choose a configuration (i.e., the
set of VM sizes) to execute a DAG in order to meet a user-
specified latency objective while reducing $ cost. We search
for the configurations using a heuristic based on Best-First
Search (BFS) [57]. The pseudo-code is shown in Algorithm 1.

The algorithm starts by creating a priority queue, in which
all the new states are added. A state here represents a vector
of VM sizes, one for each stage. Each new state expands the
current state in one dimension (with a step-size of 64 MB)
and the start state S0 has the minimum VM size for every
function. The priority is set to be the difference between the
target latency and each state’s estimated latency multiplied
by the $ cost of the new state (lower value means higher
priority). Our chosen heuristic is suitable for our problem
because latency is a monotonically non-increasing function of
resources allocated to a function. The worst-case complexity
of BFS is O(n∗ log(n)), where n is the number of states.

3.3 Bundling Parallel Invocations
Stragglers can dominate an application’s E2E latency [11,

16, 36, 53]. Here we show how to bundle multiple parallel
invocations in one stage within a larger VM, rather than the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    307



Algorithm 1 Best-First algorithm to identify the best VM sizes for
functions in a DAG given a user-defined latency objective.
Input: Latency-Percentile=P, Latency-Objective: TO
Output: Best VM sizes=Sbest

1: ## Initialize priority queue pq, performance model GetLatency, cost
model GetCost, StepSize = 64 MB

2: ##Set start state S0 to minimum VM size for every function in DAG
3: pq.insert(s0)
4: while pq is not empty do
5: Snext = pq.pop()
6: ## Create N new states by adding StepSize to each function
7: ## Set the priority of each state and add to pq
8: for i = 0−> |Snext | do
9: Snew = Snext

10: Snew.VMsize[i] = Snext .VMsize[i] + StepSize
11: Snew.latency = GetLatency(Snew, P)
12: Snew.priority = -1 × Snew.latency × GetCost(Snew)
13: pq.insert(Snew)
14: ## Check if latency objective is met
15: if Snew.latency ≤ TO then
16: return Sbest = Snew
17: end if
18: end for
19: end while
20: ## If no explored state meets the latency objective
21: return State Sbest with closest latency to TO

current state-of-practice of executing each in a separate VM.
This promotes better resource sharing, thus mitigating skew.

To understand how bundling works, consider the example
shown in Figure 9 for a stage of 4 parallel worker functions ex-
periencing load imbalance. Specifically, the load for workers
#2 and #4 is low and both require only one time step of execu-
tion. In contrast, the load for workers #1 and #3 is higher and
requires 7 and 3 time steps of execution, respectively. Also,
assume that the workers are scalable and can actually make
use of additional resources made available. If we execute each
worker function on a separate VM, say with 1 core each, the
E2E latency is dominated by the slowest worker and the en-
tire stage will take 7 time steps. However, if we bundle the
workers together in a single VM with 4 cores, the E2E latency
reduces to 3 time steps only. This is because the straggler
workers get access to more resources when the lightly loaded
workers finish their execution. Notice that the cost remains
the same in both cases because they consume 1 core × 12
time steps or 4 cores × 3 time steps for the entire stage.

We make a few observations about the applicability of
bundling. First, bundling is useful in reducing the latency if
the execution skew is due to load imbalance, which arises
from processing bigger partitions of data, or inputs that re-
quire more computation. We detect load imbalances due to
content by subtracting latency CDF #1 from #2: (#1) When
the function is executed multiple times with the same input.
(#2) When the function is executed multiple times with dif-
ferent inputs. Moreover, the higher the correlation between
workers, the lower the gap between their execution times, and
hence, the lower is the benefit from bundling.

Second, for bundling to be useful, the function has to be

scalable to benefit from the additional resources. We iden-
tify a function’s scalability using our performance model
to estimate the impact on the function’s latency CDF when
given more resources (§ 3.2). We benefit from the fact that
the community has developed many highly scalable libraries,
e.g., [10], which are widely used in serverless applications.

Third, our example in Figure 9 assumes there will be no con-
tention between bundled workers. However, in practice, we
find that this contention can be high, especially for network-
bound or IO-bound functions, as these resources do not scale
linearly with the VM size. For example, all VM sizes in AWS
Lambda get the same disk space of 512 MB and network
bandwidth scales only for VM sizes until 1,024 MB.

Based on these three requirements, ORION identifies the
best bundle size in two steps. First, ORION identifies func-
tions that experience execution skew and are scalable using
the performance model. Second, ORION searches the space
of bundle sizes through multiplicative increase (i.e., bundle
sizes of 1, 2, 4, etc.). At each step, ORION collects very few
profiling runs (we use 10) to capture contention. The search
terminates when bundling more workers causes contention
and hence increases the E2E latency. ORION strives to spread
stragglers across different VMs, by performing a “redistribute”
operation if needed, so that each straggler has excess resources
to speed up its execution. Since skew often shows up with
temporal locality, we spread the parallel functions among the
available bundles in a round-robin manner. For example, for
the Video Analytics application, load typically varies gradu-
ally across consecutive frames.

ORION’s security considerations: ORION does not cur-
rently bundle functions in different stages for security pur-
poses. Moreover, all the invocations to be bundled together
belong to the same user and the same DAG invocation. Addi-
tionally, in cases when the stages have very different resource
requirements, it becomes counter-productive to come up with
one VM size that fits multiple stages. We defer the possibility
of bundling invocations across different functions as future
work.

3.4 Pre-warming to Mitigate Cold Starts
We describe our approach to mitigating cold starts, leverag-

ing the DAG structure of the application. We describe how to
identify when to start pre-warming the VMs for each stage in
the DAG, in order to balance the E2E latency and the utiliza-
tion of the computing resources. This step is performed after
we perform the previous two optimizations: Right-sizing and
Bundling. Figure 10 shows conceptually the impact of differ-
ent pre-warming delays on E2E latency and utilization. At the
extreme, a delay of zero for every stage minimizes the E2E la-
tency but also minimizes the utilization. The other extreme is
no pre-warming at all, which is the state-of-practice. First, we
define pre-warming delay for a stage S as the time elapsed
between the start of the DAG execution and the beginning of
initialization of the VMs for that stage. For a given DAG of

308    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 9: (Left) Separate VMs: workers #2 & #4 finish early, while
workers #1 & #3 take longer. (Right) Bundling: after workers #2 & #4

finish, workers #3 & #4 get more resources reducing stage latency.

delay

F1

delay

Right
Pre-warming:

F1
F2Init(F2)

Early
Pre-warming: Idle

F1Late
Pre-warming: delay

F1
F2Init(F2)

No
Pre-warming:

F2Init(F2)

F2Init(F2)

Figure 10: Impact of different pre-warming decisions on the E2E latency
and utilization for a chain of two in-series functions. Without

pre-warming, the E2E latency increases due to added initialization time
of function F2. Both early and late pre-warming are not desirable.

N stages, we want to select a vector d⃗ = [d1,d2, ...dN ] repre-
senting the pre-warming delays for each stage in the DAG.
For the first stage in the DAG, we have the degenerate case
and set its delay (d1) to zero. This is because pre-warming
requires predicting when the DAG will be invoked, which
is challenging in the general case. The optimal delay vector,
given a performance model P , is defined as follows:

d⃗∗ = argmin
d⃗

E2E-Latency(P , d⃗)

subject to Util(P , d⃗)≥ Target Utilization
(2)

The selected vector is the one that minimizes the DAG E2E
latency while achieving the target resource utilization as set
(and dynamically adjusted) by the provider. Both the utiliza-
tion and the E2E latency are estimated by our performance
model P . The metric Util(P , d̄) measures the utilization for
a given delay vector using the performance model, and is esti-
mated as BusyTime(V M)

BusyTime(V M)+IdleTime(V M) . BusyTime(V M) includes
both initialization and execution times, while IdleTime(V M)
is the time between when the initialization completes to when
the function starts executing. We again use Best-First Search
(BFS) to select vector d⃗∗ as follows. We start by setting all val-
ues of di = 0. In each iteration, we add a delta (100 ms) to the
delay factor di that yields the best improvement in utilization
over the current state without increasing the E2E latency. The
algorithm terminates when adding delta to any delay factor
does not improve utilization but increases E2E latency.

3.5 Further Design Considerations
Deployment. ORION is designed to serve as a DAG optimiza-
tion layer. Although the primary use case is to be deployed by
the provider, ORION can also be deployed by end-users. In the
latter, users are able to select the VM sizes for their functions.
For this, the end-user will need to profile her code and also
send pre-warming requests to the provider at the right times,
as identified by ORION. However, users do not need to change
their function code for Bundling. Instead, ORION identifies
the bundle size for each parallel stage in the DAG and exe-
cutes multiple invocations together. The cloud provider still
decides the mapping of specific VMs to function bundles.

Naturally, ORION’s performance model is trained faster for
functions with higher invocation frequency as they provide
natural training data points. As discussed in 2.1, frequently

invoked DAGs dominate the total set of DAG invocations. For
example, the 5%-most frequent DAGs have an invocation rate
of 2.3K per day. Hence, it will take us less than 3.5 hours
to gather 300 training samples per function. We can acceler-
ate this, and also handle less frequently invoked DAGs, by
inserting synthetic but realistic DAG invocations to generate
training data points. It is also possible that we will have to
re-train our models from time to time when the workload
characteristics have changed significantly, or less commonly,
the application DAG or the infrastructure characteristics has
changed significantly. This incremental training is not a com-
putationally heavy task as it involves updating only parts
of the distribution curves. Maintaining the latency data for
performing such updating is also not a memory-heavy task.

4 Implementation
We implement ORION in C# and Python 3.8 with 2,100

LOC. We execute the serverless DAG applications in AWS
Lambda and use Amazon S3 for data passing between the
functions. We use AWS Step Functions [6] to orchestrate the
DAG. Function bundling is implemented without any code
change by using a wrapper around the (developer-provided)
entry point to each function. We use the Python multiprocess-
ing library [9] to execute bundled invocations together.
Runtime Overhead. In theory, the worst-case runtime of Al-
gorithm 1 increases exponentially with the number of stages
in the DAG. However, we find that ORION’s BFS algorithm
has a very low overhead in practice: Each iteration in Algo-
rithm 1 takes [3,7.5] msec, and the best solution takes between
6 and 88 iterations while exploring < 1% of all possible states.
The number of iterations depends on the latency target, the
steepness of the latency-VM size relation, and the step size
(we use 64 MB). For finding the best pre-warming delays,
BFS takes between [0.4,3] seconds across all applications.
Scalability. We evaluate the scalability of ORION in Figure 18
with respect to increasing the number of stages. We syntheti-
cally replicate the last (and most time consuming) stage of the
Video Analytics application to create a DAG of up to 8 stages.
The overhead is defined as the inference time divided by the
application lifetime, and it ranges between 0.12% for 3 stages
to 0.07% for 8 stages. Also, increasing the number of stages,
the prediction error increases, but slowly. Specifically, with
up to 8 stages, P50 error is stable, and P90 and P95 increase

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    309



slowly but never reach 15%. With wider DAGs, our inference
time remains unchanged as the fanout degree is used as a
parameter in our estimation of MAX (Eq. 1).
Pre-warming. Ideally, implementing pre-warming in AWS
Lambda requires our control over assigning invocations to
warm containers or VMs. Since we do not have such control,
we rely on AWS Lambda’s container reuse to implement pre-
warming. Specifically, we perform pre-warming by sending a
dummy call to a function, then send the actual call right after
the response from the dummy call is received.

5 Experimental Evaluation
We evaluate ORION running on AWS Lambda. First, we

describe the three serverless DAG applications used in our
evaluation. Then, we show an E2E evaluation compared to
three alternatives. Next, we show a set of microbenchmarks
to evaluate each component of ORION. Finally, we provide a
unit experiment on Azure Functions, a platform that allows
less configurability for an external mechanism like ORION.

5.1 Serverless DAG Applications
Video Analytics. This application, adopted from Pocket [35],
analyzes an input video by extracting representative frames
from the video and classifying each frame. The application
stages are shown in Figure 8. The first variant of this appli-
cation directly calls a third function, Classify-Frame, which
uses a YOLO [45] pre-trained DNN model to classify ob-
ject(s) in the frame into 1,000 classes. The second variant
calls an intermediate pre-processing function, Pre-process,
which applies a sharpening filter to improve image quality be-
fore classification. We refer to this variant as “Video Analytics
w/ Preprocess” (VA-Pre, for short). Finally, all classification
results are uploaded to remote storage. For VA-Pre, there is
a high correlation between the times of the Pre-process and
the Classify functions. We use 600 YouTube videos (300 for
profiling, 300 for testing), each of length 1 min, belonging to
the “Nature” and “News” categories.
ML Pipeline. This application is a machine learning pipeline
(adopted from Cirrus [18]).It consists of three stages: dimen-
sionality reduction (PCA), model training, and testing (Com-
bine). The second function, Train-Model, runs in parallel and
each instance trains a decision tree model using the LightGBM
Python library [37]. In this stage, a user-specified number of
functions is triggered (we use 64 trees in our evaluation),
and every function trains a different decision tree. The third
function, Combine, combines the trained models into a ran-
dom forest and evaluates its joint accuracy on a held-out test
dataset. We use the MNIST [23] database of handwritten dig-
its that has a total of 60K images. We execute the application
with 600 runs (300 profiling, 300 test), and in each run, we
use 5K images to train the ML model, and 15K for testing.
Chatbot. This application trains a domain-specific Natural
Language Understanding (NLU) model, whose task is to iden-
tify the accurate “intent” of a user-spoken utterance. We use

the Chatbots Intent Recognition Dataset, available on Kag-
gle [44], which consists of 22 intents and 455 utterances. As
before, we evaluate with 300 profiling and 300 test runs. The
first lambda in this application parses the dataset and con-
structs bag-of-words representation for all utterances. Next, a
stage of parallel lambdas trains One-vs-Rest classifiers with
one lambda per intent. The models are then uploaded to re-
mote storage for real-time intent detection.

The three applications cover important characteristics of
serverless DAGs. Specifically, Video Analytics and Chatbot
have scatter communication pattern, whereas ML Pipeline has
a broadcast pattern. They also cover different fanout degrees
(22 for Chatbot, 32 for Video Analytics, 64 for ML Pipeline)
and their execution times resemble the average latency of
DAGs in our workload characterization (§ 2.1). Moreover,
Video Analytics and ML Pipeline are both compute bound,
whereas Chatbot is network bound.

5.2 ORION and Competing Approaches
We compare our E2E latency and cost to multiple resource

allocation, skew mitigation, and pre-warming approaches:
(1) Best-Memory: This is a resource allocation approach
that uses our performance model and progressively increases
the VM size for every function in the DAG till the latency
objective is met. This mimics the standard VM autoscaling
that is employed in many cloud scheduling solutions [2, 59].
All invocations run in separate VMs of the same size.
(2) CherryPick [5]: CherryPick uses Bayesian-Optimization
(BO) to find latency-optimized memory configurations. BO
relies on an acquisition function to propose new points to
sample next. This makes BO a distribution-agnostic base-
line as each VM size is profiled once, then a new size is
selected by the acquisition function. We set the loss func-
tion in BO to be the difference between the achieved latency
and the user-specified latency target. Since CherryPick is dis-
tribution agnostic, it cannot detect execution time skew and
hence performs no bundling. We choose CherryPick as it (BO
with Gaussian processes) was recently demonstrated as the
most competitive approach in the category [15] and recent ap-
proaches have used it for configuring serverless functions [3].
(3) Speculative-Execution: This is a skew mitigation ap-
proach that identifies stragglers at runtime and executes a du-
plicate invocation on a different VM. Speculative execution
is widely used in MapReduce, Hadoop, and Spark systems
for skew mitigation to reduce tail latency [11, 19, 31, 51]. We
adapt this baseline from Spock [30] (specifically the technique
called “conservative autoscaling in predictive mode”). Since
the skew is caused by the input’s content, the new invocation
will likely take as long as the first one unless it is assigned
more resources. Accordingly, we modify the technique by as-
signing the “Max” resources (10 GB) for the new invocation.
(4) ORION Right-Sizing: This variant of ORION performs
Right-Sizing only, and not the other two optimizations.
(5) ORION Full: This is our complete solution, which includes

310    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 11: Skew is varied by changing the detection probability threshold
as: 2%, 10%, and 15%, with lower values resulting in more detected

objects and higher skews [22].

Figure 12: Skew is varied by changing the maximum value for each
hyper-parameter, e.g., we vary the max number of trees as: 50, 100, and

200, and these map to 2.6×, 4.4×, and 10× skews.

Figure 13: Skew is altered to 1×, 2×, and 4× by changing the number of
training epochs as: 100, 500, and 200.

Figure 14: E2E evaluation with cold starts. ORION achieves the lowest
latency and cost compared to all baselines.

Right-Sizing, Bundling, and Pre-Warming.

5.3 End-to-End Evaluation

We show the P95 latency (primary Y-axis, shown using
bars) and cost (secondary Y-axis, shown using lines) of each
approach in Figures 11, 12, and 13 for the three applications.
The numbers above the bars are the latency improvements
of ORION Full relative to the alternates. First, we set the la-
tency objective to the minimum achievable latency, which
is identified by executing all functions with max VM size,
while computation skew is minimized. For each application,
we vary the skew in a controlled manner through application-
specific parameters. For each solution and for each exper-
imental point, we execute each application 300 times and
highlight the gains of ORION’s right sizing and bundling. In
this part, we take care to eliminate all cold starts for the ex-
perimental data points. Later, we show the impact of cold
starts and the additional gain due to ORION’s pre-warming
design in Figure 14. Compared to Best-Memory, ORION has
a slightly higher latency since Best-Memory assigns high re-
sources to all workers, including stragglers. However, this
baseline increases the cost significantly by assigning identical
resources for each stage and parallel running workers in sep-
arate VMs, which over-provisions the resources to meet the
latency objective. ORION provides [33%,71%] lower cost by
assigning the right resources for each function and bundling
parallel workers. Compared to Speculative-Execution, we no-
tice that ORION has consistently lower latency and cost across
all skews. For example, with the lowest skew, ORION shows

[18%, 32%] lower latency and [46%, 57%] lower cost for
the three applications. This is because Speculative-Execution
detects straggling workers (using a user-specified threshold)
and re-executes them on new VMs with the max size. This
causes an additional delay due to the wasted execution time.
It also increases cost as it sometimes mistakenly re-executes
workers that would finish shortly after the threshold. ORION’s
bundling does not require any user-specified threshold to de-
tect straggling workers, assigning them more resources once
co-located workers finish and release their resources.

For CherryPick, since it is distribution-agnostic, we mod-
ify the BO algorithm so that 100 points are profiled for each
point selected by BO’s acquisition function to measure the
latency percentiles. We run CherryPick for 100 iterations total
(a generously high number compared to the original work and
follow-on works), resulting in 10K profiles for each applica-
tion. Notice that ORION requires only 300 profiling runs to
model the E2E latency distribution, reducing the profiling bur-
den of CherryPick by 97%. Compared to CherryPick, we no-
tice that ORION Full consistently provides lower latency and
cost, except for Chatbot where CherryPick has higher latency
but lower cost. Specifically, with the highest skew, ORION
Full shows [16%, 90%] lower latency and [38%, 53%] lower
cost for Video Analytics and ML Pipeline. For Chatbot, this
application has a lower bundle size than the others, reducing
the gain from ORION’s bundling mechanism. Compared to
ORION Right-Sizing, adding bundling significantly reduces
the latency across the three applications. However, bundling
causes a slight increase in the cost for Video Analytics by

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    311



0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

Orion
Cold-
Start

Orion
Zero-
Delay

Orion
Full

Orion
Cold-
Start

Orion
Zero-
Delay

Orion
Full

Orion
Cold-
Start

Orion
Zero-
Delay

Orion
Full

Video Analytics ML Pipeline ChatBot

U
til

iz
at

io
n 

%

P9
5 

E2
E 

La
te

nc
y 

(m
s)

E2E Latency - - Utilization

34%

2X

17%

2.3X

8%

36%

Video Analytics ML Pipeline Chatbot

Figure 15: Impact of pre-warming on latency and utilization. We use VM
and bundle sizes selected by ORION and compare different execution

strategies w.r.t. cold starts. Percentages over the bars of ORION show the
improvements in P95 Latency (over ORION Cold-Start) and Utilization

(over ORION Zero-Delay pre-warming).

22% (relative to No-Bundling), while it causes a decrease
in cost for ML Pipeline by 30%. The reason is that the ML
Pipeline experiences higher skews (up to 10X), and for higher
skew, Bundling is more beneficial. We also notice that the
reduction in latency increases with higher skews. For Chatbot
also, bundling reduces the latency compared to no bundling,
but increases the cost by 163%. This is because the Chatbot
application is more network bound and not compute bound
than the other two, and hence the best bundle size is only 2, vs
[6,8] for the other applications. However, cost with bundling
is still 33% lower than Best-Memory, which is the closest to
us in latency among all baselines.
Mitigating Cold Starts with Pre-warming. So far, we have
compared ORION to the baselines with only warm executions.
Now we show the gain of our pre-warming technique and how
useful it is in reducing cold starts. Figure 14 shows ORION’s
latency and cost vs other baselines in the case of cold start for
every function in the DAG. We notice that all baselines are
impacted by cold starts and their latencies increase, whereas
ORION’s pre-warming technique is able to mitigate the impact
of cold starts. For example, Best-Memory shows an increase
of E2E latency over ORION by 19%, 36%, and 12% for Video
Analytics, ML Pipeline, and Chatbot, respectively. Similarly,
Speculative-Execution suffers from cold starts twice, once for
the first execution with the small VM, and once more for the
second execution with the max VM size. Hence, ORION’s im-
provements in latency over Speculative-Execution increase to
42%, 36%, and 17% for the three applications. To summarize,
ORION’s three optimizations of Right-sizing, Bundling, and
Right pre-warming provide lower E2E latency and cost over
all competing approaches. In the next section, we show a set
of microbenchmarks to separately evaluate the performance
of each component of ORION.

5.4 Microbenchmarks
5.4.1 Impact of Pre-warming on Utilization & Latency

Figure 15 shows the latency and utilization achieved by
ORION versus its two variants. The first, called ORION Cold-
Start, does not perform any pre-warming and hence suffers
from increased latency, yet has very high utilization as it

causes no idle times. The second, called ORION Zero-Delay,
initializes all the containers with zero delay for all stages,
i.e., at the beginning of the DAG execution. Hence it ensures
the lowest latency that can be achieved, but incurs increased
idle times due to early pre-warming and hence suffers from
low utilization. On the other hand, ORION Full uses the right
delay times identified by BFS (§ 3.4). As shown in Figure 15,
ORION Full consistently achieves lower latency than ORION
Cold-Start, and consistently higher utilization over ORION
Zero-Delay for all three applications. We also notice that the
latency gains are higher for ML Pipeline and Video Analyt-
ics than for Chatbot, which is due to the higher initialization
times observed in these two applications when download-
ing the heavy ML packages and the large pre-trained object
detection models. Therefore, estimating the right values of
the delays for each stage, as done by ORION, is essential to
mitigate cold starts without significantly reducing utilization.

5.4.2 Evaluation of Performance Model

Capturing Correlation between Functions.
Here we evaluate how much correlation exists in our target

applications. We calculate the Pearson’s correlation coeffi-
cient between in-series functions (e.g., between Split-Video
and Extract-Frame), and between in-parallel functions (e.g.,
between multiple instances of Extract-Frame). We show the
correlation scores in Table 1 for Video Analytics.

Table 1: Correlation between execution times of functions in the Video
Analytics DAG. In-series correlation is low but in-parallel correlation is

high.

VM-Sizes (in MB) In-series
Correlation

In-parallel
Correlation

Split, Extract, Classify
Split
⇕

Extract

Extract
⇕

Classify

Preprocess
⇕

Classify
(VA-Pre)

Extract Classify

192, 192, 576 0.09 0.04 0.45 0.05 0.43
1024, 1024, 1024 0.07 0.02 0.61 0.34 0.44
1792, 1792, 1792 -0.07 -0.04 0.69 0.48 0.58
3008, 3008, 3008 0.05 -0.01 0.88 0.65 0.51

The correlation scores between in-series components are
close to zero (0.036 on average for Video Analytics, 0.06
for ML Pipeline, and 0.04 for Chatbot), while the correla-
tion scores between functions in the same stage are high for
Video Analytics (0.55), while low for ML Pipeline (0.052)
and for Chatbot (0.03). For Video Analytics w/ Preprocess,
Pre-process has a high correlation with in-series Classify
functions (0.65). Therefore, we apply the dependent conv
operation between Pre-process and Classify, while we
use the independent conv operation for all other in-series
functions for all applications. Additionally, we incorporate
correlation when performing max operation (if correlation is
detected) by using the conditional distribution.
Estimating E2E Latency Distribution. Here we evalu-
ate the accuracy of ORION in predicting the E2E latency

312    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Table 2: Video Analytics: Error rates for ORION’s E2E latency
estimation. Abbreviations: S→Split, E→ Extract, and C→Classify

Video Analytics
VM Sizes

(MB) ORION
Distribution

Agnostic
Correlation

Agnostic [26]
S, E, C P50 P95 P50 P95 P50 P95

512 , 1280 , 1536 14.0% 13.0% 40.0% 15.6% 78.7% 47.5%
768 , 1280 , 2240 14.0% 12.0% 35.4% 11.6% 67.7% 38.3%
1536 , 512 , 1536 13.0% 11.0% 39.7% 16.7% 79.4% 49.9%
1792 , 1792 , 576 6.4% 11.8% 11.6% -39.0% 49.7% -18.2%
6000, 6000, 6000 14.5% 10.7% 24.2% 3.3% 56.9% 30.5%

MAPE 13.0% 12.0% 32.0% 21.0% 68.0% 39.0%

distribution for the entire DAG. We compare to two base-
lines — distribution-agnostic (as mentioned earlier, any BO-
based technique like CherryPick falls in this category) and
correlation-agnostic (e.g., [26]). The results are shown in
Table 2 for Video Analytics.

ORION estimates the E2E latency distribution for the appli-
cations with low error rate (<15%), much lower than those of
both baselines. We find through drill down of our estimation
error that: (i) our estimated length of correlation chains as
pairwise (§ 3.1) is accurate and hence does not lead to much
error (ii) the dominant source of error lies in the interpola-
tion of the CDFs for each function for the unseen memory
configurations. This is despite our design, where if the inter-
polation causes too much error, the memory region is split
into two and further data points are collected (§ 3.2). These
observations hold across all three applications. Error rates are
higher in Video Analytics relative to ML Pipeline because
the execution time is content sensitive for the former. Our
technique does not create content-specific models since we
(and any provider-side tool) cannot have visibility into user
data due to privacy concerns. The Distribution-Agnostic base-
line uses the median execution times and predicts the median
execution times for unseen configurations by interpolation.
This baseline has a high error rate in the range of [-39%,
40%] for Video Analytics, [-5%,108%] for ML Pipeline, and
[-6%, 66%] for Chatbot. The Correlation-Agnostic baseline
from [26] also has a higher error rate in the range of [-18%,
79%] for Video Analytics, [-5.4%,103%] for ML Pipeline, and
[80%, 111%] for Chatbot. Note that the majority of the errors
for the Correlation-Agnostic baseline are over-estimation,
which is caused by ignoring the correlation between parallel
workers. In conclusion, it is important to take into account the
latency distributions and not simply a point estimate and to
account for the correlation across stages and across workers
within a stage, even when the correlations are quite weak
(Table 1).

5.4.3 Optimizing Resources for a Target E2E Latency

We profile the applications to build the E2E performance
model in ORION for all three applications as mentioned in
§ 5.4.2, then set 6 latency targets per application. ORION pro-
poses the DAG configuration (i.e., VM size for each function

in the DAG) to meet each latency target at while reducing cost.
We validate ORION’s accuracy by executing the application
with the proposed configuration and comparing the achieved
latency to the user requirement.We notice that ORION’s pro-
posed configurations are very close to the latency requirement
in all applications, with error rate of [-2.75%, 4.93%] for
Video Analytics, [-1.37%, 2.6%] for ML Pipeline, and [-3.5%,
3.7%] for Chatbot. Table 3 lists detailed configurations for
Video Analytics. We notice that expectedly, ORION tends
to assign more resources as the latency percentile increases
(i.e., P50 → P95) or as the latency requirement decreases
(50 sec → 30 sec). Also ORION decides to increase the al-
located resources for a subset of functions and by different
amounts, based on the latency requirement. For example, for
ML Pipeline, ORION increases the VM-size of PCA from 768
MB to 832 MB to achieve a latency requirement of (P90 ≤
50 sec). However, ORION decides to increase the VM-size of
Combine from 1,408 MB to 1,472 MB to achieve a latency
requirement of (P90 ≤ 40 sec). This shows ORION’s BFS
adjusts the Best function to increase its resources according
to the estimated latency of the current state.

5.4.4 Impact of Varying Bundle Size

We evaluate the impact of varying bundle sizes on the E2E
latency CDF and cost (Figure 16). First, we run our Video
Analytics application with the best VM size selected by BFS
but without bundling. This is an application that is both CPU
bound and scalable, and thus a good candidate for demonstrat-
ing the effect of bundling. Next, we progressively increase
the bundle size and the VM size proportionally. For example,
if the best VM size selected by BFS is 1,792 MB (1 core), we
use a VM of size 1,792 × 2 when we bundle pairs together,
and so on. We notice that increasing the bundle size from
2 to 6 workers reduces the latency; however, increasing the
bundle size beyond that (to 10 and 30) causes an increase in
the latency. This is because the maximum number of cores
available in AWS Lambda is 6 and hence, at the higher bundle
sizes (10 or 30), each worker is getting less than its required
resource.

Thus, the design of ORION to choose the best bundle size
is essential to optimize latency by avoiding contention.

5.5 Generalizability to Microsoft Azure
To test if ORION generalizes to other FaaS providers, we

evaluate our model using Azure Functions as the serverless
environment. Azure Functions supports a few plans, but the
most popular one is the Consumption Plan. In this plan, users
are charged for the exact amount of resources consumed by
their functions at runtime, whereas all other plans have a flat
rate pricing model. Although we have no control over the
resources assigned to individual functions when selecting the
Consumption Plan, we wanted to measure the accuracy of
ORION’s E2E latency estimates compared to the actual la-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    313



0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

CD
F

E2E Latency (sec)

No-Bundling

Bundle-2

Bundle-6

Bundle-10

Bundle-30

Figure 16: Video Analytics: Impact of varying bundle sizes.
No-bunling has high latency due to computation skew. The optimal

bundle size here is 6, and using a bundle size of ≥ 10 causes
contention and the latency increases.

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

CD
F

E2E Latency (sec)

Actual_CDF
Estimated CDF (Correlation-Agnostic)
Estimated CDF (ORION)

Error at P50 for Correlation-
Agnostic=11.6%

Error at P50 for 
ORION= -0.12%

Figure 17: ORION’s estimated latency CDF vs Actual CDF for Video
Analytics application deployed in Azure Functions. Ignoring in-parallel
correlation leads to higher errors for the Correlation-Agnostic baseline.

Table 3: ORION’s E2E latency-optimized VM sizes. ORION meets the
latency objective with a low error rate in the range of [-2.75%, 4.93%]

Video Analytics
User
Requirement

ORION’s configs (MB) Achieved
Latency

Error
Rate

Split,Extract,Classify
P50 ≤18 s 192, 192, 640 18.3 s 1.5%
P95 ≤18 s 384, 192, 768 17.5 s -2.8%

P50 ≤17.5 s 192, 192, 704 18.4 s 4.9%
P95 ≤17.5 s 640, 192, 768 17.4 s -0.5%
P50 ≤17 s 256, 192, 768 17.8 s 4.4%
P95 ≤17 s 832, 256, 1024 17.3 s 2.0%

tency observed with this plan. We show ORION’s estimated
CDF and actual CDF in Figure 17. We use our Video Ana-
lytics application with the earlier-mentioned 600 YouTube
videos.

We use our E2E performance model to estimate the CDF
for the entire DAG. For fair comparison to AWS-Lambda, we
also rely on remote-storage (i.e., Azure Blob Storage) for data-
passing between the functions. We also show the estimated
CDF when correlations among functions are ignored — this
corresponds to the "Correlation-Agnostic" baseline from our
earlier experiment (§ 5.4.2). We notice that ORION predicts
the E2E latency with very low error rates (-0.12% for P50,
1.9% for P90, and 2.5% for P95 latencies). The Correlation-
Agnostic baseline has significantly higher errors (11.6% for
P50, 14.4% for P90, and 29.2% for P95). Thus, the baseline
suffers more for higher percentiles.

6 Pre-warming Policy Simulator
To better understand different pre-warming policies without

being constrained by privileges granted by the cloud provider,
we build a policy simulator, implemented in Python 3.8 with
1,058 LOC. The simulator takes as input the latency CDFs
for stages in the DAG. Policies are implemented through a
state machine with different actions being taken in each state
(such as FUNC_START, FUNC_END, FUNC_PREWARM,
etc.). The output of the simulator are the E2E latency CDF of
the DAG and the overall resource utilization. We open source

the simulator for future exploration of serverless DAGs [1].
Simulation Results. Figure 19 shows the utilization achieved
by a policy with optimal pre-warming using an Oracle that
knows the exact runtimes of each function invocation. The
input DAG has 2 stages with width of 10 for each stage. The
X-axis denotes the skew on the runtime of the first stage. The
Y-axis denotes the percentage of variance on the delay chosen
by the Oracle for pre-warming functions of the second stage
— so if the value is X% and ORION calculated deterministic
delay is Y , then the Oracle can pick a delay in the range [Y −
X% of Y,Y +X% of Y ]. Thus, the range of values the Oracle
can choose from is capped even if the Oracle determines the
optimal pre-warming time for a specific function invocation
lies outside of the range. The lowest point on the Y-axis is
the optimal deterministic delay determined by ORION for all
function invocations in the second stage. We find that the E2E
latency is unaffected (not shown) by increasing the size of
the range on higher skews, but utilization increases. This is
because the policy is able to pre-warm with the ideal delay and
hence does not incur any idle time. This shows the theoretical
best achievable utilization since we use an Oracle. However,
implementing this Oracle has two challenges: (1) Predicting
per-function exact latency is impractical. (2) Selecting a delay
factor for each function invocation rather than each stage
increases search space exponentially with DAG width.

7 Related Work
Minimizing cost and/or execution time for serverless chains

is the target of a few recent studies. For example, Sequoia [52]
makes the observation that current serverless platforms treat
functions within a DAG separately, without making use of
the DAG structure. SONIC [40] reduces the communication
latency between in-series serverless functions by optimizing
the data passing strategy. SONIC selects from among the data
passing strategies: direct passing, remote storage, and local
VM-storage, where only the latter two can be implemented
directly in AWS Lambda. Caerus [60] stresses the importance
of optimizing latency and cost jointly for serverless DAGs,
and achieves this by identifying pipeline-amenable data de-

314    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

3 4 5 6 7 8

E2
E 

la
te

nc
y 

Er
ro

r %

Number of Stages in the DAG

P50 Error P90 Error P95 Error

Figure 18: ORION’s error with varying number of stages. More stages
increase the error for the tail, while the median stays stable. Figure 19: Simulation of an Oracle pre-warming policy where

utilization improves with the width of distribution from which
the pre-warming delays are chosen. ORION’s strategy

corresponds to the 0% variability, i.e., deterministic delay.

pendencies between stages to find ideal task launch times.
Xanadu [21] and Kraken [14] tackle the problem of cascad-
ing cold starts in a dynamic DAG. Neither can determine the
optimal pre-warming time to mitigate cold starts.

Overall, no prior work in this category considers execution
time variance and its impact on cost or utilization.

Latency and Cost Prediction for Serverless Functions. A
few prior studies have targeted predicting the execution time
and cost for serverless functions. For example, [25] predicts
(a point estimate) and optimizes resources for a single server-
less function by building regression models from a host of
synthetic functions. The authors in [26] also observe a vari-
ance in execution time in serverless environments, and hence,
apply mixture density networks to predict the distribution
of the function cost. However, their Monte-Carlo simulation
mechanism is very sample inefficient.

ORION uses a more direct method by applying statistical
operations to combine the distributions of individual
functions and thus, to infer the E2E latency distribution. A
number of prior works target reducing the cost of serverless
DAGs by optimizing the intermediate data transfer between
functions, such as, Costless [27], SONIC [40], Locus [43],
and Pocket [35]. They solve an orthogonal problem to ours,
namely, reducing the cost of intermediate data transfer.
ORION does not introduce a new mechanism for intermediate
data transfer, nor does it limit or specify the method for state
transfer between functions. We use state-of-practice remote
storages, such as AWS S3 and Azure Blob Storage. However,
ORION would integrate seamlessly with the mentioned
systems as the read/write times are included in the latency
profiles used in ORION ’s model.

Scheduling in Serverless Computing. Photon [24] optimizes
single-stage serverless functions by doing the equivalent of
bundling in ORION, but not for skew mitigation. Its main
motivation is to reduce the memory footprint of parallel invo-

cations of a function, while its design sophistication is meant
to address security concerns of bundling (out of scope for
ORION). One work that targets meeting latency SLAs for
serverless DAGs is Atoll [50].

It takes a complementary approach to ours—partitioning
a cluster to lower scheduling overheads, and proactively
starting up containers and then routing function requests to
the appropriate containers.

Resource Optimization in the Cloud. Black-box configu-
ration tuning systems such as CherryPick [5], Selecta [34],
OptimusCloud [39], and Ernest [54] target optimizing the
cloud resources for a wide range of applications by selecting
the right VM type and size, which vary in the amount of allo-
cated resources. However, these systems treat the application
as a single component, and thus, do not take the DAG work-
flow information into account. Further, they are not directly
applicable to serverless applications.
Cold Starts Mitigation. Many prior works identified cold
starts as a major performance bottleneck in FaaS platforms.
Accordingly, several solutions have been proposed such as
keeping containers alive [29], leveraging checkpoint/restore
operations [49], or using Pause containers [41]. Although
these solutions reduce the initialization time significantly,
there is still a significant user-observable initialization time.
ORION hides this initialization time through pre-warming and
decides the right time to start pre-warming to minimize idle
time, hence keeps resource utilization high.

8 Discussion
Profiling and Modeling Overheads. ORION requires moni-
toring the execution of the application for a number of runs to
accurately capture the latency distribution for each function
in the DAG. In our evaluation, for all the applications, a total
of 300 profiling runs was found sufficient for accurate 95-
percentile latency estimates. Initially, and before convergence
is reached, the data collection is performed as a background

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    315



process while the DAG executes with user-provided configu-
rations. An important design consideration for ORION is that
this data collection does not have to happen purely offline
and in batch mode. Rather, that is complemented with online
data collection and incremental model refinement, which is
a lightweight task. When predicted and observed latencies
differ significantly (as can happen if the workload or the ap-
plication changes), we restart the data collection phase to
capture the changes in the latency distributions.
Bundling and Performance Model Interaction. Bundling
changes the DAG structure (by reducing the fanout degree),
and hence, the performance prediction model needs to be
updated. Therefore, this becomes an iterative process, with
each iteration being Performance model building ⇒ Resource
optimization ⇒ Bundling. In practice, we find that a single
iteration, or at most two iterations, leads to convergence.
Impact of The Three Optimization. The three optimizations
of ORION can have a negative impact on performance, re-
source utilization, or $ cost if not performed carefully. First,
over-provisioning the VM size for all workers to mitigate
execution skew (as done by the Best Memory baseline in
our evaluation) unnecessarily increases the $ cost (Figures
11, 12,& 13). Second, excessive Bundling (bundle size > right
bundle size) can lead to resource contention and increase of
the latency (Figure 16). Third, early pre-warming (delay <
right delay) decreases resource utilization, whereas late pre-
warming increases latency (Figure 15). This motivates the
need for an accurate performance model to accurately per-
form these three optimizations. In terms of cost, we notice that
users do not pay for initialization times, hence pre-warming
does not impact cost. However, the provider should treat a
pre-warming request as a hint since a true invocation is always
more important.
Applicability of Performance Model.

ORION is tailored to model the performance for serverless
DAGs. In general, the response time of a job includes queuing
and execution times. Cloud providers operate large server-
less platforms, providing virtually infinite capacity, reducing
queuing delays to primarily cold-start latencies [38]. Further,
serverless platforms typically limit the execution time of each
invocation [8] favoring modular reusable functions. The com-
bination of short queuing and execution times enables ORION
to model E2E latency, without the need to predict variable
(and long), heavy-tailed queuing times that appear in other
environments [20, 33, 46].
Mitigating Infrastructure-caused Delays. In serverless plat-
forms, two types of stragglers can be observed: (1) Strag-
glers that experience longer execution times due to their input
content (e.g., larger data portions or more complex inputs
such as video frames with many objects). (2) Stragglers that
appear due to infrastructure causes (e.g., network fluctua-
tions). Bundling mitigates the first type of stragglers. The
second type is well studied in the literature, and solutions
such as Speculative Execution [11] work well in practice.

Nevertheless, Bundling has a positive side effect of using
fewer VMs/containers, reducing the likelihood of occurrence
for infrastructure stragglers.
Supporting Dynamic DAGs. In a dynamic DAG, the exe-
cution flow is identified at runtime, say based on input data.
Such DAGs appear in microservice-based applications [14],
among others. ORION, as well as other provider-side tools,
cannot have visibility into user data due to privacy concerns.
Hence, ORION cannot support dynamic DAGs where the path
is determined based on request content.
Future Work. Our bundling approach increases VM size
proportionally with the bundle size. For example, assuming
a single function invocation use a VM of size V Msingle, we
bundle N invocations in a VM with a size of N ×V Msingle.
There is, however, room to explore choosing other VM sizes
beyond linear scaling. Furthermore, combining two or more
in-series functions together to execute in a single VM can
improve performance compared to invoking those function in
separate VMs (e.g. due to avoiding remote storage communi-
cation). We plan to explore the performance benefits of these
ideas.

9 Conclusion
We proposed ORION as a novel optimization technique for

serverless DAGs. It presents four design innovations: a dis-
tribution and correlation-aware performance model for E2E
latency, a resource optimization strategy, a design for bundling
multiple invocations of a function within a stage to mitigate
execution time skews, and a pre-warming strategy to mitigate
cold starts. We evaluate ORION on AWS Lambda on three
serverless applications with different DAG structures, skews
in execution time, and communication patterns. We compare
ORION to three competing approaches and show significant
improvements in E2E latency, $ cost, or both. We highlight the
following insights: (1) It is challenging to decide on the right
resource configurations that accurately meet latency SLOs
for serverless DAGs. (2) It is important to bundle parallel
workers together to mitigate skew, yet it is challenging to
pick the right bundle size that avoids resource contention. (3)
We can leverage the DAG structure information along with
latency CDF estimates to find efficient pre-warming delays
that minimize E2E latency without degrading utilization.

10 Acknowledgments
This material is based in part upon work supported by

the National Science Foundation under Grant Numbers CCF-
1919197, CNS-2016704, CNS-2038986, CNS-2038566, CNS-
2146449 (NSF CAREER award), NIH Grant R01AI123037,
and funding from Microsoft Research. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the sponsors. The authors thank the reviewers
and artifact evaluators for their enthusiastic comments, and
the shepherd, Timothy Wood, for his insightful feedback.

316    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References
[1] Pre-warming Policy Simulator. https://github.com/

icanforce/Orion-OSDI22, Last retrieved: May, 2022.

[2] Muhammad Abdullah, Waheed Iqbal, Josep Lluis Berral,
Jorda Polo, and David Carrera. Burst-aware predic-
tive autoscaling for containerized microservices. IEEE
Transactions on Services Computing, 2020.

[3] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim
Matta. Cose: Configuring serverless functions using
statistical learning. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pages 129–
138. IEEE, 2020.

[4] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC), pages
923–935, 2018.

[5] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively unearthing the best cloud config-
urations for big data analytics. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 469–482, 2017.

[6] Amazon. Aws step functions documentation.
https://docs.aws.amazon.com/step-functions/
index.html, Last retrieved: May, 2022.

[7] Amazon. Configuring lambda function memory.
https://docs.aws.amazon.com/lambda/latest/
dg/configuration-memory.htmll, Last retrieved:
May, 2022.

[8] Amazon. Lambda quotas. https://
docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html, Last retrieved:
May, 2022.

[9] Amazon. Parallel processing in python with aws
lambda. https://aws.amazon.com/blogs/compute/
parallel-processing-in-python-with-aws-
lambda/, Last retrieved: May, 2022.

[10] Amazon Web Services. Parallel Process-
ing in Python with AWS Lambda. https:
//aws.amazon.com/blogs/compute/parallel-
processing-in-python-with-aws-lambda/, Last
retrieved: May, 2022.

[11] Ganesh Ananthanarayanan, Michael Chien-Chun Hung,
Xiaoqi Ren, Ion Stoica, Adam Wierman, and Minlan Yu.
GRASS: Trimming stragglers in approximation analyt-
ics. In 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), pages 289–302,
Seattle, WA, April 2014. USENIX Association.

[12] Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and
George Porter. Sprocket: A serverless video processing
framework. In Proceedings of the ACM Symposium on
Cloud Computing, pages 263–274, 2018.

[13] Azure. Durable functions overview. https:
//docs.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-
overview?tabs=csharp, Last retrieved: May,
2022.

[14] Vivek M Bhasi, Jashwant Raj Gunasekaran, Prashanth
Thinakaran, Cyan Subhra Mishra, Mahmut Taylan Kan-
demir, and Chita Das. Kraken: Adaptive container pro-
visioning for deploying dynamic dags in serverless plat-
forms. In Proceedings of the ACM Symposium on Cloud
Computing, pages 153–167, 2021.

[15] Muhammad Bilal, Marco Serafini, Marco Canini, and
Rodrigo Rodrigues. Do the best cloud configurations
grow on trees? an experimental evaluation of black box
algorithms for optimizing cloud workloads. Proceedings
of the VLDB Endowment, 13(12):2563–2575, 2020.

[16] Laurent Bindschaedler, Jasmina Malicevic, Nicolas
Schiper, Ashvin Goel, and Willy Zwaenepoel. Rock you
like a hurricane: Taming skew in large scale analytics.
In Proceedings of the Thirteenth EuroSys Conference,
pages 1–15, 2018.

[17] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew
Zhang, and Randy Katz. A case for serverless machine
learning. In Workshop on Systems for ML and Open
Source Software at NeurIPS, volume 2018, 2018.

[18] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew
Zhang, and Randy Katz. Cirrus: A serverless framework
for end-to-end ml workflows. In Proceedings of the
ACM Symposium on Cloud Computing, pages 13–24,
2019.

[19] Qi Chen, Jinyu Yao, and Zhen Xiao. Libra: Lightweight
data skew mitigation in mapreduce. IEEE Transactions
on parallel and distributed systems, 26(9):2520–2533,
2014.

[20] Mark E Crovella, Robert Frangioso, and Mor Harchol-
Balter. Connection scheduling in web servers. Techni-
cal report, Boston University Computer Science Depart-
ment, 1999.

[21] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni.
Xanadu: Mitigating cascading cold starts in serverless
function chain deployments. In Proceedings of the 21st
International Middleware Conference, pages 356–370,
2020.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    317

https://github.com/icanforce/Orion-OSDI22
https://github.com/icanforce/Orion-OSDI22
https://docs.aws.amazon.com/step-functions/index.html
https://docs.aws.amazon.com/step-functions/index.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.htmll
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.htmll
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://aws.amazon.com/blogs/compute/parallel-processing-in-python-with-aws-lambda/
https://aws.amazon.com/blogs/compute/parallel-processing-in-python-with-aws-lambda/
https://aws.amazon.com/blogs/compute/parallel-processing-in-python-with-aws-lambda/
https://aws.amazon.com/blogs/compute/parallel-processing-in-python-with-aws-lambda/
https://aws.amazon.com/blogs/compute/parallel-processing-in-python-with-aws-lambda/
https://aws.amazon.com/blogs/compute/parallel-processing-in-python-with-aws-lambda/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp


[22] DeepQuest-AI. Imageai : Video object detection,
tracking and analysis. https://github.com/
OlafenwaMoses/ImageAI/blob/master/imageai/
Detection/VIDEO.md, Last retrieved: May, 2022.

[23] Li Deng. The mnist database of handwritten digit images
for machine learning research [best of the web]. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[24] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gus-
tavo Alonso. Photons: Lambdas on a diet. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
pages 45–59, 2020.

[25] Simon Eismann, Long Bui, Johannes Grohmann,
Cristina Abad, Nikolas Herbst, and Samuel Kounev.
Sizeless: Predicting the optimal size of serverless func-
tions. In Proceedings of the 22nd International Middle-
ware Conference, pages 248–259, 2021.

[26] Simon Eismann, Johannes Grohmann, Erwin van Eyk,
Nikolas Herbst, and Samuel Kounev. Predicting the
costs of serverless workflows. In Proceedings of the
ACM/SPEC International Conference on Performance
Engineering, pages 265–276, 2020.

[27] Tarek Elgamal. Costless: Optimizing cost of serverless
computing through function fusion and placement. In
2018 IEEE/ACM Symposium on Edge Computing (SEC),
pages 300–312. IEEE, 2018.

[28] Lang Feng, Prabhakar Kudva, Dilma Da Silva, and Jiang
Hu. Exploring serverless computing for neural network
training. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD), pages 334–341. IEEE,
2018.

[29] Alexander Fuerst and Prateek Sharma. Faascache: keep-
ing serverless computing alive with greedy-dual caching.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 386–400, 2021.

[30] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mah-
mut Taylan Kandemir, Bhuvan Urgaonkar, George Ke-
sidis, and Chita Das. Spock: Exploiting serverless func-
tions for slo and cost aware resource procurement in
public cloud. In 2019 IEEE 12th International Confer-
ence on Cloud Computing (CLOUD), pages 199–208.
IEEE, 2019.

[31] Yanfei Guo, Jia Rao, Changjun Jiang, and Xiaobo Zhou.
Moving hadoop into the cloud with flexible slot manage-
ment and speculative execution. IEEE Transactions on
Parallel and Distributed systems, 28(3):798–812, 2016.

[32] Vipul Gupta, Swanand Kadhe, Thomas Courtade,
Michael W. Mahoney, and Kannan Ramchandran.
Oversketched newton: Fast convex optimization for
serverless systems. In 2020 IEEE International Confer-
ence on Big Data (Big Data), pages 288–297, 2020.

[33] Mor Harchol-Balter, Mark E. Crovella, and Cristina D.
Murta. On choosing a task assignment policy for a
distributed server system. Journal of Parallel and Dis-
tributed Computing, 59(2):204–228, 1999.

[34] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Se-
lecta: Heterogeneous cloud storage configuration for
data analytics. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), pages 759–773, Boston, MA,
2018.

[35] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 427–444, 2018.

[36] YongChul Kwon, Kai Ren, Magdalena Balazinska, Bill
Howe, and Jerome Rolia. Managing skew in hadoop.
IEEE Data Eng. Bull., 36(1):24–33, 2013.

[37] LightGBM. Lightgbm python-package.
https://lightgbm.readthedocs.io/en/latest/
Python-Intro.html, Last retrieved: May, 2022.

[38] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R.
Larus, and Albert Greenberg. Join-idle-queue: A novel
load balancing algorithm for dynamically scalable web
services. Performance Evaluation, 68(11):1056–1071,
2011. Special Issue: Performance 2011.

[39] Ashraf Mahgoub, Alexander Michaelson Medoff,
Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. OPTIMUSCLOUD: Het-
erogeneous configuration optimization for distributed
databases in the cloud. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20), pages 189–203,
2020.

[40] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi.
SONIC: Application-aware data passing for chained
serverless applications. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21), pages 285–301,
2021.

[41] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna
Edupuganti, Naren Nayak, and Vadim Sukhomlinov. Ag-
ile cold starts for scalable serverless. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
19), 2019.

318    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/Detection/VIDEO.md
https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/Detection/VIDEO.md
https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/Detection/VIDEO.md
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html


[42] Ingo Müller, Renato Marroquín, and Gustavo Alonso.
Lambada: Interactive data analytics on cold data using
serverless cloud infrastructure. In Proceedings of the
2020 ACM SIGMOD International Conference on Man-
agement of Data, pages 115–130, 2020.

[43] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-
fling, fast and slow: Scalable analytics on serverless in-
frastructure. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 193–
206, 2019.

[44] python. Chatbots: Intent recognition dataset.
https://www.kaggle.com/elvinagammed/
chatbots-intent-recognition-dataset, Last
retrieved: May, 2022.

[45] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–
788, 2016.

[46] Bianca Schroeder and Mor Harchol-Balter. Web servers
under overload: How scheduling can help. ACM Trans.
Internet Technol., 6(1):20–52, February 2006.

[47] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC), pages 205–218, 2020.

[48] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan
Pu, Benjamin Recht, Ion Stoica, Jonathan Ragan-Kelley,
Eric Jonas, and Shivaram Venkataraman. Serverless lin-
ear algebra. In Proceedings of the 11th ACM Symposium
on Cloud Computing, pages 281–295, 2020.

[49] Paulo Silva, Daniel Fireman, and Thiago Emmanuel
Pereira. Prebaking functions to warm the serverless
cold start. In Proceedings of the 21st International
Middleware Conference, pages 1–13, 2020.

[50] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck,
Mohammed Danish Shaikh, Shivaram Venkataraman,
and Aditya Akella. Atoll: A scalable low-latency server-
less platform. In Proceedings of the ACM Symposium
on Cloud Computing, pages 138–152, 2021.

[51] Spark. Spark speculation. https:
//spark.apache.org/docs/latest/
configuration.html, Last retrieved: May, 2022.

[52] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner,
and Siddharth Lanka. Sequoia: Enabling quality-of-
service in serverless computing. In Proceedings of the
11th ACM Symposium on Cloud Computing, pages 311–
327, 2020.

[53] Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu,
and Miryung Kim. Perfdebug: Performance debugging
of computation skew in dataflow systems. In Proceed-
ings of the ACM Symposium on Cloud Computing, pages
465–476, 2019.

[54] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient performance prediction for Large-Scale advanced
analytics. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
363–378, Santa Clara, CA, March 2016. USENIX As-
sociation.

[55] Hao Wang, Di Niu, and Baochun Li. Distributed ma-
chine learning with a serverless architecture. In IEEE
INFOCOM 2019-IEEE Conference on Computer Com-
munications, pages 1288–1296. IEEE, 2019.

[56] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas
Ristenpart, and Michael Swift. Peeking behind the cur-
tains of serverless platforms. In 2018 USENIX Annual
Technical Conference (USENIX ATC), pages 133–146,
2018.

[57] Wikipedia. Best-first search. https:
//en.wikipedia.org/wiki/Best-first_search,
Last retrieved: May, 2022.

[58] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang,
Weisong Shi, and Qun Li. Lavea: Latency-aware video
analytics on edge computing platform. In Proceedings
of the Second ACM/IEEE Symposium on Edge Comput-
ing, pages 1–13, 2017.

[59] Fan Zhang, Xuxin Tang, Xiu Li, Samee U Khan, and
Zhijiang Li. Quantifying cloud elasticity with container-
based autoscaling. Future Generation Computer Sys-
tems, 98:672–681, 2019.

[60] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jin-
grong Chen, and Ion Stoica. Caerus: Nimble task
scheduling for serverless analytics. In 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 653–669, 2021.

[61] Qingyang Zhang, Hui Sun, Xiaopei Wu, and Hong
Zhong. Edge video analytics for public safety: A review.
Proceedings of the IEEE, 107(8):1675–1696, 2019.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    319

https://www.kaggle.com/elvinagammed/chatbots-intent-recognition-dataset
https://www.kaggle.com/elvinagammed/chatbots-intent-recognition-dataset
https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html
https://en.wikipedia.org/wiki/Best-first_search
https://en.wikipedia.org/wiki/Best-first_search


A Artifact Appendix
Abstract

This artifact appendix includes all the necessary informa-
tion to reproduce the main evaluation results of the OSDI’ 22
paper: ORION and the Three Rights: Sizing, Bundling, and
Prewarming for Serverless DAGs.

Scope and Usage
ORION is a serverless DAG optimization layer imple-

mented in C# and Python 3.8. ORION accepts a DAG as
an input and profiles the execution time for each function
in the DAG as well as the entire DAG. The execution times
are represented as distributions (CDFs) to capture the vari-
ability in runtimes. Afterward, users provide ORION with
requirements such as a latency target (e.g., P95 ≤ 20 sec-
onds) and/or an upper limit on the budget (e.g., cost of 1K
executions ≤ $1000). Next, ORION performs three optimiza-
tions to achieve user-provided requirements. The three op-
timizations are: (1) Right-sizing: Finding the best resource
configurations for each function to meet the E2E latency ob-
jective with the minimum cost. (2) Bundling: Identifying
stages where co-locating multiple parallel instances of a func-
tion together to be executed on one VM will be beneficial.
The benefit arises when there is computation skew among
the parallel workers caused by different content inputs and
functions are scalable. (3) Right pre-warming: The VMs to
execute the functions in the DAG are pre-warmed just right,
ahead of time, so that cold starts can be avoided while keeping
provider-side utilization of resources high. With these three
optimizations, ORION accurately meets latency service level
objectives (SLOs) while reducing execution cost. The output
of ORION is a transformed DAG that has the same semantics
as the user-provided DAG, but with higher performance (i.e.,
lower latency) and lower execution cost.

Contents
1. Benchmarks-AWS-Lambda: This folder contains the

code for the three evaluation applications (Video-
Analytics, ML-Pipeline, and NLP-ChatBot). By running
deploy_application.sh in each application directory,
a DAG serverless workflow can be deployed on AWS
Lambda using AWS Step Functions.

2. DAG_Profile: This folder contains the code for our DAG
profiler. The code is generic enough to profile any appli-
cation defined as a standard state machine on AWS Step
Functions.

3. DAG_Modeler: This folder contains the code used to
build the E2E performance model of the DAG. This
module also contains the VM_Size_Optimizer to select
the best VM size for each function in the DAG.

4. Bundling_Manager: This folder contains the code of
ORION’s Bundling optimization. This component of
ORION profiles the DAG with varying bundle sizes and

shows the P50 Latency, P95 Latency, and $ cost for each
bundle size.

5. Prewarming_Optimizer: This folder contains the code
to select the best pre-warming delays for each stage in
the DAG.

6. Comparison_to_Baselines: This folder contains the
code that compares ORION to two baselines: Best mem-
ory and CherryPick. The script produces the tail latency
and cost (in $) for ORION as well as the two baselines.

7. Policy_simulator: This folder contains the code for our
pre-warming policy simulator. This component com-
pares different pre-warming policies without being con-
strained by what is possible in commercial public cloud.

Hosting
ORION is open sourced and we release its code, the work-

load characterization data, and the evaluation applications. All
these components can be obtained at: https://github.com/
icanforce/Orion-OSDI22

Requirements
The artifact uses AWS Lambda to host serverless functions,

and AWS Step Functions to orchestrate the functions and orga-
nize them in a DAG. Some functions have large dependencies
and hence are deployed as images on AWS ECR (Amazon
Elastic Container Registry). Accordingly, users need to install
the following dependencies:

1. Amazon AWS CLI: Can be obtained at: https://
aws.amazon.com/cli/

2. Docker: Can be obtained at: https://
www.docker.com/

Environment Setup
1. First, deploy one of the evaluation applications from

Benchmarks-AWS-Lambda directory in AWS StepFunc-
tions.

2. Then, use the DAG_Profiler to profile and generate the
latency distributions for each function in the DAG.

3. Use DAG_Modeler to build the E2E performance
model of the DAG, this module also contains the
VM_Size_Optimizer to select the best VM size for each
function in the DAG.

4. Use Bundling_Manager to select the best bundle size.

5. Use Prewarming_Optimizer to select the best pre-
warming delays for the stages in the DAG.

6. Use Comparison_to_Baselines to compare Orion
with CherryPick and Best Memory baselines.

320    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/icanforce/Orion-OSDI22
https://github.com/icanforce/Orion-OSDI22
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://www.docker.com/
https://www.docker.com/


Occualizer: Optimistic Concurrent Search Trees From Sequential Code

Tomer Shanny
Tel Aviv University

Adam Morrison
Tel Aviv University

Abstract
This paper presents Occualizer, a mechanical source code

transformation for adding scalable optimistic synchronization
to a sequential search tree implementation. Occualizer injects
synchronization only to the update steps of tree operations,
leaving traversal steps to execute unsynchronized, thereby
maximizing parallelism.

We use Occualizer to create concurrent versions of a se-
quential B+tree, trie, and red-black tree. Evaluation on a 28-
core machine shows that Occualizer’s trees significantly out-
perform prior mechanically-crafted trees on non-read-only
workloads and are comparable (within 4%) on read-only work-
loads. Overall, Occualizer shrinks the performance gap be-
tween mechanically- and hand-crafted trees by up to 13×.
When using Occualizer’s B+tree as the index in the STO
main-memory database, the system’s throughput degrades by
less than 30% compared to the default Masstree index, and it
scales better.

1 Introduction
In-memory tree data structures, or search trees, lie at the
foundation of many systems, from databases [30, 58–60, 80]
through operating systems [19–21] to storage engines [46,
68, 71]. Performance in such multicore systems depends not
only on the sequential (single-threaded) speed of searching
the tree, but also—often, mostly—on the scalability of the
tree’s synchronization protocol, which ensures correctness of
concurrent tree operations [29, 47].

Scalable synchronization protocols typically apply opti-
mistic concurrency control (OCC). In an optimistic protocol,
traversals of tree paths are read-only and do not perform syn-
chronization such as acquiring locks or executing atomic read-
modify-write (RMW) instructions [11, 16, 29, 71]. Synchro-
nization occurs only if and when an operation starts updating
the tree. The optimistic approach thus limits serialization of
tree operations (due to locking and/or cache coherence con-
tention) mostly to the step that physically mutates the tree,
allowing other steps to execute completely in parallel. The
result is scalable performance that improves as the amount of
hardware parallelism grows (unless the workload is contended
at the semantic level, e.g., operations updating the same key).

Deploying an optimistic concurrent search tree in a system
can be a hard problem, however. Systems often cannot deploy
“off the shelf” trees, as their target use cases and workloads call

for new, customized data structures [6, 17, 65, 67, 71, 80]. But
designing a scalable synchronization protocol for a custom
data structure—particularly an optimistic protocol—is notori-
ously challenging, because it involves concurrent reasoning
to verify the algorithm’s correctness under any possible thread
interleaving allowed by the protocol [55, 64]. This effort also
needs to be repeated whenever the data structure’s algorithm
changes, e.g., due to new optimizations or features.

To solve the problem of manually adding synchronization
to a data structure, concurrency research has proposed auto-
matic transformations such as universal constructions [2, 3,
18,26,35,40,51,52] and transactional memory [54,77]. These
transformations receive a sequential data structure implemen-
tation (code) and produce a correctly synchronized version.

When applied to search trees, however, the automatic trans-
formations do not produce efficient, scalable data structures.
Some transformations inject pessimistic synchronization,
which fully serializes all operations [18, 40, 51, 52] or all non-
read-only operations [5, 26, 35]. Transactional memory-style
transformations [2, 3, 31, 35, 41, 77] use optimistic synchro-
nization, but block or restart operations whose path crosses
nodes modified by a concurrent update operation, which de-
grades scalability. Overall, current automatic transformations
produce trees whose throughput flatlines beyond 12 cores if
even 3% of the workload’s operations are not lookups (§ 7),
as typically happens in dynamic workloads [4, 20, 58, 71].

Solution: Occualizer. This paper proposes Occualizer, a
mechanical transformation for augmenting common sequen-
tial search tree implementations with scalable optimistic syn-
chronization,1 producing linearizable [56] concurrent trees.
Occualizer’s transformation requires the input tree to satisfy
certain natural prerequisites, which most algorithms we are
aware of meet, and our current prototype requires some man-
ual effort to transform the input code. Occualizer injects syn-
chronization only to the update steps of an operation (if any),
leaving traversal steps to execute unsynchronized, unchanged
from their baseline sequential code. Our key idea is to design
Occualizer’s injected synchronization so that it satisfies the
“forepassed” condition of Feldman et al. [44]—which they
prove implies the correctness of unsynchronized traversals in
the presence of concurrent updates. We thus design synchro-
nization to satisfy a proof instead of endeavoring to find a
proof for our synchronization.

1Occualizer: one that adds OCC (optimistic concurrency control).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    321



Informally, the “forepassed” condition requires that if a
memory write w in the concurrent tree changes the search
path for a key k, then any node v removed from the path must
become immutable [44].2 To obtain this property, Occualizer
uses localized copy-on-write (LCOW), wherein all of an op-
eration’s writes are performed by atomically replacing the
written-to nodes with new, updated copies, and making the old
copies immutable. Crucially, LCOW does not require copying
the entire path from the root to the updated nodes and thereby
avoids synchronization bottlenecks at the top of the tree—a
fundamental difference from prior COW techniques [5, 19].

We use Occualizer to produce concurrent versions of the se-
quential tlx B+tree [8], a radix tree (trie), and a red-black tree,
and evaluate them on a dual-socket 28-core machine. Com-
pared to prior transformations, Occualizer’s search trees are
far faster and more scalable in dynamic (non-read-only) work-
loads, outperforming trees using GCC’s transactional memory
by up to 17× and the CX universal construction [26] by orders
of magnitude. On read-only workloads, Occualizer’s trees are
comparable to prior constructions’ (within 4%). Due to in-
strumentation overheads, however, Occualizer’s trees do not
match the performance of hand-crafted concurrent algorithms.
For instance, when used as an index in the STOv2 main-
memory database system [58], Occualizer’s B+tree has better
scalability but is 25%–30% slower than the default index,
Masstree [71], a hand-crafted concurrent trie/B+tree hybrid.

Overall, Occualizer significantly changes the cost/benefit
analysis of hand-crafting a concurrent search tree. By shrink-
ing the performance gap between mechanically- and hand-
crafted trees by up to 13×, Occualizer makes mechanically-
crafted trees applicable in many more contexts and perfor-
mance targets, freeing up time and costs that would other-
wise be spent on designing, implementing, and testing a hand-
crafted implementation.

Contributions. We make the following contributions:

• Transformation. We describe Occualizer, a mechanical
transformation for augmenting common sequential search
tree implementations with optimistic synchronization.

• Implementation. We implement Occualizer and use it to
produce concurrent versions of the sequential tlx B+tree,
a radix tree (trie), and a red-black tree. Occualizer’s
code is available at https://github.com/tomershanny/
Occualizer.

• Evaluation. We show that Occualizer’s trees outperform
trees using GCC’s transactional memory by up to 17× and
the CX universal construction by orders of magnitude, but
are slower than hand-crafted concurrent trees.

2Intuitively, this condition guarantees that any operation whose search
for k is currently located at v will either rejoin the new path or will end at an
immutable node from which it cannot “damage” the tree.

2 Background, motivation, and related work

Designing efficient fine-grained synchronization for data
structures is notoriously hard, because verifying synchro-
nization correctness requires reasoning about every possi-
ble thread interleaving allowed [55, 64], while scalability
requires the protocol to allow more possible interleavings.
Optimistic search tree design exemplifies this challenge. On
one hand, to maximize scalability, the synchronization pro-
tocol should not block or restart a traversal that encounters
concurrent updates of its search path [11]. On the other hand,
a traversal encountering such updates can observe inconsis-
tent tree states, which cannot occur in a sequential execution
but must be reasoned about to verify the protocol’s correct-
ness [43, 44, 61, 62, 66, 73, 81, 82].

The difficulty of designing a highly-scalable and correct
optimistic tree lead some systems to deploy search trees with
relaxed correctness guarantees. Linux’s red-black tree, for in-
stance, guarantees only that searches do not crash in the face
of concurrent updates—but not search correctness [69]. Re-
searchers have identified principles for designing optimistic
synchronization protocols [11] as well as compiler support to
simplify their implementation [84], but such research does not
address the fundamental verification difficulty of a scalable,
human-designed synchronization protocol.

Our motivation is therefore to automate the task of adding
optimistic synchronization to a custom-designed sequential
search tree. Concurrency research has proposed approaches
for automatically transforming a sequential data structure
into a concurrent one: universal constructions (§ 2.1) and
transactional memory (§ 2.2). But these approaches do not
produce scalable concurrent data structures when applied to
search trees, as we discuss next.

2.1 Universal constructions
A universal construction (UC) [51] takes a sequential im-
plementation of a data structure and outputs a linearizable
concurrent version of it, without modifying the sequential
code—i.e., by “wrapping” it in synchronization in some fash-
ion. UCs can apply nonblocking or blocking synchronization.

Nonblocking universal constructions create concurrent data
structures with nonblocking progress properties: either wait-
free, which means every operation can complete in a finite
number of its own steps, or lock-free, which means that some
operation always completes after a finite number of execution
steps [51]. Achieving these progress guarantees typically
requires operations to coordinate and help each other make
progress, which adds overhead [55].

Blocking universal constructions are based on the delega-
tion technique [10,15,39,50,70,74], which delegates the exe-
cution of the data structure operations threads to one thread.
This “server” thread executes operations on behalf of the
other, “client” threads. Delegation schemes differ in the types
of operations delegated (e.g., all operations [39, 50, 70], up-

322    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/tomershanny/Occualizer
https://github.com/tomershanny/Occualizer


date operations [15], or read-only operations [10]) and/or their
inter-thread communication techniques [14, 75].

The flip side of UCs’ treatment of the input code as a black
box is that the synchronization they add is coarse-grained, pes-
simistic, and slow. Early nonblocking UCs [18, 38, 40, 51, 52]
work by having each operation execute on a local copy of
the entire data structure which it then tries to install as the
new version. This approach fully serializes all operations
and is prohibitively slow on real-world-sized data structures.
Early delegation UCs [39, 50, 70] also fully serialize all oper-
ations, as they delegate every operation to the “server” thread.
Modern nonblocking UCs [5, 26, 35] improve on the full seri-
alization aspect by optimizing read-only operations, allowing
them to execute in parallel, but non-read-only operations are
still serialized. Likewise, modern delegation UCs allow cer-
tain types of operations to execute in parallel (updates [10]
or read-only operations [15]), but all other operations remain
serialized by delegation.

Figure 1: COW:
Adding 12 as a child
of 14 in T1 yields T2.

COW UC. A nonblocking UC tech-
nique that reduces copying overhead
(and is closely related to Occualizer)
is copy-on-write (COW), used in the
transactional system of Ben-David et
al. [5]. The core idea is for a writing
operation to create its updated version
without copying the entire data struc-
ture, by having it share as much as pos-
sible with the previous version. For
trees, this technique updates a node by
creating an updated version of the node
and the path that leads to it, and atomically swapping the up-
dated root with the new one (Figure 1). The COW approach
allows read-only operations to proceed without synchroniza-
tion, since the version they observe is immutable. Writing
operations, however, remain serialized.

2.2 Transactional memory
Transactional memory (TM) [54,77] executes sequential code
segments as isolated atomic transactions. With hardware TM
(HTM), serializability of the transactions is enforced by the
hardware [54]. HTM can thus be viewed as a UC. Real-world
HTM extensions, however, have several limitations [33,33,34]
and are currently disabled on many processors due to hard-
ware errata [63]. We therefore focus on software TM (STM).
STMs differ from UCs in that they require code instrumen-
tation, so that the STM runtime can mediate reads/write to
memory and (in some cases) memory allocation/deallocation.

Modern STMs have converged on designs using optimistic-
style lock-based synchronization [36, 48]. In these designs,
the STM algorithm performs transactional reads without writ-
ing to memory (e.g., to acquire a lock); writes either acquire
locks (“eager” locking) or are buffered in a write set (“lazy”
locking). When the transaction ends, the STM checks whether

there is a point in time in which all of the transaction’s reads
and writes can appear to take place atomically. If so, the trans-
action commits and its writes are made visible to other trans-
actions (e.g., locks are released). Otherwise, the transaction
aborts and must restart.

Unfortunately, since the STM does not understand the se-
mantics of the underlying code, its validation conservatively
depends on every value read by the transaction [31,41]. There-
fore, if any memory location read by a transaction is written
to before the transaction commits, the transaction will abort.
This effect severely limits scalability of STM-based trees,
because any concurrent write to an operation’s search path
causes the operation to abort—even if the operation would
have reached the same location in the tree had it executed on
the new path (a fact the STM cannot know). In our experi-
ments, TM performance can flatline at low core counts even
if as few as 3% of the tree operations are updates (§ 7).

TM research has proposed several approaches to address
the above problem. First, an STM can determine the serial
order of transactions (conflict detection) more intelligently
[76,85]. But this typically requires transactional reads to write
to memory, which can lead to undesirable serialization of read-
ers. Second, transactions can be built over higher level objects
instead of low-level memory reads/writes [49,53,57]. But this
requires designing the underlying thread-safe objects, which
was our original problem. Finally, transactional semantics can
be relaxed [42] to avoid aborting a transaction in cases such as
search path changes. But then one has to prove the resulting
relaxed transactions correct, which requires the concurrent
reasoning about thread interleaving that we wish to avoid.

2.3 Summary and goals
In summary, there is still no mechanic way to transform the
source code of a sequential tree implementation into an opti-
mistic, fast, and scalable concurrent tree—without needing to
perform concurrent reasoning to verify the correctness of the
produced concurrent code. This is our goal.

Occualizer sits in the middle between UCs and TM. Com-
pared to universal constructions, Occualizer takes a pragmatic
approach. Instead of accepting arbitrary sequential code as
input, Occualizer requires the input to have certain natural
prerequisites, and also transforms/instruments the sequen-
tial code. Compared to transactional memory, Occualizer is
specialized to search trees, which enables us to design an op-
timistic synchronization protocol that does not restart opera-
tions whose search path is modified by concurrent operations.

3 Occualizer Overview
Occualizer receives source code of a sequential (single-
threaded) search tree and transforms it into an optimistic
concurrent implementation by adding calls to Occualizer’s
synchronization library into the input source code. This sec-
tion gives an overview of the Occualizer transformation.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    323



We first define the family of sequential tree implementa-
tions to which Occualizer is applicable (§ 3.1). (We discuss
verifying that a sequential tree meets Occualizer’s require-
ments in § 3.5.) We then give an overview of Occualizer’s
source code changes (§ 3.2) and the run-time synchronization
protocol they inject, called localized copy-on-write (§ 3.3).
The details are described in §§ 4–5. Finally, we outline the cor-
rectness proof of the produced concurrent tree (§ 3.4), which
appears in § 6.

3.1 Scope
We consider correct sequential implementations of a dictio-
nary datatype, namely, that provide lookup, insert, and delete
operations on key-value pairs. The implementation may also
(optionally) support ordered iteration over the stored keys, pro-
vided via key predecessor/successor operations. We assume a
programming language with manual memory management.
(Our prototype targets C++.)

Occualizer requires the sequential input algorithm to meet
certain prerequisites (PRs), detailed below. At a high level,
the prerequisites are that (1) tree operations are composed
of a read-only traversal followed by reads and writes which
are determined only by what the operation observes after the
traversal; (2) each step in the traversal depends only on the
target key and the current node; and (3) any operation that
moves a node v off some search path(s) must also access v.

The user is responsible for verifying that the input meets
Occualizer’s prerequisites, and the concurrent tree produced
by Occualizer is not guaranteed to be correct if they are not
met. The human effort required for this verification (and the
possibility of errors there) are limitations of Occualizer com-
pared to general universal constructions that accept arbitrary
code. While our experience has been that the prerequisites are
met by many algorithms and that verifying them requires rea-
sonable effort (see § 3.5), our vision is to develop automated
verification of the prerequisites to fully automate Occualizer.

Prerequisites. We define the prerequisites in terms of an
algorithm maintaining a directed graph G of nodes, whose
edges represent pointers between nodes.

PR1 Maintain a rooted tree: At the end of any sequence of
operations, the graph G is a rooted tree.

Crucially, PR1 does not care about intermediate states that
occur while a tree operation executes, only about the graph’s
structure upon its completion. PR1 is conservative, as Occual-
izer can support structures with auxiliary edges linking nodes
to their successor/predecessor, which create multiple paths
from the root to nodes and so are not formally trees. We defer
these details to § 4.

PR2 Read-only traversals: Every operation op(k) consists
of a read-only traversal traverse(k) that searches for k
followed by read/write steps.

PR2 is not met by self-balancing trees that perform balancing
during traversals, such as splay trees [78]. But PR2 is met by
self-balancing trees such as red-black, AVL, or B-trees, which
perform self-balancing after updating the tree (post-traversal).

PR3 Traversals are single-step: The next node visited by
traverse(k) depends only on k and on the current node.

PR3 is met by trees with comparison-based traversals, such
as B+trees [22], Bw-Trees [67, 83], red-black and AVL trees,
etc., where how traverse(k) proceeds depends only on how
k compares to the key(s) of the current visited node. PR3
can also be met by tries, provided that nodes encode the key
offset they represent; otherwise, the next node visited becomes
dependent on all the nodes visited so far, which violates PR3.

Our next prerequisite states that the reads and writes an
operation performs after its traversal are not a function of
observations made during the traversal:

PR4 Post-traversal actions depend only on subgraph ac-
cessed post-traversal: Consider an operation op(k)
that executes on tree T , whose traverse(k) finishes at
node v. Let RW op(k) be the set of nodes read/written to
by op(k) after finishing its traversal. Let TRW op(k) ⊆ T
be the smallest subgraph of T containing RW op(k). Then
for any sequence of operations that execute on T result-
ing in tree T ’, if TRW op(k) ⊆ T ′ and traverse(k) executed
on T ′ finishes at the same node v as in T , it holds that
running op(k) over T ′ results in exactly the same reads
and writes as in op’s execution over T .

PR4 does not preclude an algorithm from reading or writing
parts of its search path after completing the traversal—as in,
e.g., rebalancing of red-black, AVL, and B-trees—because any
node on the path that an operation op(k) reads or writes post-
traversal becomes part of RW op(k). PR4 is thus met by classic
tree algorithms that perform post-traversal rebalancing.

PR5 Moving off a search path implies a post-traversal
access: For any operation op and any key k, consider
the paths P and P′ that would be taken by traverse(k)
before and after op executes. Then if v ∈ P but v 6∈ P′,
op must read, write, or destroy v after its traversal.

For an implementation that does not expose nodes to its client,
PR5 is met by every tree algorithm we are aware of. In these
algorithms, a node moves off a search path due to either (1) a
structural modification that changes the node’s position in the
tree, in which case the node is written and/or read; or (2) being
removed from the tree, in which case the implementation
destroys and frees the node, as it has no other references.

Occualizer for managed languages. Occualizer’s design
and its prerequisites are programming language agnostic.
Most tree implementations, however, fail to meet PR5 when
implemented in a managed language. The reason is that

324    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Initialstate Copiedregion Aftercopying

Afterreplacing Afterreclamation

Figure 2: Illustration of LCOW on an operation that makes B and C the parents of X and Y , respectively.

node destruction in managed languages is performed asyn-
chronously by the garbage collector and not explicitly by the
program, so a managed tree implementation meets PR5 only
if it writes to a node when removing it from the tree—which
most algorithms do not do. This problem can be fixed (cur-
rently, manually) by adding no-op writes to removed nodes.

3.2 Code transformations
Occualizer transforms the sequential input code by adding
calls to Occualizer’s synchronization library. These calls
are similar to object-level transactional memory instrumenta-
tion. They include calls to demarcate each operation’s start
and completion, and to access (read/write) node fields only
through the library’s interface. Field accesses are captured
straightforwardly by requiring the sequential input code to
access fields using only getter/setter methods, which the trans-
formation then replaces. The transformation also adds locks
and metadata fields to the node structure.

The code transformation is mechanic and our design is for
it to be done automatically, with minimal user involvement.
In our current prototype, however, we implement only the
synchronization library and perform the code transformations
of the evaluated trees manually (following the mechanical
recipe given in § 4). Implementing the automatic code trans-
formation is an ongoing effort.

3.3 LCOW synchronization library
Occualizer’s code transformation leaves the logic of traver-
sals unchanged. In particular, traversals do not block or retry
mid-operation. The synchronization added to writing opera-
tions guarantees the correctness of both traversals and writing
operations. To this end, the library uses a technique we call

localized copy-on-write (LCOW). LCOW exposes all of an
operation’s writes atomically, using one atomic write. Unlike
other COW techniques [5, 19], this write does not typically
target the tree’s root and thereby avoids creating a synchro-
nization bottleneck.

LCOW works as follows. Once an operation op finishes
its traversal, the library uses a combination of locking and
validation checks to maintain an invariant that op’s further
observations of the tree are consistent with some sequential
execution. This invariant is needed to guarantee that op’s code
behaves correctly. In particular, whenever op first writes to
some node v, the library locks v and creates a copy of v, v′.
(If a lock acquisition fails, op is restarted, releasing any locks
it holds and freeing node copies it had made.) Subsequently,
all of op’s accesses to v are redirected to v′, ensuring op “sees
its own writes.” When op completes, the library identifies
a minimal subgraph containing all written nodes, called the
copied region. This subgraph is itself a tree rooted at some
node n, but it may not be n’s subtree (i.e., it may not include all
of n’s descendants). Next, the library locks and creates a copy
of the copied region, updated to contain the nodes written to
by op. Finally, the library exposes op’s writes atomically by
linking u′, the root of the copied region, instead of its original
version u with one atomic write. Crucially, the old versions
of the nodes remain locked, making them immutable.

The library reclaims the memory of the old copied region
only once it is guaranteed that no concurrent operation may
be accessing the old region, using a read-copy update (RCU)
epoch-based memory reclamation scheme [45, 72].

Figure 2 illustrates LCOW on some abstract operation op.
1 shows the initial tree state. Assume that executing op’s

sequential code from start to finish in this state would make

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    325



B and C the parents of X and Y , respectively. 2 shows the
copied region: LCOW locks the orange and red nodes, thereby
blocking concurrent modifications to every node in the pink
circle. 3 LCOW copies the red nodes, creating a new ver-
sion of the copied region in which op’s writes are made to
the nodes A′, B′, and C′. Finally, 4 shows the memory state
after atomically replacing the copied region with its new ver-
sion, and 5 shows the memory state after the original copied
region is reclaimed.

The upshot is that Occualizer guarantees that (1) execut-
ing operations run correctly, as they would in a sequential
execution, and (2) the state of the tree in memory is always
a state that can be produced by a sequential execution. Cru-
cially, however, this is all achieved while still allowing the
traversal part of an operation to observe an inconsistent state.
E.g., a traversal can start in tree T1 and then cross into tree T2,
walking a path that never actually existed in memory.

3.4 Linearizability argument
Trees produced by Occualizer are linearizable [56], i.e., oper-
ations appear to execute atomically. The main challenge of
proving linearizability is that because traversals are unsyn-
chronized and can observe inconsistent tree states, it is not
clear that a traversal ultimately reaches the correct node.

The key idea of Occualizer is to design its synchroniza-
tion to satisfy the precondition of an existing proof (from the
concurrency literature) that an unsynchronized traversal is
correct. Occualizer’s trees satisfy the “forepassed” condition,
which Feldman et al. [44] prove implies that if an unsynchro-
nized traversal searching for key k reaches node v, then at
some point during its execution, v was on the search path for
k. (That is, the state of the tree was such that had the traversal
executed from start to finish then, it would have reached v.)

The above immediately proves the linearizability of read-
only lookups that consist only of traversals. To prove lineariz-
ability of writing operations, we show that when a writing
operation atomically performs its writes using LCOW, then
the state of the tree is such that had the operation’s sequential
code executed atomically now, it would have behaved exactly
the same. In other words, the state of the tree in memory
remains consistent with some sequential execution of the orig-
inal sequential code. We show this by first proving an invariant
that an operation locking node v implies that v is on the rele-
vant search path at lock acquisition time (“now”). The proof
then follows from PR4, since the copied region locked by an
operation contains the subgraph it accessed post-traversal.

3.5 Discussion: Prerequisite verification
For our evaluation (§ 7), we use Occualizer on sequential im-
plementations of classic tree algorithms, such as the B+tree.
We draw on this experience to discuss the effort and reason-
ing needed to manually verify that an implementation meets
Occualizer’s prerequisites. In a nutshell, we find that the pre-

requisites are met by many algorithms (e.g., red-black and
B-trees) and tree design techniques. We also find that check-
ing the prerequisites requires reasonable effort, given basic
understanding of the input tree’s algorithmic properties. In
particular, there is no need for concurrent reasoning, as the
prerequisites are properties of sequential code.

Verifying PR1–PR3 involves straightforward code inspec-
tion. In particular, verifying that every tree operation begins
with a read-only traversal (PR2) is easy for implementations
with an explicit traversal method and for recursive implemen-
tations, where one only needs to check the recursive function.

Verifying PR4–PR5 requires reasoning about the principles
driving the sequential input algorithm. To verify that post-
traversal actions depend only on the subgraph accessed post-
traversal (PR4), we need to check that the nodes and fields an
operation chooses to access and the values it writes depend
only on what it reads after its traversal. PR4 would be violated,
for example, by an operation writing a node’s depth (distance
from the root) that was computed while searching for the
node. On the other hand, PR4 is satisfied by an operation
maintaining the height of a node (or the balance factor in an
AVL tree) using a bottom-up computation after the traversal.
PR4 holds trivially if traversals are performed as a subroutine
call that returns only the target node, thereby making the
search path opaque to the operation.

To verify that if a node stops being on the search path for
some key k, then the node must be accessed or destroyed
(PR5), we need to verify that a node removal destroys it, and
to reason about how tree structure modifications affect the
behavior of searches. We find that common tree algorithmic
techniques meet PR5. For instance, consider a binary tree
rotation [25] moving node y above its parent y (Figure 3).
The only node that moves off a search path as a result of
the rotation is y (which moves off the paths leading to sub-
tree A) and y is indeed written by the rotation (its left child
changes).3 As another example, in a binary tree that deletes
an internal node by replacing it with its successor [25] (the
leftmost node of its right subtree), the nodes on the path to the

y

A B

y

C
x

B C

y
A

x

Figure 3: Rotation moving x above y.

successor move off the
search path to the succes-
sor. These nodes are read
by the removing opera-
tion as it searches for the
successor, so PR5 is met.

4 Design
This section describes Occualizer’s design. We first describe
Occualizer’s synchronization library interface and the me-
chanical rules for calling its methods from a sequential tree
implementation (§ 4.1). We next describe how the library

3Crucially, PR5 depends only on the effect that a complete rotation has
on future searches—not on the exact order of writes performing the rotation
in the sequential code.

326    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



implements the LCOW synchronization protocol (§ 4.2) and
then extend the design to support algorithms with auxiliary
edges between nodes, which are typically used to optimize
iteration over nodes (§ 4.3).

4.1 Library interface & code transformations
Interface. Occualizer augments the input with calls to its li-
brary. Table 1 describe the library’s transactional memory-like
interface, which consists of “macro” and “micro” methods.

The “macro” methods demarcate the points in which the
operation starts/finishes and where its traversal ends. In partic-
ular, occ_start checkpoints the calling thread’s register state
(e.g., with setjmp()) and restores it if the library decides to
abort the operation. When an abort happens, occ_start re-
turns a failure indication.

The “micro” methods read and write node fields (or the root
pointer) and notify the library of allocated or destroyed nodes.
For simplicity, we show the read/write methods as taking
the field name as an argument. An implementation either
generates specific methods for each field or has a general
method that takes the field’s offset and size in the node.

Transformation. Transforming a sequential tree to an
optimistically-synchronized one using Occualizer requires
two types of transformations. Macro transformations add
macro calls to demarcate each operation with occ_start,
occ_traverse_done, and occ_finish calls, and restart it
after an abort (Listing 1). Occualizer does not require mod-
ifying the input code to separate the traversal into its own
method, only to call occ_traverse_done when it is done.
This property allows the operation’s subsequent code to reuse
information learned during the traversal, e.g., to climb back
up the path for tree maintenance.

Micro transformations replace calls to node setter/getter
methods with the appropriate occ_set/occ_get calls, and

Method Called when (and why)

occ_start
Operation starts (to initialize bookkeep-
ing data)

occ_traverse_done
Traversal finishes (to start consistency
checks)

occ_finish
Operation finishes (to atomically perform
operation’s writes)

occ_restart
Restarting an aborted operation (to free
resources acquired during the failed exe-
cution)

occ_set(n, f ,v) Writing n. f ← v (to lock and copy n)

occ_get(n, f )
Reading n. f (to read from n’s copy, if it
exists)

occ_node_born(n) Node is allocated
occ_node_dies(n) Node is destroyed

Table 1: Occualizer synchronization library interface.

Function transformed<op>(args):
while True do

if occ_start() then
result←− op(args) ; . occ_traverse_done was

added inside op’s code
if occ_finish() then

return result
end

end
occ_restart() ; . Op aborted

end
Listing 1: Code of macro-transformed operation op.

add occ_node_born/occ_node_dies calls to the node con-
structor/destructor.

Mechanizing the transformation. The transformation can
be performed automatically by a source-to-source transformer
tool, which we are in the process of implementing. The trans-
former requires the user to supply the tree’s sequential source
code, the names of methods to be macro-transformed and
structure(s) implementing nodes, and to manually add the
occ_traverse_done call. The transformer performs the fol-
lowing steps: 1 Ensure that all node fields are accessed via
setter/getter methods, by replacing every direct field access
with an appropriate setter/getter call and generating getter/set-
ter methods if they do not exist in the input code. 2 Perform
the micro-transformations by modifying methods in the node
structure. 3 Generate the macro-transformed operations.

4.2 LCOW synchronization library
Occualizer’s synchronization library has two high level tasks.
First, it tracks the tree as observed by the operation, so that
once the operation’s traversal finishes, Occualizer can guaran-
tee that the tree is in a consistent state from the operation’s
perspective. Second, the library buffers the operation’s writes
and exposes them atomically when the operation completes.
We now walk through the library’s flow.

Initialization (occ_start). This method checkpoints the
thread’s local state, so that execution can restart if the op-
eration subsequently aborts. It then initializes the library’s
thread-local bookkeeping variables (Table 2), which track
edges observed by the operation, nodes allocated, destroyed,
locked, and copied, and other flags, such as whether the opera-
tion is in the midst of its traversal. We treat these variables as
abstract datatypes for now (in particular, without considering
implementation efficiency); § 5 describes our implementation.

Node reads (occ_get). We first focus on the case of reading
a node pointer (child), i.e., reading an edge. As long as an
operation is traversing the tree, its reads are handled with
minimal overhead. The library only stores traversed edges in
the edgeSet, to verify their consistency in case the operation
rereads them in its post-traversal steps. Once the traversal

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    327



Name Type Content

edgeSet Set of edges
Edges observed during opera-
tion

lockedSet Set of nodes Nodes locked by operation

copySet
Set of node
pairs

Copied nodes and their copies

bornSet Set of nodes Nodes allocated by operation
destroyedSet Set of nodes Nodes destroyed by operation

traversing Boolean
Initially True; False after
occ_traverse_done called

Table 2: Thread-local bookkeeping structures. The term “node”
refers to a pointer to the relevant object in memory.

completes, the library switches to a mode that guarantees
consistency of the observed tree. This is accomplished by
locking any node accessed post-traversal, while verifying that
the locked node belongs to the most updated tree in memory.
If this verification fails, the operation is aborted (releasing
any locks it acquired and nodes it allocated) and restarted.

Listing 2 shows the pseudo code of occ_get. Suppose
operation op is trying to read the c-th child of node n. (For
generality, we assume child pointers are stored in a children
vector in the node.) If op previously created a copy of n,
the read is satisfied from the copy n′ without further checks.
Otherwise, n’s c-th child, u, is read from n. If op is traversing,
the method trackEdge only remembers the edge (n,c,u) in
edgeSet. Otherwise, trackEdge locks n by calling lockNode.

The lockNode method locks n while checking its consis-
tency with op’s observations of the tree. If n is not present in
op’s lockedSet, op tries to acquire n’s lock. If n is locked,
op aborts, to avoid deadlocks. Then op checks that any edge
into or out of n that op previously observed still exists. If so,
n is added to op’s set of locked nodes. Otherwise, op aborts.

Reads of non-pointer fields are handled identically (locking
the node, etc.) except that the read values are not tracked.

Node writes (occ_set). On any write to a node n, the library
locks n and creates a copy of it, n′. If the operation completes
successfully, n′ will take the place of n in the tree and n
will remain locked and hence immutable until its memory
is reclaimed. Listing 3 shows the pseudo code of occ_set,
again focusing on the case of writing a child pointer. If op
has made a copy, v′, of the pointed-to node v, the value to
be written is changed to v′. Next, op checks if the written
node n is part of the tree, i.e., it was not allocated by op itself
and is not a copy. If so, op creates a copy of n by calling
occ_create_copy. Finally, the write is performed.

To copy n, the occ_create_copy methods locks n using
the lockNode method described above. It then copies the
(now locked) n into a new node, n′, records that n has a
copy n′ in op’s copySet, and finally adjusts the links between
the existing copied nodes to reflect the new copy. For ev-
ery (x,x′) ∈ copySet, the fixLinks method changes any edge

Function occ_get_child(n, c):
if (n,n’) ∈ copySet then

return n’.children[c]
else

u← n.children[c]
trackEdge(n, c, u)
return u

end

Function lockNode(n):
if n ∈ lockedSet then

return
if tryLock(n.lock) fails then

abort operation
. Validate
foreach (x,c,y) ∈ edgeSet, s.t. x = n or y = n do

if x.children[c] 6= y then
abort operation

end
lockedSet.add(n)

Listing 2: Code of reading a node child..

Function occ_set_child(n, c, v):
if (v,v′) ∈ copySet then

v← v′

end
if n 6∈ bornSet and (n,_) 6∈ copySet then

n← occ_create_copy(n)
end
n.children[c]← v

Function occ_create_copy(n):
lockNode(n)
n’← copy of n
copySet.add(n,n’)
fixLinks(n,n′,copySet,bornSet)
return copy

Listing 3: Code of writing a node child.

pointing from x′ to n to point to n′ instead, and changes any
edge from n′ pointing to x to point to x′ instead. It similarly
fixes any edge pointing to n from nodes allocated by op.

Writes of non-pointer fields are handled identically, except
that value written is not “translated” as it is not a node pointer.

Traversal completion (occ_traverse_done). On traversal
completion, the library switches to its post-traversal mode, in
which any accessed nodes is locked. In addition, the last node
read by the traversal is locked using the lockNode method.
This locking is needed to guarantee that concurrent tree mod-
ifications do not “invalidate” the node’s traversal (see § 6).

Node allocation/deallocation. On node allocation, the new
node n is added to bornSet. On node destruction, the de-
stroyed node n is locked (using lockNode) and added to
destroyedSet. This is done so that n can be left immutable
when the operation completes.

328    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Operation commit (occ_finish). This method commits an
operation by atomically applying its writes to the tree. Con-
sider first the simple case in which the operation op finishes
its traversal at node n and subsequently accesses nodes only
down the tree. In this case, the paths to nodes written by op
form a tree Tn rooted at n, and all nodes in Tn are locked by op.
Occualizer can thus atomically apply op’s writes by creating
a copy of Tn, T ′n , which contains the updated versions of the
nodes op wrote to and then swinging the pointer to n from
its parent, p, to point to n′, the root of T ′n . (Figure 2, with p
being the orange node.) We thus call Tn the copied region.

To ensure atomicity, op must verify that p is still in the
tree and that the edge (p,c,n) that it swings has not changed
since op originally crossed p during the traversal. If n is
a non-root node, this is done by locking p and validating
that p.children[c] = n before overwriting it. If n is the root,
this is done by locking a global root lock and validating the
root’s value (which also gets saved in edgeSet). Although
we describe this parent validation step last, it chronologically
occurs before copying any yet uncopied nodes from Tn, to
avoid wasting CPU cycles in case op is doomed to abort.

Finally, nodes locked by op that are not in Tn are released.
The nodes of Tn are retired, which means that their memory
is freed/reclaimed once no concurrent operation can observe
them. (Occualizer relies on an RCU-like epoch-based safe
memory reclamation (SMR) management library [45, 72] to
provide this functionality.) Until reclamation, these nodes
remain locked and thus immutable.

In the general case, op may have proceeded up the tree,
by accessing nodes it observed while traversing. The above
discussion still holds, except that instead of taking n as the
copied region’s root, occ_finish needs to find the lowest com-
mon ancestor (LCA) of all written nodes and lock every path
from that LCA to each written node. This is straightforward
to do, because the LCA and all relevant edges have been read
during op’s run (possibly only in the traversal step).

4.3 Optimizing range scans
An important feature of search trees is that they support range
scans, the ability to iterate over the stored keys in order by
using successor/predecessor calls. Specifically, we assume the
tree implements a C++ standard library (STL)-like iterator
object. The iterator maintains a key k′, which is initially the
predecessor or successor of its constructor argument. The it-
erator provides next/prev calls, each of which updates k′ to its
successor/predecessor, respectively. As with other concurrent
search trees [9, 71], our goal is for the individual next/prev
calls to be atomic (linearizable)—not for an entire range it-
eration performed by a sequence of such calls to be atomic
with respect to insertions/deletions.

In sequential trees, a common method of implementing an
iterator is to add auxiliary next/prev pointers to node fields,
so that advancing an iterator does not require walking paths in
the tree. Occualizer supports trees with such auxiliary edges,

provided that they are symmetric (i.e., v points to u via an
auxiliary link if and only if u points to v), as is the case of
next/prev pointers. In addition, the user is required to specify
the field names of auxiliary links in the node structure. Oc-
cualizer then leaves iterator movement over auxiliary edges
as a read-only operation.

Extended commit protocol. We extend Occualizer’s com-
mit protocol to support auxiliary edges as follows. When an
operation op is ready to commit, after having locked and vali-
dated p, the parent of r, the copied region’s root, op checks
each auxiliary edge (v,u) pointing to the copied region (i.e.,
such that u is in the copied region and v is not) and attempts
to lock v (aborting if it fails).4 Once all these “border” nodes
are locked, op updates p to point from r to its new version
r′ with one atomic write, and then iterates over each locked
border node v, updating its relevant auxiliary edges to point
to the new version of the neighbor u (from (v,u) to (v,u′)),
and releasing v’s lock afterwards. This protocol may seem
heavyweight, but in practice copied regions tend to be small,
so the extra cost of handling auxiliary edges is not substantial.

Unfortunately, the extended commit protocol breaks Oc-
cualizer’s LCOW technique of replacing a copied region with
one atomic memory write. The problem is that a sequential
tree with auxiliary edges does not meet our PR1, because the
auxiliary edges create more than one path to a node, and the
commit protocol needs to update these paths when replacing a
copied region. For example, in an external binary tree whose
leaves are connected with next/prev links, Occualizer needs
three writes to replace a copied region—to the parent of the
region’s root and to the predecessor and successor nodes of
the region’s leftmost and rightmost leaves, respectively.

Because Occualizer cannot physically atomically update
all edges crossing the border between a copied region and the
rest of the tree, our solution is to make the update logically
atomic, as detailed below.

Logically atomic updates. To make iterators observe up-
dates atomically, we ensure that an iterator only moves across
auxiliary edges that exist in the latest version of the tree—
i.e., edges that are not part of, or cross into, a copied region
which is being replaced. To achieve this, Occualizer prevents
iterators from moving to a locked node, relying on the fact
that every node in a copied region is locked. When an iterator
positioned at node v attempts to move to v’s neighbor u and
finds either v or u locked, the iterator instead “resynchronizes”
its position using the latest version of the tree. Specifically,
the iterator searches from the root for v’s predecssor or suc-
cessor x (as during iterator construction), according to where
the iterator was trying to move. The iterator then positions
itself at x and returns x’s key.

This protocol guarantees that after an updating operation
op exposes its writes (by updating some child pointer to link

4Our requirement that auxiliary edges are symmetric guarantees that op
finds every node with an auxiliary edge to the copied region.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    329



the new version of op’s copied region into the tree), no itera-
tor can move into the copied region (whether the iterator is
positioned inside or outside the copied region). Attempting
such a move causes the iterator to “resynchronize” itself in
the updated tree, which no longer contains the copied region.
The protocol is conservative, however, in that while op holds
the copied region locked but has not yet exposed its writes,
an iterator moving across an auxiliary edge (v,u) to such a
locked node u will “resynchronize” superfluously, ending up
at u again, as it remains reachable from the root. Such a su-
perfluous “resynchronization” does not violate the iteration’s
correctness; it can be thought of as reaffirming the iterator’s
position in the tree, with the iterator’s move being linearized
before op’s updates.

5 Implementation

In our Occualizer prototype, we perform the input code trans-
formations manually (following the recipe of § 4.1) and im-
plement the synchronization library in C++ using pthread
spinlocks. This section describes the library’s implementa-
tion.

Thread-local structures. We implement the various sets
using thread-local dictionary (unordered map) objects, for
efficient access. The copySet is implemented as a pair of
maps, from nodes to their copies and vice versa. The edgeSet
is implemented as a pair of maps, an incoming map that maps
a node to its parent and child index there, and an outgoing
map that maps a node to a list of its children indices read. The
lockedSet is implemented as a map from locked nodes to a
boolean indicating if the lock should be released on commit.
The other sets are implemented as C++ STL vectors.

Efficient copySet searches. We further optimize
copySet searches by adding a flag into the node structure
which is set when a node is copied. The occ_get method
uses this flag to avoid superfluous copySet searches. When
an operation aborts, it clears this flag from all the nodes it
copied.

Optimized dictionaries. Our initial implementation used
C++ STL hash tables (unordered_map), but we observed
that they impose considerable overhead. We therefore replace
them with an optimized design, which initially inserts items
into a small STL vector, and if the vector becomes full, stores
overflowing items in an unordered_map. The observation
underlying this optimization is that in most tree algorithms,
the thread-local data structures Occualizer maintains will be
small. But for correctness, we must support worst-case behav-
ior in which these structures may contain every node in the
tree. Overall, this optimization improved the throughput of an
Occualizer B+tree by a factor of two.

Correctness testing. We use a couple of testing techniques
to gain confidence in the correctness of the Occualizer pro-

totype. First, we use the linearizability checking option of
the SetBench [13] benchmarking harness (§ 7.1). With this
option, SetBench verifies that every successful insert/delete
operation during the execution is correctly reflected in the
final state of the tree—so that, for example, inserted items
were not lost or inserted more than once. We test different tree
sizes, to test executions with varying contention levels and
thread interleavings. Second, we check that tree-structural
invariants of the sequential implementations we transform
(e.g., the red-black property of a red-black tree) hold, both at
random times during the execution and after it completes.

6 Correctness
This section sketches the proof that trees produced by Occual-
izer are linearizable [56], i.e., tree operations appear to execute
atomically. We consider the shared-memory system running
the tree. A state of the system consists of the memory state
(contents of each address) and the local states of each thread.
In each step of the execution, some thread accesses memory,
and as a result, its internal state and/or memory change.

Our proof works as follows. We first show that traversals
are correct. That is, if traverse(k) stops at node v in the concur-
rent execution, then at some point during its run, the memory
state σ was such that had traverse(k) executed atomically
(from start to finish) on σ, it would also reach v. We denote
this property of a state σ by σ : k

 v. We then use traversal cor-
rectness and Occualizer’s synchronization protocol to show
that if an operation op commits in memory state σ, then had
op run from start to finish on σ, it would have executed exactly
the same. Hence, op appears to execute atomically at σ.

Showing traversal correctness is hard, because traversals
are unsynchronized and can observe inconsistent tree states.
We solve this problem by applying the theorem of Feldman
et al. [44], which says that in a concurrent tree satisfying a
“forepassed” condition, unsynchronized traversals are correct.
The “forepassed” condition requires (1) traversals to be single-
step, which we satisfy by PR3; and (2) that if the concurrent
algorithm performs a write w moving the system from state σ

to σ′, such that σ : k
 v but σ′ : 6 k v for some k and v, then v is

never modified later.
Requirement (2) above follows from PR5 and the fact

that Occualizer leaves written/destroyed nodes immutable
(locked). There is a subtle issue, however, which is that the
prerequisites are met by the sequential code, so unless we
know operations in the Occualizer tree behave correctly, we
cannot rely on the prerequisites. But we need traversal correct-
ness to prove this fact, creating a “chicken and egg” problem.

We address this problem using a proof technique suggested
by Feldman et al. for proving “forepassed” is satisfied [44, §7].
The technique is to prove both that “forepassed” is satisfied
and that the concurrent tree is correct in tandem, inductively
(on steps of the execution), so that each proof can rely on the
other property holding on the execution thus far.

330    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Accordingly, we prove correctness of an Occualizer tree
assuming traversal correctness. The proof is inductive: we
need to show that in every state σ, if op(k) runs sequentially
on σ, its post-traversal memory accesses are identical to its
post-traversal memory accesses so far.

In the base case, σ is when op’s traversal’s stops at node
v. Traversal correctness implies that for some σ′ during op’s
execution, σ′ : k

 v. Now, Occualizer locks v. Based on the
induction hypothesis, a lock acquisition implies that σ : k

 v—
i.e., v is on the search path for k “now”—as otherwise, v would
have been locked and copied between σ′ and σ and op’s lock
acquisition would have failed. Thus, if op runs sequentially
at σ, its traversal would reach v. But the lock acquisition then
implies that the traversal would also stop at v, since only
pointer fields in v could have changed, but op verifies that any
pointer it read did not change after locking v.

The inductive step is similar. We are in state σ with op
successfully locking some node u. Inductively, we know that
(1) in some σ′ in the past, the state of the tree was such that
op’s execution on it would have lead it to its current local
state, and (2) any modifications made to the tree since σ′ have
only moved it through consistent states. Moreover, due to op’s
locking, these changes in tree state do not change the nodes
and edges op has observed post-traversal. It follows from PR4
that if we run op in state σ, it will behave exactly the same.
This concludes the overall proof, when σ is the state in which
op commits its writes.

7 Evaluation
We compare Occualizer trees to mechanically-crafted trees
(§ 2) and to hand-crafted trees, with respect to scalability,
throughput, and memory use. We first evaluate the trees on
workloads with different amounts of writing operations (§ 7.1).
We then focus on an Occualizer B+tree: we compare it as an
index in the STOv2 main-memory database to the default
Masstree index (§ 7.2), and analyze its overhead (§ 7.3).

Transformed trees. We use Occualizer to create concurrent
versions of the following sequential trees:

• B+tree: An improved version of the optimized STX in-
memory B+tree [7] taken from the tlx library [8].

• Radix: An implementation of a radix tree (trie) [79]. The
code follows the description of Linux’s radix tree [24].

• RB: A red-black tree [32]. The code is the sequential im-
plementation used in Synchrobench [47].

We refer to a transformed tree implementation T as occ[T].

Experimental platform. We use a dual-node NUMA server.
Each node has a 14-core Intel Xeon Gold 6132 (Skylake) pro-
cessor and 96 GB of DDR4-2666 DRAM. Hyper-Threading
and Turbo-Boost are disabled. Threads are split between
the nodes and memory allocation is interleaved across the

nodes. Code is compiled using GCC 8.3.0 and linked with the
jemalloc [37] multi-threaded memory allocator. Reported
numbers are averages of 10 runs; all measurements are within
±5% of the average.

7.1 Contention benchmarks
We compare Occualizer’s trees to mechanically- and hand-
crafted trees on workloads with increasing amounts of writing
operations.

Trees. We compare to the following trees, which unless
noted otherwise are mechanically-crafted from the same se-
quential code used for Occualizer:

• Global-Lock: Created by serializing operations with a
global lock.

• GCC-TM [1]: Created by wrapping operations in trans-
actions using GCC’s transactional memory (TM) support.
The underlying TM algorithm uses optimistic concurrency
control with eager locking and tracks conflicts at word gran-
ularity.

• CX [26]: Created with the CX universal construction, which
produces wait-free operations and does not serialize read-
only operations. It is the fastest wait-free universal construc-
tion we are aware of, although it still copies the entire data
structure. We use the original authors’ implementation [27].

• COW [5]: Created with a COW-based approach inspired by
Ben-David et al., which produces lock-free writing opera-
tions and wait-free read-only operations, without serializing
read-only operations. We implement COW ourselves.

• Hand-Crafted: We use hand-crafted designs of compara-
ble algorithms, as we are not aware of concurrent imple-
mentations of exactly the same trees. We compare occ[RB]
to SnapTree, a concurrent AVL tree with optimistic (lock-
based) synchronization [11]. We compare occ[Radix] to a
lock-free version from the same repository [79]. We com-
pare occ[B+tree] to Brown’s lock-free B-slack tree [12] (a
B-tree variant). We use the original authors’ implementa-
tions.

Our tree selection covers a spectrum of mechanically- and
hand-crafted synchronization techniques. While some of these
techniques do not form an “apples to apples” comparison with
Occualizer’s optimistic lock-based synchronization (e.g., due
to being lock- or wait-free), the point is that they represent
the space of currently available mechanical techniques.

Workloads. We populate the tree with 64 M uniformly ran-
dom 8-byte keys and then run a workload for 3 seconds. Each
workload has a different mix of operation types (Table 3). Our
workloads are inspired by the standard Yahoo! Cloud Serving
Benchmark (YCSB) [23] workloads, which are designed to
simulate real-world application workloads, but differ in that
(1) we replace updates with insertions and do not test range

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    331



Workload Description

R-100 100% lookups (YCSB-C)
R-97 97% lookups, 3% insertions (≈ YCSB-B)
R-75 75% lookups, 25% insertions
R-50 50% lookups, 50% insertions (≈ YCSB-A)

Table 3: Contention workloads.

queries, as not all implementations support these operations;
and (2) we use more levels of writing operations, for more
fine-grained insight. Experiments run under SetBench [13], a
benchmarking harness for concurrent C++ dictionaries that
provides epoch-based memory reclamation.

Throughput. Figures 4–6 show the aggregate throughput
for each workload with varying numbers of threads for the
B+tree, radix, and red-black tree variants, respectively. All
variants except Global-Lock scale on the read-only workload
(R-100), although GCC-TM’s throughput drops for RB at
24–28 cores. But for workloads with any level of writing
operations, only Occualizer and the hand-crafted trees scale,
with throughput of mechanically-crafted trees typically flatlin-
ing at low core counts.5

The mechanically-crafted trees do not scale due to subopti-
mal synchronization. In CX and COW, all writing operations
are serialized, although serialization in COW, which is done
with a CAS to the tree root, is significantly faster than in CX,
where writing operation participate in a helping scheme and
may copy the entire data structure. In GCC-TM, the prob-
lem is its conservative version of optimistic synchronization,
which retries any transaction if any node it reads is updated
before the transaction commits. Thus, for example, GCC-TM
breaks down on RB—where tree rebalancing writes to the top
of the tree—much earlier than on Radix.

Compared to the hand-crafted trees, Occualizer achieves
comparable or better throughput when the level of mutation
is low (R100-R97). The cases in which Occualizer is faster
are due to differences in the underlying algorithms, which
manifest when synchronization overhead is low. This effect
demonstrates the power of Occualizer’s approach, which re-
moves the difficulty of adding synchronization to a tree from
consideration, and thereby allows focusing on the (sequential)
“quality” of the tree, i.e., how fast it is to search.

As mutations increase (R75-R50), however, synchroniza-
tion becomes the dominating factor and Occualizer signif-
icantly underperforms the hand-crafted trees. The reason
is that Occualizer writing operations are slower than in the
hand-crafted trees, due to bookkeeping and copying overhead
(see § 7.3), and so as the proportion of mutations grows, over-
all throughput degrades.

5The only exception is GCC-TM on Radix. In Radix, the tree only grows
downwards, so any non-null pointer read during a traversal is immutable.
GCC-TM thus rarely aborts transactions even with moderate mutation levels,
and so achieves high throughput.

Tree Throughput relative
R-100 R-97 R-75 R-50to hand-crafted

B+tree
Occualizer 0.79 0.77 0.64 0.72
Best mech-crafted 0.82 0.38 0.05 0.05
Gap shrink — 2.01 12.28 13.54

Radix
Occualizer 1.08 0.84 0.73 0.50
Best mech-crafted 1.15 0.90 0.74 0.36
Gap shrink — 0.93 0.99 1.38

RB
Occualizer 1.01 0.90 0.31 0.19
Best mech-crafted 1.02 0.24 0.04 0.03
Gap shrink — 3.78 8.64 6.08

Table 4: Throughput difference between Occualizer and the best re-
sult of the mechanically-crafted trees at 28 cores, for each workload.

Tree B+tree Radix RB

occ[·] 2.14 GB 2.10 GB 3.12 GB
Global-Lock 0.91× 0.93× 0.93×
GCC-TM 0.91× 0.96× 0.95×
CX 13.5× 13.18× 13.03×
COW 1.02× 1.18× 1.04×
Hand-Crafted 1.12× 0.97× 1.01×

Table 5: Memory use at 28 cores (R-50), normalized to Occualizer’s.

The takeaway is that Occualizer significantly shrinks the
performance gap between mechanically- and hand-crafted
trees in workloads with mutations. Table 4 reports this gap,
and by how much Occualizer shrinks it. Overall, Occual-
izer shrinks the gap by up to 13.54×, 1.38×, and 8.64× for
B+tree, Radix, and RB, respectively.

Memory use. Node copies made by an Occualizer tree may
increase memory use compared to its sequential version, as
a function of how quickly old nodes are reclaimed. To quan-
tify this effect, Table 5 shows peak memory use for each
tree in the R-50 workload (results for other workloads are
similar). Both Occualizer and COW indeed use more mem-
ory than the sequential baseline (captured by Global-Lock),
but Occualizer’s LCOW increases memory use by 7%–9%
whereas COW, which copies entire paths, adds an overhead
of 11%–26%. In contrast, CX uses about 14× the memory
of Global-Lock. The reason is that CX maintains multiple
replicas of the data structure, so that read-only operations can
read from a replica and avoid being serialized. Results of the
hand-crafted algorithms are shown only for completeness, as
they are not implementations of the same algorithm.

7.2 Full-system benchmark

We add occ[B+tree] as the index data structure in the STOv2
main-memory database system [58], and compare the result
to the default index, Masstree [71], a hand-crafted concurrent

332    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

10

12

14

Op
s/

se
c 

(m
illi

on
s)

Occualizer
COW
Global-Lock
GCC-TM
CX
Hand-Crafted

(a) R-100

1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

10

12

Op
s/

se
c 

(m
illi

on
s)

(b) R-97

1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

10

Op
s/

se
c 

(m
illi

on
s)

(c) R-75

1 4 8 12 16 20 24 28
Threads

0

1

2

3

4

5

Op
s/

se
c 

(m
illi

on
s)

(d) R-50

Figure 4: Throughput of B+tree variants for workloads with increasing amounts of mutation.

1 4 8 12 16 20 24 28
Threads

2

4

6

8

10

12

14

16

Op
s/

se
c 

(m
illi

on
s)

Occualizer
COW
Global-Lock
GCC-TM
CX
Hand-Crafted

(a) R-100

1 4 8 12 16 20 24 28
Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Op
s/

se
c 

(m
illi

on
s)

(b) R-97

1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

10

12

14

Op
s/

se
c 

(m
illi

on
s)

(c) R-75

1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

10

12

14

16

Op
s/

se
c 

(m
illi

on
s)

(d) R-50

Figure 5: Throughput of radix tree variants for workloads with increasing amounts of mutation.

1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

10

Op
s/

se
c 

(m
illi

on
s)

Occualizer
COW
Global-Lock
GCC-TM
CX
Hand-Crafted

(a) R-100

1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

Op
s/

se
c 

(m
illi

on
s)

(b) R-97

1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

Op
s/

se
c 

(m
illi

on
s)

(c) R-75

1 4 8 12 16 20 24 28
Threads

0

2

4

6

8

Op
s/

se
c 

(m
illi

on
s)

(d) R-50

Figure 6: Throughput of RB (red-black tree) variants for workloads with increasing amounts of mutation.

tree combining aspects of B+trees and tries.6

STO provides serializable transactions. Transactions are
specified via C++ programs accessing STO’s transactional
interface. STO’s transaction concurrency control is tightly
coupled with Masstree, as it relies on Masstree node version
numbers to detect and block certain anomalies. To integrate
occ[B+tree] into STO, we therefore implement an equivalent
versioning scheme in the tlx B+tree.

Workloads. We evaluate two transactional workloads, TPC-
C and Voter. TPC-C is the industry standard benchmark for
evaluating the performance of online transaction processing
(OLTP) systems [28], by simulating an order processing ap-
plication. We use a database with one warehouse, 100,000
items, and run the full mix of all TPC-C transactions. This
workload performs index range queries. Voter is a benchmark

6We use a B+tree here because it is closest algorithmically to Masstree,
which is a B+tree variant. Comparing to, say, a red-black tree would not
be meaningful, because Masstree outperforms a red-black tree for reasons
unrelated to concurrency control (e.g., its much “shallower” tree structure).

that simulates a phone-based voting application. It consists of
many short transactions and does not perform range queries.

Results. Figure 7 shows the throughput (committed transac-
tions per second) and scalability of the system for both work-
loads, measured over a 10-second run. Scalability is measured
by normalizing the throughput obtained with each index to the
single-threaded throughput obtained with that index. On both
workloads, occ[B+tree] is slower than Masstree, but has better
scalability. As a result, the performance gaps between them
shrinks as more threads are added: from a single-threaded
difference of 22% and 29% for TPC-C and Voter, respectively,
to a difference of 12% and 26% at 28 threads.

The reason behind occ[B+tree]’s better scalability is that
Occualizer’s optimistic synchronization protocol causes fewer
operations to abort and retry than Masstree’s protocol (which
is also optimistic). Masstree uses per-node version counters
to guarantee that searches observe only consistent node states.
In Masstree’s protocol, any operation—including a lookup—
might abort and retry if its version checking indicates it may

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    333



0 5 10 15 20 25
Threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Op
s/

se
c

1e6

Occualizer
Masstree

(a) TPCC throughput.

0 5 10 15 20 25
Threads

2

4

6

8

10

12

Sp
ee

du
p

Occualizer
Masstree

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

At
te

m
pt

s/
Op

s

Occualizer
Masstree

(b) TPCC speedup.

0 5 10 15 20 25
Threads

0.2

0.4

0.6

0.8

1.0

Op
s/

se
c

1e7

Occualizer
Masstree

(c) Voter throughput.

0 5 10 15 20 25
Threads

2

4

6

8

10

12

14

16

Sp
ee

du
p

Occualizer
Masstree

1.00

1.02

1.04

1.06

1.08

At
te

m
pt

s/
Op

s

Occualizer
Masstree

(d) Voter speedup.

Figure 7: Throughput and speedup (throughput normalized to single-threaded throughput) of occ[B+tree] vs. Masstree in STOv2. Speedup
plots also show the average number of attempts required to complete an operation (right Y axis).

Enabled methods Relative throughput

None (call overhead) 93%
occ_start 87%
+ occ_finish 81%
+ occ_get 53%
+ occ_set = occ[B+tree] 40%

Table 6: Single-threaded throughput of occ[B+tree] relative to se-
quential B+tree (R-50 workload) as Occualizer’s synchronization
functionality is gradually enabled.

have observed an inconsistent node state. In contrast, Occual-
izer relies on LCOW to guarantee that observed nodes are
consistent, and on the “forepassed” condition [44] to guar-
antee correctness of searches that traverse inconsistent tree
states. In Occualizer’s protocol, read-only lookups never abort
and retry—only update operations do. As a result, as Fig-
ures 7b and 7d show (on the right Y axis), the average number
of attempts required to complete an operation is larger in
Masstree than in occ[B+tree]—and the difference grows with
the number of threads.

7.3 Overhead analysis

To break down the sources of Occualizer’s performance over-
head, we evaluate the throughput impact of making the trans-
formation but using a no-op implementation of each library
method, then gradually adding in each method’s actual imple-
mentation. We use single-threaded execution for this evalua-
tion, because an Occualizer tree does not run correctly when
any of the methods are disabled.

Table 6 shows the results, comparing occ[B+tree] to the
original sequential B+tree, on the R-50 workload. The lion’s
share of overhead is due to occ_get and occ_set, which
interpose on node field accesses. The impact of occ_get is
≈ 2× that of occ_get, as reading fields is more frequent.
Invoking the methods, occ_start, and occ_finish each de-
grade throughput by 6–7% points.

8 Conclusion

This paper presented Occualizer, a mechanical transformation
for adding scalable optimistic synchronization to a sequential
search tree implementation. Occualizer’s specialization to
trees enables designing a synchronization protocol that does
not suffer from the limitations of transactional memory and
universal constructions. Overall, Occualizer trees shrink the
performance gap between these automatic transformations
and hand-crafted trees by up to 13×.

Occualizer is limited, however, in that it applies only to
sequential search trees that satisfy its prerequisites. Relaxing
the prerequisites and automating the verification that an input
tree satisfies them are interesting future directions, as is re-
ducing the overhead of Occualizer’s synchronization library.
Our current Occualizer prototype also requires some manual
steps to transform the input tree; automating these steps is an
ongoing effort.

Occualizer’s code is available at https://github.com/
tomershanny/Occualizer.

Acknowledgements

We thank Yotam Feldman for many illuminating and enjoy-
able (often simultaneously) discussions. We thank the review-
ers and the paper’s shepherd, Irina Calciu, for their feedback.

This research was funded in part by the Israel Science Foun-
dation (grant 2005/17) and the Blavatnik Family Foundation.

References

[1] The GNU Transactional Memory Library.
https://gcc.gnu.org/onlinedocs/gcc-
5.5.0/libitm.pdf, 2021.

[2] James H. Anderson and Mark Moir. Universal Construc-
tions for Multi-Object Operations. In PODC, 1995.

[3] James H. Anderson and Mark Moir. Universal Construc-
tions for Large Objects. IEEE TPDS, 10(12), 1999.

334    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/tomershanny/Occualizer
https://github.com/tomershanny/Occualizer
https://gcc.gnu.org/onlinedocs/gcc-5.5.0/libitm.pdf
https://gcc.gnu.org/onlinedocs/gcc-5.5.0/libitm.pdf


[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a Large-
scale Key-value Store. In SIGMETRICS, 2012.

[5] Naama Ben-David, Guy E. Blelloch, Yihan Sun, and
Yuanhao Wei. Multiversion Concurrency with Bounded
Delay and Precise Garbage Collection. In SPAA, 2019.

[6] Philip A. Bernstein, Colin W. Reid, and Sudipto Das.
Hyder – A Transactional Record Manager for Shared
Flash. In CIDR, 2011.

[7] Timo Bingmann. STX B+ Tree C++ Template Classes.
https://panthema.net/2007/stx-btree, 2013.

[8] Timo Bingmann. TLX: Collection of sophisticated C++
data structures, algorithms, and miscellaneous helpers.
https://panthema.net/tlx, 2018.

[9] Robert Binna, Eva Zangerle, Martin Pichl, Günther
Specht, and Viktor Leis. HOT: A Height Optimized
Trie Index for Main-Memory Database Systems. In
SIGMOD ’18, 2018.

[10] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. OpLog: a library for scaling
update-heavy data structures. Technical Report MIT-
CSAIL-TR-2014-019, MIT, 2014.

[11] Nathan G. Bronson, Jared Casper, Hassan Chafi, and
Kunle Olukotun. A Practical Concurrent Binary Search
Tree. In PPoPP, 2010.

[12] Trevor Brown. B-slack Trees: Space Efficient B-Trees.
In SWAT, 2014.

[13] Trevor Brown. SetBench: Powerful tools for data
structure experiments in C++. https://gitlab.com/
trbot86/setbench, 2021.

[14] Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy,
Alex Kogan, Virendra Marathe, and Mark Moir. Mes-
sage Passing or Shared Memory: Evaluating the Delega-
tion Abstraction for Multicores. In OPODIS, 2013.

[15] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and
Marcos K. Aguilera. Black-Box Concurrent Data Struc-
tures for NUMA Architectures. In ASPLOS, 2017.

[16] Sang K. Cha, Sangyong Hwang, Kihong Kim, and Ke-
unjoo Kwon. Cache-Conscious Concurrency Control
of Main-Memory Indexes on Shared-Memory Multipro-
cessor Systems. In VLDB, 2001.

[17] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. FASTER: A Concurrent Key-Value Store with
In-Place Updates. In SIGMOD, 2018.

[18] Phong Chuong, Faith Ellen, and Vijaya Ramachandran.
A Universal Construction for Wait-Free Transaction
Friendly Data Structures. In SPAA, 2010.

[19] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. Scalable address spaces using RCU balanced
trees. In ASPLOS, 2012.

[20] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. RadixVM: Scalable Address Spaces for
Multithreaded Applications. In EuroSys, 2013.

[21] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert T. Morris, and Eddie Kohler. The Scal-
able Commutativity Rule: Designing Scalable Software
for Multicore Processors. In SOSP, 2013.

[22] Douglas Comer. Ubiquitous B-Tree. ACM CSUR, 11(2),
1979.

[23] Brian F. Cooper, Adam Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving sys-
tems with YCSB. In SoCC ’10, 2010.

[24] Jonathan Corbet. Trees I: Radix trees. https://lwn.
net/Articles/175432/, 2006.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
4th Edition. The MIT Press, 2022.

[26] Andreia Correia, Pedro Ramalhete, and Pascal Felber.
A Wait-Free Universal Construct for Large Objects. In
PPoPP, 2020.

[27] Andreia Correia, Pedro Ramalhete, and Pascal Felber.
CX source code. https://github.com/pramalhe/
CX, 2020.

[28] The Transaction Processing Council. TPC-C Bench-
mark (Revision 5.9.0). http://www.tpc.org/tpcc/,
2007.

[29] Tudor David, Rachid Guerraoui, and Vasileios Trigo-
nakis. Asynchronized Concurrency: The Secret to Scal-
ing Concurrent Search Data Structures. In ASPLOS,
2015.

[30] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake
Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma,
and Mike Zwilling. Hekaton: Sql server’s memory-
optimized oltp engine. In SIGMOD, 2013.

[31] Dave Dice, Ori Shalev, and Nir Shavit. Transactional
Locking II. In DISC, 2006.

[32] Dave Dice, Nir Shavit, and Ori Shalev. Red-black
balanced binary search tree. https://github.
com/gramoli/synchrobench/blob/master/c-
cpp/src/trees/rbtree/rbtree.c, 2006.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    335

https://panthema.net/2007/stx-btree
https://panthema.net/tlx
https://gitlab.com/trbot86/setbench
https://gitlab.com/trbot86/setbench
https://lwn.net/Articles/175432/
https://lwn.net/Articles/175432/
https://github.com/pramalhe/CX
https://github.com/pramalhe/CX
http://www.tpc.org/tpcc/
https://github.com/gramoli/synchrobench/blob/master/c-cpp/src/trees/rbtree/rbtree.c
https://github.com/gramoli/synchrobench/blob/master/c-cpp/src/trees/rbtree/rbtree.c
https://github.com/gramoli/synchrobench/blob/master/c-cpp/src/trees/rbtree/rbtree.c


[33] Nuno Diegues and Paolo Romano. Self-Tuning Intel
Transactional Synchronization Extensions. In ICAC,
2014.

[34] Nuno Diegues, Paolo Romano, and Luís Rodrigues.
Virtues and Limitations of Commodity Hardware Trans-
actional Memory. In PACT, 2014.

[35] Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas,
Alessia Milani, and Corentin Travers. Universal Con-
structions That Ensure Disjoint-Access Parallelism and
Wait-Freedom. In PODC, 2012.

[36] Rob Ennals. Software transactional memory should not
be obstruction free. Technical Report IRC-TR-06-052,
Intel Research, 2006.

[37] Jason Evans. Scalable memory allocation using jemal-
loc. http://www.facebook.com/notes/facebook-
engineering/scalable-memory-allocation-
using-jemalloc/480222803919, 2011.

[38] Panagiota Fatourou and Nikolaos D. Kallimanis. The
RedBlue Adaptive Universal Constructions. In DISC,
2009.

[39] Panagiota Fatourou and Nikolaos D. Kallimanis. Re-
visiting the Combining Synchronization Technique. In
PPoPP, 2012.

[40] Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-
Efficient Wait-Free Synchronization. Theory of Com-
puting Systems, 55(3), 2014.

[41] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dy-
namic performance tuning of word-based software trans-
actional memory. In PPoPP, 2008.

[42] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui.
Elastic Transactions. In DISC, 2009.

[43] Yotam M. Y. Feldman, Constantin Enea, Adam Morri-
son, Noam Rinetzky, and Sharon Shoham. Order out of
Chaos: Proving Linearizability Using Local Views. In
DISC 2018, 2018.

[44] Yotam M. Y. Feldman, Artem Khyzha, Constantin Enea,
Adam Morrison, Aleksandar Nanevski, Noam Rinetzky,
and Sharon Shoham. Proving Highly-Concurrent Traver-
sals Correct. PACMPL, 4(OOPSLA), 2020.

[45] Keir Fraser. Practical lock-freedom. PhD thesis, Uni-
versity of Cambridge, 2004.

[46] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and
Idit Keidar. Scaling Concurrent Log-Structured Data
Stores. In EuroSys, 2015.

[47] Vincent Gramoli. More than you ever wanted to know
about synchronization: synchrobench, measuring the
impact of the synchronization on concurrent algorithms.
In PPoPP, 2015.

[48] Tim Harris, James Larus, and Ravi Rajwar. Transac-
tional Memory, 2nd Edition. Morgan and Claypool Pub-
lishers, 2010.

[49] Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran.
Optimistic Transactional Boosting. In PPoPP, 2014.

[50] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.
Flat Combining and the Synchronization-Parallelism
Tradeoff. In SPAA, 2010.

[51] Maurice Herlihy. Wait-free synchronization. ACM
TOPLAS, 13, 1991.

[52] Maurice Herlihy. A Methodology for Implementing
Highly Concurrent Data Objects. SIGOPS OSR, 26(2),
1992.

[53] Maurice Herlihy and Eric Koskinen. Transactional
Boosting: A Methodology for Highly-Concurrent Trans-
actional Objects. In PPoPP, 2008.

[54] Maurice Herlihy and J. Eliot B. Moss. Transactional
Memory: Architectural Support for Lock-Free Data
Structures. In ISCA, 1993.

[55] Maurice Herlihy and Nir Shavit. The Art of Multiproces-
sor Programming. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2008.

[56] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: a correctness condition for concurrent objects.
ACM TOPLAS, 12, 1990.

[57] Nathaniel Herman, Jeevana Priya Inala, Yihe Huang,
Lillian Tsai, Eddie Kohler, Barbara Liskov, and Liuba
Shrira. Type-Aware Transactions for Faster Concurrent
Code. In EuroSys, 2016.

[58] Yihe Huang, William Qian, Eddie Kohler, Barbara
Liskov, and Liuba Shrira. Opportunities for Optimism
in Contended Main-Memory Multicore Transactions. In
VLDB, 2020.

[59] Martin Kaufmann, Amin Amiri Manjili, Panagiotis
Vagenas, Peter Michael Fischer, Donald Kossmann,
Franz Färber, and Norman May. Timeline Index: A
Unified Data Structure for Processing Queries on Tem-
poral Data in SAP HANA. In SIGMOD, 2013.

[60] Alfons Kemper and Thomas Neumann. HyPer: A hybrid
OLTP & OLAP main memory database system based
on virtual memory snapshots. In ICDE, 2011.

336    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
http://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
http://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919


[61] Siddharth Krishna, Nisarg Patel, Dennis Shasha, , and
Thomas Wies. Verifying Concurrent Search Structure
Templates. In PLDI, 2020.

[62] Siddharth Krishna, Dennis E. Shasha, and Thomas Wies.
Go with the flow: compositional abstractions for concur-
rent data structures. PACMPL, 2(POPL), 2018.

[63] Michael Larabel. Intel To Disable TSX By De-
fault On More CPUs With New Microcode.
https://www.phoronix.com/scan.php?page=
news_item&px=Intel-TSX-Off-New-Microcode,
2021.

[64] Edward A. Lee. The Problem with Threads. IEEE
Computer, 39(5), 2006.

[65] Viktor Leis, Alfons Kemper, and Thomas Neumann. The
adaptive radix tree: ARTful indexing for main-memory
databases. In ICDE ’13, 2013.

[66] Kfir Lev-Ari, Gregory V. Chockler, and Idit Keidar. A
Constructive Approach for Proving Data Structures’ Lin-
earizability. In DISC 205, 2015.

[67] Justin J. Levandoski, David B. Lomet, and Sudipta Sen-
gupta. The Bw-Tree: A B-Tree for New Hardware Plat-
forms. In ICDE ’13, 2013.

[68] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. SILT: A Memory-efficient, High-
performance Key-value Store. In SOSP, 2011.

[69] Linux. lib/rbtree.c, source code file of Linux 5.17.
https://github.com/torvalds/linux/blob/v5.
17/lib/rbtree.c#L35-L57, 2022.

[70] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia
Lawall, and Gilles Muller. Remote Core Locking: Mi-
grating Critical-Section Execution to Improve the Per-
formance of Multithreaded Applications. In USENIX
ATC, 2012.

[71] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache Craftiness for Fast Multicore Key-value Storage.
In EuroSys, 2012.

[72] Paul E. McKenney and John D. Slingwine. Read-copy
update: using execution history to solve concurrency
problems. In PDCS, 1998.

[73] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav,
and G. Yorsh. Verifying linearizability with hindsight.
In PODC, 2010.

[74] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa.
Executing Parallel Programs with Synchronization Bot-
tlenecks Efficiently. In PDSIA, 1999.

[75] Darko Petrović, Thomas Ropars, and André Schiper.
On the Performance of Delegation over Cache-Coherent
Shared Memory. In ICDCN, 2015.

[76] Hany E. Ramadan, Indrajit Roy, Maurice Herlihy, and
Emmett Witchel. Committing Conflicting Transactions
in an STM. In PPoPP, 2009.

[77] Nir Shavit and Dan Touitou. Software Transactional
Memory. In PODC, 1995.

[78] Daniel Dominic Sleator and Robert Endre Tarjan. Self-
adjusting binary search trees. JACM, 32, 1985.

[79] Hugo Sousa. RadixTree. https://github.com/
ha2398/radix-tree, 2016.

[80] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy Transactions in
Multicore In-memory Databases. In SOSP, 2013.

[81] V. Vafeiadis. Modular fine-grained concurrency verifi-
cation. PhD thesis, University of Cambridge, 2008.

[82] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and
Marc Shapiro. Proving correctness of highly-concurrent
linearisable objects. In PPoPP, 2006.

[83] Ziqi Wang, A. Pavlo, Hyeontaek Lim, Viktor Leis,
Huanchen Zhang, M. Kaminsky, and D. Andersen.
Building a Bw-Tree Takes More Than Just Buzz Words.
In SIGMOD ’18, 2018.

[84] Lingxiang Xiang and Michael Lee Scott. Compiler
Aided Manual Speculation for High Performance Con-
current Data Structures. In PPoPP, 2013.

[85] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. TicToc: Time Traveling Optimistic Con-
currency Control. In SIGMOD, 2016.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    337

https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://github.com/torvalds/linux/blob/v5.17/lib/rbtree.c#L35-L57
https://github.com/torvalds/linux/blob/v5.17/lib/rbtree.c#L35-L57
https://github.com/ha2398/radix-tree
https://github.com/ha2398/radix-tree




Immortal Threads: Multithreaded Event-driven Intermittent Computing
on Ultra-Low-Power Microcontrollers

Eren Yıldız
Ege University, Turkey

Lijun Chen
University of Trento, Italy

Kasım Sinan Yıldırım
University of Trento, Italy

Abstract
We introduce Immortal Threads, a novel programming

model that brings pseudo-stackful multithreaded process-
ing to intermittent computing. Programmers using Immor-
tal Threads are oblivious to intermittent execution and write
their applications in a multithreaded fashion using common
event-driven multithreading primitives. Our compiler fronted
transforms the stackful threads into stackless threads that
waste a minimum amount of computational progress upon
power failures. Our runtime implements fair scheduling to
switch between threads efficiently. We evaluated Immortal
Threads on real hardware by comparing it against the state-
of-the-art intermittent runtimes. Our comparison showed that
the price paid for the Immortal Threads is a runtime overhead
comparable to existing intermittent computing runtimes.

1 Introduction

Advancements in low-power electronics and energy harvesters
exploiting ambient sources (e.g., solar [20], indoor light [21],
and radiofrequency [27]) paved the way for sustainable sys-
tems that can work without batteries. Recent studies have
demonstrated promising examples of these systems, such as
body implants [23] and long-lived wearables [51], where
continuous power is not available and changing batteries
is difficult. There are several microcontroller-based battery-
less computing platforms (e.g., WISP [46], Flicker [24], Ca-
maroptera [42] and Engage [16]) developed by the researchers.
Instead of a battery, these platforms comprise a capacitor
that powers all hardware components, including the ultra-
low-power microcontroller (MCU), sensors, communication
circuitry, and other peripherals. When a batteryless platform
consumes the energy stored in its capacitor, it turns off due
to a power failure. The platform charges its capacitor until
the stored energy exceeds an operating threshold, which turns
on the platform again. Therefore, the software on batteryless
platforms runs intermittently due to frequent power failures
and charge-discharge cycles.

Each power failure clears the CPU registers and the volatile
memory during an intermittent execution. Hence, the com-
putation might not progress forward since the control re-
turns to the application’s entry point [11]. Moreover, power
failures may cause data stored in non-volatile memory to
be partially updated, leading to memory inconsistency [43].
The prior art proposed mainly two approaches to overcome
these issues. The first one is to place checkpoints in program
source [6, 8, 26, 28, 30, 31, 33, 36, 44, 53], which store their
continuation (i.e., the control state including the registers,
stack and global data) in non-volatile memory. After a power
failure, control resumes from the latest successful checkpoint
location. Another approach is to employ a task-based pro-
gramming model [10,19,25,34,37,38,45,54], which requires
programmers to implement their programs as a collection of
tasks and transitions between them. This model eliminates the
cost of checkpoints, since the all-or-nothing semantic of tasks,
defined by the programming model, means that a function
pointer to the current task is enough to represent the contin-
uation of the program, which makes saving and restoring it
from non-volatile memory extremely cheap [10].

Despite efficiency, the task-based model poses significant
problems in developing event-driven applications [17, 32].
This situation prevents the widespread adoption of intermit-
tent systems since most sensing applications are event-driven.
P1-Event Handling Complexity: Event handling, in gen-
eral, is implemented in the form of state machines that require
explicit management of states and transitions [18]. Imple-
menting event-driven applications using the task-based model
requires programmers to manage (i) task partitioning, (ii) task-
based control flow, (iii) event states, and (iv) state transitions
simultaneously. This situation creates an excessive cognitive
burden concerning event-driven intermittent computing.
P2-Limited Concurrency: Existing event-driven task-based
systems (e.g., [45, 54]) cannot fully support preemptive
threads. Since tasks execute atomically, they voluntarily yield
the control, and other tasks cannot preempt them. Moreover,
tasks cannot block on events, trigger new threads of execution,
and notify the completion of event processing. Therefore, pro-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    339



grammers need to partition long-running computation (e.g.,
compression [29]) into a set of tasks to avoid missing events.
P3-Wasted Progress: Partial execution of tasks (due to
power failures) leads to loss of computational progress within
tasks since tasks have all-or-nothing semantics. This issue in-
creases event response time, which is critical for event-driven
systems. Recent work proposed loop continuation to preserve
computational progress after each loop iteration by selectively
violating the task-based model [22] (see Sections 1 and 6).
Problem Statement. Considering the mentioned problems,
we seek a programming model that:
(Req.-1) removes the cognitive load of the task-based model

while retaining its lightweight characteristics;
(Req.-2) brings the flexibility of preemptive multithreaded

programming to intermittent systems;
(Req.-3) enables progress from the point where a thread has

been interrupted due to a power failure.
Challenges. Fulfilling these requirements is not trivial. To
satisfy (Req.-1), Kortbeek et al. [31] proposed giving up the
task-based model and using lightweight and sparse check-
points that save all registers and only the memory segments
modified by the program. However, to fulfill (Req.3), check-
points need to be placed almost at each line in the code. This
situation creates an unmanageable overhead even with these
lightweight checkpoints. Finally, concerning (Req.-2), we
note that it is not enough to use a checkpoint runtime on top
of an existing multithreaded OS, since OS primitives such as
mutexes, semaphores, as well as interrupt handling, must be
implemented taking the intermittence into account, to avoid
memory consistency issues due to partial updates.
Contributions. In this paper, we introduce Immortal Threads
that brings pseudo-stackful preemptive multithreaded pro-
gramming model to event-driven intermittent computing. Pro-
grammers using Immortal Threads are oblivious to intermit-
tent execution and write their applications in a multithreaded
fashion using plain C without tasks (see Figure 1). Im-
mortal Threads compiler fronted transforms stackful threads
into stackless threads, inserts ultra-lightweight checkpointing
mechanisms under the hood to minimize wasted progress, and
maintains the memory consistency. The Immortal Threads
library implements a preemptive scheduler to switch between
threads and provides common event-driven primitives such
as semaphores and blocking event wait operations. Our real-
world experiments showed that Immortal Threads has runtime
overhead comparable to the prior art intermittent runtimes
InK [54], Alpaca [34] and TICS [31]. Moreover, during fre-
quent power failures, Immortal Threads reduced execution
time and wasted work by up to 40% and 90%, respectively.

In summary, Immortal Threads introduces the following
contributions:
(1) Preemptive Multithreading: For the first time, we en-
able preemptive multithreading for event-driven intermittent
systems, which provides programming flexibility and elimi-
nates the cognitive burden of task-based programming.

0TTVY[HS�;OYLHKZ�
&RPSLOHU¬)URQW�(QG�

7DUJHW��
&¬&RPSLOHU�

1*$��¡/$( -¡$.-¡¦
Ĕ�����¡�
���¢ 1 )/£�
§

$((*-/�'¡/#- ��¢�*)1¡/#- ����-".£¦
Ĕ¡� "$)¢�*)1¡/#- ��£�
Ĕ¡� !�$)/��¤�¥�Ĕ¡� !Ĕ$)/��¤�¥�
Ĕ¡� !Ĕ$)/�*0/¤��é}¥�Ĕ
Ĕ�2#$' �¢}£¦
Ĕ�Ĕ��
�¡���
���¢ 1 )/��£�
Ĕ�Ĕ¡� !Ĕ$)/Ĕ$�Ĕ¡��¢$�|£�
Ĕ�Ĕ!*-¢�$î��é}�£¦
Ĕ�ĔĔ¡� !Ĕ$)/Ĕ%�Ĕ¡��¢%�|£�
Ĕ�Ĕ�!*-¢�%î��£¦
Ĕ�Ĕ�Ĕ¡��¡���¢*0/¤$¥�
Ĕ�Ĕ�Ĕ�Ĕ�Ĕ�Ĕ*0/¤$¥é�¤$é%¥¬�¤��%�}¥£�
Ĕ�Ĕ�Ĕ¡��¡���¢%�%é}£�
Ĕ�Ĕ�§
Ĕ�Ĕ�¡��¡���¢$�$é}£�
Ĕ�Ĕ§
Ĕ�§
ĔĔ¡ )�¢�*)1¡/#- ��£��
§

1*$��¡/$( -¡$.-¡¦
Ĕ�����¡�
���¢ 1 )/£�
§

$((*-/�'¡/#- ��¢�*)1¡/#- ���
�-".£¦Ĕ
Ĕ$)/��¤�¥�Ĕ$)/��¤�¥�
Ĕ$)/�*0/¤��é}¥�

Ĕ2#$' �¢}£¦
Ĕ���
�¡���
���¢ 1 )/��£�
Ĕ�!*-¢$)/Ĕ$í|^�$î��é}^�$éé£
Ĕ�Ĕ!*-¢$)/Ĕ%í|^�%î���%éé£
Ĕ�Ĕ�*0/¤$¥éí�¤$é%¥¬�¤��%�}¥�
Ĕ§
§

,]LU[�+YP]LU�*�:V\YJL�
PU°4\S[P�;OYLHKLK°-HZOPVU�

6RXUFH�WR�VRXUFH�
WUDQVIRUPDWLRQ

;OL�WYVNYHTTLY�PZ�VISP]PV\Z�[V�[OL°PU[LYTP[[LU[�L_LJ\[PVU�

;HYNL[°�
0THNL

0TTVY[HS�;OYLHKZ°
3PIYHY`�:V\YJL

&KHFNSRLQWV��
7KUHDG�VFKHGXOLQJ�
(YHQW�KDQGOLQJ�

Figure 1: With Immortal Threads, programmers write appli-
cations in a multithreaded fashion without concerning inter-
mittent execution, and focus only on event-driven aspects.

(2) Almost-Free Checkpoints: We propose a novel check-
pointing technique, inspired by Dunkels et al. [18], that saves
only the program counter rather than all registers and memory.
(3) Just-in-time Privatization: We propose a novel tech-
nique that eliminates the need for creating static versions
of non-volatile program variables to keep memory consistent.
(4) Micro Continuation: Thanks to almost free checkpoints
and just-in-time privatization, threads always progress from
their latest memory update, and they do not waste computa-
tional progress upon power failures.
(5) Open-source Release: We release Immortal Threads as a
C library with compiler support (via [55]) for the widespread
adoption of intermittent computing.

2 Background and Related Work

Batteryless computing platforms comprise ultra-low-power
MCUs with embedded non-volatile memory. For instance,
MSP430FR5969 [48], one of the mainstream MCUs used
in batteryless platforms, has 64kB of FRAM [50] and 2kB
of SRAM memory. FRAM stores data that will persist upon
power failures. The key challenges of intermittent computing
are the loss of computational progress after power failures
and memory inconsistency issues. Power failures reset the
MCU, and the control returns to the application’s entry point.
Moreover, power failures might keep persistent variables (i.e.,
variables maintained in non-volatile memory) partially up-
dated and in an inconsistent state. Code blocks with WAR

340    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



(Write-After-Read) dependencies on persistent variables are
not idempotent, since they might produce different results
when the MCU re-executes them after a power failure [43].
For example, assume that x is a persistent variable and the
program executes {x++; vector[x]=v;}. A power failure
after x++ re-executes x++ and leads x to be increased twice.

2.1 Intermittent Computing Approaches
The prior art focused on the forward progress and memory
consistency aspects of intermittent execution but also con-
sidered the timeliness of data processing and event-driven
concurrency.
Checkpoints. In energy-guided checkpointing, the device
continuously monitors the capacitor to perform a checkpoint
on imminent power failure, for example, as in Hibernus [6].
However, voltage monitoring is quite expensive in terms of en-
ergy consumption [52]. In software-only checkpointing (e.g.,
DINO [33], Chinchilla [36] and TICS [31]), the program
source is instrumented with checkpoints, either by a program-
mer or a compiler. The checkpoints are double-buffered in
non-volatile memory to prevent the latest consistent check-
point from being superseded immediately by an inconsistent
(i.e., partially updated) checkpoint. Moreover, a compiler anal-
ysis is required to determine the modified persistent variables
between two checkpoints and create their versions to pre-
vent violations of idempotency upon resumption [33]. After
a power failure, the checkpointing runtime restores the ver-
sions that isolate the code from partially updated versions,
and the control resumes from the latest successful checkpoint
location. There are several other works that aim to reduce the
overhead of checkpoints [3, 4].

&KHFNSRLQWV
7DVN�LQLW^
bZULWH�L�����
bQH[W�W��ˋ
`

7DVN�W�^
bLI�L�1.���b
b�QH[W�W��ˋ
bHOVHb
b�QH[W�LQLW�ˋ
`

7DVN�W�^
bLI��M�.�
b�QH[W�FRQY�ˋ
bHOVH^
b�ZULWH�L�L����
b�ZULWH�M���ˋ
b�QH[W�W��ˋ
b`
`

7DVN�FRQY^
bZULWH�RXW>L@�
b�b�b�bRXW>L@�D>L�M@E>.�M��@�ˋ
bZULWH�M�M����
bQH[W�W��ˋ
`

7DVN�EDVHG

�
YRLG�FRQY��^
bLQWbD>1@�bLQW�E>.@�
bLQW�RXW>1.��@�

bIRU��L ��L�1.���L���
b�IRUb�M ��L�.�M���^
b�bRXW>L@� D>L�M@E>.�M��@�
b�bFKHFNSRLQW���b
b�`
`

Figure 2: The task-based and checkpoint-instrumented ver-
sions of a 1-D convolution code. Arrows among the tasks
denote channels that hold versions of task-shared variables.

Task-based Model. This model eliminates the overhead of
checkpoints by proposing tasks that do not have a restora-
tion cost. Tasks have read-only inputs and write-only outputs
(called channels [10]), which are maintained in non-volatile
memory separately. Tasks are inherently idempotent since

separate channels avoid WAR dependencies in the task body.
Runtimes execute tasks atomically with all-or-nothing seman-
tics. The task-based model employs static multi-versioning by
creating multiple copies of the data distributed over the inputs
and outputs of the tasks (see Figure 2). Alpaca [34] avoided
multi-versioning by proposing privatization that creates lo-
cal copies of the task-shared persistent variables. Each task
loads its local copies with the original values, manipulates
local copies, and commits them to the original locations upon
completion.
Timely Execution. Data (processing) might expire due to
charging times during intermittent execution. Mayfly [25],
InK [54] and CatNap [37] proposed extensions to the task-
based programming model to express timely data constraints
and time-critical code. TICS [31] added extensions to check-
pointing systems to enable timely data processing.
Event-driven Intermittent Computing. InK [54] proposed
task threads, which are triggered by events to execute a se-
quence of tasks. Coati [45] handles the event-driven concur-
rency issues by serializing concurrent interrupts with the tasks
to keep the shared persistent state consistent. CatNap [37]
isolated energy for reliable intermittent execution of peri-
odic events, which are time-critical tasks in a task-based
model. TICS [31] does not support event-driven constructs,
but it can checkpoint event-driven legacy code—though these
checkpoints do not guarantee the semantically correct opera-
tion [31] (see Section 5.1).

2.2 Embedded Concurrency Models
Several studies proposed different concurrency models for
embedded systems [2, 7, 29, 32, 32, 40, 41]. We classify the
main differences in these models into two spheres: whether
the concurrency is cooperative or preemptive, and whether the
concurrency units (i.e., “threads”) are stackful or stackless.
Concurrency Approaches. Stackful concurrency has pro-
gramming expressiveness, since continuations can be set any-
where in the thread’s call stack by preserving the local vari-
ables [29]. It is costly since each thread requires its own
stack, and thread preemption requires storing all registers into
the continuation. In stackless concurrency, threads share the
same stack, and local variables are not maintained when a
thread blocks. As an example, Protothreads [18] implements
a stackless cooperative concurrency model. Consequently, a
protothread can yield control only within its main body, not
within the body of a function it calls.
Concurrency and Checkpoints. The former sets continu-
ations (a.k.a. execution context) to switch context among
threads, while the latter sets them to restore the program state
after reboot. Therefore, from the perspective of concurrency,
software-only checkpointing systems are non-preemptive, in
the same way stackful threads voluntarily set a continuation
and yield control. Besides, energy-guided checkpointing sys-
tems are preemptive since they stop thread execution and set a

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    341



Intermittent Runtimes Main Features Timely, Event-Driven
Intermittent Program

Development
Task-based or
Checkpointing

Run-time
Overhead Event-driven Support Cognitive

burden Lost Work Micro Con-
tinuation

Timely
Execution

Dewdrop [9], Mementos [44],
DINO [33], HarvOS [8] Checkpointing High 7 No Support 7 Low 3

Low to High
7

No 7 No 7 N/A 7

Ratchet [53] Checkpointing Very High 7 No Support 7 Low 3 Very Low 3 No 7 No 7 N/A 7
Chinchilla [36] Checkpointing Medium 7 No Support 7 Low 3 Low 3 No 7 No 7 N/A 7

Chain [10], Coala [38],
Alpaca [34] Task-based Low 3 No Support 7 High 7 High 7 No 7 No 7 N/A 7

Mayfly [25] Task-based Low 3 No Support 7 High 7 High 7 No 7 Yes 3 N/A 7
TICS [31] Checkpointing Medium 3 No Support 7 Low 3 High 7 No 7 Yes 3 N/A 7

InK [54], Rehash [5] Task-based Low 3 Limited Support 3 High 7 High 7 No 7 Yes 3 Difficult 7
Coati [45] Task-based Low 3 Limited Support 3 High 7 High 7 No 7 No 7 Difficult 7

CatNap [37] Task-based Low 3 Limited Support 3 High 7 High 7 No 7 Yes 3 Difficult 7
Immortal Threads

(this work)
Checkpointing

(almost zero overhead) Low 3
Full Support 3
(multithreading)

Very Low 3
(almost zero)

Very Low 3
(almost zero) Yes 3 Yes 3

Easy 3(almost the same
as in continuous systems)

Table 1: A comparison of the main features of Immortal Threads with the relevant intermittent computing approaches.

continuation upon an imminent power failure. Intuitively, the
task-based model is a form of static non-preemptive stackless
checkpointing system. Static and non-preemptive because
task decomposition is done at programming time and check-
points are taken only at task boundary, and stackless because
only the active task’s function pointer is checkpointed. Sim-
ilar to stackless threads, the low-overhead of the task-based
model comes at the cost of imposing a programming model
with a high cognitive load.

2.3 Drawbacks of Prior Works
Table 1 presents a comparison of the main characteristics of
this work and the existing intermittent computing approaches.
1- Event-handling Complexity with Tasks. The task-based
implementation of a small deep neural network (DNN) in-
ference in Gobieski et al. [22] has 18 tasks and 61 control
flow declarations. Implementing an event-triggered state ma-
chine using tasks is even more complex. For example, a low-
level radio driver depicted in Dunkels et al. [18, Table 1]
has 26 explicit states and 32 state transitions. Implementing
this driver using existing task-based event-driven intermittent
runtimes [37, 45, 54] requires handling task partitioning and
control flow, states, and transitions simultaneously, which is
an unmanageable cognitive load.
2- Programming Model Violations. Power failures lead to
the waste of computational progress (and energy) when they
prevent the execution from reaching the successive checkpoint
or the end of the current task. For example, a power failure
in the middle of the convolution task while performing the
DNN inference in Gobieski et al. [22] might lead to the loss
of almost 150000 multiplications. Prior work proposed loop
continuation [22] that avoids wasted work by allowing tasks
to directly modify non-volatile memory in a loop nest, which
is a violation of the task-based model.
3- Limited Concurrency. None of the existing intermittent
systems supports the stackful preemptive concurrency model.
As Yildirim et al. [54] comments, checkpointing an existing
preemptive multi-threading operating system is not practica-

ble due to the inefficiency issues and the memory inconsis-
tencies caused by intermittence-unaware interrupt handling.
Similar concerns hold for existing works (e.g., [41]) that can
transform stackful threads into stackless continuations for
continuously powered systems. For the sake of efficiency,
many existing work on intermittent computing utilizes a
lightweight stackless cooperative concurrency approach via
tasks [37, 45, 54].

3 Immortal Threads: Overview

Immortal Threads consists of a programming interface, a
compiler frontend, and a small run-time library, which bring
pseudo-stackful preemptive multithreading model into inter-
mittent computing. Programmers using Immortal Threads are
oblivious to intermittent execution, and they develop their
programs in a multithreaded fashion as they are programming
a continuously powered system. The compiler frontend trans-
forms the source code into stackless continuations that handle
intermittency without programmer intervention.

As depicted in Figure 1, the main building block of an in-
termittent event-driven application is the thread of execution
that continues running from where it left upon power fail-
ures, which we call immortal thread. Unlike the task-based
model (which requires explicit idempotent code generation
via task splitting), the unnecessary details of the intermittent
execution are not visible to the programmers. The duties of
the programmers are to (i) identify the events in their sys-
tem, (ii) design their systems as a set of threads that are the
handlers of these events, (iii) manage the necessary state man-
agement and state transitions, and (iv) consider timing aspects
during event-driven intermittent execution. It is worth men-
tioning that duties (i)–(iii) are identical to the steps followed
to develop event-driven applications in continuously powered
systems [17, 32]. Differently, in (iv), programmers embed (if
required) the necessary program logic to check event expira-
tion due to the delays stemming from the charge/discharge
cycles during the intermittent execution.

342    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Language Construct Explanation

_SEM_WAIT(sem)/_SEM_POST(sem) wait on/post semaphore sem
_SEM_POST_ISR(sem) post semaphore sem in an ISR
_EVENT_SET_TIMESTAMP(e, t) sets the timestamp of e as t.
_EVENT_GET_BUFFER(e) returns a pointer to the data buffer of e
_EVENT_GET_TIMESTAMP(e) returns the timestamp of e

_EVENT_WAIT(e,buf) blocking wait on e w/o expiration time, re-
turns the event data via buf

_EVENT_WAIT_EXP(e, buf, t) blocking wait on e w/ expiration time t, re-
turns the event data via buf

_EVENT_SIGNAL(e) signals the event and unlocks the thread wait-
ing on the event

Table 2: Immortal Threads core language constructs.

3.1 Programming Model

Immortal Threads supports the common multithreaded event-
driven language constructs, as presented in Table 2.
Timely Events and Blocking Wait. Immortal Threads pro-
vides an event primitive that builds a bridge between threads
and ISRs (interrupt service routines). Threads can block (i.e.,
wait) on events using _EVENT_WAIT and _EVENT_WAIT_EXP

interfaces, which suspend threads until the relevant event oc-
curs. Signaling an event via the _EVENT_SIGNAL interface
unblocks the waiting thread to continue its execution. Immor-
tal Threads cannot guarantee event handling deadlines, but
programmers can provide an expiration time to catch outdated
events and prevent unnecessary event processing. To detect
event expiration, programmers can use _EVENT_WAIT_EXP,
which subtracts the current time from the timestamp of the
event. This interface unblocks the corresponding thread if
the result of the subtraction is less than the expiration time
provided by the programmer. Blocking wait interfaces also
pass a pointer to the event data to let the waiting thread copy
these data into its thread-local buffer.
Wait and Post Semaphores. Immortal Threads provides a bi-
nary semaphore implementation for inter-thread signaling. A
thread can block (wait) on a semaphore using the _SEM_WAIT
interface. Another thread can post this semaphore using
_SEM_POST interface to unblock that thread. ISRs can also
post semaphores using a separate interface _SEM_POST_ISR.
ISRs and Event Signaling. In Immortal Threads model, in-
terrupts have all-or-nothing semantics. ISRs interface with
the hardware, obtain the data, and deliver it to threads. Each
ISR has an associated event structure. When an interrupt
(i.e., an event) occurs, the ISR obtains a pointer to the event
data buffer via the _EVENT_GET_BUFFER interface. ISRs store
the event data (e.g., the sensor reading) into this buffer and set
the event timestamp via _EVENT_SET_TIMESTAMP. ISR com-
mits these changes atomically and notifies the waiting thread
via the _EVENT_SIGNAL interface. A power failure up to this
point might lead to an event loss. Otherwise, the notified
thread will obtain the event data and perform the necessary
processing.

Language Construct Explanation

_begin(name)/_end(name) immortal body start/end

_def/_gdef
pseudo local variables and persistent global vari-
ables

_WR(arg,val) arg = val (variable assignment operations w/o W-
A-R, e.g., x=5)

_WR_SELF(type,arg,val) arg = (type) val (variable assignment operations
w/ W-A-R, e.g., x++)

_call(name,...) call immortal function name with appropriate ar-
guments

Table 3: Main interfaces used by the compiler frontend.

BLPPRUWDOBWKUHDG�WKUHDG��^
b��WKH�PDLQ�WKUHDG�ERG\���
bBEHJLQ
b��YDULDEOH�GHFOHUDWLRQV��
bBGHIbXLQW�BWbFQW�
b����
b�ZKLOH���^
b�bB(9(17B:$,7�HYHQW��
b�b��QHFHVVDU\�DFWLRQV��
b�bB:5B6(/)�XLQW�BW�FQW�FQW����
b�b���
b�b��QRWLI\�WKUHDG����
b�bB6(0B3267�VHP��
b�b���
b�`
bBHQG
`

YRLG�BWLPHUBLVUB^
b��QRWLI\�HYHQW��
bB(9(17B6,*1$/�HYHQW��
`

BLPPRUWDOBWKUHDG�WKUHDG��^
b��WKH�PDLQ�WKUHDG�ERG\��
bBEHJLQ
b����
b�ZKLOH���^
b�B6(0B:$,7�VHP��
b���QHFHVVDU\�DFWLRQV��
b�BFDOO�RWKHUBIXQFWLRQ��
b����
b`
bBHQG
`

Figure 3: Output of the compiler frontend. Initially thread1

and thread2 are blocked. The timer ISR signals the event
and unblocks thread1 that unblocks thread2.

3.2 Execution Model and Multi-threading
Immortal Threads employs a multithreaded preemptive exe-
cution model by implementing a simple but efficient Round-
Robin scheduling mechanism. Threads are initially blocked
on events, waiting for ISRs to signal them. When an inter-
rupt is triggered, the corresponding ISR signals an event, and
the event handler thread wakes up and performs the com-
putation. Therefore, there might be several threads running
simultaneously during the execution of programs. Thanks to
the compiler frontend, Immortal Threads manages the for-
ward progress and memory consistency without programmer
intervention.

3.3 Pseudo-Stackful Threads
The Immortal Threads compiler frontend performs a source-
to-source transformation to convert the stackful threads into
stackless continuations by employing almost-free checkpoints
and just-in-time privatization. To do so, it uses the interfaces
in Immortal Threads library (see Table 3). After the compiler
pass, the transformed source code is linked with the Immortal
Threads library. Figure 3 presents the output of the compiler
frontend for a multithreaded event-handling example.

The compiler frontend instruments all programmer-defined
functions, including thread entry points, to create immortal

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    343



functions. More specifically, an immortal thread is a concur-
rency unit whose entry point is an immortal function.
Instrumentation of an Immortal Function. The compiler
frontend instruments all local variables by using _def fol-
lowed by the data type and name (i.e., the ordinary way
of variable declaration in C language). This operation con-
verts programmer-defined local variables to persistent static
variables with local scope. Compiler frontend instruments
variable manipulations using _WR and _WR_SELF interfaces
to ensure memory consistency. These interfaces manage
WAR dependencies, perform checkpoints, and keep func-
tions idempotent. _WR manipulates variables when the up-
date operation does not include any WAR dependency.
_WR_SELF manipulates variables when there is a WAR de-
pendency during the update operation. For example, the Im-
mortal Threads library implements the assignment {x=0} us-
ing _WR(x,0) since there is no WAR dependency during
this update. For {x=x+5}, the necessary operation becomes
_WR_SELF(uint32_t,x,x+5) since the variable x is read
first and then written. Immortal Threads provides different
interfaces for variable manipulations with WAR dependen-
cies to implement just-in-time privatization, which we will
explain in Section 4. Additionally, calls to other immortal
functions in an immortal function body are instrumented with
the _call interface, which makes setting micro-continuations
inside called immortal functions possible. Finally, the com-
piler frontend also instruments the function body by wrapping
it using _begin/_end block. When a thread starts running for
the first time, the first instruction in its entry immortal func-
tion is executed. If a power failure interrupts thread execution,
the thread continues from the last checkpoint performed by
the underlying Immortal Threads runtime, which can also be
deep down in the call stack.
Thread Preemption. Unlike common preemptive models,
where the continuation is saved on preemption, Immortal
Threads saves the continuation (i.e., checkpoint) on each mem-
ory update. This guarantees the idempotence of the execution
until the next checkpoint. Therefore, the scheduler can simply
interrupt the execution of a thread and switch to the other one.

4 Implementation of Immortal Threads

We implemented Immortal Threads library mainly using stan-
dard C macros and preprocessor directives. The library also
includes functions for system initialization and scheduling
operations. We implemented the source-to-source transforma-
tion using the LLVM & Clang LibTooling library [1].
Target Hardware. The current implementation of Immortal
Threads library targets MSP430FR5994 [48] microcontroller
from Texas Instruments that is equipped with 256KB FRAM
and 8KB SRAM memory. Immortal Threads library uses a
persistent time circuitry (which keeps track of time across
power failures [14, 15]) to handle events and data expiration.
It is worth mentioning that a persistent timekeeper is not a

VWDWLF�BIUDP�SULYBEXIBW�BSULYBEXI�
YRLG�WK�YRLG�DUJV�^�

bVWDWLF�BIUDP�LPPBIXQFBW�WKLV�
bVZLWFK��WKLV�SF�^
b�FDVH���
b�bVWDWLF�BIUDP�LQW�D>1@ˋ�
b�bWKLV�SF� �BB&2817(5BB�����
b�FDVH�BB&2817(5BB�
b�bL� ���
b�bIRU�ˋL���1��ˋ�^
b�b����
b�b`
b`
`�

BLPPRUWDOBWKUHDG�WK�^
b
bBEHJLQ�
bbBGHIbLQW�D>1@ˋ�
b�B:5�L����
b�IRU�ˋL���1��ˋ�^
b�b���
b�`
bBHQG
`

$IWHU�&RPSLOHU�3DVV
$IWHU�&�3UHSURFHVVRU

Figure 4: The structure of a source file after C preprocessor.

mandatory requirement for Immortal Threads runtime since
it will work even without checking event time constraints. On
the other hand, de facto intermittent computing platforms, e.g.,
Flicker [24], already include a persistent timekeeper circuit.

4.1 Immortal Function and Threads
Each immortal function (which can also be the entry point of
a thread) maintains imm_fn_t structure that comprises a pro-
gram counter (pc) to enable micro continuations, and a pointer
to the same structure (callee) for calling other functions (via
_call). For the just-in-time privatization operations, a privati-
zation buffer (represented by priv_buf_t) is also maintained.
All local variables are allocated in non-volatile memory as
variables with static storage duration, which makes immor-
tal threads (based on immortal functions) stackless. Figure 4
presents a sample output of the C preprocessor, which depicts
how the privatization buffer (__priv_buf) and the function
structure (this) are allocated in non-volatile memory.

4.2 Enabling Micro Continuations
Threads can be interrupted at any time by power failures, and
their execution continues from the latest checkpoints. Immor-
tal Threads library performs an almost-free checkpoint at each
memory update via the _WR and _WR_SELF interfaces. Mem-
ory updates that lead to WAR dependencies (i.e., _WR_SELF)
require just-in-time privatization to keep memory consistent.
Almost Free Checkpoints. Figure 4 presents how
_begin/_end blocks (which are just C macros) are trans-
formed into _switch/_case structures in C. Since the
imm_fn_t structure for each immortal function is statically
allocated, the pc field of is initialized with zero. Therefore, a
function initially starts by executing its first case block case

0:. The almost-free checkpoint is just adding a new case
statement at compile-time and modifying pc of the function.
We implemented almost-free checkpoints using the standard
GNU C preprocessor macro __COUNTER__, whose value in-
crements each time the preprocessor encounters it. We imple-
mented the core checkpoint code as follows:

344    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



#define _CP() \

this.pc = __COUNTER__ + 1; case __COUNTER__:

If the thread (in which the function is running) restarts, the
execution will continue from the case statement of the last
checkpoint. However, only checkpoints are not sufficient to
keep memory consistent. As indicated previously, _WR per-
forms single-memory updates that do not lead to WAR de-
pendencies. However, a sequence of operations _WR(x,y);
_WR(y,z); form a WAR dependency. Therefore, we need to
take a checkpoint before each memory update operation using
_WR. We implemented this macro as follows:
#define _WR(arg,val) _CP(); arg=val;

Just-in-Time Privatization. Single memory updates that in-
clude WAR dependencies, e.g., x++, require a two-phase com-
mit operation to keep memory consistent. In the first phase,
Immortal Threads library creates a private version of the vari-
able in the privatization buffer (__priv_buf) and updates the
private version. Then a checkpoint is taken. In the second
phase, Immortal Threads library commits the private version
to the original variable. We present the implementation of the
_WR_SELF macro that captures these steps below:
#define _WR_SELF(type,arg,val) \

_CP(); *((type*)&__priv_buf.buffer)=val;\

_CP(); arg=*((type*)&__priv_buf.buffer);

Thanks to just-in-time privatization, Immortal Threads does
not require a compiler analysis to detect idempotent code
blocks, as in Woude et al. [53]. Furthermore, there is no
need for static versioning, as in Colin et al. [10]. Immortal
Threads library forms a continuous sequence of idempotent
code blocks by connecting them using almost-free check-
points on the fly.

Calling other functions. When there is a power failure while
a callee executes, the control should resume from the last
memory update in the callee body. To call an immortal func-
tion, Immortal Threads library first checkpoints, saves the
pointer to the callee in the caller’s _imm_fn_t structure, and
then makes the call as shown in the following pseudo-code:
#define _call(name,args) \

_CP(); this.callee=name(args); \

_CP(); this.callee->pc = 0; _CP();

If the callee successfully returns, the caller sets the program
counter (pc) of the callee to zero and checkpoints. Conse-
quently, the function will be able to be called again. If there
is a power failure before the callee returns, the thread execu-
tion will restart from the entry immortal function, which will
perform a set of nested function calls to reach the callee that
has not finished yet. Therefore, the execution resumes from
the last memory update in the leaf callee’s body.

BBDVPBB�YRODWLOH��
b�029$�63��������VDYH�63�RQ�BBVS�YDULDEOH��
b��� P���BBVS����RXWSXW����

ZKLOH�����^
bIXQFWLRQV>BBWK@�������FDOO�WKUHDG��
bBBDVPBB�YRODWLOH��
b��,65BUHWXUQ��?Q����BVFKHG,65�ZLOO�MXPS�KHUH��
b��029$�����63�?Q����UHVWRUH�ROG�VWDFN��
b��,1&�%����?Q�b�bb��BBWK����
b��&03�%�������?Q����LI��BBWK�  �VL]H���
b��-1=�FRQW�?Q�
b��&/5�%����?Q�b�bb��BBWK� ����
b��FRQW��?Q�
b���� P���BBWK�b�bb��RXWSXW��
b����P���BBVS����P���BBWK����P���VL]H���LQSXW����
`

YRLG�BBLQWHUUXSW�7,0(5�B$�B9(&725��BVFKHG,65�YRLG�^
b��ZULWH�UHWXUQ�DGGUHVV�,65BUHWXUQ��
bBBDVPBB�YRODWLOH���029�:��,65BUHWXUQ����63����
`

Figure 5: The Round-Robin scheduler, which is the only
platform-specific code in Immortal Threads library.

4.3 Thread Scheduling Implementation

The Immortal Threads scheduler includes platform-specific
assembly code that switches the execution from the current
thread to the next one. Figure 5 presents a part of our sched-
uler implementation. When the system restarts, the value of
the stack pointer is saved in the variable __sp. The array
functions contains pointers to the thread entries that are
ready to run. The while loop indexes the threads with the
persistent variable __th and calls them in order.

When the periodic timer of the scheduler fires, it interrupts
the current thread, and the execution jumps to the _schedISR
ISR routine. This ISR modifies the stack to replace the inter-
rupt return address with the address of the label ISR_return
in the scheduler loop. Upon interrupt return instruction (ISR
routines execute iret upon return), the execution jumps to
ISR_return label. At this point, the stack pointer is restored
(using the old stack pointer in __sp) to continue the execution
of the scheduler loop using its stack frame. Then, the value of
the index __th is incremented, and the corresponding thread
function is called. It is worth mentioning that thanks to micro
continuation, the interrupted thread will not be in an incon-
sistent state. When the scheduler loop starts running again, it
will continue execution from its latest checkpoint. Indeed, the
ISR interruption acts as an artificial power failure.
Semaphores, Events and Data Races. Power failures might
break the atomicity of operations on semaphores and events
(e.g., post and wait) and might lead to data races. For example,
if a thread modifies the semaphore but does not checkpoint
due to a power failure, it will post the semaphore again after
recovery. This situation leads to incrementing the semaphore
twice. To prevent such issues, Immortal Threads library im-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    345



plements event and semaphore operations by employing two-
phase commit and double buffering, which are the main tech-
niques proposed in the prior art to keep memory consistent
despite power failures [31,34,54]. These operations firstly up-
date the temporary values dedicated to events and semaphores.
Then, the temporary values are atomically committed to their
original locations. Upon system reboot, the scheduler checks
if there is an uncommitted semaphore or event operation. If
this is the case, it commits this operation. Then, it enables the
interrupts and starts executing the threads. Immortal Threads
library manages the data races between ISRs and threads
by employing the same approach. Each event has a double-
buffered event data buffer. An ISR does not modify the origi-
nal buffer and immediately overwrites the event data. It uses
the temporary buffer and then atomically commits it using a
two-phase commit operation. These operations prevent the
data races and inconsistency issues.

4.4 Compiler Frontend Implementation
We implemented Immortal Threads compiler frontend us-
ing the LLVM & Clang LibTooling framework. The AST
produced by Clang is generally immutable, and source code
rewriting cannot be directly reflected on the AST and its as-
sociated metadata. Therefore, it is necessary to keep track
and manage the position offsets introduced by the transforma-
tions and solve conflicts when these transformations overlap.
This limitation of Clang libraries, combined with the relative
complexity of the entire source transformation for Immortal
Threads, led us to adopt a multi-pass architecture inspired
by the LLVM IR Pass framework. Each pass matches some
parts of the AST and performs the appropriate source code
rewriting. The rewritten source code is used to generate a new
AST, on which the next pass operates.
Syntax Decomposition. One of the main challenges for
source-to-source transformation is the switch constructs
used in Immortal Threads lightweight checkpoints, which al-
low checkpoints only with a statement granularity. However,
C programs might include expressions with WAR dependen-
cies inside them, so it must be possible to perform checkpoints
inside expressions. To this end, we decomposed these syntax
constructs into separate statements so that it is possible to
perform Immortal Threads lightweight checkpoints. In do-
ing so, we paid special attention to aspects such as operator
precedence and short-circuit evaluation.
Pessimistic Privatization due to Aliasing. The _WR_SELF

interface, which performs JIT privatization, must be used for
assignments where the left-hand side operand aliases with
the right-hand side operand. In general, it is not possible to
deduce all such aliases at compile time, e.g., when pointers
are involved. Our current implementation pessimistically uses
_WR_SELF instead of _WR when at least one operand contains
a pointer dereference. We left integrating more advanced
aliasing analysis as future work.

Shim API replacement. While a significant portion of the
Immortal Threads operations is hidden from the programmer
by the compiler frontend, primitives such as semaphores, mu-
texes, etc. (see Table 2) are visible to the programmer. These
primitives have C macro-based implementations that generate
_case statements for _switch blocks, which are inserted by
the compiler frontend via _begin and _end statements later.
Therefore, Clang fails to generate the initial AST that sets off
the transformation pipeline. We solved this issue by providing
these primitives as shim functions, and the compiler frontend
replaces them with their actual macro-based implementations.
Pass Grouping Optimization. While the compilation time
of the C language by modern compilers such as Clang is
generally fast enough, having to re-parse the translation unit
after each transformation is still a noticeable overhead when
long source files are involved. Some of the presented passes
depend on others. For example, instrumenting assignments
with _WR and _WR_SELF is easily performed once syntax de-
composition is done. On the other hand, some passes operate
on orthogonal elements of the AST, for which we don’t need
to worry about source rewriting conflicts. We grouped these
passes and executed them using the same AST.
Compiler Directives and Code Optimization. In excep-
tional cases, the programmer can modify the behavior of the
Immortal Threads compiler using custom attribute directives
(__attribute__). For example, we allow the programmer to
mark idempotent functions so that they are not instrumented
for the sake of some manual optimizations. This feature re-
duces the overhead of frequent checkpoints but creates a risk
of wasted work. In Section 6 we discuss ways to improve this
aspect. Furthermore, we also implemented a specific com-
piler optimization to coalesce successive WR and WR_SELF

macros in the code to eliminate frequent checkpoints that
might degrade the execution time of time-sensitive computa-
tional loads. The programmer can enable this optimization by
passing a flag to the compiler frontend. In this case, the com-
piler puts the best effort to reduce the number of checkpoints
in basic blocks. In summary, Immortal Threads compiler fron-
tend enables the developers to select the trade-off between
the checkpointing overhead and wasted work based on the
specific requirements of their applications.
Switch Statements. We allow programmers to use a subset
of the switch statement in their code (unlike Protothreads,
which does not permit programmers to use switch statements).
Specifically, we support switch statements in which all the
statements associated with case labels either finish with a
break statement or are empty, i.e., the case directly falls
through to the next case. Given the constraint we put, it is
straightforward to transform such use of the switch into an
equivalent if/else based code. The compiler frontend termi-
nates with an error message if it encounters an unsupported
usage of the switch statement.
Function Reuse. Immortal Threads needs to create different
instances of thread-shared immortal functions to prevent data

346    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



BLPPRUWDOBIXQFWLRQ�P\IXQF�BLG��^�
bbBEHJLQBPXOWL�BLG���
b�b����
b�bBGHIbLQW�D>�@�
b�bB:5��D>BLG@�������
b�bB:5B6(/)�LQW���D>BLG@����D>BLG@�������
b�BHQGBPXOWL�

BIQBPD[BLQVWDQFHV�����
����
YRLGbP\IXQF�YRLG��^�
b����
b�LQW�D� ���
b����
b�D���
b����
`� &�6RXUFH�)LOH $IWHU�&RPSLOHU�,QVWUXPHQWDWLRQ

Figure 6: The compiler instrumented version of a sample func-
tion myfunc that is shared among multiple immortal threads.

races and memory inconsistencies. We implemented func-
tion reuse through a combination of compiler and Immortal
Threads library support. Figure 6 presents a sample function
that is shared among several immortal threads, and its instru-
mented version. The programmer uses a compiler directive
(_fn_max_instances as indicated in the figure) to declare
the maximum number of concurrent callers for the shared
functions in the application. If the number of instances is
not provided, the compiler can also use a default number to
avoid programmer intervention. Our compiler modifies the
signature of each shared immortal function by prepending
an id parameter. Moreover, the compiler also transforms all
local variables into arrays whose lengths correspond to the
number of instances. Thus, each access to any local variables
becomes an array access, where the index is the id. Alter-
natively, to avoid the overhead of accessing the array, the
Immortal Threads compiler can also create copies of the same
immortal function at the source code level. Therefore, it can
replace the original immortal function’s body with a call table
that calls the appropriate function copy depending on the id
parameter. This support lets the developer trade executable
size for runtime efficiency. Besides, for each shared immortal
function, the compiler allocates an associated metadata data
structure containing a bitmap to represent unused instances,
where each bit that is one represents a free instance. We
present the pseudo-code of the macro that is used for calling
shared functions as follows:
#define _call_multi(name,args) \

_CP(); get_instance_id(&this->callee_id); \

this.callee=name(this->callee_id, args); \

_CP(); release_instance_id(&this->callee_id); \

this.callee->pc = 0; _CP();

The caller of an immortal function must first get a free in-
stance, that is, access the bitmap and clear a bit that is set (us-
ing get_instance_id). It is worth mentioning that not get-
ting a free instance should not happen by design. The program-
mer must ensure to provide the correct _fn_max_instances
number configuration. If no free instance is available at run-
time, it’s an assertion failure. Once the immortal function
returns, the caller must release the called immortal func-
tion instance by setting the previously cleared bit (using
release_instance_id). As a side note, recursive functions

are not supported in the current implementation of Immortal
Threads. We argue that this is not a significant limitation, as
recursion is generally avoided in embedded systems.

5 Evaluation

We proceed with the evaluation of Immortal Threads by pre-
senting a performance comparison against three state-of-the-
art runtimes Alpaca [34], InK [54], and TICS [31].
Benchmarks. We selected Bitcount (BC), Cuckoo Filter (CF),
and Activity Recognition (AR) as the main benchmarks since
they are widely used in previous works [31, 34, 54]. We
also considered the DNN inference presented in Gobieski et
al. [22] as a benchmark since the inference operations are com-
putationally intense (e.g., the first convolution layer requires
150080 multiplications) and access non-volatile memory ex-
cessively (FRAM is more expensive compared to SRAM
access). We used the BC, CF, and AR implementations in
publicly available code repositories of Alpaca, InK, and TICS
during our evaluations. We also considered the publicly avail-
able plain C versions of these benchmarks, which we call
Plain-Ram, where all variables are in SRAM (no FRAM ac-
cess). Therefore, they do not have overheads regarding non-
volatile memory access, checkpoints, privatization, etc. More-
over, we created the Plain-Fram versions of these benchmarks
where all variables are maintained in FRAM. Therefore, they
have an additional FRAM access overhead compared to Plain-
Ram versions. Note that the Plain-Ram and Plain-Fram imple-
mentations do not guarantee forward progress and memory
consistency.
Compiler Directives. In the task-based implementations of
the benchmarks (in Alpaca and InK), we observed that some
functions are not declared as tasks to reduce task transition
overheads and employ a manual compile-time optimization
for these task-based systems. These functions are idempo-
tent since they do not modify their inputs or global variables.
Moreover, they are mostly small in size and frequently called
at runtime. Similarly, in Immortal Threads implementations
of these benchmarks, we annotated these idempotent func-
tions (using the compiler directives mentioned in Section 4.4)
to bypass unnecessary compiler instrumentation and reduce
the number of checkpoints and the execution time overhead
of Immortal Threads. Using annotations, we marked eight
functions in BC, six functions in CF, three functions in AR,
and seven functions in DNN, respectively. Furthermore, for
the DNN benchmark, we enabled the checkpoint coalesc-
ing feature of our compiler frontend to reduce the memory
access overhead of the data-intensive computations. These
features of Immortal Threads compiler frontend allowed us
compile-time optimizations without programmer involvement
(excluding the annotation of idempotent functions).
Target Platform and Tools. We used the MSP-EXPFR5994
evaluation board [48], which includes 256kB FRAM and
4kB SRAM memory and can operate at up to 16MHz. We

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    347



Bitcount (BC) Cuckoo (CF) Activity (AR) DNN
Time (ms) Energy (µj) Time (ms) Energy (µj) Time (ms) Energy (µj) Time (ms) Energy (µj)

Plain-Ram 24.73 41.54 36.81 63.30 822.78 1415.53 7 7
Plain-Fram 213.23 344.57 48.03 87.71 1053.75 2073.65 33624.60 59710

Alpaca 285.29 690.46 79.25 210.25 1897.90 5175.50 41787.88 77537
InK 497.19 1287.05 376.12 1016.49 3100.97 8707.40 46994.33 91961

TICS 482.38 1205.20 1229.30 2025.70 2667.16 7106.80 7 7
Immortal Threads (IT) 274.43 456.31 53.91 108.15 2503.45 4917.10 69215.54 147595

Table 4: Execution time and energy consumption of the benchmarks on continuous power.

Immortal Threads Alpaca InK TICS
Avg. Task
Size (µs)

Avg. Checkpoint
Overhead (µs)

Tot. Invoked
Checkpoint

Avg. Task
Size (µs)

Avg. Task Trans.
Overhead (µs)

Tot. Task
Transition

Avg. Task
Size (µs)

Avg. Task Trans.
Overhead (µs)

Tot. Task
Transition

Avg. Task
Size (µs)

Avg. Checkpoint
Overhead (µs)

Tot. Invoked
Checkpoint

BC ⇠50.33 ⇠14.44 4236 280.97 127.56 709 169.69 537.78 709 2028.38 475.31 709
CF ⇠31.97 ⇠9.52 1299 61.92 121.08 451 129.23 776.50 419 1110.58 454.72 518
AR ⇠23.22 ⇠17.00 30223 829.87 124.55 2001 880.36 670.06 2007 245.14 411.14 1130

DNN ⇠20.57 ⇠14.45 1865103 16742.40 570.05 2412 31765.28 1130.26 1486 7 7 7

Table 5: Average execution time of a task, and task transition/checkpoint overhead.

used the 1 MHz frequency during the experiments on per-
formance comparison (to be compatible with existing stud-
ies [31, 34, 54]. We used the GNU GCC v9.2.0.50 to compile
our applications. To measure the time overhead and energy
consumption, we used a logic analyzer and TI EnergyTrace
software [49], respectively. We used the Powercast TX91501-
3W [12] RF transmitter operating at 915 MHz center fre-
quency to power wirelessly our evaluation board connected to
the P2110-EVB [13] RF receiver. We used the 1mF and 50mF
capacitors on P2110-EVB as energy storage to observe differ-
ent power failure patterns. We also emulated power failures
for the repeatability and replicability of comparative mea-
surements. We generated a random soft reset triggered by an
MCU timer with a uniformly distributed firing period in the
interval of [5ms, 20ms] (as in Yildirim et al. [54]).
Evaluation Metrics. We considered execution time and en-
ergy consumption as the main metrics to evaluate the bench-
marks. We also measured wasted work (which denotes compu-
tational progress lost due to power failures), runtime overhead
introduced to progress the computation and keep memory con-
sistent, and the memory requirements and code sizes of the
benchmark implementations.

5.1 Evaluation Using BC, CF and AR
The InK and Alpaca implementations of the benchmarks
have identical task boundaries. We placed TICS checkpoints
aligned with task boundaries in the InK and Alpaca imple-
mentations for the sake of a fair comparison.
Continuous Power. Table 4 presents the continuously-
powered execution time and energy consumption of the bench-
marks. These benchmarks have different characteristics; for
example, BC accesses memory more frequently to manipu-
late variables, and CF is more computationally dense. The
differences in the time and energy overheads of the plain-Ram
and plain-Fram versions show that intermittent computing,

which requires frequent FRAM access, comes with signifi-
cant overheads. Immortal Threads, InK, Alpaca, and TICS
introduce additional overhead to Plain-Fram versions of the
benchmarks to ensure forward progress and memory consis-
tent. We observed that the performance of Immortal Threads
is quite comparable to that of InK, TICS, and Alpaca during
the continuous execution of the benchmarks. The reason is
that InK and Alpaca need to perform bulk copy operations to
commit the temporary buffers atomically during task transi-
tions. Similarly, TICS needs to copy the stack and registers
upon each checkpoint. Even though Immortal Threads main-
tains all variables in FRAM (which increases the time and
energy overhead), almost-free checkpoints reduce the check-
pointing cost, and just-in-time privatization eliminates block
FRAM copy operations. Table 5 summarizes the average exe-
cution time of a task and the overhead of task transitions and
checkpoints.
Intermittent Power. Figure 7 presents the wasted computa-
tional progress due to power failures and runtime overheads
during intermittent execution with randomly generated power
failures. The runtime overhead in InK and Alpaca is mainly
due to the undo and redo logging operations performed by the
tasks to recover computation upon power failures. Alpaca has
a lower task transition overhead since it only double-buffers
the task-shared variables with WAR dependencies and com-
mits them upon task completion. Similarly, the overhead of
TICS is due to the checkpoints and their restoration. TICS
has more commit overhead since it checkpoints at the end of
each task boundary, which requires a large bulk memory copy
operation compared to task transitions in InK and Alpaca (see
Table 5). During our experiments, Alpaca implementations
of the benchmarks led to shorter task execution times and re-
duced wasted work since Alpaca introduced a lower runtime
overhead compared to InK and TICS. In Immortal Threads,
the runtime overhead is the total overhead of almost-free
checkpoints, just-in-time privatization, and restoring compu-

348    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time(s)

IT

Alpaca

InK

TICS

Application
Overhead
Wasted Work

(a) Bitcount

0 0.5 1 1.5 2

Time(s)

IT

Alpaca

InK

TICS

Application
Overhead
Wasted Work

(b) Cuckoo Filter

0 1 2 3 4 5 6

Time(s)

IT

Alpaca

InK

TICS

Application
Overhead
Wasted Work

(c) Activity Recognition

Figure 7: Total execution time, runtime overhead and wasted work with controlled power failures.

Continuous Random PF
0

10
20
30
40
50
60
70
80
90

100

E
x

ec
u

ti
o

n
 T

im
e(

s)

Plain-Fram
IT
Alpaca
InK

(a) Cont. power and controlled power failures.
80 cm 100 cm  120 cm

0

100

200

300

400

500

600

700

E
x

ec
u

ti
o

n
 T

im
e(

s)

IT
Alpaca
InK

(b) RF-powered, 1mF capacitor.
70 cm 75 cm  80 cm

0

100

200

300

400

500

E
x

ec
u

ti
o

n
 T

im
e(

s)

IT
Alpaca
InK

(c) RF-powered, 50mF capacitor.

Figure 8: DNN benchmark with continuous power (Cont.), controlled power failures and RF power (at different distances).

tation. Conceptually, idempotent code blocks between two
successive memory updates in Immortal Threads can be con-
sidered as a tiny task. These micro-continuations reduced
wasted work and the total execution time significantly com-
pared to existing runtimes.

5.2 Evaluation Using DNN Inference
Immortal Threads showed promising performance with rela-
tively small benchmarks. To evaluate it under excessive mem-
ory access and computational load, we used the deep neu-
ral network (DNN) inference presented in [22]. This DNN
model requires approximately 180kB FRAM to maintain the
DNN weights and input matrix. The Alpaca DNN implemen-
tation in [22] employs loop continuation and has 18 tasks
(2 tasks are for specific initialization operations). It is again
worth mentioning that loop continuation relies on manually
eliminated WAR dependencies and violates the task-based
model. The implementation of TICS (from its public reposi-
tory) could not support DNN inference, since its checkpoints
lead to memory inconsistencies when the application accesses
the higher regions of FRAM.InK requires DNN weights and
the input matrix to be allocated in task-shared memory re-
gions. However, InK double buffers all task-shared variables
and commits them non-selectively at each task completion.
Therefore, the implementation of DNN in InK is not feasi-
ble since it needs to commit a large amount of task-shared
data at each task transition. However, by violating the InK
model, we provided loop continuation support, allowed tasks
to manipulate FRAM directly, and managed to implement
DNN, which has 16 tasks (2 tasks specific to Alpaca are not
required). Since our platform has only 4kB SRAM, we could
not implement the Plain-RAM version of DNN.

Continuous Power. Due to the increased number of memory
write operations, the overhead of Immortal Threads is more
visible in this case (see Figure 8a). Immortal Threads intro-
duced almost twice more overhead compared to Plain-Fram
DNN (see Table 4). The main reason for performance degra-
dation is committing each memory update atomically via the
JIT privatization. INK and Alpaca performed better since they
eliminated memory commit overheads by violating the task-
based model via loop continuation. This violation allowed for
larger tasks, which reduced the number of task transitions.
RF Powered. We used 1mF and 50mF capacitors as energy
storage and three different distances from the RF power trans-
mitter to observe different power failure patterns. The charg-
ing time of the capacitor increases with the distance between
the receiver and the power transmitter. The charging time of
the 50mF capacitor is longer than that of the 1mF capaci-
tor. On the other hand, the 50mF capacitor provides a longer
operation time. We observed significantly higher power fail-
ure rates with the 1mF capacitor. We conclude from Fig-
ure 8b and Figure 8c that Immortal Threads’s performance
becomes superior to the other runtimes as the power failure
rate increases—it wastes less computational progress thanks
to the micro-continuations.
Unviolated Task Model. We implemented DNN in Alpaca
without the loop continuation to answer the question of what
the DNN performance is without violating the task-based
model. Our implementation, which we call the original Alpaca
(Alpaca (Org.)), introduced an additional 11 tasks to the DNN
implementation with loop continuation. Figure 9 presents
execution time, runtime overhead, and wasted work during
controlled power failures. We observed that Immortal Threads
outperformed the original Alpaca significantly, i.e., led to
a twice shorter execution time. Furthermore, even though

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    349



0 20 40 60 80 100 120 140 160

Time(s)

IT

Alpaca

InK

Alpaca (Org)

APP

Overhead

Wasted Work

Figure 9: DNN execution time, runtime overhead and wasted
work with controlled power failures.

Immortal Threads has more overhead compared to the InK
and Alpaca implementations, it wasted significantly less work.

16MHz

   Cont 

    16MHz

    Rand PF

     8MHz

      Cont 

     8MHz

    Rand PF

     4MHz

       Cont 

     4MHz

    Rand PF

0

10

20

30

40

E
x

ec
u

ti
o

n
 T

im
e(

s)

Alpaca (Org)
IT

Figure 10: Performance of DNN at different frequencies.

Fram-CPU Bottleneck. As CPU speed increases, the FRAM
access latency becomes more dominant in system perfor-
mance. The FRAM in our platform can operate at a max-
imum speed of 8 MHz. We evaluated the original Alpaca
and Immortal Threads DNN inference performances using
clock frequencies of 4MHz, 8MHz and 16MHz with con-
trolled power failures, as presented in Figure 10. We observed
that as the clock frequency increases, the performances of
both systems come closer to each other due to the latency of
FRAM access, but Immortal Threads still performs better.

Alpaca InK TICS Immortal Th.
Tasks Trans. Lines Tasks Trans. Lines Chkpts. Lines Chkpts. Lines

BC 11 24 251 10 26 326 10 238 82 188
CF 16 23 279 15 27 326 14 353 68 149
AR 12 20 330 11 20 449 8 411 123 309

DNN 18 48 2412 16 39 2214 7 7 276 1486

Table 6: Num. lines of code, num. of tasks and transitions
(Alpaca and InK), num. of checkpoints (TICS and InK).

5.3 Cognitive Load, Code Size, and Memory
Requirements

We define the cognitive burden of intermittent computing as
the effort put to split code into idempotent sections, i.e., im-
plementing tasks and task-based control flow in task-based
systems and inserting checkpoints for checkpointing systems.

Alpaca InK TICS Immortal Th.
.text Ram Fram .text Ram Fram .text Ram Fram .text Ram Fram

BC 2254 2 856 3356 0 4712 7160 4446 5572 10175 345 478
CF 3148 348 1070 4242 318 3000 11160 4655 6322 9831 370 498
AR 2258 0 784 3576 0 4474 11416 759 5430 11885 346 542

DNN 13898 224 192K 843 0 168K 7 7 7 19394 356 149.5K

Table 7: Memory and Code Size requirements (in B).

We used the number of tasks (and checkpoints) and task-based
control-flow declarations (in addition to the number of lines
of code) shown in Table 6 as a metric to measure the burden.
Thanks to the Immortal Threads compiler frontend, program-
mers write their programs without focusing on the details of
the intermittent execution. The compiler frontend automati-
cally wraps variable manipulations using the macros shown
in 3, inserts checkpoints and creates idempotent code sections
on the fly. Programmers use only the interfaces in Table 2,
which are almost identical to the interfaces found in contin-
uously powered event-driven systems [17, 32]. It is worth
mentioning that Table 6 presents the number of lines after the
Immortal Threads compiler pass (which has additional code
inserted by the compiler). Even in this case, the number of
lines in the implementations with Immortal Threads is almost
half of that in the implementations with task-based models.
As shown in Table 7, the code size of the application imple-
mented in Immortal Threads library is larger than others. The
main reason is that Immortal Threads library is implemented
using C macros. It is worth mentioning that just-in-time priva-
tization eliminates data versioning, reflected as considerably
reduced data section requirements.

5.4 Summary of Evaluation Results
Our results showed that Immortal Threads has comparable
runtime overhead to the existing runtimes. The runtime over-
head and benefits of Immortal Threads depend on the applica-
tion’s memory access patterns and the frequency of the power
failures. Compared to Immortal Threads, InK (violated task-
based model) had approximately ten times more wasted com-
putation and 1.5 times more execution time DNN inference
under power failures. Besides, the original Alpaca (the unvi-
olated task-based model) had approximately 17 times more
wasted computational progress and 2.4 times more execution
time. Therefore, we observed that during frequent power fail-
ures Immortal Threads reduced execution time and wasted
work by up to 40% and 90%, respectively. We conclude that
Immortal Threads brings pseudo-stackful multithreaded pro-
gramming with acceptable overhead and no cognitive burden.

5.5 Greenhouse Monitoring Application
We proceed with greenhouse monitoring, which is a com-
mon application shown in intermittent computing studies
(e.g., [31]), to demonstrate a time-constrained event-driven

350    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



scenario. To this end, we used a temperature sensor on the
MSP430FR5994 MCU, a solar panel for energy harvesting,
and an eZ430-RF2500 [47] board equipped with a CC2500
transceiver to transmit and receive data. MCU used a UART
connection to send commands to eZ430-RF2500 for data
transmission. We used the DS1302 [39] Real-Time Clock for
time tracking despite power failures. As energy storage, we
used the 50 mF supercapacitor of the P2110-EVB since it has
a voltage regulator.Figure 11 shows our experimental setup.

Figure 11: Greenhouse monitoring experimental setup.

GHM Implementation. A timer thread checks the RTC to
signal timer events every 6 seconds. The sense thread blocks
on the timer event to sense the temperature and store it in a
buffer with a timestamp. When the number of samples reaches
10, the sense thread calculates the average and signals the send
event. The send thread unblocks, checks the event timestamp
(via _EVENT_WAIT_EXP), and sends data to eZ430-RF2500 if
the event has not expired. Otherwise, it ignores the event.

0

100

200

300

E
v
en

ts
 N

u
m

b
er

Night

0000-0600
Morning

0600-1200
Afternoon

 1200-1800
Evening

1800-2400

0

20

40

60

80

100

S
ta

te
 o

f
th

e 
d

ev
ic

e 
(%

)

Power On

Power Off

Events

Expired Events

Figure 12: The number of expired events and the on/off time
percentage of the device during different parts of the day.

Results. We placed our setup in an outdoor location on our
campus for 24 hours. Figure 12 shows the results accord-
ing to the parts of the day. To expose the effects of energy
availability, we split the results into 6-hour timeframes. Since
there was not enough energy at night, no events occurred. Due
to power failures and charging times, 16 out of 177 events
expired in the morning. The available environmental energy
was high during the afternoon, and none of the 276 events
expired since there were no power failures. Similarly, 9 out

of 42 events have expired in the evening. We conclude that
Immortal Threads successfully caught these expirations and
stopped data processing to save precious harvested energy.

6 Discussion and Future Work

Programming models. Protothreads [18] is an abstraction
designed for continuously-powered sensors. Its local contin-
uation concept enables blocking threads, but such continua-
tions can be saved only in the thread’s entry function. InK
task-threads provide a solution for intermittent event-driven
applications, but they have mentioned drawbacks in this paper,
e.g., the cognitive load of the task-based systems. Immortal
Threads is an abstraction that provides micro continuation
in intermittently powered systems, which is as lightweight
as Protothreads’s local continuation. In addition, they can be
saved anywhere in the call stack of a thread, not only in the
entry function. However, the current implementation of mi-
cro continuations achieves pseudo-stackfulness by employing
switch-based constructs. An essential question for our future
work is whether it is possible to control the compiler’s usage
of registers so that continuations can be composed of only
the program counter and stack pointer while maintaining the
remaining state in the (non-volatile) memory. Checkpointing
at the statement boundary, combined with declaring variables
as volatile or compiler fences, may provide a possible di-
rection.
Peripheral operations support As previous works
(e.g., [35]) point out, peripheral interaction should be
atomic,which means no power failure can be allowed in
between. In order to enable atomic execution of I/O handling
operations, Immortal Threads compiler frontend can be
extended to support a new compiler directive to mark
atomic I/O functions, i.e., functions that should not contain
checkpoints. The compiler frontend can add the necessary
code that performs privatization of the parameters passed by
address to such functions.
Checkpoint Optimization. Immortal Threads performs fre-
quent checkpoints. Compiler analysis can be performed to
merge and reduce unnecessary checkpoints. However, this
may lead to more wasted work. In general, there is always a
trade-off between checkpoint frequency (and the associated
overhead) and the amount of waste work. Maeng et al. [36]
proposes an adaptive approach: checkpoints are disabled at
runtime when the system has still enough energy. However,
this approach is effective only when determining whether
to checkpoint has much less cost than taking the checkpoint,
which does not apply to Immortal Threads, where checkpoint-
ing is merely an atomic write. One possible way to introduce
adaptive checkpointing is to have multiple versions for each
immortal function with a different checkpoint density. The
runtime can then determine which version to call based on
the energy availability. We leave this issue for future work.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    351



7 Conclusions

Immortal Threads is the first intermittent computing runtime
that enables pseudo-stackful multithreaded programming. Us-
ing Immortal Threads, programmers focus only on their multi-
threaded program logic that handles events instead of focusing
on managing intermittent execution. Immortal Threads brings
the missing event-driven primitives to intermittent computing,
e.g., semaphores and event expiration handling. All these fea-
tures come with an overhead comparable to the overhead of
existing intermittent computing runtimes. We observed that,
depending on the application and power failure frequency,
Immortal Threads can even reduce execution time and wasted
work by up to 40% and 90%, respectively.

Acknowledgments

We thank the anonymous reviewers of OSDI 2021, SOSP
2021, ASPLOS 2021 and OSDI 2022 for their valuable com-
ments and feedback. We would like to thank Przemysław
Pawełczak (TU Delft, The Netherlands) for encouraging us to
send this work to OSDI 2022. We are also grateful to Rodrigo
Bruno for shepherding our final draft.

Availability

We release Immortal Threads as an open source project
for the community, whose artifacts can be downloaded
from https://tinysystems.github.io/ImmortalThreads.

References

[1] Clang 7 libtooling. https://github.com/

llvm-mirror/clang/blob/master/docs/

LibTooling.rst, March 2019. Last accessed:
May. 7, 2021.

[2] Atul Adya, Jon Howell, Marvin Theimer, William J
Bolosky, and John R Douceur. Cooperative task man-
agement without manual stack management. In USENIX
Annual Technical Conference, General Track, pages 289–
302, 2002.

[3] Saad Ahmed, Muhammad Hamad Alizai, Junaid Ha-
roon Siddiqui, Naveed Anwar Bhatti, and Luca Mottola.
Towards smaller checkpoints for better intermittent com-
puting. In 17th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN),
pages 132–133. IEEE, 2018.

[4] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad
Alizai, Junaid Haroon Siddiqui, and Luca Mottola. Ef-
ficient intermittent computing with differential check-
pointing. In Proceedings of the 20th ACM SIG-
PLAN/SIGBED International Conference on Languages,

Compilers, and Tools for Embedded Systems, pages 70–
81, 2019.

[5] Abu Bakar, Alexander G Ross, Kasim Sinan Yildirim,
and Josiah Hester. Rehash: A flexible, developer fo-
cused, heuristic adaptation platform for intermittently
powered computing. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies,
5(3):1–42, 2021.

[6] Domenico Balsamo, Alex S Weddell, Anup Das, Al-
berto Rodriguez Arreola, Davide Brunelli, Bashir M
Al-Hashimi, Geoff V Merrett, and Luca Benini. Hi-
bernus++: a self-calibrating and adaptive system for
transiently-powered embedded devices. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 35(12):1968–1980, 2016.

[7] Richard Barry. Freertos, a free open source rtos for small
embedded real time systems. Available at: "https:
//www.freertos.org/", 2003.

[8] Naveed Anwar Bhatti and Luca Mottola. Harvos: Effi-
cient code instrumentation for transiently-powered em-
bedded sensing. In 16th ACM/IEEE International Con-
ference on Information Processing in Sensor Networks
(IPSN), pages 209–220. IEEE, 2017.

[9] Michael Buettner, Benjamin Greenstein, and David
Wetherall. Dewdrop: An Energy-Aware runtime for
computational RFID. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
11), Boston, MA, March 2011. USENIX Association.

[10] Alexei Colin and Brandon Lucia. Chain: tasks and chan-
nels for reliable intermittent programs. In Proceedings
of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, pages 514–530, 2016.

[11] Alexei Colin and Brandon Lucia. Termination check-
ing and task decomposition for task-based intermittent
programs. In Proceedings of the 27th International
Conference on Compiler Construction, pages 116–127,
2018.

[12] Powercast Corp. Powercast hardware. http://www.

powercastco.com, 2014. Last accessed: Dec. 10, 2020.

[13] Powercast Corp. Powercast hardware. https:

//www.powercastco.com/wp-content/uploads/

2016/11/p2110-evb1.pdf, 2015. Last accessed: Dec.
10, 2020.

[14] Eren Çürük, Kasim Sinan Yıldırım, Przemyslaw Pawel-
czak, and Josiah Hester. On the accuracy of network
synchronization using persistent hourglass clocks. In

352    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Proceedings of the 7th International Workshop on En-
ergy Harvesting & Energy-Neutral Sensing Systems,
pages 35–41, 2019.

[15] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan
Yildirim, Przemysław Pawełczak, and Josiah Hester. Re-
liable timekeeping for intermittent computing. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 53–67, 2020.

[16] Jasper De Winkel, Vito Kortbeek, Josiah Hester, and
Przemysław Pawełczak. Battery-free game boy. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 4(3):1–34, 2020.

[17] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt.
Contiki-a lightweight and flexible operating system for
tiny networked sensors. In 29th annual IEEE interna-
tional conference on local computer networks, pages
455–462. IEEE, 2004.

[18] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and
Muneeb Ali. Protothreads: Simplifying event-driven
programming of memory-constrained embedded sys-
tems. In Proceedings of the 4th international conference
on Embedded networked sensor systems, pages 29–42,
2006.

[19] Caglar Durmaz, Kasim Sinan Yildirim, and Geylani Kar-
das. Puremem: a structured programming model for
transiently powered computers. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing,
pages 1544–1551, 2019.

[20] Kai Geissdoerfer, Raja Jurdak, and Brano Kusy. Long-
term energy-neutral operation of solar energy-harvesting
sensor nodes under time-varying utility. In 17th
ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pages 156–157.
IEEE, 2018.

[21] Kai Geissdoerfer and Marco Zimmerling. Bootstrapping
battery-free wireless networks: Efficient neighbor dis-
covery and synchronization in the face of intermittency.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 439–455.
USENIX Association, April 2021.

[22] Graham Gobieski, Brandon Lucia, and Nathan Beck-
mann. Intelligence beyond the edge: Inference on in-
termittent embedded systems. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 199–213, 2019.

[23] Philipp Gutruf, Vaishnavi Krishnamurthi, Abraham
Vázquez-Guardado, Zhaoqian Xie, Anthony Banks,
Chun-Ju Su, Yeshou Xu, Chad R Haney, Emily A Waters,
Irawati Kandela, et al. Fully implantable optoelectronic
systems for battery-free, multimodal operation in neu-
roscience research. Nature Electronics, 1(12):652–660,
2018.

[24] Josiah Hester and Jacob Sorber. Flicker: Rapid prototyp-
ing for the batteryless internet-of-things. In Proceedings
of the 15th ACM Conference on Embedded Network Sen-
sor Systems, pages 1–13, 2017.

[25] Josiah Hester, Kevin Storer, and Jacob Sorber. Timely
execution on intermittently powered batteryless sensors.
In Proceedings of the 15th ACM Conference on Embed-
ded Network Sensor Systems, pages 1–13, 2017.

[26] Matthew Hicks. Clank: Architectural support for inter-
mittent computation. ACM SIGARCH Computer Archi-
tecture News, 45(2):228–240, 2017.

[27] Neal Jackson, Joshua Adkins, and Prabal Dutta. Ca-
pacity over capacitance for reliable energy harvesting
sensors. In Proceedings of the 18th International Con-
ference on Information Processing in Sensor Networks,
pages 193–204, 2019.

[28] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghu-
nathan. Quickrecall: A low overhead hw/sw approach
for enabling computations across power cycles in tran-
siently powered computers. In 2014 27th International
Conference on VLSI Design and 2014 13th Interna-
tional Conference on Embedded Systems, pages 330–
335. IEEE, 2014.

[29] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek,
Razvan Musaloiu-E., Philip Levis, Andreas Terzis, and
Ramesh Govindan. TOSThreads: Thread-Safe and Non-
Invasive Preemption in TinyOS. In Proceedings of the
7th ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2009.

[30] Vito Kortbeek, Abu Bakar, Stefany Cruz, Kasim Sinan
Yildirim, Przemysław Pawełczak, and Josiah Hester.
Bfree: Enabling battery-free sensor prototyping with
python. Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies, 4(4):1–39,
2020.

[31] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Ja-
cob Sorber, Josiah Hester, and Przemysław Pawełczak.
Time-sensitive intermittent computing meets legacy soft-
ware. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 85–99, 2020.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    353



[32] Philip Levis, Samuel Madden, Joseph Polastre, Robert
Szewczyk, Kamin Whitehouse, Alec Woo, David Gay,
Jason Hill, Matt Welsh, Eric Brewer, et al. Tinyos: An
operating system for sensor networks. In Ambient intel-
ligence, pages 115–148. Springer, 2005.

[33] Brandon Lucia and Benjamin Ransford. A simpler,
safer programming and execution model for intermittent
systems. ACM SIGPLAN Notices, 50(6):575–585, 2015.

[34] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Al-
paca: Intermittent execution without checkpoints. Pro-
ceedings of the ACM on Programming Languages,
1(OOPSLA):1–30, 2017.

[35] Kiwan Maeng and Brandon Lucia. Supporting peripher-
als in intermittent systems with just-in-time checkpoints.
In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2019, pages 1101–1116. Association for Comput-
ing Machinery.

[36] Kiwan Maeng and Brandon Lucia. Adaptive dynamic
checkpointing for safe efficient intermittent computing.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 129–144,
Carlsbad, CA, October 2018. USENIX Association.

[37] Kiwan Maeng and Brandon Lucia. Adaptive low-
overhead scheduling for periodic and reactive intermit-
tent execution. In Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 1005–1021, 2020.

[38] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng,
Alexei Colin, Kasim Sinan Yildirim, Brandon Lucia,
and Przemysław Pawełczak. Dynamic task-based inter-
mittent execution for energy-harvesting devices. ACM
Transactions on Sensor Networks (TOSN), 16(1):1–24,
2020.

[39] Maxim Interated. Ds1302 trickle-charge timekeep-
ing chip. https://datasheets.maximintegrated.

com/en/ds/DS1302.pdf, 2019. Last accessed: Septem-
ber 2019.

[40] William P McCartney and Nigamanth Sridhar. Abstrac-
tions for safe concurrent programming in networked
embedded systems. In Proceedings of the 4th inter-
national conference on Embedded networked sensor
systems, pages 167–180, 2006.

[41] William P. McCartney and Nigamanth Sridhar. Stack-
less Multi-Threading for Embedded Systems. IEEE
Transactions on Computers, 64(10):2940–2952, Octo-
ber 2015. Conference Name: IEEE Transactions on
Computers.

[42] Matteo Nardello, Harsh Desai, Davide Brunelli, and
Brandon Lucia. Camaroptera: A batteryless long-range
remote visual sensing system. In Proceedings of the
7th International Workshop on Energy Harvesting &
Energy-Neutral Sensing Systems, pages 8–14, 2019.

[43] Benjamin Ransford and Brandon Lucia. Nonvolatile
memory is a broken time machine. In Proceedings
of the workshop on Memory Systems Performance and
Correctness, pages 1–3, 2014.

[44] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Me-
mentos: System support for long-running computation
on rfid-scale devices. In Proceedings of the sixteenth
international conference on Architectural support for
programming languages and operating systems, pages
159–170, 2011.

[45] Emily Ruppel and Brandon Lucia. Transactional concur-
rency control for intermittent, energy-harvesting com-
puting systems. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 1085–1100, 2019.

[46] Alanson P Sample, Daniel J Yeager, Pauline S Powledge,
Alexander V Mamishev, and Joshua R Smith. Design
of an rfid-based battery-free programmable sensing plat-
form. IEEE transactions on instrumentation and mea-
surement, 57(11):2608–2615, 2008.

[47] Texas Instruments. ez430-rf2500 development
tool user’s guide. https://www.ti.com/lit/ug/

slau227f/slau227f.pdf, 2015. Last accessed:
September 2015.

[48] Texas Instruments. Msp430fr58xx, msp430fr59xx,
msp430fr68xx, and msp430fr69xx family user’s guide.
http://www.ti.com/lit/ug/slau367o/slau367o.

pdf, 2019. Last accessed: September 2019.

[49] Texas Instruments. EnergyTrace Technology. https:
//www.ti.com/tool/energytrace, 2021.

[50] Texas Instruments, Inc. FRAM faqs. http://www.

ti.com/lit/ml/slat151/slat151.pdf, 2014. Last
accessed: 2018.

[51] Hoang Truong, Shuo Zhang, Ufuk Muncuk, Phuc
Nguyen, Nam Bui, Anh Nguyen, Qin Lv, Kaushik
Chowdhury, Thang Dinh, and Tam Vu. Capband:
Battery-free successive capacitance sensing wristband
for hand gesture recognition. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor
Systems, pages 54–67, 2018.

[52] Harrison Williams, Michael Moukarzel, and Matthew
Hicks. Failure sentinels: ubiquitous just-in-time in-
termittent computation via low-cost hardware support

354    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



for voltage monitoring. In 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 665–678. IEEE, 2021.

[53] Joel Van Der Woude and Matthew Hicks. Intermittent
computation without hardware support or programmer
intervention. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16),
pages 17–32, Savannah, GA, November 2016. USENIX
Association.

[54] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris
Patoukas, Koen Schaper, Przemyslaw Pawelczak, and
Josiah Hester. Ink: Reactive kernel for tiny batteryless
sensors. In Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, pages 41–53,
2018.

[55] Eren Yildiz, Lijun Chen, and Kasim Sinan Yildirim.
Immortal Threads GitHub Repository. https://

tinysystems.github.io/ImmortalThreads/, 2022.
Last accessed: June. 1, 2022.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    355





Debugging the OmniTable Way

Andrew Quinn
UC Santa Cruz

Jason Flinn
Meta

Michael Cafarella
MIT

Baris Kasikci
University of Michigan

Abstract
Debugging is time-consuming, accounting for roughly 50%
of a developer’s time. To identify the cause of a failure, a
developer usually tracks the state of their program as it exe-
cutes on a failing input. Unfortunately, most debugging tools
make it difficult for a developer to specify the program state
that they wish to observe and computationally expensive to
observe execution state. Moreover, existing work to improve
our debugging tools often restrict the state that a developer
can track by either exposing incomplete execution state or
requiring manual instrumentation.

In this paper, we propose an OmniTable, an abstraction
that captures all execution state as a large queryable data
table. We build a query model around an OmniTable that
supports SQL to simplify debugging without restricting the
state that a developer can observe: we find that OmniTable
debugging queries are more succinct than equivalent logic
specified using existing tools. An OmniTable decouples de-
bugging logic from the original execution, which SteamDrill,
our prototype, uses to reduce the performance overhead of
debugging. The system employs lazy materialization: it uses
deterministic record/replay to store the execution associated
with each OmniTable and resolves queries by inspecting re-
play executions. It employs a novel multi-replay strategy that
partitions query resolution across multiple replays and a par-
allel resolution strategy that simultaneously observes state at
multiple points-in-time. We find that SteamDrill queries are
an order-of-magnitude faster than existing debugging tools.

1 Introduction

Developers spend the majority of their time debugging their
software [26]. Usually, a developer debugs by iteratively exe-
cuting their program and using debugging tools to observe its
state during the failing execution.

A developer can often identify the root cause of a simple
bug by making a few observations about their program’s exe-
cution state. However, to identify the root cause of a complex
bug, such as a atomicity violation or performance degradation,

the developer will need to make sophisticated observations.
Conceptually, we can model the logic for such sophisticated
observations as a debugging program, designed to make sense
of the failing program. For example, when debugging, a de-
veloper may observe all of the values to which a variable is
assigned during an execution. Their debugging program con-
sists of a set data structure to store the values, logic after each
assignment in the failing execution that adds the assigned
value to the set, and a print statement to print the set when the
execution terminates.

Unfortunately, many debugging tools, such as gdb, “printf”-
debugging, and binary instrumentation, support debugging
programs that have both high programming complexity and
high performance overhead. Such tools support procedural
debugging programs that observe state as a failing program
executes. Procedural debugging programs have considerable
programming complexity, especially for sophisticated tasks
that track execution state over time (§6.2). High complexity
can lead to bugs [15, 44] that prevent a developer from under-
standing the failing program. Additionally, such debugging
programs impose high performance overhead since sophis-
ticated debugging programs observe a lot of execution state
which existing tools extract within the same execution context
as the failing program. Consequently, procedural debugging
programs can slow execution by between a factor of 2–1000
(§6.3), which can preclude the use of sophisticated debugging
programs [11].

Alas, prior debugging work retains, or even exacerbates,
high programming complexity or high performance over-
head to improve the other. Some proposals lower the per-
formance overhead of debugging by employing parallelism
(e.g., Speck [30], SledgeHammer [35]) or low-level optimiza-
tions (e.g., optimistic hybrid analysis [9], efficient path profil-
ing [3]). At best, such techniques require redesigning debug-
ging programs, at worst, they require novel research contribu-
tions to accelerate even a single task (e.g., taint tracking [4]).

High-level debugging tools decrease programming com-
plexity by allowing a developer to observe and summarize
execution state using a high-level programming model (e.g.,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    357



Fay [12], G2 [17], EndoScope [7]). However, such tools re-
tain high performance overhead since they perform a debug-
ging program’s observations while executing the original
failing program. To curtail the effect of high performance
overhead, high-level debugging tools restrict the execution
state that a developer can observe, either explicitly (e.g., by
minimizing the times when a debugging program can ob-
serve state [12, 14, 25]) or implicitly (e.g., by requiring ex-
tensive manual instrumentation to specify observable exe-
cution state [17, 24, 40]). Such systems are well suited for
tasks that only need to observe partial execution state, such
as distributed tracing [24] or identifying specific classes of
bugs [25], but are less suited for debugging complex issues.

This paper proposes the OmniTable query model, a new de-
bugging paradigm that reduces the programming complexity
and performance overhead of debugging without restricting
the execution state that a developer can observe. The new
OmniTable abstraction empowers the model. An OmniTable
reduces programming complexity by presenting all of an exe-
cution’s state as a large queryable data object. An OmniTable
reduces performance overhead by decoupling a debugging
program’s observations from the original programs’ execution
to enable automated optimizations of debugging programs.

The OmniTable query model enables debugging programs
that can observe any execution state with low programming
complexity by turning to relational logic. Concretely, an
OmniTable is a database table representation of an execu-
tion that contains all architectural state (i.e., the value of all
bytes of memory and all registers) before every instruction
executed by the program. From a developer’s perspective, an
OmniTable is extracted as a program executes and can later
be queried using an extended SQL language to observe the
execution’s state. The model bridges the gap between the
architectural state in an OmniTable and common debugging
abstractions (e.g., the functions executed, variables assigned,
etc.) by re-purposing existing database primitives (e.g., high-
level views) and creating new query operators (e.g., traversal
functions).

Unfortunately, naively materializing an OmniTable would
lead to considerable performance overhead, since it would
require performing a core-dump before every instruction.
Instead, our prototype, SteamDrill, employs lazy material-
ization. Lazy materialization defers the calculation of an
OmniTable’s state until a developer queries it. Rather than
extract an OmniTable in its entirety during execution, Steam-
Drill uses deterministic record and replay to store the exe-
cution associated with the OmniTable. Deterministic record
and replay enables SteamDrill to compress and store years
worth of OmniTables on a commodity hard drive [10]. When
a developer issues a query over an OmniTable, SteamDrill
generates instrumentation which it injects into a new replay
of the execution associated with the OmniTable to produce
the execution state needed for the query.

SteamDrill reduces performance overhead by decoupling

a debugging query’s execution from the original program
execution. SteamDrill uses a query planning approach that de-
composes a debugging query into independent stages. Steam-
Drill implements a novel multi-replay query resolution strat-
egy that executes each stage in a separate replay so that it
can use data that is computationally inexpensive to observe
(e.g., data about functions in an OmniTable) to reduce the
compute cost of observing data that is computationally ex-
pensive to observe (e.g., data about each instruction in an
OmniTable). In essence, multi-replay resolution uses the de-
coupling between an OmniTable query and the original exe-
cution to repeatedly observe OmniTable state at increasing
detail. SteamDrill also uses decoupling to observe execution
state from multiple points-in-time in parallel using thousands
of machines [35, 47].

We built a SteamDrill prototype on top of Spark [47] and
Arnold [10]. We evaluate the prototype using 5 detailed case
studies of bugs reported in popular open-source applications
(Memcached, redis, Apache, and SQLite). We identified 14
debugging programs that a developer would use to identify
the root cause of each bug, including ad-hoc programs (e.g.,
“How many control-flow instructions did my function issue?”)
and standard dynamic analyses (e.g., a memory leak detector).
We implemented the debugging programs using OmniTable
queries and gdb’s python bindings, which provide a high-
level language over gdb features. We found that OmniTable
queries require up to 11.67 times fewer lines (with a geomet-
ric mean of 3.74 times fewer lines), up to 5.73 times fewer
terms (with a geometric mean of 1.70 times fewer terms), and
up to 23.49 times less estimated development time (with a ge-
ometric mean of 2.75 times less estimated development time)
than gdb scripts. We evaluated the performance of SteamDrill
on 3 representative debugging queries and find that it is faster
than gdb by a factor of 99 based upon geometric mean.

We make the following contributions:
• The OmniTable query model, which decouples a de-

bugging program from a failing execution to reduce the
programming complexity and performance overhead of
debugging.

• SteamDrill, which optimizes OmniTable queries using
query planning, cluster-scale parallelization, and a novel
multi-replay query resolution approach.

• An evaluation of 5 case studies and 14 queries that
shows that OmniTable queries are more succinct and
SteamDrill has lower latency than state-of-the-art tools.

2 Motivation

In this section, we describe a motivational case study showing
how the OmniTable query model simplifies debugging. In
the case study, a developer uses an OmniTable to diagnose a
performance problem in redis [36]. In the study, a developer
deploys redis as an in-memory key-value LRU cache for a

358    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Vars(ot)
Column Name: Type Description

time: Long Time of instruction
thread: Long Thread that executed instruction
eip: Long Program counter of instruction
name: String Variable name
value: Any Assigned value

Funcs(ot)
Column Name: Type Description

enterTime: Long Time of function entry
exitTime: Long Time of function exit (or null)
name: String Function name
thread: Long Thread that executed function
callStack: String Call stack of function
args: Map[String->Any] Argument values
rVal: Any Return value of function execution

Figure 1: The schema of the Funcs(ot) and Vars(ot) views.
Each line in each table describes a column in the view.

slow back-end service. Over time, the average end-to-end
latency of their deployment creeps upwards; the developer
notices that the increase correlates with the back-end service
processing a higher percentage of requests.

The bug is challenging to diagnose since the developer only
starts with a high-level symptom and is unaware of which
parts of the program are related to the error. To determine
the root cause of the bug, the developer summarizes an exe-
cution’s behavior over time. The OmniTable allows the de-
veloper to observe all of the execution state of the program
without requiring instrumentation; the query model’s sup-
port for SQL aggregations allows the developer to succinctly
summarize large amounts of execution state. Moreover, the
OmniTable enables repeated queries over the same buggy
execution, instead of requiring the bug be reproduced for each
query.

In contrast, summarizing execution state over time is chal-
lenging with existing tools (§7). To use a procedural debug-
ging tool (e.g., gdb), the developer must identify numerous
instrumentation points, track execution state over time in com-
plex data-structures, and implement algorithms to group data
and calculate statistics. Other debugging tools simplify exe-
cution summarization, but provide incomplete interfaces in
that they do not expose the execution state (e.g., PTQL [25],
Fay [12]) or do not support the operators (e.g., Pivot Trac-
ing [24], Execution Mining [20]) required for this case study.
Finally, instrumentation-based tools (e.g., G2 [17], Pivot Trac-
ing [24]) require extensive manual instrumentation to perform
the necessary observations.

The developer uses 5 OmniTable queries to identify the
root cause of the performance degradation. Rather than query
an OmniTable directly, the developer uses derived views to
simplify their queries. A derived view labels execution state
according to an abstraction of execution behavior, such as the
functions, in-scope variables, or memory read by each instruc-
tion in an OmniTable. Below, we describe the derived views

time eip name value

100 0x1000 “used” 1000
100 0x1004 “entry” NULL
102 0x1004 “used” 1000

Figure 2: Example data from Vars(ot) .
enterTime exitTime name args rVal

100 200 “lookupKey” {“key”:“k1”} 100
100 200 “lookupKey” {“key”:“k2”} 100
100 200 “incrRefCount” {“key”:“k1”} NULL

Figure 3: Example data from Funcs(ot) (omitting the
callStack and thread columns). .

that the developer uses. Then, we describe the OmniTable
queries that the developer uses and compare them to debug-
ging programs expressed using existing debugging tools.

2.1 Views
The developer uses two derived views, Vars(ot) and
Funcs(ot), which can be calculated over an OmniTable: ot.
Figure 1 shows their schemas.

Vars(ot). The Vars view contains the value of all in-scope
variables at each instruction in an OmniTable. Each row iden-
tifies the value of a single in-scope variable at a single in-
struction, regardless of whether that instruction accesses the
variable. Figure 2 shows a few rows of the Vars(ot) view for
the OmniTable for the buggy execution of redis used during
this case study. A developer references the Vars view of an
OmniTable, ot, by specifying Vars(ot) in their query.

Funcs(ot). The Funcs(ot) view contains information
about the functions executed in an OmniTable—each row
contains state from either the entry to or exit from a func-
tion execution contained in the OmniTable, ot. For example,
Figure 3 contains a few rows of the Funcs(ot) view for the
OmniTable for the buggy execution of redis used during this
case study. The enterTime, callStack, and args columns
are extracted upon function entry; the exitTime and rVal
columns are extracted upon function exit (and are NULL for
functions that never return); and the name and thread are
extracted at both entry and exit and joined to match the entry
and exit of each function. The rVal and args columns use
the polymorphic type, Any, to encode different function sig-
natures. For example, a developer specifies args["i"] to get
the value of the argument i passed to a function.

The time, enterTime and exitTime columns from
Vars(ot) and Funcs(ot) expose an ordering of events con-
tained in the views and provide a primary key that uniquely
identifies each row in the views. Moreover, a developer can
use the the time, enterTime, and exitTime columns to cor-
related data across the Funcs(ot) and Vars(ot) views for
the OmniTable. For example, a developer can determine the
value of each in-scope variable at the entry to each function by
joining Funcs(ot) and Vars(ot) on enterTime = time;
the second query uses this feature (§2.2.2).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    359



1 Select enterTime, count(distinct args["key"]) Over(
2 Order By enterTime
3 Rows Between 10000 Preceding and Current Row)
4 From Functs(ot)
5 Where f.name="lookupKey"

Listing 1: The developer’s first query.

2.2 Queries
Next, we describe how the developer diagnoses the cause
of the performance bug. First, they use deterministic record
and replay to capture the OmniTable for an execution of
redis during which the issue occurs. Then, they construct and
execute the following five OmniTable queries.

2.2.1 First Query

The developer’s first query (Listing 1) uses a windowed ag-
gregation to approximate the number of items that the de-
ployment caches in redis (i.e., the working set size) during
the performance degradation. The developer suspects that
the working set size increases over time, which would lead
to additional cache misses in redis. Each cache miss sends
a request to the back-end service, so this hypothesis would
explain the creeping latency of the deployment.

The developer begins by inspecting redis’s source code
to identify the function, lookupKey, that finds an item in
the cache. For each lookupKey execution, the developer cre-
ates a window containing the preceding 10,000 executions
of lookupKey and counts the number of distinct keys passed
to each function call in each window. The OmniTable query
model succinctly represents this logic using SQL aggregates.
SQL aggregates calculate a mathematical operation (e.g.,
count, sum) over a group of rows. An aggregate can op-
erate over a window of requests, in which each group is an
ordered list of rows that match an Over clause, as is the case
in this query. Alternatively, an aggregate can operate over a
group of rows that match a Group By clause, as is the case
in the developer’s third query (§2.2.3).

In detail, the query uses the Over operator to create sliding
windows, each of which contains 10,000 consecutive calls to
lookupKey, by ordering Funcs(ot) by enterTime (Lines 2–
3). The query filters non-lookupKey windows (Line 5). It
counts the number of distinct keys passed to each function
call in each window using the key argument (args["key"])
and the count and distinct operators.

Existing debugging tools either cannot support the query,
impose high programming complexity, or impose high perfor-
mance overhead. EndoScope [7] and Fay [12] could support
the developer’s query, but imposes a high overhead since they
tightly couple debugging logic’s execution with the origi-
nal program execution. Most high-level debugging tools do
not support windowed-aggregations and are either unable
to compute the query (e.g., Pivot Tracing [24], Execution
Mining [20]) or require a developer to write a custom oper-

1 from gdb import Breakpoint, parse_and_eval
2 from collections import deque, defaultdict
3 class bp(Breakpoint):
4 keys=deque()
5 indexed=defaultdict(int)
6 def stop(self):
7 keys.append(parse_and_eval("key"))
8 indexed[keys[-1]] += 1
9 if len(keys) > 10000:

10 indexed[keys[0]] -= 1
11 if indexed[keys[0]] == 0:
12 del indexed[keys[0]]
13 keys.popleft()
14 print (len(indexed))
15 return False
16 bp("lookupKey")

Listing 2: The developer’s first query written for gdb’s Python
bindings.

ator to compute the query (e.g., G2 [17] requires express-
ing the window clause in terms of a vertex-based graph-
traversal). Instrumentation-based debugging tools (e.g., Pivot
Tracing [24]) would require the developer manually instru-
ment the lookupKey function to produce the value of key.

An equivalent procedural debugging program is complex.
The debugging program must navigate the performance-
complexity tradeoff—creating a program with high overhead
is straightforward, but creating one with low overhead requires
complex logic to ensure consistency of two data structures.
A mistake can lead to a misdiagnosis of the bug—our first
version of the debugging program included such a mistake.

Listing 2 shows an implementation for gdb’s Python bind-
ings, which provide a Python interface for gdb features such
as breakpoints and backtraces. The developer creates a custom
Breakpoint class, bp (Lines 6–15); by creating a bp with the
argument "lookupKey" (Line16), the developer instructs the
gdb framework to call the developer-supplied stop function
at each call to lookupKey. The developer tracks the sliding
window of 10,000 requests by storing the value of the key
argument into keys, a queue, and removing the first element
if there are more than 10,000 elements in keys (Lines 7, 9,
and 13). The developer could recompute the unique values
in keys in stop, but that would add significant performance
overhead since lookupKey is executed frequently. Instead,
the developer uses a dictionary object, indexed, to track the
number of times each key value appears in the keys window
(Lines 5, 8, and 10–12). This logic is subtle and challenging
to get right—for example, we initially used a set to track
the unique elements in keys instead of using a dictionary to
track the number of times each element appears in keys. Our
buggy implementation erroneously removes elements from
indexed and produces misleading results.

360    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 Select v.time, v.value
2 From Vars(ot) as v Join Funcs(ot) as f
3 Where v.name = "used" And f.name = "lookupKey"
4 And f.enterTime = v.time

Listing 3: The developer’s second query.

1 Define DefinedMemory(ot) as:
2 Select m.rVal as pointer, m.exitTime as start,
3 m.callStack as allocSite, f.enterTime as end
4 m.arg["size"] as size
5 From Funcs(ot) as m Left NextJoin Functs(ot) as f
6 On m.exitTime, f.enterTime,
7 m.name="malloc" And m.exitTime<=f.enterTime
8 And f.name="free" And m.rVal=f.arg["ptr"]
9

10 Select start, allocSite, sum(size)
11 Over(Partition By allocSite Order By start)
12 From DefinedMemory(ot)
13 Where end=NULL

Listing 4: The definition of the DefinedMemory(ot) view
(Lines 1–8) and the developer’s third query (Lines 10–13).

2.2.2 Second Query

Surprisingly, the working set size of the cache is fairly con-
stant throughout the execution. Consequently, poor cache per-
formance may arise from poor eviction decisions for the work-
load or from a decrease in the number of items in the cache
over time. The developer’s second query determines the num-
ber of items in the cache over time by checking the number of
items in the cache before each execution of the lookupKey
function (Listing 3). redis stores the size of the cache in a
global variable, used; the query uses the Vars(ot) view to
access the value of the variable (Lines 2–3). It prevents the
query from producing extremely large amounts of data by us-
ing a Join to limit the rows to only those when the execution
enters lookupKey (Lines 2–4).

Unlike the OmniTable query model, many debugging tools
do not expose the value of variables at arbitrary points-in-
time and cannot support the developer’s second query (e.g.,
Fay [12], PTQL [14]). Endoscope [7] could support the query,
but only exposes variable values when they are assigned and
requires the query identify the most recent preceding assign-
ment of used for each call to lookupKey. Instrumentation-
based tools (e.g., Pivot Tracing [24], G2 [17]) and procedural
tools (e.g., gdb) require instrumenting the lookupKey func-
tion to produce the value of used.

2.2.3 Third Query

The second query’s output shows that the number of items in
the cache decreases throughout the execution. Since the redis
configuration specifies a total memory size for the cache and
the deployment uses constant sized items, a declining number
of items in the cache implies that there is a memory leak.
Unfortunately, redis does not clean up memory on shutdown,
so existing leak detection tools (e.g., memcheck [29] and

1 Select dm.pointer, Count(*)
2 From Funcs(ot) as r Join DefinedMemory(ot) as dm
3 Where dm.allocSite=leakSite And dm.exit=NULL
4 And r.name="decrRefCount" Or r.name="incrRefCount"
5 And dm.pointer=r.arg["obj"]
6 Group By dm.pointer, r.name

Listing 5: The developer’s fourth query.

AddressSanitizer [39]) report nearly all memory allocations
as leaks.

The developer’s third query uses an alternative approach:
it tracks the number of leaked bytes by each allocation site
(defined as the call stack of the allocation) over time. Alloca-
tion sites that produce bug-inducing leaks will have a gradual
increase of leaked bytes throughout the execution. The devel-
oper’s query observes three separate types of execution events
with different happens-before relationships, which is greatly
simplified by the OmniTable query model.

The developer first creates a view, DefinedMemory(ot)
that contains the window of time during which each mem-
ory object is defined, i.e., allocated and not freed (List-
ing 4). The view joins each call to malloc with the subse-
quent call to free whose pointer argument, ptr, is equal to
the return value from malloc (Lines 5–8). Since a pointer
could be reallocated by malloc after being freed, the query
only matches calls to free that occur after the call to mal-
loc (m.exitTime<f.enterTime at Line 7). Additionally,
it only matches each malloc with the next matching call
to free, as ordered by exitTime and enterTime, respec-
tively, by using NextJoin, a new operator provided by the
OmniTable query model (Lines 5–6). The developer uses
Left NextJoin, which produces output from the left re-
lation even if there is no matching row in the right relation,
so that memory which is never freed (i.e., leaked) has a NULL
value for the end column.

The third query tracks the amount of data leaked by each al-
location site over time. For each leaking allocation (Lines 12–
13), the developer constructs a window containing all preced-
ing leaking allocations from the same allocation site by using
the Over operator (Line 11). They sum the number of bytes
leaked within each window (Line 10).

Like with the previous queries, existing debugging tools ei-
ther cannot support the third query, impose high programming
complexity, or impose high performance overhead.

2.2.4 Fourth Query

The output of the third query identifies a single leaking alloca-
tion site, leakSite. redis uses reference counters to manage
allocations from leakSite. Each counter tracks the number
of live references to each object; redis should garbage col-
lect the object when the count reaches 0. So, the developer
suspects a problem in the reference counting and writes a
query to count the updates to the reference counters of leak-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    361



ing objects (Listing 5). They identify leaked objects that were
allocated at leakSite (Lines 2–3) and match each leaked
object with corresponding executions of decrRefCount and
incrRefCount, the functions that modify reference counts
(Lines 2, 4, and 5). The developer groups the rows by object
and function name (Line 6) and determines the number of
calls to increment and decrement the counter (Line 1).

Like the previous queries, existing debugging tools either
cannot support the developer’s fourth query, impose high pro-
gramming complexity, or impose high performance overhead.

2.2.5 Fifth Query

The fourth query’s output shows that the execution calls
incrRefCount and derRefCount the same number of times
on the leaked objects, indicating a problem in the implemen-
tation of incrRefCount or decrRefCount. The developer
chooses a few candidate objects and determines the call stack
of the calls to incrRefCount and decrRefCount for these
objects. The final query1 shows that the leaked object’s ref-
erence counts are decremented by a lazy deallocation thread
and by a logging thread and points to the root cause of the bug,
a race condition in decrRefCount. In the fix for the original
bug report, the developer redesigning the logging thread to
copy objects instead of sharing them.

3 The OmniTable Query Model

We outline the features of the OmniTable query model that
enable a developer to succinctly reason about the entire history
of execution state. The central abstraction is an OmniTable,
a database table containing all user-level architectural state
of an execution immediately before every instruction in the
execution. Concretely, an OmniTable contains a column for
every byte of architectural state and a row immediately before
each instruction. The model supports debugging queries over
an OmniTable expressed using SQL-style Select. . .From
. . .Where queries.

Alas, an OmniTable alone offers an inadequate debugging
interface, since a developer would need to reference execution
state in architectural terms. For example, a developer would
need to determine the exact memory location of each vari-
able whose value they wish to observe. So, the OmniTable
model adopts and extends database concepts to enable de-
bugging abstractions. It uses Generators, user-defined-table-
functions that allow queries to reference non-execution state
(e.g., debugging symbols). It adds new operators for debug-
ging, such as traversal functions and new Join variants. Fi-
nally, the model uses derived views to label an OmniTable’s
state according to familiar debugging abstractions such as
the functions executed in an OmniTable or the variables in
scope at each instruction in an OmniTable. A single row in

1Omitted for brevity, this query is a self-join of the Funcs(ot) view

a high-level view can expose execution state from multiple
points-in-time during the execution (e.g., Funcs(ot)). Below,
we elaborate on the model’s components.

3.1 Relations
The OmniTable query model supports two relational base ta-
bles, OmniTables and Generators. It supports columns with
primitive types (e.g., Long, String), Structs, Maps, Arrays, and
Any, a polymorphic type.

OmniTable. An OmniTable is a database table that in-
cludes all architectural execution state immediately before
each instruction in the execution; Figure 4 shows an example.
Before each instruction, the OmniTable contains the current
thread, the value of all registers and memory addresses, and
the top of the stack of the thread. To dereference an ad-
dress, addr, a query specifies Memory[addr]. Additionally,
each row includes a monotonically increasing logical time,
which provides a total ordering of events in the OmniTable
and uniquely identifies each row. In a multi-threaded pro-
gram, the time field is a total ordering that is consistent with
the partial ordering of the original execution. Together, the
thread and time columns enable a developer to reason about
concurrency.

Generators. Generators allow developers to bridge the
semantic gap between traditional programming abstractions
(e.g., functions, lines of code) and an OmniTable’s architec-
tural state by referencing non-execution state (e.g., debug-
ging symbols). For example, Defs identifies the functions
defined in a binary; the following produces all such defini-
tions for an executable, “a.out”: Select * From Defs("
a.out"). Generator input can depend on query data. For
example, Binaries is useful for bootstrapping queries; it
uses the deterministic record/replay log to identify the bina-
ries mapped into the address space of an OmniTable. The
following determines all functions defined in all binaries
that are loaded in ot, an OmniTable, which we use to define
the FuncDefs view: Select * From Defs(Select *
From Binaries(ot)). Developers create Generators by
writing a program that produces relational output; we have
built a Generator that determines all variables defined in in
all binaries mapped into an OmniTable, and one that creates
stored procedures that produce the memory read and written
by each instruction in an OmniTable.

3.2 Relational Operators
The model supports join, group by, order by, and
pivot. It also introduces three Join variants for debugging.

StackJoin. SQL is unable to model a function stack, which
would prevent the OmniTable query model from expressing
critical debugging abstractions, such as Funcs(ot), which is
used in all of the queries in the redis case study (§2). Prior
high-level debugging tools either remove support for such se-

362    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Metadata Registers Memory
time thread stackTop . . . eip eax ebx . . . 0x0 0x1 . . . 0xffffffff
1 100 0x2000 . . . 0x1000 1 1 . . . 1 1 . . . 1
2 100 0x2000 . . . 0x1004 1 1 . . . 1 1 . . . 1

· · ·
1000 100 0x2000 . . . 0x1064 1 1 . . . 1 1 . . . 1

Figure 4: An OmniTable for a short execution.

1 Select *
2 From fenter(ot) as e StackJoin freturn(ot) as r
3 On e.time, r.time, e.thread=r.thread AND e.name=r.name

Listing 6: An Example StackJoin.

mantics (e.g., PTQL [14]) or require manual instrumentation
(e.g., G2 [17]). Instead, the OmniTable model creates a new
operator, StackJoin.

As an example, suppose that fenter(ot) is a view that
contains a row for each function entry in ot, an OmniTable,
with columns name, thread, and time for the name of the
function, thread that entered the function, and time of entry;
and that freturn(ot) is a view conataining a row for each
function return in ot, an OmniTable, with columns name,
thread, and time for the name of the function, thread that
returned from the function, and time that the function returns.
Listing 6 shows a StackJoin that matches each function en-
try with its function return. StackJoin partitions fenter(
ot) and freturn(ot) into groups that match on thread and
name. For each group, the operator orders the rows fenter(
ot) by time and orders the rows from freturn(ot) by time.
Repeatedly, the operator pushes all rows from fenter(ot)
onto a stack until it finds a row that occurs after the next row
in freturn(ot); it then produces a row by joining the last
row added to the stack and the next row in freturn(ot).

OrderedJoins. When debugging, developers often reason
about the next, or previous, event that satisfies some condition.
For example, in the DefinedMemory(ot) view, the developer
matched each call to malloc with the next call to free on the
same pointer (§2.2.3). SQL requires inconvenient subqueries
for this reasoning, so, the OmniTable query model adds two
new ordered join operators. The NextJoin operator deter-
mines the next matching row across two relations and can be
used to determine the next function executed by a thread or
the next access to a shared variable: NextJoin on ord1,
ord2, equals joins each row in the left relation, ordered

by ord1, with the next row from the right relation, ordered
by ord2, where equals is true. The PrevJoin operator does
the opposite.

3.3 Column Operators
The OmniTable query model supports many column oper-
ators, including arithmetic and conditional operators, field
expressions (a.b), subscript expressions (a[b]), traversal

functions, stored procedures, and standard aggregations (e.g.,
Count, Max, Min, etc.) over groups and windows. The
model also supports pointer dereferences by converting them
into expressions over the Memory column (e.g., a->b be-
comes Memory[a].b). We elaborate on traversal functions
and stored procedures.

Traversal Functions. SQL makes it difficult to traverse
the elements in a data structure since it does not support un-
bounded traversals. So, the OmniTable query model builds
new primitives for these operations. Given a pointer-typed
column and a field within the pointed-to type, the traverse
(column, field) expression produces a row of output for
each element in the transitive closure of the structure by start-
ing at column and following field pointers until the value is
NULL. For example, traverse(node, "next") traverses the
next pointer of all elements in a structure, starting at node.

Stored Procedures. Debugging logic often varies by ex-
ecution context (e.g., the memory location of function argu-
ments varies by function). Stored procedures [43] store rela-
tional logic in a table and allow a query to decide query logic
during query resolution. Developers call stored procedures in
their OmniTable queries with function syntax; for example,
a developer could specify Var_Loc(esp) to use Var_Loc, a
stored procedure that calculates the memory location of a
variable given the value of the stack pointer.

3.4 Derived Views
The OmniTable query model allows developers to con-
struct derived views for labeling execution state. The De-
fine operator in Listing 4 shows how a developer constructs
DefinedMemory(ot). Our implementation provides three
high-level views, Funcs(ot) (§2.1), Vars(ot) (§2.1), and
Insts(ot), a view that encodes information about each in-
struction in an OmniTable.

4 Design

In this section, we describe the design of SteamDrill, our
system that supports the OmniTable query model. From a
developer’s perspective, SteamDrill computes queries over
OmniTables that are extracted during execution and stored
in a database. However, materializing an entire OmniTable
is infeasible due to high storage and compute costs: an
OmniTable’s size is equal to the addressable memory size

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    363



SteamRoller
1. Parsing (§4.1)

2. Planning (§4.2)
Logical Planning (§4.2.1)

Physical Planning (§4.2.2)

3. Execution (§4.3)

OmniTable
Query

Query
Result

Figure 5: SteamDrill steps for query resolution. Blue steps
re-use or customize existing approaches, and white steps are
new designs.

1 Select eip, read, write
2 From Insts(ot) as i Left Join DefinedMemory(ot) as dm
3 On (i.read=dm.pointer Or i.write=dm.pointer)
4 And i.time>=dm.start And i.time<dm.end
5 Where dm.start=NULL

Listing 7: A simplified undefined use query.

times the number of executed instructions and reaches
petabytes, or even exabytes, for mere seconds of execution.

SteamDrill introduces lazy materialization as a solution.
Rather than materializing an OmniTable during execution,
SteamDrill uses deterministic record and replay [10] to cap-
ture a log of non-deterministic inputs to the execution. The
system uses the log to generate OmniTable state on-demand
by instrumenting and re-executing the original execution as
necessary to resolve debugging queries. Delaying OmniTable
materialization allows SteamDrill to filter OmniTable data
before extracting state instead of afterwards.

In the rest of this section we describe how SteamDrill
resolves debugging queries. Listing 7 presents a simplified
use-after-free query as a running example. The query uses the
Insts(ot) view to identify the memory read and written by
each instruction in an OmniTable. It joins Insts(ot) with
the DefinedMemory(ot) view from the third redis query, to
match each memory access with the region of time during
which its pointer was defined (Listing 4). The query uses
a Left Join and identifies rows where start is NULL to
identify the instructions that operate on undefined memory.

SteamDrill’s design mirrors that of typical database man-
agement systems [2] (Figure 5). First, SteamDrill uses con-
ventional SQL parsing to decompose a query into a tree of
relational operators (internal nodes) over data tables (leaves)
(§4.1). The tree contains a separate leaf node for each
OmniTable referenced in the query. The relational operators
that consume data from each OmniTable in the tree identify
the execution state that the query needs from that OmniTable.
During execution, SteamDrill uses these operators to limit the
materialization of each OmniTable in the query by generating
instrumentation that it injects into replay executions (§4.3).

The order of OmniTable materialization has a large im-
pact on the amount of materialized data and the latency of

σ

Π

Join

Join

OT ID

Join

StackJoin

Join

OT FD

Join

OT FD

StackJoin

Join

OT FD

Join

OT FD

Insts(ot) as i

fentry(ot) fexit(ot)

Funcs(ot) as m

fentry(ot) fexit(ot)

Funcs(ot) as f

DefinedMemory(ot) as dm

Figure 6: The relational tree for Listing 7. OmniTables
are red ovals labeled with OT. Generators are blue ovals;
InstructionDefs are ID nodes and FuncDefs are FD nodes.
Relational operators are white rectangles; where, join, and
select clauses are σ, Join, and Π nodes. The logic for each
derived view is encapsulated in a dotted rectangle.

query resolution. Delaying the materialization of an other-
wise computationally expensive-to-materialize OmniTable
often allows SteamDrill to filter the computationally expen-
sive materialization using data from a less computationally
expensive-to-materialize OmniTable. For example, to reduce
the latency of the use-after-free query, the system first mate-
rializes the OmniTable state needed for the DefinedMemory
view and uses the materialized data to filter the materialization
of the Insts(ot) view.

Accordingly, SteamDrill uses multi-replay resolution—it
splits OmniTable materialization across multiple replay exe-
cutions. It uses query planning to determine the OmniTable
materialization order and assigns OmniTable materializa-
tion to replay executions(§4.2). SteamDrill implements
OmniTable-specific optimization strategies to decide the join
order and join algorithm for each join in the tree (§4.2.1)
which it uses to assign each operator to a stage. The system
uses a single replay execution to materializes all OmniTables
in the same stage. This approach minimizes the number of
replay executions (since each replay execution adds addi-
tional overhead) and enables SteamDrill to limit OmniTable
materialization.

4.1 Parsing
First, SteamDrill converts the query into a tree of relational
operators over data tables using a standard SQL parser [2];
the tree encodes the logic required to resolve the query in
terms of easy-to-optimize relational operations. The tree en-
codes each relational operator in the query as an internal node
(i.e., a projection (Π), selection (σ), or join operator) and each
OmniTable and each Generator in the query as a separate

364    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



leaf node. SteamDrill recursively decomposes each view into
the relational logic that generates them until the tree is com-
prised entirely of relational logic and base tables (§3.1). A
directed edge from node n1 to node n2 in the tree identifies
that the operator n2 consumes the output of n1.

Figure 6 is the relational tree produced by SteamDrill
for Listing 7. SteamDrill contains the internal logic of
the Insts(ot) and DefinedMemory(ot) views (shown
as dotted rectangles). The tree contains the logic of the
Insts(ot) view: a Join between an OmniTable and
InstructionDefs, a Generator containing metadata about
the instructions defined in binaries used by an OmniTable.

The tree includes the internal logic of DefinedMemory(ot)
and, recursively, all of the derived views compris-
ing DefinedMemory(ot). The tree contains the
DefinedMemory(ot) logic (Listing 4): a Join be-
tween two Funcs(ot) views, one for executions of malloc
(Funcs(ot) as m) and one for executions of free (Funcs(ot)
as f). The tree contains the logic of each Funcs(ot)
view (§3.2 and Listing 6): a StackJoin that combines
fentry(ot) and fexit(ot), relations over the entry and
exit to each function in the OmniTable. Finally, the tree
contains the logic for each fentry(ot) and fexit(ot):
a Join between an OmniTable and FuncDefs. Note, the
tree includes the fentry(ot) of malloc and fexit(ot) of
free even though the query does not use their output; during
planning, SteamDrill determines that the query does not use
the views and prunes them.

4.2 Planning

SteamDrill performs two tasks during planning. During log-
ical planning, the system optimizes the relational tree using
standard optimizations (e.g., predicate push-down) and deter-
mines the join order and join algorithm for each join in the tree
using OmniTable-specific strategies (§4.2.1). The most cru-
cial task in logical planning is determining the join order and
algorithms for the query, since the join order and algorithms
imply the partial order in which SteamDrill will materialize
the OmniTable nodes contained in the query. SteamDrill sup-
ports two join algorithms: merge joins, which operate over
two fully realized relations, and block-nested-loop joins (loop
joins), which first calculate the left relation and use the left
relation’s output to limit right relation materialization.

During physical planning, SteamDrill produces a staged
execution plan, which uses the join order and algorithms as-
signed during logical planning to assign each operator in the
tree to a stage. In particular, physical planning assigns the
children of merge joins to the same stage (so SteamDrill ma-
terializes them using the same replay) and assigns the right
child of a loop join to the stage after the loop join’s left child
(so SteamDrill materializes them using different replays).

Π3

Loop Join3

Merge Join2

Merge Join1

Π1

Loop Join1

σ1

FD1

OT1

Π2

Loop Join2

σ2

FD2

OT2

σ3

ID1

OT3

Figure 7: The relational tree for Figure 6 after logical planning.

4.2.1 Logical Planning

Traditional techniques for deciding join order and algorithms
perform poorly on OmniTable queries for three reasons: First,
similar subtrees in a relational tree have vastly different com-
putational costs to materialize (e.g., the join subtree in the
Funcs(ot) subtree is similar but much less computationally
expensive than the join subtree in the Insts(ot) subtree).
Second, the materialization cost of an OmniTable often de-
pends on unpredictable properties of the underlying execution
(e.g., it is difficult to predict the execution frequency of a
particular function). Third, the enormous compute cost of
materializing an OmniTable invalidates conventional rules.

Consequently, SteamDrill turns to a rule-based planner [1]
that enables developers to encode semantic information that
would be difficult or impossible for SteamDrill to deduce on
its own. Each rule specifies regular-expression-like rules that
pattern match subtrees of the relational tree and produce mod-
ified operators [1]. The join order and algorithm rules produce
a left-deep join structure in which OmniTable nodes are iso-
lated on the right-hand side of a join node (Figure 7), since
these structures allow SteamDrill to perform as much filtering
as possible when extracting data from an OmniTable. When
queries join relations with different expected materialization
compute costs, the rules place the less expensive relations on
the left side, the more expensive relation on the right side and
employ a loop join. When joining relations with the same
expected materialization compute costs (e.g., two instances of
Funcs(ot)), the rules use a merge join. Heuristically, Steam-
Drill expects that Funcs(ot) relations are less computation-
ally expensive to materialize than Vars(ot) relations, which
are less computationally expensive than Insts(ot) relations,
which are less computationally expensive than OmniTables.
Rules also encode traditional database optimizations.

Executing the relational tree in Figure 6 without logical
planning would have high latency; SteamDrill would materi-
alize the OmniTable five separate times! In contrast, Steam-
Drill’s logical plan (Figure 7) uses multi-replay resolution to

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    365



observe only the exit from malloc, entry to free, and load/s-
tore instructions. Moreover, the plan reduces latency by only
producing data for load/stores to undefined memory as they
are observed, rather than producing data for all loads/stores
and performing a join to determine undefined uses afterwards.

First, SteamDrill uses traditional database optimizations
(e.g., operator push-down) to push operators towards leaf
nodes to (1) produce FuncDefs data for only malloc and
free (σ1 and σ2), (2) produce InstructionDefs data only
for loads and stores (σ3) and (3) eliminate the fentry(ot) for
malloc and fexit(ot) for free. The system uses loop joins for
Loop Join1 and Loop Join2, which materialize σ1 and σ2 be-
fore OT1 and OT1 to limit OmniTable state to the exit of
malloc and entry to free in OT1 and OT2, respectively. The
system joins them using a Merge Join (Merge Join1) to limit
the number of replay executions that it uses. OT3, created for
the Insts(ot) view, is computationally expensive to mate-
rialize, so SteamDrill defers its materialization. SteamDrill
uses a Merge Join (Merge Join2) to join σ3 and Merge Join1,
which requires a Cartesian product and violates the tradi-
tional rule that such approaches be avoided. Materializing
Merge Join2 and using a loop join (Loop Join3) to join it with
OT3 allows SteamDrill to identify only the loads/stores to un-
defined memory (i.e., loads/stores that read/write an address
at a time when it is not contained in DefinedMemory(ot)) as
they are performed by the execution rather than in an expen-
sive join afterwards. In some queries, using a loop join like
Loop Join3 enables SteamDrill to elide inspection of some
instructions altogether (e.g., Listing 8).

4.2.2 Physical Planning

Next, SteamDrill converts the optimized relational tree into
a staged execution plan by assigning each operator from the
tree into a stage. Each stage corresponds to a new replay
execution (§4.3). SteamDrill assigns operators to stages that
follow the partial order of OmniTable materialization that
is implied by the join order and algorithm, but uses as few
stages as possible, since each stage will require the additional
latency and overhead of a replay execution.

SteamDrill performs a depth-first traversal of the tree start-
ing at the root node and maintains an integer id for the
current stage, starting at 1. The system assigns leaf nodes
(OmniTable, Generators) to the current stage and unary
nodes (i.e., all non-join operators) to their child’s stage. The
system assigns merge join operators to the largest stage among
the join’s children. For loop join operators, SteamDrill first
assigns stages to operators in the left (inexpensive) child, adds
one to the current stage, assigns the loop join to the new stage
and traverses the right (expensive) child.

Figure 8 shows the staged execution plan for Listing 7.
SteamDrill assigns FD1, σ1, FD2, σ2, ID1, and σ3 to the first
stage. It assigns OT1 and OT2 to the second stage since
Loop Join1 and Loop Join2 indicate that OT1 and OT2 should

Π3 (3)

Loop Join3 (3)

Merge Join2 (2)

Merge Join1 (2)

Π1 (2)

Loop Join1 (2)

σ1 (1)

FD1 (1)

OT1 (2)

Π2 (2)

Loop Join2 (2)

σ2 (1)

FD2 (1)

OT2 (2)

σ3 (1)

ID1 (1)

OT3 (3)

Figure 8: The staged execution plan for Figure 7. The stage
of each node is shown in parentheses in the node.

be materialized after σ1 and σ2, respectively. SteamDrill also
assigns Π1, Π2, Merge Join1, and Merge Join2 to the second
stage since they inherit the largest stage of their children. The
system assigns Loop Join3, OT3, and Π3 to the third stage to
follow the order required for Loop Join3.

4.3 Execution

Finally, SteamDrill executes the staged execution plan. For
each stage, the system generates instrumentation to material-
ize the state needed from each OmniTable, materializes each
OmniTable, and calculates each operator in the stage.

4.3.1 Instrumentation Generation

SteamDrill generates instrumentation that it will inject into
a replay execution for the OmniTables in a stage by deter-
mining instrumentation operators for each OmniTable node
in the stage. For each OmniTable node, the system gathers
all stateless operators (e.g., projections (Π) and selections(σ))
that only consume data from (1) the OmniTable node, (2)
nodes resolved in previous stages, or (3) other nodes satisfy-
ing (1) and (2). For example, the instrumentation operators
for OT1 in Figure 8 includes Π1 and Loop Join1. Selecting
stateless operations ensures that the resulting instrumentation
will be parallelizable during materialization.

Then, SteamDrill creates a cursor object for each
OmniTable node that combines all of the node’s instrumen-
tation operations. Cursor objects contain a filter and an
output clause; logically, a cursor inspects the execution
instruction-by-instruction, producing the output whenever
the filter is true. SteamDrill generates the filter clause of
the cursor for each OmniTable in the stage by combining
all selection (σ) and loop join instrumentation operators and
generates the output clause using the output of the top-most
projection (Π) instrumentation operator.

366    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



4.3.2 Materialization

Next, SteamDrill materializes OmniTable nodes by executing
the cursor objects on top of a replay of the execution asso-
ciated with the tables. It uses epoch parallelism [34, 35] to
parallelize cursor evaluation. Epoch parallelism partitions a
replay execution into time slices, called epochs. It assigns
each epoch to a separate core in a compute cluster and uses
checkpoints, generated during recording, so that each core
executes each cursor over only its assigned epoch.

However, naive cursor evaluation (i.e., instrumenting every
instruction) imposes a many orders of magnitude slowdown.
So, SteamDrill analyzes the filter clause of each cursor to
identify instructions at which the system can elide cursor
evaluation to optimize performance. For example, SteamDrill
identifies that the cursors in the second stage of Figure 8
only need to be evaluated at malloc and free and removes
all other cursor evaluations. Our prototype identifies these
optimizations by finding comparisons to the program counter.

Additionally, SteamDrill calculates operators in the stage
that were not assigned as instrumentation operators for any
OmniTable node (e.g., Merge Join1 and Merge Join2 in Fig-
ure 8). SteamDrill uses existing algorithms to calculate merge
join and aggregation operators [1, 16]. Additionally, it exe-
cutes the program associated with each Generator in the
stage to calculate Generator operators.

5 Implementation

We implement our SteamDrill prototype on top of Spark [1]
and Arnold [10]; below, we describe its key components.

Spark SQL. Our prototype introduces new relational oper-
ators and base tables for OmniTables and Generators. We
added support for block-nested-loop joins, stored procedures,
and polymorphic columns (§3) by serializing data to and from
a JSON format. We added catalyst rules for our OmniTable-
specific join order and algorithm preferences (§4.2.1). Each
rule required 25 lines of code, so we expect that developers
will be able to easily add custom rules as needed for their
debugging workflows.

Instrumentation. Efficient cursor instrumentation plays a
vital role in our prototype’s performance. Debugging tools of-
ten use dynamic instrumentation frameworks (e.g., PIN [23]),
which are a scalability bottleneck when SteamDrill paral-
lelizes the replay execution across many cores [34]. Our pro-
totype performs static binary instrumentation. It disassembles
the application binaries and rewrites the basic blocks con-
tained in the application to call cursors, as required for the
breakpoints determined from each cursor. The system single-
steps execution for cursors that do not produce breakpoints.

Time Column. The time column is a critical element of the
OmniTable query model, but, deriving the column by count-
ing all instructions or basic blocks would be too expensive.
We observe that instructions progress from low to high, ex-

cept in the case of a backwards control-flow (e.g., branch,
call, or return instructions that jump to a program location at a
lower address). Thus, our prototype uses the number of back-
wards control-flow operations as a the first element of the time
column and breaks ties using the instruction pointer. Serendip-
itously, Intel provides deterministic performance counters for
conditional branch and call instructions2, which allow our
prototype to compute the number of backwards control-flow
operations by counting the number of unconditional back-
wards branches during execution and adding the value of
these performance counters.

6 Evaluation

In this section, we evaluate the OmniTable query model and
SteamDrill by answering the following questions: “Does the
OmniTable query model improve upon existing debugging
interfaces?”, “Does SteamDrill accelerate debugging ques-
tions?”, and “How do SteamDrill design decisions impact
query performance?”.

We perform 5 detailed case studies of how a developer
could use an OmniTable and SteamDrill to solve real-world
bugs from open-source servers (§6.1) from which we derive
14 debugging questions. We implement the debugging ques-
tions using OmniTable queries and gdb’s python bindings,
which provide a python interface for traditional gdb features
(e.g., breakpoints and backtraces). We compare the complex-
ity of the 14 OmniTable queries and gdb scripts using metrics
from the software engineering community (§6.2). We deploy
SteamDrill on a CloudLab [37] cluster of 8 r320 machines (8-
core Xeon E5-2450 2.1 GHz processor, 16 GB Ram, 10 Gbps
NIC) to evaluate the performance for 3 representatives from
the original 14 debugging questions (§6.3). We calculate the
latency results below as the average over 10 trials and include
95% confidence intervals.

6.1 Case Studies
We performed 5 detailed case studies by identifying the de-
bugging questions that a developer would ask when solving
real-world bugs. We choose notoriously difficult bugs includ-
ing livelock, intermittent performance problems, and atom-
icity violations (on average, the bugs in our study took 159
days from being opened to the commit that fixed the bug).
We choose case studies from popular open-source applica-
tions: redis, Memcached, Apache, and Sqlite. The redis 4323
case study is described in §2; below, we describe case studies
for debugging a livelock [28] and atomicity violation [27] in
Memcached. We omit a description of a performance degra-
dation in Apache [6] and a segmentation fault in Sqlite [41].

The case studies illustrate the benefits of the OmniTable
query model along two key dimensions: first, the all-inclusive

2Note that most performance counters are not deterministic

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    367



1 Select f.Name, Count(*)
2 From Insts(ot) as i PrevJoin Funcs(ot) as f
3 On i.time, f.entryTime, i.thread=f.thread
4 Where f.exitTime=NULL

Listing 8: The First query for Memcached 271.

1 Select eip, True, False
2 From Vars(ot)
3 Where name="status"
4 Pivot Count() in (True, False)

Listing 9: The second query for Memcached 127.

state exposed by the table offers a powerful window into an
execution’s behavior. Second, SQL aggregations provide a
powerful tool for summarizing and comparing program state.
These features are particularly powerful when used in tandem.
For example, in Memcached 271, the developer identifies the
function that contains a livelock by counting the number of
instructions executed by the functions left on the call stack
at the end of the execution. This logic cannot be expressed
in existing high-level debugging tools and is very complex
when expressed using procedural tools such as gdb.

Memcached 271. In this case study, a developer ob-
serves livelock in the Memcached key-value store [28]. Live-
lock is notoriously difficult to diagnose since a developer
needs to identify the cause of a missing property: forward
progress [33].

In contrast, the OmniTable model allows the developer to
succinctly track millions of execution events and use aggrega-
tions to identify anomalous execution state. Their first query,
shown in Listing 8, identifies which function contains the live-
lock by counting the number of instructions executed during
each function on each thread’s call stack at program termina-
tion. The query matches each executed instruction with the
most recent function called on the same thread to determine
which function contained the instruction (Lines 2 and 3). It
counts how many instructions were executed (Line 1) by each
function that did not return (Line 4).

The output identifies a single function with a high number
of branches. The function traverses a linked-list, which the
developer suspects is corrupted. The developer’s second query
counts how many times each function that updates the linked
list is called with every possible function argument value and
shows a single anomalous call to free a linked-list item in
which the item is still resident in the linked-list. Memcached
reference counts linked-list items, so the developer’s third and
final query tracks all reference count updates and identifies
an overflow that leads to the erroneous free of the item.

Memcached 127. This case study involves an atomicity
violation in Memcached. An integer stored in the cache has
the wrong value after all updates, which is challenging to
debug since the developer does not know which program state
to track or when to track it. Atomicity violation tools [32] use
heuristics and may misidentify the root cause of the bug.

Query Lines Nodes Halstead (s)
gdb OT gdb OT gdb OT

Apache 60956 Q1 20 6 94 54 518 263
Apache 60956 Q2 30 9 113 122 989 1350
Memcached 127 Q1 7 4 48 39 147 82
Memcached 127 Q2 11 4 74 26 518 38
Memcached 271 Q1 35 3 149 26 1471 62
Memcached 271 Q2 12 4 69 23 397 34
memcached 271 Q3 10 3 45 26 140 39
redis 4323 Q1 17 3 74 23 529 45
redis 4323 Q2 7 3 24 31 35 65
redis 4323 Q3 22 3 113 83 930 757
redis 4323 Q4 33 5 147 112 1620 1033
redis 4323 Q5 7 3 19 19 17 19
sqlite 787fa71 Q1 22 10 110 77 911 520
sqlite 787fa71 Q2 41 8 151 96 1489 684

Average 20 5 88 54 694 357

Table 1: Lines, Nodes, and Halstead Complexity for debug-
ging questions expressed using OmniTable queries (OT) and
gdb python scripts (gdb).

The OmniTable model, particularly SQL aggregations, pro-
vide a powerful tool for comparing the state of their program
at many points-in-time to identify anomalous program state.
The developer first isolates the module that contains the error.
In particular, they determine if the bug arises when initially
parsing requests or when processing them by using a count
aggregate to count the number of times the function at the
boundary between parsing and processing is called with each
possible set of arguments. The query shows that the problem
arises when processing requests.

The processing code maintains a boolean variable, valid,
that tracks the validity of a global pointer used by the code.
The developer’s second query, shown in Listing 9, identifies
how often valid is set to true and false during each of
the instruction within the processing logic. It uses a Pivot
operator to produce a row for each instruction and show the
number of times valid is set to true and false across all
executions of the instruction. The second query identifies a
few instructions at which status has an anomalous state. The
anomalous instructions do not modify the status, so the devel-
oper concludes that another thread must modify the status and
identifies a mistake in the processing logic’s use of a mutex.

6.2 Complexity
We implemented the 14 debugging queries from our 5 case
studies using OmniTable queries and implemented equiva-
lent logic using gdb python scripts. Qualitatively, we observe
that OmniTable queries are less complex due SQL aggrega-
tions, the all-inclusive nature of an OmniTable, and the struc-
tured approach provided by high-level views: OmniTable
queries usually involve an aggregation after joining a few
high level views, whereas imperative debugging scripts reg-
ularly use multi-dimensional data-structures to track state,
nested control-flow to implement aggregations, and complex

368    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Memcached
127 Q1

Memcached
 127 Q2

Memcached
271 Q1

102

103

104

105

La
te

nc
y 

(s
)

GDB
SteamRoller 1
SteamRoller 64

Figure 9: SteamDrill query latency on a single core and on
64 cores compared to gdb script latency (which is sequential).
Y-axis is log-scale.

regular expressions to identify instrumentation points. We
measure complexity of each OmniTable query and gdb script
using three software engineering metrics: the number of lines
of code, the number of terms in the abstract syntax tree (AST),
and the Halstead complexity, which estimates the amount of
time it would take to correctly produce the query or script
using properties of the AST [18]. We included the defini-
tion of user-defined views (e.g., DefinedMemory(ot)) into
the OmniTable queries that use them, so our results are an
upper-bound on OmniTable query complexity.

Table 1 shows the results, indicating that OmniTable
queries are less complex than gdb scripts. By geometric mean,
OmniTable queries require 3.74 times fewer lines, 1.70 times
fewer nodes, and 2.75 times less estimated time to develop
than gdb scripts. There are only three queries that are more
complex when expressed using the OmniTable model, the sec-
ond and fifth redis 4323 queries, and the second Apache 60956
query. The two redis queries are small for both representations.
The second Apache query suffers from the lack of kernel state
in an OmniTable. The query identifies all blocking file de-
scriptors, which requires substantial logic to track all function
calls in the OmniTable model, but can be calculated in gdb us-
ing fcntl. Extending the OmniTable to include kernel state
would reduce the complexity.

6.3 Query Latency

We evaluate the latency of OmniTable queries and gdb scripts
for 3 representative queries from our case studies. We choose
queries that use all of the high level views in our proto-
type (i.e., Funcs(ot), Vars(ot), and Insts(ot)) and offer
a wide range of performance on current tools, from ~22 min-
utes to ~2 days. Figure 9 shows the latency of each debugging

100 101

Number of Cores

100

101

Sp
ee

du
p

Memcached 127 Q1
Memcached 127 Q2
Memcached 271 Q1
Ideal

Figure 10: SteamDrill scalability. Shows number of cores on
the x-axis vs. speedup on the y-axis; both axes are log-scale.

question evaluated using gdb, SteamDrill with a single core,
and SteamDrill with 64 cores, with latency plotted on a log-
scale. We executed Memcached 271 Q1 for 48 hours before
killing the program and report its latency as 48 hours.

SteamDrill is significantly faster than gdb. SteamDrill
query latency is between 2 and 290 times (with a geomet-
ric mean of 17) faster than gdb latency when using a single
core, and between 6.9 and 1809 (with a geometric mean of
99) times faster than gdb latency when using 64 cores.

6.4 Optimizations

Next, we evaluate the impact of three optimizations on Steam-
Drill’s latency: parallelization, multi-replay resolution, and
performance-counters.

Scalability. We evaluate the query latency of SteamDrill
queries when using 1–64 cores; Figure 10 shows the speedup
on a log-log scale. SteamDrill queries are 10.5 times faster us-
ing 64 cores than when run sequentially. Importantly, whereas
prior parallelization efforts require the developer to substan-
tially redesign their debugging code [30, 34, 35, 38, 46], the
parallelized and sequential OmniTable queries are identical.
The current scalability bottlenecks are caused by high initial-
ization and serialization cost in Spark and the high cost of
compiling cursors.

Multi-Replay Resolution. We evaluate the impact of
multi-replay query resolution on the Memcached 271 Q2
query. We calculate the query latency when using two rounds
of replay (the approach chosen by the SteamDrill planner) and
when using a single round of replay on 64 cores. SteamDrill
is 3.6 times faster when using multi-replay resolution.

Performance Counters. We evaluate the impact of using
performance counters to accelerate the calculation of the time
column in an OmniTable. We executed the 3 queries with and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    369



Tool Model Observations Aggregates
Execution Mining [20] Stream All No
Fay [12] Stream Partial Partial
Pivot Tracing [24] Relational Log-Based Partial
G2 [17] Graph Log-Based Manual
PQL [25] Stream Partial No
PTQL [14] Relational Partial No
EndoScope [7] Stream Partial Yes
EBBA [5] Stream Log-Based No
TQuel [40] Relational Log-Based Partial

OmniTable Relational Everything Yes

Table 2: Feature comparison of high-level debugging tools .

without using performance counters (when disabled, Steam-
Drill instruments all jump, call, and return instructions) on
64 cores. The performance counter optimization accelerates
query latency by a factor of 1.6.

7 Related Work

The OmniTable query model is the first debugging model that
exposes all application state as a single entity and enables
succinct observations via a high-level declarative language.
Below we describe work related to high-level languages for
debugging, using deterministic replay for debugging, and ap-
plying optimizations to accelerate debugging.

Existing systems support high-level debugging languages
to reduce programming complexity; Table 2 illustrates the lim-
itations of prior work compared to the OmniTable model. Ex-
ecution Mining [20], PQL [25], EBBA [5] and EndoScope [7]
expose a time-stream model of execution, which complicates
debugging since it is difficult to summarize data over time
(e.g., these tools cannot express the Funcs(ot) view since it
contains execution data from multiple points-in-time). Other
systems limit visibility of execution state: Fay [12], PQL [25],
EBBA [5], EndoScope [7], and PTQL [14] expose partial
program state consisting of only the function calls or global
variables values in an execution. Pivot Tracing [24], G2 [17],
EBBA [5], and TQuel [40] require manual instrumentation to
enable observations, which essentially amounts to supporting
queries over software logs. Finally, many tools provide no,
or very few, aggregates [14, 20, 25]; G2 [17] supports aggre-
gates but requires that they be expressed in terms of a graph
processing language.

Many OmniTable queries compare correct execution be-
havior to incorrect execution behavior, similar to statistical
debugging approaches [22]. There are two key differences (1)
statistical bug isolation requires observing many correct and
incorrect executions to come to a statistical verdict, whereas
developers can often get a “sense” for correctness using an
OmniTable query with fewer examples and (2) statistical de-
bugging approaches hard code the values that they compare
(e.g., function argument values), whereas developers can cus-
tomize OmniTable queries to use program constructs best

suited to their applications.
Many systems have noted that deterministic replay can be

a great help when debugging software problems [8, 13, 19,
31, 42, 45]. Such systems enable a debugging program to
explore an execution’s time-sequence in reverse, but retain a
procedural interface.

Recently, JetStream [34] and Sledgehammer [35] use de-
terministic replay as a vehicle for parallelizing debugging,
which our prototype uses to accelerate OmniTable queries.
However, these tools support procedural debugging models,
similar to gdb, and consequently suffer from the programming
complexity.

Existing tools do not decouple debugging logic’s execution
from the original execution to optimize query latency. PARTI-
CLE [14], Fay [12], Pivot Tracing [24] and PMSS [21] reduce
the debugging performance overhead using traditional SQL
optimizations (e.g., predicate push-down). However, these
tools add instrumentation to the program and re-execute it
to recreate the bug, which tightly couples the execution of
debugging and the original execution and increases perfor-
mance overhead. Additionally, by inspecting new executions,
these systems are cannot perform all SteamDrill performance
optimizations, particularly multi-replay query resolution.

8 Conclusion

In this paper, we propose the OmniTable query model, a new
debugging paradigm that reduces the programming complex-
ity and performance overhead of debugging without restrict-
ing the execution state that a developer can observe. We show
that the query model simplifies debugging questions com-
pared to existing state-of-the-art tools by performing case
studies of bugs reported in popular open-source software. Un-
fortunately, an OmniTable, the key abstraction in the model,
cannot be stored or calculated due to its extreme size. So, our
prototype, SteamDrill, implements lazy materialization: it de-
lays an OmniTable’s calculation until a developer queries the
table. It uses deterministic record and replay to store the ex-
ecution associated with each OmniTable and then generates
instrumentation and traces a new replay execution to resolve
each developer query on-demand. The system uses declarative
optimizations, debugging optimizations, and a novel multi-
replay strategy to accelerate debugging queries by an order
of magnitude compared to state-of-the-art tools.

9 Acknowledgements

We would like to thank our shepherd, Ding Yuan, and the
anonymous reviewers for their insightful comments. The work
was supported by the National Science Foundation under
grant DGE-1256260.

370    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing
in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’15, page 1383–1394, New York, NY, USA, 2015.
Association for Computing Machinery.

[2] Morton M. Astrahan, Mike W. Blasgen, Donald D.
Chamberlin, Kapali P. Eswaran, Jim N Gray, Patricia P.
Griffiths, W Frank King, Raymond A. Lorie, Paul R.
McJones, James W. Mehl, et al. System r: relational
approach to database management. ACM Transactions
on Database Systems (TODS), 1(2):97–137, 1976.

[3] Thomas Ball and James R Larus. Efficient path profil-
ing. In Proceedings of the 29thACM/IEE international
symposium on Microarchitecture, pages 46–57. IEEE
Computer Society, 1996.

[4] Subarno Banerjee, David Devecsery, Peter M Chen, and
Satish Narayanasamy. Iodine: fast dynamic taint track-
ing using rollback-free optimistic hybrid analysis. In
2019 IEEE Symposium on Security and Privacy (SP),
pages 490–504. IEEE, 2019.

[5] Peter C. Bates. Debugging heterogeneous distributed
systems using event-based models of behavior. ACM
Transactions on Computer Systems, 13(1):1–31, Febru-
ary 1995.

[6] Bug 60956. https://bz.apache.org/bugzilla/
show_bug.cgi?id=60956.

[7] Alvin Cheung and Samuel Madden. Performance profil-
ing with endoscope, an acquisitional software monitor-
ing framework. Proc. VLDB Endow., 1(1):42–53, aug
2008.

[8] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upa-
manyu Sharma, Ruoyu Wang, and Insu Yun. Rept: Re-
verse debugging of failures in deployed software. In
Proceedings of the 13th Symposium on Operating Sys-
tems Design and Implementation, OSDI’18, pages 17–
32, 2018.

[9] David Devecsery, Peter M Chen, Jason Flinn, and Satish
Narayanasamy. Optimistic hybrid analysis: Accelerat-
ing dynamic analysis through predicated static analysis.
In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 348–362, 2018.

[10] David Devecsery, Michael Chow, Xianzheng Dou, Ja-
son Flinn, and Peter M. Chen. Eidetic systems. In Pro-
ceedings of the 11th Symposium on Operating Systems
Design and Implementation, Broomfield, CO, October
2014.

[11] Marc Eisenstadt. My hairiest bug war stories. Commun.
ACM, 40(4):30–37, apr 1997.

[12] Ulfar Erlingsson, Marcus Peinado, Simon Peter, and
Mihai Budiu. Fay: Extensible distributed tracing from
kernels to clusters. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles, pages 311–
326, October 2011.

[13] Dennis Geels, Gautam Altekar, Petros Maniatis, Timo-
thy Roscoe, and Ion Stoica. Friday: Global comprehen-
sion for distributed replay. In Proceedings of the 4th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI’07, pages 21–21, 2007.

[14] Simon F. Goldsmith, Robert O’Callahan, and Alex
Aiken. Relational queries over program traces. In Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’05, pages 385–402, New
York, NY, USA, 2005. ACM.

[15] Google sanitizers issues. https://github.com/
google/sanitizers/issues?q=is%3Aissue+is%
3Aopen+ASAN.

[16] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew
Layman, Don Reichart, Murali Venkatrao, Frank Pellow,
and Hamid Pirahesh. Data cube: A relational aggrega-
tion operator generalizing group-by, cross-tab, and sub-
totals. Data mining and knowledge discovery, 1(1):29–
53, 1997.

[17] Zhenyu Guo, Haoxiang Lin, Mao Yang, Dong Zhou,
Fan Long, Chaoqiang Deng, Changshu Liu, and Lidong
Zhou. G2: A graph processing system for diagnosing
distributed systems. In Proceedings of the 2011 USENIX
Annual Technical Conference, 2011.

[18] Maurice H. Halstead. Elements of Software Science
(Operating and Programming Systems Series). Elsevier
Science Inc., USA, 1977.

[19] Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines. In Proceedings of the 2005 USENIX Annual
Technical Conference, pages 1–15, April 2005.

[20] Geoffrey Lefebvre, Brendan Cully, Christopher Head,
Mark Spear, Norm Hutchinson, Mike Feeley, and An-
drew Warfield. Execution Mining. In Proceedings of

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    371

https://bz.apache.org/bugzilla/show_bug.cgi?id=60956
https://bz.apache.org/bugzilla/show_bug.cgi?id=60956
https://github.com/google/sanitizers/issues?q=is%3Aissue+is%3Aopen+ASAN
https://github.com/google/sanitizers/issues?q=is%3Aissue+is%3Aopen+ASAN
https://github.com/google/sanitizers/issues?q=is%3Aissue+is%3Aopen+ASAN


the 2012 ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments (VEE), March
2012.

[21] Yingsha Liao and Donald Cohen. A specificational
approach to high level program monitoring and mea-
suring. IEEE Transactions on Software Engineering,
18(11):969–978, 1992.

[22] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken,
and Michael I. Jordan. Scalable statistical bug isolation.
In Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementa-
tion, PLDI ’05, page 15–26, New York, NY, USA, 2005.
Association for Computing Machinery.

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instru-
mentation. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Im-
plementation, pages 190–200, Chicago, IL, June 2005.

[24] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles, 2015.

[25] Michael Martin, Benjamin Livshits, and Monica S Lam.
Finding application errors and security flaws using pql:
a program query language. ACM SIGPLAN Notices,
40(10):365–383, 2005.

[26] Steve McConnell. Code complete. Pearson Education,
2004.

[27] memcached - issue #127. https://code.google.
com/archive/p/memcached/issues/127.

[28] Memcached gets a dead loop in func assoc_find.
https://github.com/memcached/memcached/
issues/271.

[29] Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. In Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Im-
plementation, San Diego, CA, June 2007.

[30] Edmund B. Nightingale, Daniel Peek, Peter M. Chen,
and Jason Flinn. Parallelizing security checks on com-
modity hardware. In Proceedings of the 13th Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
308–318, Seattle, WA, March 2008.

[31] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. Engineering
record and replay for deployability. In Proceedings of
the 2017 USENIX Annual Technical Conference, Santa
Clara, CA, July 2017.

[32] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrig-
ger: exposing atomicity violation bugs from their hid-
ing places. In Proceedings of the 14th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 25–36, 2009.

[33] Rahul Patil and Boby George. Tools and tech-
niques to identify concurrency issues. hhttps:
//docs.microsoft.com/en-us/archive/msdn-
magazine/2008/june/tools-and-techniques-to-
identify-concurrency-issue.

[34] Andrew Quinn, David Devecsery, Peter M. Chen, and
Jason Flinn. JetStream: Cluster-scale parallelization of
information flow queries. In Proceedings of the 12th
Symposium on Operating Systems Design and Imple-
mentation, Savannah, GA, November 2016.

[35] Andrew Quinn, Jason Flinn, and Michael Cafarella.
Sledgehammer: Cluster-fueled debugging. In Proceed-
ings of the 13th Symposium on Operating Systems De-
sign and Implementation, pages 545–560, 2018.

[36] Redis 4.x lazyfree: memory leak may happen when free
slowlog entry #4323. https://github.com/redis/
redis/issues/4323.

[37] Robert Ricci, Eric Eide, and The CloudLab Team. Intro-
ducing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. USENIX ;login:,
39(6), December 2014.

[38] Olatunji Ruwase, Phillip B. Gibbons, Todd C. Mowry,
Vijaya Ramachandran, Shimin Chen, Michael Kozuch,
and Michael Ryan. Parallelizing dynamic information
flow tracking. In Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), June 2008.

[39] Konstantin Serebryany and Timur Iskhodzhanov.
ThreadSanitizer: Data race detection in practice. In
Proceedings of the Workshop on Binary Instrumentation
and Applications, December 2009.

[40] Richard Snodgrass. Monitoring in a software develop-
ment environment: A relational approach. In Proceed-
ings of the First ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Develop-
ment Environments, SDE 1, pages 124–131, New York,
NY, USA, 1984. ACM.

[41] Assertion fault when multi-use subquery implemented
by co-routine. https://www.sqlite.org/src/
tktview/787fa71.

372    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://code.google.com/archive/p/memcached/issues/127
https://code.google.com/archive/p/memcached/issues/127
https://github.com/memcached/memcached/issues/271
https://github.com/memcached/memcached/issues/271
hhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2008/june/tools-and-techniques-to-identify-concurrency-issue
hhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2008/june/tools-and-techniques-to-identify-concurrency-issue
hhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2008/june/tools-and-techniques-to-identify-concurrency-issue
hhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2008/june/tools-and-techniques-to-identify-concurrency-issue
https://github.com/redis/redis/issues/4323
https://github.com/redis/redis/issues/4323
https://www.sqlite.org/src/tktview/787fa71
https://www.sqlite.org/src/tktview/787fa71


[42] Sudarshan Srinivasan, Christopher Andrews, Srikanth
Kandula, and Yuanyuan Zhou. Flashback: A light-
weight extension for rollback and deterministic replay
for software debugging. In Proceedings of the 2004
USENIX Annual Technical Conference, pages 29–44,
Boston, MA, June 2004.

[43] Michael Stonebraker and Lawrence A Rowe. The design
of postgres. ACM Sigmod Record, 15(2):340–355, 1986.

[44] Kde bugtracking system. https://bugs.kde.org/
buglist.cgi?component=memcheck&product=
valgrind&resolution=---.

[45] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn,
and Satish Narayanasamy. Detecting and surviving data
races using complementary schedules. In Proceedings
of the 23rd ACM Symposium on Operating Systems Prin-
ciples, Cascais, Portugal, October 2011.

[46] Benjamin Wester, David Devescery, Peter M. Chen Ja-
son Flinn, and Satish Narayanasamy. Parallelizing data
race detection. In Proceedings of the 18th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Houston, TX, March
2013.

[47] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and
Implementation, pages 15–28, San Jose, CA, April 2012.
USENIX Association.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    373

https://bugs.kde.org/buglist.cgi?component=memcheck&product=valgrind&resolution=---
https://bugs.kde.org/buglist.cgi?component=memcheck&product=valgrind&resolution=---
https://bugs.kde.org/buglist.cgi?component=memcheck&product=valgrind&resolution=---




XRP: In-Kernel Storage Functions with eBPF

Yuhong Zhong1, Haoyu Li1, Yu Jian Wu1, Ioannis Zarkadas1, Jeffrey Tao1, Evan Mesterhazy1,
Michael Makris1, Junfeng Yang1, Amy Tai2, Ryan Stutsman3, and Asaf Cidon1

1Columbia University, 2Google, 3University of Utah

Abstract
With the emergence of microsecond-scale NVMe storage

devices, the Linux kernel storage stack overhead has become
significant, almost doubling access times. We present XRP,
a framework that allows applications to execute user-defined
storage functions, such as index lookups or aggregations, from
an eBPF hook in the NVMe driver, safely bypassing most
of the kernel’s storage stack. To preserve file system seman-
tics, XRP propagates a small amount of kernel state to its
NVMe driver hook where the user-registered eBPF functions
are called. We show how two key-value stores, BPF-KV, a
simple B+-tree key-value store, and WiredTiger, a popular
log-structured merge tree storage engine, can leverage XRP
to significantly improve throughput and latency.

1 Introduction
With the rise of new high performance memory technologies,
such as 3D XPoint and low latency NAND, new NVMe stor-
age devices can now achieve up to 7 GB/s bandwidth and
latencies as low as 3 µs [11, 19, 24, 26]. At such high per-
formance, the kernel storage stack becomes a major source
of overhead impeding both application-observed latency and
IOPS. For the latest 3D XPoint devices, the kernel’s storage
stack doubles the I/O latency, and it incurs an even greater
overhead for throughput (§2.1). As storage devices become
even faster, the kernel’s relative overhead is poised to worsen.

Existing approaches to tackle this problem tend to be
radical, requiring intrusive application-level changes or new
hardware. Complete kernel bypass through libraries such as
SPDK [82] allows applications to directly access underlying
devices, but such libraries also force applications to imple-
ment their own file systems, to forgo isolation and safety, and
to poll for I/O completion which wastes CPU cycles when I/O
utilization is low. Others have shown that applications using
SPDK suffer from high average and tail latencies and severely
reduced throughput when the schedulable thread count ex-
ceeds the number of available cores [54]; we confirm this in
§6, showing that in such cases applications indeed suffer a
3× throughput loss with SPDK.

In contrast to these approaches, we seek a readily-
deployable mechanism that can provide fast access to emerg-
ing fast storage devices that requires no specialized hardware
and no significant changes to the application while working
with existing kernels and file systems. To this end, we rely on
BPF (Berkeley Packet Filter [67, 68]) which lets applications
offload simple functions to the Linux kernel [8]. Similar to
kernel bypass, by embedding application-logic deep in the
kernel stack, BPF can eliminate overheads associated with
kernel-user crossings and the associated context switches. Un-
like kernel bypass, BPF is an OS-supported mechanism that
ensures isolation, does not lead to low utilization due to busy-
waiting, and allows a large number of threads or processes to
share the same core, leading to better overall utilization.

The support of BPF in the Linux kernel makes it an attrac-
tive interface for allowing applications to speed up storage
I/O. However, using BPF to speed up storage introduces sev-
eral unique challenges. Unlike existing packet filtering and
tracing use cases, where each BPF function can operate in a
self-contained manner on a particular packet or system trace
— for example, network packet headers specify which flow
they below to — a storage BPF function may need to syn-
chronize with other concurrent application-level operations or
require multiple function calls to traverse a large on-disk data
structure, a workload pattern we call “resubmission” of I/Os
(§2.3). Unfortunately the state required for resubmission such
as access-control information or metadata on how individual
storage blocks fit in the larger data structure they belong to is
not available at lower layers.

To tackle these challenges, we design and implement XRP
(eXpress Resubmission Path), a high-performance storage
data path using Linux eBPF. XRP is inspired by XDP, the
recent efficient Linux eBPF networking hook [28]. In order
to maximize its performance benefit, XRP uses a hook in
the NVMe driver’s interrupt handler, thereby bypassing the
kernel’s block, file system and system call layers. This allows
XRP to trigger BPF functions directly from the NVMe driver
as each I/O completes, enabling quick resubmission of I/Os
that traverse other blocks on the storage device.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    375



The key challenge in XRP is that the low-level NVMe
driver lacks the context that the higher levels provide. Those
layers contain information such as who owns a block (file
system layer), how to interpret the block’s data, and how to
traverse the on-disk data structure (application layer).

Our insight is that many storage-optimized data structures
that power real-world databases [10, 12, 20, 27, 44, 66, 70,
80] – such as on-disk B-trees, log-structured merge trees, and
log segments – are typically implemented on a small set of
large files, and they are updated orders of magnitude less
frequently than they are read; we validate this in §3. Hence,
we exclusively focus XRP on operations contained within
one file and on data structures that have a fixed layout on
disk. Consequently, the NVMe driver only requires a minimal
amount of the file system mapping state, which we term the
metadata digest; this information is small enough that it can
be passed from the file system to the NVMe driver so it can
safely perform I/O resubmissions. This allows XRP to safely
support some of the most popular on-disk data structures.

We present a design and implementation of XRP on Linux,
with support for ext4, which can easily be extended to other
file systems. XRP enables the NVMe interrupt handler to
resubmit storage I/Os based on user-defined BPF functions.

We augment two key-value stores with XRP: BPF-KV, a
B+-tree based key-value store that is custom-designed for
supporting BPF functions, and WiredTiger’s log-structured
merge tree, which is used as one of MongoDB’s storage en-
gines [27]. With random 512 B object reads on BPF-KV
with multiple threads using a B+-tree that has three index
levels on disk, XRP has 47%–94% higher throughput and
20%–34% lower p99 latency than read(). XRP also en-
ables more efficient sharing of cores among applications than
kernel bypass: it is able to provide 56% better p99 latency
than SPDK with two threads sharing the same core. In ad-
dition, XRP is able to consistently improve WiredTiger’s
performance by up to 24% under YCSB [41]. We open
source XRP and our changes to BPF-KV and WiredTiger
at https://github.com/xrp-project/XRP.

We make the following contributions.

1. New Datapath. XRP is the first datapath that enables the
use of BPF to offload storage functions to the kernel.

2. Performance. XRP improves the throughput of a B-tree
lookup by up to 2.5× compared to normal system calls.

3. Utilization. XRP provides latencies that approach kernel
bypass, but unlike kernel bypass, it allows cores to be
efficiently shared by the same threads and processes.

4. Extensibility. XRP supports different storage use cases,
including different data structures and storage operations
(e.g., index traversals, range queries, aggregations).

2 Background and Motivation
In this section we show why the Linux kernel is becoming
a primary bottleneck with fast NVMe devices and provide a

0

25

50

75

100

HDD NAND NVM−1 NVM−2

hardware
software

Figure 1: Kernel’s latency overhead with 512 B random reads. HDD
is Seagate Exos X16, NAND is Intel Optane 750 TLC NAND, NVM-
1 is first generation Intel Optane SSD (900P), and NVM-2 is second
generation Intel Optane SSD (P5800X).

kernel crossing 351 ns 5.6%
read syscall 199 ns 3.2%
ext4 2006 ns 32.0%
bio 379 ns 6.0%
NVMe driver 113 ns 1.8%
storage device 3224 ns 51.4%

total 6.27 µs 100.0%

Table 1: Average latency breakdown of a 512 B random read()

syscall using Intel Optane P5800X.

primer on BPF.

2.1 Software is Now the Storage Bottleneck
New media like 3D Xpoint [1] and low-latency NAND [26],
have led to new NVMe storage devices that exhibit single-
digit µs latencies and millions of IOPS [11, 19, 24, 26]. The
kernel storage stack is becoming a major performance bot-
tleneck when accessing these devices. Figure 1 shows the
percentage of time spent in the Linux stack when issuing a
512 B random read I/O on different storage devices. While
the software overhead for the first generation of fast NVMe
devices (first generation Intel Optane or Z-NAND) was non-
negligible (~15%), with the latest generation of devices (Intel
Optane SSD P5800X) the software overhead accounts for
about half of the latency of each read request. The kernel’s
relative overhead will only get worse as storage devices be-
come even faster.
Where is the time going? Table 1 shows the time spent in
the different storage layers when issuing a random 512 B read
with O_DIRECT on Optane P5800X. The experimental setup,
which is used throughout this section, is a server with 6-core
i5-8500 3 GHz with 16 GB of memory, using Ubuntu 20.04,
and Linux 5.8.0. We also disable processor C-states and turbo
boost, use the maximum performance governor, and disable
KPTI [30]. The experiment shows that the most expensive
layer is the file system (ext4), followed by the block layer (bio)
and the kernel crossing, and that the total software overhead
accounts for 48.6% of the average latency.
Why not just bypass the kernel? One approach to elimi-
nate kernel overhead is to bypass it altogether [7, 65, 82, 83],
leaving just the cost to post a request to the NVMe driver and
the device’s latency. However, kernel bypass is no panacea:
each user is entrusted with full access to the device; they must
also construct their own user space file systems [73, 74]. This
means that there is no mechanism to enforce fine-grained

376    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/xrp-project/XRP


NVMe Driver

bio Layer

NVMe DriverSyscall

File System

Syscall Layer

Kernel Boundary 

File System - Submission

bio Layer - Submission

NVMe Driver - Submission

NVMe Device

NVMe Driver - Completion 
Interrupt Handler

bio Layer - Completion 
Interrupt Handler

File System - Completion

Application

Syscall Function (e.g., read() / io_uring_enter())

Application
Dispatch Location

Figure 2: Dispatch paths for the application and two kernel hooks.

isolation or to share capacity among different applications ac-
cessing the same device. In addition, there is no efficient way
for user space applications to receive interrupts on I/O comple-
tions, so applications must directly poll on device completion
queues to obtain high performance. Consequently, when I/O
is not the bottleneck, cores cannot be shared among processes,
which results in significant under-utilization and wasted CPU.
Furthermore, when more than one polling thread shares the
same processor, the CPU contention between them coupled
with the lack of synchronization lead all polling threads to ex-
perience degraded tail latency and significantly lower overall
throughput. Recent work has highlighted this issue [54] and
we reproduce it in §6.2.

2.2 BPF Primer
BPF (Berkeley Packet Filter) is an interface that allows
users to offload a simple function to be executed by the ker-
nel. Linux’s framework for BPF is called eBPF (extended
BPF) [23]. Linux eBPF is commonly used for filtering pack-
ets (e.g., TCPdump) [5, 6, 28, 52], load balancing and packet
forwarding [5,18,25,60], tracing [2,4,50], packet steering [46],
network scheduling [53,58] and network security checks [15].
Functions are verified by the kernel at install-time to ensure
they are safe; for example, they are checked to make sure
they do not contain too many instructions, unbounded loops,
or accesses to out-of-bounds memory addresses [29]. After
verification, which typically takes a few seconds or less, the
eBPF functions can be called normally.

2.3 The Potential Benefit of BPF
BPF can be a mechanism for avoiding data movement be-
tween the kernel and user space in cases when a logical lookup
requires a sequence of “auxiliary” I/O requests that generate
intermediate data not needed directly by the application, such

Latency Speedup Throughput Speedup

User Space 78 µs 1× 109K IOPS 1×
Syscall Layer 68 µs 1.15× 130K IOPS 1.2×
NVMe Driver 40 µs 1.95× 276K IOPS 2.5×

Table 2: Average latency and throughput improvement with respect
to user space when resubmitting I/O from the given layer; for kernel
layers, resubmission is executed with a BPF function. Results shown
for lookups on an on-disk B-tree of depth 10 [85].

as in pointer-chasing workloads. For example, to traverse a
B-tree index, a lookup at each level traverses the kernel’s en-
tire storage stack only to be thrown away by the application
once it obtains the pointer to the next child node in the tree.
Instead of a sequence of system calls from user space, each
of the intermediate pointer lookups could be executed by a
BPF function, which would parse the B-tree node to find the
pointer to the relevant child node. The kernel would then sub-
mit the I/O to fetch the next node. Chaining a sequence of
such BPF functions could avoid the cost of traversing kernel
layers and moving data to user space.

Other popular on-disk data structures, such as log-
structured merge trees (LSM trees) [70], also have such aux-
iliary pointer lookups which can be accelerated using BPF
functions. Other types of operations that would benefit from
such an approach include range queries, iterators, and other
types of aggregations (e.g., obtain the maximum or average
value in a range of key-value pairs). In all of these cases, only
a single result or a small subset of the objects that might be
accessed by the storage system ultimately need to be returned
to the application.

The BPF function that resubmits (dispatches) I/O in auxil-
iary I/O workloads could be placed at any layer of the kernel.
Figure 2 shows the I/O paths for both normal user space dis-
patch and for two possible locations of BPF resubmission
hooks: in the syscall layer and in the NVMe driver. Zhong
et al. [85] compared the performance improvement from a
resubmission hook in both locations on workloads with auxil-
iary I/O by measuring the speedup of lookup queries on an
on-disk B-tree of depth 10. The baseline for comparison is
reading I/O through the read system call. Table 2 summarizes
the results.

Best Case Acceleration. Dispatching the I/O requests from
the NVMe driver provides a significant latency reduction (up
to 49%) and corresponding speedup (up to 2.5×), since it
bypasses almost the entire kernel software stack. On the other
hand, as expected, issuing the BPF functions from the syscall
dispatch layer only provides a maximum speedup of 1.25×,
since the requests only benefit from eliminating kernel bound-
ary crossings, which only account for 5-6% of the kernel
overhead (Table 1). After reaching CPU saturation, the com-
putation savings of reissuing the submissions from the NVMe
driver translate into throughput improvements of 1.8-2.5×,
depending on the number of threads in the workload [85].

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    377



1 2 3 4 5 6 7 8 9 10
I/O Chain Length

1.0

1.5

2.0

2.5

3.0
IO

PS
 Im

pr
ov

em
en

t batch size:8
batch size:4
batch size:2
batch size:1

Figure 3: Single-threaded lookups with io_uring syscall, using
NVMe driver hook.

Placing an eBPF hook anywhere in the kernel may im-
prove throughput between 1.2–2.5×. However, pushing the
I/O dispatching as close as possible to the storage device
dramatically improves the performance of a traversal. Hence
to obtain the highest possible speedup, XRP’s resubmission
hook should reside in the NVMe driver.

What about io_uring? io_uring is a new Linux system
call framework [9] that allows processes to submit batches
of asynchronous I/O requests, which amortizes user-kernel
crossings. However, each I/O submitted with io_uring still
passes through all the layers shown in Table 1, so each in-
dividual I/O still incurs the full storage stack overhead. In
fact, BPF I/O resubmissions are largely complementary to
io_uring: io_uring can efficiently submit batches of I/Os that
trigger different I/O chains managed by BPF in the kernel.

Figure 3 shows throughput improvements when using io_-
uring with a BPF hook in the NVMe driver. I/O Chain Length
denotes the total number of I/Os, including the initial I/O and
the resubmitted I/Os. Figure 3 shows that BPF can increase
throughput with respect to io_uring by up to 1.5× for small
batch sizes and up to 2.5× as batch sizes increase.

In summary, BPF can benefit both legacy read and io_-
uring system calls. By placing the hook in the kernel NVMe
driver, BPF may increase throughput of both legacy I/O and
single-threaded io_uring by up to 2.5×.

3 Design Challenges and Principles
As shown in the previous section, I/O resubmission must oc-
cur as close to the device as possible in order to reap the great-
est benefits. In the NVMe software stack, this is the NVMe
interrupt handler. However, executing the resubmissions from
within the NVMe interrupt handler, which lacks the context
of the file system layer, introduces two major challenges.

Challenge 1: address translation and security. The
NVMe driver has no access to file system metadata. In the
example of an index traversal, XRP issues a read I/O to a par-
ticular block and executes a BPF function that would extract
the offset of the next block it would like to query. However,
this offset is meaningless to the NVMe layer, since it cannot
tell which physical block the offset corresponds to without

having access to the file’s metadata and extents. Even if the ap-
plication developer made the effort to embed physical block
addresses to avoid the translation of the file system offset,
which would be burdensome, the BPF function could access
any block on the device, including blocks that belong to a file
that the user does not have permissions to access.

Challenge 2: concurrency and caching. It is challenging
to enable concurrent reads and writes issued from the file
system with XRP. A write issued from the file system will
only be reflected in the page cache, which is not visible to
XRP. In addition, any writes that modify the layout of the
data structure (e.g., modify the pointers to the next block)
that are issued concurrently to read requests could lead XRP
to accidentally fetch the wrong data. Both of these could be
addressed by locking, but accessing locks from within the
NVMe interrupt handler may be expensive.

Observation: most on-disk data structures are stable.
Both of these challenges would make it difficult to imple-
ment arbitrary concurrent BPF storage functions. However,
we make the observation that the files of many storage engines
(e.g., LSM trees and B-trees) remain relatively stable. Some
data structures simply do not modify on-disk storage struc-
tures in-place. For example, once an LSM tree writes its index
files (called SSTables) to disk, they are immutable until they
are deleted [12, 27, 44]. Accessing these immutable on-disk
storage structures requires less synchronization effort. Simi-
larly, even though some on-disk B-tree index implementations
support in-place updates, their file extents remain stable for
long periods of time. We verify this in a 24-hour YCSB [41]
(40% reads, 40% updates, 20% inserts, Zipfian 0.7) experi-
ment on MariaDB running TokuDB [20], which uses a fractal
tree (an on-disk B-tree variant) as its lookup index. We found
the index file’s extents only changed every 159 seconds on
average, with only 5 extent changes in 24 hours unmapping
any blocks, making it possible to cache file system metadata
in the NVMe driver without the overhead of frequent updates.
We also make the observation that in all of these storage en-
gines, the indices are stored on a small number of large files,
and each index does not span multiple files.

Design principles. These observations and experiments in-
form the following design principles.

• One file at a time. We initially restrict XRP to only is-
sue chained resubmissions on a single file. This greatly
simplifies address translation and access control, and it
minimizes the metadata that we need to push down to the
NVMe driver (the metadata digest, §4.1.3).

• Stable data structures. XRP targets data structures,
whose layout (i.e. pointers) remain immutable for a long
period of time (i.e. seconds or more). Such data structures
include the indices used in many popular commercial
storage engines, such as RocksDB [44], LevelDB [12],
TokuDB [12] and WiredTiger [27]. Since the cost of im-

378    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



plementing locks in the NVMe layer is high, we also
initially do not plan to support operations that require
locks during the traversal or iteration of data structures.

• User-managed caches. XRP does not interface with the
page cache, so XRP functions cannot safely be run concur-
rently if blocks are buffered in the kernel page cache. This
constraint is acceptable since popular storage engines of-
ten implement their own user space caches [20,27,39,44];
Commonly they do this to fine-tune their caching and
prefetching policies and to cache data in an application-
meaningful way (e.g., cache key-value pairs or database
rows instead of physical blocks).

• Slow path fallback. XRP is best-effort; if a traversal fails
for some reason (e.g., the extent mappings become stale),
the application must retry or fall back to dispatching the
I/O requests using user space system calls.

4 XRP Design and Implementation
This section presents XRP’s design and implementation with
Linux eBPF and ext4. We describe the kernel modifications
that enable XRP’s resubmission logic in the interrupt han-
dler, and how applications are modified to use XRP. We also
discuss XRP’s synchronization and scheduling limitations.

4.1 Resubmission Logic
The core of XRP augments the NVMe interrupt handler with
resubmission logic that consists of a BPF hook, a file system
translation step, and the construction and resubmission of the
next NVMe request at the new physical offsets (Figure 4).
Our modifications to the Linux kernel consist of ~900 lines
of code: ~500 lines for the BPF hook and the changes to the
NVMe driver, ~400 lines for the file system translation step.

When an NVMe request completes, the device generates
an interrupt that causes the kernel to context switch into the
interrupt handler. For each NVMe request that is completed
in the interrupt context, XRP calls its associated BPF function
(bpf_func_0 in Figure 4), the pointer of which is stored in a
field in the kernel I/O request struct (i.e. struct bio). After
calling the BPF function, XRP invokes the metadata digest,
which is usually a digest of file system state that enables
XRP to translate the logical address of the next resubmission.
Finally, XRP prepares the next NVMe command resubmission
by setting the corresponding fields in the NVMe request, and
it appends the request to the NVMe submission queue (SQ)
for that core.

For a particular NVMe request, the resubmission logic is
called as many times as necessary for subsequent completions
as determined by the specific BPF function registered with
the NVMe request. For example, for traversing a tree-like
data structure, the BPF function would resubmit I/O requests
for branch nodes and end resubmission whenever a leaf node
is found. In our current prototype there is no hard limit on
the number of resubmissions before the completion returns
control to the application; such a limit would be necessary to

Core 0

NVMe Queue 0

SQ CQ

NVMe Device

Core 1

NVMe Queue 1

SQ CQ

Completion
Interrupt

NVMe Driver

Call Interrupt Handler 
for Each Irq

Completion 
Interrupt Handler

Completion 
Interrupt Handler

Per-Request Context
bpf_func_0,
scratch_buff_0,

Call BPF 
Function

Call BPF 
Function

Prepare NVMe 
command

Resubmit 
NVMe

Command

Prepare NVMe 
command

Per-Request Context
bpf_func_1,
scratch_buff_1,

Completion 
Interrupt Handler

Per-Request Context
bpf_func_n,
scratch_buff_n,

Prepare NVMe 
command

Call BPF 
Function

Metadata Digest

Block Layer

File System

Syscall Function

Application
Kernel 

Boundary

Figure 4: XRP architecture.

struct bpf_xrp {

// Fields inspected outside BPF

char *data;

int done;

uint64_t next_addr[16];

uint64_t size[16];

// Field for BPF function use only

char *scratch;

};

uint32_t BPF_PROG_TYPE_XRP(struct bpf_xrp *ctxt);

Listing 1: Signature of BPF programs that can be loaded by XRP.

prevent unbounded execution. A hard limit can be enforced
by maintaining a resubmission counter in each I/O request
descriptor. Since I/O request descriptors cannot be accessed
from user space or from XRP’s BPF programs, their hard
resubmission limits cannot be overridden by users even if
XRP has multiple BPF functions that execute request resub-
missions. BPF function contexts are per-request, while the
metadata digest is shared across all invocations of the inter-
rupt handler across all cores. Safe concurrent access to the
metadata digest relies on read-copy-update (RCU) (§4.1.3).

4.1.1 BPF Hook

XRP introduces a new BPF type (BPF_PROG_TYPE_XRP) with
the signature shown in Listing 1 – any BPF function that
matches the signature can be called from the hook. §5 presents
one concrete BPF function matching this signature that is used
in our application. For example, for on-disk data structure

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    379



traversal, the BPF function typically contains logic to extract
the next offset to fetch from the block.

BPF_PROG_TYPE_XRP programs require a context with five
fields, categorized into fields that are inspected or modified by
the BPF caller (resubmission logic in the interrupt handler),
and fields that should be private to the BPF function. Fields
that are accessed externally include data, which buffers data
read from the disk (e.g., a B-tree page waiting to be parsed
by the BPF function). done is a boolean that notifies the
resubmission logic whether to return to the user or continue
resubmitting I/O requests. next_addr and size are arrays of
logical addresses and their corresponding sizes that indicate
the next logical addresses for resubmission.

In order to support data structures with fanout, multiple
next_addr values can be supplied. By default we limit fanout
to 16; on-disk data structures align their components to small
multiples of device pages, so we have not encountered a need
for higher fanout per completion. For example, chained hash
table buckets are likely implemented as a chain of individual
physical pages and the elements of an on-disk linked list
are likely implemented at the granularity of physical pages.
Setting a corresponding size field to zero issues no I/O.

scratch is a scratch space that is private to the user and
the BPF function. It can be used to pass the parameters from
the user to the BPF function. Also, the BPF function can use
it to store intermediate data in between I/O resubmissions
and to return data to the user. For example, in the first BPF
invocation, the application can store a search key in the scratch
buffer so that the BPF function can compare it with the keys
in the disk block in order to find the next offset. When the I/O
chain reaches the leaf node of the B-tree, the BPF function
then places the key-value pair in the scratch buffer to return
it back to the application. For simplicity, we assume that the
size of the scratch buffer is always 4 KB. We find that a 4 KB
scratch buffer is sufficient to support a BPF function for a
production key-value store (§5). BPF functions can also use
BPF maps to store more data if their intermediate data cannot
fit into the scratch buffer. Each BPF context is private to one
NVMe request, so no locking is needed when working with
BPF context state. Letting the user supply a scratch buffer
(instead of using BPF map) avoids the overhead of processes
and functions having to call bpf_map_lookup_elem to access
the scratch buffer.

4.1.2 BPF Verifier

The BPF verifier ensures memory safety by tracking the se-
mantics of the value stored in each register [14]. A valid value
can either be a scalar or a pointer. SCALAR_TYPE represents a
value that cannot be dereferenced. The verifier defines var-
ious pointer types; most of them include extra constraints
beyond the no out-of-bound access requirement. For exam-
ple, PTR_TO_CTX is the type for the pointer to a BPF context.
It can only be dereferenced using a constant offset so the
verifier can identify which context field a memory operation

void update_mapping(struct inode *inode);

void lookup_mapping(struct inode *inode,

off_t offset, size_t len,

struct mapping *result);

Listing 2: Metadata digest: XRP exposes an interface to share
logical-to-physical-block mappings between the file system and
the IRQ handler.

accesses. Each BPF function type also defines a callback
function is_valid_access() to perform additional checks
on context accesses and to return the value type of the context
field. PTR_TO_MEM describes a pointer referring to a fixed-size
memory region. It supports dereferencing using a variable
offset as long as the access is always within bounds. The
data and scratch fields of the BPF_PROG_TYPE_XRP context
are PTR_TO_MEM and the rest are SCALAR_TYPE. We augment
the verifier to allow the BPF_PROG_TYPE_XRP’s is_valid_ac-
cess() callback to pass the size of the data buffer or scratch
buffer to the verifier so that it can perform the boundary check.
We discussed our proposed modification to the verifier with
the Linux eBPF maintainers, and they think it is sensible.

4.1.3 The Metadata Digest

In the conventional storage stack, the logical block offsets
in on-disk data structures are translated by the file system in
order to identify the next physical block to read. This transla-
tion step also enforces access control and security, preventing
reading in regions that are not mapped to the open file. In
XRP, the next logical address for a lookup is given by the
next_addr field after the BPF call. However, translating this
logical address to a physical address is challenging since the
interrupt handler has no notion of a file and does not perform
physical address translation.

To solve this, we implement the metadata digest, a thin in-
terface between the file system and the interrupt handler that
lets the file system share its logical-to-physical-block map-
pings with the interrupt handler, enabling safe eBPF-based
on-disk resubmissions. The metadata digest consists of two
functions (Listing 2). The update function is called within the
file system when the logical-to-physical mapping is updated.
The lookup function is called within the interrupt handler; it
returns the mapping for a given offset and length. The lookup
function also enforces access control by preventing BPF func-
tions from requesting resubmissions for blocks outside of the
open file. The inode address of the open file is passed to the
interrupt handler in order to query the metadata digest. If an
invalid logical address is detected, XRP returns to user space
immediately with an error code. The application can then fall
back to normal system calls to attempt its request again.

These two functions are specific to each file system, and
even for a particular file system, there may be multiple ways to
implement the metadata digest, presenting a tradeoff between
ease of implementation and performance. For example, in

380    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



our implementation for ext4, the metadata digest consists
of a cached version of the extent status tree, which stores
the physical-to-logical block mappings. This cached tree is
accessed by the update and lookup function of the interface,
and it uses read-copy-update (RCU) for concurrency control.
RCU enables the lookup function to be lockless and fast (96 ns
on average).

To keep the cached tree up-to-date with the extents in ext4,
the update function is called in two places in ext4: whenever
extents are inserted or removed from the main extent tree. To
prevent a race condition where an extent is modified while
there is an inflight read on it, we maintain a version number
for each extent to track its changes. After data is read, but
before it is passed to the BPF function, a second metadata
digest lookup is performed. If the corresponding extent no
longer exists or its version number has changed, XRP will
abort the operation. Since application-level synchronization
usually prevents concurrent modifications and lookups on the
same region of a file at the same time, version mismatches
should only occur if the application is buggy or malicious.

An alternative, simpler implementation of the metadata
digest for ext4 could simply pass through to existing update
and access functions of the extent tree in ext4. In this case, the
update function would be a no-op, because ext4 already keeps
its extent tree up-to-date. However, such an implementation
would be much slower on the lookup path, because the extent
lookup function in ext4 acquires a spinlock, which would be
prohibitively expensive in the interrupt handler.

For now, XRP only supports the ext4 file system, but the
metadata digest can be easily implemented for other file sys-
tems. For example, in f2fs [64], logical-to-physical-block
mappings are stored in the node address table (NAT). Similar
to the ext4 implementation, an implementation of its metadata
digest could cache a local copy of the NAT, which would be
consulted in lookup_mapping. Then update_mapping would
need to be called anywhere in f2fs where the NAT is updated.

4.1.4 Resubmitting NVMe Requests

After looking up the physical block offsets, XRP prepares the
next NVMe request. Because this logic occurs in the interrupt
handler, to avoid the (slow) kmalloc calls needed to prepare
NVMe requests, XRP reuses the existing NVMe request struct
(i.e. struct nvme_command) of the just-completed request.
XRP simply updates the physical sector and block addresses
of the existing NVMe request to the new offsets derived from
the mapping lookup. Reusing NVMe request structs for im-
mediate resubmission is safe because neither user space nor
XRP BPF programs can access the raw NVMe request structs.

While struct bpf_xrp supports a maximum fanout of 16,
in the current implementation a resubmitted I/O request can
only fetch as many physical segments as the initial NVMe
request. For example, if an initial NVMe request only fetches
a single block, then all subsequent resubmissions for that
request can only fetch a single physical segment. During a

resubmission chain, if the BPF call returns multiple valid
addresses in next_addr, XRP will abort the request. This
limitation can be worked around by allocating and setting up
16 dummy NVMe commands in the first I/O request so that
subsequent resubmissions can express fanout if necessary.

4.2 Synchronization Limitations
BPF currently only supports a limited spinlock for synchro-
nization. The verifier only allows BPF programs to acquire
one lock at a time, and they must release the lock before
returning. Also, user space applications do not have direct
access to these BPF spinlocks. Instead, they must invoke the
bpf() syscall; the syscall can read or write the lock-protected
structure while holding the lock for the duration of that oper-
ation. Hence, complex modifications that require synchroniz-
ing across multiple reads and writes cannot be accomplished
in user space.

Users can implement custom spinlocks using BPF atomic
operations. This allows both BPF functions and user space
programs to acquire any spinlock directly. However, the ter-
mination constraint prohibits BPF functions from spinning to
wait for a spinlock infinitely. Another option for synchroniza-
tion is RCU. Since XRP BPF programs are run in the NVMe
interrupt handler, which cannot be preempted, de-facto they
are already in an RCU read-side critical section.

4.3 Interaction with Linux Schedulers
Process scheduler. Interestingly, we observed that a
microsecond-scale storage device like Optane SSD interferes
with Linux’s CFS when multiple processes share the same
core, even when all I/O is issued from user space. For ex-
ample, in the case where an I/O-heavy and compute-heavy
process share the same core, the I/O interrupts generated by
the I/O-heavy process will be handled in the timeslice of
the compute-heavy process. This may cause the compute-
heavy process to be starved of CPU; in the worst case in
our experiments, the compute-heavy process only received
about 34% of what would be a “fair” allocation of CPU time.
We experimentally verified this does not occur when using a
slower storage device, which generates interrupts much less
frequently. While XRP exarcerbates this problem by gener-
ating chains of interrupts, this issue is not specific to eBPF,
and can also be caused by network-driven interrupts [59]. We
leave this problem for future work.

I/O scheduler. XRP bypasses Linux’s I/O scheduler, which
sits at the block layer. However, the noop scheduler is already
the default I/O scheduler for NVMe devices, and the NVMe
standard supports arbitration at hardware queues if fairness is
a requirement [17].

5 Case Studies
To use XRP, applications use the interface shown in Listing 3.
Applications call libbpf [13] function bpf_prog_load to load
a BPF function of type BPF_PROG_TYPE_XRP to be offloaded

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    381



int bpf_prog_load(const char *file,

enum bpf_prog_type type,

struct bpf_object **pobj,

int *prog_fd);

int read_xrp(int fd, void *buf, size_t count,

off_t offset, int bpf_fd,

void *scratch);

Listing 3: The XRP application interface consists of a libbpf
function to load BPF functions into the kernel and a read syscall that
requests that a BPF function be used. bpf_prog_load is an existing
function in libbpf. bpf_prog_load returns a file descriptor for the
loaded function, which must be passed to read_xrp. read_xrp adds
two arguments to the standard pread [21] syscall: this file descriptor
and a pointer to a 4 KB scratch space that is passed to the BPF
context.

in the driver and call read_xrp to apply a specific BPF func-
tion to the read request. Applications can load multiple BPF
functions with XRP. For example, a database can load a func-
tion for filtering and calculating aggregations from values
on-disk and a function for GET point lookups. XRP allows the
application to load multiple BPF functions into the kernel and
to specify the BPF function to use in each read_xrp syscall.
We present two case studies on how applications should be
modified to use XRP.

5.1 BPF-KV
We built a simple key-value store, called BPF-KV, with which
we can evaluate XRP against other baselines: Linux’s syn-
chronous and asynchronous system calls and kernel bypass
(SPDK [82]). BPF-KV is designed to store a large number
of small objects and to provide good read performance even
under uniform access patterns. BPF-KV uses a B+-tree index
to find the location of objects, and the objects themselves
are stored in an unsorted log. For simplicity, BPF-KV uses
fixed-sized keys (8 B) and values (64 B). The index and the
log are both stored in one large file. The index nodes use a
simple page format with a header followed by keys followed
by values. Leaf nodes contain a file offset pointing to the next
leaf node, enabling efficient index traversal for range queries
and aggregation. Object sizes are fixed, so updates occur in-
place in the unsorted log. Newly inserted items are appended
to the log; their index is initially stored in an in-memory hash
table. Once the hash table fills, BPF-KV merges it with the
on-disk B+-tree file.

Caching. BPF-KV implements a user space DRAM cache
for index blocks and objects. To reduce the number of I/Os it
needs to issue for lookups, BPF-KV caches the top k levels of
the B+-tree index. With a sufficiently large number of objects,
it is not possible to fit the entire index in the cache. Consider
the case where BPF-KV is used to store 10 billion 64 B
objects. In BPF-KV’s index, each node is 512 B (matching
the access granularity of the Optane SSD); hence, the tree

has a fanout of 31 (i.e. each internal node can store pointers
to 31 children). Therefore, 10 billion objects would require
an index with 8 levels. Fitting 6 index levels in DRAM is
expensive and would require 14 GB, while fitting 7 levels or
more becomes prohibitively expensive (437 GB of DRAM or
more). So, to support a large number of keys, BPF-KV would
require at the minimum 3-4 I/Os from storage for each lookup,
including a final I/O to fetch the actual key-value pair from
disk. Also note that having a hard memory budget for caching
the index is common in many real-world key-value stores
(e.g., RocksDB [45], DocumentDB [78], SplinterDB [40],
TokuDB [20]), since the index cache often competes with
other parts of the system that need memory, such as filters
and the object cache.

BPF-KV also maintains a least recently used (LRU) object
cache of the most popular key-value pairs. Before looking up
an object on disk, BPF-KV first checks whether it is stored
in the object cache. If not, it checks whether it is indexed
in the in-memory hash table. If the item is not found in the
in-memory hash table, it looks up the object by accessing the
first k cached levels of the index. Once it encounters an index
node that is not cached, it completes the index and the final
lookup on disk.

To find an object without XRP, BPF-KV traverses the B-
tree until the desired value is found using an I/O request per
level. For example, if the index contains 7 levels and the first
3 are cached and read from DRAM, then the traversal will
issue 4 I/Os to navigate the rest of the tree, followed by a final
I/O to fetch the object from the log.

BPF function. Listing 4 shows the BPF function used in
BPF-KV to lookup a key-value pair. We omit the code to
handle the final lookup in the log for simplicity. struct

node defines the layout of B+-tree index nodes whose size is
512 B. The BPF function bpfkv_bpf first extracts the target
key stored in the scratch buffer, and then it linearly searches
the slots in the current node to find the next node to read.

Interface modifications. We replace read calls with
read_xrp. Before calling into read_xrp, BPF-KV first al-
locates a buffer for the scratch space and calculates the offset
at which to start the lookup.

Range queries. BPF-KV supports range queries returning
a variable number of objects. We implement a BPF function
that runs as a state machine, allowing the operation to be
suspended and resumed when objects are returned to the ap-
plication for processing. The BPF function state, including the
beginning and end of the range, and the retrieved objects, are
stored in the scratch space (up to 32 72-byte key-value pairs).
On the initial invocation, the function traverses to the leaf
node that contains the starting key. Once the first key in the
range is found, the function stores the leaf node in the scratch
space and requests the block containing the corresponding
value. On the next BPF invocation, the function stores the
value in the scratch space and it continues the index scan

382    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



struct node {

uint64_t num; uint64_t type;

uint64_t key[31]; uint64_t ptr[31];

};

uint32_t bpfkv_bpf(struct bpf_xrp *ctxt) {

uint64_t key = *((uint64_t*)ctxt->scratch);

struct node *n = (struct node *)ctxt->data;

if (n->type == LEAF_NODE) {

ctxt->done = true;

return 0;

}

int i;

for (i = 1; i < n->num; i++)

if (key < n->key[i]) break;

ctxt->done = false;

ctxt->next_addr[0] = n->ptr[i - 1];

ctxt->size[0] = 512;

return 0;

}

Listing 4: BPF function for BPF-KV.

on the cached leaf node. When the leaf node has been read
completely, the function submits a request for the next leaf
node using the node’s next-leaf file offset. The function re-
turns to the application in three cases: 1) the function reaches
a key past the end of the range; 2) the function reaches the
end of the index; 3) the function fills the scratch space with
values read from the log. In the last case, the application can
process the values and re-invoke the BPF function with the
range query state, allowing the range query to resume from
where it left off.

Aggregations. BPF-KV also supports aggregation opera-
tions, such as SUM, MAX and MIN. We implement these oper-
ations on top of the BPF range query function by setting a
bit that causes the function to perform the corresponding ag-
gregation instead of returning the individual values. Since
aggregation queries return a single answer, storing values in
the scratch space does not limit the number of I/O resubmits
the BPF function can request.

5.2 WiredTiger
WiredTiger is a popular key-value store that is the default
backend for MongoDB [27]. We use it as a case study since it
is a relatively simple and open key-value store that is used in
production. WiredTiger provides an option to use an LSM tree
where data is split into different levels; each level contains a
single file. Each file uses a B-tree index with the key-value
pairs embedded in the tree’s leaf nodes. The files are read-
only; updates and inserts are written into a buffer in memory.
When the buffer is full, the data is written out in a new file. We
configure the B-tree page size to be the same as our Optane
SSD’s block size (512 B). Our modification to WiredTiger
is around 500 lines of code, which mainly consist of buffer

allocation, extending function signatures and wrapping the
XRP syscall. XRP helps accelerate reads that are serviced
from disk, and it does not affect updates or inserts, which are
always absorbed by WiredTiger’s in-memory buffer.

BPF function. To use XRP, WiredTiger installs a BPF func-
tion similar to the one shown in Listing 4. The difference is
in order to find the next lookup address from the current page,
the BPF function contains a port of WiredTiger’s B-tree page
parsing code. This parsing logic replaces the for loop in
Listing 4.

The WiredTiger BPF function also makes several modi-
fications to make the BPF program compile correctly and
pass the BPF verifier. The modifications mainly consist of
adding bounds on loops to avoid infinite loops, masking point-
ers to eliminate out-of-bound access, and initializing local
variables to prevent access to uninitialized registers. We also
use the BPF function-by-function verification feature [3] to
break a complex function into several simple sub-functions.
This allows BPF functions to be verified independently, so
the functions that have been verified do not need another
round of verification when being called by other functions.
The function-by-function verification feature also supports
more complex BPF programs without exceeding the verifier’s
restrictions on function length.

Caching. WiredTiger maintains a least recently used (LRU)
cache for its B-tree internal pages and leaf pages. When look-
ing up a new key-value pair, WiredTiger caches the entire
lookup path including the leaf page in the cache. In order to
comply with WiredTiger caching semantics, the BPF function
described in the previous section also returns all traversed
pages so that WiredTiger can cache them. The BPF func-
tion stores traversed pages in the scratch buffer of its context.
When the scratch buffer is exhausted, the BPF function will
stop resubmitting requests and return to user space imme-
diately. After WiredTiger adds those pages into its cache, it
will call read_xrp again to continue the lookup starting at
the previous page. Since we set the size of the scratch buffer
to 4 KB, a BPF function can store up to 6 traversed 512 B
pages in the scratch buffer, which leaves room for necessary
metadata such as the search key.

Interface modifications. To integrate WiredTiger with
XRP, we replace normal read calls with read_xrp. read_-
xrp is called when the next page is not in the cache and needs
to be read from disk. The eviction policy of WiredTiger en-
forces that only the pages without any cached children pages
can be evicted, so any uncached page will not have cached
descendants. Therefore, it is safe to call read_xrp to read
all of the remaining path from disk without checking the
application-level cache again. If read_xrp fails for any rea-
son, WiredTiger falls back to the normal lookup path. We
allocate a data and scratch buffer for each WiredTiger session
to avoid the overhead of allocating and freeing buffers for
every request. WiredTiger sessions synchronously process

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    383



Average Lookup Latency (µs)

# Ops SPDK io_uring read() XRP

1 5.2 13.6 13.4 10.7
2 7.8 20.2 20.6 14.2
3 11.2 28.0 27.4 18.0
4 14.3 35.0 34.0 21.7
5 17.2 42.4 41.5 25.4
6 20.2 49.3 48.8 29.3

Table 3: Average latency of a random key lookup with BPF-KV as
a function of the depth of the B+-tree stored on-disk. # ops is the
number of index I/Os per lookup.

one request at a time, which avoids concurrency issues.

6 Evaluation
In this section we seek to answer the following questions:
1. What are the overheads of using BPF for storage (§6.1)?
2. How does XRP scale to multiple threads (§6.2)?
3. What types of operations can XRP support (§6.3)?
4. Can XRP accelerate a real-world key-value store (§6.4)?

Experimental setup. All experiments are conducted on a
6-core i5-8500 3 GHz server with 16 GB of memory, using
Ubuntu 20.04, and Linux 5.12.0 with an Intel Optane 5800X
prototype. All experiments use O_DIRECT, turn off hyper-
threading, disable processor C-states and turbo boost, use the
maximum performance governor, and enable KPTI [30]. We
use WiredTiger 4.4.0 in the experiments.

Baselines. We compare the following configurations: (a)
XRP, (b) SPDK (a popular kernel-bypass library), (c) standard
read() system calls, and (d) standard io_uring system calls.

6.1 BPF-KV
Latency. To answer the first evaluation question, we mea-
sure the performance of BPF-KV on a benchmark that per-
forms a million read operations with keys drawn randomly
with uniform probability. The experiment varies the number
of levels of the tree that are stored on-disk. In this subsection,
we disable caching of data objects and index nodes to focus
on the overhead of looking up on-disk items. The measured
average latency is shown in Table 3. The leftmost column rep-
resents the number of chained I/Os that are required to lookup
the key in the index (not including the final data lookup). For
example, if the number of operations is 4, then BPF-KV is
configured with an on-disk tree of depth 4, and it also needs
to issue one more I/O to fetch the key-value pair from the log.

There are a few takeaways from this experiment. First,
XRP improves latency over read(), because XRP saves one
or more storage layer traversals when it traverses the index
or moves from the index to the log. Indeed, one can see
that XRP’s latency increases by about 3.5-3.9 µs for each
additional I/O operation, which is close to the device’s latency
(Table 1). This means that XRP achieves close to optimal

latency for resubmitted requests. The same is true for io_-
uring: in the case of submitting I/O requests synchronously
without batching, read() and io_uring are almost equivalent.
Second, SPDK exhibits better latency than XRP since XRP
must pass through the kernel’s storage stack once to initiate
the index traversal, while SPDK completely bypasses the
kernel. Nonetheless, XRP’s marginal added latency when the
depth of the B+-tree is increased is close to SPDK’s (2.6 µs-
3.4 µs). For this reason, in the case of a 6-level index, XRP is
only 45% slower than SPDK while read() is 142% slower
than SPDK. Importantly, XRP achieves this without resorting
to polling. This means that, unlike with SPDK, processes can
continue to use CPU cores efficiently for other work; XRP’s
use of CPU time is limited to what is specifically needed
to resubmit I/Os in the background and to keep I/O device
utilization high.

Figure 5a and Figure 5b present the 99th-percentile latency
and 99.9th-percentile latency of XRP, respectively. When run-
ning with a single thread, similar to the average latency re-
sults, XRP reduces both 99th-percentile latency and 99.9th-
percentile latency by up to 30% compared to read() and
io_uring. Note that our experiment runs as a closed loop, so
XRP is running at a higher throughput than read() and io_-
uring. At identical throughput XRP would show additional
improvement over these baselines. Interestingly, when the
number of threads exceeds the number of cores (6) by more
than 3, SPDK’s 99.9th-percentile latency increases signifi-
cantly. This is due to the fact that with SPDK all threads are
busy-polling, and cannot effectively share the same core with
other threads. To this end, we measure the percentage of re-
quests whose latencies are greater than or equal to 1 ms and
present the data in Figure 5c. The results show that SPDK has
0.03% of such requests with 7 threads, and this percentage
increases to 0.28% when the number of threads reaches 24. In
contrast, io_uring, read(), and XRP always have fewer than
0.01% of such requests.

Throughput. Figure 6a shows the throughput of XRP. As
expected, as the index depth increases, XRP’s speedup is
higher compared to standard system calls. Figures 6b and 6c
show the throughput speedups with a varying number of
threads with an index of depth 3 and 6, respectively. Both
figures show the speedup of XRP relative to issuing standard
system calls does not decrease even as I/O and XRP BPF
functions are scaled across several cores. Once again, XRP
provides equal to or higher throughput compared to SPDK
once the number of threads is 9 or higher.

6.2 Thread Scaling
Since storage applications often use a large number of con-
current threads that access I/O devices, for example in order
to process concurrent requests and to perform background
garbage collection [12, 20, 27, 44], XRP needs to be able to
provide good tail latency and throughput under a large number
threads. We analyze how XRP scales as a function of the num-

384    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 3 5 7 9 11
Number of Threads

0

50

100

150

99
th

 L
at

en
cy

 (µ
s)

SPDK
io_uring
read
XRP

(a) 99th-percentile latency.

1 3 5 7 9 11
Number of Threads

102

103

104

99
.9

th
 L

at
en

cy
 (µ

s)

SPDK
io_uring
read
XRP

(b) (Log scale) 99.9th-percentile latency.

1 3 6 9 12 15 18 21 24
Number of Threads

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s
wi

th
 L

at
en

cy
 ≥

 1
m

s (
%

) SPDK
io_uring
read
XRP

(c) Percentage of requests with latency ≥ 1 ms.

Figure 5: Tail latency and percentage of requests with extreme latency of XRP and SPDK against read and io_uring with BPF-KV with index
depth 6, random key lookups, and closed-loop load generator.

1 2 3 4 5 6
Index Depth

0

50

100

150

Th
ro

ug
hp

ut
 (k

Op
s/

Se
c) SPDK

io_uring
read
XRP

(a) Single thread with varying index depth.

1 2 3 4 5 6 7 8 9 10 11 12
Number of Threads

0

100

200

300

400

500
Th

ro
ug

hp
ut

 (k
Op

s/
Se

c) SPDK
io_uring
read
XRP

(b) Multiple threads with index depth 3.

1 2 3 4 5 6 7 8 9 10 11 12
Number of Threads

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (k

Op
s/

Se
c) SPDK

io_uring
read
XRP

(c) Multiple threads with index depth 6.

Figure 6: Throughput of XRP and SPDK against read and io_uring with BPF-KV with random key lookups and closed-loop load generator.

6 10 14 18 22
Number of Threads

0

200

400

600

Th
ro

ug
hp

ut
 (k

Op
s/

Se
c)

Hardware Limit
SPDK
XRP

(a) Scalability of XRP and SPDK.

0 200 400 600
Throughput (kOps/Sec)

0

10

20

30

40

La
te

nc
y 

(m
s)

avg (SPDK)
99% (SPDK)
avg (XRP)
99% (XRP)

(b) Latency-throughput graph of
XRP and SPDK with 12 threads.

Figure 7: XRP vs. SPDK with open-loop load generator.

1 20 40 60 80
Range Length

0

200

400

600

Av
er

ag
e 

La
te

nc
y 

(µ
s) read

XRP

(a) Average Latency

1 20 40 60 80
Range Length

0

10

20

30

40

Th
ro

ug
hp

ut
 (k

Op
s/

Se
c)

read
XRP

(b) Throughput

Figure 8: Average read latency and throughput of BPF-KV with
XRP vs. read() when performing a range query over a varying
number of objects.

ber of threads and compare it to SPDK. We run an open loop
experiment, where the amount of load matches the maximum
bandwidth of the Intel device (5M IOPS for 512 B random
reads). Figure 7a compares the throughput of XRP (integrated

with io_uring) to SPDK with BPF-KV using 6 on-disk index
levels, where each thread represents a different tenant. Two
major observations are: 1) when using 6 working threads (the
number of CPU cores on the machine) both SPDK and XRP
can achieve a throughput close to the hardware limit (the grey
dashed line); 2) once the thread count exceeds the CPU cores,
SPDK’s throughput steadily decreases while XRP still pro-
vides stable throughput. SPDK’s throughput collapse stems
from its polling-based approach; SPDK threads never yield,
leaving scheduling up to Linux’s CFS which works in coarse
6 ms timeslices. However, idle XRP threads will voluntarily
yield the CPU to busy threads, so more CPU cycles are spent
on actual work. Figure 7b presents the throughput-latency
relationship under 12 working threads as a function of the
load. With more threads than CPU cores, both average and
tail latencies also increase more significantly in SPDK, as
each thread waits longer to be scheduled than in XRP.

6.3 Range Query
Figure 8 compares the average latency and the throughput
of running a range query with XRP against performing the
query with read() system calls. In both cases the range query
performs a single index traversal to find the first object, and
traverses the leaf nodes of the index to find the address of
subsequent objects. The index depth is 6 in this experiment.
Even though the XRP range query can only retrieve 32 objects
per syscall, the results show this adds negligible overhead.
XRP’s performance speedup remains relatively constant as a
function of the length of the aggregation, since XRP performs
only one storage stack traversal for every 32 values retrieved.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    385



YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F0

50

100

150

200

250

KV
 O

pe
ra

tio
ns

/S
ec

on
d

(T
ho

us
an

ds
)

58

37 34

19
2

8

31

67

45 42

19
4

9

37

10
7

72 66

31
0

15

60

12
3

87 79

30
5

16

70

15
8

10
4

98

42
4

20

91

17
8

12
5

11
2 42

4

20

10
6

1 Thread (Baseline)
1 Thread (XRP)

2 Threads (Baseline)
2 Threads (XRP)
3 Threads (Baseline)
3 Threads (XRP)

(a)

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F0

50

100

150

KV
 O

pe
ra

tio
ns

/S
ec

on
d

(T
ho

us
an

ds
)

58

37 34

19
2

8

31

67

45 42

19
4

9

37

62

42 42

19
4

9

34

72

51 50

19
3

10

39

71

49 52

19
4

11

38

78

58 60

19
3

11

43

83

60

68

19
3

12

44

90

68

75

19
4

12

49

512MB Cache (Baseline)
512MB Cache (XRP)
1GB Cache (Baseline)
1GB Cache (XRP)

2GB Cache (Baseline)
2GB Cache (XRP)
4GB Cache (Baseline)
4GB Cache (XRP)

(b)

Figure 9: Throughput of reads/scans in WiredTiger with (a) varying client threads with a 512 MB cache and (b) varying cache size.

0.6 0.8 1.0 1.2 1.4 1.6
Zipfian Constant

1.0

1.1

1.2

1.3

Th
ro

ug
hp

ut
 S

pe
ed

up

Uniform
Zipfian

(a)

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F0

50

100

150

200

P9
9 

Re
ad

/S
ca

n
La

te
nc

y 
(u

s)

11
8

10
1

98

13

23
6 11

6

83

66 67

13

22
3

82

11
4

88

81

13

22
9 12

1

82

56 53

13

22
3

84

12
9

85

76

13

25
0

13
2

91

59

51

13

24
3

91

1 Thread (Baseline)
1 Thread (XRP)

2 Threads (Baseline)
2 Threads (XRP)
3 Threads (Baseline)
3 Threads (XRP)

(b)

Figure 10: (a) Throughput speedup of WiredTiger on YCSB C with a varying Zipfian constant and with a uniform distribution. (b) 99th-
percentile latency of reads/scans in WiredTiger with varying number of threads with 512 MB cache.

6.4 WiredTiger

To understand whether XRP can benefit a real-world database,
we evaluate the performance of WiredTiger with and without
XRP on YCSB [41]. We run the different YCSB workloads so
that their runtime takes more or less the same time: YCSB A,
B, C and E use 10M operations, D uses 50M operations and
E uses 3M. The baseline WiredTiger uses pread() to read B-
tree pages, while the WiredTiger with XRP uses read_xrp().
We populate the database with 1 billion key-value pairs and
set the size of both key and value to 16 B. The total size of
the database is 46 GB. WiredTiger runs eviction threads to
evict pages when its cache usage is close to full, and we set
the number of eviction threads to 2.

Throughput. Figure 9 shows the total throughput of
WiredTiger with different cache sizes and different numbers
of client threads. We configure WiredTiger with 512 MB,
1 GB, 2 GB, and 4 GB cache sizes to ensure that WiredTiger
can cache at least 1% of its database while not exhausting
all the available memory on the machine. We run up to 3
client threads to avoid context switches. The results show
that XRP speeds up most workloads consistently by up to
1.25×. The throughput improvements are mostly affected by
the cache size. The speedup generally goes down when the
cache size becomes larger. In general, XRP provides a lower
speedup on WiredTiger than on BPF-KV, because WiredTiger
is less optimized than BPF-KV for reading from fast NVM
storage, and only spends 63% of its total time on I/O. In par-
ticular, XRP does not provide significant improvements on

YCSB D and YCSB E. This is because YCSB D follows a
latest distribution where the newly inserted items are the most
popular ones. Since new inserts are always written into in-
memory buffers, most read operations read from those buffers
in YCSB D. On the other hand, YCSB E only has inserts
and scans. WiredTiger supports scans via an iterator interface,
which only looks up one key-value pair at a time. XRP can
only benefit the lookup of the first key-value pair of a scan
operation, since the rest of the key-value pairs mostly either
reside on the same leaf node or require only one additional
I/O to fetch the next leaf node.

To study the effect of access distribution on XRP, we run
YCSB C with a varying Zipfian constant and with a uniform
distribution. Figure 10a shows that XRP’s benefit decreases
when the Zipfian constant becomes larger (i.e. , the distribu-
tion is more skewed) because of the increased cache hit ratio.
Note that skews greater than 0.99 represent very high skew
levels. We also see that the throughput gain on WiredTiger is
lower than that on BPF-KV with the uniform YCSB C. This
is again because WiredTiger spends 37% of its total time on
non-I/O operations.

Tail latency. We measure the tail read latency of
WiredTiger with and without XRP under a fixed load: 20 kop/s
per client thread for YCSB A, B, C, D, F, and 5 kops/s per
client thread for YCSB E. Since YCSB E has scans instead
of reads, we set a lower load for it and measure the tail scan
latency instead of the tail read latency. Figure 10b shows
that XRP can reduce the 99th-percentile latency by up to 40%.
Similar to the throughput, the 99th-percentile latency improve-

386    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



ment mostly decreases with a larger cache size, and XRP does
not have significant effect on YCSB D and E.

7 Related Work
There are four areas of related work: (a) using BPF to acceler-
ate I/O (typically networking), (b) kernel-bypass systems, (c)
near-storage compute, and (d) extensible operating systems
and library file systems.

BPF for I/O. There is a large number of systems and frame-
works that use BPF to accelerate I/O processing, primarily
focused on networking and tracing use cases [2,4–6,15,18,25,
28, 37, 46, 49, 50, 52]. Most closely related to XRP, XDP [28]
accelerates networking I/O by adding a hook in the NIC
driver’s RX path. It then provides an interface for eBPF pro-
grams that either filter, redirect, or bounce the packet.

There are no existing systems that use BPF to resubmit
storage requests from within the kernel. Kourtis et al. [62]
propose a system that uses eBPF functions as an interface to
submit disaggregated storage requests in order to avoid cross-
ing the network. In their system, resubmissions occur from
a user space service sitting at the host and are not serviced
by the kernel itself, since the network is the primary bottle-
neck (not the kernel software stack). ExtFUSE [36] allows
user space file systems on Linux to load BPF functions into
the kernel to serve low-level file system requests and thus
eliminates unnecessary context switches. While ExtFUSE ac-
celerates user space file systems, it provides no performance
benefits for an application that already uses a standard kernel
file system (e.g., ext4), since it does not allow applications
to bypass the kernel’s storage stack. BMC [49] uses BPF to
accelerate memcached by intercepting packets on the network
path at the host. The BPF functions can then access a separate
small kernel-based cache, which serves as a first-level cache
and is not synchronized with the user space memcached ap-
plication. Zhong et al. [85] provide motivation for using BPF
for accelerating storage from within the kernel, but do not
provide a concrete design, implementation or evaluation.

Kernel bypass. In order to reduce the kernel’s overhead
when processing I/O, several libraries and operating systems
have been designed to let users directly access I/O devices [7,
33, 34, 42, 47, 57, 65, 69, 71, 72, 82–84]. Most relevant to our
work, Intel’s SPDK [82] is a popular kernel-bypass library for
storage. In general, the downside of allowing users to access
I/O directly is that applications must directly poll for I/O to
obtain high performance. This means that cores cannot be
shared among processes, which leads to significant under-
utilization when I/O is not the bottleneck.

Near-storage compute. There are several systems that al-
low applications to offload their storage functions to the
processor embedded within or attached to a storage de-
vice [16, 22, 31, 38, 43, 51, 55, 61, 63, 74, 75, 77, 81]. The
downside of this approach is that it requires specialized stor-
age devices, dedicated hardware, or both.

Extensible operating systems and library file systems.
Our approach is reminiscent of extensible operating systems
and library file systems from the 1990s. Extensible operating
systems (e.g., SPIN [35] and VINO [76, 79]) allow exten-
sion of kernel functionality via user-defined functions. For
example, a client can write kernel extensions that read and de-
compress video frames from disk. Another related approach is
library file systems, such as XN [48,56]. Similar to XRP, XN
allows userspace library file systems to load untrusted meta-
data translation functions into the kernel, while guaranteeing
disk block protection without understanding file systems’ data
structures. These approaches required using dedicated operat-
ing and file systems, while XRP is compatible with Linux and
its standard file systems. ExtOS [32], a more recent extensible
OS, minimizes data movements in read() and splice() by
using BPF functions to filter data before copying them to user
space or another file, but it still incurs the full storage stack
overhead and does not allow I/O request resubmissions.

8 Conclusions and Future Work
BPF has the potential to accelerate applications using fast
NVMe devices by moving computation closer to the device.
XRP lets applications write functions that can resubmit de-
pendent storage requests to achieve speedups close to kernel-
bypass while retaining the advantages of being OS-integrated.
Beyond fast lookups, we envision XRP can be used for many
types of functions such as compaction, compression and dedu-
plication. In addition, XRP in the future can be developed as
a common interface for other use cases where computation
needs to be moved closer to storage, such as programmable
storage devices and networked storage systems. For example,
XRP could be used as an interface that can dynamically sup-
port both in-kernel offloading, as well as offloading functions
to a smart storage device or an FPGA. Another direction we
plan to explore is networked storage. XRP storage functions
could be chained with XDP networking functions to create
a datapath that bypasses both the kernel’s networking and
storage paths.

9 Acknowledgments
We would like to thank our shepherd, Ymir Vigfusson, and
the anonymous reviewers for their helpful comments. We
also thank Kostis Kaffes and Tom Anderson for providing
valuable feedback on earlier versions of our work. This work
was supported by NSF grants CNS-2143868, CNS-2104292,
and CNS-1750558, and an equipment gift from Intel.

References
[1] 3D Xpoint: A Breakthrough in Non-Volatile Mem-

ory Technology. https://www.intel.com/content/
www/us/en/architecture-and-technology/intel-

micron-3d-xpoint-webcast.html.

[2] bcc. https://github.com/iovisor/bcc.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    387

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://github.com/iovisor/bcc


[3] bpf: Introduce function-by-function verification. https:
//lore.kernel.org/bpf/20200109063745.3154913-4-
ast@kernel.org/.

[4] bpftrace. https://github.com/iovisor/bpftrace.

[5] Cilium. https://github.com/cilium/cilium.

[6] Cloudflare architecture and how BPF eats the
world. https://blog.cloudflare.com/cloudflare-
architecture-and-how-bpf-eats-the-world/.

[7] DPDK Data Plane Development Kit. https://

www.dpdk.org/.

[8] eBPF. https://ebpf.io/.

[9] Efficient io with io_uring. https://kernel.dk/
io_uring.pdf.

[10] HDFS Architecture Guide. https://

hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

[11] Intel® Optane™ SSD DC P5800X Series.
https://ark.intel.com/content/www/us/en/ark/
products/201859/intel-optane-ssd-dc-p5800x-

series-1-6tb-2-5in-pcie-x4-3d-xpoint.html.

[12] LevelDB. https://github.com/google/leveldb.

[13] libbpf. https://github.com/libbpf/libbpf.

[14] Linux Socket Filtering Documentation. https:

//www.kernel.org/doc/Documentation/networking/
filter.txt.

[15] MAC and Audit policy using eBPF. https://lkml.org/
lkml/2020/3/28/479.

[16] NGD systems newport platform. https:

//www.ngdsystems.com/technology/computational-
storage.

[17] NVMe base specification. https://nvmexpress.org/
wp-content/uploads/NVM-Express-1_4b-

2020.09.21-Ratified.pdf.

[18] Open-sourcing katran, a scalable network load bal-
ancer. https://engineering.fb.com/2018/05/22/
open-source/open-sourcing-katran-a-scalable-

network-load-balancer/.

[19] Optimizing Software for the Next Gen Intel Optane
SSD P5800X. https://www.intel.com/content/www/
us/en/events/memory-and-storage.html?videoId=
6215534787001.

[20] Percona TokuDB. https://www.percona.com/
software/mysql-database/percona-tokudb.

[21] pread(2) - Linux manual page. https://man7.org/
linux/man-pages/man2/pread.2.html.

[22] SmartSSD computational storage drive. https:

//www.xilinx.com/applications/data-center/
computational-storage/smartssd.html.

[23] A thorough introduction to eBPF. https://lwn.net/
Articles/740157/.

[24] Toshiba memory introduces XL-FLASH storage class
memory solution. https://business.kioxia.com/en-
us/news/2019/memory-20190805-1.html.

[25] udplb. https://github.com/moolen/udplb.

[26] Ultra-Low Latency with Samsung Z-
NAND SSD. https://www.samsung.com/
semiconductor/global.semi.static/Ultra-
Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf.

[27] WiredTiger storage engine. https://

docs.mongodb.com/manual/core/wiredtiger/.

[28] XDP. https://www.iovisor.org/technology/xdp.

[29] Nadav Amit and Michael Wei. The design and imple-
mentation of hyperupcalls. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 97–112,
2018.

[30] Nadav Amit, Michael Wei, and Dan Tsafrir. Dealing
with (some of) the fallout from meltdown. In Proceed-
ings of the 14th ACM International Conference on Sys-
tems and Storage, pages 1–6, 2021.

[31] Antonio Barbalace, Anthony Iliopoulos, Holm Rauch-
fuss, and Goetz Brasche. It’s time to think about an
operating system for near data processing architectures.
In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems, HotOS ’17, page 56–61, New York,
NY, USA, 2017. Association for Computing Machinery.

[32] Antonio Barbalace, Javier Picorel, and Pramod Bhatotia.
Extos: Data-centric extensible os. In Proceedings of the
10th ACM SIGOPS Asia-Pacific Workshop on Systems,
APSys ’19, page 31–39, New York, NY, USA, 2019.
Association for Computing Machinery.

[33] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mazières, and Christos Kozyrakis. Dune:
Safe user-level access to privileged CPU features. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 335–348, Holly-
wood, CA, October 2012. USENIX Association.

[34] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for high

388    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lore.kernel.org/bpf/20200109063745.3154913-4-ast@kernel.org/
https://lore.kernel.org/bpf/20200109063745.3154913-4-ast@kernel.org/
https://lore.kernel.org/bpf/20200109063745.3154913-4-ast@kernel.org/
https://github.com/iovisor/bpftrace
https://github.com/cilium/cilium
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://www.dpdk.org/
https://www.dpdk.org/
https://ebpf.io/
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://github.com/google/leveldb
https://github.com/libbpf/libbpf
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://lkml.org/lkml/2020/3/28/479
https://lkml.org/lkml/2020/3/28/479
https://www.ngdsystems.com/technology/computational-storage
https://www.ngdsystems.com/technology/computational-storage
https://www.ngdsystems.com/technology/computational-storage
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratified.pdf
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.intel.com/content/www/us/en/events/memory-and-storage.html?videoId=6215534787001
https://www.intel.com/content/www/us/en/events/memory-and-storage.html?videoId=6215534787001
https://www.intel.com/content/www/us/en/events/memory-and-storage.html?videoId=6215534787001
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mysql-database/percona-tokudb
https://man7.org/linux/man-pages/man2/pread.2.html
https://man7.org/linux/man-pages/man2/pread.2.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://github.com/moolen/udplb
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://www.iovisor.org/technology/xdp


throughput and low latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 49–65, Broomfield, CO, October 2014.
USENIX Association.

[35] Brian N Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gün Sirer, Marc E Fiuczynski, David Becker,
Craig Chambers, and Susan Eggers. Extensibility safety
and performance in the SPIN operating system. In Pro-
ceedings of the fifteenth ACM symposium on Operating
systems principles, pages 267–283, 1995.

[36] Ashish Bijlani and Umakishore Ramachandran. Exten-
sion framework for file systems in user space. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 121–134, Renton, WA, July 2019. USENIX
Association.

[37] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient software packet processing on FPGA NICs.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 973–990.
USENIX Association, November 2020.

[38] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li,
Wenjie Wu, Linqiang Ouyang, Peng Wang, Yijing Wang,
Ray Kuan, Zhenjun Liu, Feng Zhu, and Tong Zhang.
POLARDB meets computational storage: Efficiently
support analytical workloads in cloud-native relational
database. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), pages 29–41, Santa
Clara, CA, February 2020. USENIX Association.

[39] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. FASTER: A concurrent key-value store with in-
place updates. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD
’18, page 275–290, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[40] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. SplinterDB: Closing the
bandwidth gap for NVMe key-value stores. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 49–63, 2020.

[41] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[42] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich,
Marios Kogias, Boon Thau Loo, Linh Thi Xuan Phan,
and Irene Zhang. When idling is ideal: Optimizing
tail-latency for heavy-tailed datacenter workloads with
perséphone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 621–637, New York, NY, USA, 2021. Association
for Computing Machinery.

[43] Jaeyoung Do, Sudipta Sengupta, and Steven Swanson.
Programmable solid-state storage in future cloud dat-
acenters. Communications of the ACM, 62(6):54–62,
2019.

[44] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Strum. Op-
timizing space amplification in RocksDB. In CIDR,
volume 3, page 3, 2017.

[45] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM
footprint with NVM in Facebook. In Proceedings of the
Thirteenth EuroSys Conference, pages 1–13, 2018.

[46] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma.
Partition-aware packet steering using XDP and eBPF for
improving application-level parallelism. In Proceedings
of the 1st ACM CoNEXT Workshop on Emerging In-
Network Computing Paradigms, ENCP ’19, page 27–33,
New York, NY, USA, 2019. Association for Computing
Machinery.

[47] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at mi-
crosecond timescales. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 281–297. USENIX Association, November
2020.

[48] Gregory R Ganger and M Frans Kaashoek. Embedded
inodes and explicit grouping: Exploiting disk bandwidth
for small files. In USENIX Annual Technical Conference,
pages 1–17, 1997.

[49] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating memcached
using safe in-kernel caching and pre-stack processing.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 487–501.
USENIX Association, April 2021.

[50] Brendan Gregg. BPF Performance Tools. Addison-
Wesley Professional, 2019.

[51] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    389



Jeong, and Duckhyun Chang. Biscuit: A framework for
near-data processing of big data workloads. SIGARCH
Comput. Archit. News, 44(3):153–165, jun 2016.

[52] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The express data path: Fast
programmable packet processing in the operating sys-
tem kernel. In Proceedings of the 14th international
conference on emerging networking experiments and
technologies, pages 54–66, 2018.

[53] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg
Rombakh, Paul Turner, and Christos Kozyrakis. GhOSt:
Fast & flexible user-space delegation of Linux schedul-
ing. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, SOSP ’21, page
588–604, New York, NY, USA, 2021. Association for
Computing Machinery.

[54] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and
Rachit Agarwal. Rearchitecting linux storage stack for
µs latency and high throughput. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 113–128. USENIX Association, July
2021.

[55] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstanti-
nou, and Steven Swanson. KAML: A flexible, high-
performance key-value SSD. In 2017 IEEE Interna-
tional Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 373–384. IEEE, 2017.

[56] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Hector M. Briceño, Russell Hunt, David Maz-
ières, Thomas Pinckney, Robert Grimm, John Jannotti,
and Kenneth Mackenzie. Application Performance and
Flexibility on Exokernel Systems. In Proceedings of
the Sixteenth ACM Symposium on Operating Systems
Principles, SOSP ’97, page 52–65, New York, NY, USA,
1997. Association for Computing Machinery.

[57] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345–360, 2019.

[58] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-defined schedul-
ing across the stack. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 605–620, New York, NY, USA,
2021. Association for Computing Machinery.

[59] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu,
Karthick Rajamani, Alexandre Ferreira, and Aditya
Akella. Iron: Isolating network-based CPU in container
environments. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18),
pages 313–328, Renton, WA, April 2018. USENIX As-
sociation.

[60] Marios Kogias, Rishabh Iyer, and Edouard Bugnion. By-
passing the load balancer without regrets. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
pages 193–207, 2020.

[61] Gunjae Koo, Kiran Kumar Matam, I Te, HV Krishna Giri
Narra, Jing Li, Hung-Wei Tseng, Steven Swanson, and
Murali Annavaram. Summarizer: trading communica-
tion with computing near storage. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 219–231. IEEE, 2017.

[62] Kornilios Kourtis, Animesh Trivedi, and Nikolas Ioan-
nou. Safe and efficient remote application code execu-
tion on disaggregated NVM storage with eBPF. arXiv
preprint arXiv:2002.11528, 2020.

[63] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo Jeong,
and Yong Ho Song. Cosmos+ OpenSSD: Rapid proto-
type for flash storage systems. ACM Transactions on
Storage (TOS), 16(3):1–35, 2020.

[64] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pages 273–286, 2015.

[65] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A micro-
kernel approach to host networking. In Proceedings of
the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’19, page 399–413, New York, NY, USA,
2019. Association for Computing Machinery.

[66] Yoshinori Matsunobu, Siying Dong, and Herman Lee.
MyRocks: LSM-tree database storage engine serving
Facebook’s social graph. Proceedings of the VLDB
Endowment, 13(12):3217–3230, 2020.

[67] Steven McCanne and Van Jacobson. The BSD packet fil-
ter: A new architecture for user-level packet capture. In
USENIX Winter 1993 Conference (USENIX Winter 1993
Conference), San Diego, CA, January 1993. USENIX
Association.

390    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[68] J. Mogul, R. Rashid, and M. Accetta. The packer filter:
An efficient mechanism for user-level network code.
In Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles, SOSP ’87, page 39–51,
New York, NY, USA, 1987. Association for Computing
Machinery.

[69] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361–378, Boston, MA, February 2019. USENIX Asso-
ciation.

[70] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (LSM-tree).
Acta Informatica, 33(4):351–385, 1996.

[71] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 14),
pages 1–16, Broomfield, CO, October 2014. USENIX
Association.

[72] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page
325–341, New York, NY, USA, 2017. Association for
Computing Machinery.

[73] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael
Lo, Mau-Chung Frank Chang, and Jason Cong. High-
throughput lossless compression on tightly coupled
CPU-FPGA platforms. In 2018 IEEE 26th Annual In-
ternational Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pages 37–44. IEEE,
2018.

[74] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:
Designing in-storage computing system for emerging
high-performance drive. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 379–394,
2019.

[75] Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eber-
hardt, and Andreas Polze. Accessible near-storage com-
puting with FPGAs. In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–
12, 2020.

[76] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and
Keith A. Smith. Dealing with disaster: Surviving misbe-
haved kernel extensions. In Proceedings of the Second

USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’96, page 213–227, New York,
NY, USA, 1996. Association for Computing Machinery.

[77] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable SSD. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 67–80, Broomfield, CO, October 2014.
USENIX Association.

[78] Dharma Shukla, Shireesh Thota, Karthik Raman, Mad-
han Gajendran, Ankur Shah, Sergii Ziuzin, Krishnan
Sundaram, Miguel Gonzalez Guajardo, Anna Wawrzy-
niak, Samer Boshra, et al. Schema-agnostic indexing
with Azure DocumentDB. Proceedings of the VLDB
Endowment, 8(12):1668–1679, 2015.

[79] Christopher A Small and Margo I Seltzer. Vino: An
integrated platform for operating system and database
research. 1994.

[80] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, et al. Cock-
roachDB: The resilient geo-distributed SQL database. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1493–1509,
2020.

[81] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline
Trippel, Carole-Jean Wu, David Brooks, and Gu-Yeon
Wei. Recssd: Near data processing for solid state drive
based recommendation inference. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS 2021, page 717–729, New York, NY,
USA, 2021. Association for Computing Machinery.

[82] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. SPDK:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[83] Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell
Roberts, and Anirudh Badam. I’m not dead yet! the
role of the operating system in a kernel-bypass era. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 73–80, 2019.

[84] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    391



Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The demikernel dat-
apath os architecture for microsecond-scale datacenter
systems. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, SOSP ’21,
page 195–211, New York, NY, USA, 2021. Association
for Computing Machinery.

[85] Yuhong Zhong, Hongyi Wang, Yu Jian Wu, Asaf Cidon,
Ryan Stutsman, Amy Tai, and Junfeng Yang. BPF for
storage: An exokernel-inspired approach. In Proceed-
ings of the Workshop on Hot Topics in Operating Sys-
tems, HotOS ’21, page 128–135, New York, NY, USA,
2021. Association for Computing Machinery.

392    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A Artifact Appendix
Abstract
We open-source XRP, a high-performance storage data path
using Linux eBPF. The artifact includes the implementation
of XRP in the Linux kernel and two key-value stores that
leverage XRP to significantly improve throughput and latency.

Scope
The artifact allows readers to run all the experiments in §6
and generate Table 3, Figure 5, Figure 6, Figure 7, Figure 8,
Figure 9, and Figure 10.

Contents
The artifact provides the following parts.
1. XRP: the implementation of XRP in the Linux kernel

v5.12.0.
2. BPF-KV: a simple key-value store that uses XRP to accel-

erate both point and range lookups.
3. WiredTiger: a modified WiredTiger (based on v4.4.0) that

integrates with XRP to speed up index lookups.
4. My-YCSB: an efficient YCSB benchmark written in C++

for WiredTiger.
Test scripts and drawing scripts are also provided for all

the experiments and results in §6.

Hosting
The artifact is hosted on the main branch (commit fae90c5) of
the Github repository https://github.com/xrp-project/
XRP.

Requirements
XRP requires a low latency NVMe SSD on which the over-
head of the Linux storage stack is significant. We use Intel
Optane SSD P5800X in all the experiments. In the test scripts,
we assume that the operating system is Ubuntu 20.04, and
there are 6 physical CPU cores on the machine. Other config-
urations may require changing the scripts accordingly.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    393

https://github.com/xrp-project/XRP
https://github.com/xrp-project/XRP




TriCache: A User-Transparent Block Cache Enabling High-Performance
Out-of-Core Processing with In-Memory Programs

Guanyu Feng1, Huanqi Cao1, Xiaowei Zhu2, Bowen Yu1, Yuanwei Wang1,
Zixuan Ma1, Shengqi Chen1, and Wenguang Chen1

1Department of Computer Science and Technology & BNRist, Tsinghua University, 2Ant Group

Abstract
Out-of-core systems rely on high-performance cache sub-

systems to reduce the number of I/O operations. While the
page cache in modern operating systems enables transpar-
ent access to memory and storage devices, it suffers from
efficiency and scalability issues on cache misses, forcing out-
of-core systems to design and implement their own cache
components, which is a non-trivial task.

This study proposes TriCache, a cache mechanism that
enables in-memory programs to efficiently process out-of-
core datasets without requiring any code rewrite. It provides
a virtual memory interface on top of the conventional block
interface to simultaneously achieve user transparency and
sufficient out-of-core performance. A multi-level block cache
design is proposed to address the challenge of per-access
address translations required by a memory interface. It can
exploit spatial and temporal localities in memory or storage
accesses to render storage-to-memory address translation and
page-level concurrency control adequately efficient for the
virtual-memory interface.

Our evaluation shows that in-memory systems operating
on top of TriCache can outperform Linux OS page cache
by more than one order of magnitude, and can deliver perfor-
mance comparable to or even better than that of corresponding
counterparts designed specifically for out-of-core scenarios.

1 Introduction

NVMe [45] Solid State Drives (NVMe SSDs) have drawn a
wide range of interest because of their high I/O performance.
The U.2 interface [48] and PCIe 4.0 standard [47] have also
increased the storage density of NVMe SSDs in recent years.
For instance, a dual-socket commodity server can mount an
array of more than 16 NVMe SSDs to provide tens of TB of
storage capacity, tens of millions of random IOPS, and dozens
of GB/s of bandwidth while being 20–40 times cheaper than
Dynamic Random Access Memory (DRAM).

Although NVMe SSD arrays can improve the aggregated
performance and capacity of the system, they still suffer from

block-wise I/O accesses and have latencies at least 100 times
longer than those of DRAM. To efficiently process datasets
that are significantly larger than available memory, out-of-
core systems rely on cache sub-systems to maintain frequently
operated data in memory. I/O operations can be merged or
skipped on cache hits, bridging the performance gap between
DRAM and SSDs.

Page cache [46] is a cache sub-system in modern oper-
ating systems (OS) that manages data on the granularity of
pages (typically 4KB) across DRAM and SSDs. It enables
in-memory applications to support out-of-core processing on
SSDs without requiring any rewrite through swapping [44] or
memory-mapping [43] based on virtual memory.

However, current implementations of page cache encounter
issues related to scalability and performance on cache misses
owing to global locking on internal data structures [29]. Re-
cent literature [27, 34, 55] indicates that the heavy I/O stack,
page faults, and context switching overheads also limit kernel
swapping and I/O performance on fast storage devices such
as NVMe SSD arrays.

Therefore, data-intensive applications such as databases
and data processing systems [6, 12, 15, 20–22, 52, 54] usually
design and implement their own user-space block caches (also
known as buffer managers) that manage data by blocks (typi-
cally of a fixed size that is a multiple of the physical sector
size). In contrast to OS page cache, block cache reduces con-
text switching overhead by running mainly in the user space,
and supports customization in terms of tuning block sizes and
replacement policies to further improve performance.

Nevertheless, designing and implementing block caches
and upper-level components imposes expensive development
costs. Existing block caches in the user space usually ask
users to explicitly acquire/release blocks [12, 20] or manipu-
late data through an asynchronous interface [54]. Developers
often have to re-design and re-implement the entire system
according to the API requirements of the block cache, which
is non-trivial. To fill the gap between out-of-core performance
and development costs, we investigate a new general cache
mechanism that can transparently extend in-memory systems

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    395



for efficient out-of-core processing on NVMe SSDs without
requiring any manual modification.

Efficient kernel-bypass I/O stacks, such as SPDK [50], can
achieve good out-of-core performance in the user space by
avoiding expensive kernel I/O operations to take advantage
of the high IOPS from the NVMe SSD array. It inspires us to
explore a user-space solution that can eliminate the overhead
due to page faults and context switching. A solution in the user
space is cross-platform, easy to deploy and customize, and
avoids introducing potential security vulnerabilities caused
by kernel modifications.

To ensure transparency for the user, a virtual memory inter-
face is expected to fill the semantic gap between fine-grained
memory accesses in existing in-memory programs and block-
wise I/O operations on physical block devices as in the case
of the virtual memory provided by OS. A virtual memory
interface makes it possible for in-memory software to run on
NVMe SSDs without requiring any modification if we can
automatically redirect memory accesses to the block cache.

Several challenges need to be addressed to implement a
user-space block cache with a virtual memory interface. First,
the cache system requires good scalability to achieve high
out-of-core performance so that it can fit in the hundreds of
CPU cores and the tens of millions of SSD IOPS in use today.
Second, it requires an efficient address translation mechanism
that looks up in-memory addresses for cached blocks, to pro-
vide a virtual memory interface with fine-grained accesses.
Such fine-grained accesses and per-access address translations
pose a much more significant challenge than block lookups in
current user-space block caches. Third, it requires a scheme to
redirect the memory accesses of existing in-memory systems
to the cache system without any manual modification.

To address the above challenges, we propose the following
contributions:

• We build a scalable block cache based on a concurrency
mechanism named Hybrid Lock-free Delegation that
combines message passing based delegation with lock-
free hash tables. It can utilize the NVMe SSD array with
only a few server threads.

• We design a two-level Software Address Translation
Cache (SATC) to support lightning-fast address transla-
tion in the user space, replacing human effort for writ-
ing block-aware code with an automatic mechanism by
exploiting locality at runtime. SATC can accelerate soft-
ware address translation by some orders of magnitude.

• We propose a pure software-based scheme to supervise
memory accesses based on compile-time instrumenta-
tion and library hooking techniques. Existing in-memory
applications can efficiently run on NVMe SSDs through
the block cache without requiring any code modification.

Based on these techniques, we design and implement a user-
transparent block cache providing a virtual memory interface,
named TriCache. Our results show that TriCache enables in-
memory programs to efficiently process out-of-core datasets

without requiring manual code rewrite, by using various do-
mains of application. TriCache can outperform OS page cache
by some orders of magnitude, and can often reach or even
exceed the performance of specialized out-of-core systems.

2 Background and Motivation

In this section, we briefly introduce the two types of general
caches that can be used for out-of-core processing, OS page
cache and user-space block cache, and use a motivating ex-
ample to show the benefits as well as the challenges of a new
approach that combines the advantages of both.

Page cache is a transparent cache for pages originating
from storage devices [46]. Modern operating systems keep
the page cache in unused portions of the main memory. Some
accesses to storage devices can be handled by the page cache
to improve performance. The page cache is implemented in
kernels through virtual memory management and is mostly
transparent to applications. Users can use a memory-mapping
system call [43] to map a file to a segment in virtual memory,
or rely on swapping [44] to swap out/in pages to/from disks
on-demand, thus accessing storage just like memory.

While the memory interface of the page cache provides
maximal user transparency for developing out-of-core appli-
cations [9, 26], its use can lead to severe performance bottle-
necks, especially on cache misses when the backed storage
is an array of high-performance NVMe SSDs. It results from
various factors, including but not limited to its global locking
in the kernel, the heavy I/O stack, page faults, and context
switching overheads [27, 29, 34, 55]. Although some studies
have attempted to modify the kernel to improve the perfor-
mance of the page cache [27–29, 39, 41], it is challenging to
apply the relevant modifications in the kernel space, which
may introduce potential portability and security issues.

To this end, most out-of-core systems design and imple-
ment their own block caching components in the user space
to mitigate and even eliminate the above issues. Like the OS
page cache, a block cache manages a pool of pages in mem-
ory, and loads/evicts pages from/to disks upon user requests.
The major difference is that the block cache runs mostly in
user space and provides a block interface. Users first pin the
blocks to be accessed in memory, then read/write data in corre-
sponding blocks, and finally invoke unpin to mark the blocks
that can be evicted or flushed to storage later, when needed
according to the replacement policy [15, 20]. There are also
some other forms of the block interface, such as asynchronous
read/write routines with user-defined callbacks [54]. Block
cache may be further customized for better performance ac-
cording to the needs of the application. For example, it is
unnecessary to support writing blocks back to the storage if
cached contents are known to be read-only [12].

While an efficient and scalable block cache can make full
use of storage devices in terms of performance, its block
interface requires a considerable amount of work to be put

396    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



size_t strlen_memory(char* str) {
size_t len = 0;
while (str[len] != '\0')
++len;

return len;
}
size_t strlen_block(str_in_block s) {
size_t len = 0;
size_t block_id = get_block_id(s);
size_t block_off = get_block_offset(s);
char* raw_ptr = pin(block_id);
while (raw_ptr[block_off] != '\0') {
len += 1;
block_off += 1;
if (block_off == BLOCK_SIZE) {
unpin(block_id);
block_id += 1;
block_offset = 0;
raw_ptr = pin(block_id);

}
}
unpin(block_id);
return len;

}

Figure 1: Out-of-core implementations of strlen with mem-
ory (upper) and block (lower) interfaces

into use. Figure 1 illustrates this with a concrete example:
calculating the length of a string. The upper part presents the
implementation by using a memory interface, and the lower
part shows an alternative version with a block interface. It is
evident that the block version is far more complex than the
memory version because system developers have to take care
of more details, such as checking the block boundaries and
making pin/unpin calls manually, while the memory version
only needs to perform memory accesses.

It thus motivates us to explore a block cache providing
a virtual memory interface in the user space, that can com-
bine the advantages of high out-of-core performance and high
user transparency from both types of caches. The user-space
approach drops some functional capabilities of the OS page
cache, such as sharing memory across processes with consis-
tency guarantees. However, it allows us to redesign the cache
sub-system towards new high-performance storage. Although
the virtual memory interface forces applications to manipu-
late the cache synchronously and manage data in fixed-size
blocks (rather than objects or rows), such an interface enables
user transparency and saves developers considerable effort.

However, a user-space block cache with a virtual mem-
ory interface is not as easy as it might appear. Since every
memory access now needs to involve a pair of pin and unpin
calls to ensure that the data accessed reside in memory, as
well as given that pin and unpin imply storage-to-memory
address translation and concurrency control operations1, we
need optimizations in addition to those in current block cache
designs to make pin/unpin as fast as possible.

1In case of cache misses, the victim blocks resident in memory need to
be replaced with the requested blocks on storage; in case of cache hits, the
reference counts need to be updated with locks/latches or atomic operations.

Private SATC

Direct SATC

User Thread

pin/unpin

get_raw_ptr

pin/unpin

Private SATC

Direct SATC

User Thread

pin/unpin

get_raw_ptr

pin/unpin

Private SATC

Direct SATC

User Thread

pin/unpin

get_raw_ptr

pin/unpin

Shared Cache

Cache
Partition 0

Cache
Partition … 

Cache
Partition N

Cache
Partition 1

MP Server MP Server MP ServerMP Server

MP Client MP ClientMP Client

SSD SSD SSD

read/write read/write read/write

SSD
Backend Storage

read/write

M
es

sa
ge

 
Pa

ss
in

g

User Application Code

TriCache LLVM Compiler Plugin

Instrumented Binary with TriCache Runtime

store

get_raw_ptr(load) get_raw_ptr(store)

load

Hot

Cold

Lock-free & Scalable

Figure 2: High-level architecture of TriCache

3 Design and Implementation of TriCache

In this section, we first present an overview of the system
design of TriCache, and then describe its efficient multi-level
block cache runtime in a bottom-up manner, including how
to build a scalable block cache and reduce the cost of cache
accesses in the user space to support transparent usage. Fi-
nally, we introduce how to automatically apply TriCache to
in-memory applications via compiler techniques.

3.1 Overview of TriCache
Figure 2 shows the high-level architecture of TriCache. It
consists of an LLVM compiler plugin and a runtime module.

TriCache LLVM Compiler Plugin first instruments each
memory instruction, such as load and store, in the user ap-
plication code, inserting a software address translation call
(named get_raw_ptr) before the memory instructions. Upon
execution, the instrumented binary calls the interface every
time it tries accessing a storage address and retrieves a mem-
ory address pointing to data cached in memory. The translated
address is then used as usual for the memory instruction.

TriCache Runtime is the core of TriCache (the dashed box
in Figure 2). It is a multi-level block cache that supports fast
address translation and provides a virtual memory interface.
It implements get_raw_ptr to translate blocks to their corre-
sponding cached memory addresses, manages the in-memory
data cache for recently accessed blocks, handles I/O oper-
ations when the cache misses, and evicts blocks when the
cache is full.

In the implementation of get_raw_ptr, TriCache Runtime
introduces a two-level Software Address Translation Cache

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    397



(SATC) on top of the conventional block cache (Shared Cache
in Figure 2). The first level is a directly mapped Direct SATC,
and the second level is a set-associative Private SATC (under
the three User Threads in Figure 2). They serve purposes
similar to those of the hardware TLB, and accelerate address
translations for hot blocks. We implement them as thread-
local metadata caches for storage-to-memory address map-
pings. Direct SATC is responsible for efficient translation
when operating the most recently used entries, while Private
SATC aims to provide sufficient entry caching capacity and
merge inter-thread operations. Meanwhile, the SATC employs
a pin/unpin protocol (as mentioned in Section 2) to imple-
ment an inclusive two-level metadata cache. TriCache deploys
SATC to automatically exploit localities in running programs
for address translation and reduce the cost of runtime API
calls, rather than relying on manually programming against
blocks to reduce the number of API calls and amortize the
runtime overheads.

Below SATC, TriCache Runtime manages data with Shared
Cache (in the middle of Figure 2, gray background). Shared
Cache is a full-featured block cache shared by multiple
threads that maintains an in-memory cache pool for read-
ing and writing the underlying storage. It manages a block
table for all in-memory blocks and serves address translations
when SATC misses. The block table exposes a pin/unpin
interface to SATC as well, with the guarantee that recently
used data pinned by SATC are not swapped out to external
storage. To prevent scaling bottlenecks introduced by locking,
the block space is partitioned, and each partition is owned
by a single thread. Message passing based delegation is used
to render critical operations (including block replacements
and I/O accesses) single-threaded and lock-free. Moreover,
Shared Cache can use kernel-bypass I/O stacks to eliminate
context switching for I/O operations.

For Shared Cache, we propose a Hybrid Lock-free Delega-
tion based concurrency control scheme. First, we distinguish
between address translations and data accesses. Only address
translations call pin/unpin remotely through message pass-
ing, while data accesses directly manipulate memory and rely
on the CPU cache to ensure data consistency. The cached data
are thus stored only in the Shared Cache and directly accessed
by threads without any redundant memory copies. Second,
we design and implement the per-partition block table as a
concurrent lock-free hash table to further reduce inter-thread
message passes. With this concurrent block table, only pin-
ning operations that are missed in Shared Cache require a
synchronous remote call.

In Figure 3, we present an example of a user program, a
follow-up of Figure 1, instrumented by and then running with
TriCache. The C program is first compiled to LLVM IR (In-
termediate Representation) with Clang, with the memory read
compiled to a load instruction. TriCache LLVM Compiler
Plugin instruments the load instruction into two operations:
one calls get_raw_ptr to retrieve the translated memory ad-

size_t strlen(char* str){
len = 0;
while (str[len] != 0)

++len;
return len;

}

%ptr = str + len
%data = load char* %ptr

%ptr = str + len
%raw_ptr = 

get_raw_ptr(%ptr, LOAD)
%data = load char* %raw_ptr

Private SATC

Direct SATC

Shared Cache

SSD

1
2 Pin

3 Pin

4 Read

7
Return
Raw
Pointer

6
Return
Raw
Pointer

5
Read
into
Memory

Get
Raw
Pointer

8
Return

Raw
Pointer

1
Compile
to
LLVM IR

2 Instrument

Figure 3: An example of a user program running on TriCache

dress, and the other loads the cached data. Upon execution,
the get_raw_ptr call of TriCache Runtime results in an ad-
dress translation operation sequence. If Direct SATC hits, the
result is returned; otherwise, it pins the corresponding block
in Private SATC. If the block is found in Private SATC, the
result is returned; otherwise, it pins the corresponding block
in Shared Cache. If Shared Cache is holding the block, the
pin operation finds the memory address of the cached block in
the concurrent block table. Otherwise, as invoked by a remote
call, Shared Cache reads the block from storage and loads it
into memory.

3.2 Shared Cache

As the core module of TriCache, Shared Cache determines
TriCache’s throughput, especially its I/O performance. There-
fore, good scalability is the primary design goal of Shared
Cache for the effective use of hundreds of CPU cores, tens of
NVMe SSDs, and millions of IOPS.

Design Decisions. Figure 4a shows a straightforward de-
sign used by the current Linux Kernel. It uses a global lock to
protect the block table (or page table) and the cache. However,
the single lock leads to heavy lock contention and is difficult
to scale for high-performance storage devices [29]. The shard-
ing technique can help mitigate the scalability issue, as shown
in Figure 4b. The block cache [12, 29] can use a predefined
function (usually hashing) to partition the blocks into several
shards and then assign a lock to each shard. In addition, re-
cent work proposes that well-designed delegation based on
message passing can provide better scalability and hotspot
tolerance than locks [23, 33, 53] on NUMA (Non-uniform
Memory Access) architectures.

Therefore, we propose a Hybrid Lock-free Delegation for
Shared Cache of TriCache, as shown in Figure 4c. The Shared
Cache adopts a client-server model based on message pass-
ing (solid lines in Figure 4c). Each client-server pair shares
a lightweight message queue with a size of two cache lines,
similar to ffwd [33]. Each user thread corresponds to a client,
and several dedicated servers handle requests from clients.

398    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Lock

Block Table and Cache

Lock
Block Table 
and Cache

Lock
Block Table 
and Cache

Lock
Block Table 
and Cache

User Thread User Thread User Thread User Thread User Thread User Thread

Block Table 
and Cache

Block Table 
and Cache

Block Table 
and Cache

Client Client Client

ServerServer Server

…… ……

User Thread User Thread User Thread

(a) Global Locking (b) Sharded Locking (c) Hybrid Lock-free Delegation

Figure 4: Different designs and concurrent mechanisms for the shared block cache

Each server is single-threaded, lock-free, and only responsible
for managing a part of the blocks (e.g., partitioned by hashing
block IDs). Multiple partitions and servers can achieve con-
currency and scalability, and more servers can be added when
a higher throughput is desired. In addition to message pass-
ing based delegation, clients can directly access per-partition
block tables on cache hits to reduce server-side CPU consump-
tions (dashed lines in Figure 4c; more details are provided in
the Client-side Fast Paths on Cache Hits paragraph below).

Metadata-only Delegation. When a user thread accesses
block data, TriCache divides the block access into a metadata
operation and a data operation. Metadata operations include
address translations, reference count management, and evict
policy enforcement. Data operations are memory accesses,
such as load and store. In TriCache, only metadata operations
are processed by servers through delegation while clients
issue data operations by themselves.

A block is accessed in three stages. In the first stage, the
client asks the server to cache the block in memory (pin)
and translate the storage address to its address in memory.
The server updates the metadata of the requested block, reads
uncached blocks, and evicts unused blocks, without touch-
ing the actual data. In the second stage, after receiving the
response, the client will directly perform its memory access
on the translated memory address. In the last step, the client
notifies the server that the block has been released and can be
further evicted by the server (unpin).

This design eliminates redundant memory copies between
servers and clients. Servers focus on metadata operations
so that a few server threads can achieve good performance.
Meanwhile, it helps TriCache provide the same consistency
and atomicity guarantees as memory, which is necessary for
user transparency and compatible with in-memory applica-
tions. CPU directly executes data operations on the client side
via memory instructions, and cache coherence is ensured by
hardware. TriCache only needs a memory fence to ensure that
the updates are visible before evicting modified blocks.

Client-side Fast Paths on Cache Hits. We propose using
concurrent block tables to avoid server-side synchronizations
on cache hits. A client first tries to directly find a block in the
block table and update the block reference counts (number
of clients in use) by using atomic operations. If it succeeds,

Cache Partition M

Message Passing Server M
Client 0 Req & Resp

Client N Req & Resp
...

Poll

Block Table
BID MID Meta
BID MID Meta
BID MID Meta

Evict
Policy

Storage Backend

IO Queue
Async I/O OP
Async I/O OP
Async I/O OP

SSD

SSD

SSD

Poll

Memory 
Pool

Shared 
Cache

Client N
2

3

Cache-hit
Fast Path

Re
mot

e
Ope

ra
tio

n 

4
Sy

nc
 w

he
n

Ca
ch

e-
miss 2

Create 
Entry

1

3

DMA

Evict
Entry

Enqueue
I/O OPs

5

4

Receive
Request

6
Respond

Process
I/O OPs

5

User 
Thread

1 Compute
Partition ID

Figure 5: Shared Cache of TriCache

the client can translate the address from the concurrent block
table by itself, thus skipping synchronous message passing.
The client then sends an asynchronous message if this direct
operation changes the reference count from 0 to 1 or con-
versely, to notify the server to update the evict policy for the
block. Multiple asynchronous messages can be batched and
processed together to amortize message passing overheads.

Workflow and Implementation. Figure 5 shows the work-
flow and implementation of Shared Cache. Each user thread
corresponds to a Shared Cache Client and gets its unique
Client ID. Each partition has a polling-based message passing
server that is used to process requests sent from clients and
return results to them. In addition, each partition maintains a
concurrent block table for blocks cached in the memory, and
each entry in the block table stores the Block ID (BID) of
the block, Memory ID (MID) of its in-memory cache, and
its metadata (Meta). The metadata include information on
whether the block is available and whether it has been modi-
fied, and the reference count pertaining to the clients in use.
We use the compact hashed block table similar to [51], in
which each entry occupies only an average of 8 bytes, and
uncached blocks do not occupy memory.

The cached blocks are indexed by their Memory IDs and
stored in a Memory Pool. Meanwhile, an Evict Policy tracks
all cached blocks with a zero reference count as they can be

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    399



safely evicted. Every time the cache is full, the Evict Policy
chooses and evicts one or more blocks based on its statistics
and strategies. TriCache uses the CLOCK algorithm [40] by
default, and it is replaceable, allowing users to customize the
policy based on their application characteristics. In addition,
policy implementations in TriCache are completely single-
threaded, so users do not need to consider any concurrency
issues. At the bottom, an asynchronous I/O backend (Storage
Backend) manages pending IO requests in an I/O Queue to
continuously poll and process I/O operations. The I/O back-
end is also customizable and defaults to SPDK that is backed
by user-space NVMe drivers. A kernel-space alternative based
on Linux AIO is also supported as another candidate.

When a user thread operates on a block, its client (N in the
figure) first computes the Partition ID (M in the figure) by a
predefined partition function. The client then searches for a
valid block entry from the block table of Partition M, and if
such an entry exists, the client tries increasing the reference
count by using atomic operations. If the atomic operations
succeed on cache hits (Cache-hit Fast Path in Figure 5), the
client pins the block in memory and can directly query the
memory address of the cached block. The client may further
send an asynchronous request to the server if it is updating the
reference count from 0 to 1, or the converse. The server then
performs the corresponding actions according to the Evict
Policy, such as enabling or disabling evictions of the block.

If the atomic operations fail on cache misses or when the
block is being swapped in/out, the client requests a remote
operation via synchronous message passing, immediately re-
leases CPU resources, and waits for responses from the server
(Remote Operation in Figure 5). After receiving the request,
the server creates a block table entry and sets its valid bit
to false. If the block table is full, the server evicts blocks
according to the Evict Policy and sets their valid bit to false.
The server then appends I/O operations for new blocks and the
evicted blocks to the I/O queue. The I/O Backend processes
the I/O requests by polling and controlling NVMe SSDs to
perform DMA operations directly on the Memory Pool. And
the server sets valid bits to true once the I/O requests have
been processed, and it sends the memory addresses of the
blocks to clients via message passing. After receiving the re-
sponse, the client resumes and performs its memory accesses.

We use a micro-benchmark on a 128-core machine to test
the effectiveness of TriCache Shared Cache. It can scale lin-
early to 256 threads (1/8 of the threads are servers), reaching
96.8M ops/s, and the hybrid mechanism provides an improve-
ment of 52% compared with the delegation-only approach.

3.3 Software Address Translation Cache

The Shared Cache of TriCache provides scalable I/O perfor-
mance and an efficient set-associative cache. However, block
table lookups and atomic operations are required for each ac-
cess on cache hits, still limiting the performance of TriCache.

Guiding Ideas. Considering the manual use of the block
cache (e.g., Figure 1), users call the pin interface to get the
in-memory address for a block, and then use the memory
address to perform multiple operations; they finally call the
unpin interface to release the block. Multiple read and write
operations can be performed between a pair of manual pin
and unpin operations to reduce the number of cache lookup
operations. Users manually take advantage of data locality
while investing extra effort in development.

In contrast, we design TriCache to automatically exploit lo-
cality to simulate manual coding without requiring human ef-
fort. We propose to build a two-level Software Address Trans-
lation Cache (SATC) on top of Shared Cache. The higher-level
cache stores hotter data and provides faster access and smaller
capacities than the lower-level cache, similar to the multi-level
cache of the CPU and hierarchical storage [32, 49, 56]. Based
on this idea, we now show how to implement the multi-level
cache in software and where to divide the levels.

SATC Design. In our design, only the last-level cache man-
ages data, and higher-level translation caches manage only
metadata, such as modifying the reference counts of the
blocks and translating block IDs to memory addresses. Man-
aging metadata instead of data can help avoid redundant mem-
ory consumption, additional memory copies, and memory con-
sistency issues caused by the multi-level design. The multi-
level cache of TriCache is designed to be an inclusive cache,
which means that all blocks in the higher-level cache are also
present in the lower-level cache. With this inclusive policy,
higher-level caches need to only interact with their next level.
Moreover, TriCache guarantees that the capacity of higher-
level caches is no greater than the lower-level cache, thus
eliminating out-of-space errors from the lower-level cache
when the higher-level cache requests to swap in blocks.

On top of the Shared Cache, we build a thread-local set-
associative cache called Private SATC. When the Private
SATC hits, the user thread uses its thread-local block table and
evict policy, and only when the Private SATC swaps in/out
blocks does the user thread need to operate on the Shared
Cache. Private SATC is purposed to reduce Shared Cache
operations for the hot data of its thread. Examples include
thread-local hot data when each thread computes a segment
of data independently, and hot elements shared by all threads
when processing skewed data. Private SATC also helps reduce
concurrent block table operations with cross-NUMA memory
accesses and false sharing, which could take about 3–8 times
higher latency than local memory accesses in our evaluation.

We further build a direct mapping cache called Direct SATC
on top of the Private SATC to alleviate overheads due to hash
table lookups and evict policy maintenance. Direct SATC
maintains a few recently accessed pages in a fixed-size array
to speed up address translation to a few bitwise operations
and avoid having to update the evict policy for each access.
The goal of Direct SATC is to cover multiple consecutive

400    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Shared Cache

Private SATC

Direct SATC

User Thread

pin/unpin

get_raw_ptr

pin/unpin

Shared 
& 

Private

Disk Only

Shared
Share

& 
Private

&
Direct

on_evict
on_evict

get_raw_ptr

get_raw_ptr

get_raw_ptr

get_raw_ptr

on_evict

Figure 6: Software Address Translation Cache

operations on the hottest blocks, such as sequential reads and
writes, and displace manually written pin/unpin operations.

Implementation. As shown in Figure 6, we implement an
inclusive multi-level cache with pin and unpin interfaces.
Blocks in Direct SATC must exist in Private SATC, and blocks
in Private SATC should also be present in Shared Cache.
Private SATC calls the pin interface of Shared Cache to load
blocks into the Private SATC, thus increasing reference counts
to ensure that Shared Cache does not swap out the blocks.
When blocks are evicted from Private SATC, it calls the unpin
interface of Shared Cache to release the reference count. On
top of Private Cache, Direct SATC also uses a scheme similar
to Private SATC but provides a single get_raw_ptr interface
implicitly combining a pin call and a following unpin call.
It implies caching a block and translating the block ID into
its raw address in memory. The raw address is valid until the
next get_raw_ptr call because the subsequent access can
evict any previous block from Direct SATC and possibly call
the unpin interface of Private SATC or Shared Cache.

The right-hand side of Figure 6 presents the state machine
maintained in TriCache. Starting from Disk Only state, the
user thread loads blocks into Shared Cache, Private SATC,
and Direct SATC by calling get_raw_ptr. When Direct
SATC evicts blocks, Shared Cache and Private SATC still
hold them. When the last thread in use evicts a block from
its Private SATC, the block enters Shared Cache Only state.
Any get_raw_ptr re-loads the block into all three levels of
caches. If Shared Cache also evicts the block, it is removed
from the in-memory cache and written back to storage when
it is dirty, ending in Disk Only state.

In our implementation, the aggregated capacity of Private
SATC entries is equal to that of Shared Cache entries, and the
Direct SATC has a size 1/4 of that of the Private SATC.

Our evaluation shows that SATC can improve performance
by tens of times over Shared Cache on real-world workloads.
When SATC can absorb all accesses, TriCache can reach 57%
and 91% of the in-memory performance for purely random
and nearly sequential access patterns respectively, making it
practical to operate the block cache at per-access granularity.

User-space 
Virtual Memory

Non-canonical
Virtual Memory 

Kernel-space
Virtual Memory

0x0000…000 0x00007f…fff

47 bits

0xffff80…000 0xffff…fff

User-space 
Virtual Memory

Non-canonical
Virtual Memory 

Kernel-space
Virtual Memory

TriCache-space
Virtual Memory

0x800…000 47 bits

%dst = load T* %ptr

%real_ptr = 
if high_bit(%ptr)

get_raw_ptr(%ptr, LOAD) 
else

%ptr
%dst = load T* %real_ptr

store T %src, T* %ptr

%real_ptr = 
if high_bit(%ptr)

get_raw_ptr(%ptr, STORE) 
else

%ptr
store T %src, T* %real_ptr

Linux
Memory 
Layout

TriCache
Memory 
Layout

LLVM
Instruction

Instrumented
LLVM 

Instruction

Figure 7: Memory layout and LLVM instrumentation

3.4 Compile-time Instrumentation

With the help of SATC, TriCache opens up opportunities to
provide a virtual memory interface and make TriCache fully
transparent to users. To this end, we propose a purely user-
space scheme based on compile-time instrumentation and
library hooking techniques.

Memory Layout. We first modify the memory layout as
shown in the upper part of Figure 7. In Linux, the current
x86_64 virtual memory layout (with four-level page tables)
consists of three main parts. User-space takes 47 bits at the
beginning, kernel-space occupies 47 bits at the end, and most
of the space in the middle is a hole of non-canonical virtual
memory. We map the TriCache-managed disks into unused
holes by block size, starting from 0x800...000 as TriCache-
space virtual memory. Memory addresses in TriCache-space
can be translated into an actual user-space memory address by
calling the get_raw_ptr interface of TriCache Direct SATC.

Instrumentation. To enable transparent read and write op-
erations on top of the TriCache block cache, we perform a
translation before each memory operation (e.g. load, store,
and atomic operations), so that TriCache-space addresses
can be used just like user-space memory. TriCache does
not require any manual code modifications with the help of
compile-time instrumentation. The lower part of Figure 7
shows pseudo-codes for instrumenting load and store instruc-
tions in LLVM IR. TriCache instrumentation takes the highest
bit of addresses to determine whether a memory address refers
to user-space memory or TriCache-space virtual memory.

While instrumentation provides the virtual memory inter-
face for TriCache-space memory, we still need to determine
what data should be placed in TriCache-space memory. First,
data on the stack is not necessary to enter the block cache. We
perform a data flow analysis from LLVM alloca instructions
to eliminate unnecessary instrumentation and overhead for
the stack. Second, we set a runtime threshold for TriCache so
that only memory allocations greater than the threshold will

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    401



User Application Code

LLVM based Compiler
TriCache LLVM Plugin

Instrumented 
Bitcode

LLVM 
Linker

TriCache
Runtime

Instrumented Binary

Inline 

API calls

Figure 8: Compiling workflow of TriCache

belong to TriCache-space memory. In contrast, small chunks
of data, usually short-term temporary data, remain in-memory
allocation. Finally, TriCache supports limiting the total size of
data allocated in memory by a predetermined memory quota.
If in-memory data exceed the memory quota, TriCache is
able to take over later allocations. Users can adjust the above
runtime parameters to obtain a balanced trade-off between
the memory usage and the performance.

Implementation. Figure 8 illustrates the compiling work-
flow of TriCache. The user application code is compiled by a
compiler based on LLVM. The TriCache LLVM plugin instru-
ments the code and generates instrumented LLVM IR bitcode.
The plugin performs instrumentation after all the optimiza-
tion passes, so it does not affect the compiler optimizations on
applications, such as automatic vectorization. Also, TriCache
supports vector instructions since TriCache leaves the CPU
to perform memory operations.

Then, the bitcode links with the pre-compiled TriCache run-
time (including get_raw_ptr implementations). TriCache
forces to inline the cache-hitting implementations of Di-
rect SATC and Private SATC through link-time optimization
(LTO) to avoid intensive function call overheads.

The TriCache runtime also contains APIs on top of the
virtual memory interface for manual optimizations, including
pin and unpin. Optionally, users can optimize some bottle-
necks of their applications through these APIs, such as using
block-wise accesses and prefetching, while leaving other parts
to transparently support out-of-core processing by instrumen-
tation. In the TriCache runtime, some common utility func-
tions, such as memcpy and memset, are already manually im-
plemented by block-wise pin and unpin to reduce overheads
of per-byte address translation from common components.

4 Evaluation

We set up our experiments on a dual-socket server equipped
with two AMD EPYC 7742 CPUs (64 physical cores and
128 hyper-threads per CPU) and 512GB DDR4-3200 main
memory. The storage devices are 8 PCIe-attached Intel P4618
DC SSDs which provide 51.2TB capacity, 9.6M 4KB-read
IOPS, and 3.9M 4KB-write IOPS in total. The server runs
Debian 11.1 with Linux kernel 5.10 and uses Clang 13.0.1 to
compile TriCache and other systems.

In our evaluation, we limit the total available capacity of
DRAM by cgroups to evaluate out-of-core performance. For
TriCache and other systems with block caches, we ensure that
the overall memory is less than the expected memory limit by
adjusting the cache sizes. The SSDs are configured in SPDK
mode for TriCache and as raw blocks for swapping. If the
system requires a single filesystem, we construct a software
RAID-0 by mdadm and use the XFS filesystem. TriCache
launches 16 background threads (bound to 8 cores) for Shared
Cache and uses 4KB blocks by default. And the total number
of threads are searched to maximize performance over powers
of two from the number of hardware threads (i.e. 256).

We first evaluate TriCache on four representative domains
in terms of end-to-end performance: graph processing (Sec-
tion 4.1), key-value store (Section 4.2), big-data analytics
(Section 4.3), and transactional graph database (Section 4.4).

We then conduct a micro-benchmark, by using a config-
urable number of threads that issue load/store instructions.
We adjust the hit rates and access patterns to explore circum-
stances in which TriCache outperforms OS page cache and to
assess whether the design of TriCache provides a reasonable
trade-off between in-memory (i.e. cache hit) and out-of-core
(i.e. cache miss) performance (Section 4.5).

Finally, we use a series of breakdown experiments to eval-
uate the performance-related impact on TriCache, including
I/O backends, hit rates and hit latency of SATC, and number
of threads (Section 4.6).

4.1 Performance on Graph Processing
Experimental Setup. Graph processing is a demanding
workload for cache systems due to many small and random
accesses on large datasets. We transparently apply TriCache
to an in-memory graph processing framework Ligra2 [37]
and extend it to out-of-core. The baselines are Ligra with OS
swapping and FlashGraph3 [54], an efficient semi-external
memory graph processing framework designed for SSDs.

Both Ligra and FlashGraph use 32-bit vertex IDs, and we
force Ligra to use push mode to align with FlashGraph. For
FlashGraph, we follow its recommended configuration of
creating an XFS filesystem for each SSD block device and
binding the device to the corresponding NUMA nodes. Mean-
while, FlashGraph is a semi-external memory graph engine
that always stores vertex states in memory and edge lists on
SSDs. We thus make TriCache to manage at least edge lists
in the cache for a fair comparison.

We evaluate FlashGraph, Ligra on swapping, and Ligra on
TriCache by three common graph algorithms: PageRank (PR),
Weakly Connected Components (WCC), and Breadth-First
Search (BFS). The dataset is a real-world graph dataset, UK-
2014 [7, 8], with 788 million vertices and 47.6 billion edges.
It requires more than 400GB for Ligra in-memory execution.

2https://github.com/jshun/ligra [commit 7755d95]
3https://github.com/flashxio/FlashX [commit 2a649ff]

402    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/jshun/ligra
https://github.com/flashxio/FlashX


512GB 256GB 128GB 64GB 32GB 16GB

(a) PageRank

1E0

1E1

1E2

1E3

1E4

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

O
O
M

512GB 256GB 128GB 64GB 32GB 16GB

(b) Weakly Connected Components

1E0

1E1

1E2

1E3

1E4

O
O
M

512GB 256GB 128GB 64GB 32GB 16GB

(c) Breadth-First Search

1E0

1E1

1E2

1E3

1E4

FlashGraph Ligra (Swapping) Ligra (TriCache)

Figure 9: Computation time of FlashGraph, Ligra on swapping, and Ligra on TriCache (lower is better)

In-memory Performance. Figure 9 shows the computa-
tion time of FlashGraph, Ligra on swapping, and Ligra on
TriCache under different memory quotas. With 512GB of
memory, Ligra can process all three algorithms in memory,
and TriCache and FlashGraph can buffer all data in their
cache. Under this setting, TriCache incurs overheads of only
34.4% for PageRank, 64.0% for WCC, and 23.5% for BFS.
The in-memory performance shows that TriCache can pro-
vide efficient address translations and cache hits with its vir-
tual memory interface, owing to the two-level SATC. Mean-
while, TriCache outperforms FlashGraph by 6.08×, 3.85×,
and 2.06×, respectively. It illustrates that FlashGraph yields
much higher in-memory overheads than TriCache because
the block cache of FlashGraph involves redundant memory
copies on cache operations with its read/write interfaces.

Out-of-core Performance. Under 256GB memory limita-
tion, the caches start swapping in/out blocks/pages. Compared
to the in-memory performance, Ligra on TriCache saves about
half of memory and yields 47.7% performance on PageRank,
12.5% performance on WCC, and 78.4% performance on
BFS. And TriCache’s speedups over OS swapping and Flash-
Graph are 6.30× and 5.31× on PageRank, 26.1× and 1.46×
on WCC, and 0.85× and 2.05× on BFS, respectively.

As the usable memory further decreases, I/O efficiency
becomes the main factor affecting performance. For exam-
ple, in the case of 64GB of memory, the performance of Tri-
Cache is 19.3×, 38.3×, and 26.8× better than that of swap-
ping. Compared with FlashGraph, TriCache can still provide
improvements of 54.8% and 58.3% on PageRank and WCC
respectively, while the performance of Ligra with TriCache is
34.3% lower than FlashGraph on the BFS algorithm. This is
because FlashGraph adopts two-dimension partition for out-
of-core graph processing, resulting in a 50.1% cache hit rate
that saves 2.68× of I/O volume compared to TriCache. Still,
TriCache provides an average I/O bandwidth 1.78× better
than FlashGraph and thus reduces the performance gap.

It is noteworthy that the semi-external memory FlashGraph
cannot fit vertex states of PageRank and WCC with 16GB of
memory. It leads to out-of-memory errors, whereas TriCache
can operate the same dataset fully out-of-core.

The above results indicate that TriCache can extend an in-
memory graph framework to support out-of-core processing
without manual modification and can deliver performance
comparable to a well-designed external memory framework.
Meanwhile, TriCache outperforms OS swapping by up to
38.3× while providing the same user transparency.

4.2 Performance on Key-Value Stores

Experimental Setup. We use RocksDB4 [12], a persistent
key-value store widely used in production systems, for eval-
uation in this part. RocksDB organizes on-disk data in im-
mutable Sorted Sequence Tables (SSTs). It provides a block-
based table format on top of its user-space block cache, and
a plain table format optimized for in-memory performance
via mmap. We use TriCache to buffer RocksDB plain tables
without manual modification and compare it with plain tables
based on OS memory-mapped files and block-based tables on
RocksDB’s own cache.

We use the mixgraph [10] (prefix-dist) workload proposed
by Facebook, which models production use cases at Facebook
and emulates real-world workloads of key-value stores with
hotness distribution and temporal patterns. The keys and val-
ues are 48 and 43 bytes on average, respectively, and there are
83% reads, 14% writes, and 3% scans. We generate 2 billion
key-value pairs (consuming 180GB of space) and execute 100
million operations. Both plain and block-based tables use the
hash index with a 4 bytes prefix. We set the sharding number
of the RocksDB block cache to 1024 to avoid lock contentions
on our 256-thread server and use the direct I/O mode for the
RocksDB block cache. We also disable WAL to prevent log
flushing from becoming a performance bottleneck.

In-memory Performance. Figure 10 illustrates the through-
put of Plain Tables on TriCache, Plain Tables on mmap and
Block-based Tables on the RocksDB user-space cache with
different memory quotas. In memory, RocksDB Plain Tables
with mmap provides the best performance, which is 4.28M op-
s/s. TriCache reaches about 53.5% throughput of mmap, and
73.7% throughput of the RocksDB block cache.

4https://github.com/facebook/rocksdb [tag v6.26.1]

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    403

https://github.com/facebook/rocksdb


256GB 128GB 64GB 32GB 16GB
1E1

1E2

1E3

1E4

1E5

1E6

1E7

Th
ro

ug
hp

ut
 (o

ps
/s

)

BlockBasedTable PlainTable (mmap) PlainTable (TriCache)

Figure 10: RocksDB throughput with varying memory quotas

Out-of-core Performance. When RocksDB runs out-of-
core, TriCache brings performance improvements of 2–3 or-
ders of magnitude compared with mmap. Plain Tables with
TriCache outperforms Block-based Tables by 6.69× under
128GB memory, 10.8× with 64GB, 10.9× with 32GB, and
10.0× with 16GB. Some performance benefits of TriCache
come from the efficient I/O stack of SPDK, while the excellent
scalability of Shared Cache is another key factor. For example,
the RocksDB block cache can deliver a throughput of 122K
ops/s with 256 threads. However, our eight NVMe SSDs re-
quire about 1024 I/O in-flight requests to maximize the I/O
performance. Unfortunately, when the number of threads is
increased from 256 to 1024, the throughput instead gradually
drops. In the case of 1024 threads, RocksDB only provides
71.3% throughput of 256 threads. In contrast, the performance
of RocksDB with TriCache improves by 2.15× from 256
threads to 1024 threads.

The in-memory performance indicates that user-transparent
TriCache can provide similar performance as manually man-
aged block cache in RocksDB. Meanwhile, TriCache has the
potential to help existing systems with in-memory backends,
such as RocksDB with Plain Tables, to achieve better out-of-
core performance without any manual modifications.

4.3 Performance on Big-Data Analytics

Experimental Setup. TeraSort [1] is a representative appli-
cation and an important performance indicator in the domain
of big-data analytics [16]. Its typical distributed or out-of-core
implementation consists of a shuffle phase followed by a sort
phase. The shuffle phase produces parallel sequential reads
and writes, which is I/O bound [16] and can stress sequential
I/O throughput on cache systems. The sort phase requires
the cache to buffer the working partition in memory and is-
sues a vast number of string comparisons and copies that can
examine the runtime overhead of cache systems.

We generate two TeraSort workloads, 1.5B records (about
150GB) and 4B records (about 400GB). For TriCache, we first
use the parallel sort based on multi-way merge sort in GNU
libstdc++ [38] (named GNU Sort) to implement an out-of-
core TeraSort, which requires only a single function call. We
also implement a shuffle-based parallel sort by partitioning
the first byte of the keys (named Shuffle Sort), which takes 15

512GB 256GB 128GB 64GB 32GB 16GB

(a) TeraSort 150GB Workload

1E0

1E1

1E2

1E3

1E4

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

O
O
M

512GB 256GB 128GB 64GB 32GB 16GB

(b) TeraSort 400GB Workload

1E0

1E1

1E2

1E3

1E4

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

O
O
M

Spark
GNUSort (Swapping)

GNUSort (TriCache)
ShuffleSort (Swapping)

ShuffleSort (TriCache)

Figure 11: Computation time for TeraSort workloads with
different memory quotas (lower is better)

additional lines of C++ code. Compared with the multi-way
merge sort, the shuffle-based parallel sort mainly issues se-
quential read/write I/O operations, so it is more friendly to
out-of-core processing. We use TriCache to manage mem-
ory allocations during sorting and compare TriCache with
OS swapping. For Shuffle Sort, we configure the page size
of TriCache to 128KB to maximize the sequential I/O per-
formance. We also use a widely used big-data framework
Spark5 [52] as a baseline, which supports both scale-up and
scale-out processing.

In-memory Performance. Figure 11 shows the compu-
tation time of TeraSort. On the 150GB dataset, both GNU
Sort and Shuffle Sort occupy about 300GB of memory and
fit in 512GB of memory. In this case, Shuffle Sort is 2.01×
faster than GNU Sort. Meanwhile, the overheads of TriCache
amount to only 14% for GNU Sort and nearly zero (less
than 1%) for Shuffle Sort. The reason is that the Shuffle Sort
algorithm mainly generates sequential reads and writes for
each thread, which can be well handled by thread-local Direct
SATC and Private SATC. Compared with Spark, GNU Sort
and Shuffle Sort on TriCache is faster by 1.55× and 3.62×,
respectively.

Out-of-core Performance. When the memory quota is less
than 256GB for the 150GB workload, TriCache can provide
tens of times speedups over swapping, up to 39.3× for GNU
Sort at 128GB memory and 57.8× for Shuffle Sort at 64GB
memory. Meanwhile, the performance of Shuffle Sort with
TriCache is up to 20.2× better than Spark at 32GB memory.

For the 400GB dataset, both algorithms keep executing out-
of-core. Shuffle Sort on TriCache is faster than swapping by

5https://github.com/apache/spark [tag v3.2.0]

404    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/apache/spark


up to 43.6× at 32GB memory and outperforms Spark by up
to 13.7× with the same amount of memory. GNU Sort based
on swapping is 41.2× slower than TriCache Shuffle Sort with
512GB memory and about 128× slower when the memory
quota is less than 256GB because of its sub-optimized algo-
rithm and the limited performance of the OS page cache.

Compared with the in-memory processing of the 150GB
dataset, Shuffle Sort with TriCache saves 90% memory with
32GB memory, while its processing time is only 49.3% longer
than the processing time at 512GB. We also compared the
distributed Spark and TriCache-based scale-up solutions. We
use four servers with the same hardware configuration and
connect them with 200Gb HDR Infiniband NIC. TriCache un-
der 32GB memory outperforms in-memory distributed Spark
by 7.20× using Shuffle Sort and 1.33× with GNU Sort on
the 400GB workload. So TriCache with NVMe arrays can
use less memory and provide nearly in-memory performance
for TeraSort. In addition, TriCache can nearly utilize the peak
bandwidth of our 8 NVMe SSDs, reaching 44GB/s for read-
only operations and 31GB/s for mixed read/write operations.

In summary, developers can write in-memory programs
(e.g., less than 20 lines of C++ code for Shuffle Sort), and
TriCache then helps them to fully utilize the high-performance
NVMe SSD array, especially when the algorithm is friendly
to out-of-core processing.

4.4 Performance on Graph Database
For workloads in graph databases, we evaluate TriCache on
LiveGraph6 [57], an efficient transactional graph database
based on OS memory-mapped files. LiveGraph treats
memory-mapped files as in-memory data and relies on atomic
memory accesses and cache consistency to support transac-
tional queries. It can examine whether a user-transparent block
cache is able to provide the same semantics as in-memory op-
erations. We replace the memory-mapped files with TriCache
and compare it with the original LiveGraph. We evaluate their
performance on the LDBC SNB interactive benchmark, which
simulates user activities in a social network and consists of
14 complex-read queries, 7 short-read queries, and 8 update
queries. As the SNB driver occupies part of the memory, we
limit LiveGraph to use up to 256GB memory and generate two
workloads: SF30 and SF100 datasets. With LiveGraph, these
datasets take about 100GB and 320GB memory, respectively.
SNB clients request 1.28M operations for the SF30 work-
load, and 256K operations for the SF100 workload during the
benchmark run.

Figure 12 shows the SNB throughputs of LiveGraph on
TriCache and mmap. When the dataset can fit into a 256GB
memory, the instrumentation and user-space cache of Tri-
Cache incur only 21% runtime overheads on the SNB bench-
mark. As the memory quota gradually decreases, the advan-
tage of TriCache becomes increasingly prominent, e.g., Tri-

6https://github.com/thu-pacman/LiveGraph [commit eea5a40]

256GB 128GB 64GB 32GB 16GB

(a) SNB Interactive SF30 Workload

1E1

1E2

1E3

1E4

1E5

Th
ro

ug
hp

ut
 (o

ps
/s

)

256GB 128GB 64GB 32GB 16GB

(b) SNB Interactive SF100 Workload

1E1

1E2

1E3

1E4

1E5

Th
ro

ug
hp

ut
 (o

ps
/s

)

LiveGraph (mmap) LiveGraph (TriCache)

Figure 12: Throughput of LiveGraph on TriCache and mmap

Cache outperforms mmap by 12.4× at 32GB memory as its
scalable Shared Cache and the efficient I/O backend supply
much higher throughputs. For SF100, LiveGraph keeps run-
ning in out-of-core states. TriCache improves the throughput
by 5.48× compared with mmap at 256GB memory, and the
speedup can grow up to 10.5× at 16GB memory.

We then take a closer look at the latency metrics when
running SF100 with 256GB of memory. TriCache cuts the av-
erage latency on complex queries by 11.5×, on short queries
by 1.79×, and on update queries by 21.1× (geometric means).
The P999 tail latency of TriCache keeps 10.9× lower than
mmap on complex queries and 1.35× lower on short queries.
Meanwhile, TriCache shortens the P999 latency of update
queries to 34.6× shorter than the original LiveGraph because
TriCache is additionally aware of thread locality while mmap
is not. Although TriCache and mmap are both user-transparent,
the Private SATC of TriCache can automatically hold recently
updated data for writer threads in memory even when writers
are waiting for group commits. On the contrary, mmap may
evict these dirty pages under memory pressure. Our design
helps LiveGraph to reduce tail latencies on update operations.

4.5 Micro-benchmarks
We conduct two custom multi-threaded micro-benchmarks
which issue random memory-load instructions. The first gen-
erates random accesses in 8-bytes (named 8B Random work-
load), which can stress the systems in the case of completely
random memory accesses. We control the random pattern to
generate operations with different hit rates of block caches,
and we also adjust the hit rate of Private SATC to examine
its performance impact. The second randomly chooses 4KB
pages and sequentially accesses each page in 8-byte words
(named 4KB Random workload) to evaluate the performance
when a page is accessed multiple times.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    405

https://github.com/thu-pacman/LiveGraph


0 25% 50% 75% 100%

100%

75%

50%

25%

0

Pr
iv

at
e 

Hi
t R

at
e

8B Random over mmap

0 25% 50% 75% 100%

8B Random over FastMap

0 25% 50% 75% 100%

4KB Random over mmap

0 25% 50% 75% 100%

4KB Random over FastMap

0.1

1

10

100

Sp
ee

du
p

Memory Hit Rate

Figure 13: The speedup of TriCache compared with mmap and FastMap on 8B Random and 4KB Random workloads

We compare TriCache with Linux mmap and FastMap [29]
(both given a hint of random accesses, MADV_RANDOM).
FastMap optimizes the mmap path in the Linux kernel, includ-
ing sharding locks (discussed in Section 3.2) and batching
TLB invalidations. It mainly aim to mitigate the scalability
limitation of Linux mmap. For FastMap, we downgrade the
kernel version to 4.14 as FastMap relies on it, and configure a
RAID-0 with mdadm as suggested by the authors of FastMap,
and leverage FastMap to manage bare block devices.

Figure 13 shows TriCache’s speedup compared with mmap
and FastMap with 8B Random and 4KB Random workloads.

For 8B Random workloads, the performance of TriCache
is about 11% of the in-memory (with mmap) performance in
the worst case, when the memory hit rate is 100% and Private
SATC hardly hits. Under the same 100% memory hit rate,
when the hit rate of Private SATC grows up to 100%, TriCache
can attain 57% of the in-memory (with mmap) performance,
with a performance improvement of up to 6.07×.

Once the memory hit rate drops to 90%, TriCache can
provide improvements of 18.6× to 31.5× over mmap whose
performance is severely limited by lock contentions in the
kernel. At the same time, TriCache outperforms FastMap
by 1.22× on average. As the memory hit rate gradually de-
creases, the advantage of TriCache becomes increasingly sig-
nificant. For instance, TriCache outperforms mmap by 33.6×
and FastMap by 3.34× with an 80% hit rate. When the mem-
ory hit rate reaches 10%, TriCache performs 45.0× to 47.2×
better than mmap, and 5.38× to 5.60× better than FastMap.
In this case, TriCache provides 12.4 million random accesses
per second and fully saturates our 8 NVMe SSDs. However,
FastMap can only support 2.22 million accesses per second
with all the hardware cores, where this is equivalent to about
the I/O performance of only two NVMe SSDs. This indicates
that FastMap cannot accommodate currently available high-
performance NVMe SSD arrays because it still suffers from
the heavy I/O stack of the kernel, page faults, and context
switching overheads [27, 34, 55].

For 4KB Random workloads, Direct SATC can mainly ab-
sorb the in-memory overheads of TriCache. The performance
of TriCache reaches 84% to 91% of the in-memory (with

Table 1: Performance slowdown relative to TriCache

Linux AIO W/O Direct W/O Private Shared Only
PageRank 1.15× 2.75× 1.03× 40.1×
RocksDB 2.16× 1.27× 1.02× 22.0×

ShuffleSort 1.69× 1.87× 4.67× 10.1×
GNUSort 2.36× 2.51× 4.25× 57.9×

LiveGraph 1.21× 1.07× 1.01× 7.55×

mmap) performance when the memory hit rate is 100%. With
a 90% memory hit rate, TriCache can provide a speedup of
8.43× on average over mmap and 1.46× over FastMap. Under
a 10% memory hit rate, TriCache can provide 12.3 million
random accesses per second, which outperforms mmap by
43.1× and FastMap by 5.08× on average.

4.6 Performance Breakdown
We select five cases under 64GB of memory for the break-
down experiments: PageRank, RocksDB, Shuffle and GNU
Sort for the 400GB Terasort dataset, and LiveGraph for the
SNB SF100 workload.

SPDK and Linux AIO. TriCache currently supports SPDK
and Linux AIO as its storage backend. In the default config-
uration, TriCache uses SPDK to handle I/O operations. We
compared the performance of these two backends. The first
column in Table 1 shows the performance slowdown when
using the AIO backend compared with the SPDK backend.

In terms of the (geometric) average, SPDK performs 1.64×
better than Linux AIO, demonstrating that the user-space
NVMe driver enables better IO performance. Nevertheless,
SPDK has some drawbacks, such as high programming com-
plexity, deployment difficulties, and not easy for support-
ing multiple applications. Luckily, TriCache hides SPDK
programming details from users, allowing users to code in-
memory programs and achieve efficient out-of-core perfor-
mance. Moreover, the design of TriCache is not coupled with
SPDK and can provide comparable performance with Linux
AIO. If using or deploying SPDK is not feasible, AIO can
serve as a reasonable alternative backend for use in TriCache.

406    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Breakdown Analysis of SATC. The three columns on the
right side of Table 1 break down the performance impact of
SATC on TriCache by gradually removing SATC levels. W/O
Direct disables Direct SATC, W/O Private disables Private
SATC, and Shared Only uses only Shared Cache by removing
both SATC levels.

According to the performance degradation listed in Table 1,
SATC is an essential component contributing to the good
performance of TriCache. The slowdown that occurs by dis-
abling SATC (Shared Only) is 20.8× on average for the five
cases. And even when the memory quotas are less than 1/5 of
the working set (i.e., running out-of-core), SATC still yields a
speedup of 40.1× for PageRank, 10.1× for Shuffle Sort, and
57.9× for GNU Sort.

Meanwhile, both Direct SATC and Private SATC are indis-
pensable to TriCache. Without Direct SATC, the performance
of PageRank is degraded by 2.75× because accessing each
edge incurs a heavy overhead due to hash table lookups and
evict policy maintenance. However, PageRank is not sensitive
to Private SATC because the size of the dataset is more than
5× larger than the available memory, and the edges are visited
only once for each iteration. For the shuffle phase of Shuffle
Sort, the performance drops by 5.39× without Private SATC
but remains almost the same (only 4.8% slower) without Di-
rect SATC. The reason is that string copies constitute the
bottleneck in the shuffle phase and are optimized by the com-
piler to memcpy, which is implemented by manually calling
pin/unpin in the TriCache runtime. For GNU Sort, removing
Direct SATC and Private SATC degrades the performance by
2.51× and 4.25×, respectively.

Multi-level Cache in TriCache. Next, we use PageRank,
Shuffle Sort, and GNU Sort to further examine the design of
the multi-level cache in TriCache. Table 2 lists the miss rates
for each level of the cache, the average hit cycles (HitC.) for
Direct SATC and Private SATC, and the average access cycles
(Acc.C.) for Shared Cache.

According to the miss rates listed in Table 1, Direct SATC
and Private SATC can handle most memory accesses. The
miss rate of Direct SATC is less than 5% for all the three
workloads, and the miss rate of Private SATC is less than 1%
for Shuffle Sort and GNU Sort. The results show that SATC
can cover most accesses to meet the above performance.

And the hit cycles of Direct SATC and Private SATC in
Table 1 show that the software address translation of TriCache
is quite efficient. The average costed cycles of Direct SATC
hits in PageRank and Shuffle Sort are approximately 50 cy-
cles; Direct SATC hits in GNU Sort and Private SATC hits
in Shuffle Sort take about 150 cycles; Private SATC hits in
GNU Sort use about 450 cycles. To give an idea of how much
time they take, we list some hardware latencies: 50 cycles are
close to a NUMA-local L3 cache hit or an L2 cache false shar-
ing within a NUMA node; 150 cycles correspond to about
the half of a NUMA-local memory access; 450 cycles are

Table 2: Miss rate and average cycles on each cache level

Direct SATC Private SATC Shared Cache
MissRate HitC. MissRate HitC. MissRate Acc.C.

PageRank 0.003 52.6 0.063 321 0.626 2.36M
ShuffleSort 0.001 63.0 0.001 162 0.969 1.68M

GNUSort 0.045 143 0.007 488 0.926 789K

32 64 128 256 512 1024 2048
Number of Threads

1E2

1E3

1E4

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

FlashGraph Ligra (Swapping) Ligra (TriCache)

(a) Computation time of PageRank (lower is better)

32 64 128 256 512 1024 2048
Number of Threads

1E2

1E3

1E4

1E5

1E6

1E7
Th

ro
ug

hp
ut

 (o
ps

/s
)

BlockBasedTable PlainTable (mmap) PlainTable (TriCache)

(b) Throughput of RocksDB

Figure 14: Performance of TriCache and baselines under dif-
ferent numbers of threads

less than a cross-NUMA memory access or a cross-NUMA
cache false sharing. Therefore, TriCache with SATC is effi-
cient enough to provide a virtual memory interface and also
to deliver memory-comparable performance.

Performance and Numbers of Threads. We also compare
the performance of TriCache and baselines under different
numbers of threads for PageRank and RocksDB with 64GB
of memory. More precisely, “the performance under a given
number of threads” means the maximum performance with
less than or equal to this number of threads (only searched
over powers of two). Since TriCache uses 16 server threads as
the default configuration in the evaluation section, the number
of threads starts with 32 threads (including server threads).

As shown in Figure 14, TriCache achieves good scalability
for the workloads of both PageRank and RocksDB, which
is one of the reasons for why TriCache performs well. For
example, from 32 threads to 256 threads (the number of hard-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    407



ware threads), Ligra with TriCache (in Figure 14a) achieves a
4.29× speedup, and RocksDB with TriCache (in Figure 14b)
yields a 13.5× performance improvement.

Meanwhile, with a small number of threads, TriCache’s per-
formance is worse than that of manually optimized prefetch
and asynchronous I/O because of TriCache’s synchronous
scheme for triggering I/O and its lack of program-specific
optimizations (similar to mmap). In order to mitigate these lim-
itations, over-subscription can help to utilize the queue depth
of SSDs as much as possible. Through over-subscription, the
performance of TriCache is improved by 2.58× for PageRank
and 2.15× for RocksDB, thus enabling good performance for
TriCache even without manual optimizations.

5 Related Work

There is a series of work that tries to improve the page caching
performance with customized memory-mapped file I/O paths
or swapping approaches [27–30, 39, 41]. Kmmap [28] pro-
vides several improvements to reduce the variation in perfor-
mance owing to the aggressive write-back policy of Linux.
FastMap [29] addresses scalability issues by separating clean
and dirty pages and using per-core data structures to avoid
centralized contentions, with the help of a custom Linux ker-
nel. Still, our evaluation shows that FastMap cannot saturate
current high-performance NVMe SSD arrays. Aquila [27]
offers a library OS solution that eliminates the need for kernel
modifications, relying on hardware support for virtualization,
which makes it not easy to deploy on cloud environments.
Umap [30] provides an mmap-like interface to user-space page
fault handlers based on userfaultfd [2] in Linux, but is
faster than mmap only with large page sizes. LightSwap [55]
redesigns the swapping system to reduce context switching
and page fault overheads, but it requires both kernel and pro-
gram modifications. TriCache exposes a memory interface
like these kernel-involved solutions, but runs completely in
the user space to achieve maximal out-of-core performance.

Block caches (or buffer managers) are critical components
in data-intensive applications for supporting out-of-core pro-
cessing [6,12,15,20,52,54]. Some attempts try to improve the
performance of block caches. SAFS [53], the storage backend
for FlashGraph [54], adopts a lightweight cache design based
on NUMA-aware message passing. Users need to program
with its asynchronous I/O interface to exploit maximal I/O
performance on SSD arrays. LeanStore [20] proposes to use
pointer swizzling so that pages residing in memory can be di-
rectly referenced without page lookups. However, it requires
pages to form a tree-like structure, and thus is applicable to
limited scenarios. TriCache shares similar goals but provides
a memory interface that is user-transparent and more general.

Remote cache systems [14, 24] have been developed upon
ideas of the disaggregated architecture [3, 11, 13, 18, 19, 25,
31, 34–36], which utilizes high bandwidth and low latency
of modern networks. In this paper, we focus on scaling-up

through NVMe SSD arrays. And we intend to consider sup-
port for disaggregated architectures in our future work.

Non-volatile memory (NVM) enables larger capacity com-
pared with DRAM, and researches have been devoted to
memory management instead of paging strategies to render
memory access efficient on hybrid NVM and DRAM archi-
tectures [17, 32, 42, 56]. Nevertheless, block caches such as
TriCache are still better suited for NVMe SSDs due to their
higher latencies than NVM or DRAM.

6 Discussion

In TriCache, SATC does not need to be notified by its Shared
Cache when a block is swapped out. In contrast, hardware
TLB in processors, which also accelerates address translation
as SATC, requires OS page cache to explicitly invalidate
evicted pages through TLB shootdown, incurring considerable
overhead [4, 5] due to inter-processor interrupts (IPIs). A
comparison of the mechanisms of SATC and TLB shows that
SATC utilizes reference counting to prevent evicting blocks
currently being used by clients, while the OS is not directly
aware of how many TLB entries are still referring to the
pages to be evicted. It is possible to extend the design of
SATC to TLB. Processors could mark the reference counts
for page tables entries (PTEs), e.g., recording the number
of TLB entries that currently hold a specific PTE. The OS
can then adapt its page swapping and evict policies to avoid
evicting pages currently present in TLBs, thus mitigating the
performance issue brought by TLB shootdown.

7 Conclusion

In this paper, we explore a new user-space approach to achiev-
ing efficient out-of-core processing with in-memory programs,
by providing a virtual memory interface on top of a block
cache. We implement TriCache based on a novel multi-level
design and applies it to various in-memory or mmap-based pro-
grams without manual code modification. TriCache achieves
out-of-core performance that is orders of magnitude higher
than that of the Linux OS page cache, and is often comparable
to or even faster than specialized out-of-core solutions.

The open-source implementation of TriCache and instruc-
tions to reproduce the main experimental results are accessible
from: https://github.com/thu-pacman/TriCache.

Acknowledgments

We sincerely thank Liuba Shrira (our shepherd) and all the
anonymous OSDI and OSDI AE reviewers for their insightful
comments and suggestions. This work was partially supported
by National Key Research & Development Plan of China
under grant 2017YFA0604500 and NSFC U20B2044. The
corresponding author is Wenguang Chen.

408    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/thu-pacman/TriCache


References

[1] Sort Benchmark Home Page. http://sortbenchmark.
org. [Online; accessed 31-May-2022].

[2] Userfaultfd — The Linux Kernel documentation.
https://www.kernel.org/doc/html/latest/
admin-guide/mm/userfaultfd.html. [Online;
accessed 31-May-2022].

[3] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, et al. Remote regions: a simple abstraction
for remote memory. In 2018 {USENIX} Annual Techni-
cal Conference ({USENIX}{ATc} 18), pages 775–787,
2018.

[4] Nadav Amit. Optimizing the TLB shootdown algorithm
with page access tracking. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 27–39,
Santa Clara, CA, July 2017. USENIX Association.

[5] Nadav Amit, Amy Tai, and Michael Wei. Don’t shoot
down TLB shootdowns! In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys
’20, pages 1–14, New York, NY, USA, April 2020. As-
sociation for Computing Machinery.

[6] Timo Bingmann, Michael Axtmann, Emanuel Jöbstl,
Sebastian Lamm, Huyen Chau Nguyen, Alexander Noe,
Sebastian Schlag, Matthias Stumpp, Tobias Sturm, and
Peter Sanders. Thrill: High-performance algorithmic
distributed batch data processing with c++, 2016.

[7] P. Boldi and S. Vigna. The webgraph framework I:
compression techniques. In Proceedings of the 13th
international conference on World Wide Web, WWW
’04, pages 595–602, New York, NY, USA, May 2004.
Association for Computing Machinery.

[8] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebas-
tiano Vigna. Layered label propagation: a multireso-
lution coordinate-free ordering for compressing social
networks. In Proceedings of the 20th international con-
ference on World wide web, WWW ’11, pages 587–596,
New York, NY, USA, March 2011. Association for Com-
puting Machinery.

[9] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold.
Breaking the memory wall in monetdb. Commun. ACM,
51(12):77–85, dec 2008.

[10] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, modeling, and
benchmarking RocksDB Key-Value workloads at
facebook. In 18th USENIX Conference on File and

Storage Technologies (FAST 20), pages 209–223, Santa
Clara, CA, February 2020. USENIX Association.

[11] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian
Kash. R2c2: A network stack for rack-scale computers.
ACM SIGCOMM Computer Communication Review,
45(4):551–564, 2015.

[12] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Strum. Op-
timizing space amplification in rocksdb. In CIDR, vol-
ume 3, page 3, 2017.

[13] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In 12th {USENIX} sympo-
sium on operating systems design and implementation
({OSDI} 16), pages 249–264, 2016.

[14] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G Shin. Efficient memory disag-
gregation with infiniswap. In 14th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 17), pages 649–667, 2017.

[15] Joseph M Hellerstein, Michael Stonebraker, and James
Hamilton. Architecture of a database system. Now
Publishers Inc, 2007.

[16] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie,
and Bo Huang. The hibench benchmark suite: Char-
acterization of the mapreduce-based data analysis. In
2010 IEEE 26th International Conference on Data Engi-
neering Workshops (ICDEW 2010), pages 41–51. IEEE,
2010.

[17] Hideaki Kimura. Foedus: Oltp engine for a thousand
cores and nvram. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, pages 691–706, 2015.

[18] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash storage disaggregation.
In Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys ’16, pages 1–15, New
York, NY, USA, April 2016. Association for Computing
Machinery.

[19] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re-
flex: Remote flash ≈ local flash. In Proceedings of the
Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’17, page 345–359, New York,
NY, USA, 2017. Association for Computing Machinery.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    409

http://sortbenchmark.org
http://sortbenchmark.org
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html


[20] Viktor Leis, Michael Haubenschild, Alfons Kemper, and
Thomas Neumann. Leanstore: In-memory data manage-
ment beyond main memory. In 2018 IEEE 34th Interna-
tional Conference on Data Engineering (ICDE), pages
185–196, 2018.

[21] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. KVell: the design and implementation of
a fast persistent key-value store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pages 447–461, Huntsville, Ontario, Canada,
October 2019. Association for Computing Machinery.

[22] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell+: Snapshot isolation without snap-
shots. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 425–
441. USENIX Association, November 2020.

[23] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolf-
gang Lehner. Enabling low tail latency on multicore
key-value stores. Proceedings of the VLDB Endowment,
13(7):1091–1104, March 2020.

[24] Shuang Liang, Ranjit Noronha, and Dhabaleswar K
Panda. Swapping to remote memory over infiniband: An
approach using a high performance network block de-
vice. In 2005 IEEE International Conference on Cluster
Computing, pages 1–10. IEEE, 2005.

[25] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F Wenisch. System-level implications of
disaggregated memory. In IEEE International Sympo-
sium on High-Performance Comp Architecture, pages
1–12. IEEE, 2012.

[26] Zhiyuan Lin, Minsuk Kahng, Kaeser Md Sabrin, Duen
Horng Polo Chau, Ho Lee, and U Kang. Mmap: Fast
billion-scale graph computation on a pc via memory
mapping. In 2014 IEEE International Conference on
Big Data (Big Data), pages 159–164. IEEE, 2014.

[27] Anastasios Papagiannis, Manolis Marazakis, and Ange-
los Bilas. Memory-mapped I/O on steroids. In Proceed-
ings of the Sixteenth European Conference on Computer
Systems, pages 277–293. Association for Computing
Machinery, New York, NY, USA, April 2021.

[28] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. An efficient
memory-mapped key-value store for flash storage. In
Proceedings of the ACM Symposium on Cloud Comput-
ing, pages 490–502, 2018.

[29] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Sa-
loustros, Manolis Marazakis, and Angelos Bilas. Opti-
mizing memory-mapped I/O for fast storage devices. In

2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 813–827. USENIX Association, July
2020.

[30] Ivy Peng, Marty McFadden, Eric Green, Keita Iwabuchi,
Kai Wu, Dong Li, Roger Pearce, and Maya Gokhale.
Umap: Enabling application-driven optimizations for
page management. In 2019 IEEE/ACM Workshop
on Memory Centric High Performance Computing
(MCHPC), pages 71–78. IEEE, 2019.

[31] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic.
Distributed shared memory: Concepts and systems.
IEEE Parallel & Distributed Technology: Systems &
Applications, 4(2):63–71, 1996.

[32] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. Hemem: Scalable tiered memory
management for big data applications and real nvm. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 392–407, 2021.

[33] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu.
ffwd: delegation is (much) faster than you think. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 342–358, New York, NY,
USA, October 2017. Association for Computing Ma-
chinery.

[34] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguil-
era, and Adam Belay. {AIFM}: High-performance,
application-integrated far memory. In 14th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20), pages 315–332, 2020.

[35] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69–87, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

[36] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 2017 Symposium on Cloud Computing, SoCC ’17,
page 323–337, New York, NY, USA, 2017. Association
for Computing Machinery.

[37] Julian Shun and Guy E Blelloch. Ligra: a lightweight
graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
135–146, 2013.

[38] Johannes Singler and Benjamin Konsik. The gnu lib-
stdc++ parallel mode: Software engineering considera-
tions, 2008.

410    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[39] Nae Young Song, Yongseok Son, Hyuck Han, and
Heon Young Yeom. Efficient memory-mapped i/o on
fast storage device. ACM Transactions on Storage
(TOS), 12(4):1–27, 2016.

[40] Andrew S Tanenbaum and Herbert Bos. Modern oper-
ating systems. Pearson, 2015.

[41] Brian Van Essen, Henry Hsieh, Sasha Ames, Roger
Pearce, and Maya Gokhale. Di-mmap—a scalable
memory-map runtime for out-of-core data-intensive ap-
plications. Cluster Computing, 18(1):15–28, 2015.

[42] Alexander van Renen, Viktor Leis, Alfons Kemper,
Thomas Neumann, Takushi Hashida, Kazuichi Oe,
Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. Man-
aging non-volatile memory in database systems. In
Proceedings of the 2018 International Conference on
Management of Data, pages 1541–1555, 2018.

[43] Wikipedia contributors. Memory-mapped
file — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=
Memory-mapped%20file&oldid=1089594834, 2022.
[Online; accessed 31-May-2022].

[44] Wikipedia contributors. Memory paging
— Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=
Memory%20paging&oldid=1068326108, 2022.
[Online; accessed 31-May-2022].

[45] Wikipedia contributors. NVM Express —
Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=NVM%
20Express&oldid=1090339430, 2022. [Online;
accessed 31-May-2022].

[46] Wikipedia contributors. Page cache — Wikipedia,
the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Page%20cache&oldid=
1068818367, 2022. [Online; accessed 31-May-2022].

[47] Wikipedia contributors. Pci express — Wikipedia,
the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=PCI_Express&oldid=
1090153203, 2022. [Online; accessed 31-May-2022].

[48] Wikipedia contributors. U.2 — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.
php?title=U.2&oldid=1066844795, 2022. [Online;
accessed 31-May-2022].

[49] Gala Yadgar, Michael Factor, and Assaf Schuster.
Karma: Know-it-All replacement for a multilevel cache.
In 5th USENIX Conference on File and Storage Tech-
nologies (FAST 07), San Jose, CA, February 2007.
USENIX Association.

[50] Ziye Yang, James R. Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E. Paul. Spdk:
A development kit to build high performance storage
applications, 2017.

[51] Idan Yaniv and Dan Tsafrir. Hash, Don’t Cache (the
Page Table). ACM SIGMETRICS Performance Evalua-
tion Review, 44(1):337–350, June 2016.

[52] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache spark: A unified engine for
big data processing. Commun. ACM, 59(11):56–65, oct
2016.

[53] Da Zheng, Randal Burns, and Alexander S. Szalay. To-
ward millions of file system iops on low-cost, commod-
ity hardware. In Proceedings of the International Con-
ference on High Performance Computing, Networking,
Storage and Analysis, SC ’13, New York, NY, USA,
2013. Association for Computing Machinery.

[54] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogel-
stein, Carey E. Priebe, and Alexander S. Szalay. Flash-
Graph: Processing Billion-Node graphs on an array of
commodity SSDs. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages 45–58,
Santa Clara, CA, February 2015. USENIX Association.

[55] Kan Zhong, Wenlin Cui, Youyou Lu, Quanzhang Liu,
Xiaodan Yan, Qizhao Yuan, Siwei Luo, and Keji Huang.
Revisiting swapping in user-space with lightweight
threading, 2021.

[56] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David
Cohen. Spitfire: A three-tier buffer manager for volatile
and non-volatile memory. In Proceedings of the 2021 In-
ternational Conference on Management of Data, pages
2195–2207, 2021.

[57] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong
Ma, Jiping Yu, Lei Xie, Ashraf Aboulnaga, and Wen-
guang Chen. LiveGraph: a transactional graph storage
system with purely sequential adjacency list scans. Pro-
ceedings of the VLDB Endowment, 13(7):1020–1034,
March 2020.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    411

http://en.wikipedia.org/w/index.php?title=Memory-mapped%20file&oldid=1089594834
http://en.wikipedia.org/w/index.php?title=Memory-mapped%20file&oldid=1089594834
http://en.wikipedia.org/w/index.php?title=Memory%20paging&oldid=1068326108
http://en.wikipedia.org/w/index.php?title=Memory%20paging&oldid=1068326108
http://en.wikipedia.org/w/index.php?title=Memory%20paging&oldid=1068326108
http://en.wikipedia.org/w/index.php?title=NVM%20Express&oldid=1090339430
http://en.wikipedia.org/w/index.php?title=NVM%20Express&oldid=1090339430
http://en.wikipedia.org/w/index.php?title=NVM%20Express&oldid=1090339430
http://en.wikipedia.org/w/index.php?title=Page%20cache&oldid=1068818367
http://en.wikipedia.org/w/index.php?title=Page%20cache&oldid=1068818367
http://en.wikipedia.org/w/index.php?title=Page%20cache&oldid=1068818367
https://en.wikipedia.org/w/index.php?title=PCI_Express&oldid=1090153203
https://en.wikipedia.org/w/index.php?title=PCI_Express&oldid=1090153203
https://en.wikipedia.org/w/index.php?title=PCI_Express&oldid=1090153203
http://en.wikipedia.org/w/index.php?title=U.2&oldid=1066844795
http://en.wikipedia.org/w/index.php?title=U.2&oldid=1066844795




Tiger: Disk-Adaptive Redundancy Without Placement Restrictions

Saurabh Kadekodi∗

Google
Francisco Maturana∗

Carnegie Mellon University
Sanjith Athlur

Carnegie Mellon University

Arif Merchant
Google

K. V. Rashmi
Carnegie Mellon University

Gregory R. Ganger
Carnegie Mellon University

Abstract
Large-scale cluster storage systems use redundancy (via
erasure coding) to ensure data durability. Disk-adaptive
redundancy—dynamically tailoring the redundancy scheme
to observed disk failure rates—promises significant space
and cost savings. Existing disk-adaptive redundancy systems,
however, pose undesirable constraints on data placement, par-
titioning disks into subclusters that have homogeneous failure
rates and forcing each erasure-coded stripe to be entirely
placed on the disks within one subcluster. This design in-
creases risk, by reducing intra-stripe diversity and being more
susceptible to unanticipated changes in a make/model’s fail-
ure rate, and only works for very large storage clusters fully
committed to disk-adaptive redundancy.

Tiger is a new disk-adaptive redundancy system that effi-
ciently avoids adoption-blocking placement constraints, while
also providing higher space-savings and lower risk relative to
prior designs. To do so, Tiger introduces the eclectic stripe,
in which redundancy is tailored to the potentially-diverse
failure rates of whichever disks are selected for storing that
particular stripe. With eclectic stripes, pre-existing placement
policies can be used while still enjoying the space-savings
and robustness benefits of disk-adaptive redundancy. This
paper introduces eclectic striping and Tiger’s design, includ-
ing a new mean-time-to-data-loss (MTTDL) approximation
technique and new approaches for ensuring safe per-stripe
settings given that failure rates of different devices change
over time. In addition to avoiding placement constraints, eval-
uation with logs from real-world clusters shows that Tiger
provides better space-savings, less bursty IO for changing
redundancy schemes, and better robustness (due to increased
risk-diversity) than prior disk-adaptive redundancy designs.

1 Introduction

“A Tiger never changes its stripes”, but can it be made to?
In this context, the Tiger is a cluster storage system and its
stripes are the erasure coded data that is placed across multiple
disks in order to ensure data reliability. In today’s cluster

*Equal contribution

(a) Conventional
cluster storage

(b) Pacemaker
(subcluster-based)

(c) Tiger
(this paper)

Figure 1: Stripe placements and configurations in different erasure
coding systems: Disks of same color have similar annualized failure
rates (AFRs), with red being least reliable (highest AFR), then blue,
then green. Rectangles represent stripes with shorter stripes having
higher redundancy. Conventional one-scheme-fits all designs (1a)
impose no placement restrictions, but make no distinction of disk
AFRs and therefore overprotect much of the data—all stripes use
the widest redundancy scheme, shown as 2-wide for illustration.
Pacemaker (1b) and Tiger (1c) tailor redundancy based on disk AFRs,
resulting in different stripe widths in the illustration, and thereby
reduce storage overhead. Pacemaker does this with rigid AFR-based
subcluster boundaries, whereas Tiger requires no such boundaries.

storage systems, most of the data reliability is via erasure
coding [13, 21, 37, 40, 50, 58].

Conventionally, a single cluster-wide redundancy scheme
is selected for each data corpus (or for all data corpuses) [11,
14, 15, 21, 33]. This approach fails to account for the disk-
reliability heterogeneity present in modern storage clusters,
which consist of hundreds-of-thousands of hard disk drives
(HDDs or just "disks") of multiple makes/models deployed at
different times. This forces conventional storage clusters to
use excessive redundancy (wasting capacity, and thus money
and energy) to guarantee data safety, given that different disks
have different failure rates. Absent other information, redun-
dancy schemes are usually chosen to be safe for stripes fully
stored on the least reliable disks (e.g., Fig. 1a). Recent re-
search has showed that adapting redundancy scheme selection

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    413



to the observed failure rates of specific disks can reduce the
space (=cost) overhead of redundancy by up to 20% [23].

Existing disk-adaptive redundancy designs [24, 25], how-
ever, face several significant adoption hurdles. At their core,
these designs rigidly partition a storage cluster into sub-
clusters of disks (called redundancy groups or Rgroups)
that have similar failure rates, so they can use a subcluster-
wide redundancy scheme tailored to meet the required data
reliability target (e.g., Fig. 1b). Key adoption hurdles in-
clude: (1) Since each stripe must be entirely within a sin-
gle Rgroup, this subcluster-based design can interfere with
other data placement considerations, such as enhancing risk-
diversity by spreading data across fault domains and different
makes/models/batches of disks. Indeed, many of the Rgroups
consist of a single make/model. (2) To provide reasonable
degrees of performance and reconstruction speed scalability,
subclusters must be sizable, making these designs only suit-
able for very large storage clusters. (3) When failure rates rise
for a given make/model, as it ages, the redundancy scheme
for an entire Rgroup (potentially 100s of PBs) may need
to change to maintain target data reliability levels—all at
once. The Pacemaker design [24] proposes to predict such
changes and start them early, but they need to predict a month
or more in advance to avoid reliability problems given the
huge amount of data being transitioned, which is inherently a
risky proposition. (4) The subcluster-based designs assume
full adoption of disk-adaptive redundancy, not allowing for
selective adoption for some data corpuses but not for others.

We present Tiger, a disk-adaptive redundancy system that
eliminates the placement constraints posed by subcluster-
based disk-adaptive redundancy designs while providing
equal or greater benefits. Tiger’s core new abstraction is
the eclectic stripe, in which disks of different AFRs can
be used to store a stripe that has redundancy tailored to the
set of AFRs for those disks. In terms of placement flexibil-
ity, eclectic stripes are identical to stripes in conventional
(non-disk-adaptive redundancy) designs. But, unlike conven-
tional stripes, eclectic stripes do not conservatively assume the
worst-case AFR for all disks. Instead, with eclectic stripes,
the redundancy scheme is dynamically set for each stripe
based on the AFRs of the chosen disks (e.g., Fig. 1c). Tiger’s
eclectic stripe approach avoids all the adoption hurdles dis-
cussed above, while simultaneously increasing the effective-
ness (higher space-savings) and robustness (lower burstiness
of urgent transition IO) of disk-adaptive redundancy.

Efficiently incorporating the proposed new abstraction of
eclectic stripes is challenging due to multiple reasons. Tiger
introduces several new design elements to overcome these
challenges. First, calculating the exact reliability in terms
of mean-time-to-data-loss (MTTDL) of a stripe can be pro-
hibitively expensive, since accounting for different failure
rates can lead to an exponential number of states in the tradi-
tional Markov chain reliability model. To address this, we pro-
vide a novel approximation technique that speeds up MTTDL

calculation by 2-4 orders of magnitude while always pre-
serving accuracy of over 95%, and on average over 99.5%.
Second, while disks for a stripe can be chosen based on pre-
existing placement policies, the chosen disks may not form an
adequately-reliable stripe for a planned redundancy scheme,
since the reliability is dependent on the chosen disks’ AFRs.
Tiger uses an AFR-aware stripe-width-reduction policy to
quickly achieve sufficient reliability. Third, disk AFRs change
over time [25], which can require changing the redundancy
schemes of some eclectic stripes. Keeping track of AFRs for
each stripe and triggering the redundancy schemes can signif-
icantly increase the overhead for metadata and background
operations. Tiger introduces an eclectic volume abstraction
to reduce metadata overhead and make identification of re-
quired changes efficient. It also introduces policies to reduce
transition IO: the IO involved with enacting changes to stripe
redundancy schemes.

Evaluating the feasibility and efficacy of eclectic stripes
requires analysis of long-term effects on huge storage clusters.
We evaluate Tiger using the same logs as used to evaluate
Pacemaker [24], enabling an apples-to-apples comparison.
These logs contain all disk-deployment, failure, and decom-
missioning events from four production storage clusters: three
160K–450K-disk Google clusters and a ≈110K-disk cluster
used for the Backblaze Internet backup service [3]. Simula-
tion driven by production logs allows us to analyze reliability,
space usage, and redundancy maintenance traffic for multiple
clusters each with over 100K disks and over multiple years,
which would be infeasible otherwise as part of a research
setup. For all four clusters, Tiger provides equal or better
space-savings than Pacemaker, while requiring at most 0.5%
of daily IO bandwidth for transition IO. More importantly,
the transition IO is both less bursty, in terms of when it is
needed, and less urgent, in terms of how unsafe an unsafe
stripe might be if the scheme transition were delayed. For in-
stance, in response to a tiny rise in AFR (< 0.25%) for disks
of a given make/model, Pacemaker would need 196% of the
total IO bandwidth from each of those disks in order to make
the data safe—to avoid stealing more than 5% of IO band-
width for transition IO, Pacemaker would have to know to
start 40 days in advance—but Tiger would need <1.6% even
for a 1% AFR increase because of the diversity of its eclectic
stripes. And, most importantly, Tiger exhibits significantly
better risk-diversity, stemming from removing placement con-
straints and allowing differently-reliable disks (and hence
disks of different makes/models) to belong to the same stripe.
For example, even with random selection of disks for each
stripe, most of Tiger’s eclectic stripes span most of a cluster’s
make/models; Pacemaker’s strict Rgroup boundaries disallow
use of more than one make/model for most stripes.

Contributions. In this paper, we make four main contribu-
tions. First, we introduce eclectic stripes as a tool for realizing
disk-adaptive redundancy without the placement restrictions
posed by prior designs. Second, we present a reliability model

414    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



and its approximation to efficiently calculate the MTTDL of
eclectic stripes. A surprising outcome is that a homogeneous
stripe with the same scheme and average disk AFR as an eclec-
tic stripe is less reliable! Third, we present the design and
architecture of Tiger, the first disk-adaptive redundancy sys-
tem for supporting and efficiently managing eclectic stripes.
Fourth, we evaluate Tiger and compare it to the state-of-the-
art, using logs from four large real-world storage clusters,
demonstrating its effectiveness in realizing disk-adaptive re-
dundancy without prior designs’ adoption challenges and with
greater space-savings and lower risk.

2 Background and Motivation

We first provide a primer on data redundancy done using
erasure coding followed by the gist and importance of disk-
adaptive redundancy. We then describe the problems with
existing disk-adaptive redundancy systems, which is the mo-
tivation for this paper.

Erasure Coding for data durability. Modern storage
clusters often comprise of hundreds-of-thousands of disks
of multiple make/models deployed over time. The sheer scale
of the storage clusters makes disk failures a common occur-
rence [15], which necessitates some form of redundancy to
ensure data durability and availability. While replication is
popular for availability of hot data, erasure coding (a more
space-efficient alternative to replication) is more common for
the durability of colder data, which forms the majority of the
stored data. In erasure coding (EC), data is split into k chunks,
and n− k parity chunks are subsequently generated to form a
stripe with n chunks. Each chunk is stored on a separate disk.
This k-of-n EC scheme (also called “redundancy scheme”)
can withstand up to n−k failures with a storage overhead of n

k .
Any k chunks of an n-chunk stripe are sufficient to construct
the original data.

Reliability Metrics: MTTDL and AFR. The reliabil-
ity of a stripe is determined by its mean-time-to-data-
loss (MTTDL). A stripe’s MTTDL is calculated using a
continuous-time Markov chain shown in the left side of
Fig. 3. Each state represents the number of simultaneously
lost chunks in a stripe. The MTTDL is the mean time to
reach state DL (where n− k+1 chunks are simultaneously
lost) from state 0; this is when data is irrecoverably lost. This
model assumes a homogeneous stripe, where all disks fail
with the same rate λ. Downward transitions denote failures,
which happen with a rate of λ times the number of available
chunks, while upward transitions denote repairs, which hap-
pen with a fixed rate µ. Failure rates are commonly expressed
as an annualized failure rate (AFR), which is defined as the
expected fraction of failed disks in a year, assuming that failed
disks are replaced and the disk population remains fixed.

Disk-adaptive redundancy. Storage clusters have con-
ventionally been using a one-scheme-fits-all redundancy
scheme by assuming that all disks fail similarly. Prior work

has shown that disk AFRs are highly correlated with their
vintage [26, 35]. With modern clusters having a mix of
disk makes/models/batches, there can be over an order of
magnitude difference between AFRs of different groups of
disks [25]. Additionally, over their lifetime, disk AFRs fol-
low a “bathtub curve” with multiple failure regimes: infancy
(high AFR) followed by useful life with potentially multiple
phases (piecewise linear phases with low AFR that increases
gradually) and finally wearout (high AFR) [24].

Disk-adaptive redundancy capitalizes on differences in disk
AFRs and dynamically tailors data redundancy to observed
disk failure rates [23]. Disk-adaptive redundancy systems take
into account various constraints including the reconstruction
costs when making the decision of a target stripe width to
adapt to. Specifically, wide schemes are used only when a
stripe’s average AFR is low enough to keep the reconstruc-
tion cost contained below a configured limit. More generally,
wide stripes provide cost savings in terms of smaller storage
overhead at the cost of higher reconstruction costs and higher
degraded mode reads. We know from conversing with archi-
tects of large-scale storage clusters that the cost of the excess
byte footprint matters more than the cost of excess IO re-
quired in the context of redundancy, given existing workloads.
This is especially so since, in general, large-scale capacity-tier
storage cluster workloads tend to be cold (have low IO/s per
byte). Additionally, cold data experiences fewer reads, and
therefore has very few costly degraded mode reads. Back-
blaze is an example where, for archival data that has low IO
access rates, administrators have publicly confirmed use of
wide redundancy schemes such as 17-of-20 [4]. By using
more space-efficient redundancy schemes during low AFR
regimes, disk-adaptive redundancy can provide substantial
space-savings (> 20%) in clusters with over 100K disks.

Prior disk-adaptive redundancy systems. Two disk-
adaptive redundancy systems have been proposed in the lit-
erature: HeART [25] and Pacemaker [24]. In HeART, the
authors propose a tool to statistically learn the AFRs of dif-
ferent disk groups and identify change-points for safe redun-
dancy transitions. By transitioning to an encoding scheme
with minimum storage overhead that still meets the target
MTTDL, HeART was able to obtain ≈ 20% space-savings
when tailoring erasure codes, and≈ 33% space-savings when
tailoring replication. Although lucrative, HeART overlooked
an important practical hurdle in performing disk-adaptive
redundancy: transition overload, i.e. the IO overhead of per-
forming redundancy transitions. Crippling transition overload
when thousands of disks require simultaneous redundancy
transitions forms the basis for Pacemaker [24]. The gist of
Pacemaker is to convert urgent redundancy transitions into
schedulable ones by making conservative predictions of the
rise in AFR and proactively issuing redundancy transitions.
This allows the transition overload to be spread out over time,
such that it can be completed within tolerable IO limits with-
out compromising data safety.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    415



(a) Placement constraints (b) Risk-diversity

Figure 2: 2a shows Pacemaker’s placement constraints by highlight-
ing the fraction of the disk fleet that is viable for different schemes
exercised on four production clusters. Fig. 2b shows the risk-diversity
obtained by the same clusters on particular dates in their lifetime.
A risk-diversity of 100% implies at least one chunk stored on ev-
ery possible make/model, whereas a 0% risk-diversity implies that
the particular scheme was not feasible in the cluster. Pacemaker
performs poorly in both placement constraints and risk-diversity.

2.1 Existing designs are impractical

Despite remarkable space-savings and low IO costs, existing
disk-adaptive redundancy systems remain impractical in real-
world settings.

Placement restrictions. The primary hurdle stems from
the placement restrictions posed by reliance on redundancy
groups (Rgroups). An Rgroup is a set of disks with similar
AFRs, such that they can use the same redundancy scheme.
Prior systems redundancy management techniques rigidly par-
tition the cluster’s disks into Rgroups, and every stripe must
be stored entirely within a single Rgroup. Fig. 2a shows the
percentage of disks that are rendered infeasible for various re-
dundancy schemes Pacemaker can employ on a particular day
in four large storage clusters. More than 30% of the disks are
deemed infeasible for space-efficient schemes beyond 22-of-
25, because their AFRs are not low enough for those disks to
participate in an Rgroup for which schemes beyond 22-of-25
can meet the target MTTDL. Furthermore, in order to main-
tain proper redundancy, stripes are typically constrained to
span across different racks, servers, power lines, etc. Adding
another placement constraint may be close to impossible.

Lower risk-diversity. Due to high correlation of AFRs and
makes/models/batches [26,35], and in order to enable efficient
transitioning mechanisms, many Rgroups contain disks from
just one make/model. This is undesirable from a risk-diversity
perspective. Fig. 2b shows the fraction of makes/models that
are covered for the same stripe configurations in the same four
clusters described above. Higher risk-diversity is valuable for
mitigating consequences of bulk failure situations (e.g., from
rapid degradation due to manufacturing defects), especially
in a disk-adaptive redundancy system where redundancy is
tuned rather than regularly excessive.

Reliance on AFR prediction. With lower risk-diversity,
Pacemaker’s Rgroups are already susceptible to data loss due
to bulk failures in a single make/model (uncommon, but not
impossible). Furthermore, Pacemaker’s IO cost reduction is

highly dependent on being able to accurately predict an AFR
rise well in advance. Currently AFR is calculated only on the
basis of age. Prior work has highlighted that it is dependent
on various factors such as vintage, temperature, vibration,
etc. [7, 26, 27, 35]. This makes an already difficult task of
accurate AFR prediction even harder.

All-or-nothing. Current disk-adaptive redundancy designs
depend on forming Rgroups, and work efficiently if entire
Rgroups perform redundancy transitions together (for step-
deployed disks). This implies that the entire cluster must
commit to performing disk-adaptive redundancy for all of
their data stored on all disks. Such a restriction makes disk-
adaptive redundancy unusable without a major overhaul of
the architecture of the existing storage cluster.

The key takeaway is that additional data placement restric-
tions create adoption-blocking limitations and risks. In order
have have both placement flexibility and disk-adaptivity, we
need a new approach that includes the ability to reason about
and tune the reliability of stripes that span disks with different
AFRs. We achieve this via eclectic stripes.

3 Eclectic Stripes and their challenges

Eclectic stripes are central to Tiger’s approach of providing
disk-adaptive redundancy without placement restrictions. An
eclectic stripe is an EC stripe placed on a collection of disks
that can have different failure rates. The reliability model of
conventional EC stripes forces them to be allocated on disks
having (or worse, assumed to be having) the same failure
rate. In terms of composition an eclectic stripe is no different
than what a conventional EC stripe would be. Specifically,
the same disks that make up a conventional stripe can also
make up an eclectic stripe, just that eclectic stripes are cog-
nizant of the AFR differences of the underlying disks and
can accurately reason about the resulting reliability. A disk-
adaptive redundancy system that supports eclectic stripes has
to overcome several challenges.

1. Ensure efficient creation of sufficiently reliable eclec-
tic stripes. Taking AFR differences of all disks in a stripe into
account makes exact MTTDL calculation of eclectic stripes
prohibitively expensive (see §4.1.1). Since stripe creation is
a critical-path operation, it is imperative that a disk-adaptive
redundancy system supporting eclectic stripes reasons about
its reliability in an efficient and accurate manner.

2. Ensure efficient management of eclectic stripes. All
underlying disks of an eclectic stripe will not experience an
AFR rise or fall together. A system supporting eclectic stripes
must efficiently identify which stripes need to change their
redundancy in response to changing AFRs.

3. Support unchanged placement policies. While tweak-
ing the placement policies might provide additional optimiza-
tions, a system that supports eclectic stripes must support
existing placement policies without any change.

416    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



4. Retain key benefits of disk-adaptive redundancy. Dy-
namic redundancy adaptation at a low transition IO cost;
continuously providing adequate reliability; providing space-
savings by using more space-efficient redundancy schemes
in low-AFR regimes are the key benefits of disk-adaptive
redundancy. Any proposed disk-adaptive redundancy system
should strive to maintain these benefits.

5. Ensure an adoption-friendly design. Apart from place-
ment restrictions, existing disk-adaptive redundancy system
designs require that the entire cluster commits entirely to per-
form disk-adaptive redundancy, or it cannot gain any of its
benefits. Moreover, only the very large-scale storage clusters
can use existing disk-adaptive redundancy designs, whereas
the small and medium sized clusters are outside their scope.
High emphasis on usability and showcasing a way for easy
adoption of disk-adaptive redundancy in existing storage clus-
ters of all shapes and sizes is an important design challenge.

4 Mechanisms to enable eclectic stripes

In this section, we address the two main challenges of eclectic
stripes: their reliability and their management.

4.1 Interpreting reliability of eclectic stripes
We first shed light on key takeaways from our study of the
reliability of eclectic stripes and then provide the detailed
theory and the associated analysis.

Calculating MTTDL of eclectic stripes is efficient and
accurate. The exact calculation of the MTTDL of an eclec-
tic stripe is computationally expensive. We provide a novel
approximation that provides the MTTDL with over 99.5%
accuracy (on average), and always provides over 95% accu-
racy in our tests. In practice, a difference of 5% in MTTDL
typically translates into a difference of around 0.1% AFR for
a homogeneous stripe, which is negligible. The exact MTTDL
calculation and the approximation are detailed in §4.1.1, 4.1.2.

Eclectic stripes are more reliable than homogeneous
stripes. When comparing the MTTDL of an eclectic stripe
with a homogeneous stripe having the same EC scheme and
same avg. AFR, the MTTDL of the eclectic stripe is always
higher than the MTTDL of the corresponding homogeneous
stripe for typical system parameters (§4.2, Fig. 4).

Eclectic stripes are robust to AFR changes of individ-
ual disks. The MTTDL of the eclectic stripes does not react
abruptly to the increase in AFR of a few disks. Compared to
the conventional approach of treating stripes as homogeneous
with AFR equal to the maximum AFR in the stripe, MTTDL
of eclectic stripes react very gradually to AFR changes.

Eclectic stripes are more robust to AFR misestimations.
Due to the nature of empirical data, any system that measures
AFR has to estimate it. Since the AFRs of different disk
make/models are estimated independently, it is unlikely that
there will be simultaneous underestimation of the AFR of

Figure 3: Left: Classic Markov chain model for the MTTDL of
a 2-of-4 homogeneous stripe. Right: Markov chain model for the
MTTDL of a 2-of-4 eclectic stripe.

every disk in an eclectic stripe, and hence the impact of esti-
mation errors is smaller (Fig. 5) and may even cancel each
other out. Furthermore, disk-adaptive redundancy systems are
made even more robust against misprediction by the use of
confidence intervals. Thus, eclectic stripes are more robust to
AFR misestimations compared to homogeneous stripes.

4.1.1 Exact MTTDL calculation is costly

Using a Markov chain model to calculate the MTTDL of
storage systems is a classic approach [16]. A generalization
of this approach helps us take into account disks with different
failure rates. Consider an EC stripe of a k-of-n scheme, placed
over n disks with failure rates λi(i ∈ [n]) and a disk repair rate
of µ. The state of the system is given by an n-length vector
s = (s0, . . . ,sn) with si = 1 if disk i has failed, and si = 0
otherwise (i ∈ [n]). The state space is given by states (si)

n
i=1

such that the total number of failure ∑
n
i=0 si is at most the

number of parities n− k, and a data loss state labeled DL.
Therefore, the total number of states is 1+∑

n−k
i=0

(n
i

)
. The rate

of transition from state s to s′ is defined as:

• λi if si = 0,s′i = 1, and s j = s′j for i 6= j (ith disk fails),

• µ if si = 1,s′i = 0, and s j = s′j for i 6= j (ith disk repaired),

• ∑
n
i=1(1− si)λi if ∑

n
i=1 si = n− k and s′ = DL (any disk

fails when n− k disks have failed and are not repaired).

The MTTDL is defined as the mean time to state DL from the
initial state 0 = (0, . . . ,0).

Given the values of n,k,(λi)
n
i=1, and µ, one can compute

the MTTDL by using the standard approach of solving a sys-
tem of equations. However, this approach is not tractable, due
to the exponential explosion on the number of states with
respect to n− k (see Fig. 3 to compare conventional Markov
chain with that of an eclectic stripe). For example, the Markov
chain of a 10-of-14 eclectic stripe has 1472 states, compared
to 6 states in the case of a 10-of-14 homogeneous stripe.
Reasoning about this model can be hard too, since it is not
directly clear how disk AFRs affect MTTDL. Furthermore,
this approach tends to be numerically unstable, which makes
obtaining precise MTTDLs hard. We find that computing a
single MTTDL using this approach with realistic parameters
can take up to several seconds using the Mathematica 12

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    417



7
6

8
6

9
6

15
14

16
14

17
14

31
30

32
30

33
30

7
6

8
6

9
6

15
14

16
14

17
14

31
30

32
30

33
30

Encoding scheme (n
k )

7.75

8.00

8.25

8.50

8.75

9.00

AF
R 

of
 e

qu
iv

al
en

t
ho

m
og

en
eo

us
 st

rip
e 

(%
)

High variance (2 16% AFR) Low variance (5 13% AFR)

Average AFR of
each eclectic stripe

Figure 4: Reliability of eclectic stripes compared to homogeneous
stripes. For each scheme, we sample 1000 eclectic stripes and for
each stripe we compute its MTTDL ρ and then compute the AFR λ

of a homogeneous stripe with the same scheme and MTTDL equal
to ρ. The boxes show the distribution of λ over the 1000 stripes. The
AFR of the first n−1 disks in a eclectic stripe are sampled uniformly
at random from the range 2–16% (high variance) or 5–13% (low
variance), and the AFR of the last disk in a stripe is chosen to ensure
that the average AFR of the disks in each stripe is fixed at 9%. E.g.
the median 6-of-9 eclectic stripe from the high-variance group is
as reliable as a 6-of-9 homogeneous stripe with AFR 8.5%, despite
having an average AFR of 9%.

software [52] on a desktop PC. This is too slow in practice,
because not only do we need to compute the MTTDL when
creating new stripes, but we also need to periodically compute
the MTTDL of every stripe in the system (typically billions)
as device AFRs change. The next section describes an effi-
cient approximation that makes the MTTDL calculation of
eclectic stripes computationally tractable and highly accurate.

4.1.2 Efficient and accurate MTTDL approximation

In order to compute and better understand the MTTDL of
eclectic stripes, we propose an approximation formula, build-
ing on the approach presented in [2] for homogeneous stripes.
This approximation is extremely good when µ� maxi λi,
which is true for modern cluster storage systems.

The main idea behind this approximation is to note that
(in the steady state) disk i will be available a fraction Ai =
µ/(µ+λi) of the time, and that the system will reach the DL
state when exactly k−1 of the disks are available. Therefore,
the MTTDL can be approximated with the following formula
(see appendix A for the full derivation):

MTTDL≈ (µ(n− k+1)PBin(k−1;n,(Ai)
n
i=1))

−1 , (1)

where PBin(k;n,(pi)
n
i=1) is the probability of obtaining ex-

actly k heads when flipping n biased coins with probability
of heads pi for coin i. PBin is known as the Poisson-binomial
distribution, and it can be efficiently evaluated [12, 19].

We tested this approximation against the Markov chain ap-
proach over all values of 6≤ k≤ 30, 1≤ n−k≤ 3, and AFRs
of 1–16%. The relative difference between the two output
MTTDLs never exceeded 5% and was less than 0.5% on av-

5 10 15 20 25 30
AFR of single disk (%)

15.0

15.1

15.2

15.3

15.4

15.5

lo
g1

0(
M

TT
DL

 in
 d

ay
s) Homogeneous stripe with avg AFR

Eclectic stripe

Figure 5: Reliability of a 6-of-9 eclectic stripe when the AFR of a
single disk varies. The eclectic stripe is composed of 8 devices with
AFR 9%, and one device whose AFR varies from 1% to 30% (x axis).
The dashed line denotes the MTTDL of a 6-of-9 homogeneous stripe
with the same average AFR as the eclectic stripe. The solid line
denotes the MTTDL of the eclectic stripe. Reliability of the eclectic
stripe is always above the corresponding homogeneous stripe.

erage*. As a benefit, the approximation is 2–4 orders of mag-
nitude faster to evaluate (in the order of milliseconds), more
numerically stable, significantly simpler to implement, and
gives direct insight into how the parameters affect MTTDL.

4.2 Understanding MTTDL of eclectic stripes
The main difference between the reliability of an eclectic
stripe and a homogeneous stripe is given by the Poisson-
binomial factor in Eq. 1, which becomes Binomial when all
probabilities are equal. Notice that the difference between Ai
in Eq. 1 will be small because µ�maxi λi, and therefore the
corresponding Poisson-Binomial distribution will not devi-
ate too much from a Binomial distribution with trial success
probability A = ∑

n
i=1 Ai/n [6]. Furthermore, we have:

n

∑
i=1

Ai

n
=

1
n

n

∑
i=1

1
1+λi/µ

≈ 1
n

n

∑
i=1

(
1− λi

µ

)
= 1− ∑

n
i=1 λi/n

µ
,

where we use the approximation 1/(1+ x)≈ 1− x for small
x. This means that the reliability of an eclectic stripe will tend
to be close to the reliability of a homogeneous stripe with
AFR equal to the average AFR of the eclectic stripe.

To measure how close the MTTDL of an eclectic stripe
will be to that of a homogeneous stripe with the same scheme
and average AFR, we conduct two numerical experiments.
Fig. 4 compares eclectic stripes against homogeneous stripes
that have the same MTTDL, across different schemes and
AFR ranges. In this experiment, instead of directly showing
an MTTDL ρ (which is hard to interpret) in the y-axis, we
show the AFR λ of a homogeneous stripe that has MTTDL
equal to ρ (under the relevant scheme). The results show that
eclectic stripes are more reliable than homogeneous stripes
with the same scheme and average AFR. In other words, for a
homogeneous stripe composed of disks with AFR λ to match

*The median relative difference between the exact and approximated
eclectic stripe MTTDL was 0.1%, the 90th percentile error was 0.5%, and
the 95th percentile error was 0.7%.

418    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the reliability of an eclectic stripe with AFRs (λi)
n
i=1, the disks

in the homogeneous stripe have to be more reliable on average,
i.e., λ < ∑

n
i=1 λi/n. The difference, however, becomes small

when the ratio n/k is small, or the range of AFRs is small.
Fig. 5 shows the reliability of an eclectic stripe when the
AFR of a single disk in the eclectic stripe varies in the range
1–30%. This experiment shows that eclectic stripes provide
a dampening effect against AFR rises of a small number of
devices in two ways: (1) a small number of devices have a
smaller impact on the average AFR of the stripe (slope of the
dashed line), and (2) the convex shape of the curve shows that
the eclectic stripe is even more reliable than a homogeneous
stripe with the same scheme and average AFR.

Checking if a stripe is safe: Typically, a minimum level
of reliability is set in the cluster by setting a MTTDL threshold
that all stripes must satisfy in order to be deemed safe. Given
the results presented in this section, we now describe a simple
method to determine whether a stripe is safe. We define the
critical AFR of a k-of-n scheme and MTTDL threshold θ as
the highest AFR that disks in a homogeneous k-of-n stripe can
attain while still having an MTTDL of at least θ. The critical
AFRs for the different schemes that are used in a system can
be precomputed and stored. Then, a simple andx efficient way
of checking whether an eclectic stripe under some scheme is
safe is to check whether the average AFR in the stripe is less
than the critical AFR for that scheme. Since an eclectic stripe
is at least as reliable as a homogeneous stripe with the same
scheme and average AFR, if the stripe passes this check, then
we can be certain that the stripe is safe. If the stripe does not
pass the check, then it may be unsafe, which can determined
by computing its MTTDL. This test can help greatly reduce
the amount of work needed in checking whether stripes are
still safe, and it also provides a simple way of understanding
the reliability of eclectic stripes.

4.3 Eclectic Volumes

Disk AFR changes may trigger redundancy transitions. Prior
designs performed disk-adaptive redundancy at the disk level.
Thus, if a disk’s AFR changed, either all or none of the stripes
on that disk required a redundancy transition. With eclectic
stripes, each disk may store chunks of stripes with different
reliabilities. An AFR change might only require redundancy
transitions for a subset of those stripes. With millions of eclec-
tic stripe chunks being stored on each disk, a linear search
through all of them for each AFR change is impractical.

An eclectic volume is a collection of eclectic stripes that use
the same EC scheme and are stored on the same set of disks.
A disk can contain multiple volume fragments identified by
their globally unique volume ID. Each disk maintains a map
of stripe ID to eclectic volume ID. Since each eclectic volume
spans the exact same disks, whenever a disk’s AFR changes,
Tiger only needs to check whether the EC scheme used for
each of the disk’s constituent volumes still meets the required

Figure 6: Architecture of Tiger. The blue boxes correspond to
Tiger’s components. The gray boxes correspond to existing compo-
nents in cluster storage system architecture and components present
in existing disk-adaptive redundancy systems.

MTTDL target. There is no need to check the reliability of
each of the individual eclectic stripes within a volume since
they are all identically reliable. The details of how Tiger
manages eclectic volumes is described in §5.3.

Eclectic volumes prove to be efficient only if they represent
a large number of eclectic stripes. Therefore, in Tiger the
default size of an eclectic volume is set to 1 TeraByte (TB).
This way, even though Tiger performs reliability monitoring
at the volume granularity it ensures that each eclectic stripe is
always sufficiently reliable.

5 Design and working of Tiger

Tiger is a practical disk-adaptive redundancy system designed
to overcome the challenges described in §3. Fig. 6 shows the
architectural components of Tiger (colored boxes) and how
they interact with existing cluster storage system components
and common disk-adaptive redundancy components.

5.1 Data flow in Tiger
We overview Tiger by explaining the lifecycle of eclec-
tic stripes. An eclectic stripe is created via the Eclectic
Stripe Allocator (ESAllocator), which identifies a set of
disks and the corresponding scheme on which this data is
to be stored. The ESAllocator uses the existing and unmod-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    419



ified data placement policy to obtain a set of disks. That
placement policy uses whatever knowledge designers choose
(e.g., available freespace, load balance, and fault domain
constraints) in selecting the set of disks. The ESAllocator
then queries the Eclectic Stripe Manager’s MTTDL Engine
(ESMTTDLEngine) with the AFRs of the chosen disks, and
a stripe configuration, to verify that the planned stripe’s
MTTDL meets the required target MTTDL. If it does not,
the ESAllocator boosts the MTTDL by changing the stripe
configuration until an appropriately safe redundancy scheme
is found. §5.2 details this process.

Once created, the ESAllocator passes the stripe to the Eclec-
tic Volume Manager (EVManager, see §5.3) to either add the
stripe to an existing volume, or create a new volume which
will contain the new stripe. The Eclectic Volume Health In-
spector (EVHInspector) continuously monitors the reliability
of the eclectic volume by querying the change point detector,
which identifies significant AFR changes in the data from the
AFR curve learner. The AFR curve learner, change point de-
tector and the rate limiter can be reused without change from
any existing disk-adaptive redundancy system*. In reaction
to a significant AFR change (rise or fall), the EVHInspector
alerts the EVManager, which fetches the eclectic stripe meta-
data from the EVDirectory and provides both the AFR change
and the metadata to the Eclectic Stripe Reorganizer (ESReor-
ganizer; see §5.2). The ESReorganizer includes techniques to
efficiently perform redundancy transitions. If eclectic stripes
must change, the ESReorganizer consults the ESAllocator in
forming them. Non-urgent redundancy transitions (when the
target MTTDL is not at risk of being violated) are throttled by
the rate limiter in order to not overwhelm the storage cluster.

Tiger’s stripe-by-stripe disk-adaptive redundancy approach
enables incremental adoption by allowing data to be stored
either as an eclectic stripe or a homogeneous stripe. This is in
contrast to subcluster-based designs that are all-or-nothing.

5.2 The Eclectic Stripe Manager
The Eclectic Stripe Manager (ESManager) handles construc-
tion, maintenance and reorganization of eclectic stripes.

Constructing eclectic stripes In the absence of an exist-
ing eclectic volume that has space (described later in §4.3),
the ESAllocator asks the existing data placement policy for
disks to store each new eclectic stripe. Since that placement
policy is unaware of disk-adaptive redundancy, it may return
a set of disks whose AFRs produce an MTTDL that either
fails to meet or far exceeds the target MTTDL. Algorithm 1
describes the process to build a space-efficient, yet adequately
reliable eclectic stripe.

To give itself flexibility, ESAllocator asks the placement
policy to provide a set of disks for the maximum-width-
allowed stripe (e.g., 33 for 30-of-33). The ESAllocator then

*Tiger reuses the Ruptures change-point detection library [47, 48], the
AFR curve-learner and the rate-limiter from HeART [25] and Pacemaker [24].

Algorithm 1
θMTTDL← target MTTDL
nmax← max{n | (n,k) ∈ schemes}
(d1, . . . ,dnmax)← nmax randomly sampled devices
for (n,k) ∈ schemes in order of increasing n/k do

if MTTDL(n,k,(d1, . . . ,dn))≥ θMTTDL then return (n,k)

queries the ESMTTDLEngine with the provided disks and
its planned scheme to get the MTTDL value. If the MTTDL
does not meet the target MTTDL, ESAllocator discards a
disk from the set and increases the redundancy of the corre-
sponding scheme (e.g., 29-of-32 instead of 30-of-33) to boost
the stripe’s MTTDL, repeating this process until sufficient
MTTDL is achieved. This process is guaranteed to terminate,
since the least space-efficient scheme in a storage cluster must
meet the target MTTDL. Moreover, by iterating from the most
space-efficient scheme allowed, the algorithm terminates at
the most space-efficient scheme for the provided disks.

Ensuring reliability amid disk failures. The reliability
of each eclectic stripe is a function of the AFRs on the disks
on which it is stored. So, when a disk fails, the reconstructed
data cannot simply be placed on a randomly chosen disk,
since its AFR might be high enough to cause the eclectic
stripe’s MTTDL to exceed the target. Recall, from §4.2, that
the critical AFR of an EC scheme is the highest AFR that
a homogeneous stripe of that scheme can reliably support,
and a simple way to test that an eclectic stripe is safe is to
check that its average AFR is below the critical AFR for its
EC scheme. Therefore, we can ensure that reliability will be
preserved if we choose a disk that keeps the average AFR of
the affected stripes under their respective critical AFRs.

When a disk in Tiger fails, the EVManager is notified. This
triggers a lookup in the EVDirectory for eclectic stripes whose
chunks need to be reconstructed. The EVManager forwards
the list of chunks to the ESReorganizer. For each stripe, the
ESReorganizer asks the ESAllocator for disks to replace the
failed disks, providing the critical AFR for the stripe. The
ESAllocator returns suitable disks, if they are found, other-
wise, it allocates (one or more) new eclectic stripes and moves
the prior stripe’s data (including any reconstructed data) to
the new stripes. Finding sufficiently reliable disks to store
the reconstructed data results in lower transition IO than allo-
cating new eclectic stripes, since the latter involves moving
data of disks that did not fail. After the reconstruction process
(whether or not new eclectic stripes are formed), ESReorga-
nizer informs the EVManager of the changes, which then
updates the EVDirectory accordingly.

Dealing with AFR changes over time A disk’s AFR is
not constant throughout its lifetime [9, 10, 23, 56]. In addition
to building and maintaining eclectic stripes, ESManager must
also ensure that data is kept safe when a disk’s AFR changes.

Ensuring data reliability with increasing AFRs. The EV-
Manager monitors AFR by querying the change point detector.

420    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Whenever the AFR rises, the EVManager identifies any eclec-
tic volumes whose data is at a risk of becoming under-reliable.
It alerts the ESReorganizer, with the necessary stripe metadata
of such stripes, which calls the ESAllocator with the current
and previous disk AFR values and the number of chunks that
need reallocation onto safer disks.

As with failed data reconstruction, ESAllocator prefers
finding suitable disk alternates whose AFRs are less than or
equal to previous AFRs values of the disks whose AFRs rose.
If ESAllocator cannot find suitable disks, new eclectic stripes
are formed and data is moved, as described previously.

Reducing data over-protection with reducing AFRs. When
a disk’s AFR decreases, there is no reliability threat to the
data stored on that disk, but there may be an opportunity to
reduce redundancy and obtain space-savings.

The simplest way (that also entails no transition IO cost) of
reducing a stripe’s redundancy is by deleting excess parities*.
However, deleting parities is rarely an option for two reasons.
First, most storage clusters have a minimum requirement on
the number of parities per stripe, set by the system administra-
tor. Second, adding/deleting a parity has a much higher impact
on the MTTDL value of a stripe than adding/deleting a data
chunk— deleting even a single parity usually makes the stripe
miss the target MTTDL. When ESReorganizer receives meta-
data of possibly over-redundant stripes from the EVManager,
it queries the ESMTTDLEngine whether reducing parities is
feasible and, if so, enacts the change.

When deleting parities is not an option, there are two addi-
tional ways redundancy can be reduced. First, the ESAllocator
could find candidate disks with AFR higher than the current
disk’s AFR, but low enough that the mean AFR is below the
stripe’s critical AFR. This method is cost-effective, since it
involves only reading and writing those chunks that are on
over-protected disks. Second, if the ESAllocator cannot find
suitable disks, it performs new stripe allocations if it can find
a new eclectic stripe with lower storage overhead. Although
re-allocation has a high IO overhead (since it involves copy-
ing data over to the new stripe), it is not urgent when lowering
redundancy and can be throttled by the rate limiter without
putting any data at risk.

The eclectic stripe reorganizer (ESReorganizer). The
ESReorganizer uses several techniques to ensure adequate
reliability and provide maximum space-savings.

At any given time, the ESReorganizer might be dealing with
multiple eclectic stripes seeking possible changes. ESReorga-
nizer processes requests in priority of maintaining reliability:
failed data reconstruction, then near-risk stripes that need to
increase their redundancy, then requests of decommissioning
disks to move data off of them, and then stripes seeking a
redundancy reduction. It processes eclectic stripes that are
requesting reduction in redundancy in descending order of
their storage overhead.

*Deleting parities may not work reducing redundancy of non-MDS codes.

5.3 The Eclectic Volume Manager

The EVManager is responsible for creating, maintaining and
monitoring the health of eclectic volumes. Recall (from §4.3)
that an eclectic volume (typically in TBs) contains hundreds-
of-thousands of eclectic stripes (typically in MBs). Along
with health, the EVManager maintains usage statistics (e.g.,
freespace and load) for each eclectic volume.

Constructing and populating eclectic volumes. Similar
to how ESManager manages eclectic stripes, EVManager
dynamically creates and destroys eclectic volumes. The con-
struction of the first eclectic stripe forces the creation of the
first eclectic volume on the same set of disks that are cho-
sen by the ESAllocator. When creating subsequent eclectic
stripes, the ESAllocator first queries the EVManager to check
if there are eclectic volumes that are conducive for storing
new stripes. The EVManager does this by maintaining ca-
pacity and load-balancing metrics for each eclectic volume.
Thus, the EVManager also avoids hot-spotting within eclectic
volumes by spreading hot data evenly across multiple eclec-
tic volumes. Once the target eclectic volume is identified,
the set of disks comprising the eclectic volume are returned
to the ESAllocator. If there is no space available, the ESAl-
locator gets a new set of disks from the placement policy
which causes EVManager to create a new eclectic volume
atop those disks. Tiger’s eclectic volumes operate similar to
Ceph’s placement groups [51].

The Eclectic Volume Directory. Recall from §4.3 that
eclectic volumes are simply a logical grouping of all the eclec-
tic stripes with the same redundancy scheme on the same set
of disks. Each eclectic volume has a unique entry in the EVDi-
rectory and stored against the eclectic volume ID are the disks
on which the eclectic volume is stored. In addition, the EVDi-
rectory also contains a mapping from disk serial number to
list of volume IDs whose fragments are stored on that disk.
Note that the size of this metadata is very small. With TB-
sized volume fragments, even a 100K disk storage cluster
with 20TB disks will have an EVDirectory less than 100MB.

The tiny size of the EVDirectory also implies that it is
unlikely to be a bottleneck. The EVDirectory will typically
be queried and updated whenever disks fail, or their AFR
increases significantly (in order to fetch the eclectic volumes
IDs stored on the affected disks). It might also be queried to
fulfill an allocation request in order to get the disks on which
an eclectic volume is stored, if the eclectic-volume-to-disks
mapping is not cached. Even a cluster with 500K disks has at
most a few hundred disk failures in a day and typically not
more than 10 makes/models, thus limiting the EVDirectory
updates to less than 1000 per day. Although allocations are
more frequent, caching can filter most queries for them, and
their rate is also much lower than the rate of file metadata
lookups in a cluster with billions of files. And, if necessary,
traditional metadata scaling techniques can be employed to
prevent EVDirectory from becoming a bottleneck.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    421



6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes 

(increasing space-efficiency)

0

50

100
Vi

ab
le

 d
isk

s (
%

)

Tiger
Pacemaker

(a) Backblaze

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes 

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(b) Google Cluster 1

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes 

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(c) Google Cluster 2

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes 

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(d) Google Cluster 3

Figure 7: Placement constraints posed by Tiger compared to Pacemaker by observing the percentage of the disk fleet that is viable for the
different redundancy schemes. Tiger has lower placement constraints than Pacemaker. Tiger has over >75% disks being viable for all four
clusters for all scheme configurations. Pacemaker’s placement constraints are more pronounced in Google clusters since they are mostly
step-deployed. This results in strict Rgroup boundaries disallowing disks from different makes/models being a part of the same Rgroup.

Reacting to failures and AFR changes. The EVHInspec-
tor continuously polls the change point detector and the clus-
ter metadata service to gather information about disk failures
and significant AFR changes. For all significant changes, the
EVHInspector reconfirms the MTTDL of the affected vol-
umes by querying the ESMTTDLEngine with the changed
AFRs. Even though it is technically not a stripe, a EVDirec-
tory has all information required to calculate the reliability
of an eclectic volume, viz. the AFRs of the disks on which
the volume resides, and the redundancy scheme configuration.
Due to its small metadata footprint, EVHInspector can check
the health of billions of stripes by checking the reliability of
only thousands of eclectic volumes.

Whenever a disk fails, or a disk’s AFR increases, the
EVHInspector looks up the EVDirectory to find the volumes
affected due to this failure / AFR rise. If the disk in question is
alive, the volume manager queries the disk to obtain the stripe
IDs belonging to that volume ID. If the disk has failed, the
EVHInspector queries other disks of that particular eclectic
volume and gathers the stripe IDs from them. Note that all
disks storing a particular eclectic volume have the same list of
eclectic stripe IDs in common (but they also each may have
other stripes as well from non-overlapping eclectic volumes).

The EVHInspector then forwards the list of stripe IDs to
the ESReorganizer along with the updated and previous AFR
information and the action to be taken (reconstruct data, in-
crease redundancy or reduce redundancy). On performing the
appropriate task, the ESReorganizer communicates the meta-
data changes back to the EVManager, and the EVManager
subsequently reflects it in the EVDirectory. For reconstruction
and increase in redundancy, if a replacement disk is found,
and has enough capacity to accommodate all chunks of the
failed disk / disks whose AFR has increased, the eclectic
volume of all constituting eclectic stripes after the operation
remains the same. For redundancy reductions, or in case of
not finding a replacement disk, or not finding one with enough
capacity, the eclectic stripes depart from their original eclectic
volume (unlike Ceph’s placement groups) since they will now
be stored on potentially different subset of disks.

6 Evaluation of Tiger

We now evaluate how Tiger performs on real-world data, and
show how it fulfills the challenges laid out in §3. Tiger is eval-
uated using real-world deployment and failure logs from four
production clusters at two different organizations (Google and
Backblaze). Each cluster has a multi-year lifetime and disks
from multiple makes/models/batches. Backblaze uses trickle-
deployed disks. These disks are added to the cluster every few
days in the tens or hundreds. Google Cluster 2 and Cluster 3
have step-deployed makes/models where disks are introduced
into the cluster in large batches of tens-of-thousands of disks
within a very short span of time. Google Cluster 1 is a mix of
step- and trickle-deployed disks.

The highlights of our evaluation are (1) Tiger significantly
lowers placement restrictions posed by Pacemaker (existing
state-of-the-art disk-adaptive redundancy system); (2) Tiger’s
eclectic stripes provide much higher risk-diversity compared
to Pacemaker; (3) Tiger is closer to the target MTTDL, and
thus more efficient than existing disk-adaptive redundancy ap-
proaches; (4) Tiger outperforms Pacemaker in space-savings
while keeping the average transition IO <= 0.5% and peak
transition IO < 5% of cluster IO bandwidth and (5) Tiger’s
eclectic stripes are less sensitive to rising AFR and provide
better data safety.

6.1 Tiger enables flexible data placement
We capture the flexibility in data placement by measuring
the percentage of the disk fleet that is considered viable for
storing data using a particular redundancy scheme. The vi-
ability is decided by whether the data stored on those disks
will meet the target MTTDL. The X-axis in Fig. 7a shows
the various schemes that can be supported in each storage
cluster*. For estimating Tiger’s viable disk candidates, we
perform a Monte-Carlo simulation on specific days in each

*The narrowest scheme is set to 6-of-9 and widest is set to 30-of-33.
Schemes with higher width have lower redundancy since the number of
parities are kept the same. This is based on reference to prior work [24, 25],
and also on the basis of communication with storage administrators of large-
scale cluster storage systems at various organizations.

422    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes 
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y 
(%

)

Tiger
Pacemaker

(a) Backblaze risk-diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes 
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y 
(%

)

Tiger
Pacemaker

(b) Google Cluster 1 risk-diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes 
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y 
(%

)

Tiger
Pacemaker

(c) Google Cluster 2 risk-diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes 
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y 
(%

)

Tiger
Pacemaker

(d) Google Cluster 3 risk-diversity

Figure 8: Risk-diversity achieved by Tiger over three large-scale cluster storage systems. All three plots are average risk-diversity measurements
taken over 5 days spread equally over the lifetime of the clusters. Pacemaker due its Rgroup based design has much lower risk-diversity
compared to Tiger, more evident in Fig. 8c and 8d which are entirely step-deployed clusters.

of the cluster’s lifetime. We allocate 1000 eclectic stripes by
picking disks uniformly at random and check how many of the
possible schemes can use the chosen disks. For Pacemaker,
we bin the disks by AFRs to mimic Rgroups and measure the
ratio of the population of the Rgroups to the entire disk fleet.

Tiger has almost all disks available for allocation for any
scheme in Google Clusters 1 and 3 (Figs. 7b, 7d), whereas in
Backblaze and Google Cluster 2 (Figs. 7a, 7c) at most 25%
disks are deemed not viable for the widest schemes (beyond
22-of-25). When a large fraction of disks of the cluster have a
high AFR (as is the case with Backblaze and Google Cluster
2 for the chosen dates), formation of eclectic stripes ends
up with mostly high AFR disks. In such situations, Tiger
cannot employ a very space-efficient redundancy scheme.
Pacemaker’s strict Rgroup boundaries, on the other hand, limit
all disks in an Rgroup to a single scheme that may not be very
wide. Therefore, for Pacemaker, all clusters see a significant
drop in viable disks as the width increases.

6.2 Tiger achieves high risk-diversity
Risk-diversity of a stripe is directly proportional to the number
of unique makes/models participating in that stripe. If all
makes/models in the storage cluster have representation in
the stripe, its risk-diversity is defined to be 100%. A 0% risk-
diversity implies that there were no disks in the cluster that
could be used for the particular scheme. The setup used for
evaluating risk-diversity is a Monte-Carlo simulation, where
100 stripes were allocated for each scheme configuration by
choosing disks uniformly at random. For Tiger, we measure
risk-diversity by capturing the average number of unique disk
makes/models on which the chunks of an eclectic stripe are
stored for each stripe configuration. For Pacemaker, we again
bin the disks by AFR to form Rgroups, and count the unique
number of makes/models within each Rgroup. We take the
average of this simulation performed on five equally spaced
days in the cluster lifetime to get an overall sense of risk-
diversity of both systems.

Tiger significantly outperforms Pacemaker in providing
high risk-diversity. Fig. 8 captures the risk-diversity achieved
by Tiger vs Pacemaker. Since Tiger has no partitioning of

disks, all disks of any make/model are viable for allocating
any scheme. The minimum risk-diversity achieved by Tiger is
60% across all four clusters, that too for the narrowest scheme
(6-of-9) for Backblaze (Fig. 8a) and Google Cluster 1 (Fig. 8b)
clusters. Both these clusters have seven makes/models, and
it is unlikely that seven out of nine chunks will be across
different makes/models. As the stripe width increases, Tiger’s
risk-diversity also improves. Entirely step-deployed clusters,
Google Cluster 2 (Fig. 8c) and Google Cluster 3 (Fig. 8d)
have four and three makes/models respectively. Tiger achieves
perfect risk-diversity for all possible schemes in those clus-
ters. For Pacemaker, it is more likely that clusters where all
makes/models are trickle-deployed will have a better risk-
diversity because multiple makes/models can be a part of the
same Rgroup so long as their AFRs are in the same range,
for e.g. Backblaze (Fig. 8a). Nevertheless, even clusters with
all trickle-deployed disks do not see perfect (or even good)
risk-diversity since different makes/models are deployed at
different times, and they go through different phases of life at
different dates. Risk-diversity is poorer for Pacemaker in clus-
ters with step-deployed makes /models as seen in Figs. 8c and
8d. This is because Rgroups and steps have a 1:1 mapping
and each step only contains disks of a single make/model.
The reason Pacemaker has 100% risk-diversity for 30-of-33 is
because when averaging over multiple days (5 for this experi-
ment), all makes/models on some date belonged to an Rgroup
with the 30-of-33 redundancy scheme.

6.3 Tiger adapts redundancy efficiently
The efficacy of disk-adaptive redundancy performed by Tiger
is evaluated using three metrics. First, we discuss the MTTDL
distribution of data stored using Tiger. Subsequently, using
the same four clusters used by Pacemaker we evaluate the
resulting space-savings obtained by Tiger because of disk-
adaptive redundancy, and finally we measure the IO overhead
needed to perform necessary redundancy transitions. For fair
comparison, when evaluating Tiger, we employ the same con-
figurations (such as the IO constraints and permitted redun-
dancy schemes) and tools (such as the AFR curve learner and
the change-point detector) that are used in Pacemaker.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    423



12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e 
sa

vi
ng

s (
%

) Tiger
Pacemaker

(a) Backblaze space-savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e 
sa

vi
ng

s (
%

) Tiger
Pacemaker

(b) Google Cluster 1 space-savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e 
sa

vi
ng

s (
%

) Tiger
Pacemaker

(c) Google Cluster 2 space-savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e 
sa

vi
ng

s (
%

) Tiger
Pacemaker

(d) Google Cluster 3 space-savings

Figure 9: Space-savings achieved by Tiger for disk-adaptive redundancy simulated on four production clusters compared to Pacemaker over
conventional one-scheme-fits-all redundancy approaches. Figs. 9a–9d show that across all clusters with different maximum stripe width
configurations, Tiger provides up to 5% higher average space-savings compared to Pacemaker.

0
500

Conventional
mean AFR scheme
(Overhead=1.1)

(a)

0
250

Conventional
max AFR scheme
(Overhead=1.5)

(b)

0

2500

Fr
eq

ue
nc

y

Pacemaker
(Overhead=1.2)

(c)

13 14 15 16 17 18 19 20
log10(MTTDL in days)

0
1000 Tiger

(Overhead=1.1)(d)

Figure 10: Comparison of MTTDL distributions for different ap-
proaches. We form 10000 random stripes for each approach using
the AFRs from Google Cluster 1 (notice the different scales in the
Y-axis). In a conventional system, a single scheme is chosen for all
stripes based on the average AFR (a) or maximum AFR (b). (c) In
Pacemaker, stripes must reside within an Rgroup, and the scheme
depends on the Rgroup. (d) In Tiger, the scheme for each stripe is
chosen based on the AFRs in the stripe. The dashed vertical line
denotes the target MTTDL.

Tiger’s achieves tight reliability. Storage clusters have to
ensure that all data in the cluster always meets a specified
target level of reliability typically specified as a MTTDL value.
Tiger’s target MTTDL is set as the lowest acceptable MTTDL
in the system. This is calculated using the MTTDL of the most
conservative homogeneous stripe possible (6-of-9) having the
maximum possible AFR (16%). These settings are borrowed
from Pacemaker’s evaluation for a fair comparison with Tiger.

Fig. 10 shows a comparison in the distribution of stripe
MTTDL with different approaches to redundancy selection
for a specific day in Google Cluster 1. Fig. 10(a) shows con-
ventional systems choosing the redundancy scheme based on
the avg. AFR, which results in small storage overhead, but
puts a big fraction of the stripes at risk. Fig. 10(b) shows
conventional systems that choose the redundancy scheme on
the basis of max AFR. Although all stripes are sufficiently
protected, the storage overhead is the highest among all four
alternatives. Fig. 10(c) shows Pacemaker where the different
MTTDL clusters represent different Rgroups with different
redundancy schemes. Pacemaker achieves good reduction
in storage overhead, and keeps all stripes above the target

MTTDL. In fact, some Rgroups (with higher MTTDL values)
are too over-protected and denote lost opportunities for space-
savings. Finally, Fig. 10(d) shows Tiger’s MTTDL distribu-
tion. Despite all its eclectic stripes being above the MTTDL
threshold, Tiger has least storage overhead.

Tiger achieves attractive space-savings. Akin to Pace-
maker, by dynamically tailoring redundancy to disk AFRs,
Tiger’s eclectic stripes can use more space-efficient redun-
dancy schemes to meet the required MTTDL target. Fig. 9
shows that Tiger achieves equal or better average space-
savings compared to Pacemaker in all four clusters. For
Google Clusters 1, 2 and 3 (Figs. 9b, 9c, 9d), the highly
cost-efficient redundancy transitions of Pacemaker allows a
large step-deployed make/model to spend more time in lower
redundancy. This boosts Pacemaker’s overall space-savings
for these clusters and prevents Tiger from surpassing it easily.

In the Backblaze cluster (Figs. 9a), the reason for Tiger
achieving better space-savings is because eclectic stripes al-
low high AFR disks to be mixed with low AFR disks and
yet use an optimized redundancy scheme. In Pacemaker, high
AFR disks cannot be mixed with other disks, resulting in
lower space-savings. In the Backblaze cluster, all the seven
makes/models are trickle-deployed. This results in a non-
trivial fraction of disks constantly being in high-AFR regimes
of infancy or wearout. While Pacemaker is forced to use the
default, most conservative redundancy scheme on these disks,
Tiger can use these disks for more space-efficient redundancy
schemes by combining them with other, more robust disks. As
a result, Tiger is able to achieve up to 5% higher space-savings
compared to Pacemaker.

Tiger has very low IO overhead. Fig. 11 shows the IO
overhead comparison between Pacemaker and Tiger. Al-
though both systems are capped at 5% and in general require
very low IO (compared to background tasks such as scrubbing
that requires ≈ 7% [5]), our evaluation shows that Tiger can
achieve all its benefits with an average IO bandwidth required
for redundancy transitions of at most 0.5%. In an absolute
sense, Tiger’s low IO overhead is mainly attributed to Tiger’s
efficient redundancy transitions for an AFR rise (detailed in
§5.2), where Tiger moves the potentially risky chunk from

424    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n 
IO

 (%
)

Tiger
Pacemaker

(a) Backblaze IO overhead

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n 
IO

 (%
)

Tiger
Pacemaker

(b) Google Cluster 1 IO overhead

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n 
IO

 (%
)

Tiger
Pacemaker

(c) Google Cluster 2 IO overhead

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n 
IO

 (%
)

Tiger
Pacemaker

(d) Google Cluster 3 IO overhead

Figure 11: IO overhead of redundancy scheme transitions of Tiger versus Pacemaker. In most configurations, Tiger has a higher IO overhead
compared to Pacemaker due to Pacemaker leveraging its IO-efficient transitioning mechanisms. Despite being higher, the average IO overhead
of Tiger is still at most 0.5% of the overall cluster’s IO bandwidth; much lower than existing background tasks such as scrubbing, that require
approximately 7% IO bandwidth [5]

an unsafe disk to a safe disk rather than re-encoding it or
reallocating it; both having a significantly higher IO cost.

Compared to Pacemaker, Tiger still incurs slightly higher
IO overhead. This is due to Tiger’s mechanism of coalescing
space-inefficient (high-redundancy) eclectic stripes into new
space-efficient (low-redundancy) eclectic stripes in response
to AFR reduction by moving all chunks. It leads to more
data movement compared to moving just the chunks of the
high-AFR disks (as is the case when AFR rises). This is a
conscious design choice made in Tiger in order to maximize
space-savings for non-urgent redundancy transitions at the
expense of a minor increase in the IO overhead. Moreover,
Pacemaker’s IO-efficient redundancy transitioning mecha-
nisms (that are more suitable for its Rgroup-based design)
further help in reducing its IO overhead.

Tiger does not experience urgent IO bursts. In order
to understand the burstiness of the IO that can be experi-
enced by Tiger compared to Pacemaker, we artificially in-
crease the AFR of a make/model and measure the resulting
transition IO load for maintaining data reliability. Fig. 12
shows the comparison of IO loads experienced by Pacemaker
vs Tiger for three instances of increasing AFR of a single step-
deployed make/model. Performed on three different dates in
two Google clusters (Cluster 1 and Cluster 2), we observe
that Pacemaker needs orders of magnitude higher IO band-
width than Tiger to achieve the required transitions. In fact
for Google Cluster 2, in both instances none of Tiger’s stripes
needed transitioning despite observing a 1% rise in AFR.

We explain Pacemaker’s high IO requirement with an ex-
ample. Suppose a 20TB disk, which can perform 100MB/s
needs to transition away from using a 30-of-33 scheme. De-
spite using Pacemaker’s optimized Type 2 transitions*, sim-
ply reading the data to recalculate new parities would require
196% of the disk’s possible IO bandwidth in a day (assuming
90% fullness to match Pacemaker’s setup). In a step-deployed
make/model all disks of an Rgroup transition together. In or-

*In Type 2 transitions, Pacemaker re-encodes data from one scheme to
another without re-writing any data. It simply recalculates new parities, writes
them and deletes the old ones.

0.0 0.5 1.0
0

50

100

Tr
an

sit
io

n 
IO

(%
 o

f R
gr

ou
p 

IO
 B

W
)

0.14 1.6

Google cluster 1

0.0 0.5 1.0
Increase in AFR (%) of one constituent make/model

0

Google cluster 2
Disk 1

0.0 0.5 1.0

0

Google cluster 2
Disk 2
Pacemaker
Tiger

0

25

50

75

100

Tr
an

sit
io

n 
IO

(%
 o

f t
ot

al
 c

lu
st

er
 IO

 B
W

)

Figure 12: IO cost of redundancy transitions associated with the
increase of AFR for one constituent make/model. IO cost is mea-
sured as a percentage of the total IO bandwidth of the Rgroup for
Pacemaker, whereas it is the total cluster IO bandwidth for Tiger.
It is calculated by scaling up a simulation of 1000 random stripes
in each system and measuring the number of stripes that become
unsafe after the given increase in AFR.

der to spread out the resulting IO burst over time, Pacemaker
relies on predicting the AFR rise well in advance. To maintain
a 5% IO cap, Pacemaker would need to know the AFR rise
at least 40 days in advance. Long-term AFR predictions are
both non-robust and non-trivial.

In contrast, Tiger for the same transition does not suffer
from any IO bursts. Firstly, because of eclectic stripes, even if
the disk AFR increases, only a limited fraction of data stored
on it will need a redundancy transition, since other stripes
might be residing on more robust disks and might continue
to meet the target MTTDL. Secondly, other disks over which
the eclectic stripes needing an increase in redundancy are
spread need not (and probably will not) belong to the same
make/model/batch. Therefore, they will not require a simulta-
neous increase in redundancy and can assist in transitioning
data from the affected stripes. Thus disks in Tiger are spared
from any sudden IO bursts.

6.4 Challenging situations for Tiger
There are certain situations that create fundamental challenges
for Tiger and other disk-adaptive redundancy systems.

Sudden rise in AFRs mimicking bulk failures. Although

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    425



Fig. 12 shows that Tiger is robust to AFR rises in any
make/model in a cluster, there could be bulk failure scenarios
where large fraction of the disks in the cluster fail together.
On such occasions, any system (including Tiger) that depends
on redundancy will suffer from potential data loss unless the
system includes cross-cluster redundancy.

A cluster with a single step-deployed make/model. Sup-
pose a cluster had only one make/model, deployed in a step-
deployed manner (note: we have not come across such an
example for the large clusters targeted): there would be no
diversity to exploit and all disks of the cluster would undergo
redundancy transitions together. Not only would this produce
bursty IO, but also will potentially result in a capacity crunch
(when increasing redundancy). Such clusters would either
need to keep some space unutilized to account for the bulk
redundancy-increasing transitions, or will need to make provi-
sions to add more disks to the cluster before the redundancy-
increasing transitions are issued.

7 Additional Related Work

The closest related works, HeART and Pacemaker, are dis-
cussed in §2 together with other background. Additional re-
lated works can be divided into works that study the reliabil-
ity of disks and distributed storage, and systems that manage
multiple EC schemes and transitions between them. One es-
sential part of disk-adaptive redundancy is the monitoring
of disk AFRs, which are used by Tiger to assess the relia-
bility of stripes. Many works have studied the behavior of
disk AFRs and their impact on distributed storage reliabil-
ity [5, 8, 18, 22, 26, 34, 35, 41–44]. Also, multiple works have
studied the prediction of disk AFRs based on different fea-
tures [1, 17, 27, 32, 45, 49, 59].

Many existing distributed storage systems allow for multi-
ple EC schemes to coexist in the same cluster [11, 14]. There
are systems that propose choosing different EC schemes for
different data [46,55]. The problem of transitioning data from
one EC scheme to another has been widely studied in the Cod-
ing Theory literature, with many works studying its cost, as
well as proposing special code designs that reduce the cost of
transitions [20, 28–31, 36, 38, 39, 53–55, 57, 60]. Such designs
could be used with Tiger, though our evaluations indicate that
transition IO is not a significant problem.

8 Conclusion

Tiger enables disk-adaptive redundancy without the place-
ment restrictions and associated problems that plague prior de-
signs. Tiger’s eclectic stripes tailor redundancy to whichever
disks are chosen for each stripe. Our evaluations indicate that
it reduces risk in two major ways: by increasing disk-type
diversity in stripes and by reducing burstiness of transition

IO urgency. Taken together, Tiger makes disk-adaptive redun-
dancy practical for adoption in real storage clusters.

9 Acknowledgements

We thank our shepherd Gala Yadgar and the anonymous re-
viewers for their valuable feedback and suggestions. We ex-
tend special thanks to Larry Greenfield and numerous other
researchers and engineers at Google. This research is sup-
ported in part by NSF grants CNS1956271 and CNS1901410.
We also thank the members and companies of the PDL Con-
sortium (Amazon, Google, HPE, Hitachi, IBM, Intel, Meta,
Microsoft, NetApp, Oracle, Pure Storage, Salesforce, Sam-
sung, Seagate, Two Sigma, Western Digital) and VMware for
their interest, insights, feedback, and support.

A Derivation of approximation of MTTDL of
eclectic stripes

In order to approximate the MTTDL of an eclectic stripe, we
will assume that the stripe can be repaired in the data loss
state and we will approximate the MTTDL as the mean time
between visits to the data loss state. In particular, we will
analyze the stripe as an alternating renewal process. Let As
be the stripe availability (i.e., the fraction of the time that the
stripe is not in the data loss state), µs be the repair rate in the
data loss state, and λs the stripe data loss rate. As described
above, the MTTDL is approximately λ−1

s . For an alternating
renewal process, we have that:

As =
µs

µs +λs
⇐⇒ 1

λs
=

As

µs(1−As)
(2)

The repair rate in the data loss state is simply the number of
failed disks in that state:

µs = (n− k+1)µ. (3)

We assume that each disk in the stripe fails independently
from the rest, and that it is repaired with rate µ if it fails. Then,
in steady state, disk i is available with probability:

Ai =
µ

µ+λi
. (4)

Let P( j) be the probability that we find the stripe in a state
where exactly j disks are available in the stripe. Since there
are no states with more than n− k+1 failed disks, we have
that:

P( j) =
Q( j)

Q(k−1)+ · · ·+Q(n)
, for k−1≤ j ≤ n, (5)

where Q( j) is the probability that exactly j disks are avail-
able. Since disks are independent, Q( j) is equal to a Poisson-
binomial distribution, with probabilities (Ai)

n
i=1. Given this,

426    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the availability of stripe is given by:

As = P(k)+ · · ·+P(n). (6)

Thus, we have:

1
λs

=
Q(k)+ · · ·+Q(n)

µ(n− k+1)Q(k−1)
≈ 1

µ(n− k+1)Q(k−1)
. (7)

Where the approximation comes from the fact that Q(n)≈ 1
because µ�maxi λi and thus all Ai are close to 1.

In summary, we have that:

MTTDL≈ 1
µ(n− k+1)Q(k−1)

. (8)

References

[1] Preethi Anantharaman, Mu Qiao, and Divyesh Jadav.
Large Scale Predictive Analytics for Hard Disk Remain-
ing Useful Life Estimation. In IEEE International Con-
ference on Big Data, 2018.

[2] John E Angus. On computing MTBF for a k-out-of-n:
G repairable system. IEEE Transactions on Reliability,
37(3):312–313, 1988.

[3] Backblaze. Disk Reliability Dataset. https://www.
backblaze.com/b2/hard-drive-test-data.html,
2013-2018.

[4] Backblaze. Erasure coding used by Backblaze. https:
//www.backblaze.com/blog/reed-solomon/, 2013-
2018.

[5] Lakshmi N Bairavasundaram, Garth R Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis of
latent sector errors in disk drives. In ACM SIGMETRICS
Performance Evaluation Review, 2007.

[6] Werner Ehm. Binomial approximation to the Poisson
binomial distribution. Statistics & Probability Letters,
11(1):7–16, 1991.

[7] Nosayba El-Sayed, Ioan A Stefanovici, George
Amvrosiadis, Andy A Hwang, and Bianca Schroeder.
Temperature management in data centers: Why some
(might) like it hot. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer
Systems, pages 163–174, 2012.

[8] Jon Elerath. Hard-disk drives: The good, the bad, and
the ugly. Communication of ACM, 2009.

[9] Jon G Elerath. AFR: problems of definition, calculation
and measurement in a commercial environment. In
IEEE Reliability and Maintenance Symposium (RAMS),
2000.

[10] Jon G Elerath. Specifying reliability in the disk drive
industry: No more MTBF’s. In IEEE Reliability and
Maintenance Symposium (RAMS), 2000.

[11] Erasure code Ceph Documentation. https:
//docs.ceph.com/docs/master/rados/
operations/erasure-code/, (accessed Septem-
ber 25, 2019).

[12] Manuel Fernández and Stuart Williams. Closed-form
expression for the Poisson-binomial probability density
function. IEEE Transactions on Aerospace and Elec-
tronic Systems, 46(2):803–817, 2010.

[13] Daniel Ford, François Labelle, Florentina I Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2010.

[14] Apache Software Foundation. HDFS Erasure
Coding. https://hadoop.apache.org/docs/
r3.0.0/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html, 2017 (accessed November
5, 2020).

[15] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google
file system. In ACM SIGOPS Operating Systems Review,
2003.

[16] Garth Alan Gibson. Redundant disk arrays: Reliable,
parallel secondary storage. PhD thesis, University of
California, Berkeley, 1991.

[17] Greg Hamerly, Charles Elkan, et al. Bayesian ap-
proaches to failure prediction for disk drives. In In-
ternational Conference on Machine Learning (ICML),
2001.

[18] Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine,
Bill Kramer, and Franck Cappello. Modeling and toler-
ating heterogeneous failures in large parallel systems. In
ACM / IEEE High Performance Computing Networking,
Storage and Analysis (SC), 2011.

[19] Yili Hong. On computing the distribution function for
the Poisson binomial distribution. Computational Statis-
tics & Data Analysis, 59:41–51, 2013.

[20] Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and
Pan Zhou. Generalized optimal storage scaling via net-
work coding. In IEEE International Symposium on
Information Theory (ISIT), 2018.

[21] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus,
Brad Calder, Parikshit Gopalan, Jin Li, Sergey Yekhanin,
et al. Erasure Coding in Windows Azure Storage. In
USENIX Annual Technical Conference (ATC), 2012.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    427

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html


[22] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and
Arkady Kanevsky. Are disks the dominant contributor
for storage failures?: A comprehensive study of storage
subsystem failure characteristics. ACM Transactions on
Storage (TOS), 2008.

[23] Saurabh Kadekodi. DISK-ADAPTIVE REDUNDANCY:
tailoring data redundancy to disk-reliability heterogene-
ity in cluster storage systems. PhD thesis, Carnegie
Mellon University, 2020.

[24] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram
Subramanya, Juncheng Yang, KV Rashmi, and Gre-
gory R Ganger. PACEMAKER: Avoiding heart attacks
in storage clusters with disk-adaptive redundancy. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

[25] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger.
Cluster storage systems gotta have HeART: improving
storage efficiency by exploiting disk-reliability hetero-
geneity. In USENIX File and Storage Technologies
(FAST), 2019.

[26] Ao Ma, Rachel Traylor, Fred Douglis, Mark Chamness,
Guanlin Lu, Darren Sawyer, Surendar Chandra, and
Windsor Hsu. RAIDShield: characterizing, monitoring,
and proactively protecting against disk failures. ACM
Transactions on Storage (TOS), 2015.

[27] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca
Schroeder. Proactive error prediction to improve stor-
age system reliability. In USENIX Annual Technical
Conference (ATC), 2017.

[28] Francisco Maturana, V. S. Chaitanya Mukka, and K. V.
Rashmi. Access-optimal linear MDS convertible codes
for all parameters. In IEEE International Symposium on
Information Theory (ISIT), 2020.

[29] Francisco Maturana and K. V. Rashmi. Bandwidth cost
of code conversions in distributed storage: Fundamen-
tal limits and optimal constructions. arXiv preprint
arXiv:2008.12707, 2020.

[30] Francisco Maturana and K. V. Rashmi. Convertible
codes: new class of codes for efficient conversion of
coded data in distributed storage. In Innovations in The-
oretical Computer Science Conference, (ITCS), 2020.

[31] Sara Mousavi, Tianli Zhou, and Chao Tian. Delayed
parity generation in MDS storage codes. In IEEE In-
ternational Symposium on Information Theory (ISIT),
2018.

[32] Joseph F Murray, Gordon F Hughes, and Kenneth
Kreutz-Delgado. Hard drive failure prediction using

non-parametric statistical methods. In Springer Artifi-
cial Neural Networks and Neural Information Process-
ing (ICANN/CONIP, 2003.

[33] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul
Sikaria, Pavel Zakharov, Abhinav Sharma, Mike Shuey,
Richard Wareing, Monika Gangapuram, Guanglei Cao,
et al. Facebook’s tectonic filesystem: Efficiency from ex-
ascale. In 19th {USENIX} Conference on File and Stor-
age Technologies ({FAST} 21), pages 217–231, 2021.

[34] David A Patterson, Garth Gibson, and Randy H Katz. A
case for redundant arrays of inexpensive disks (RAID).
In ACM International Conference on Management of
Data (SIGMOD), 1988.

[35] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André
Barroso. Failure Trends in a Large Disk Drive Popula-
tion. In USENIX File and Storage Technologies (FAST),
2007.

[36] Brijesh Kumar Rai, Vommi Dhoorjati, Lokesh Saini, and
Amit K. Jha. On adaptive distributed storage systems. In
IEEE International Symposium on Information Theory
(ISIT), 2015.

[37] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A hitch-
hiker’s guide to fast and efficient data reconstruction in
erasure-coded data centers. ACM Special Interest Group
on Data Communication (SIGCOMM), 2014.

[38] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. En-
abling node repair in any erasure code for distributed
storage. In IEEE International Symposium on Informa-
tion Theory (ISIT), 2011.

[39] KV Rashmi, Nihar B Shah, and Kannan Ramchan-
dran. A piggybacking design framework for read-and
download-efficient distributed storage codes. IEEE
Transactions on Information Theory, 2017.

[40] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. Xoring ele-
phants: Novel erasure codes for big data. In Interna-
tional Conference on Very Large Data Bases (VLDB),
2013.

[41] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.
Understanding latent sector errors and how to protect
against them. ACM Transactions on Storage (TOS),
2010.

[42] Bianca Schroeder and Garth A Gibson. Disk failures in
the real world: What does an MTTF of 1,000,000 hours
mean to you? In USENIX File and Storage Technologies
(FAST), 2007.

428    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[43] Bianca Schroeder and Garth A Gibson. Understanding
failures in petascale computers. In Journal of Physics:
Conference Series. IOP Publishing, 2007.

[44] Sandeep Shah and Jon G Elerath. Disk drive vintage
and its effect on reliability. In IEEE Reliability and
Maintenance Symposium (RAMS), 2004.

[45] Brian D Strom, SungChang Lee, George W Tyndall,
and Andrei Khurshudov. Hard disk drive reliability
modeling and failure prediction. IEEE Transactions on
Magnetics, 2007.

[46] Eno Thereska, Michael Abd-El-Malek, Jay J Wylie,
Dushyanth Narayanan, and Gregory R Ganger. Informed
data distribution selection in a self-predicting storage
system. In IEEE International Conference on Auto-
nomic Computing (ICAC), 2006.

[47] Charles Truong, Laurent Oudre, and Nicolas Vayatis.
A review of change point detection methods. In
arXiv:1801.00718v1 [cs.CE], 2018.

[48] Charles Truong, Laurent Oudre, and Nicolas Vayatis.
ruptures: change point detection in python. In
arXiv:1801.00826v1 [cs.CE], 2018.

[49] Yu Wang, Eden WM Ma, Tommy WS Chow, and Kwok-
Leung Tsui. A two-step parametric method for failure
prediction in hard disk drives. IEEE Transactions on
industrial informatics, 2014.

[50] Hakim Weatherspoon and John D Kubiatowicz. Erasure
coding vs. replication: A quantitative comparison. In
Springer International Workshop on Peer-to-Peer Sys-
tems (IPTPS), 2002.

[51] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2006.

[52] Wolfram. Wolfram Mathematica.
https://www.wolfram.com/mathematica.

[53] Si Wu, Zhirong Shen, and Patrick P. C. Lee. Enabling
I/O-efficient redundancy transitioning in erasure-coded
KV stores via elastic Reed-Solomon codes. In 39th
Symposium on Reliable Distributed Systems, SRDS 2020,
Shanghai, China, September 21-24, 2020, 2020.

[54] Si Wu, Yinlong Xu, Yongkun Li, and Zhijia Yang. I/O-
efficient scaling schemes for distributed storage systems
with CRS codes. IEEE Transactions on Parallel and
Distributed Systems, 2016.

[55] Mingyuan Xia, Mohit Saxena, Mario Blaum, and
David A. Pease. A tale of two erasure codes in HDFS.
In USENIX File and Storage Technologies (FAST), 2015.

[56] Jimmy Yang and Feng-Bin Sun. A comprehensive re-
view of hard-disk drive reliability. In IEEE Reliability
and Maintenance Symposium (RAMS), 1999.

[57] Xiaoyang Zhang, Yuchong Hu, Patrick P. C. Lee, and
Pan Zhou. Toward optimal storage scaling via network
coding: from theory to practice. In IEEE Conference on
Computer Communications, (INFOCOM), 2018.

[58] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno
Thereska, and Dushyanth Narayanan. Does erasure cod-
ing have a role to play in my data center. Microsoft
research MSR-TR-2010, 52, 2010.

[59] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng.
Predicting disk failures with HMM-and HSMM-based
approaches. In Springer Industrial Conference on Data
Mining (ICDM), 2010.

[60] Weimin Zheng and Guangyan Zhang. Fastscale: accel-
erate RAID scaling by minimizing data migration. In
USENIX File and Storage Technologies (FAST), 2011.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    429





zIO: Accelerating IO-Intensive Applications with Transparent Zero-Copy IO

Tim Stamler1 Deukyeon Hwang1 Amanda Raybuck1 Wei Zhang2 Simon Peter3
1UT Austin 2Microsoft 3University ofWashington

Abstract
Wepresent zIO, a transparent zero-copy IOmechanism for un-
modified IO-intensiveapplications. zIOtracks IOdata through
the application, eliminating copies that are unnecessarywhile
maintaining data consistency.

Applications often modify only a part of the data they pro-
cess. zIO leverages this insight and interposes on IO stack
and standard library memory copy calls to track IO data and
eliminate unnecessary copies. Instead, intermediate data lo-
cations are unmapped, allowing zIO to intercept and resolve
any access via page faults to maintain data consistency. To
avoid harming application performance in situations where
data tracking overhead is high, zIO’s tracking policy decides
on a per IO basiswhen to eliminate copies. Further,we demon-
strate how to use zIO to achieve optimistic network receiver
persistence for applications storing data from the network
in non-volatile memory (NVM). By mapping socket receive
buffers in NVM and leveraging kernel-bypass IO, we can rely
on zIO to transparently eliminate all copies from the network,
through the application, to storage.

We implement zIO as a user-space library. On top of kernel
IO stacks, zIO eliminates application-level IO copies. We also
integrate zIO with kernel-bypass IO stacks, where it can ad-
ditionally eliminate copies incurred by the IO stack APIs and
enable optimistic network receiver persistence. We evaluate
zIOwith IO-intensive applications, such as Redis, Icecast, and
MongoDB. zIO improves application throughput byup to 1.8×
with Linux and by up to 2.5×with kernel-bypass IO stacks
and optimistic network receiver persistence. Compared to
common uses of zero-copy IO stack APIs, such as memory
mapped files, zIO can improve performance by up to 17% due
to reduced TLB shootdown overhead.

1 Introduction
Zero-copy IO has been a long-standing performance goal.
Copies introduce memory and CPU overhead, limiting the
performance of IO-intensive applications. IO data copies are
performed within IO stacks, by their application program-
ming interfaces (APIs), andwithin applications. Existingwork
has focused on eliminating copies within IO stacks [27, 28]
and within IO stack APIs by developing zero-copy IO APIs
[1, 11, 12, 15, 17, 28, 32], including some that strive for trans-
parency [8, 9, 22].
Despite these advances, data from IO is still copied. We

find that IO-intensive applications perform up to 8 copies
of request data for each IO request (cf. §2.1). Many of these

copies occur among subsystemswithin the applications them-
selves (application copies). Only a fraction is performed at the
IO stack API (IO copies—for example, many standard POSIX
socket and file IO system calls copy data between system and
user-provided buffers).
A reason for the continued adoption of copies is that they

simplify development. Copies are used as a robustmechanism
to pass ownership of data among independent subsystems.
A data buffer local to a subsystem cannot be touched by a
caller of the subsystem, allowing for subsystem-internal use
of the data without worry of corruption or deallocation of
the memory backing the data from the outside. For example,
copies are used to simplify asynchronous IO. POSIX allows
kernel IO stacks to provide internal buffers to IO devices that
operate asynchronously. Applications request and copy IO
data into user-space buffers, allowing applications synchro-
nous processing of a single buffer at a time, while the IO stack
recycles its internal buffers for further asynchronous IO. Fi-
nally, applications use copies to simplify data handling, for
example to perform alignment, padding, serialization and
deserialization, as well as bucketization (cf. §2.2).
Unfortunately, copying is an imperfect tool. While copies

provide the aforementionedbenefits, they also introduceover-
head. Using the Redis [21] key-value store as an example
IO-intensive application, we study the overhead of copies
for IO, both using Linux kernel IO stacks (§2.2) and using
kernel-bypass IO stacks for high-bandwidth IO devices (§2.3).
IO copying overhead scales with the amount of copied IO
data. As IO devices, in particular for storage and networking,
increase bandwidth, copies become the performance-limiting
factor in IO-intensive applications [7].

The question we ask is: can we attain the benefits of simple
development offered by copying, while alleviating its increas-
ing overheads? As we have seen, application developers opt
for copies regardless of the availability of zero-copy IO APIs.
We find that zero-copy APIs require application modification,
increase code complexity, and are notwidely supported (§2.4).
Hence, we strive for a solution that allows application devel-
opers the freedom to programwith copies and to use any IO
API, while transparently eliminating copies where it makes
sense, without requiring application modification.
We present zIO, a transparent zero-copy IO mechanism

for IO-intensive applications. IO-intensive applications act
between IO stacks, examining and potentially transforming
inputdatabeforeoutput. zIOtracksdata that is readbyapplica-
tions from IO stacks to its final destination (typically another

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    431



IO stack, but the datamay also be held inmemory). In the pro-
cess, zIO eliminates copies that are unnecessary while main-
taining consistency for data that the application accesses. By
tracking data and eliminating copies, zIO minimizes the over-
head incurred by copies, improving application performance.
zIO works under the assumption that IO-intensive appli-

cations often touch only a part of the data they process. Un-
touched data may remain in its original place, while touched
data continues to be copied. However, the challenge is that
we do not know a priori what data will be touched. zIO opti-
mistically assumes that most data will remain untouched and,
by interposing on IO system calls and C standard library calls
like memcpy and memmove, eliminates copies, instead sim-
ply marking the target memory area as intermediate. zIO can
do so transitively for entire copy chains. To maintain consis-
tency, each target area remains unmapped. If the application
attempts to touch any intermediate memory area, zIO inter-
cepts the access via a page fault. In this case, zIO performs the
copy for touched pages and remaps them. Another challenge
is to deal with unaligned memory areas. In this case, zIO per-
forms the copy of unaligned sections of the area and leaves
only page-aligned portions unmapped. Unaligned sections
are small and copying them does not harm performance.
To avoid harming application performance due to data

tracking overhead, zIO dynamically decides on a per IO basis
when to track and when to copy (via its tracking policy). If the
size of an IO buffer is smaller than 16KB, zIO copies the buffer.
zIO also tracks the average number of page faults and elim-
inated copied bytes per buffer. If the ratio of bytes accessed
to bytes eliminated from copies exceeds 6%, we impose too
much overhead handling page faults to improve application
performance and zIO copies the buffer instead.
In addition to eliminating application copies, we also use

zIO to eliminate copies across IO stack APIs. To do so, we
use kernel-bypass IO stacks in addition to zIO. Kernel-bypass
stacks use shared memory to implement their APIs, allowing
zIO to track IO as it arrives from the IO devices and eliminate
copies, even across the IO stack API. We implement these
changes in the TAS [18] network stack and the Strata [20] file
system.We discuss how to apply these principles to any IO
stack in (§3.4).
By leveraging non-volatile memory (NVM), we achieve

a further optimization: optimistic input persistence. If input
received from an IO stack is persisted in NVM via a storage
stack by applications, optimistic input persistence enables
end-to-end transparent elimination of copies through to stor-
age. To do so without violating application data persistence
requirements,we extend zIO to identifyNVMmappings. Data
copies to NVMmay be eliminated if the original data already
resides in NVM. Otherwise, a copy is necessary to enforce
persistence. Using this technique, we demonstrate how to
achieve optimistic network receiver persistence by mapping
socket receive buffers in NVM and relying on zIO to transpar-
ently eliminate all copies through to the file system.

Wemake the following contributions:
• Ananalysis of copying in IO-intensive applications (§2).We
study the number of copies made in popular IO-intensive
applications and find that copies are common, in particular
within applications themselves. We conduct a case study
of copies in the Redis key-value store, analyzing when
and why copies are carried out. Finally, using the Redis
case study, we demonstrate that copies are a performance
bottleneck for IO-intensive applications, especially when
leveraging optimized kernel-bypass IO stacks.

• We present zIO, a transparent zero-copy IO system for IO-
intensive applications. zIO addresses the presented over-
heads due to copying.We show how to use zIO to eliminate
application-level copies. We show how to eliminate IO
stack API copies when combining zIO with kernel-bypass
IO stacks. We show how to achieve optimistic input persis-
tence by leveraging NVM.

• We implement zIO as a user-space library.When executing
on top of the Linux kernel network and storage stacks, zIO
successfully eliminates application copies of IO buffers.We
also integratezIOwith thekernel-bypass IOstacksTAS[18]
and Strata [20], enabling it to additionally eliminate copies
performed by the IO stack APIs.

• We break down zIO’s performance contributions with mi-
crobenchmarks and analyze the overheads of buffer track-
ing.Weevaluate theperformancebenefit to IO-intensiveap-
plications, like Redis [21], Icecast [37], and MongoDB [25]
and compare to Linux and kernel-bypass IO without copy
elimination, where zIO improves performance by up to
1.8× and 2.5×, respectively. We also compare zIO’s perfor-
mance to common uses of zero-copy IO stack APIs, such as
memorymappedfiles,where zIO can improveperformance
by up to 17% due to reduced TLB shootdown overhead.

2 Background
IO-intensive applications often make several copies of IO
data while processing it. We survey the prevalence of these
copies in IO-intensive applications (§2.1). To learn how copies
are used for IO, we study one of these applications, Redis,
and investigate how it uses copies to do IO processing (§2.2).
Looking forward, we investigate how copies can become a
limiting factor to IO performance (§2.3). Zero-copy APIs are
a potential alternative to IO copies. We study their intended
use and the tradeoffs they make (§2.4).

2.1 Copies in IO-Intensive Applications
We study the prevalence of IO data copies in popular IO-
intensive applications.We identify the call site of these copies
and break down occurrences into copies that are involved in
an IO stack API call and copies occurring within application
subsystems. Our methodology involves a source code anal-
ysis of IO data flows through application subsystems from
input to output. We identify what methods applications use

432    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Copy call site
Application Operation App IO Stack
Redis [21] SET 4 2

GET 2 1
Icecast [37] Cast to N clients 0 1 + N
Ceph [34] Write 1 2

Read 0 2
Anna [36] PUT 5 3

GET 4 3
MongoDB [25] Insert 3 2

Disk sync 1 1
Read 2 2

Tensorflow-serving [26] Inference 2 1
Nebula Graph [33] Insert vertex 5 2

Store a vertex 4 3
Table 1. Number and call site of copies between input and
output for various application operations.

to copy IO data and how copies are affected by the executed
functionality and its parameters. We find that all applications
investigated use C standard library functions, such as memcpy
and memmove, to copy data.We use this insight to validate our
source code analysis via an execution of the relevant appli-
cation operations under a debugger set to break on these C
library memory copy APIs. For each application operation,
we count the number of breakpoints hit on IO code paths
between input and output and check that the count matches
that of our source code analysis.

Table 1 presents the number of copies made at the IO stack
and within various IO-intensive applications, broken down
by operation. We are specifically interested in the copy of po-
tentially large IOdata, as small data copies donot significantly
impact application performance. For example, the Anna [36]
key-value store conducts up to 45 copies of keys during a PUT
operation. We ignore these copies in the table.

While the number of copies varies among applications and
operations, we can see that IO-intensive applications exten-
sively copy IO data between input and output. We can also
see that applications often make more internal copies of IO
data than at the IO stack API. For example, Redis [21] makes
twice asmany application-internal copies than at the IO stack
for a SET request. IO-intensive applications also often employ
third-party libraries. For example, the Anna [36] key-value
store uses gRPC [14] and Protobuf [13] to serialize and de-
serialize data. We observe that these libraries incur up to 3
per-IO data copies for this task, leading Anna to make up to
5 internal IO copies. This indicates that zero-copy IO APIs
are only going to eliminate a fraction of the overhead due to
copies. Application-internal copies, including in third-party
libraries, often constitute a similar or even larger fraction of
copy-induced CPU overhead.

2.2 Copy Case Study: Redis
To better understand these IO data copies, we study the Redis
SET request. Redis [21] is a popular key-value store providing

# Source Destination Call site
𝐼𝑂1 Socket buffer c.socket_buf readQueryFromClient
𝐴1 c.socket_buf c.socket_buf processInputBuffer
𝐴2 c.socket_buf hash_node dbAdd
𝐴3 c.socket_buf c.write_to_aof feedAppendOnlyFile
𝐴4 c.write_to_aof aof_buf flushAppendOnlyFile
𝐼𝑂2 aof_buf Append-only file flushAppendOnlyFile

Table 2. Copies in Redis SET request. 𝐼𝑂𝑖 are IO stack copies,
𝐴 𝑗 are application copies. c is a per-client structure.

a rich RPC-based network API to an in-memory store, per-
sisted via snapshots or operation logging.We configure Redis
to log SET operations to study a use-case that is equally net-
work and storage IO intensive. In our study, each SET request
provides a new value, identified by a 32 byte key. We run a
single-threaded Redis server instance on the evaluation plat-
form described in Section 5. We use redis-benchmark [21]
to attach 64 clients over a 100G network, enough to saturate
the server. We configure Redis to use an append-only file to
persist datawithout delay. This configuration provides strong
crash consistency—every operation is persisted before it is ac-
knowledged. We evaluate the number of memory copies that
Redis performs per SET request and we study these copies.
As reported in Table 1, we find that Redis copies request

data 6 times for each SET request. We list these copies and
their call sites in Table 2. Aswe can see, Redis performs copies
to read anddeserialize the SET request and to store the request
both in an in-memory hash table and in the append-only file.
After reading a number of kilobytes from the network socket
to an input buffer (copy 𝐼𝑂1), Redis identifies the next request
within the inputbufferandremoves itsheaders fromthebuffer
(copy𝐴1). If the identified SET request is admissible, Redis cre-
ates a copy of the key and value data to store in its in-memory
hash table (copy𝐴2). Redis then reformats the request so it can
be logged to its append-only file and appends the request to a
per-client log (copy𝐴3). Redis uses per-client logs to support
group commit—Redis can process a number of pending client
requests in-memory and then persist and acknowledge these
requests in a batch, eliminating storage stack overheads in-
curred for small IO. To do so, Redis first combines all pending
per-client logs into a single log stream (copy 𝐴4) and then
writes the log stream to the append-only file (copy 𝐼𝑂2).

All of these copies could have been avoided. However, it
would have required the Redis developers to design a complex
set of coordinated, reference counted buffer descriptors that
can track each request and its data in each source buffer (in
this case, a network socket buffer). Reference counts provide
use-after-free protection. Use-after-free [38] is an error con-
dition where one part of an application or IO stack frees an
allocated IOdata buffer and re-uses it for other purposeswhile
another part of the application or an IO device still uses the
data. Use-after-free protection requires complex ownership
tracking, including APIs to convey ownership transfer. Fur-
ther, fine-grainedmemorymanagement is required, including
the ability to free fragments of a previously allocatedmemory

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    433



 0
 2
 4
 6
 8

 10
 12
 14

64B 256B 1KB 4KB 16KB 64KB
 0

 20

 40

 60

 80

 100

T
h
ro

u
g
h

p
u
t 

[G
b
/s

]

%
 C

P
U

 c
y
cl

e
s 

in
 m

e
m

cp
y

Value size

Kernel-bypass CPU %
Linux CPU %
Kernel-bypass throughput
Linux throughput

Figure 1. Redis SET throughput and fraction of CPU cycles
in memcpy over value size, with and without kernel-bypass.

buffer. For example, the headers of incoming SET requests can
be freed after each request is processed, while the keys and
values remain in their original buffers for as long as they are
stored in the key-value store. This creates buffer fragmenta-
tion that is difficult to resolve viamemorymanagement alone,
requiring further APIs to defragment buffers over time. All of
these APIs are complex and it is often impossible to support
them in an applicationwhen third-party libraries or IO stacks
are used that do not support the APIs.

2.3 When is IO Performance Copy-Limited?
Ashardware IObandwidthcontinues to increaseand IOstacks
become lighter-weight to keep upwith increasing application
demand for bandwidth, copies start to limit IO performance.
In light of these trends, we investigate the performance im-
pact of copying for Redis SET requests over increasing value
sizes, while using heavy-weight in-kernel and light-weight
kernel-bypass IO stacks.We use the same Redis configuration
described in Section 2.2, evaluating the Linux network stack
and the ext4 file system, aswell as TAS [18] and Strata [20] for
kernel-bypass.Aswevary thevalue size,wemeasure through-
put and the fraction of CPU cycles spent in data copies per
request with Linux perf.

The results are presented in Figure 1.We can see that larger
value sizes imply higher per-core throughput. Also, kernel-
bypass IO improves throughput by up to 4×. This is intuitive.
Kernel-bypass IO is lighter-weight than in-kernel IO, while
larger IO granularity amortizes IO stack overheads. As hard-
ware IO bandwidth continues to increase, it is likely that ap-
plicationswill employ larger IO sizes to leverage the available
bandwidth. At the same time, IO stacks will become lighter-
weight to provide the necessary performance to keep up with
the increasing IO speeds.

We can also see that larger value (and thus IO) sizes cause a
noticeable increase of per-request CPU cycles spent in mem-
ory copies. We already know that Redis makes 6 copies of
IO data for each SET request. As value sizes increase, the
amount of CPU cycles spent copying them must naturally
also increase. Evenmoderate value sizes of 64KB cause 39% of
per-request CPU cycles to be spent in memory copies using
the heavy-weight Linux kernel IO stacks. The lighter-weight
kernel-bypass IO causes an even larger fraction of up to 52%of

per-request CPU cycles to be spent in memory copies, owing
to a reduction of per-request CPU cycles spent in IO stack
processing. For even larger value sizes of 512KB, CPU cycles
spent in copying reaches 60%.

2.4 Limitations of Existing Zero-Copy IOAPIs
Various zero-copy APIs have been proposed to limit the num-
ber of copies involved in IO-intensive applications. Zero-copy
IO APIs fall into two categories. (1) Single-stack APIs, and
(2) cross-stack APIs. Single-stack APIs eliminate copies for a
particular IOAPI, such as the network sockets systemcallAPI.
Cross-stack APIs eliminate copies across IO APIs. For exam-
ple, across network and storage APIs. We study the tradeoffs
made by each category in this section.

Single-stack APIs. Single-stack APIs provide zero-copy
IO for single IO stacks. The API is specific to the IO stack and
is often provided in the form of new parameters or tweaks to
a familiar IOAPI that enable zero-copy, typically alongwith a
set of invocation and environment requirements that have to
bemetby theapplicationdeveloper for theAPI to function.We
describe a number of storage and networking zero-copy APIs
here, including memory mapped files, Linux FreeBSD, and
Solaris zero-copy networking, remote direct memory access
(RDMA), and the Arrakis [28] zero-copy networking API.

Memory mapping files is one of the oldest zero-copy stor-
age IOAPIs. Applicationsmap (parts of) files into their virtual
address space, which the OS implements by loading the file
into the page cache and providing direct application access
to the relevant pages. Page cache entries may be directly
written to disk, without further copies. More recently, appli-
cations may also map non-volatile memory (NVM) directly
into virtual memory, referred to as direct access (DAX) [2].
Memorymapped files restrict some file IO. For example, mem-
ory mapped files cannot be appended to. Instead, an appli-
cation developer has to determine the file size in advance
and truncate the file to the desired length before memory
mapping it. Further, the interface does not allow applications
to make atomic modifications to file data without copying
data to their own buffers first.

Linux provides two networking zero-copy APIs [11, 12] for
TCP sockets. A zero-copy sendwill lock a given application
buffer intomemory and start the transmission. If transmission
is not complete by the time send returns, the applicationmust
take care not to touch the buffer. The zero-copy mechanism
will place a notificationmessage in the error queue associated
with the socket, which has to be monitored by the applica-
tion. When an “error” packet appears, it can be examined to
determine the status of the operation, including whether the
transmission succeeded and whether it was able to run in
zero-copy mode.

For zero-copy receive, Linux allows to memory map a TCP
socket. If several network conditions are met, including the
next incoming data chunk being page-sized and page-aligned,

434    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the socket buffer containing the incoming chunk will be
mapped into the calling process’s address space, where it
can be accessed directly. When the incoming data has been
processed, the application calls munmap to release the pages
and free the buffer for another incoming packet. The mecha-
nism only works if the application developer has knowledge
of exactly what each incoming packet will look like.
RDMA [30] provides zero-copy IO either by directly read-

ing/writing remotememoryorbypre-registeringbufferswith
the network card for receive and transmit operation. Simi-
larly, Arrakis [28] provides a zero-copy IO network socket
interface that returns buffers and consumes them, rather than
letting the application specify its own buffers. All of these in-
terfaces introduce the same complexities of buffer ownership
management and knowledge of network conditions. These
conditions are often difficult to meet and the additional buffer
management burden is cumbersome for many developers.
A limited solution proposed by SocksDirect [22] and also

implemented in FreeBSD [8] and Solaris [9] to transparently
avoid copies in the network sockets API is to simply remap
the pages carrying IO data from the network stack to the
application-provided buffer location, instead of copying the
data. This works in cases where both buffers are page-aligned
and it requires the NIC to be able to isolate packet payloads
and place them into page-aligned buffers. To isolate payloads,
SocksDirect requires RDMA, while Solaris requires ATM.
FreeBSD supports traditional Ethernet NICs, but requires
that the maximum transfer unit is configured to be greater
than the hardware page size, whichmay be undesirable or dif-
ficult. Unfortunately, applications often misalign IO buffers,
even if memory allocators return aligned memory. For exam-
ple, when headers are inserted into a buffer and IO is read
to a location after the header. Our investigation into Redis
shows that only about 40% of IO data can be remapped using
this approach. Further, transmit buffers must be kept until
acknowledged, leakingmemory if acknowledgments lag. The
limited applicability, security concerns (including frommali-
cious NICs [24]), and hardware requirements led the FreeBSD
developers to abandon the transparent zero-copy socket API
in FreeBSD 11.

Cross-stack APIs. A variety of cross-stack APIs attempt
to eliminate copies across IO stacks, in particular the network-
ing and storage stacks. To do so, they offer new and often
higher-level APIs that the application developer must use.
These new APIs avoid copies. We describe three example
cross-stack APIs here, the Linux sendfile family of system
calls, PASTE, and Demikernel.
The Linux sendfile system call (and cousins splice for

pipes and copy_file_range for files) transmits data from the
storage stack via the network stack without user-level copies.
The API is restricted to network and storage IO and does not
permit the application developer to inspect data before trans-
mission. To add any application data, such as headers, the

developer must use the TCP_CORK option, requiring them to
add the necessary data within a 200 millisecond time window.
sendfile does not allow sending or receiving from/to user
memory.TheAPI is used to send static files across thenetwork
but is increasingly obsolete with the prevalence of dynamic
in-memory content.
PASTE [15] provides an API that combines the network

stack with persistent data structures in NVM to avoid copies.
PASTE builds on the Netmap [31] kernel framework to place
packets from the network interface card (NIC) directly in
NVM. Developers can refer to these packets from application-
specific persistent data structures. However, PASTE operates
at the packet level and requires developers to track network
connections and decode byte streams to find relevant data
to persist. PASTE also requires the developer to implement
a copy-on-write scheme to efficiently return packet buffer
space to the NIC after use. Due to the complexity of its API,
PASTE’s intended use is constrained to run-to-completion
processing of requests that fit in individual network packets.

Demikernel [38] eliminates copies between kernel-bypass
networking stacks, like DPDK and RDMA, and kernel-bypass
storage stacks, like SPDK. The Demikernel memory manager
allocates memory to applications from DPDK’s memory pool
and it registers that memory with RDMA. This allows Demik-
ernel applications to receivedataover thenetworkand tostore
it without any copies. Demikernel offers a queue-oriented in-
terface, PDPIX, which replaces datapath IO calls with pushes
and pops to and from queues that may return tokens if data
is unavailable. Demikernel’s interface requires application
developers to implement run-to-completion IO processing.
This simplifies zero-copy IO for Demikernel, but it limits the
application developer. TheDemikernel interface does not sup-
port making in-place updates to IO data or allow developers
to schedule input and output beyond handling each input
request to completion, and it cannot eliminate any further
copies an application might make internally to process input.

Summary. Both categories of zero-copy IO stacks seek to
eliminate copies involved in IO stack APIs. However, in do-
ing so they introduce complexities, such as buffer ownership
management involving special API calls. They also introduce
restrictions, such as requiring run-to-completion processing,
buffer alignment, or disallowing in-place updates. Finally,
they may enforce external IO properties, such as packet lay-
out and MTU size. These complexities and restrictions are
difficult for developers to navigate and external IO properties
are often difficult or impossible to enforce. Further, none of
the existing zero-copy APIs provide transparent copy
elimination across IO stacks or eliminate copies that
aremade within the application. For these reasons, both
application and kernel developers forgo zero-copy APIs, as
they often struggle to outperform APIs that involve copies
andaredeemednotworth the complexity they introduce [12].

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    435



send, recv

read, write

memcpy,
memmove

I/O

§3.1.2 Intermediate 
Buffer Tracking and 
Copy Elimination

Access Conflict 
Resolutions

Application

Intercepted APIs

Kernel userfaultfd

read, recv
§3.1.1 Input Buffer                              
Recording

write, send
§3.1.3 Input to output 
buffer resolution

libZIO

load/store free

Page Faults

Figure 2. zIO overview.

3 zIO Design
zIO is auser-level library (libzIO) thatmaybedynamically and
transparently linked to applications. zIO intercepts a number
of C standard library and IO system calls (shown in Figure 2),
including memory copy and management, and socket and
file IO. zIO leverages userfaultfd [5] to intercept page faults,
which may be caused by applications touching intermediate
memory buffers. We now describe zIO in three parts. First,
we describe how zIO tracks data within the application to
eliminate application copies (§3.1). Second, we describe how
we extend zIO with kernel-bypass IO stacks to allow it to
eliminate IO stack copies (§3.2). Third, we describe how to
realize optimistic input persistence by mapping appropriate
IO buffers into NVM (§3.3).

3.1 Application Copy Elimination
To eliminate application copies, zIO tracks IO data buffer loca-
tions transitively through the application. zIO intercepts any
copies of IO buffers and optimistically forgoes them. To pro-
vide data consistency in the face of the application accessing
any intermediate, uncopied buffer locations, zIO leverages
page faults to detect and resolve these accesses.
Figure 3 shows the mechanisms involved in this process

via an example involving a key-value pair being read from an
input IO stack, processed by the application, andwritten to an
output IO stack. On input (e.g., IO stack read/recv calls), the
provided location of the application buffer is recorded by zIO
( 1 ). For the purpose of application copy elimination, this is
the original location of the IO data. zIO uses this information
to track and eliminate any application-level copies of this data.
Upon memory copy of any tracked data (memcpy/memmove
calls), zIO unmaps the destination buffer, forgoes the copy,
and tracks the destination buffer as intermediate ( 2 ). Some
buffer locationsmay not be page aligned, inwhich case, buffer
fringes have to be copied (app_buf3 in Figure 3 is unaligned,
causing copies in 3 and 4 , where it is used as destination
and source buffer, respectively). To provide consistencywhen
applications access intermediate buffers, zIO leverages page
faults. If a page fault to any intermediate buffer occurs, zIO
finds the original buffer location to resolve the page fault with

the appropriate data by lazily copying faulted pages ( 5 ). Fi-
nally, when tracked data is written to another IO stack (e.g.,
send/write calls), zIO intercepts the call and provides the
original buffer instead of the application-provided interme-
diate buffer, but including any intermediate data updates ( 6 ).
Before we detail each of these mechanisms, we describe zIO’s
tracking granularity and data structure.

Page granularity copy elimination. To be able to pro-
vide data consistency via page faults, zIO eliminates copies
only at page granularity. However, buffers may reside at any
address in virtual memory. To resolve this issue, zIO will only
eliminate the part of a copy that lies within page boundaries
of the provided buffer (i.e., unaligned buffer start addresses
are rounded up to the page boundary, while unaligned buffer
end addresses are rounded down)—the core buffer. The left
and right buffer fringe—the beginning and end of an applica-
tion buffer that is beyond the core buffer page boundaries,
respectively—is always copied. While this approach involves
small copies for unaligned buffers, we find that it often helps
performance. The left and right buffer fringe often contain
headers and footers that applications aremore likely to access
than the core.

Intermediate buffer tracking via skiplists. zIO records
the locations of all application data buffers containing IO data.
As buffer tracking has to incur minimal overhead and records
are frequently mutated, we choose a skiplist for probabilistic
fast search and insertion. Each entry in the skiplist keeps track
of the original buffer address, a corresponding core interme-
diate buffer address, the length of the core intermediate buffer
as a number of base pages, the size of the left intermediate
buffer fringe in bytes, a timestamp of the last copy (cf. §3.1.7),
and a free flag (cf. §3.1.4, not shown in Figure 3). The skiplist
is sorted by intermediate buffer address. We evaluate the per-
formance of buffer tracking via skiplists in §5.2.1.

3.1.1 Input buffer recording. When data is read from an
IO stack via a function or system call, zIO intercepts these
operations. We have implemented intercepts for all common
POSIX network and file system calls. According to its policy
(cf. §3.1.6), zIO records the application-provided destination
buffer as the original buffer, along with an identity core in-
termediate buffer ( 1 ). This record filters IO buffers for copy
tracking—zIO only eliminates copies for data originally read
from an IO stack.

3.1.2 Copy tracking and elimination. zIO identifies cop-
ies within the application by interposing on the standard
library memory copy calls memcpy and memmove1. These calls
take a source and destination buffer address, as well as a size
(in bytes) to copy. On each call, according to policy (cf. §3.1.6),
insteadof executing the copy,we record in the skiplist the core

1Variations of these calls use memcpy and memmove in our standard C library.
For other C libraries, variations may need to be explicitly intercepted.

436    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Output Stack

Application

\ \ \ \ \ \

libZIO Skiplist: app_buf1 / app_buf1 / 6 / 0 / 0 / 1

app_buf1 / app_buf2 / 6 / 0 / 0 / 2

app_buf1 / app_buf3 / 5 / 4B / 0 / 3

app_buf1

app_buf2

app_buf4

read() write()

memcpy()

Page Fault 
Handler

§3.1.1

§3.1.2 

§3.1.3

app_buf1 / app_buf4 / 2 / 4096B / 0 / 4 

\ \ \
app_buf3 (unaligned)

\ \ \ \ \

\ \\

app_buf1 / app_buf4 +4 / 1 / 0 / 0 / 5 

Original / Current / Size (Pages) 
/ Fringe (Bytes) / Free / Time

\

§3.1.5

In
pu

t S
ta

ck

\

struct node  {
u64 original;
u64 current;
u32 core_size;
u32 fringe_size;
u8 can_free; }

Figure 3. zIO application copy elimination example with an IO buffer spanning 6 pages. Original buffer pages are unshaded.
Shaded pages are copied. Dark shaded pages are unmapped.

destinationbuffer and its size as intermediate locationand size
(e.g., 2 , where app_buf1 and app_buf2 do not have a fringe).

To determine the original buffer location, we first use the
core source buffer address to search through the skiplist to see
if it falls within any existing intermediate buffers. If it does,
we use that buffer’s original buffer location, and, if this is the
first time this original buffer is copied, zIO also remaps the
core original buffer read-only to detect any application mod-
ification to it. If we find no intersecting intermediate buffer,
then this data did not originate from IO (cf. §3.1.1) and we
execute the copy, forgoing any tracking of this buffer. Finally,
if the data originated from IO, we record the size of the left
intermediate buffer fringe ( 3 , where app_buf3 is unaligned
andhas a left fringe of 4 bytes—it also has a right fringe, butwe
do not need to record it). The left buffer fringe is necessary to
resolve access conflicts (cf. §3.1.5). If the destination location
is within a buffer that is already tracked in the skiplist, the
skiplist entry is updated with the new buffer information.
zIO unmaps the core intermediate buffer and registers it

with userfaultfd to intercept application access. The union
of left and right buffer fringes of original and intermediate
buffer is copied. For example, if the source buffer has a left
fringe of 4 bytes and the target buffer has no left fringe, then
the left fringe of the target buffer becomes 4KB, as the original
left fringe taints the first 4 bytes of what could have been a
core page of the target buffer, making the entire page part
of the fringe ( 4 , where app_buf3 has a left fringe of 4 bytes,
app_buf4 acquires a left fringe of 4KB).

Thecostofunmapping intermediatebuffers isoftenavoided
or amortized. For example, buffers that are allocated on the
heap are backed with physical memory and mapped only on
first access (this lazymemory allocation is the default in Linux,
for example). zIO can simply register these unmapped buffers
with userfaultfd. Statically allocated buffers are often reused
across requests instead of freed and reallocated. These buffers
remain unmapped across requests if they are not otherwise
accessed by the application. Upon reuse, zIO simply updates
the skiplist when new IO data is processed.

3.1.3 Input to output buffer resolution. Whenever data
is written to an IO stack, zIO interposes on the IO stack API
and searches the skiplist to see if the core buffer beingwritten
intersectswith any intermediate buffers tracked in the skiplist.
If a match is found, zIO modifies the write operation to use
any original buffer addresses recorded in the skiplist. This
may result in a single IO stack source buffer location being
transformed into multiple buffer locations ( 6 , where shaded
areas of the output are copied, unshaded areas are sourced
from original buffer locations). If the IO stack API supports
gather IO, we leverage that API to refer to the appropriate
buffer pages when generating the output IO call. If the IO
stack does not support gather IO, zIO breaks up the output
call into multiple calls that refer to each individual buffer.

3.1.4 Freeing buffers. Finally, zIO interposes on free.
This interposition allows zIO to look up and delete skiplist
entries that are potentially no longer needed. If an intermedi-
ate buffer is freed that means we have successfully eliminated
a copy; the contents of the buffer were not touched and the
application has specified that it no longer needs it. At this
point, the skiplist entry can be deleted and thememory region
unregistered from userfaultfd. If an original buffer is being
freed, the skiplist entry is only marked as freed to prevent
use-after-free violations. Buffers marked as freed are deleted
upon garbage collection (see below).

3.1.5 Access conflict resolution. When a core intermedi-
ate buffer is touched by the application, it will trigger a page
fault. zIO looks up the faulting page number in the skiplist.
zIO thenmaps the faulting page, potentially allocating it (lazy
memory allocation), and copies the data from the original
buffer, as recorded in the skiplist entry. zIO uses the left buffer
fringe size todetermine thebyteoffsetof the intermediate core
buffer, which is used as an offset into the recorded original
buffer to determine the copy source address.
If a page at the beginning or end of a buffer is faulted in,

it is removed from the tracked buffer core and thus copied
going forward. If a page is faulted in the middle of a buffer, a

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    437



new skiplist entry must be created for the second section of
the buffer, if it meets the appropriate size threshold ( 5 ). The
original buffer is effectively split; the buffer before the faulting
page is considered part of the originally tracked buffer and
the buffer after the faulting page is a newly tracked buffer.
If a core original buffer is modified by the application, it

also triggers a page fault. In this case, zIO walks the skiplist
to determine any intermediate buffers derived from the core
original buffer page. zIO copies the faulting original buffer
page to the relevant intermediate buffers and resets the access
permissions to the relevant original and intermediate pages.

3.1.6 Tracking policy. We determine experimentally (cf.
§5.1.2) that for data buffers smaller than 16KB, the overhead
of tracking outweighs any performance benefits from elimi-
nating copies. Hence, we configure zIO to track and elide only
sufficiently large copies (core buffer sizes of 16KB or larger).
There is also an overhead for handling page faults. We

determine this experimentally (§5.1.4) under a number of con-
ditions. For example, we find that if the ratio of bytes accessed
by the application to bytes eliminated from copies exceeds
6%, we no longer see a performance benefit with a single ap-
plication thread. This number can change with a different
number of threads and is fully explored in §5.1.3. After these
thresholds, we stop eliding copies for these buffers.

3.1.7 Intermediate buffer garbage collection. zIO avoids
tracking an arbitrary number of entries to prevent memory
exhaustion and skiplist performance reduction. For exam-
ple, tracked intermediate buffers may be kept indefinitely in
memory by the application, causing skiplist entries to accrue.
Hence, skiplist entries aregarbagecollectedperiodically (once
every second in our prototype). For each collected skiplist
entry, we must fill any intermediate buffers with consistent
data. This is done via the same process as conflict resolution.
The region is mapped and the data is copied from its original
location at the appropriate offset. Buffers marked free can be
freed immediately.

zIO’sgarbagecollectionpolicycollects intermediatebuffers
that have been least recently used in copies. A timestamp on
each skiplist entry (not shown in Figure 3) keeps track of the
last time the entrywas involved in a copy. If the skiplist grows
beyond a threshold, zIO collects the least recently used entries.

3.2 IO Stack API Copy Elimination
Simply linking zIO when kernel-bypass IO stacks are used
already provides transparent zero-copy IO. However, we can
achieve further performance benefits by modifying these IO
stacks to integrate with zIO more tightly. We now describe
how we integrate zIO with kernel-bypass IO stacks to opti-
mize IO stack API copy elimination.

Kernel-bypass IO stacks are a good fit for zIO, as they com-
municate with the application via shared library calls and
sharedmemory—mechanisms that zIO can transparently pro-
cess at user-level—rather than system calls. We choose the

TAS [18] and Strata [20] kernel-bypass network and stor-
age stacks, which are state-of-the-art. Strata, in particular,
is a good fit, as it uses a per-process operation log in NVM,
mapped intouserspace, topersistfilewrites. zIO transparently
intercepts Strata’s memory copies into this log and can pro-
vide transparent copy elimination, provided that the original
buffer already resides in NVM.

Input API copy elimination. POSIX file and socket input
calls (e.g., read and recv) require applications to provide a
buffer that input data is copied into. In TAS and Strata, these
library calls internally call memcpy to copy from an IO stack
internal buffer to the application-provided buffer. zIO trans-
parently tracks and eliminates this copy across the IO stack
API (cf. §3.1). As the source buffers are IO stack-private, we do
not need to protect the original source data buffer by remap-
ping it read-only. Instead, we modify the IO stacks to execute
zIO’s garbage collection protocol for any tracked buffers that
the IO stack intends to free or overwrite. To prevent this from
happening frequently, we can configure the IO stack internal
buffers to be sufficiently large. For example, socket receive
buffers can be resized to hold at least the expected size of input
data per IO request.

Output API copy elimination. POSIX file and socket
output calls (e.g., write and send) require applications to
provide a source buffer that output data is copied from. As
with the input API calls, zIO already transparently eliminates
stack-internal memory copies. As output buffers are IO stack-
private, no unmapping is necessary. Instead, we modify the
IO stacks to fetch the original buffer locations from zIO when
the output data is processed. For example, when TAS sends
payload from the socket transmit buffer or when Strata “di-
gests” [20] the update log.When zIO has to resolve copies due
to mis-speculation or garbage collection, the relevant output
buffer fields are simply filled in with the appropriate data.
When the IO stacks ask zIO for original buffer locations, filled
output buffers will not be marked as intermediate.

3.3 Optimistic Input Persistence
To realize optimistic input persistence for end-to-end IO copy
elimination when data is persisted in NVM by a storage stack,
we simply have to ensure that the original data already resides
in NVM. zIO automatically detects the type of memory back-
ing a virtual memory mapping. If original and intermediate
buffers are backed by NVM, zIO can eliminate and track any
copies among the buffers, while ensuring persistence. We
describe here how we use this feature to realize optimistic
network receiver persistence, where incoming data from the
network does not need to be copied to storage.

Optimistic network receiver persistence. TASuses shared
memory for socket receive buffers between its TCP fast-path
process and processes linking the kernel-bypass libTAS li-
brary. The fast-path writes incoming payload directly into

438    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



socket receive buffers residing in this shared memory. We
can realize optimistic network receiver persistence simply
by mapping the socket receive buffers into NVM. zIO will
detect that original buffers are backed by NVM and eliminate
copies end-to-end to the Strata update log, which also resides
in process-local NVM.

3.4 Discussion
Huge pages. Huge pages (pages larger than the system’s

base page size) are desirable for improved memory address
translation performance. However, tracking IO buffers re-
quires fine-grained page protection, as tracked buffers may
be smaller than the huge page size. In this case, zIO’s fine-
grained page mapping requests force the OS to break huge
pages into base page mappings. Indeed, an investigation of
the Redis YCSB benchmark with 512KB value size (cf. §5.2)
shows that Linux with transparent huge page (THP) support
maps 40% of Redis’ working set with huge pages when zIO
is not used, while mapping only 35% of the working set with
huge pages when zIO is used.
Unfortunately, if the application stores IO buffers in re-

served huge page memory using Linux’s hugetlbfsmecha-
nism, fine-grained page protection is disallowed and zIO can
only track buffers at huge page granularity. Note that Linux
could technically allow fine-grained protection for reserved
huge page memory, while still allocating memory at huge
page granularity. This would be compatible with zIO.

Luckily, transparent zero-copy and huge pages do not need
to be at odds. zIO operates on the assumption that tracked IO
buffers are seldom touched by applications.Hence, leveraging
fine-grained page protection for tracking IO buffers does not
impact application performance in the common case, as these
mappings are seldom exercised. On mis-speculation, zIO’s
policy reverts to copying IObuffers and theOSmayagainmap
themwith huge pages. This may happen transparently when
THP support is enabled in the OS. Our application bench-
marks run with THP, showing that transparent zero-copy IO
still outperforms any potential slow-down from fine-grained
page protection.

Linux kernel IO stack API copy elimination. While we
present IO stack API copy elimination with kernel-bypass
stacks (§3.2), we believe it is possible to provide IO stack API
copy elimination for the Linux kernel IO stacks in certain
cases by leveraging Linux’s zero-copy IO APIs (cf. §2.4). For
example, using Linux’s zero-copy socket receive API (cf. §2.4),
zIO can memory map kernel TCP socket receive buffers into
user-privatememorywhen sockets are created. It can then in-
tercept application recv calls and track the target application
buffer as an intermediate buffer, with the private socket buffer
mapping as the original. This eliminates the IO stackAPI copy
for recv, similar to our integration with TAS, as described
in §3.2. Network receiver persistence may also be realizable,
albeit with kernel modifications, by mapping socket buffers

into a file stored in NVM and then using the FICLONERANGE
ioctl to remap core data buffers to their final destination upon
input to output resolution to a file.We leave IO stackAPI copy
elimination for the Linux kernel IO stacks for future work.

4 Implementation
Our zIO implementation consists of two key components.
The first component is tracking data through an application
and eliminating copies along theway. The second component
is closely integrating this tracking with the kernel-bypass
network and storage stacks TAS and Strata, respectively, to
provide transparent zero-copy across IO stack APIs, as well
as optimistic input persistence.

Application copy elimination. This component of zIO
is written in 1,608 lines of C code and is dynamically loaded
with LD_PRELOAD.

IO stack API copy elimination. To integrate zIO with
TAS and Strata to provide IO stack API copy elimination, we
modify 184 lines of code in TAS and 66 lines of code in Strata.

5 Evaluation
We analyze zIO’s performance via a number of experiments
based on a multi-threaded IO microbenchmark, using net-
work and storage stacks, and varying relevant IO and copy
parameters. We also evaluate zIO with the IO-intensive ap-
plications Redis [21], MongoDB [25], and Icecast [37]. We
compare zIO to Linux and kernel-bypass IO stacks without
any copy optimizations.

Our evaluation answers the following questions:
• What is the impact of copies on IO performance? What
benefits to IO processing throughput does zIO provide by
transparently eliminating copies? How do the number of
copies per IO (§5.1.1), IO size (§5.1.2), and number of IO
threads (§5.1.3) affect the observed performance?

• What are the overheads zIO introduces by tracking data?
How do overheads increase as applications touch the data
they copy, causing zIO to mis-speculate? How effective is
zIO’s tracking policy in avoiding mis-speculation? (§5.1.4)

• How do zIO performance improvements break down into
its mechanisms? By howmuch can we improve IO perfor-
mance when employing optimistic input persistence with
NVM? (§5.2.1)

• What benefits to IO processing throughput and latency
does zIO provide by eliminating copies within IO-intensive
applications, such as Redis (§5.2), Icecast (§5.3), andMon-
goDB (§5.4)? In what situations might zIO hurt application
performance (§5.3.1)?

• How does zIO perform compared to zero-copy IO APIs,
such as memory mapped files and sendfile? (§5.3.1)

Evaluation platform. We run our evaluation on a single
socket of a dual-socket Intel Cascade Lake-SP system running
at 2.2GHzwith 24 cores per socket and a 100 GbE ConnectX-5

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    439



 0

 5

 10

 15

 20

 0  1  2  4  8  12

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

Number of copies

zIO
Linux

Figure 4. Linux throughput versus zIO application IO copy
elimination (512KB IO size).

 0

 5

 10

 15

 20

 0  1  2  4  8  12

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

Number of copies

zIO+IO
zIO
TAS

Figure 5.TAS throughput versus zIO application and IO stack
API copy elimination (512KB IO size).

NIC. Each socket has 192 GB of DDR4 DRAM and 3 TB of
Intel OptaneDCNVM. To leverage all 6memory channels per
processor, there are 6 DIMMs of DRAM and NVM per socket.
The machine runs Fedora 27 with Linux kernel version 5.10.0.
We use the latest master branches of TAS [3] and Strata [4].

5.1 Microbenchmarks
Wequantify the overhead introduced by copies of IO data and
the benefit that zIO provides for various IO parameters via a
simple echo server benchmark. Our evaluation setup is the
same as in §2.2, but in place of Redis we run a simple TCP
echo server that echoes client messages back to the sender.
To simulate IO-intensive application processing, our echo
server can make a configurable number of copies to the IO
data. Beyond the number of copies, we also vary other IO
parameters, such as IO size, fraction of IO data accessed, and
number of echo server threads. We report the average echo
server throughput,measured at the client, over 3 runs for each
configuration, using the steady-state throughput of each run.

5.1.1 NumberofCopies. Wefirstevaluate IOperformance
with a varying number of copies of the IO data made before it
is echoed. We compare four scenarios: Vanilla Linux (Linux),
Linux with zIO application copy elimination (zIO), vanilla
kernel-bypass (TAS), kernel-bypasswith zIO application copy
elimination (zIO), and kernel-bypasswith zIO application and
IO stack API copy elimination (zIO+IO). We run this exper-
iment with 512KB IO, using a single server thread. For each
run, we vary the number of times the request is copied before
being echoed.

 0

 5

 10

 15

 20

 8  16  32  64  128  256  512  1024

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

IO size [KB]

Linux 0 copies zIO Linux 5 copies

Figure 6. zIO throughput versus Linux with 0 and 5 copies.

 0

 5

 10

 15

 20

 8  16  32  64  128  256  512  1024

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

IO size [KB]

zIO+IO
zIO

TAS 0 copies
TAS 5 copies

Figure 7. zIO throughput versus TAS with 0 and 5 copies.

Figures 4 and 5 present the results. We can see that an
increasing number of application IO copies decreases the
achieved throughput for Linux and TAS networking2, due
to the involved copying overhead. Kernel-bypass maintains
high throughput with more copies than Linux, as more CPU
cycles are available for copies due to the lighter-weight kernel-
bypass network stack. zIOmaintains performance close to the
configuration without copies for both stacks, showing that it
successfully eliminates these copies with negligible overhead.
With 12 copies, zIO improves throughput by 3.8×with Linux
and by 2.8×with TAS. Finally, zIO+IO improves throughput
by up to 21% versus zIO by additionally eliminating IO stack
API copies.

5.1.2 IO Size. We next investigate how IO size affects per-
formance, using a single echo server thread. To evaluate the
overhead of tracking small IO, we disable zIO’s IO size thresh-
old for this benchmark, causing zIO to always track buffers
and eliminate copies. We vary the IO size from 8KB to 1MB
and evaluate two extreme copy scenarios (cf. Table 1): 5 appli-
cation copies and 0 application copies. Figures 6 and 7 present
the results.

zIO benefits large IO. Firstly, we can see that Linux has
poor performance with small IO, but performance improves
as IO size increases. TAS performs better with smaller IO size.
This is expected, as kernel-bypass stacks are light-weight.
Whencopies are involved, bothLinuxandTASperformworse,
in particular as IO size increases. This is also expected, as

2We consistently observe TAS throughput to be lower than Linux with large
IO sizes. TAS is optimized for small IO and does not do the necessary batching
to handle large IO efficiently.

440    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0

 20

 40

 60

 80

 100

 1  2  4  8  16

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

Number of threads

zIO
Linux

Figure 8. zIO scalability.

 0
 2
 4
 6
 8

 10
 12
 14

 1  2  3  4  5  6  7  8

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

Threads

No faults
1 fault

2 faults

4 faults
8 faults

12 faults

Figure 9. zIO scalability with page faults.

larger copies require more CPU time. zIO improves through-
put by up to 2.9× with Linux and up to 2× with TAS as IO
size increases, reaching zero-copy performance with IO sizes
larger than 512KB for Linux and 32KB for TAS. zIO+IO im-
proves throughput further, by up to 40% versus zIO, for a
combined improvement of up to 2.7× versus TAS.

Limits of zIO with small IO. zIO transparent copy elim-
ination is no panacea, as the overhead of zIO tracking with
small IO limits throughput. For IO smaller than 16KB, zIO
reduces throughput by up to 30% versus Linux. For IO smaller
than 32KB, zIO reduces throughput by up to 49% versus TAS.
IO sizes smaller than 8KB would incur even further through-
put reduction. Based on this measurement, we set zIO’s track-
ing policy to avoid tracking IO buffers smaller than 16KB
(cf. 3.1.6).

5.1.3 Scalability. We evaluate two scalability aspects. zIO
tracking scalability and the impact of page faults.

zIO tracking. We configure the echo server to make 1 ap-
plication copy of each 512KB IO buffer and vary the number
of server threads. Each thread handles a private pool of clients
and uses private IO buffers. Figure 8 shows that zIO improves
throughput scalability over Linux by up to 19% due to copy
elimination. Copies pollute the CPU caches, causing Linux’s
scalability to be impacted.

Page faults. Page faults can affect scalability when fault-
ing pages are mapped, requiring TLB shootdowns. In theory,
informationaboutnewlymappedpagesmaybe lazily synchro-
nized among TLBs, avoiding TLB shootdowns. Other cores
accessing the same unmapped page simply fault on the stale
TLB information, synchronizing theTLBat thismoment.Most

 0

 1

 2

 3

 6 1  10  100

N
o
rm

. 
th

ro
u
g
h
p
u
t

IO data accessed versus copied [%]

1MB
256KB

64KB
Fit

Figure 10. zIO throughput improvement under data access.

IO-intensive applications use thread-private IObuffers and ac-
cessacrosscores is rare.Unfortunately,Linuxdoesnot support
lazymapping of pages. Hence, page faults do affect scalability.

To show this effect, we configure the echo server to access a
number of pages of each 512KB IO buffer, without application
copies, and vary the number of server threads. We supply the
same IO buffer each time, requiring zIO to unmap it for each
IO request. The results can be found in Figure 9. We can see
that, up to 2 page faults, server throughput still scales well.
Increasing the number of page faults per IO beyond this point
starts limiting server throughput due to TLB shootdowns.
With Linux modifications, many of these TLB shootdowns
could be avoided.

5.1.4 Mis-speculation. To evaluate the impact of zIO mis-
speculation on performance, we configure the echo server to
access a number of bytes in each IO request before echoing a
response. We run this experiment under a variety of IO sizes
(64KB, 256KB, and 1MB) and copies (1, 3, and 6), using the
Linux network stack.
Figure 10 presents the results as a scatter plot, where we

compare zIO throughput improvement over vanilla Linux to
the ratio of IO bytes accessed versus elided in copies. This
ratio clearly limits zIO’s throughput improvements. Applica-
tions accessing copied IO datameans that zIOmis-speculated.
zIO has to resolve the elided copies for the accessed data,
which incurs a performance penalty. Less IO data accessed
implies better performance improvements. At the same time,
more IO data elided in copies also implies better performance
improvements and creates headroom for mis-speculation. Fit-
ting a Bezier curve to the scatter plot shows that zIO improves
throughput when the ratio of data bytes accessed by an ap-
plication versus data bytes elided in copies is less than 6%.
Above 6%, overheads created by zIOmis-speculation decrease
throughput. As an example, for an input buffer of size 200KB
that is copied twice, the application may incur up to 6 page
faults before output to still yield a speed-up. If the same buffer
is copied 4 times, up to 12 page faults are permissible.

5.2 Redis
We evaluate how zIO improves Redis throughput with Linux
and kernel-bypass IO stacks (TAS and Strata). Our benchmark
setup is identical to the one presented in §2.2.We evaluate two

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    441



 0

 5

 10

 15

 20

8 16 32 64 128 256 512

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

Value size [KB]

zIO
Linux

zIO+ORP
Kernel-bypass

Figure 11. Redis throughput (100% SET).

 0

 5

 10

 15

 20

8 16 32 64 128 256 512

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

Value size [KB]

zIO
Linux

zIO+ORP
Kernel-bypass

Figure 12. Redis throughput YCSB A (50% SET, 50% GET).

benchmark configurations: 1) 100% SET, and 2) YCSBWork-
load A, which has a distribution of 50% SETs and 50% GETs.
Wevary the value size over independent runs for each of these
configurations. In addition to zIO’s improvement over vanilla
Linux with application copy elimination, we investigate the
performance of zIO with additional optimistic receiver per-
sistence and IO stack API copy elimination (zIO+ORP) over
kernel-bypass IO stacks. The zIO size threshold is disabled
for these experiments; enabling it would allow zIO to match
vanilla IO stack performance for smaller values, evaluated in
§5.2.1.
We first look at 100% SET throughput. This case involves

2 IO copies (one from the network and one to storage), as
well as 4 IO application copies per request (cf. Table 1). The
results can be found in Figure 11. zIO with Linux eliminates
all application copies, which allows for a throughput improve-
ment of up to 1.8×, especially for larger values. zIO+ORPwith
kernel-bypass IO stacks improves performance by up to 2.5×,
as the IO paths consume noticeably less CPU time.

We now look at YCSB workload A, with 50% GET requests
and 50% SET requests. These results can be found in Figure 12.
As the 50%GET requests require fewer application copies, zIO
with Linux provides less of a performance improvement than
in the first benchmark, up to 1.3×. However, GET requests
provide an opportunity for zIO+ORP to eliminate IO stack
API copies, maintaining a speedup of up to 2× over vanilla
kernel-bypass.

5.2.1 zIO Performance Breakdown. We use the Redis
100% SET benchmark to break down the performance con-
tributions of zIO. To do so, we evaluate zIO throughput with
kernel-bypass IO in two IO size configurations, progressively

 0

 50

 100

 150

Kernel
bypass

zIO 
no policy

zIO
+policy

Kernel
bypass

zIO zIO+IO zIO+ORP
 0

 2

 4

 6

 8

 10

8
K

B
 T

'p
u
t 

[k
 S

E
Ts

/s
]

2
5

6
K

B
 T

'p
u
t 

[k
 S

E
Ts

/s
]

8KB
256KB

Figure 13. zIO performance breakdown.

Storage to net Net to net
Throughput Listeners

Kernel-bypass 0.89 GB/s (1.00×) 812 (1.00×)
zIO+IO 1.08 GB/s (1.25×) 944 (1.16×)

Table 3. Icecast throughput.

enabling different zIO optimizations. These results can be
found in Figure 13.

The first configuration uses 8KB SET requests.We evaluate
zIOwith andwithout its tracking policy,which applies a 16KB
size threshold (§3.1.6). We can see a drastic slowdown of 40%
when zIO does not apply this policy, due to the overhead of
tracking small IO. Enabling zIO’s policy instead copies the IO
buffers and attains a negligible slowdown of 2% versus vanilla
kernel-bypass.
We further evaluate a configuration with 256KB SET re-

quests. When eliminating application copies, zIO provides
a speedup of 1.7×. When adding IO stack API copy elimina-
tion, zIO+IO improves performance by another 9%. Adding
optimistic receiver persistence in zIO+ORP finally improves
performance by another 7%, for a combined improvement
over vanilla kernel-bypass of 2×.

Intermediate buffer tracking overhead. We investigate
the overhead of buffer tracking via zIO’s skiplist. For the same
100% SET request Redis configuration, we find an average of
5 skiplist entries per client connection. With 64 clients, we
measured a maximum of 640 entries in the skiplist over the
duration of the benchmark. For this scenario, we measure the
average skiplist operation latency for lookup and insert to
be 190ns. This confirms that intermediate buffer tracking via
skiplists is lightweight.

5.3 Icecast
Icecast [37] is an audio broadcasting service. Icecast can
stream audio from a source client to a number of listener
clients or read data from a local file and serve it to a number of
listener clients viaHTTP. Table 1 shows that Icecastmakes no
application copies, but it uses the IO stack APIs. We evaluate
both Icecast configurations, providing insight into network
to network and storage to network performance. We use the
kernel-bypass IO stacks for our evaluation, as they support IO
stack API copy elimination. The results are shown in Table 3.

442    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0
 10
 20
 30
 40
 50
 60
 70
 80

 1  2  4  8  16
 0

 10

 20

 30

 40

 50

T
h
ro

u
g
h
p

u
t 

[G
b
/s

]

k 
T
LB

 s
h
o
o
td

o
w

n
s 

/ 
s

Number of threads

zIO+IO TLB shootdowns
mmap TLB shootdowns
read TLB shootdowns
zIO+IO
mmap
read

Figure 14. Icecast throughput scalability.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1  2  4  8  16  32
 0

 100

 200

 300

 400

 500

T
h
ro

u
g

h
p

u
t 

[G
b

/s
]

k 
T
LB

 s
h
o
o
td

o
w

n
s 

/ 
s

Number of threads

Pre-fault TLB shootdowns
zIO+IO TLB shootdowns
Pre-fault
zIO+IO

Figure 15. Icecast scalability with pre-faulted buffers.

Storage to network. We configure Icecast to broadcast
a 1.1MB audio file to a number of listener clients. We eval-
uate the amount of audio that a single Icecast file-serving
thread can deliver. Icecast reads and sends the audio file in
a configurable chunk size, which we set to 64KB. Listener
clients request the audio stream via curl-loader [16], a
HTTP benchmark tool. We connect enough clients to sat-
urate Icecast server throughput andmeasure throughput over
a 30 second period. We can see that zIO+IO improves Icecast
maximum throughput by 1.25× by eliminating IO stack API
copies, freeing CPU cycles for audio streaming.

Network to network. Next, we evaluate Icecast receiving
data from a single client and broadcasting it to a number
listeners via a single relay thread. We configure Icecast to
relay 64KB at a time and measure the number of concurrent
listeners that Icecast can broadcast to. We see a zIO+IO im-
provement of 1.16× by eliminating IO stack copies. Icecast
uses a static buffer for relay, which remains unmapped across
IO chunks. This allows zIO+IO to eliminate IO stack copies
with minimal overhead.

5.3.1 Scalability. Icecast is a single-threaded application
when serving local files to listeners. To evaluate IO-intensive
application scalability with zIO, we modify Icecast to create
a thread-pool, where each thread can handle listener client
HTTP requests from storage via a thread-local IO buffer. This
configuration makes Icecast behave like a web server, such as
Apache [6]. This version of Icecast is using the read system
call to read from each file (read).

zIO scalability versus zero-copy IO interfaces. Web
servers (like Apache) often use zero-copy IO interfaces to
accelerate service, such as memory mapped files and the

sendfile system call. To compare application performance
with a zero-copy IO interface to that of zIO’s transparent zero-
copy IO, we create a version of Icecast that maps a requested
file intomemory (cf. §2.4) andsendsdata to theclients fromthe
memory-mapped file via the socket send call (mmap). Mem-
ory mapping each requested file eliminates an IO stack copy
on input, but also incurs a TLB shootdown. Common usage
(cf. Apache) of the mmap API unmaps each file after serving
it, incurring another TLB shootdown. zIO+IO can eliminate
copies without having to incur TLB shootdowns if buffers are
re-used and remain untouched in the common case.
We evaluate these configurations with a 512KB audio file

with an increasing number of threads and measure through-
put, as well as the number of TLB shootdowns. These results
are found in Figure 14. We can see that zIO+IO consistently
performs the best, as it does not incur TLB shootdowns. For
a small number of threads, memory mapping input files per-
forms similarly to zIO+IO. However, as the number of threads
increases, the number and cost of performing TLB shoot-
downs increases,whichnegativelyaffectsmmapperformance.
Thenumber of TLB shootdownswhenusingread and zIO+IO
are negligible, as no memory mapping calls happen in the
common case. zIO outperforms memory mapping of input
files by up to 17%.
Finally, we evaluate versions of Icecast using the Linux

sendfileAPI to transmit files to listeners. The first version
uses mmap to memory map each file to validate its header
before using sendfile to transmit it. The second version uses
the read system call to read the file’s header. These versions
cannot use the kernel-bypass IO stacks, as sendfile is kernel-
specific, and read+sendfile performs up to 7% worse than
zIO+IO,whilemmap+sendfileperformsup to30%worse than
zIO+IO. The scalability trend of read+sendfile follows that
of zIO+IO, while mmap+sendfile scales similarly to mmap.

zIO scalability with pre-faulted buffers. We have al-
ready evaluated zIO scalability when buffers are touched,
incurring page faults (§5.1.3). zIO can detect these cases and
stop copy elision (§3.1.6). However, if the application causes
page faults before buffers are tracked by zIO, for example
by pre-faulting mapped memory (cf. MAP_POPULATE flag for
mmap) before using it to buffer IO, then zIO can incur TLB
shootdowns by unmapping these buffers for tracking.

To evaluate this scenario, wemodify Icecast to pre-fault the
IO buffer before reading into it via read and unmapping it af-
ter itwas sent over thenetwork (pre-fault). This forces zIO+IO
to unmap the IO buffer to track potential access.We run these
two configurationswith a 512KB audio file, a 32KB chunk size,
and an increasing number of threads.Wemeasure throughput
and TLB shootdowns for both cases. We present these results
in Figure 15. With a small number of threads, zIO+IO outper-
forms pre-fault, as it still eliminates copies in the IO stack API.
However, as the number of threads increases, performance
is affected by the additional TLB shootdown overhead and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    443



zIO+IO performance degrades. Note that pre-faulting mem-
ory causes TLB shootdowns by itself and the scalability of
this scenario is already limited.

5.4 MongoDB
We runMongoDB [25] on Linux, with and without zIO.We
connect a client over the network running the YCSB [10] load
phase and measure request throughput with 1MB values, di-
vided into 10 fields. The YCSB load phase is a workload with
100% inserts of a uniform random distribution.We repeat this
benchmark 5 times and report the average throughput for
each configuration.

We find that zIO is not able to provide a performance ben-
efit for this workload, with a performance of 191 requests/s
compared to 194 for Linux without zIO. zIO is disabling all
optimizations due to a large number of page faults. We find
that the page faults are generated by MongoDB reading each
inserted value in its entirety to calculate a checksum before
writing it to the file system.

If we modify MongoDB to skip checksum calculation, zIO
is able to eliminate 2 out of 3 application copies (cf. Table 1).
Similar to Redis (cf. Table 2), MongoDB copies the inserted
valuefirst into an in-memoryB-tree (similar toRedis’ copy𝐴2)
and then into a log (copy𝐴3). Finally, MongoDB reallocates
the IO buffer, causing a copy, before inserting it into an on-
disk index. All three copies are initially elided by zIO, the file
systemwrites complete and their buffers are freed. However,
the next IO request re-uses the original IO buffer, forcing zIO
to execute the elided copy of the previous buffer to the B-tree
data structure. zIO achieves a throughput of 222 requests/s,
a 6% improvement over Linux’ throughput of 209 requests/s.
We also run MongoDB with the TAS kernel-bypass net-

work stack, allowing us to use zIO+IO to elide an IO stack API
copy in recvmsg that MongoDB uses to read data from the
network. Doing so additionally implies that original buffer
reuse, which is now internal to the IO stack and directly com-
municated to zIO+IO, is lighterweight, as it is not initiated via
a page fault. TAS without zIO+IO achieves a throughput of
191 requests/s, while TASwith zIO+IO achieves a throughput
of 229 requests/s, a 19% performance improvement.

6 RelatedWork
In this section, we cover related work beyond the zero-copy
IO APIs studied in §2.4.

Zero-copy networked storage. Reflex [19] is a networked
storage system designed to provide fast access to remote flash
devices. Reflex gains performance by eliminating software
copies between network interface cards and flash storage.
Unlike zIO, ReFlex does not focus on eliminating application-
level or IO stack API copies.

Hardware-accelerated serialization. Recent work has
looked at accelerating serialization with help from hardware.

Zerializer [35]proposesDMAhardwarewithdata transforma-
tion logic to offload serialization. Breakfast ofChampions [29]
proposes using existing scatter-gather capabilities of NICs to
offload serialization. Unlike these works, zIO provides zero-
copy without assuming specialized hardware and can elimi-
nate application copies beyond those needed for serialization.

Custom user-level IO stacks. Sandstorm [23] addresses
the idea of specially tailoring user-level IO stacks to meet
the specific needs of applications to maximize performance,
including zero-copy. However, similar to cross-stack APIs,
these customizations are not transparent. Either the IO stack
has to be modified to work with the application, the applica-
tion has to be modified to use new APIs, or both. zIO offers
transparent cross-stack zero-copy.

7 Conclusion
Wepresent zIO, a transparent zero-copy IOmechanism for un-
modified IO-intensiveapplications. zIOtracks IOdata through
the application, eliminating copies that are unnecessarywhile
maintaining data consistency. We implement zIO as a user-
space library, supporting Linux kernel and kernel-bypass
IO stacks. We evaluate zIO with IO-intensive applications,
like Redis, Icecast, and MongoDB. zIO improves application
throughput by up to 1.8×with Linux, as well as by up to 2.5×
withkernel-bypass IOstackswithoptimisticnetwork receiver
persistence.

Acknowledgments. We thank the anonymous reviewers
and our shepherd,DanTsafrir, for their helpful comments and
feedback. This work was supported by NSF grants 2226057,
2227066, and 2227132.

References
[1] sendfile(2)—linux manual page. https://man7.org/linux/man-

pages/man2/sendfile.2.html.
[2] Supporting filesystems in persistent memory. https://lwn.net/Articles/

610174/, September 2014.
[3] https://github.com/tcp-acceleration-service/tas, 2020. Commit

d3926baf6ad65211dc724206a8420715eb5ab645.
[4] https://github.com/ut-osa/strata, 2020. Commit

f368da4cefe874e1b31a19df7c6436b48f489381.
[5] userfaultfd(2). http://man7.org/linux/man-pages/man2/userfaultfd.

2.html, February 2020.
[6] Apache. Apache HTTP Server, 2022. https://httpd.apache.org/.
[7] Qizhe Cai, ShubhamChaudhary, Midhul Vuppalapati, Jaehyun Hwang,

and Rachit Agarwal. Understanding host network stack overheads. In
Proceedings of the 2021 ACM SIGCOMMConference, pages 65–77, 2021.

[8] J.S. Chase, A.J. Gallatin, and K.G. Yocum. End system optimizations for
high-speed TCP. IEEE Communications Magazine, 39(4):68–74, 2001.

[9] H. K. Jerry Chu. Zero-CopyTCP in Solaris. InUSENIXAnnual Technical
Conference, January 1996.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, pages
143–154, 2010.

[11] Jonathan Corbet. Zero-copy networking, 2017. https:
//lwn.net/Articles/726917/.

444    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://man7.org/linux/man-pages/man2/sendfile.2.html
https://man7.org/linux/man-pages/man2/sendfile.2.html
https://lwn.net/Articles/610174/
https://lwn.net/Articles/610174/
https://github.com/tcp-acceleration-service/tas
https://github.com/ut-osa/strata
http://man7.org/linux/man-pages/man2/userfaultfd.2.html
http://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://httpd.apache.org/
https://lwn.net/Articles/726917/
https://lwn.net/Articles/726917/


[12] Jonathan Corbet. Zero-copy TCP receive, 2018. https:
//lwn.net/Articles/752188/.

[13] Google. Protocol buffers, 2008. https://developers.google.com/protocol-
buffers.

[14] Google. gRPC, 2016. https://grpc.io.
[15] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry.

PASTE: A network programming interface for non-volatile main
memory. In Proceedings of the 15th USENIX Conference on Networked
Systems Design and Implementation, pages 17–33, 2018.

[16] Robert Iakobashvili and Michael Moser. curl-loader, 2007.
http://curl-loader.sourceforge.net/index.html.

[17] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs
can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation, pages 1–16, 2019.

[18] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr Sharma,
Arvind Krishnamurthy, and Thomas Anderson. TAS: TCP acceleration
as an OS service. In Proceedings of the 14th EuroSys Conference, pages
1–16, 2019.

[19] AnaKlimovic,HeinerLitz, andChristosKozyrakis. Reflex:Remoteflash
≈ local flash. SIGARCHComput. Archit. News, 45(1):345–359, April 2017.

[20] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A cross media file system.
In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 460–477, 2017.

[21] Redis Labs. Redis, 2022. https://redis.io/.
[22] Bojie Li, TianyiCui, ZiboWang,WeiBai, andLintaoZhang. Socksdirect:

Datacenter sockets can be fast and compatible. In Proceedings of the
ACMSpecial Interest Group onDataCommunication, pages 90–103, 2019.

[23] Ilias Marinos, Robert N.M.Watson, and Mark Handley. Network stack
specialization for performance. SIGCOMM Comput. Commun. Rev.,
44(4):175–186, August 2014.

[24] Alex Markuze, AdamMorrison, and Dan Tsafrir. True IOMMU protec-
tion from DMA attacks: When copy is faster than zero copy. In Pro-
ceedings of the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 249–262, 2016.

[25] MongoDB. MongoDB, 2022. https://www.mongodb.com/.
[26] Christopher Olston, Fangwei Li, JeremiahHarmsen, Jordan Soyke, Kiril

Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
TensorFlow-Serving: Flexible, high-performance ML serving. In
Workshop on ML Systems at NIPS, 2017.

[27] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: A
unified I/O buffering and caching system. ACM Trans. Comput. Syst.,
18(1):37–66, February 2000.

[28] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. ACM Transactions on Computer
Systems, 33(4):1–30, 2015.

[29] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang.
Breakfast of champions: Towards zero-copy serialization with NIC
scatter-gather. In Proceedings of the 23rd USENIX Conference on Hot
Topics in Operating Systems, pages 199–205, 2021.

[30] RDMA Consortium. Architectural specifications for RDMA over
TCP/IP. http://www.rdmaconsortium.org/.

[31] Luigi Rizzo. Netmap: A novel framework for fast packet I/O. In
Proceedings of the USENIX Annual Technical Conference, 2012.

[32] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache: a
virtual memory management technique for zero-copy communication.
In Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing,
pages 308–314, 1998.

[33] Vesoft, Inc. Nebula graph, 2019. https://nebula-graph.io/.
[34] Sage A.Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and

Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th Symposium on Operating Systems

Design and Implementation, pages 307–320, 2006.
[35] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon

Kim, Rajit Manohar, and Robert Soulé. Zerializer: Towards zero-copy
serialization. In Proceedings of the 23rd USENIX Conference on Hot
Topics in Operating Systems, pages 206–212, 2021.

[36] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein.
Autoscaling tiered cloud storage in Anna. Proceedings of the VLDB
Endowment, 12(6):624–638, 2019.

[37] xiph. Icecast, 2022. https://icecast.org/.
[38] Irene Zhang, Amanda Raybuck, Pratyush Patel, KirkOlynyk, JacobNel-

son, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld
Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The Demikernel datapath OS archi-
tecture for microsecond-scale datacenter systems. In Proceedings of the
28th Symposium on Operating Systems Principles, pages 195–211, 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    445

https://lwn.net/Articles/752188/
https://lwn.net/Articles/752188/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://grpc.io
http://curl-loader.sourceforge.net/index.html
https://redis.io/
https://www.mongodb.com/
http://www.rdmaconsortium.org/
https://nebula-graph.io/
https://icecast.org/




Verifying the DaisyNFS concurrent and
crash-safe file system with sequential reasoning

Tej Chajed
MIT CSAIL

Joseph Tassarotti
Boston College

Mark Theng
MIT CSAIL

M. Frans Kaashoek
MIT CSAIL

Nickolai Zeldovich
MIT CSAIL

Abstract
This paper develops a new approach to verifying a performant
file system that isolates crash safety and concurrency reason-
ing to a transaction system that gives atomic access to the
disk, so that the rest of the file system can be verified with
sequential reasoning.

We demonstrate this approach in DaisyNFS, a Network
File System (NFS) server written in Go that runs on top of
a disk. DaisyNFS uses GoTxn, a new verified, concurrent
transaction system that extends GoJournal [9] with two-phase
locking and an allocator. The transaction system’s specifi-
cation formalizes under what conditions transactions can be
verified with only sequential reasoning, and comes with a
mechanized proof in Coq [37] that connects the specification
to the implementation.

As evidence that proofs enjoy sequential reasoning,
DaisyNFS uses Dafny [26], a sequential verification language,
to implement and verify all the NFS operations on top of
GoTxn. The sequential proofs helped achieve a number of
good properties in DaisyNFS: easy incremental development
(for example, adding support for large files), a relatively short
proof (only 2× as many lines of proof as code), and a per-
formant implementation (at least 60% the throughput of the
Linux NFS server exporting ext4 across a variety of bench-
marks).

1 Introduction
File systems are important to implement correctly because
applications rely on them to safely store user data. Formal
verification offers a promise of showing that the implementa-
tion of a file system always meets its specification, including
a crash safety property that says the file system recovers cor-
rectly from a sudden crash and reboot. However, efficient
implementations are internally complicated, especially be-
cause they support concurrency and aim to minimize disk
writes. Complexity makes the code more error-prone and
motivates the desire for formal verification, but also poses a
challenge: how can a proof cover concurrency, crash safety,
and functional behavior while remaining tractable for a pro-
gram the size of a file system?

The main contribution of this paper is a new approach to
verifying a file system that isolates crash safety and concur-
rency reasoning to a transaction-system implementation. This

use of a transaction system wraps the file-system data struc-
tures and logic inside a transaction, and permits sequential
reasoning for the body of each transaction. Sequential reason-
ing keeps the proof burden manageable even with an efficient
implementation that supports many features, such as large
files and in-place updates of serialized metadata.

There are three challenges in realizing this approach. The
most important lies at the interface between the transaction
system and the file system: intuitively, transactions make
things simpler, but how do we exploit this for a proof engi-
neer verifying the code running in a transaction? This paper
proves a simulation transfer theorem that formalizes how the
proof engineer can verify the body of each transaction us-
ing sequential reasoning, and yet still obtain a proof about
concurrent and crash behavior, due to the use of a verified
transaction system. This specification and its proof are not
specific to the file system written on top and could be applied
to another storage system implemented using transactions.
We use the transaction system with file-system code verified
using Dafny [26], a verification-oriented programming lan-
guage that is limited to sequential reasoning but in exchange
has good automation.

The second challenge is how to implement and verify the
transaction system itself. The performance and concurrency
of the overall system can only be as good as the transaction
system, so efficiency and fine-grained locking are impor-
tant. To that end we implement a new transaction system
called GoTxn by extending GoJournal [9] (a verified jour-
naling system) with two-phase locking. GoJournal’s spec-
ification guarantees crash safety but requires the caller to
implement concurrency control (enforced with separation
logic) to achieve atomicity. In proving GoTxn we give a
new separation-logic proof of two-phase locking’s correct-
ness based on local reasoning rather than the typical textbook
approach that reasons about the global conflict graph for a set
of transactions. GoTxn cannot make arbitrary transactions
appear atomic (for example, if they access global variables),
and so the specification for GoTxn applies only to a carefully
formalized subset of “safe” transactions that access shared
state only through the transaction system.

The third and final challenge is how to implement the file
system using only transactions. GoTxn’s safety restriction
would appear to preclude an in-memory allocator since it re-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    447



quires other shared state, which we address by incorporating
allocation with a non-deterministic specification into GoTxn,
which is then used in the file system by validating the allo-
cator’s output. For sequential reasoning each operation must
be implemented as a single transaction, but operations like
removing a file can require a large number of disk writes that
might not fit in a transaction. We implement freeing using
multiple transactions; a first transaction logically deletes a
file, and then asynchronously the implementation can run
transactions that recover space from the file but have no other
visible effect.

The verified artifact from this work is DaisyNFS, which
implements a Network File System (NFS) server in Go on top
of a bare disk and comes with a proof that clients observe that
each operation follows the NFS specification as laid out in
RFC 1813 [4]. Operations appear atomic despite concurrency
and crashes. Clients can use the Linux or macOS NFS clients
to mount DaisyNFS like any other file system and interact
with it using the usual POSIX API. As an end-to-end check
that our formalization of NFS is accurate and the implemen-
tation is reasonably complete, we tested with both Linux and
macOS clients running a variety of programs.

A benefit of this file-system design is that it permits using
the sharpest tool for each part of the proof: while we use
Perennial [9], a program logic for crash safety and concur-
rency embedded in Coq, for the transaction system’s proof,
we use Dafny [26], a verification-aware programming lan-
guage with powerful automation, for the file-system opera-
tions. Dafny is a purely sequential language, but we are able
to use it despite this limitation due to the transaction system’s
proof. The value of sequential proofs can be seen in the
proof-to-code ratio for the transaction system, which is 20×,
versus the Dafny proofs which required about 2× as many
lines of proof as code. Further evidence can be seen in the
incremental development of DaisyNFS, which we elaborate
on in §9.4.

To evaluate DaisyNFS’s performance, we compare it to
that of the Linux NFS server exporting an ext4 file system.
DaisyNFS achieves within 90% of the throughput of Linux
with the ext4 data=journal option (which gives the same
crash-safety guarantees as DaisyNFS) across a variety of
benchmarks both on an NVMe and in-memory disk, and
at least 60% on the most challenging ones. The compara-
ble performance is due to the efficiency of GoJournal and
adding little overhead in the file-system code (e.g., updating
data structures in place to avoid copying). We do note that
ext4’s default data=ordered mode can get about 60% better
throughput for data-heavy workloads, at the cost of weaker
guarantees on crash.

The contributions of this paper are:

• Formalization of a simulation-transfer theorem that cap-
tures how the transaction system provides sequential rea-
soning (§5.1) for any system implemented using a transac-
tion per operation.

• A proof that the simulation-transfer theorem holds for the
GoTxn implementation (§6). This proof verifies two-phase
locking using a new strategy based on local reasoning to
connect to the GoJournal specification. For the theorem
to be true, it needs a precisely formulated definition of
safe transactions that access shared state through GoTxn
in order to behave atomically.

• Techniques to implement a file system using GoTxn, in-
cluding a validation approach to integrating in-memory
allocation into GoTxn and an approach for splitting file
removal into multiple transactions of bounded size.

• DaisyNFS, a concurrent, crash-safe file system that is veri-
fied in Dafny with sequential reasoning thanks to the above
techniques. The Dafny proofs for the file-system code en-
joy low overhead compared to the concurrent proofs for
GoTxn (2× vs. 20×). A performance evaluation shows
that DaisyNFS gets throughput at least 60% that of Linux
ext4 exported over NFS for the most challenging bench-
marks, and within 90% for many workloads.

Our approach and DaisyNFS have some limitations. The
proof approach relies on transactions appearing to run sequen-
tially, which prevents modifying state outside the transaction
system. There are cases where that would get better perfor-
mance in exchange for a more difficult proof. The transaction
system does not have a proof of liveness, and we do not prove
that transactions avoid deadlock. DaisyNFS does not support
NFS unstable writes, which improve performance by not com-
mitting writes to stable storage until explicitly requested. Our
NFS implementation does not cover some features, such as
symbolic links, hard links, and paginated READDIR; we believe
these features could be implemented and specified with the
same approach but have not done so in our prototype.

This paper describes work that is part of the first author’s
Ph.D. thesis [5], which provides more detail. The thesis also
describes the Perennial logic for verifying concurrent and
crash-safe systems, the specification and proof of GoTxn
(including GoJournal), and Goose, the tool we use to verify
GoTxn’s implementation written in Go. It goes into more
detail about the DaisyNFS proof and evaluation as well.

2 Related work
Our main contribution is a way to use transactions to enable
sequential reasoning for a concurrent file system. Our ap-
proach allows using Dafny and produces a file system that
gets good performance. Prior work has also explored how to
compose proofs across layers for modularity, to contain con-
currency, or to cross between proof systems in complemen-
tary and distinct ways; none use transactions or any similar
mechanism to isolate concurrency or crash safety reasoning.

2.1 Verifying storage systems
Directly related systems DaisyNFS directly builds upon Go-
Journal [9] to implement the transaction system, together with

448    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



its new version of the Perennial framework [8] that is used
to verify the transaction system’s proof. This infrastructure
is a program logic designed for storage systems that need a
combination of concurrency and reasoning about crashes at
any time, built on top of the Iris framework [23] in Coq.

The transaction system differs from GoJournal in that the
GoJournal specification requires the caller to prove that con-
current transactions do not attempt to read or write the same
objects, whereas the transaction system guarantees this au-
tomatically with per-object locks. The specification styles
are also different: whereas the GoJournal proof is a set of
specifications within the Perennial logic, the transaction sys-
tem’s proof uses a more general refinement-based definition
that we can apply to the Dafny code. This is necessary to
combine the tools, since Dafny cannot express the GoJournal
specification’s concurrency restrictions directly.

Directly related applications In prior work with the Peren-
nial framework, we verified a crash-safe, concurrent mail
server under the assumption that the file system is crash-
safe [8]. DaisyNFS is a crash-safe file system and its complex-
ity is significantly larger than a mail server: the mail server is
about 150 lines with a monolithic proof while DaisyNFS com-
bines a transaction system (itself 1,600 lines) with a 4,000-
line file system, each of which involve many intermediate
abstractions.

The authors of GoJournal verify a simple NFS file server
on top of GoJournal, but that server is not complete enough
to run real applications (it supports only one directory and
4KB files). Furthermore, the simple NFS server does its
own locking and so the proof must reason about concurrency,
increasing the proof overhead compared to DaisyNFS.

Other verified file systems Flashix [33] is a verified file
system for flash storage, recently extended to support con-
currency by Bodenmüller et al. [2]. File-system opera-
tions are proven to be atomic using a variant of Lipton’s
movers [28] technique with additional conditions to ensure
crash-atomicity [31]. In contrast, DaisyNFS proves once and
for all that operations encapsulated in a transaction are atomic.
Flashix uses per-file locks to enable concurrent file accesses,
but the directory tree is protected by a single reader-writer
lock, so operations creating or moving files cannot proceed
concurrently. DaisyNFS’s two-phase locking system allows
operations to proceed in parallel if they access disjoint parts
of the file system.

VeriBetrKV [18] is a verified key-value store similar to
the one that underpins the BetrFS [22] file system. It uses
Dafny for crash-safety reasoning but does not layer any file-
system proof on top. This file-system design does not involve
general transactions, so the code on top of the key-value store
must still carry out crash reasoning. The system has I/O
concurrency but no CPU concurrency.

AtomFS [39] is a verified concurrent file system that does
not persist data. It uses a custom concurrent relational logic

implemented in Coq. Because the system does not persist
data, AtomFS does not have any transaction system and im-
plements the file-system operations together with appropriate
locking for concurrency control.

2.2 Concurrency verification
A number of verification frameworks address concurrency,
including CIVL [20], CSPEC [6], Armada [29], Iris [24],
CCAL [16, 17], and FCSL [34], among many others. These
frameworks use a range of methods, such as movers [28]
and concurrent separation logic [3]. Although there has been
much recent progress in using these frameworks to verify
shared-memory concurrent systems, handling concurrency
still brings additional proof burden compared to verification of
sequential systems. DaisyNFS’s design isolates this verifica-
tion overhead to the transaction system’s proof, and then uses
Dafny to reason about file-system operations. Furthermore,
it would be challenging to extend a concurrency framework
with crash safety compared to starting with Perennial, which
required non-trivial extensions to add crash-safety support to
Iris.

IronFleet [19] applies Dafny’s sequential reasoning to a
non-sequential setting, namely to verify event handlers for dis-
tributed systems. Each event handler is structured in phases:
first messages are received, some local computation is done,
and then messages are sent. This structuring enables a reduc-
tion argument [28] which makes it sound to treat each event
handler as if it ran in an atomic step, with no interleaving of
steps by other machines. Instead of a reduction argument,
DaisyNFS uses the transaction system to make operations
atomic. Although DaisyNFS operations may only access
shared state through the transaction-system API, there are
no phases or constraints on the ordering of reads and writes
within a transaction.

2.3 Verified two-phase locking
Chkliaev et al. [11] verify serializability of two-phase locking
and other transaction concurrency control mechanisms in
the PVS theorem prover. Their proof formalizes two-phase
locking as an abstract protocol consisting of sequences of
read, write, and locking operations, as opposed to a concrete
implementation as in DaisyNFS. Pollak [32] uses a variant of
the CAP separation logic [15] to give a pencil-and-paper proof
of serializability for a two-phase locking implementation.

Lesani et al. [27] developed a framework for verifying
software transactional memory algorithms, modeled as I/O
automata. They applied their framework to sophisticated
STM algorithms, such as the NOrec algorithm [14]. The
STM algorithms considered do not handle persistence and the
framework does not address crash-safety reasoning.

2.4 Unverified file systems
We chose to verify an NFS server because it is widely used in
practice and the expected behavior of NFS operations is well

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    449



Dispatch loop

Go

Go output

GoTxn

Go

Verification
in Perennial

File-system
operations

Dafny

DaisyNFS Library

go build

dafny

Figure 1: The structure of the code.

documented in RFCs. FUSE is an alternative for implement-
ing file systems in user space, but its operations have a less
clear specification.

Isotope [35] is a block-level transaction system similar to
GoTxn in its API which was used to implement a file system
called IsoFS. Its logging design is based on multi-version
concurrency control (MVCC) [1] rather than our use of pes-
simistic locking. IsoFS has a similar design to DaisyNFS: it
factors out isolation and atomicity to the transaction system,
making it easy to handle crashes and concurrency. Unlike
GoTxn and DaisyNFS, Isotope is unverified and thus prone
to subtle concurrency bugs in the transaction system and bugs
in the IsoFS code, whereas DaisyNFS uses the split design
to verify both the transaction system and the transactions
themselves.

To be conducive to verification, DaisyNFS is implemented
differently than many NFS servers; the main differences are
that using two-phase locking is not common practice, and
most NFS servers are implemented on top of an existing file
system. For example, the Linux NFS server can export any
underlying file system supported by the kernel. An exported
file system such as ext4 may use a journaling system, but
the file system and VFS layers perform locking and are still
prone to concurrency bugs. WAFL [21] is an NFS appliance
that provides snapshots and logs NFS requests to NVRAM. It
has evolved its locking plan to obtain good parallelism [13].
Both the Linux NFS server and WAFL are more complicated
and have more features than DaisyNFS.

3 System design
As shown in Figure 1, DaisyNFS is implemented in three
layers: 1) a dispatch loop that speaks the NFS wire protocol
and calls the appropriate method for each operation; 2) a
Dafny class that implements each method; and 3) a transaction
system that applies the updates of each method to the disk
atomically. The dispatch loop is unverified; we assume that
the server correctly decodes messages, calls the right method
for an operation, and encodes the response. The middle
layer implementing the file-system operations is written and

super
block

inode
blocks

allocator
bitmap blocks

data blocks
(remainder of disk)

Figure 2: The layout of the file system on top of the transaction system’s
disk. The number of inode blocks and data bitmap blocks are compile-time
constants, but easy to change without affecting the proofs.

verified in Dafny, which has a backend for Go. The third
layer is directly written in Go and verified using Coq and
Perennial. By implementing the file system on top of the
transaction system, we can implement each NFS method in
Dafny as sequential code calling into a concurrent transaction
system library. The NFS operations supported by DaisyNFS
are listed in Figure 6.

3.1 Dafny file system
The file system is responsible for implementing files and
directories onto an array of disk blocks that is exported by the
transaction system. The disk layout used by the file system
is shown in Figure 2, with regions for inode blocks, bitmap
blocks, and data blocks for files and directories. This figure
is in terms of the disk exported by the transaction system; the
transaction system itself has a 513-block write-ahead log to
support multi-block atomic writes to the disk.

The high-level organization of the file system separates
three concerns, each building upon the previous: (1) imple-
menting indirect blocks so files can be up to 512GB, (2)
implementing byte-granularity reads and writes on top of
blocks, and (3) implementing directories by encoding them
as files with a special type together with operations to manip-
ulate those files. §7 explains the internals of the file-system
design in more detail, alongside the structure of the Dafny
proof.

3.2 Transaction system
The transaction system handles concurrency and crash

safety, and its API is listed in full in Figure 3. The file system
creates an empty transaction by calling Begin(). The entire
transaction appears to execute atomically when the caller fin-
ishes with Commit, or the transaction is discarded with no
effect on Abort. Reads and writes operate on addresses which
specify a position by giving a block number and an offset in
bits (always less than 4096 ·8, the number of bits in a block).
The Read method requires an explicit size argument while the
size of a Write is implicit in the size of the data slice. We
separate out the bit-sized operations to ReadBit and WriteBit
(rather than using a single-element byte slice) to simplify the
specification.

Figure 3 also shows the allocator API alongside the trans-
action API because its implementation is part of the interface
that the Dafny code has access to. Allocation does not behave
atomically along with the rest of the transaction, which the
proof handles by allowing allocation to return any value. In

450    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 type Addr struct {
2 Blkno uint64
3 Offset uint64
4 }
5

6 // starting and stopping a transaction
7 func Begin() *Txn
8 func Abort(tx *Txn)
9 func Commit(tx *Txn)

10

11 // operations within a transaction
12 func Read(tx *Txn, a Addr, sz uint64) []byte
13 func ReadBit(tx *Txn, a Addr) bool
14 func Write(tx *Txn, a Addr, d []byte)
15 func WriteBit(tx *Txn, a Addr, d bool)
16

17 // allocator API
18 func NewAllocator(max uint64) *Allocator
19 func Alloc(a *Allocator) uint64
20 func Free(a *Allocator, n uint64)

Figure 3: The API for the transaction system and allocator, both of which
are available within the Dafny file-system implementation. Reads and writes
between Begin and Commit appear to execute atomically on disk and for other
threads, while Abort guarantees the transaction has no effect. The allocator’s
Alloc and Free operations are safe to call concurrently.

practice the way the file system uses such a non-deterministic
specification is to store the ground-truth allocation state in
the transaction system, and then to use the allocator as a hint
to find free bits. As a result the return value of Alloc() must
be checked against the durable bitmap with ReadBit(). Simi-
larly, to free an address it must be both freed in memory and
on disk with WriteBit().

The transaction system builds upon GoJournal, verified in
prior work [9], adding two-phase locking on top to implement
transactions. While a transaction is running, it acquires locks
for any addresses it reads or writes, and on abort or commit,
it releases all locks held. Transactions that don’t conflict can
prepare in parallel, and GoJournal will batch concurrently
committed transactions for efficiency.

Acquiring multiple locks during a transaction creates the
possibility for deadlocks, for example if two threads acquire a
pair of locks in the opposite order. The two-phase locking im-
plementation does not implement a specific lock acquisition
order, leaving it to the file system to avoid deadlock — the
most interesting case is RENAME, which is discussed in more
detail in §7.1.1.

4 Specifying DaisyNFS
The specification for DaisyNFS is a state machine describing
an ideal NFS server in the form of an abstract state and a tran-
sition for each operation. The implementation of DaisyNFS
is a binary daisy-nfsd that implements the NFS protocol,
running on top of a disk. Then the DaisyNFS correctness
theorem is a refinement property, which intuitively says that
for any interaction with the implementation, the ideal, atomic
NFS state machine could produce the same responses; §4.2

gives a more formal definition. As a result a client interacting
with the server can pretend that it is the NFS state machine
and ignore the complexities of its implementation.

4.1 Formalizing NFS
RFC 1813 specifies the NFS protocol, which we make math-
ematically precise with a state-machine representation de-
fined in Dafny. The formalization requires first defining what
state operations modify, and then a transition for each NFS
operation that specifies how it changes the state and what
return values are allowed. While most of the specification
is deterministic, some operations have to be specified with
non-determinism; for example, we allow returning an out-of-
space error in many operations, and the specification allows
any timestamp to be picked for the current time. The RFC
is precise about arguments and allowed return values, and
the text is good about explaining the intended behavior, but
it does not describe the state an NFS server maintains. We
define the NFS server state as shown in Figure 4.

// the abstract state of the file system
type FilesysData = map<Ino, File>

datatype File =
| ByteFile(data: seq<byte>, attrs: Attrs)
| Dir(dir: map<FileName, Ino>, attrs: Attrs)

type Ino = uint64
type FileName = seq<byte>
datatype Attrs = Attrs(mode: uint32, ...)

Figure 4: Dafny definition of the NFS server state (simplified).

This definition says that an NFS server conceptually main-
tains a mapping from inode numbers to files, where a file can
either be a regular file with bytes, or a directory. Both types
of files have a number of attributes, storing metadata like the
file’s mode (permission bits) and modification time. A direc-
tory is a partial map from file names (which are just bytes) to
inode numbers. Note that DaisyNFS doesn’t represent the file
system as a tree but as a collection of links, which is sufficient
to model all NFS operations, because NFS clients resolve
pathnames.

The NFS state machine models each operation as a non-
deterministic transition, written as a predicate that holds when
it is allowed for an operation to change the state from fs to
fs’ and return r. The return value is always wrapped in a
Result type, which can be either Ok(v) for a normal return or
an error code for one of the errors defined in the standard. We
systematically guarantee that the state is unchanged when an
operation returns an error (though this is stronger than what
the RFC requires); the transaction system makes this easy
to achieve by aborting the whole transaction. For example,
Figure 5 shows the specification for a (hypothetical) GETSZ
operation that returns the size of the inode ino.

There are four clauses in the specification. The first just
says that this operation is read-only. The second is one possi-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    451



predicate GETSZ_spec(ino: Ino, fs: FilesysData,
fs’: FilesysData, r: Result<uint64>)

{
fs’ == fs &&
(r.ErrBadHandle? ==> ino !in fs) &&
(r.ErrIsDir? ==> ino in fs && fs[ino].Dir?) &&
(r.Ok? ==> ino in fs && fs[ino].ByteFile? &&

r.v == |fs[ino].data|)
}

Figure 5: Specification of a hypothetical GETSZ operation, a simplification of
the real GETATTR operation.

Category Operations Verified

File and directory ops GETATTR, SETATTR, READ, WRITE ✓
CREATE, REMOVE, MKDIR, RENAME ✓
LOOKUP, READDIR ✓

Unsupported features READLINK, SYMLINK, LINK, MKNOD ✗

READDIRPLUS, ACCESS ✗

Configuration FSINFO, PATHCONF, FSSTAT ✗

Trivial operations NULL, COMMIT ✓

Figure 6: NFS API and which operations DaisyNFS supports and verifies.

ble error: if the server returns ErrBadHandle, then ino is not
allocated. The third is a different error, which says this opera-
tion returns ErrIsDir for directories. Finally the fourth case
says that if the operation is successful, it returns the length
of the data in fs[ino]. Dafny checks several consistency
properties of this specification itself; for example, a use of
fs[ino] will not even compile if the specification does not
earlier imply ino in fs.

We developed a state-machine model of the regular file and
directory operations in NFS in this style, including specifying
what certain errors signify. Figure 6 lists the entire NFS API
and what parts we verified.

DaisyNFS implements FSINFO and PATHCONF, which give
the client static configuration information about the file sys-
tem (for example, the maximum supported write size). These
return constants and thus have no specification. DaisyNFS
also implements FSSTAT to report total and free space, but it
does not have a meaningful specification.

DaisyNFS could support some of the remaining operations
with some more effort. Support for symlinks and MKNODwould
require mostly mechanical changes to accommodate new file
types. LINK is more complicated because in addition to track-
ing the link count of every file in the state, the specification
for REMOVE needs to say that the link count is decremented
and that the file is deleted if its link count drops to zero.

4.2 Specifying correctness for DaisyNFS
The transition system in §4 describes the abstraction of an
NFS server, but what does it mean for the daisy-nfsd binary
to implement this specification? To formalize DaisyNFS’s
correctness we use a definition of concurrent, crash-safe re-
finement, which informally says that every execution of that
server binary — including with concurrent operations and

crashes — has user-visible behavior that the specification
could also produce (that is, the behavior is allowed by the
specification). In DaisyNFS’s specification the visible behav-
ior is defined to be network requests and responses.

To define the specification, we need to be more precise
about what a program is and how it executes, since these
programs are used to model the DaisyNFS code and specifi-
cation. We write p : Go⟨X⟩ to say p is a Go program written
using operations from layer X, where X is one of NFS, Txn,
or Disk. Layer operations are always atomic transitions in
a state machine. In the NFS layer, the operations behave
according to the NFS state machine described previously in
§4.1 and defined formally in Dafny. The Txn layer is speci-
fied both in Coq where it is part of the transaction system’s
correctness theorem and in Dafny where it appears as an as-
sumption. The Disk transition system is formalized in Coq
as part of the GoJournal proof, and assumes reads and writes
of 4KB blocks are atomic. Each layer includes concurrent
threads that interleave layer operations, basic heap operations
on pointers, slices, and maps, and computation on primitives
like integers and structs.

The correctness of DaisyNFS is stated in terms of a pro-
gram that repeatedly receives a request, processes it in a
background thread, and sends a response, which is intended
to model the core behavior of the daisy-nfsd server. A
schematic depiction of this server loop is given in Figure 7.
This code starts by recovering the state of the system on line 3.
Then it repeatedly accepts new requests from the network, ab-
stracted with GetRequest() (including parsing the NFS wire
protocol). These requests are each processed in a background
thread due to the goroutine spawned on line 6. The process-
ing for each request dispatches to the appropriate file-system
operation (e.g., lines 9 and 12). The implementations of these
operations are compiled from Dafny to Go and then linked
with the transaction system.

The correctness theorem references three versions of this
loop, at different levels of abstraction. At the top, the specifi-
cation is a loop sNFS : Go⟨NFS⟩ which atomically processes
each NFS operation according to the NFS state machine.

Below the NFS layer, sdfy models the server where each
operation is replaced with its Dafny implementation, wrapped
in a transaction. In this layer we write atomically{f} to
represent a transaction running f, which by definition in the
Txn layer runs atomically for specification purposes. An
atomically block corresponds to executable code that fol-
lows a pattern like tx := Begin(); f(tx); tx.Commit() to
run f in the context of a GoTxn transaction (some additional
code handling aborts is omitted in this snippet).

The final layer that models the executable code is given
using a function link(p, i), which takes a program p using
operations from layer S and substitutes each operation with
an implementation according to i : S → Go⟨T⟩. The notation
“link” is intended as an analogy to the linking phase of com-
pilation, taking a program p with some undefined symbols

452    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 // this is the core of daisy-nfsd
2 func main() {
3 fs := filesys.Recover()
4 for {
5 req := GetRequest()
6 go func() {
7 switch req.Op {
8 case CREATE:
9 ret := fs.CREATE(req.Args)

10 SendReply(req, ret)
11 case LOOKUP:
12 ret := fs.LOOKUP(req.Args)
13 SendReply(req, ret)
14 // ... other cases ...
15 }
16 }()
17 }
18 }

Figure 7: A schematic depiction of the server loop, written in Go. sNFS
looks like this code, but by definition all operations (for example the calls
to fs.CREATE and fs.LOOKUP) are processed atomically and according to
the NFS transition system. As far as the proof goes GetRequest() and
SendReply() just produce a trace of I/O behavior and are unverified.

Figure 8: Illustration of the DaisyNFS proof strategy in terms of one possible
execution of DaisyNFS, receiving parallel MKDIR and LOOKUP operations, at
its three abstraction levels. Operations in each row are coded green and solid
or orange and dashed according to which operation they correspond to (the
top-level MKDIR or LOOKUP respectively). The refinement proof first shows that
for every code execution (bottom row), there exists an atomic execution at
the Txn layer (middle row), as proven in Theorem 2. This justifies sequential
reasoning to show the transactions follow the NFS specification (top row), as
proven in Theorem 3. Finally Theorem 1 puts the two together.

and substituting each symbol s with a call to an implementa-
tion of that method given by the library code i(s). We write
link(sdfy,txn) to represent linking the Dafny code with the
transaction system’s implementation txn.

The proof is about the server loop at the core of daisy-nfsd
at three layers of abstraction. Figure 8 illustrates one execu-
tion of the DaisyNFS server where two clients issue LOOKUP
and CREATE in parallel, at the three levels of abstraction: the
bottom shows an execution of link(sdfy,txn) at the Disk layer,
the middle a corresponding atomic execution of sdfy at the
Txn layer, and finally the top-level has a single transition for
each operation at the NFS layer.

Refinement relates two programs in terms of their visible

behavior, which we will use to connect the server loop at
the disk layer to the transaction layer and finally to the NFS
layer. For the purposes of this paper, all of the programs
involved are servers that issue network I/O, either receiving
an NFS request or responding to one. Regardless of the level
of abstraction, each model of the server defines a trace of
network I/O consisting of requests and responses, and this is
the behavior refinement talks about:

Definition (Concurrent, crash-safe refinement). An imple-
mentation program pc is a concurrent, crash-safe refinement
of a specification program ps, written pc ⊑ ps, if whenever
there are initial states σs and σc satisfying init(σs,σc) and pc
can execute from σc and produce a trace of network I/O tr,
then ps can execute from σs and produce the same trace tr.
Execution might involve crashing and restarting a program
(potentially multiple times), wiping out any in-memory state
after each crash. When we state pc ⊑ ps we leave implicit the
definition of initial states init(σs,σc), which will generally
say both states are all zeros and of the same size.

The intuition behind the notation pc ⊑ ps is that the set of
behaviors of pc (the set of traces of network I/O tr) is a subset
of the behaviors of ps.

Now we have enough to state the final DaisyNFS correct-
ness theorem:

Theorem 1 (DaisyNFS correctness). link(sdfy,txn)⊑ sNFS.

In this correctness theorem, initialization requires running
a Dafny method on an empty disk. Subsequently the system
boots by first recovering the transaction system, then restoring
the file system. Theorem 1 will follow from the correctness of
the transaction system combined with the results from Dafny.

5 Verification approach
DaisyNFS’s concurrent, crash-safe refinement is a much more
sophisticated property to verify than sequential refinement.
Figure 9 illustrates the complexity of proving a concurrent
and crash-safe refinement, whereas Figure 10a shows the rel-
atively simple per-operation obligation for sequential reason-
ing. For both forms of refinement, the basic proof technique
is to construct a forward simulation from the code execu-
tion to the specification transition system, which requires an
abstraction relation connecting their states and a proof that
shows the abstraction relation is preserved by operations. In a
sequential, non-crash simulation, it is sufficient to show that
each operation restores the abstraction relation when it returns
since its intermediate states are invisible. The complication
in a concurrent simulation is that the code can have many
concurrent threads, each running a different operation at the
specification level. The proof of any given operation must
also show that the intermediate states satisfy the abstraction
relation, since at any time other threads might run. Similarly,
the proof of each operation’s implementation must consider
interference with its execution from other threads at any time.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    453



(a) Linearizability obligation (for each operation)

(b) Crash-safety obligation (for each operation)

Figure 9: Obligations for verifying a concurrent, crash-safe refinement. The
proof of refinement must show that every operation simulates the abstract
specification for the operation at some linearization point (as illustrated
in 9a), and that a crash simulates a specification crash transition (as illustrated
in 9b). The abstraction relation must be preserved at all intermediate points,
including after a crash.

5.1 Simulation transfer
The design of DaisyNFS uses transactions, and in particular
GoTxn, to simplify the proof of concurrent refinement. Trans-
actions appear to run sequentially, and thus should permit
reasoning about the body of each transaction sequentially
even though the actual execution interleaves multiple trans-
actions. A key contribution of this paper is the formalization
of a simulation-transfer theorem which proves that a system
implemented with transactions that is verified with a sequen-
tial forward simulation against some specification refines the
same specification in the sense of a concurrent, crash-safe
refinement when run through GoTxn.

Due to simulation transfer, we can use the simpler verifica-
tion methodology of sequential simulation for the DaisyNFS
file-system code, compared to the Perennial program logic
used to verify the transaction system underneath. To fully
take advantage of this difference, DaisyNFS is verified using
Dafny [26], an entirely different tool. Dafny is a verification-
oriented programming language that is restricted to sequen-
tial proofs. The use of Dafny greatly reduces the proof bur-
den for verifying DaisyNFS, because sequential proofs are
well-suited to automation and Dafny’s automation is well-
developed (in contrast automation for concurrent proofs is
still nascent, and would need to be integrated into Perennial
to be used for these proofs).

The value of sequential proofs can be seen in the proof-to-
code ratio for the transaction system, which is around 20×,

versus the Dafny proofs which required about 2× as many
lines of proof as code. Further evidence can be seen in the
incremental development of DaisyNFS, which §9.4 further
elaborates on.

To make simulation transfer this precise, let us first define
“sequential reasoning” more formally. Suppose we have an
implementation of layer S using operations from T . Note that
all the proofs about the transaction system are for an arbitrary
system with operations in S; though we use the system with
an implementation of NFS, the GoTxn proof is more general.
The implementation i consists of a function i(op) : Go⟨T⟩ for
each operation op ∈ S. The statement seq_refinement⟨T,S⟩(i)
says that i is a correct sequential implementation of S using
T . To specify the normal behavior of each operation, the
definition refers to s

op
⇝ s′, which says op can transition from

s to s′ according to the definition of layer S. To specify
correctness under crashes, this definition refers to crash(t, t ′)
and crash(s,s′), which are the crash transitions for layers
T and S respectively and model, for example, clearing the
contents of memory.

Definition (Sequential refinement). The implementation
i : S → Go⟨T⟩ is a sequential refinement, written
seq_refinement⟨T,S⟩(i), if there exists an abstraction rela-
tion R ⊆ ΣS ×ΣT such that:
(1) for every operation op ∈ S, the following sequential Hoare
triple holds:

{λ t.R(s, t)} i(op)
{︂

λ t ′.∃s′.R(s′, t ′)∧ s
op
⇝ s′

}︂
,

(2) init(s, t) must imply R(s, t), and
(3) if R(s, t) and crash(t, t ′) hold, then there exists an s′ such
that R(s′, t ′) and crash(s,s′).

Conditions (1) and (2) in this definition are standard for
sequential verification of refinement, while condition (3) is
a standard condition for sequential crash-safety [7]. Though
condition (3) requires the abstraction relation to be preserved
by crashes, the proof engineer does not have to reason about
crashes in the middle of operations. The diagram in Figure 10
depicts the main refinement condition (1) diagrammatically.

Simulation transfer takes a proof of sequential refinement
conditions for a system implemented using transactions and
derives a concurrent and crash-safe refinement. A transaction
must satisfy some conditions to ensure atomicity. We write
safe(p) to say that p is a valid transaction. The main restric-
tion is that p cannot access global state such as the heap, since
the transaction system does not make such accesses atomic.
The implementation i in this theorem gives only the body of
each transaction; the theorem instead references atomically◦ i
where (atomically ◦ i)(op) = atomically{ i(op)} uses the
macro from the Txn layer to specify that the operation is
wrapped in a transaction and is thus by definition atomic.

Theorem 2 (Simulation transfer). Let S be a spec layer im-
plemented using transactions with i : S → Go⟨Txn⟩, such that

454    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



CREATE

nfs3create_spec

R R

(a) Obligation for sequen-
tial refinement.

method CREATE(d_ino: uint64,
name: Bytes)

returns (r: Result<Ino>)
requires R(txn_disk, fs)
ensures R(txn_disk, fs)
ensures r.Ok? ==>
nfs3create_spec(d_ino, name,
old(fs), fs, r.v)

(b) Dafny encoding
Figure 10: Illustration of seq_refinement(iNFS) (left) and its encoding in
Dafny seq_refinementdfy(iNFS) (right), for one particular operation. In the
diagram, the solid parts are assumed, and the dashed parts must be shown to
exist. The complete Dafny spec is more precise about errors.

seq_refinement(i) and ∀op.safe(i(op)) hold. Then

∀p : Go⟨S⟩, link(link(p,atomically◦ i),txn)⊑ p.

Simulation transfer says that if an implementation of S
using transactions is correct in a sequential sense, then this is
sufficient for any spec program p to have atomic and correct
behavior for its primitives when run with GoTxn. The exe-
cutable code for p derived in two steps: link(p,atomically◦ i)
replaces the operations in S with their atomic implementa-
tions at the GoTxn API level, while link(link(p,atomically◦
i),txn) takes the result of this process and substitutes the
actual GoTxn implementations of Begin, Read, Commit, and
so on. In §6 we discuss how this theorem is proven using
Perennial and Coq.

5.2 Putting simulation transfer together with
Dafny proofs

In order to use simulation transfer to obtain Theorem 1, we
need to prove that DaisyNFS’s implementation, iNFS, satisfies
the sequential refinement conditions. To do so, we define
seq_refinementdfy(i), an encoding of sequential refinement
using Dafny pre- and post-conditions (as illustrated in Fig-
ure 10), and prove that DaisyNFS satisfies these conditions in
Dafny. The crash refinement condition (3) is straightforward;
crashes have no effect in both the Txn layer and the NFS
layers because they do not have ephemeral state. Details on
how the Dafny obligations handle initialization and recovery
are found in the first author’s thesis [5: §6.4].

Lemma 3. seq_refinementdfy(iNFS) holds.

From here we can apply Theorem 2 to Lemma 3 and ob-
tain Theorem 1, which says link(sdfy,txn)⊑ sNFS (note that
sdfy = link(sNFS,atomically ◦ i)). Figure 8 illustrates just
one execution that the theorem covers: the transaction sys-
tem proof guarantees an atomic execution while the sequen-
tial refinement guarantees the transactions themselves are
correct. There are two trusted assumptions needed for the
theorems to compose. First, seq_refinementdfy(iNFS) should

imply seq_refinement(iNFS). That is, the encoding of the re-
finement conditions in Dafny must be correct, but also the
semantics of the transaction system operations modeled in
Dafny must match the Coq proof. Second, every Dafny trans-
action must be valid, meaning safe(iNFS(op)). The Dafny
code satisfies safety due to a simple syntactic check: the only
mutable state in the file-system Dafny class is the transac-
tion system, so file-system operations cannot make mutations
other than through GoTxn.

6 Verifying the transaction system
This section describes the implementation and proof of the
transaction system, GoTxn. A contribution of this paper de-
tailed in this section is to verify the powerful specification of
Theorem 2 on top of a real implementation, which required
verifying two-phase locking using local reasoning in Peren-
nial unlike the more typical textbook proofs that reason about
the global execution of many concurrent transactions. Note
that this section is only about the transaction system and has
nothing specific to the file system implemented on top.

6.1 GoTxn’s implementation
GoTxn is implemented as an extension to GoJournal [9], a
journaling system verified in Perennial. The journaling sys-
tem provides the ability to write multiple objects atomically,
with an implementation that provides good concurrency. For
correctness GoJournal relies on the caller to guarantee that
concurrent operations do not access the same disk objects.
GoTxn automatically provides the concurrency control to
guarantee this precondition using two-phase locking (2PL).
The result is an interface that behaves atomically without any
concurrency reasoning from the caller.

The two-phase locking system logically maintains a lock
per object. The algorithm gets its name from an expanding
phase in which reads and writes acquire locks as needed,
followed by committing the transaction’s writes to the journal
and a contracting phase where all the acquired locks are
released. Instead of committing, a transaction can abort early
to abandon buffered writes and release the locks acquired so
far, in which case the disk is unaffected. The whole operation
appears to execute atomically at commit time; reads return
their results early, but the locks ensure these values remain
consistent up until the commit point. The GoTxn proof makes
the informal correctness argument precise by giving a proof
of a refinement-based specification.

6.2 Verifying two-phase locking with local reason-
ing

In §5.1, we gave Theorem 2 as the specification for the trans-
action system. Recall that this theorem converts sequential
refinement proofs for transactions into concurrent refinement.
To prove this, we first use Perennial to show that code encap-
sulated in a transaction truly behaves atomically, formalized
with the following theorem:

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    455



Theorem 4. The GoTxn implementation txn is a transaction
refinement, meaning for all p : Go⟨Txn⟩ where safe(p) holds,
link(p,txn)⊑ p. The definition of init(s, t) in this refinement
relates an all-zero physical disk to an all-zero transactional
disk of the same size.

Theorem 4 captures the intuition that transactions provide
atomicity, while Theorem 2 formalizes why atomicity pro-
vides sequential reasoning. The proof of Theorem 2 from The-
orem 4 is conceptually straightforward. Since the atomically
blocks in p ensure transaction operations run without inter-
ruption, the sequential refinement diagram can be applied to
code inside these blocks.

The proof of Theorem 4 itself in Perennial is more involved.
The high-level approach is to encode refinement as Perennial
Hoare triples, one for each operation [8, 38]. To make this
sound for concurrent refinement, (1) the proof must identify
and verify the linearization point of an operation, the time
at which the operation appears to have executed; and (2) the
proof tracks logical ownership of state, and threads may only
modify state that they have “acquired” ownership of through
synchronization. The resulting proof style is called “local”
because we reason about each thread in isolation, considering
just the parts of state it accesses. Using Perennial enables us
to re-use the existing GoJournal proof, but this local proof-
style is quite different from standard proofs of serializability
for two-phase locking, which reason globally about the set of
transactions and ordering constraints imposed by locks.

In more detail, the refinement proof must show that the
code tx := Begin(); f(tx); tx.Commit() has a subset of
executions of the atomically{f} construct. The difficulty
in proving this is that the linearization point is at the very end
when the code calls Commit, at which point the actual earlier
execution of f becomes visible to other threads. We must
argue that at this point the entire atomically{f} block’s
effect has occurred by tracking the behavior of f.

As the transaction executes, the proof tracks the initial
value of any objects accessed in a map J. The domain of this
map Σ = dom(J) is the footprint of the transaction, which
two-phase locking keeps locked during the transaction. The
intuition behind the invariant is that if the transaction only
depends on J, the transaction’s execution can be delayed to
take place atomically at the call to Commit, because locking
prevents the subset J of the journal from being accessed by
other threads. In particular the proof sets up a set of lock in-
variants that say the lock for address a is needed to access the
GoJournal resource a ↦→d o, which gives permission to read
and write to a. See the thesis for a more formal connection to
the GoJournal specification [5: §5.5].)

The proof maintains a refinement relation during the execu-
tion of a transaction f, which is formally expressed using the
GoJournal resources but explained more intuitively here. Let
J be a map with the values of each object in the transaction’s
footprint Σ at the first time they are accessed by f, and let J′

be a map with the transaction’s current buffered in-memory

view of the same addresses. Then, the invariant requires that
after n steps of execution:

1. The transaction holds the lock for every address a ∈ Σ.

2. Executing n steps of f in any starting state that has the
same values as J for the addresses in Σ can lead to a state
with values given by J′.

At the start of a commit, the locking described by the first
part of the invariant ensures that the durable value of each
address still match the value in J, and is required to call the
GoJournal Commit operation. The second part of the invariant
means that even though other parts of the state outside of Σ

may have changed, those changes do not affect the execution
of f. Thus, executing f at this point in a single step would
have the same behavior as the implementation has observed.
The GoJournal Commit specification ensures that the durable
values of objects in the footprint are atomically updated to
match J′.

Showing that the second part of the invariant holds requires
that code within a transaction must not access global state
outside of the transaction system, as mentioned at the end of
§5.1. Accesses to such global state would violate the invariant
because their behavior would then depend upon things outside
of the footprint Σ. Because those global values could change
by the time the transaction commits, the above argument
would no longer work if they were allowed.

The allocator creates another subtlety related to the second
part of this invariant. Allocations do not hold the allocator
lock throughout the remainder of a transaction. This seems
to violate the two-phase locking pattern, since allocations
could be implicitly observed by other concurrent transactions
from the fact that an allocated address is no longer free. Cor-
respondingly, in the proof, the footprint J of a transaction
does not describe the allocator state. Thus, at the linearization
point, the addresses returned by the allocator may no longer
be free. However, because the specification for the allocator
does not guarantee that returned addresses are actually free,
the second part of the invariant above still holds.

7 Verifying the Dafny implementation
We follow the standard approach for verifying software in
Dafny: each file-system operation is implemented as a method
on a class and its specification is given using pre- and post-
conditions. §5.1, explains how the Dafny proof shows the
code is a correct implementation of NFS in terms of sequential
refinement. This section provides details about the file-system
design and proof.

DaisyNFS is implemented and verified in several layers of
abstraction, depicted in Figure 11. Each layer is implemented
as a class that wraps the lower layer as a field. The transaction
system is an assumed interface in Dafny, while the complete
server implements the NFS wire protocol and calls into the
top-level Dafny class for each operation.

456    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Layer Functionality

dir Directories and top-level NFS API.
typed Inode allocation.
byte Implement byte-level operations using blocks.
block Gather blocks for each file into a single sequence.
indirect Triple-indirect blocks organized in a tree.
inode In-memory, high-level inodes; block allocation.
txn Assumed interface to GoTxn.

Figure 11: Layers in the Dafny implementation and proof of the file-system
operations.

Between the layers of the file system there are three difficult
pieces of functionality: organizing data blocks into metadata
and data (the indirect and block layers), translating byte-level
operations into block operations (the byte and typed layers),
and implementing directories as special files that the file
system itself reads and writes (the dir layer). The modularity
was essential to complete the proof in manageable chunks (to
avoid overwhelming the developer and prover), and it would
have been natural even without verification.

7.1 Implementing the file system using transactions
The design of DaisyNFS is broadly similar to the file system
in xv6 [12], as well as Yggdrasil [36], a verified sequential file
system. We also adopt the recursive strategy for implementing
and verifying indirect blocks from DFSCQ [25]; recursion
simplifies the implementation of triple-indirect blocks, which
are needed to reach a reasonable maximum file size of 512GB.
Unlike most file systems, DaisyNFS is designed to fit every
operation into a transaction in order to support our goal of
sequential reasoning. This is a non-standard design and we
encountered some unique challenges in doing so. In this
section we highlight difficulties in fitting two features into
transactions: renaming and freeing space from deleted files.

7.1.1 Avoiding deadlock in renames
The NFS RENAME operation is similar to the rename sys-
tem call: it moves a source file or directory to a destination
location. What makes it tricky is that it involves more than
one inode and hence introduces the possibility for deadlock.
We use the standard strategy of enforcing a global ordering
where inodes are always locked in numerical order (smaller
inode numbers first); this avoids a deadlock where a cycle of
threads is waiting on each other.

In a rename operation, the source and destination are each
specified by a combination of the parent directory inode and
name within that directory. Rename has an additional func-
tionality of overwriting the destination if the source and desti-
nation are files, or if both are directories and the destination
is empty. It is this latter check that makes deadlock avoidance
difficult: it is necessary to lock the source and destination
directories first to lookup the source and destination names,
but those might be files that are earlier in the inode lock order.
We address this in the code by returning an error from the

Dafny transaction before the lock order would be violated.
The error comes with the set of inodes that should have been
acquired. The rename is then re-run with this set of inodes as
a lock hint; these are first acquired in the correct order, then
compared against the current source and destination in case
they have been renamed concurrently.

At this point it is worth discussing the performance consid-
erations that lead to handling lock ordering in the file system,
rather than generically in GoTxn. The transaction system
could avoid deadlocks by either enforcing a global order over
addresses or by timing-out operations. Enforcing a global
order is inefficient for the file system; data blocks will never
cause deadlock because the file system only accesses a block
after locking the (unique) inode that owns it. Timing-out op-
erations would lead to slow and spurious transaction failures
that could more rapidly be avoided in the higher-level code,
hence we do not attempt to detect deadlock dynamically.

7.1.2 Freeing space
Freeing space becomes surprisingly tricky with large files.
The problem is that a large-enough file may reference too
many blocks to be freed in a single transaction. DaisyNFS
handles freeing by removing a file from its directory and
marking it free in one transaction, and in separate transactions
reclaiming the space it took by deallocating its blocks.

Removal is implemented as a combination of two trans-
actions, one which performs the logical operation but leaks
space, and an operation ZeroFreeSpace(ino) which frees
and zeroes the unused space in an inode that we prove has
no effect on the file-system state. Because this operation is
a logical no-op, it is safe to call it at any time. In practice
the implementation is careful to call it after any operation
that leaves unused blocks, in particular SETATTR, which can
shrink a file by reducing its size, and REMOVE, which deletes
a file. Furthermore since ZeroFreeSpace doesn’t affect the
user-visible data, it may return early to avoid overflowing a
transaction, which GoJournal limits to 511 blocks.

There is one case where freeing blocks is important for
correctness and not just to reclaim space. Growing a file
is supposed to logically fill the new space with zeros. If
the file had old data in that space, it would not be zero but
some previously written and deleted data, which both violates
the specification and is a potential security risk. The way
we handle this with background freeing is with a run-time
check: when the SETATTR operation grows a file checks, it
checks if the free space is already zero first, and if not fails
with a special error code. The unverified code interprets this
as a signal to immediately call ZeroFreeSpace and try the
operation again. The same support also handles holes created
by writing past the end of a file, which are similarly supposed
to be zero.

The freeing implementation is an interesting example of
using validation in verification. The specification for much
of the freeing code is loose, allowing any data to be written

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    457



proof code spec

GoJournal 29,000 1,419
Transaction system 10,000 250 932 (Thm 2)
File system 6,787 4,051 630 (Thm 3)
Trusted interfaces — — 558
daisy-nfsd unverified 1,144 —

Figure 12: Lines of proof, code, and trusted specification. GoJournal is
included only for comparison; its specification is subsumed by the transaction
system’s.

to the free space. We only needed a strong specification for
the code that checks if the zeroing is done; the rest of the
code needs to be correct for this check to ever succeed, but
we aren’t required to prove it.

7.2 Achieving good performance
An important aspect of the Dafny proof was to write code
in a way that produces high-performance Go code. Com-
pared to Dafny’s C# backend, the generated Go code for
Dafny’s built-in immutable collections has much additional
pointer indirection and defensive copying. Using these data
structures for byte sequences would simplify proofs, but has
unacceptably poor performance in Go.

To avoid this performance problem we use an axiomatized
interface to Go byte slices ([]byte in Go) whenever raw data
is required, including file data and paths, and then modify
these slices in-place. It was possible to axiomatize this API
without any changes to Dafny; we use a standard Dafny fea-
ture of extern classes to specify a Dafny class Bytes in terms
of ghost state of type seq<byte> but then implement it as in
Go as a thin wrapper around the native []byte type. This API
is trusted, so we test it: for example to catch off-by-one errors
in the specification, we wrote tests like []byte{1,2,3}[2]
and ran them in Go and (equivalent) Dafny.

The on-disk data structures—inodes, indirect blocks, and
directories—are represented in memory in their serialized
form and modified by updating this representation directly,
avoiding copies to move between representations. These were
first written with slower purely functional code, which was
then migrated to imperative code that used the functional code
as a specification.

Dafny’s default integer type int is unbounded and com-
piled to big-integer operations. We used Dafny’s nativeType
support to instead define a type of 64-bit integers (that is, nat-
ural numbers less than 264) and compile this to Go’s uint64.
This requires overflow reasoning, but automation makes this
palatable in the proof and the performance gain is significant.

8 Development effort
We implemented DaisyNFS in a combination of Go and
Dafny, with proofs in the Perennial framework (which is
a library in the Coq proof assistant, heavily based on Iris [23])
and inline in Dafny. The Go side uses GoJournal, which we

extend with a transaction system and concurrent allocator.
The implementation is publicly available.1

The lines of proof, code, and specification for the layers
of the system are summarized in Figure 12. GoJournal is
prior work but included for comparison purposes. The GoTxn
correctness proof, Theorem 2, is relatively large because
code executed in atomically blocks can include many Go
operations modeled by Perennial, and the proof has cases to
handle each operation. However the result of the proof is a
relatively concise specification as a plain Coq statement that
doesn’t refer to the Perennial logic.

The file-system operations are implemented in Dafny,
which helped us verify a relatively complete system without
too much tedium. The proof-to-code ratio (where code is the
number of lines extracted by Dafny’s /printMode:NoGhost
flag) is about 2× for the file system code. The proof sum-
marizes the implementation well, with about 1/7th as many
lines of specification as code (about half that specification is
quite verbose and concerns error codes and attributes). For
efficiency, the Dafny code has trusted interfaces to primitives
like byte slices and integer-to-byte encoding. Together these
are written in 558 lines of trusted Dafny code. Finally, to
complete the NFS server required around 1,000 lines of Go
code, about half of which bridge between the Dafny method
signatures and the actual NFS structs.

Similar to VeriBetrKV [18], we followed a discipline of
identifying and addressing timeouts in the proof. As a result,
the overall build is fast: compiling the proofs takes only 12
minutes on a slow machine in continuous integration and 4
minutes on a laptop using eight CPU cores.

9 Evaluation
In this section we evaluate DaisyNFS along the dimensions
of performance (§9.1 and §9.2), correctness (§9.3), and ease
of change (§9.4).

9.1 Performance
To evaluate the performance of DaisyNFS, we ran three bench-
marks: the LFS smallfile and largefile benchmarks, and a
development workload that consists of git clone from a lo-
cal repository followed by running make. These are the same
benchmarks used by DFSCQ [10] (a state-of-the art sequen-
tial verified file system) and for an unverified NFS server
implemented on top of GoJournal [9]. To evaluate the benefit
of concurrency, we also evaluate against a “seq txn” variant of
DaisyNFS that replaces its per-address locking with a single
global transaction lock. In non-concurrent workloads, this
variant performs slightly better, demonstrating the overhead
of fine-grained locking.

As a baseline, this evaluation uses a Linux NFS server
exporting an ext4 file system mounted with data=journal

1The Dafny implementation of DaisyNFS is at
github.com/mit-pdos/daisy-nfsd. It imports the transaction
system from github.com/mit-pdos/go-journal.

458    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/mit-pdos/daisy-nfsd
https://github.com/mit-pdos/go-journal


 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

smallfile largefile app

18
97

 fi
le

/s

23
2 

M
B

/s

0.
42

2 
ap

p/
s

R
el

at
iv

e 
th

ro
ug

hp
ut

Linux
Linux (log bypass)

DaisyNFS
DaisyNFS (seq txn)

Figure 13: Performance of Linux NFS and DaisyNFS for smallfile,
largefile, and app workloads, on an NVMe disk. DaisyNFS achieves
comparable performance to ext4 in data=journal mode.

mode. The NFS server lets us compare fairly since both go
through the Linux NFS client and use the same underlying
protocol. Using data=journal forces all data to go through
the journal and disables log-bypass writes, which ensures that
ext4 and DaisyNFS both guarantee NFS RPCs are committed
durably when they return. The evaluation also presents results
with ext4’s log-bypass optimization (in data=ordered mode),
which gets better performance for some benchmarks but can
lose recently written data if the system crashes.

All of these benchmarks were run using Linux 5.15 and
Go 1.18.1 on an Amazon EC2 i3.metal instance, which has 72
cores, 512 GB of RAM, and a local 1.9 TB NVMe SSD. To
reduce variability we limit the experiment to a single 36-core
socket, disable turbo boost, and disable processor sleep states;
the coefficient of variation for all experiments is under 5% so
we omit error bars for visual clarity.

The results are shown in Figure 13. DaisyNFS gets about
60% the throughput of Linux on the smallfile benchmark,
which is intended to be metadata-heavy. The smallfile bench-
mark repeatedly creates a file, writes 100 bytes to it and syncs
the file, then deletes it. Performance is lower than with Linux
due to less efficient use of the drive; we used blktrace to con-
firm that Linux issues fewer I/O requests per iteration and that
those writes are entirely sequential, unlike with DaisyNFS.
Performance is comparable when run on an in-memory disk
(not shown in the graph).

DaisyNFS gets comparable throughput to Linux on the
largefile benchmark, which is intended to measure bulk data
writes. The benchmark creates a 300 MB file by appending
repeatedly, then syncs it. Note that in this benchmark ext4 is
60% faster with its log-bypass optimization due to no longer
writing all data through the journal. For this workload, the
Linux NFS client buffers the entire append process until the
final sync, at which point it issues the writes in many chunks
in parallel. These RPCs are challenging to support efficiently
because they do not arrive at the server in order, so some are
past the end of the file. The semantics of such a write are
to fill the gap with zeros, but both DaisyNFS and Linux get

0

2k

4k

6k

8k

10k

12k

14k

 0  4  8  12  16  20  24  28  32  36

fi
le

s 
/ 

se
c

# clients

Linux NFS
DaisyNFS

DaisyNFS (seq txn)

Figure 14: Combined throughput of the smallfile microbenchmark run-
ning on an NVMe disk while varying the number of concurrent clients.
DaisyNFS’s performance scales with the number of cores, though not as well
as Linux; both eventually saturate the disk and scale sub-linearly.

good performance despite this because they implicitly encode
those zeros without even allocating a block.

DaisyNFS achieves good performance on the app work-
load, which consists of running git clone on the xv6 repo
followed by make. xv6 is an operating system, so building it
requires running the usual development tools—gcc, ld, ar—
but also running dd to generate a kernel image. Builds take
about 3s (of which about 1.2s are spent compiling and not in
the file system), which are reported as a throughput number
so higher is better.

9.2 Scalability
DaisyNFS executes NFS operations concurrently to achieve
better performance with multiple cores. The transaction sys-
tem is built on GoJournal, which already demonstrated scal-
ability. Here we report a similar experiment to demonstrate
that DaisyNFS can take advantage of GoJournal’s scalability,
after accounting for the transaction system’s two-phase lock-
ing and any overhead added by the transactions themselves.
The benchmark used is the smallfile benchmark from §9.1,
with a varying number of cores. Because this experiment runs
on a physical drive, other threads have a chance to prepare
transactions while the journal is committing to disk.

The results are shown in Figure 14. The graph shows that
DaisyNFS gets higher throughput with more clients, though
its scalability is not as good as the Linux NFS server and its
peak throughput is 60% that of Linux. DaisyNFS scales sub-
linearly due to a lock in GoJournal that serializes installation
of writes into disk blocks at commit time. As expected, with
a global transaction lock performance does not improve with
more clients.

9.3 Testing the trusted code and spec
For the NFS server to satisfy Theorem 1, we trust that (1)
the Dafny code is a “safe” use of the transaction system, (2)
sequential refinement is correctly encoded into Dafny, (3) the
libraries for Go primitives are correctly specified in Dafny,
and (4) the unverified Go code calling the Dafny methods

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    459



Bug Why?

XDR decoder for strings can allocate 232 bytes Unverified
File handle parser panics if wrong length Unverified
WRITE panics if not enough input bytes Unverified
Directory REMOVE panics in dynamic type cast Unverified
Panic on unexpected enum value Unverified
Concurrent writes can conflict Unverified
The names . and .. are allowed Not in RFC 1813
RENAME can create circular directories Not in RFC 1813
CREATE/MKDIR allow empty name Specification
Proof assumes caller provides bounded inode Specification
RENAME allows overwrite where spec does not Specification

Figure 15: Bugs found by testing at the NFS protocol level.

and implementing the NFS wire protocol is correct. Finally,
the user must follow the assumed execution model and run
initialization from an empty disk, run recovery after each boot,
and the disk should preserve written data and not corrupt it.

Beyond satisfying this formal theorem statement, we want
two more things from the implementation and specification:
first that the specification as formalized actually reflects the
RFC, and second we would like DaisyNFS to be compat-
ible with existing clients, including implementing enough
of the RFC’s functionality. These fall outside the scope of
verification so we cover them with testing.

To evaluate the file system we mounted it using the Linux
NFS client and ran the fsstress and fsx-linux tests, two suites
used for testing the Linux kernel. In order to look for bugs
in crash safety and recovery, we also ran CrashMonkey [30],
which found no bugs after running all supported 2-operation
tests.

While elsewhere in this paper we interact with DaisyNFS
via the Linux client, a collaborator (but not an author) tested it
more directly using an NFS-specific testing tool.2 This testing
produces a wider range of requests than are possible via the
Linux client. This process helped us find and fix several bugs
in the unverified parts of DaisyNFS and in the specification
itself. These are reported in Figure 15.

Two of the specification bugs are particularly interesting.
The bounded inode bug was due to an ino argument of type
Ino; this type is a Dafny subset type, thus adding an implicit
precondition that ino < NUM_INODES, which is violated by the
(unverified) Go code. The fix is to instead use a uint64 and
check the bound in verified code. The RENAME bug was due
to having an incomplete specification (and implementation)
that did not capture that RENAME should only overwrite
when the source and destination are compatible.

9.4 Incremental improvements
DaisyNFS was implemented and verified over the course
of three months by one of the authors, until it had support

2This framework is part of an unrelated research project so we unfortu-
nately lack space to give details on the methodology itself.

for enough of NFS to run. We added several features incre-
mentally after the initial prototype worked, both to improve
performance and to support more functionality. Some of
the interesting changes are listed in Figure 16. To improve
performance, we switched to operating on the serialized rep-
resentation of directories directly (decoding fields on demand
and encoding in-place) and then added also multi-block di-
rectories. We added support for attributes so that the file
system stores the mode, uid/gid, and modification timestamp
for files and directories. Finally, we implemented the free-
ing plan described in §7.1.2, which required additional code
through the whole stack (but by design no changes to the
file-system invariant). We believe additional features such
as symbolic links could be added incrementally with modest
effort because of sequential reasoning and proof automation.

Feature Time Lines

In-place directory updates 2 days 600
Multi-block directories 5 days 800
NFS attributes 4 days 500
Freeing space (§7.1.2) 3 days 1400

Figure 16: Incremental improvements were implemented quickly and with-
out much code (which includes both implementation and proof).

10 Conclusion
This paper presented DaisyNFS, a verified crash-safe, con-
current file system. DaisyNFS was built with verification in
mind in two parts: a transaction system called GoTxn, and a
file system on top implemented with one transaction per oper-
ation. This design allowed us to use the sharpest tool for each
part: Perennial for concurrency and crash-safety reasoning
and Dafny for sequential reasoning with much proof automa-
tion inside a transaction. The specification of the transaction
system was designed to support sequential reasoning from
Dafny. Overall this approach results in proof overhead of
about 2× for the file system part (vs. 20× for the transac-
tion system), allowing us to verify and build a functional file
system with good performance.

Acknowledgments
Many people helped improve this paper, including the anony-
mous reviewers, the PDOS students who gave feedback,
Henry Corrigan-Gibbs, and our shepherd, Manos Kapritsos.
James Wilcox provided expert debugging assistance. Robert
Morris tested DaisyNFS and reported the bugs in Figure 15.
This research was supported by NSF awards CNS-1563763
and CCF-1836712.

References
[1] Philip A. Bernstein, Vassos Hadzilacos, and Nathan

Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987. ISBN 0-
201-10715-5.

460    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[2] Stefan Bodenmüller, Gerhard Schellhorn, Martin Bitter-
lich, and Wolfgang Reif. Flashix: Modular verification
of a concurrent and crash-safe flash file system. In Logic,
Computation and Rigorous Methods, pages 239–265.
Springer International Publishing, 2021. Festschrift for
Egon Börger’s 75th Birthday.

[3] Stephen Brookes. A semantics for concurrent separation
logic. Theoretical Computer Science, 375(1–3), May
2007. Festschrift for John C. Reynolds’s 70th Birthday.

[4] B. Callaghan, B. Pawlowski, and P. Staubach. NFS
version 3 protocol specification. RFC 1813, Network
Working Group, June 1995.

[5] Tej Chajed. Verifying a concurrent, crash-safe file
system with sequential reasoning. PhD thesis, Mas-
sachusetts Institute of Technology, May 2022.

[6] Tej Chajed, M. Frans Kaashoek, Butler Lampson, and
Nickolai Zeldovich. Verifying concurrent software us-
ing movers in CSPEC. In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 307–322, Carlsbad, CA,
October 2018.

[7] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Argosy: Verifying layered storage
systems with recovery refinement. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
1037–1051, Phoenix, AZ, June 2019.

[8] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
pages 243–258, Huntsville, Ontario, Canada, October
2019.

[9] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,
M. Frans Kaashoek, and Nickolai Zeldovich. GoJournal:
a verified, concurrent, crash-safe journaling system. In
Proceedings of the 15th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), Virtual,
July 2021.

[10] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay İleri, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), pages 270–286, Shanghai,
China, October 2017.

[11] Dmitri Chkliaev, Jozef Hooman, and Peter van der Stok.
Serializability preserving extensions of concurrency con-
trol protocols. In Proceedings of the 3rd International

Andrei Ershov Memorial Conference on Perspectives of
System Informatics (PSI), pages 180–193, Novosibirsk,
Russia, July 1999.

[12] Russ Cox, M. Frans Kaashoek, and Robert T. Mor-
ris. Xv6, a simple Unix-like teaching operating system,
2016. http://pdos.csail.mit.edu/6.828/xv6.

[13] Matthew Curtis-Maury, Vinay Devadas, Vania Fang, and
Aditya Kulkarni. To waffinity and beyond: A scalable
architecture for incremental parallelization of file system
code. In Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
page 419–434, Carlsbad, CA, October 2018.

[14] Luke Dalessandro, Michael F. Spear, and Michael L.
Scott. NOrec: Streamlining STM by abolishing owner-
ship records. In Proceedings of the 15th ACM Sympo-
sium on Principles and Practice of Parallel Program-
ming (PPoPP), page 67–78, Bangalore, India, January
2010.

[15] Thomas Dinsdale-Young, Mike Dodds, Philippa Gard-
ner, Matthew J. Parkinson, and Viktor Vafeiadis. Con-
current abstract predicates. In Proceedings of the 24th
European Conference on Object-Oriented Program-
ming (ECOOP), pages 504–528, Maribor, Slovenia,
June 2010.

[16] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. CertiKOS: An extensible architecture for
building certified concurrent OS kernels. In Proceedings
of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 653–669,
Savannah, GA, November 2016.

[17] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Wu,
Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David
Costanzo, and Tahina Ramananandro. Certified con-
current abstraction layers. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 646–661,
Philadelphia, PA, June 2018.

[18] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage sys-
tems are distributed systems (so verify them that way!).
In Proceedings of the 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 99–115, Banff, Alberta, Canada, November 2020.

[19] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Sri-
nath Setty, and Brian Zill. IronFleet: Proving practi-
cal distributed systems correct. In Proceedings of the
25th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 1–17, Monterey, CA, October 2015.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    461

http://pdos.csail.mit.edu/6.828/xv6


[20] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Ser-
dar Tasiran. Automated and modular refinement rea-
soning for concurrent programs. In Proceedings of the
27th International Conference on Computer Aided Veri-
fication (CAV), pages 449–465, San Francisco, CA, July
2015.

[21] Dave Hitz, Michael Malcolm, and James Lau. File sys-
tem design for an NFS file server appliance. In Proceed-
ings of the Winter 1994 USENIX Technical Conference,
San Francisco, CA, January 1994.

[22] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: A right-
optimized write-optimized file system. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies (FAST), pages 301–315, Santa Clara, CA,
February 2015.

[23] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper
Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning. In Proceedings of the
42nd ACM Symposium on Principles of Programming
Languages (POPL), Mumbai, India, January 2015.

[24] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan,
Ales Bizjak, Lars Birkedal, and Derek Dreyer. Iris
from the ground up: a modular foundation for higher-
order concurrent separation logic. Journal of Functional
Programming, 28:e20, 2018.

[25] Alex Konradi. Performance optimization of the VDFS
verified file system. Master’s thesis, Massachusetts In-
stitute of Technology, June 2017.

[26] K. Rustan M. Leino. Dafny: An automatic program
verifier for functional correctness. In Proceedings of the
16th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR),
pages 348–370, Dakar, Senegal, April–May 2010.

[27] Mohsen Lesani, Victor Luchangco, and Mark Moir. A
framework for formally verifying software transactional
memory algorithms. In Proceedings of the 23rd Interna-
tional Conference on Concurrency Theory (CONCUR),
page 516–530, Newcastle upon Tyne, UK, September
2012.

[28] Richard J. Lipton. Reduction: A method of proving
properties of parallel programs. Communications of the
ACM, 18(12), December 1975.

[29] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-effort ver-
ification of high-performance concurrent program. In
Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 197–210, London, United Kingdom,
June 2020.

[30] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
crash-consistency bugs with bounded black-box crash
testing. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), Carlsbad, CA, October 2018.

[31] Jörg Pfähler. A Modular Verification Methodology for
Caching and Lock-Based Concurrency in File Systems.
PhD thesis, Universität Augsburg, 2018.

[32] David Harver Pollak. Reasoning about two-phase lock-
ing concurrency control. Master’s thesis, Imperial Col-
lege London, June 2017.

[33] Gerhard Schellhorn, Gidon Ernst, Jorg Pfähler, Dominik
Haneberg, and Wolfgang Reif. Development of a veri-
fied flash file system. In Proceedings of the ABZ Con-
ference, pages 9–24, Toulouse, France, June 2014.

[34] Ilya Sergey, Aleksandar Nanevski, and Anindya Baner-
jee. Mechanized verification of fine-grained concurrent
programs. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 77–87, Portland, OR, June
2015.

[35] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and
Hakim Weatherspoon. Isotope: Transactional isolation
for block storage. In Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST),
pages 23–37, Santa Clara, CA, February 2016.

[36] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file sys-
tems via crash refinement. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–16, Savannah, GA,
November 2016.

[37] The Coq Development Team. The Coq Proof Assistant,
version 8.15, January 2022. URL https://doi.org/
10.5281/zenodo.5846982.

[38] Aaron Turon, Derek Dreyer, and Lars Birkedal. Uni-
fying refinement and Hoare-style reasoning in a logic
for higher-order concurrency. In Proceedings of the

462    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982


18th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), pages 377–390, Boston,
MA, September 2013.

[39] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using concurrent relational logic
with helper for verifying the AtomFS file system. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), Huntsville, Ontario, Canada,
October 2019.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    463





Design and Verification of the Arm Confidential Compute Architecture
Xupeng Li

Columbia University
Xuheng Li

Columbia University
Christoffer Dall

Arm Ltd
Ronghui Gu

Columbia University

Jason Nieh
Columbia University

Yousuf Sait
Arm Ltd

Gareth Stockwell
Arm Ltd

Abstract
The increasing use of sensitive private data in computing is
matched by a growing concern regarding data privacy. System
software such as hypervisors and operating systems are sup-
posed to protect and isolate applications and their private data,
but their large codebases contain many vulnerabilities that can
risk data confidentiality and integrity. We introduce Realms, a
new abstraction for confidential computing to protect the data
confidentiality and integrity of virtual machines. Hardware
creates and enforces Realm world, a new physical address
space for Realms. Firmware controls the hardware to secure
Realms and handles requests from untrusted system software
to manage Realms, including creating and running them.
Untrusted system software retains control of the dynamic
allocation of memory to Realms, but cannot access Realm
memory contents, even if run at a higher privileged level. To
guarantee the security of Realms, we verified the firmware,
introducing novel verification techniques that enable us to
prove, for the first time, the security and correctness of concur-
rent software with hand-over-hand locking and dynamically
allocated shared page tables, data races in kernel code running
on relaxed memory hardware, integrated C and Arm assembly
code calling one another, and untrusted software being in full
control of allocating system resources. Realms are included
in the Arm Confidential Compute Architecture.

1 Introduction

The use of sensitive private data in many applications from ad-
vertising to healthcare, often in the context of machine learning
models, has raised concerns regarding the privacy of data in
computing. These applications increasingly run on commodity
cloud providers. For example, data and computation may
be contained in virtual machines (VMs) running on shared
hardware in the cloud, relying on a hypervisor to preserve VM
isolation to protect applications and their data in VMs.

Software stacks generally require applications to trust
system software which they rely on, such as hypervisors and
operating systems (OSes). Although hypervisors and OSes
are supposed to protect applications and their private data,
their large codebases contain vulnerabilities that can risk
data confidentiality and integrity. Vulnerable system software
running at more privileged levels that can access application
data is a significant security issue.

To address this problem, we introduce the Arm Confidential
Compute Architecture (Arm CCA). CCA provides Realms,
secure execution environments that are completely opaque
to privileged, untrusted system software such as OSes and
hypervisors. CCA retains the ability of existing system
software to manage hardware resources for Realms while
preventing it from violating Realm confidentiality and
integrity. For example, a hypervisor should retain its ability to
dynamically allocate memory to or free memory from a Realm
VM, but must never be allowed to access the protected memory
contents of a Realm VM. CCA guarantees the confidentiality
and integrity of Realm code and data in use, that is data in CPU
registers and memory, but makes no guarantees regarding
their availability. Confidentiality means that any change that
a Realm makes to its private data cannot be observed by other
Realms or untrusted system software. Integrity means that a
Realm will not observe any changes to its private data that it
did not make. Because CCA does not guarantee availability,
a Realm data access is allowed to halt Realm execution.

CCA avoids hardware complexity by only introducing core
hardware mechanisms for attestation and basic address space
protection, then relying on firmware to manage the use of those
mechanisms. Specifically, CCA introduces Realm world, a new
physical address space for Realms orthogonal to privilege lev-
els and separate from the existing Non-Secure (NS) world used
today for running software stacks. Within each world, the nor-
mal privilege levels apply and instructions retain their existing
semantics, but software in NS world cannot access CPU state
and memory used by software in Realm world. CCA introduces
a new Realm Management Monitor (RMM), firmware which
runs in Realm world at a higher privilege level than Realms.
Untrusted system software such as a hypervisor running in
NS world can then make requests to RMM to manage Realms,
including creating and running Realms. RMM protects the
confidentiality and integrity of Realms while handling such
requests. System software in NS world is expected to retain
full control of the dynamic allocation of hardware resources
to Realms, including memory allocation and CPU scheduling.

Because any compromise of RMM could violate the security
guarantees of Realms, it is crucial to formally verify its
security and functional correctness. However, verifying RMM
poses at least four significant challenges. First, RMM employs
fine-grained synchronization mechanisms such as hand-over-
hand locking to improve performance. Second, RMM has data
races and runs on Arm multiprocessor hardware with relaxed

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    465



memory behavior. Third, RMM contains both C and Arm as-
sembly code integrated together which call one another freely.
Finally, RMM must protect the confidentiality and integrity of
Realms even though untrusted system software has full control
over the dynamic allocation of Realm resources. Previous
verification approaches have not been able to verify system
software with these properties [10, 11, 13, 26, 42, 43, 50, 62]

To verify RMM, we introduce VIA (Verification Infras-
tructure for Armv9-A), which supports four key verification
techniques. First, VIA introduces mover oracle queries to com-
bine a local CPU model with mover types [44]. These queries
encapsulate how operations on other CPUs are interleaved
with local CPU operations and can be reordered using mover
types to group local CPU operations together. Along with the
local CPU model, this allows easier sequential reasoning and
modular verification. This makes it possible for the first time
to verify hand-over-hand locking with dynamically allocated
shared multi-level page tables in system software.

Second, VIA decomposes concurrent code into data
race free (DRF) and not-DRF components, then introduces
permutation conditions for the latter such that proofs on a
sequentially consistent memory model will hold on relaxed
memory hardware for all concurrent code. Instead of having
to verify all of the code directly on relaxed memory hardware,
all that is required is to prove that the code satisfies the
permutation conditions, which ensure equivalent behavior on
sequentially consistent and relaxed memory hardware. VIA
allows any permutation conditions to be defined, supporting
verification of a broad class of programs.

Third, VIA bridges incompatibilities between C and
assembly code due to CPU register state being hidden by the
former but explicitly used by the latter. To accomplish this
without dependencies on a specific compiler, VIA introduces
a register accounting mechanism to correctly verify integrated
C and Arm assembly code. It leverages the machine-level
procedure call standard for the Arm instruction set to specify
how registers are potentially used when assembly code calls
a C function or is called by a C function. VIA tracks CPU
register state across invocations of both C and assembly code
primitives, capturing any information flow through CPU
registers even if hidden by C semantics.

Finally, VIA introduces an ideal/real paradigm for verifying
security properties that can be applied to Realms, even though
untrusted system software is in full control of system resources
and can reclaim system resources such as memory without
Realm permission, breaking noninterference. VIA defines an
idealized secure machine model that supports declassification.
Realm private data is stored in physically isolated memory
and CPU registers. Data channels, governed by security
policies, are used to exchange information between Realms
and untrusted software. We can then prove the security
guarantees of Realms by verifying that the implementation
refines its specification and the real system captured by the
specification simulates the idealized secure machine model.

This approach allows us to prove, for the first time, the integrity
and confidentiality of Realms. A key feature of the proof is that
it only needs to trust the specification of the small idealized
secure machine model; the much larger specification of the
real system does not need to be trusted.

We implemented, evaluated, and verified an early prototype
of CCA firmware. Although CCA hardware is not yet available,
we demonstrated CCA on a functionally accurate Arm Fast
Model with CCA support. We modified the Linux KVM hy-
pervisor [19–21] to run on CCA and manage Realm VMs, and
ran various VM workloads on the model. We also ported CCA
firmware to current Arm hardware to obtain preliminary data
on CCA performance, which shows that KVM on CCA incurs
modest overhead versus vanilla KVM on real application
workloads. We verified the correctness of both the C and Arm
assembly CCA firmware implementation, including RMM,
proving its implementation refines its specification through
43 abstraction layers. We then proved the specification is
equivalent to the behavior of the idealized secure machine
model to verify the confidentiality and integrity guarantees of
Realms. The proof only needs to trust roughly 200 lines of Coq
specification, making the formal security guarantees easy to
read and understand. This is the first proof of the security guar-
antees of a confidential computing architecture. Realms will be
included in Armv9-A, the next version of the Arm architecture.

2 Threat Model

We consider an attacker without physical access to the
machine and assume the attacker’s goal is to compromise the
confidentiality and integrity of VM data. Confidentiality and
integrity attacks in scope include compromising the hypervisor
or any other software to read or modify private VM memory or
register state, including by controlling DMA-capable devices,
or via memory remapping and aliasing attacks. We assume a
VM does not voluntarily reveal its own private data whether on
purpose or by accident, but attacks from other compromised
VMs, including confidentiality and integrity attacks, are in
scope. Availability attacks by a compromised hypervisor are
out of scope. Protection against known software error injection
attacks and side-channel attacks require appropriate usage
of architectural mitigations and are beyond the scope of this
paper. DRAM attacks, such as cold boot attacks, live probing,
or replay, require additional hardware and are outside of the
scope of the threat model.

3 CCA Design

A key challenge with introducing Realms is how to provide
backwards compatibility with a widely-used existing archi-
tecture that, like other CPU architectures, was designed based
on the fundamental assumption that more privileged levels
have greater control and access than less privileged levels of

466    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Secure

Normal

Hypervisor

Host OS

App App

Realm

RMM

Guest OS

App App

RMI

Monitor

VM

RSI

EL3

EL2

EL1

EL0

Figure 1: Arm Confidential Compute Architecture.

software. One issue is understanding the potential interactions
of Realms with all the features in the Arm architecture. For
example, debug registers defined in the Arm architecture are
explicitly designed to allow hypervisors to peer into VM state,
which is fundamentally at odds with Realms. The behavior of
each instruction could be redefined in the context of Realms,
but this would be an enormous undertaking with unclear
compatibility implications, given that the Arm instruction set
was designed over multiple decades.

Another issue is how to provide memory protection and
isolation for Realms. The way this works for VMs is that
hypervisors manage nested page tables (NPTs) [9] to isolate
physical memory between VMs and protect hypervisor
memory from VMs. The physical addresses perceived by a
VM are intermediate physical addresses (IPAs), which are
translated by an NPT to physical addresses for the hardware.
Physical memory not mapped to the NPT is not accessible to
the VM. However, NPTs are under full control of the untrusted
hypervisor, providing no protection against hypervisor access
to VM data. While it would be possible to introduce an addi-
tional data structure to track memory ownership for each frame
of physical memory [3], this approach comes with several
problems. First, the amount of information required for each
frame of memory would be substantial and significantly impact
TLB design and performance. Second, this data structure
would have to be managed either via a separate more privileged
software entity than the hypervisor or via complex instructions
capable of capturing measurements of data assigned to a
Realm. Such complex CISC-like instructions would almost
certainly require introducing extensive microcode into an
architecture, which does not currently use any.

CCA avoids these problems by only introducing simple hard-
ware mechanisms orthogonal to existing privilege levels and
then relies on firmware to manage the use of those mechanisms.
This reduces hardware complexity at the cost of depending
on the firmware for the security guarantees of the architecture.
As a result, verifying CCA firmware is of crucial importance.

Figure 1 shows how CCA extends the Arm architecture.
Armv8-A provided two statically partitioned worlds, NS
world used by most software stacks and Secure world to host

Security State PAS
NS Secure Realm Root

NS Allow Block Block Block
Secure Allow Allow Block Block
Realm Allow Block Allow Block
Root Allow Allow Allow Allow

Table 1: CCA access control policy. The entity accessing a granule
belongs to a security state, while the PAS is a property only of the
granule being accessed.

platform security services [4]. CCA introduces Realm world,
which is fully compatible with NS world so that existing
software stacks that run in NS world can also run in Realm
world. CCA provides three privilege levels in each of the NS,
Realm and Secure worlds: EL0 for user, EL1 for kernel, and
EL2 for hypervisor. Because Realm and Secure worlds are
mutually distrusting, CCA introduces a fourth, more privileged
Root world to manage switching between the other worlds.

Each world has its own Physical Address Space (PAS). Each
4 KB frame of physical memory, which we refer to as a memory
granule, belongs to one PAS at any given time. Individual mem-
ory granules can be dynamically transitioned from NS PAS to
Realm PAS; there is no static partitioning of resources between
NS and Realm worlds. Hardware performs a PAS check on
each memory access against a Granule Protection Table (GPT)
that tracks the PAS of each memory granule and enforces the
access control policy shown in Table 1, forbidding invalid
accesses. NS world can only access its own memory. Realm
and Secure worlds can access their own respective memory
and NS memory, but cannot access each other’s memory. CCA
hardware requires all DMA accesses be subject to GPT checks,
protecting the Realm PAS against DMA-based attacks. We fo-
cus on the interactions between NS and Realm worlds and omit
further discussion of Secure world due to space constraints.

CCA relies on two trusted firmware components: RMM and
the EL3 Monitor (EL3M). RMM runs at EL2 in Realm world.
It controls the execution of Realms and provides services to
untrusted system software running in NS world. It isolates
Realms from each other using existing virtualization technolo-
gies such as NPTs and CPU register save/restore sequences.
Because RMM only enforces the security guarantees of CCA,
it can be orders of magnitude smaller than bare-metal hypervi-
sors which must also provide virtualization functionality. For
example, to run Realm VMs, RMM protects the confidentiality
and integrity of Realms while relying on existing hypervisors
for everything else, including resource allocation and schedul-
ing, physical hardware support, and complex device emulation.

EL3M runs in Root world at EL3, the highest level of priv-
ilege. It is responsible for context switching CPU execution
among the three other worlds and managing the GPT. EL3M
can access memory in any PAS. Only EL3M can change the
PAS of a granule, which involves updating its entry in the GPT.
Software running in the three other worlds can issue a Secure
Monitor Call (SMC) to EL3M to request a PAS change.

In the current version of CCA, the Realm isolation boundary

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    467



Command Description
Version Query RMI ABI version.
Granule.Delegate Change granule (from NS) to Delegated.
Granule.Undelegate Change granule (from Delegated) to NS.
Realm.Create Create Realm Descriptor (RD).
Realm.Destroy Destroy Realm identified by RD.
Realm.Activate Change Realm (from New) to Active.
REC.Create Create Realm Execution Context (REC).
REC.Destroy Destroy REC.
REC.Run Enter REC (i.e. run VCPU).
Data.CreateUnknown Change granule to Data with unknown content.
Data.Create Change granule to Data, copy NS content.
Data.Destroy Change Data granule to Delegated, zeroed.
RTT.Create Create Realm Translation Table (RTT).
RTT.Destroy Destroy RTT.
RTT.MapProtected Map Data granule in RTT.
RTT.UnmapProtected Remove mapping from RTT.
RTT.MapUnprotected Map NS granule in RTT.
RTT.UnmapUnprotected Remove NS mapping from RTT.
RTT.ReadEntry Return content of an RTT entry.

Table 2: RMM Realm Management Interface (RMI).

is at the level of entire VMs; applying Realms to secure other
entities such as containers [59] is future work. Similar to nor-
mal VMs, a Realm VM can concurrently run multiple virtual
CPUs (VCPUs) and the number of Realm VMs on a system is
only limited by the amount of physical memory available, not
by any arbitrary limits. The untrusted hypervisor always has
the ability to stop scheduling a Realm and can always reclaim
memory assigned to a Realm, but in no circumstances does
it have access to Realm CPU or memory state.

This split of responsibility between an untrusted hypervisor
and RMM, where the untrusted hypervisor allocates memory,
and RMM provides integrity and confidentiality guarantees
for the data and code stored in that memory, is accomplished
through a simple but powerful delegation concept. The hy-
pervisor delegates memory to Realm world, and undelegates
memory back to NS world. All memory used by Realms
must first be delegated by the hypervisor; RMM does not
itself manage a pool of memory for Realms. Once memory
is delegated to Realm world, the hypervisor can request RMM
to use it for various purposes, such as storing metadata or
data for a Realm. Whenever a memory granule is delegated
to Realm world but not used by RMM, RMM ensures that the
granule contains only zeros, reducing the risk of accidental
information flow when a granule is reused or undelegated.

RMM provides a Realm Management Interface (RMI) for
the hypervisor to request RMM to delegate memory, create
Realms, execute Realms, and allocate memory to Realms.
Each RMI command is implemented as an SMC, so when the
hypervisor invokes the command, it traps to EL3M, which in
turn switches execution to RMM in Realm world to handle
the command. Upon completion of the RMI command, RMM
issues an SMC to EL3M, which switches execution back to
the hypervisor in NS world. Table 2 lists the RMI commands.

RMM must know the state of each memory granule on the
system to uphold the security guarantees of Realms, which it
accomplishes by maintaining its own Granule Status Table

(GST) to track the delegation status and current use of each
granule. RMM uses the GST to ensure that a granule is in a
valid state to perform the requested action. For example, when
the hypervisor delegates a memory granule, RMM checks its
GST to confirm the granule has not already been delegated,
then issues an SMC to EL3M to request a change to Realm
PAS. EL3M checks that the granule is currently in NS PAS,
then updates the GPT to move it to Realm PAS. Finally, RMM
updates its GST to record that the granule has been delegated.
If the hypervisor attempts to delegate a granule which is al-
ready delegated, or undelegate a granule which is in active
use by RMM, RMM returns an error code to the untrusted
hypervisor. This pattern of checking valid states and either
performing a discrete action or returning an error is used for all
RMI commands, allowing RMM to remain in overall control of
the consistency of the system, while complex logic for policy
and resource allocation remains in the hypervisor. Unlike the
GPT, the GST is not checked by hardware and is only a soft-
ware bookkeeping mechanism. By maintaining a separate GST
from the GPT, the GPT can be kept simple so that it only needs
to contain information required for hardware-enforced checks.

The hypervisor creates Realms, Realm Execution Contexts
(RECs), and Realm Translation Tables (RTTs) using the
respective commands in Table 2. RECs correspond to VCPUs
and RTTs correspond to NPTs for normal VMs. RTTs are Arm
stage 2 page tables that translate from an IPA to a physical
address. RTTs use the same format and topological layout
in Realm world as NS stage 2 page tables, but also provide
a bit which allows Realms to access NS granules under the
control of RMM, for example, for virtual I/O between a Realm
and the hypervisor. On each of the Realm, REC, and RTT
create commands, RMM checks the GST entry for the address
provided to confirm the granule is already delegated, and
updates the GST entry to track that it is being used for Realm,
REC, and RTT metadata, respectively. We refer to a Realm’s
metadata as its Realm Descriptor (RD).

A Realm provides a Protected Address Range (PAR) within
its IPA space, which RMM ensures can only be mapped to
Realm PAS granules. For accesses within the PAR, RMM guar-
antees confidentiality and integrity to the Realm; outside the
PAR, the hypervisor is free to map NS PAS granules or emulate
accesses. This provides an OS running inside a Realm VM
with a reliable mechanism to determine whether it is accessing
its own private memory, or memory which can be shared with
untrusted agents, for example, buffers used for untrusted DMA
with virtual or physical network and block devices.

During Realm creation, the hypervisor can assign a granule
to the Realm at a specific IPA and copy data to it from an NS
granule. The IPA and data are cryptographically hashed and
the hash is included in the attestation token of the Realm. The
attestation token allows a Realm owner to reason about its
initial state and content. Once a Realm has been activated,
the measurement is fixed, and memory can only be added
to otherwise unused IPAs with unknown content. We refer

468    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



to delegated granules used to store data for a Realm as Data
granules. The hypervisor can request that RMM maps NS
granules outside the PAR at any time. Physically contiguous
delegated memory can be mapped to a Realm in blocks larger
than 4 KB granules to optimize TLB usage.

The hypervisor can reclaim memory from a Realm at any
time. RMM zeros a granule before undelegating it and return-
ing it to the hypervisor. Subsequent accesses from a Realm
to the IPA where the memory was reclaimed result in a stage 2
abort to RMM which prevents further execution of the Realm
and preserves the CCA integrity guarantee. The hypervisor
cannot subsequently map a granule to a previously-backed
IPA within a PAR without Realm permission.

As a system designed to scale to many cores, RMM makes
extensive use of fine-grained locking to support a high degree
of concurrent operation. For example, each memory granule
has its own lock so many granule operations can be done
in parallel. Similarly, an RTT is a multi-level page table, for
which each level has its own lock, and hand-over-hand locking
is used to support concurrent operations on RTTs, as discussed
in Section 4.1. For example, two Realm VCPUs can each
cause a stage 2 page fault at the same time but at different
IPAs, which can be resolved by the hypervisor in parallel on
two CPUs to improve performance. This is a key requirement
to support large Realms. Although most of RMM is written
in C, Arm assembly code is also used to implement memory
accesses with acquire/release semantics where lockless
concurrent accesses are used for performance reasons, and
to implement the locking primitives themselves.

CCA firmware is designed for security following best prac-
tices. Systems such as Linux map all physical memory to the
kernel page table. RMM and EL3M do not. RMM’s own page
table statically maps code and metadata exclusively accessed
by RMM, such as the GST and locks for each granule. Addi-
tional entries in RMM’s page table are used to statically assign
a virtual address range to each physical CPU in the system, re-
sulting in a fixed number of virtual address slots per CPU. Mem-
ory is then mapped on demand when needed. RMM maps Data
granules and metadata granules, such as RD and REC, on de-
mand, and unmaps them once the respective operation is com-
pleted. EL3M’s own page table only statically maps the EL3M
code, a small fixed size stack, and the GPT; no other memory
is mapped to its page table. Furthermore, SMC parameters are
only interpreted as values in EL3M, never as pointers used to
access memory. Even if a bug is introduced in some future
version of CCA firmware that is not completely verified, these
defense-in-depth measures make it much harder for a return-
oriented or jump-oriented programming attack to succeed.

4 VIA Framework

Because CCA relies on firmware to guarantee the security
of Realms, we verify that firmware, namely RMM and
EL3M. We prove the CCA firmware implementation refines

its layered specification in Coq, then use the top-level
specification to prove the system’s security properties hold
for the implementation. To accomplish this, we developed
the VIA verification framework, which supports layered
verification of CCA firmware. VIA introduces four key
verification techniques: mover oracle queries, relaxed memory
support via permutation conditions, register accounting for C
and assembly code integration, and a new ideal secure system
model for proving security properties that cannot be verified
using traditional noninterference-based approaches.

4.1 Mover Oracle Queries

To verify RMM, it is essential to simplify reasoning about pos-
sible interleavings of executions of concurrent software across
multiple CPUs. For example, RMM uses hand-over-hand lock-
ing to synchronize access to RTTs, which are 4-level page
tables, allowing multiple CPUs to manipulate the same page
table concurrently. Figure 2 shows the steps to allocate dele-
gated granules as new level T1, T2, and T3 tables of a Realm’s
RTT using RTT.Create and then, in step 4, allocate a delegated
granule to the Realm for its data and map its physical address to
the leaf-level T3 table using RTT.MapProtected, which would
typically occur on a page fault. Figure 2 also shows how step 4
uses hand-over-hand locking, in which RMM first acquiresT0’s
lock so it can lookup and acquire T1’s lock and release T0’s lock.
It can then lookup and acquire T2’s lock and release T1’s lock,
so it can lookup and acquire T3’s lock and release T2’s lock,
and finally update T3’s page entry. At the same time, RMM
running on other CPUs can do other page table operations,
such as acquiring T0’s lock to work on a different level 1 table.

To verify the page table operations with hand-over-hand
locking, we need to reason about the correctness of all
possible interleavings of operations. However, reasoning
about all possible interleavings of all operations all at once
is too difficult to do for a system as complex as RMM. To
address this problem, VIA introduces mover oracle queries,
a new mechanism that combines the power of local CPU
reasoning with mover types [44], building on previous work
on CertiKOS [24–27] and CSPEC [10].

To explain how mover oracle queries work, consider first
an explicit multiprocessor machine model, whose machine
state consists of per-physical CPU private state (e.g., CPU
registers) and a global logical log, a serial list of events
generated by all CPUs throughout their execution. Instead
of explicitly modeling shared objects, events incrementally
convey interactions with shared objects, whose state may be
calculated by replaying the logical log. An event is emitted
by a CPU and appended to the log whenever that CPU invokes
a primitive that interacts with a shared object. Our abstract
machine is formalized as a transition system, where each
step models some atomic computation taking place on a
single CPU; concurrency is realized by the nondeterministic
interleaving of steps across all CPUs. However, reasoning

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    469



T0 T1 T2 T3 Physical
Memory

Create Create Create Map1 2 3 4

Map:
4 Acq

T0
LD
T0

Acq
T1

Rel
T0

LD
T1

Acq
T2

Rel
T1

LD
T2

Acq
T3

Rel
T2

ST
T3

Rel
T3

Step

Figure 2: Page table creation and hand-over-hand locking execution.

about interleavings directly with multiple CPUs is difficult.
To simplify reasoning about all possible interleavings, we

instead lift multiprocessor execution to a local CPU model,
which distinguishes execution taking place on a particular
CPU from its concurrent environment [27, 36, 42]. All effects
coming from the environment are encapsulated by and
conveyed through an event oracle, which yields events emitted
by other CPUs when queried. Querying the event oracle can be
thought of in the context of the explicit multiprocessor machine
model as returning events from the global log generated
by all other CPUs; only new events since the last query are
returned. How the event oracle synchronizes these events is
left abstract, its behavior constrained only by rely-guarantee
conditions [35]. Since the interleaving of events is left abstract,
our proofs do not rely on any particular interleaving of events
and therefore hold for all possible concurrent interleavings.

A CPU captures the effects of its concurrent environment
by querying the event oracle between local CPU steps. A CPU
only needs to query the event oracle when interacting with
shared objects, since its private state is not affected by these
events. In other words, the CPU repeatedly performs two steps
when interacting with shared objects: querying the event oracle
to obtain events from other CPUs, then generating a local CPU
event. The result is a composite log of events from other CPUs
interleaved with events from the local CPU. This is equivalent
to the logical log in the explicit multiprocessor model, but with-
out the complexity of directly reasoning about multiple CPUs.

If possible, we would like to move the interleaved event
oracle queries out of the way of the local CPU events so we can
use sequential reasoning regarding the local execution of any
given CPU. By using mover types, we can identify how we can
reorder event oracle queries with respect to local CPU events
without changing the machine’s behavior. Thus, these queries
are mover oracle queries. We classify all local CPU events in
the composite log as RightMover, LeftMover, or NoneMover.
Mover oracle queries can be reordered before a RightMover
and after a LeftMover. For example, acquiring a lock is a Right-
Mover because if other CPUs do something after acquiring the
lock on the local CPU, they must be able to do the same thing
before acquiring the lock. The oracle queries which capture the
other CPUs’ events can be reordered before acquiring the lock.
Mover oracle queries cannot be reordered with a NoneMover.
For example, an oracle query followed by a NoneMover then
a LeftMover cannot be reordered after the LeftMover.

VIA can then reduce the interleaving of events in the log that
need to be considered in two ways, which we refer to as log
refinement. First, we can reorder oracle queries with local CPU

Right0
Reorder

Oracle0 Right1Oracle1 None2Oracle2 Left3Oracle3

Right0Oracle0 Right1Oracle1 None2Oracle2 Left3 Oracle3

Right0 Right1 None2Oracle’0 Left3 Oracle’1
Merge Oracle

Event RefineEVENT0Oracle’’0 Oracle’’1

Figure 3: Log refinement with mover oracle queries.

events based on the local events’ mover types. By reordering,
consecutive oracle queries will be merged to one. Second, we
can prove local sequences of events generated by the machine
refine an aggregate local event generated by a higher-level
machine. This refinement can be applied to any arbitrary CPU,
therefore, it applies to all CPUs, so that the entire log of events
refines the log of the higher-level aggregate events.

Figure 3 shows an example of log refinement to reduce in-
terleavings of events across CPUs into an atomic event. We
identify the mover type of each local event, i.e. [Right 0,Right
1, None 2, Left 3], and initially query the oracle before each
event. Based on the mover types, we can reorder all oracle
queries before the NoneMover to the beginning, and all re-
maining queries to the end, such that the log before and after
reordering have the same machine behavior. We then define a
new oracle that can be queried to return the consecutive events
from the previous oracle queries [Oracle 0,Oracle 1,Oracle
2], allowing those events to be merged into a single oracle
query [Oracle’ 0]. We then refine the local sequence of events
[Right 0, Right 1, None 2, Left 3] into a single higher-level
aggregate local event EVENT 0. This can be done for all CPUs
so we can reason further only using the higher-level aggregate
event EVENT 0 with oracle queries Oracle” 0 and Oracle” 1

that also return higher-level aggregate events, instead of the
many Left/Right/None events of lower-level machine.

4.2 Permutation Conditions
To verify RMM, we must account for the relaxed memory
behavior of the Arm architecture on code that is not data race
free (DRF). For example, Figure 4 shows how a Realm’s
list of RECs is updated in REC.Create, REC.Destroy, and
Realm.Destroy without holding a common lock. Each
Realm’s RD has a RECLIST (rd->rec_list), an array that
stores the pointers to all its RECs. The RECLIST can be
referenced from both the Realm’s RD and each of the Realm’s
RECs (rec->rec_list). Each REC records its index in the
RECLIST (rec->id). RD’s counter keeps tracking of how
many RECs are in a Realm. The hypervisor must destroy all
RECs of a Realm before destroying its RD because once RD is
destroyed, the Realm can no longer be referenced. Access
to the RECLIST is not synchronized by its own lock, to avoid
potential deadlock issues due to needing to hold multiple locks.
Instead, in REC.Create, the RD’s lock must be held to insert
a new REC in RECLIST to ensure mutual exclusion. However,
in REC.Destroy, the REC’s lock is held instead of the RD’s

470    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Rec.Create(rd, id) {

acq(rd->lock)

…

(a)  if (rd->rec_list[id] == NULL) {

(b) rd->rec_list[id] = NEW_REC;
(c)   atomic_inc(rd->counter);

…

rel(rd->lock);

}

Realm.Destroy(rd) {

acq(rd->lock);

…

(f)  if (rd->counter == 0) {

// rec_list should be EMPTY

(g)     destroy(rd->rec_list);
…

rel(rd->lock);

}

Rec.Destroy(rec) {

acq(rec->lock);

…

(d)   rec->rec_list[rec->id] = NULL;

(e)   atomic_dec(rec->rd->counter);
rel(rec->lock);

}

Figure 4: Pseudo code of RECLIST data races, marked in bold blue.

locks when clearing the REC’s entry from the RECLIST so that
multiple CPUs can destroy different RECs of the same Realm
concurrently. Furthermore, the RD’s counter is increased or
checked in REC.Create and Realm.Destroy while holding
RD’s lock, but it is decreased in REC.Destroy without holding
any lock. As a result, data races can occur when concurrently
executing REC.Destroy with REC.Create or Realm.Destroy.

To address this problem, VIA builds on VRM [57]. VRM
verifies programs on Arm relaxed memory hardware that
are DRF except for synchronization methods and virtual
memory hardware. VRM verifies a program on a sequentially
consistent (SC) multiprocessor hardware model, defines and
proves that a fixed set of conditions hold for the program
running on relaxed memory hardware, and proves that the
conditions guarantee that the program has the same behavior
on SC and relaxed memory hardware so that its SC proofs also
hold for relaxed memory hardware.

VIA generalizes this approach for programs that are not
DRF. It ensures that such a program will have the same
behavior on SC and relaxed memory hardware by first decom-
posing the program into components that are DRF and not
DRF. Previous work already shows that the DRF components
will have the same behavior on SC and relaxed memory
hardware [57]. VIA then introduces permutation conditions
P on the non-DRF components such that P can be verified
to hold for the program on relaxed memory hardware, and
P can be proven to guarantee that the non-DRF components
will have the same behavior on SC and relaxed memory
hardware. Our experience suggests that even for programs
that are not DRF, only a small percentage of the code in these
programs is not DRF, so non-DRF programs can be verified
on relaxed memory hardware by only proving a small number
of permutation conditions in practice. This observation holds
for RMM, in which almost all of the code is DRF.

VIA uses VRM’s extended Promising Arm model [57] to
model Arm’s relaxed memory hardware, such that P needs to
be verified against all instruction permutations of the program
allowed by VRM’s Promising Arm model. Unlike VRM which
defines a fixed set of conditions that do not all hold for RMM,
VIA allows any condition P to be specified for non-DRF com-
ponents that will result in their behavior being in the same on
SC and relaxed memory hardware and that can be proven to
hold for the program on relaxed memory hardware. The condi-
tion is essentially a constraint based on the program’s seman-
tics that restricts the possible instruction reorderings that can
occur on relaxed memory hardware so that resulting program
behavior is the same on SC and relaxed memory hardware.

For example, to handle the non-DRF code in Figure 4, we
identify P to be when Realm.Destroy finds rd->counter

equals 0, rd->rec_list must be empty. This is necessary
because rd->rec_list must be empty when destroying it
in (g), otherwise the system may crash due to reclaiming
non-empty memory. Since REC.Create and Realm.Destroy

use the same lock, data races can only occur when either
runs concurrently with REC.Destroy. We prove each function
always behaves the same on SC and relaxed memory. For
REC.Create, since (b) and (c) cannot be reordered with (a)

due to the branch dependency, as required by Promising Arm,
its possible executions are (a)(b)(c) or (a)(c)(b). Since
(a) confirms that rec_list[id] is empty, all concurrent
REC.Destroy on other CPUs must destroy slots other than
id because REC.Destroy will only work if the rec exists,
which must be a non-empty slot in the rec_list. Therefore,
swapping (b) and (c) will never change any CPU’s behavior
and (a)(c)(b) is equivalent to (a)(b)(c), which is the order
on SC. For REC.Destroy, if (e) executes before (d), P will
be broken because when Realm.Destroy checks counter

concurrently on other CPUs, it may find counter is 0 but
rec_list is not empty, as shown below:

counter-- list[id]=NULLcounter==0 destroy(list)(e) (f) (g) (d)
(list is not empty)

This was actually a real bug in the prototype implementation
of RMM. Therefore, we must enforce that (d) always executes
before (e) by adding a barrier between them so it must follow
program order as on SC. For Realm.Destroy, the proof is
trivial because the branch dependency between (f) and
(g) guarantees that they execute in program order as on SC.
Therefore, this non-DRF code will not generate more behavior
on relaxed memory hardware than on SC.

4.3 Register Accounting
To verify CCA firmware with both C and assembly code, we
must account for the interactions of C and assembly code
primitives that call one another across language boundaries.
However, C code hides the details of how it uses CPU registers,
as the use of registers during C code execution is decided by the
implementation of specific C compiler used. Although register
behavior is not expressed by C language semantics, ignoring it
causes problems when attempting to verify programs in which
C and assembly code call one another, as shown in Figure 5,
which illustrates a real bug in the original prototype RMM
implementation detected during our verification. Existing
verification approaches cannot support bidirectional calls
between C and assembly code, such that the example in
Figure 5 would be erroneously verified without detecting the
information leakage [10, 11, 23, 26, 37, 42, 43, 46].

To address this problem, VIA introduces a novel register
accounting mechanism to correctly verify integrated C and
Arm assembly code while making minimal assumptions

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    471



ENTRY(store_outer):
mov x5, #0
bl store_c
ret

ENDPROC(store_outer) 

void store_c() {
int s = secret;
// s stored in x5
store_inner();

}

ENTRY(store_inner):
str x5, [x1]
ret

ENDPROC(store_inner)

Spec: mem[%x1] = %x5; Spec: mem[%x1] = %x5; WRONG Spec: mem[%x1] = 0;

Figure 5: An example of incorrectly combining C and assembly
specifications. Assembly function store_outer clears register
x5 to 0, then calls C function store_c. store_c calls assembly
function store_inner, which stores register x5 into memory.
The intended behavior is that the value 0 will be stored to memory.
The actual behavior is that x5 stores C temporary variable s which
contains secret data, resulting in undetected information leakage.

regarding compiler behavior. VIA leverages the Arm64 Pro-
cedure Call Standard (AAPCS64) [7] to specify how registers
are potentially used when assembly code calls a C function
or is called by a C function. It then conservatively marks all
registers used by C code whose values cannot be determined
based on AAPCS64 as of Unknown value, and requires
assembly code to not depend on registers with Unknown values.

AAPCS64 constrains how some Arm registers are used. In
CCA firmware, C functions pass no more than eight integer
or pointer parameters and return an integer or pointer. For such
functions, AAPCS64 specifies that a C compiler will only pass
parameters through registers r0-r7 and save the return value
in r0. It also specifies registers that must have their values
preserved through a function call, namely all callee-saved
registers r19-r29 and the stack register sp. The use of other
general-purpose registers (GPRs) may depend on the specific
C compiler implementation.

For an assembly function that calls a C function, VIA checks
that the assembly code does not read any Unknown registers.
Legal assembly code can either keep such Unknown registers
untouched or overwrite them before using them. VIA uses
AAPCS64 to model the register behavior of the C function
by identifying register r0 as containing the return value, and
registers r19-r29 and sp as preserving the values. It marks the
values of other registers after the C function call as Unknown,
including caller-saved registers r1-r18 and the link register lr.

For an assembly function that can be called from a C
function, VIA checks that its behavior does not depend on
Unknown registers, and that it obeys AAPCS64 C calling
conventions so that it will not cause unexpected behavior in its
caller. VIA checks that (1) callee-saved registers r19-r29 and
sp preserve the values; (2) the program counter pc after the call
is equal to lr before the call so the assembly primitive returns
like a function call; (3) if the caller expects a return value, r0’s
value is never Unknown; and (4) the assembly code behavior
remains the same if we initialize all GPRs to Unknown except
for those carrying parameters. The last condition implies that
the assembly code does not read any Unknown registers, except
for saving and restoring callee-saved registers.

VIA also supports GNU Compiler Collection (GCC) inline
assembly extensions within a C function. This is used in
inline assembly memory accessors in RMM which guarantee

u64 sca_read64(u64 *ptr) {
u64 val;
asm volatile(

“ldr %[val], %[ptr]\n” 
: [val] "=r" (val)
: [ptr] "m" (*ptr)

);
return val; }

u64 sca_read64(u64 *ptr) {
u64 val;
init_pr();
set_pr(I0, ptr);
asm volatile(

“ldr %O0, [%I0]\n” 
)

val = get_pr(O0);
return val; }:

Bind:
ptr -> I0
val -> O0

ENTRY(sca_read64_inline):
ldr O0, [I0] 
ret

ENDPROC(sca_read64_inline)

To asm prim

u64 sca_read64(u64 *ptr) {
u64 val;
init_pr();
set_pr(I0, ptr);
sca_read64_inline();
val = get_pr(O0);
return val; }

Figure 6: Translation of parameterized inline assembly.

atomicity or memory order semantics, as shown in the sca_-
read64 example in Figure 6. sca_read64 implements a 64-bit
single-copy-atomic read in one line of assembly code plus an
interface, which can specify a list of input registers, output reg-
isters and clobbered registers. VIA translates inline assembly
code into an assembly function according to the interface con-
straints; "r", "Q", and "m" constraints are currently supported.
It then checks its correctness like any other assembly function.

Translation is done using a set of logical registers I0-In
for inputs and O0-On for outputs so that verification does not
depend on the specifics of GCC register assignment. Input
registers are defined read only. VIA also defines abstract
accessors init_pr, which initializes all logical registers to
UNKNOWN, set_pr, which writes to a register, and get_pr,
which reads from a register. As shown in Figure 6, the trans-
lated sca_read64 function first calls init_pr for initialization,
saves parameters to input registers by calling set_pr, uses the
input and output registers in the assembly code, and gets the
return value from the output register by calling set_pr.

For simplicity, VIA imposes additional requirements
to guarantee GCC generates correct machine code whose
behavior is the same as VIA’s translated code. VIA forbids
inline assembly code from explicitly using any GPRs or goto
labels. For inline assembly with multiple instructions, VIA
enforces that all output registers are constrained by "&" or
"+". Thus, an output-only register never doubles as an input
register, and the same register is used for input and output
of an operand. This avoids any unexpected overlap in the
assignment of input and output registers [53].

Finally, because assembly code functions may be at the
interface to outside programs that are untrusted, VIA enforces
that all register values are not Unknown when returning from
those assembly functions. This ensures that there is no unin-
tentional information leakage from assembly code functions
to untrusted programs through registers with Unknown values.

4.4 Ideal Secure System Model
CCA protects the confidentiality and integrity of Realms’
private data during their lifetime. Confidentiality means any

472    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Real System

Realm HypervisorRMM

Ideal System

Realm HypervisorRMM

Exclusive 
Regs & Mem

data copy

RegsOther memoryNS granules RegsOther memoryNS granules

Figure 7: The real and ideal secure system model.

change a Realm makes to its private data is only observable
by that Realm. Integrity means a Realm will not observe any
changes to its private data that it did not make, but does not
imply availability; data access should either fail or return
the data previously stored. The confidentiality definition is
standard, but the integrity definition allows untrusted software
to modify a Realm’s private data as long as the Realm does
not observe the change. For example, to reclaim memory
from Realms, a hypervisor can unmap a Realm’s private data
without the Realm’s permission. This is allowed because the
Realm’s access to the unmapped data will trigger a page fault
so the Realm cannot observe future changes to the data content.
However, this breaks noninterference, which therefore cannot
be used to to prove security as is done for other verified
systems [16, 23, 29, 34, 42, 49, 55].

To address this problem, VIA introduces an ideal/real
paradigm, shown in Figure 7, inspired by the idea from formal
verification of separation kernels [22, 30]. The real system
is defined by the RMM top-layer specification, which builds
on and incorporates EL3M, in which all memory and CPU
registers are shared by Realms, RMM, and the hypervisor. The
ideal system is defined by an ideal system model specification,
in which each Realm has its own exclusive memory, and
each REC of the Realm has its own exclusive CPU registers,
while other software can only access the same non-exclusive
memory and registers as in the real system.

If each Realm only accesses its exclusive memory and
registers in the ideal system, we could then show that RMM
guarantees confidentiality and integrity by proving that the
real system simulates the ideal system. This would mean that
each Realm only accesses its exclusive memory and registers
in the real system as well, so nothing other than a Realm can
access its own data. However, such a simplistic model does not
work in practice. For CCA, we need a model that allows declas-
sification so Realms can access NS granules for initialization
and I/O, and CPU registers can be used to pass parameters
between Realms and RMM, or Realms and the hypervisor.

VIA introduces a new ideal system model for Armv9-A that
supports declassification of memory and registers based on
a set of well-designed rules that define when declassification
is allowed. The model has six declassification rules, listed in
Table 3. In this model, Realm exclusive memory consists of all
memory in its PAR and exclusive CPU registers consists of all
registers accessible by a Realm or that can affect its execution,
such as system registers. A Realm will only access its exclusive
memory and registers, unless it accesses a granule outside

Type Rule
Mem When a Realm accesses an IPA within its PAR but it is Unknown, the

Realm will copy the data from a special initialization buffer in memory
to exclusive memory before accessing the IPA. This can only be done
once per granule. The buffer is populated before the Realm is activated,
and cannot be changed once it has been activated.

Mem When a Realm accesses an IPA outside of its PAR, it will directly access
memory, not exclusive memory.

Reg On any trap from a Realm to the RMM, a Realm exposes the contents
of various exclusive system registers, marking them Unknown, and
marks various timer-related exclusive registers Unknown.

Reg If a trap is due to system register emulation, a Realm will mark a
specified exclusive GPR as Unknown.

Reg If a trap is due to a hypercall, a Realm will expose and mark the seven
exclusive GPRs r0-r6 used for parameter passing as Unknown.

Reg If a trap is due to an RMM call, a Realm will expose and mark the four
exclusive GPRs r0-r3 used for parameter passing as Unknown.

Table 3: Declassification rules.

its PAR or it accesses a granule or register that is Unknown.
If it accesses memory outside its PAR, the Realm will access
non-exclusive memory directly. If it accesses a granule or
register that is Unknown, the data will be copied from a special
initialization buffer or non-exclusive register, respectively, be-
fore accessing it. A granule is Unknown if it is not yet initialized.
A register is Unknown if it is used by the Realm to communicate
with RMM or the hypervisor. For example, when a Realm
invokes a hypercall, it exposes the arguments in registers
r0-r6, which RMM will provide to the hypervisor, then return
the results back in those registers. Marking a granule or register
as Unknown is used to represent declassification in the model.

We can then use this ideal system model with declassifica-
tion to verify that RMM guarantees Realm confidentiality and
integrity. The key is to establish a simulation relation in which
all machine states are equivalent between the ideal and real
systems and show that, at any step in the two systems satisfying
the simulation relation, the same data is obtained when access-
ing memory or registers. This involves proving a one-to-one
mapping of data between the two systems. With declassifica-
tion, the mapping will change such that a different mapping
will be used depending on whether the data is declassified or
not. For example, if a granule within a Realm’s PAR is not de-
classified, we will want to show that accessing that granule in
non-exclusive memory in the real system correponds to access-
ing it in exclusive memory in the ideal system to get the same
data. On the other hand, if a granule within a Realm’s PAR is
declassified, because its contents were initialized from an NS
granule, we will want to show that first accessing that granule
in non-exclusive memory in the real system correponds to ac-
cessing it in non-exclusive memory in the ideal system since
the respective exclusive memory is initially Unknown so the
data is first copied from non-exclusive to exclusive memory.

5 CCA Implementation and Verification

We used VIA to verify an early prototype implementation
of CCA firmware, which includes both RMM and EL3M as

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    473



Description LOC Description LOC
Machine model 1.4K RMM refinement proofs 6.1K
Lock proof 1.7K Top-level specification 1.1K
EL3M layer specifications .2K Ideal secure system model .2K
EL3M refinement proofs .9K Security simulation proofs 3.4K
RMM layer specifications 4.4K Permutation condition proofs 1.2K
Total 20.6K

Table 4: Lines of Coq code for verifying CCA firmware.

described in Section 3. The verification outcomes, including
the discovery of several latent bugs, were confirmed by Arm’s
development team and used to further improve the firmware
implementation. RMM contains 3.2K lines of code (LOC)
in C and .3K LOC in assembly. The runtime critical parts of
EL3M contain .1K LOC in C and .7K LOC in assembly; all
of the C code is for updating the GPT. All RMM and EL3M
code is verified, except for the portion of assembly code for
initialization (.1K LOC in RMM and .5K LOC in EL3M). For
remote attestation, RMM also uses functions provided by a
crypto library, which was not verified, though a verified crypto
library could be ported and used instead [42, 61].

Table 4 shows our proof effort, measured in LOC in Coq.
45 abstraction layers were used. The bottom layer machine
model is based on VRM’s Promising Arm model [57] to model
Arm’s relaxed memory. Another layer was used to verified the
spinlock implementation on the relaxed memory model and
lift it to an SC model. We verify the EL3M implementation
refines its layered specification through three layers. On top
of that, we verify the RMM implementation refines its layered
specification through 39 layers. The top-level specification
reflects RMM’s interface, combining both RMM and EL3M
functionality. Another layer defines the ideal secure system
model. We verify that the top-level specification simulates the
ideal secure system model.

5.1 Concurrent Multi-level Page Tables

The most challenging refinement proofs were for verifying
RMM’s RTT implementation. RTT primitives use hand-
over-hand locking to synchronize access to dynamically
allocated 4-level page tables, allowing fine-grain concurrent
operation on different page table levels. This required nine
layers. We leverage mover oracle queries and log refinement,
discussed in Section 4.1, to refine all of RMM’s page table
operations to atomic operations, verifying the correctness of
hand-over-hand locking in a real system for the first time.

Figure 8 visualizes the proof. Since acquiring a lock is
a RightMover, releasing a lock is a LeftMover, and reading
the page table entry is both a LeftMover and RightMover,
we can reorder mover oracle queries to refine the procedure
of walking the page table until acquiring the lock of T1 into
an atomic step. We group the local CPU events into a single
higher-level aggregate “walk until level 1” event. Similarly,
we can group events together from creating a level 1 table into
a “create level 1 table’ event, and destroying a level 1 table

Walk until level 1:

AcqT0 LDT0 AcqT1 RelT0Oracle0 Oracle1 Oracle2

Reorder

Oracle’0 Walk until level 1 T0 T1 Refine Events

Reorder

Refine Events

AcqT0 LDT0 AcqT1Oracle0 Oracle1 Oracle2 RelT0

Walk until level 1 T0 T1 Oracle’0 LDT1 Oracle’1 AcqT2 Oracle’2 RelT1

Walk until level 1 T0 T1Oracle’0 LDT1 AcqT2 RelT1Oracle’1 Oracle’2

Oracle’’0 Walk until level 2 T0 T1 T2Walk until level 2:

Figure 8: Proving atomicity for page table operations.

into a “destroy level 1 table” event.
We then refine the procedure of walking the page table until

acquiring the lock of T2 into an atomic step. We first prove that
“walk until level 1” is a RightMover because any subsequent
events at this layer from other CPUs can be reordered with it,
i.e., “create level 1 table”, “destroy level 1 table”, “walk until
level 1”, and acq/rel/LD/ST events for T2 and T3 level tables. A
“create level 1 table” from other CPUs is irrelevant to the local
“walk until level 1” because it can only create other level 1 ta-
bles and cannot overwrite T1 since RMM only allows creating
a table that does not exist yet. Events “destroy level 1 table” and
“walk until level 1” from other CPUs are irrelevant because they
cannot hold T1’s lock so can only access other level 1 tables,
not T1. Other events are also irrelevant because they do not
manipulate T0 and T1 tables. Therefore, “walk until level 1” is
a RightMover and all subsequent mover oracle queries can be
reordered before it. Thus, we refine “walk until level 2” into
an atomic step, as shown in the bottom of Figure 8. In a similar
fashion, we prove “walk until level 2” to be a RightMover and
refine the steps of “walk until level 3.” Continuing in this man-
ner, we eventually refine all RTT operations into atomic steps.

Proving RTT operations to be atomic allows us to prove de-
sired properties about RMM’s RTT management. The key prop-
erty to prove is that each non-empty entry in the RTTs, includ-
ing both intermediate entries pointing to lower-level RTTs and
leaf mappings, uses a unique delegated granule. This prevents
page remapping attacks while still allowing fine-grained access
to the RTTs for improved performance. The proof is straightfor-
ward because every operation on an RTT entry is proved to be
atomic, only the PA of a delegated granule is used to populate a
previously empty RTT entry, and each such granule is guaran-
teed to be unused and zeroed. Once a granule is used for an RTT
entry, its state changes from delegated to RTT or Data, prevent-
ing it from being used for other RTT entries. By using mover
oracle queries and log refinement,we complete the first proof of
hand-over-hand locking in a real system, and the first proof of
a system with fully dynamically allocated shared page tables.

5.2 Relaxed Memory
We prove permutation conditions as discussed in Section 4.2 to
verify the proofs hold on Arm relaxed memory hardware. Veri-

474    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



fying CCA firmware only requires six permutation conditions,
the RECLIST empty condition discussed in Section 4.2, and five
conditions previously introduced by VRM, namely (1) NO-
BARRIER-MISUSE, (2) TRANSACTIONAL-PAGE-TABLE,
(3) SEQUENTIAL-TLB-INVALIDATION, (4) WRITE-ONCE-
KERNEL-MAPPING, and (5) MEMORY-ISOLATION. NO-
BARRIER-MISUSE requires that barriers are correctly placed.
We verified that all lock acquisitions have acquirememory se-
mantics and all lock releases have releasememory semantics.
We also proved that memory accesses to shared objects outside
critical sections have release semantics so that they cannot
be reordered, preserving program ordering and SC behavior.

TRANSACTIONAL-PAGE-TABLE requires that shared page
table writes within a critical section are transactional. This
ensures that page table writes will not result in any behavior on
relaxed memory hardware that cannot be produced on an SC
model. In RMM and EL3M, each critical section contains at
most one page table write, so they are obviously transactional.

SEQUENTIAL-TLB-INVALIDATION requires that a page
table unmap or remap be followed by a TLB invalidation,
with a barrier between them. This precludes relaxed memory
behavior in TLB management code. There are no remaps in
RMM or EL3M. We verified that all page table unmaps are
followed by a TLB invalidation with a barrier between them.

WRITE-ONCE-KERNEL-MAPPING requires that if RMM
or EL3M’s own page tables are shared, they can only be written
once—only empty page table entries can be modified. This
precludes relaxed memory behavior due to out-of-order reads
of these page tables. For EL3M, this holds as it uses a statically
reserved hardcoded page table shared across all CPUs that is
never changed after booting. For RMM, although its kernel
page table is shared across all CPUs and can be changed, we
prove that it is logically partitioned into two tables, as discussed
in Section 3. We prove one table is shared but never changed
once initialized, and the other table is not shared because it
is statically divided into per-CPU ranges private to each CPU.

MEMORY-ISOLATION requires that the memory space ac-
cessible by RMM and EL3M is partially isolated with Realms
and NS hypervisors. This ensures that any relaxed memory
behavior of Realms or NS hypervisors cannot be propagated to
RMM or EL3M. We verify that Realms and the hypervisor will
only access Data and NS granules. Realms’ memory accesses
are managed by RTTs, We prove RTTs will only map Data

granules and NS granules. A hypervisor’s memory accesses are
controlled by the GPT. We prove all delegated granules are in
the Realm PAS state in the GPT so the hypervisor cannot access
them. We further prove that RMM and EL3M behavior do not
rely on what Realms or the hypervisor may do with Data or NS
granules. We prove EL3M never accesses memory other than
its own, RMM will not access the contents of Data granules,
and whenever RMM accesses NS granules, it may obtain arbi-
trary data because the hypervisor can make arbitrary changes
to the data. Thus, we show RMM’s proof on SC does not rely
on the concrete implementation of Realms or NS hypervisors.

GPT Update

EL3M handler EL3M exit

invoke SMC return

L0: EL3M C primitive

L1: EL3M Asm primitive

L2: RMM C primitive

Figure 9: Verify RMM and EL3M GPT update operations. Solid
arrows represent C code and dashed arrows represent assembly code.

Rec.Run

run

Realm enter Realm Realm steps Realm trap exit Realm

Hyp to Realm run Realm handle Realm exit Realm to Hyp

Figure 10: Verify REC.Run and its inner run_realm loop. Solid
arrows represent C code and dashed arrows represent assembly code.

RMM

handler Hyp to EL3M handle_ns_smc EL3M to HypEL3M to RMM RMM to EL3M

Figure 11: Verify rmm_handler in the top layer. Solid arrows
represent C code and dashed arrows represent assembly code.

5.3 C and Assembly Code Integration

Another key aspect of the refinement proofs was verifying the
interactions between RMM and EL3M, RMM and Realms, and
RMM and the hypervisor, which required the C and assembly
code integration techniques discussed in Section 4.3. For
RMM and EL3M, we verified the correctness of GPT updates.
Figure 9 shows how to verify a C primitive in RMM which is-
sues an SMC to EL3M to update the GPT. Layer L0 verifies the
C code for EL3M’s GPT operations. Layer L1 verifies EL3M’s
assembly code handler, which handles traps from RMM and
calls the GPT operations in C. Finally, layer L2 verifies the
C code in RMM that traps to EL3M’s assembly code handler.

For RMM and Realms, we verified REC.Run, which runs
a VCPU of a Realm and required five layers. Figure 10 shows
this C primitive, which calls the run_realm assembly code
primitive, which restores the Realm’s VCPU contexts and
enters the Realm. We proved that all GPRs are correctly
restored such that there is no information leakage from RMM
to the Realm through registers with Unknown values.

For RMM and the hypervisor, we verified the RMM
handling of RMI calls from the hypervisor. Figure 11 shows
when the hypervisor invokes an RMI call, it traps to EL3M first,
then jumps to RMM and calls the C function handle_ns_smc

to execute the RMI call. Eventually, RMM returns to EL3M
and then the hypervisor. We proved that when returning to the
hypervisor, there is no information leakage to the hypervisor
through GPRs with Unknown values.

5.4 Security

We prove that the real system specified by the RMM top-level
specification simulates the ideal system model with declassi-
fication, as discussed in Section 4.4. We discuss the simulation
relation in three parts: all machine states except for Data

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    475



granules, CPU registers, and VCPU contexts stored in REC

granules (Rel 1), Data granules (Rel 2), and CPU registers and
VCPU contexts (Rel 3). Each relation is proved by induction,
in which we assume the relation is initial true at machine
boot and prove that it is preserved during RMM, hypervisor,
and Realm execution so that the same data is obtained when
accessing memory or registers in both real and ideal systems.

We prove that Rel 1 is preserved during execution and
all data accessed from memory is the same. Rel 1 concerns
NS granules, delegated granules, and granules containing
Realm metadata including RTTs, none of which involve
declassification. We prove two invariants: (1) all RTTs only
map IPAs within the respective Realm’s PAR to Data granules
and IPAs outside its PAR to NS granules; and (2) the GPT only
labels NS granules in the NS PAS while all delegated granules
are labeled in the Realm PAS. The first invariant ensures that
Realms will only access Data and NS granules, and the former
will not affect Rel 1. The second invariant ensures that the
hypervisor can only access NS granules. Since Realms and
the hypervisor access NS granules in the same non-exclusive
memory in both real and ideal systems, they will obtain the
same data. All other granules for Rel 1 can only be accessed
by RMM. Since RMM accesses NS and other granules in the
same non-exclusive memory in both real and ideal systems,
it will obtain the same data; the VCPU contexts that are part
of REC granules are excluded here and considered in Rel 3.

We prove that Rel 2 is preserved during execution. The
invariant above ensures that the hypervisor cannot access Data
granules, and we prove that RMM does not access Data gran-
ules, so Rel 2 is preserved for both the hypervisor and RMM.
Data granules are only accessed by Realms. From Rel 1, the
RTTs must be the same in both real and ideal systems. If an
RTT maps an ipa within a Realm’s PAR to a Data granule at
host physical address hpa, the Realm will access the same data
at exclusive memory ipa in the ideal system as at hpa in the
real system, so Rel 2 is preserved. To ensure that an hpa cannot
be mapped to ipas in different Realms, we prove an invariant
that if an RTT maps ipa to hpa, then the Data granule at hpa
inversely maps to (Realm, ipa). Because there is a one-to-one
mapping for each Data granule to (Realm, ipa), any changes at
hpa can only be observed by the specific Realm at the specific
ipa as is the case in the ideal system, so Rel 2 is preserved for
all other data. If an an ipa within a Realm’s PAR is Unknown,
the Realm will access the same data at non-exclusive memory
hpa in the ideal and real system, so Rel 2 is preserved.

We prove that Rel 3 is preserved during execution. We prove
if a Realm’s VCPU V is running, its register r in the real system
equals the corresponding exclusive register r if not Unknown or
the non-exclusive register r if Unknown in the ideal system. We
prove if a Realm’s VCPU V is not running, V’s REC context of r
in the real system equals the corresponding exclusive register
r if not Unknown or the V’s REC context of r if Unknown in the
ideal system. In the ideal system, Realm’s register data is
always stored in the exclusive registers except for those being

declassified. Exclusive registers are not involved in context
switches. We then prove that RMM indeed correctly saves and
restores Realms’ VCPU contexts, so that Rel 3 is preserved.

Finally, we note that our simulation proofs between the
real system and ideal secure system model verify Realm
confidentiality and integrity without even trusting the
correctness of the RMM or EL3M specifications. The proofs
only need to trust the specification of the ideal secure system
model, which encodes the declassification rules and consists
of only .2K LOC in Coq. Furthermore, as shown in Table 3,
the declassification rules only allow a Realm to disclose its
data in two ways, by writing NS granules outside of its PAR
or via the eight GPRs used for hypercalls, making the security
policy formalization easy to understand.

5.5 Bugs Found

We identified several bugs in the CCA firmware prototype
implementation during verification. Through refinement
proofs, we detected common bugs such as incorrect boundary
checking for some variables and misuse of locks; some
locks were released without previously holding them. More
importantly, verification of C and assembly code integration
identified a serious security bug that neither EL3M nor RMM
clear the caller-saved registers when returning to the hypervi-
sor. These registers may carry RMM’s private execution states
and leak information. For example, RMM saves and restores
Realms’ VCPU contexts, and some contexts may remain in
caller-saved registers and leak to the untrusted hypervisor.
Another bug identified was in the REC execution handler. The
hypervisor provides an NS granule to communicate entry
and exit information with RMM. RMM locks and checks
that the given granule is indeed an NS granule, accesses its
contents, unlocks the granule, and enters the Realm. However,
when exiting from the Realm, RMM did not lock and check
the granule state before accessing it. This may lead to RMM
unexpectedly receiving a Granule Protection Fault (GPF) from
the hardware when accessing the granule using the NS PAS,
if the granule was delegated by another CPU. This could lead
to a denial of service of RMM or have worse consequences
if GPF handling was not properly implemented in RMM.

Through permutation condition proofs, we identified
an RMM bug that REC.Destroy does not implement
“counter−−” with the release semantics (instruction (e) in
Figure 4) such that it can be reordered with (d) on Arm’s relax
hardware. This may cause Realm.Destroy to wrongly set the
RECLIST to be reusable before REC.Destroy clears it because
when counter is zero, all RECs in the list should have been
destroyed, which was not true due to this relaxed memory bug.

Through security proofs, we identified an RMM bug that
allows the hypervisor to create two Data granules for the same
memory address of a Realm. Thus, RMM can unmap one Data
granule from an IPA of a Realm and map another Data granule
to the same IPA, violating the Realm integrity guarantee,

476    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



because the Realm could observe a change in Realm data not
caused by a Realm memory access.

5.6 CCA KVM
CCA provides a standard application binary interface (ABI)
to allow hypervisors to communicate their intents to RMM via
RMI commands, which is suitable for adoption by commodity
hypervisors. However, existing hypervisors do require some
modifications to use CCA to support Realm VMs. Regardless
of whether a hypervisor is modified to use CCA, it cannot
compromise the confidentiality and integrity of Realms.
Without modifications, existing hypervisors cannot run Realm
VMs, but can still run non-Realm VMs.

We modified the Linux KVM hypervisor to use CCA,
which we refer to as CCA KVM. The modifications involved
roughly 3K LOC in C to KVM, including .5K LOC for RMI
commands, .4K LOC for handling exits from Realms, .8K
LOC for creating and destroying Realms, and 1.1K LOC for
stage 2 page table management using RMI commands. The
modifications also required roughly .5K LOC in C to QEMU,
mostly related to VM boot, initialization, and exit handling.
Finally, roughly 40 LOC in C of modifications to the virtio
driver in the Linux guest kernel were required so that it uses
a bounce buffer to communicate I/O data with the hypervisor.
This is needed because the ring buffer normally used by the
virtio driver in the VM is in memory not accessible to the
hypervisor when using Realms. Our experience with KVM
indicates that the modifications required for a commodity
hypervisor to use CCA are quite modest and involve changes
to a very small percentage of its existing codebase.

6 Performance Evaluation

We have run the CCA software stack, including RMM,
EL3M, and modifications to the Linux KVM hypervisor to
use Realms, on an Arm Fast Model which implements the
Realm Management Extensions (RME) CPU architecture.
The Fast Model is a valid software emulation of the CPU
architecture, allowing us to demonstrate that the CCA software
stack provides the desired security guarantees and system
functionality. However, Fast Models do not provide any cycle
accurate measure of real performance and are too slow to run
real application workloads. While CCA will be available in
Armv9-A, Armv9-A hardware is not yet available.

To provide a preliminary measure of CCA performance, we
have ported the CCA software prototype to run on currently
available Arm hardware, an Arm N1 System Development
Platform (N1SDP) [5] with an Armv8.2-A Neoverse N1 SoC.
This version of EL3M is based on the the Trusted Firmware-A
(TFA) codebase. The N1SDP does not provide GPT or Realm
world hardware, so it cannot enforce the security guarantees
of Realms, but we can use it to mimic the performance costs
of Realms by modifying the EL3M code. Context switching

between NS and Realm worlds is mimicked by modifying
EL3M to switch between two separate contexts within NS
world. EL3M is further modified to support the RMI as well as
handle GPT update requests from RMM. We did not include
EL3M code that controls GPT registers as they do not exist
on the N1SDP, but all data written to the GPT memory can
be done, although without any effect.

This setup necessarily will have some performance differ-
ences from real CCA hardware, but it provides a useful approx-
imation of actual Realm performance. The cost of GPT checks
by CCA hardware are not included since no GPT hardware is
available, but are expected to exhibit good caching behavior
and will not affect the relative performance of VMs versus
Realm VMs since they apply equally in NS and Realm worlds.
The cost of some hypervisor operations, such as those that
require exiting to userspace, will be overly conservative as
controlling timer interrupt behavior requires those operations
to write to the Arm Generic Interrupt Controller (GIC) on the
N1SDP which is slow, whereas real CCA hardware will have
system registers that can be used by RMM to achieve the same
functionality. Finally, the current prototype lacks support for
directly injecting virtual interrupts without hypervisor interven-
tion, which is expected to be available in future CCA hardware.

We ran both microbenchmark and application workloads in
VMs on unmodified KVM and CCA KVM in Linux 5.12 on the
N1SDP, which has two dual-core 2.6 GHz Neoverse N1 CPUs,
6 GB RAM, a 240 GB SATA3 SSD and a Intel 82574L 1 Gbps
NIC. We used QEMU 4.2.0 [8] to run VMs, with the modi-
fications discussed in Section 5.6 to support CCA KVM. VMs
were run using KVM or CCA KVM with 4 cores and 1 GB
RAM with the VM capped at 2 VCPUs and 512 MB RAM;
VCPUs were pinned to individual cores. VHOST networking
was used and virtual block storage devices were configured
with cache=none [28, 38, 56]. Arm VHE [6, 17, 18] was used
for all measurements. For client-server workloads, clients
ran on an x86 machine with a 16-core Intel Xeon E5-2690
2.9 GHz CPU, 378 GB RAM and an Intel I350 1 Gbps NIC,
connected to the N1SDP via a Linksys LGS108 1 Gbps switch.

6.1 Microbenchmarks

We ran KVM unit tests [39], which execute common
micro-level hypervisor operations, plus an additional system
register access microbenchmark, as listed in Table 5. For each
test, we ran it 216 times and report the average latency. Table
6 shows the microbenchmark measurements in nanoseconds
for unmodified KVM and CCA KVM. The measurements
show that the security benefits of CCA design do come with
a performance cost on most micro-level hypervisor operations,
because the cost of transitioning between a VM and the
hypervisor is much more expensive on CCA KVM than
unmodified KVM, which is most clearly shown for Hypercall.

Hypercall simply traps from the VM to the hypervisor in
EL2 and returns for KVM, but involves additional operations

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    477



Name Description
Hypercall Trap from a VM to the hypervisor and return to the VM imme-

diately. Measures base transition cost of hypervisor operations.
I/O Kernel Trap from a VM to the emulated interrupt controller in the host

OS kernel and return to the VM. Measures cost of accessing I/O
devices supported in kernel space.

I/O User Trap from a VM to read the device ID of virtio mmio device then
return to the VM. Measures base cost of operations that access
I/O devices emulated in user space.

Virtual IPI Issue virtual IPI to another VCPU on a different CPU. Measures
time from sending virtual IPI until receiving VCPU handles it.

Sysreg Trap from a VM to emulate access to system register ID_-
AA64PFR0_EL1 in the hypervisor and return to the VM. Measures
system register access cost.

Table 5: Microbenchmarks.

for CCA KVM: (1) trap from VM in EL1 to RMM in EL2;
(2) map NS granule to copy exit info to NS world, unmap
granule; (3) trap from RMM to EL3M in EL3; (4) save Realm
context, restore NS context; (5) exception return from EL3M to
hypervisor in EL2; (6) trap from hypervisor to EL3M in EL3;
(7) save NS context, restore Realm context; (8) exception return
from EL3M to RMM in EL2; (9) map NS granule to copy entry
info from NS world, unmap granule; (10) map and read data in
REC and RD granules, unmap granules; (11) exception return
from RMM to VM in EL1. The additional operations result
in Hypercall costing an additional 1.5 µs on CCA KVM than
vanilla KVM. Roundtrip transitions between RMM and the hy-
pervisor take roughly 700 ns, and roundtrip transitions between
the VM and RMM take roughly 60 ns. Saving and restoring sys-
tem registers when transitioning between the VM and RMM
takes roughly 200 ns per transition, or 400 ns total. The four
map/unmap operations take roughly 100 ns each, 400 ns total.
The remaining roughly 250 ns is due to other bookkeeping
code, including saving and restoring GPRs and error checking.

I/O Kernel and I/O User include the same transition from
the VM to the hypervisor and back as the Hypercall, so they
also require more than 1.5 µs to execute on CCA KVM
than vanilla KVM. Although the difference between CCA
KVM and vanilla KVM is roughly 1.5 µs for I/O Kernel, the
difference for I/O User is roughly 2.3 µs. This is because on
the N1SDP, CCA KVM must write to the GIC when going
to userspace, which is quite slow and takes an extra 800 ns.

Virtual IPI is more expensive on CCA KVM versus vanilla
KVM because it involves multiple transitions between a VM
and the hypervisor. Sending the virtual IPI involves the source
vCPU writing to a system register, causing a trap to the RMM,
which forwards the operation to the hypervisor (1). The hyper-
visor issues a physical IPI to the CPU running the destination
vCPU, then returns to the source vCPU (2). The physical
IPI causes an exit from the destination vCPU (3). On taking
this exit, the hypervisor detects that there is a pending virtual
IPI, and returns to the destination vCPU (4). Of these four
transitions, approximately two occur in parallel, so the cost is
roughly twice that of a Hypercall on CCA KVM for the transi-
tions, plus the cost of the actual operation. Because Hypercall
is much faster for unmodified KVM, its Virtual IPI cost is not

Benchmark Hypercall I/O Kernel I/O User Virtual IPI Sysreg
KVM 362 549 1,761 1,806 437
CCA KVM 1,865 2,060 4,049 4,324 70

Table 6: Microbenchmark performance (ns).

dominated by the transition cost between VM and hypervisor.
The one microbenchmark that is much faster on CCA KVM

than KVM is Sysreg. Accessing system registers is roughly
5 times as expensive on KVM versus CCA KVM. On CCA
KVM, RMM handles this register access directly without
returning to the hypervisor. RMM’s system register trap han-
dling mechanism is simpler than KVM’s because it does not
need to support KVM’s more general hypervisor functionality
that requires synchronizing accesses to hypervisor-related
data structures and additional conditional checks.

6.2 Application Benchmarks
We next ran the application benchmarks listed in Table 7 to
measure performance on more realistic workloads. We also ran
the workloads on native hardware running the same kernel to
provide a baseline for comparison, restricting the system to use
2 CPUs and 512 MB RAM to provide a comparable configura-
tion to the VMs. For each platform, we ran each workload 50
times and measured the average, worst, and best performance.

Figure 12 shows the average performance for each
benchmark for unmodified KVM versus CCA KVM, with
error bars indicating worst and best performance. Performance
was normalized to average native execution on the N1SDP
hardware; lower is better. Unlike microbenchmark perfor-
mance, the application benchmark performance shows that
CCA KVM and KVM have much more modest performance
differences on more realistic workloads.

CCA KVM has less than 8% overhead versus unmodified
KVM for most workloads, but in the worst case, overhead
was 18% for MongoDB, an I/O intensive workload. The I/O
intensive workloads have higher overhead for a couple reasons.
The main reason is because the VM exits more frequently, so
the cost of exits has a more significant impact on performance.
Exits are more expensive on CCA KVM as shown by the
Hypercall microbenchmark results in Table 6, in which an exit
to the hypervisor costs an extra 1.5 µs. If there are many exits
as will be case for I/O intensive workloads, this additional
cost can become significant. For example, Memcached incurs
roughly a million VM exits to the hypervisor. This results in
roughly 1.5 s of additional overhead, or .75 s of overhead per
core if the exits are split evenly across cores for a VM with
2 VCPUs. Memcached takes 9 s to run on vanilla KVM, so
this is 8% overhead due to the extra latency for exits on CCA
KVM, which roughly matches the actual overhead measured
for Memcached on CCA KVM versus vanilla KVM.

A secondary reason is because CCA KVM needs to use a
bounce buffer while vanilla KVM does not. CCA KVM needs
a bounce buffer to support virtio because Realm memory is
protected from the hypervisor. KVM uses the default virtio

478    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Name Description
Apache Apache server v2.4.41 handling 100 concurrent requests via

TLS/SSL from remote ApacheBench [1] v2.3 client, serving
the index.html of the GCC 7.5.0 manual.

Hackbench Hackbench [54] using Unix domain sockets and 20 process
groups running in 500 loops.

Kernbench Compilation of the Linux kernel v4.18 using allnoconfig for
Arm with GCC 9.3.0.

Memcached Memcached v1.5.22 handling requests from a remote
memtier [51] v1.2.11 client with default parameters.

MongoDB MongoDB server v3.6.8 handling requests from a remote
YCSB [14] v0.17.0 client running workload A with 16
concurrent threads and operationcount=500000.

MySQL MySQL v8.0.27 running sysbench v1.0.11 with 32 concurrent
threads and TLS encryption.

Redis Redis v4.0.9 server handling requests from a remote redis-
benchmark client (redis-tools v5.0.7) [52] running GET/SET
with 50 parallel connections and 12 pipelined requests.

Table 7: Application benchmarks.

mechanism to directly access VM memory, so it does not
require bounce buffers and does not need to perform the addi-
tional data copying. Since KVM can also be configured to use a
bounce buffer, we also measured KVM with this configuration
to isolate the impact of using a bounce buffer on performance.
The overhead with versus without a bounce buffer was negligi-
ble in most cases, but in the worst case as high as 3-4% for the
more disk I/O intensive workloads, MongoDB and MySQL.

We expect the overheads for I/O intensive workloads on
real CCA hardware to be less than what we measured on the
N1SDP hardware. Exits are expected to occur less frequently
on real CCA hardware when support for direct virtual interrupt
injection is added. Exits that go to userspace are expected to
cost less on real CCA hardware as the expensive GIC writes
required for N1SDP hardware will be eliminated, though this
was not a dominant factor in our results with the use of VHOST
networking. This cost can be further mitigated by using device
passthrough instead of paravirtual I/O, which will largely
avoid these exits and their associated performance overhead.
Support for Realm device passthrough will be added to future
CCA hardware. Overall, our measurements indicate that
CCA’s security guarantees can be delivered with acceptable
performance overheads for real application workloads.

7 Related Work

Hardware-enforced trusted execution environments have
become an important feature of major computer architectures.
Arm TrustZone [4] can be used to statically partition and isolate
a memory region in Secure world, but most implementations
only support a small number of such memory regions, limiting
its scalability. Intel Software Guard Extensions (SGX) [33] can
be used by application developers to protect userspace memory
from other programs, including a potentially malicious OS
or hypervisor. SGX is not suitable for securing VMs.

AMD Secure Encrypted Virtualization (SEV) [2] and Intel
Trust Domain Extensions (TDX) [32] provide protection at the

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Apach
e
Hackb

enchKernbe
nch
Memc

achedMongo
DB MySQ

L Redis

KVM CCA KVM

Figure 12: Application benchmark performance.

level of VMs with similar threat models to CCA. The initial ver-
sion of SEV ensured confidentiality by encrypting VM memory
at runtime, but did not ensure memory data integrity, which has
been utilized as an attack vector such that a compromised hy-
pervisor can tamper with or steal private VM data [31,40,47,48,
60]. Secure Nested Paging (SNP) [3] now provides the previ-
ously missing integrity protection capability. SEV-SNP allows
an untrusted hypervisor to directly manage NPTs, but checks
accesses against a reverse map table, an additional data struc-
ture managed by a security co-processor. In contrast, Intel TDX
runs a TDX module in a privileged SEAM (Secure-Arbitration
Mode) root CPU mode. The firmware manages NPTs used by
protected VMs in response to requests issued by the untrusted
hypervisor. Unlike CCA, the security of SGX, SEV, SEV-SNP
and TDX relies on complex implementations in unverified
microcode and firmware [12, 15]. They are difficult to update,
either to patch security flaws or introduce new features.

Komodo [23] draws on ideas from SGX, but is implemented
as a software monitor in verified Arm assembly code on
top of TrustZone instead of requiring hardware to support
complex enclave-manipulation instructions. This avoids
hardware complexity and enables deployment of new enclave
features independently of CPU upgrades. Komodo does not
support multiprocessor execution, largely due to the challenge
of verifying low-level concurrent code. CCA retains the
advantages of Komodo’s approach by relying on a verified
software monitor to implement Realms, but supports verified
VM protection and multiprocessor execution.

The idea of retrofitting a commodity hypervisor so that
its security guarantees are enforced by a small trusted core
was first explored by SeKVM [41–43, 57]. SeKVM was
the first to show how this retrofitting approach, known as
microverification, makes it possible to verify that a commodity
hypervisor guarantees the confidentiality and integrity of VMs.
CCA allows hypervisors to be modified to support Realm
VMs, whose confidentiality and integrity are protected by
a verified monitor, reminscient of SeKVM. While SeKVM
uses existing Arm hardware, CCA introduces new hardware
mechanisms that protect VMs from untrusted software running
in both NS and Secure world, and allow hypervisors to make
full use of Arm virtualization features such as VHE for better

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    479



performance. Furthermore, CCA firmware is designed to
support a higher degree of scalability and concurrent operation
by allowing data races, leveraging fine-grain synchronization,
and enabling the hypervisor to provide fully dynamic memory
allocation for all VM-related metadata.

While verifying CCA firmware required new VIA veri-
fication techniques, many of them build on previous work.
Various concurrent systems have been verified, including Cer-
tiKOS [26, 27, 45], SeKVM, and CMAIL using CSPEC [10].
CertiKOS and SeKVM support sequential reasoning with
a local CPU model and encapsulate other CPUs’ behavior
by rely/guarantee conditions, but do not support reordering
using mover types, making proving hand-over-hand locking
infeasible. Although hand-over-hand locking can theoretically
be proved using rely/guarantee reasoning [58], the approach
is not machine-checkable or scalable to a real system like
RMM. CSPEC provides proof patterns with mover types,
but lacks a local CPU model and does not verify C code;
it offers little help for RMM code not reducible by movers
(e.g. REC.Destroy in Figure 4) that still need rely/guarantee
reasoning to verify. VIA builds on CertiKOS, SeKVM, and
CSPEC to combine a local CPU model with mover types.

Some programs have been previously verified on relaxed
memory hardware. Armada [46] supports verifying programs
on the x86-TSO memory model, but their approach of verifying
the entire program on a relaxed memory model has not been
shown to scale to real systems such as RMM. VRM [57] in-
stead allows proofs on an SC model to hold on relaxed memory
hardware by ensuring certain conditions hold, making possible
the verification of SeKVM, the first machine-checked proof
for concurrent systems software on Arm relaxed memory hard-
ware. VIA generalizes VRM to arbitrary non-DRF programs.

Verifying programs with both C and assembly code has been
done to varying degrees, but none support bidirectional calls
between them. seL4 [37] verifies C code, but its assembly code
is unverified. CertiKOS relies on a verified x86 C compiler to
verify assembly primitives invoking C primitives by compiling
the invoked C primitives into assembly primitives, but cannot
verify C primitives that invoke assembly primitives. Since
no verified Arm C compiler exists, this approach cannot be
used for CCA. SeKVM verifies C and Arm assembly code
separately, but does not link the proofs, in part because no
verified Arm C compiler exists. Komodo is written entirely
in assembly code which is then verified, but this is difficult to
scale to a large system as it is hard to write and maintain a large
codebase in assembly. Ironclad [29] conducts verification
at the assembly level by compiling programs in a high-level
language down to assembly. This is also difficult to scale as
it is harder to verify the much larger generated assembly code
than the original high-level language implementation. VIA
allows most proofs to be done at the C level while verifying
interactions between C and assembly code are safe.

Noninterference has been frequently used to prove
information-flow security [16,23,29,34,42,49,55], but cannot

be applied to RMM given the definition of data integrity and
confidentiality supported by Realms. While most of these
approaches rely on some static partitioning of memory to
simplify their noninterference proofs, RMM imposes no such
scalability limitations. The ideal/real simulation paradigm
has been used to verify information-flow security of a simple
750 LOC two-user uniprocessor separation kernel without
page tables [22], but we show for the first time how it can
be applied in the presence of declassification to verify data
confidentiality and integrity of a real system that supports
modern multiprocessor and MMU hardware with page tables.

8 Conclusions

Arm CCA is the first confidential compute architecture backed
by verified firmware that is correct and secure. CCA introduces
Realms, secure execution environments that protect the
confidentiality and integrity of VMs against untrusted system
software such as hypervisors. Realms are made possible by
hardware support for Realm world, a new physical address
space for Realms inaccessible to untrusted system software,
and a firmware monitor that runs in Realm world to control
CCA hardware to secure and manage Realms, including
handling requests from untrusted hypervisors to create Realms,
run Realms, and allocate memory to Realms. This design
maintains compatibility with the Arm architecture without
introducing complex hardware mechanisms by relying on
firmware, and avoids complexity in the firmware by relying
on existing hypervisors to provide virtualization functionality.

We formally verified CCA firmware, demonstrating
the feasibility of relying on trustworthy firmware for the
security guarantees of the architecture. We introduced various
verification techniques to make it possible to verify for the first
time concurrent firmware with data races running on relaxed
memory hardware, fine-grain synchronization such as hand-
over-hand locking, dynamically allocated shared multi-level
page tables, and integrated C and assembly code. We also
prove the security guarantees despite untrusted software being
in full control of resource allocation decisions. The proof only
needs to trust roughly two hundred lines of Coq specification,
making the formal security guarantees easy to read and
understand. CCA provides its security guarantees with only
modest performance overhead compared to running VMs with
the Linux KVM hypervisor without verified VM protection.

9 Acknowledgments

Andrew Baumann and Charles Garcia-Tobin provided helpful
comments on earlier drafts. This work was supported in part by
Arm, OPPO, an Amazon Research Award, a Guggenheim Fel-
lowship, DARPA contract N66001-21-C-4018, and NSF grants
CCF-1918400, CNS-2052947, and CCF-2124080. Ronghui
Gu is the Founder of and has an equity interest in CertiK.

480    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] ab, The Apache Software Foundation. http://
httpd.apache.org/docs/2.4/programs/ab.html,
April 2015.

[2] Advanced Micro Devices. Secure Encrypted Virtualiza-
tion API Version 0.16. https://support.amd.com/
TechDocs/55766_SEV-KM%20API_Spec.pdf,
February 2018.

[3] Advanced Micro Devices. AMD SEV-SNP:
Strengthening VM Isolation with Integrity Protec-
tion and More. https://www.amd.com/system/
files/TechDocs/SEV-SNP-strengthening-vm-
isolation-with-integrity-protection-and-
more.pdf, January 2020.

[4] ARM Ltd. ARM Security Technology Build-
ing a Secure System using TrustZone Technol-
ogy. https://documentation-service.arm.com/
static/5f212796500e883ab8e74531, April 2009.

[5] ARM Ltd. Arm Neoverse N1 Core Technical Ref-
erence Manual. https://developer.arm.com/
documentation/100616/0400/, April 2019.

[6] ARM Ltd. Virtualization Host Extensions. https:
//developer.arm.com/documentation/102142/
0100/Virtualization-Host-Extensions,
January 2019.

[7] ARM Ltd. Procedure Call Standard for
the Arm R© 64-bit Architecture (AArch64).
https://github.com/ARM-software/abi-
aa/releases/download/2022Q1/aapcs64.pdf,
April 2022.

[8] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the USENIX 2005 Annual
Technical Conference, FREENIX Track (FREENIX
2005), pages 41–46, Anaheim, CA, April 2005.

[9] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hard-
ware and Software Support for Virtualization. Synthesis
Lectures on Computer Architecture. Morgan and
Claypool Publishers, February 2017.

[10] Tej Chajed, M. Frans Kaashoek, Butler Lampson, and
Nickolai Zeldovich. Verifying concurrent software using
movers in CSPEC. In Proceedings of the 13th Symposium
on Operating Systems Design and Implementation (OSDI
2018), pages 306–322, Carlsbad, CA, October 2018.

[11] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP

2019), pages 243–258, Huntsville, ON Canada, October
2019.

[12] Anrin Chakrabortid, Reza Curtmola, Jonathan Katz,
Jason Nieh, Ahmad-Reza Sadeghi, Radu Sion, and
Yinqian Zhang. Cloud Computing Security: Foundations
and Research Directions. Foundations and Trends in
Privacy and Security, 3(2):103–213, February 2022.

[13] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao,
Joshua Lockerman, and Ronghui Gu. Toward Compo-
sitional Verification of Interruptible OS Kernels and
Device Drivers. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI 2016), pages 431–447, Santa
Barbara, CA, June 2016.

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC 2010),
pages 143–154, Indianapolis, IN, June 2010.

[15] Victor Costan and Srinivas Devadas. Intel SGX
Explained. Cryptology ePrint Archive, Report 2016/086,
January 2016. https://ia.cr/2016/086.

[16] David Costanzo, Zhong Shao, and Ronghui Gu. End-
to-End Verification of Information-Flow Security for
C and Assembly Programs. In Proceedings of the 37th
ACM Conference on Programming Language Design
and Implementation (PLDI 2016), pages 648–664, Santa
Barbara, CA, June 2016.

[17] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason
Nieh, and Georgios Koloventzos. ARM Virtualization:
Performance and Architectural Implications. In
Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA 2016), pages 304–316,
Seoul, South Korea, June 2016.

[18] Christoffer Dall, Shih-Wei Li, and Jason Nieh. Opti-
mizing the Design and Implementation of the Linux
ARM Hypervisor. In Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC 2017),
pages 221–234, Santa Clara, CA, July 2017.

[19] Christoffer Dall and Jason Nieh. KVM/ARM: Experi-
ences Building the Linux ARM Hypervisor. Technical
Report CUCS-010-13, Department of Computer Science,
Columbia University, June 2013.

[20] Christoffer Dall and Jason Nieh. Supporting KVM on
the ARM Architecture. LWN Weekly Edition, pages
18–22, July 2013.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    481

http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://developer.arm.com/documentation/100616/0400/
https://developer.arm.com/documentation/100616/0400/
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://github.com/ARM-software/abi-aa/releases/download/2022Q1/aapcs64.pdf
https://github.com/ARM-software/abi-aa/releases/download/2022Q1/aapcs64.pdf
https://ia.cr/2016/086


[21] Christoffer Dall and Jason Nieh. KVM/ARM: The De-
sign and Implementation of the Linux ARM Hypervisor.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2014), pages 333–347, Salt
Lake City, UT, March 2014.

[22] Mads Dam, Roberto Guanciale, Narges Khakpour,
Hamed Nemati, and Oliver Schwarz. Formal Verification
of Information Flow Security for a Simple ARM-Based
Separation Kernel. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications
Security (CCS 2013), pages 223–234, Berlin, Germany,
November 2013.

[23] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel,
and Bryan Parno. Komodo: Using verification to
disentangle secure-enclave hardware from software.
In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP 2017), pages 287–305,
Shanghai, China, October 2017.

[24] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro,
Zhong Shao, Xiongnan Newman Wu, Shu-Chun Weng,
and Haozhong Zhang. Deep Specifications and Certified
Abstraction Layers. In Proceedings of the 42nd ACM
Symposium on Principles of Programming Languages
(POPL 2015), pages 595–608, Mumbai, India, January
2015.

[25] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim,
Jérémie Koenig, Xiongnan Wu, Vilhelm Sjöberg, and
David Costanzo. Building Certified Concurrent OS
Kernels. Communications of the ACM, 62(10):89–99,
September 2019.

[26] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman
Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo.
CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2016), pages 653–669,
Savannah, GA, November 2016.

[27] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan New-
man Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen,
David Costanzo, and Tahina Ramananandro. Certified
Concurrent Abstraction Layers. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018),
pages 646–661, Philadelphia, PA, June 2018.

[28] Stefan Hajnoczi. An Updated Overview of the QEMU
Storage Stack. In LinuxCon Japan 2011, Yokohama,
Japan, June 2011.

[29] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad Apps: End-to-End Security via Automated
Full-System Verification. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2014), pages 165–181,
Broomfield, CO, October 2014.

[30] Constance L. Heitmeyer, Myla Archer, Elizabeth I.
Leonard, and John McLean. Formal Specification and
Verification of Data Separation in a Separation Kernel
for an Embedded System. In Proceedings of the 13th
ACM Conference on Computer and Communications
Security (CCS 2006), pages 346–355, Alexandria,
Virginia, October 2006.

[31] Felicitas Hetzelt and Robert Buhren. Security Analysis
of Encrypted Virtual Machines. In Proceedings of the
13th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE 2017), pages
129–142, Xi’an, China, April 2017.

[32] Intel Corporation. Intel Trust Domain Extensions.
https://www.intel.com/content/www/us/
en/developer/articles/technical/intel-
trust-domain-extensions.html, October 2014.

[33] Intel Corporation. Intel Software Guard Ex-
tensions Programming Reference. https:
//software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf, May 2021.

[34] Dongseok Jang, Zachary Tatlock, and Sorin Lerner.
Establishing Browser Security Guarantees through
Formal Shim Verification. In Proceedings of the 21st
USENIX Security Symposium (USENIX Security 2012),
pages 113–128, Bellevue, WA, August 2012.

[35] C. B. Jones. Tentative Steps toward a Development
Method for Interfering Programs. ACM Transactions
on Programming Languages and Systems (TOPLAS),
5(4):596–619, October 1983.

[36] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong
Shao. Safety and Liveness of MCS Lock—Layer by
Layer. In Proceedings of the Asian Symposium on
Programming Languages and Systems (APLAS 2017),
pages 273–297, Suzhou, China, November 2017.

[37] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal Verification of an OS Kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (SOSP 2009), pages
207–220, Big Sky, MT, October 2009.

482    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf


[38] KVM contributors. Tuning KVM. http://
www.linux-kvm.org/page/Tuning_KVM, May 2015.

[39] KVM contributors. KVM Unit Tests. http:
//www.linux-kvm.org/page/KVM-unit-tests,
August 2020.

[40] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan
Solihin. Exploiting Unprotected I/O Operations in
AMD’s Secure Encrypted Virtualization. In Proceedings
of the 28th USENIX Security Symposium (USENIX
Security 2019), pages 1257–1272, Santa Clara, CA,
August 2019.

[41] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting
Cloud Virtual Machines from Commodity Hypervisor
and Host Operating System Exploits. In Proceedings of
the 28th USENIX Security Symposium (USENIX Security
2019), pages 1357–1374, Santa Clara, CA, August 2019.

[42] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A Secure and Formally Verified Linux
KVM Hypervisor. In Proceedings of the 2021 IEEE
Symposium on Security and Privacy (IEEE S&P 2021),
pages 1782–1799, San Francisco, CA, May 2021.

[43] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh,
and John Zhuang Hui. Formally Verified Memory
Protection for a Commodity Multiprocessor Hypervisor.
In Proceedings of the 30th USENIX Security Symposium
(USENIX Security 2021), pages 3953–3970, Vancouver,
BC Canada, August 2021.

[44] Richard J. Lipton. Reduction: A Method of Proving
Properties of Parallel Programs. Communications of the
ACM, 18(12):717–721, December 1975.

[45] Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu,
David Costanzo, Jung-Eun Kim, and Man-Ki Yoon.
Virtual Timeline: A Formal Abstraction for Verifying
Preemptive Schedulers with Temporal Isolation. Pro-
ceedings of the ACM on Programming Languages,
4(POPL):1–31, December 2019.

[46] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-Effort
Verification of High-Performance Concurrent Programs.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI 2020), pages 197–210, London, UK, June 2020.

[47] Mathias Morbitzer, Manuel Huber, and Julian Horsch.
Extracting Secrets from Encrypted Virtual Machines. In
Proceedings of the 9th ACM Conference on Data and
Application Security and Privacy (CODASPY 2019),
pages 221–230, Dallas, TX, March 2019.

[48] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. SEVered: Subverting AMD’s Virtual
Machine Encryption. In Proceedings of the 11th
European Workshop on Systems Security (EuroSec
2018), pages 1–6, Porto, Portugal, April 2018.

[49] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter
Gammie, Timothy Bourke, Sean Seefried, Corey Lewis,
Xin Gao, and Gerwin Klein. seL4: from General
Purpose to a Proof of Information Flow Enforcement.
In Proceedings of the 2013 IEEE Symposium on Security
and Privacy (IEEE S&P 2013), pages 415–429, San
Francisco, CA, May 2013.

[50] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Bau-
mann, Emina Torlak, and Xi Wang. Scaling Symbolic
Evaluation for Automated Verification of Systems Code
with Serval. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP 2019), pages
225–242, Huntsville, ON Canada, October 2019.

[51] Redis Labs. Memtier Benchmark. https:
//github.com/RedisLabs/memtier_benchmark,
January 2018.

[52] Redis Labs. Redis Benchmark. https://redis.io/
docs/reference/optimization/benchmarks/,
March 2022.

[53] Richard M. Stallman and the GCC Developer Com-
munity. Using the GNU Compiler Collection (GCC).
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/
gcc.pdf, May 2022.

[54] Rusty Russell. Hackbench. http://
people.redhat.com/mingo/cfs-scheduler/
tools/hackbench.c, January 2008.

[55] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A Framework for Design and Verification of
Information Flow Control Systems. In Proceedings of
the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2018), pages
287–305, Carlsbad, CA, October 2018.

[56] SUSE. Performance Implications of Cache Modes.
https://www.suse.com/documentation/
sles11/book_kvm/data/sect1_3_chapter_

book_kvm.html, September 2016.

[57] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li,
Jason Nieh, and Ronghui Gu. Formal Verification of a
Multiprocessor Hypervisor on Arm Relaxed Memory
Hardware. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP 2021), pages
866–881, Virtual Event, Germany, October 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    483

http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/KVM-unit-tests
http://www.linux-kvm.org/page/KVM-unit-tests
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://redis.io/docs/reference/optimization/benchmarks/
https://redis.io/docs/reference/optimization/benchmarks/
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc.pdf
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html


[58] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc
Shapiro. Proving Correctness of Highly-Concurrent
Linearisable Objects. In Proceedings of the 11th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2006), pages 129–136,
New York, NY, March 2006.

[59] Alexander Van’t Hof and Jason Nieh. BlackBox: A
Container Security Monitor for Protecting Containers on
Untrusted Operating Systems. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2022), Carlsbad, CA, July 2022.

[60] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. SEVurity: No Security Without
Integrity Breaking Integrity-Free Memory Encryption
with Minimal Assumptions. In Proceedings of the 2020
IEEE Symposium on Security and Privacy (IEEE S&P
2020), pages 1483–1496, San Francisco, CA, May 2020.

[61] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A Verified Modern Cryptographic Library. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017),
pages 1789–1806, Dallas, TX, October 2017.

[62] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using Concurrent Relational
Logic with Helpers for Verifying the AtomFS File
System. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP 2019), pages
259–274, Huntsville, ON Canada, October 2019.

484    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



DuoAI: Fast, Automated Inference of Inductive Invariants
for Verifying Distributed Protocols

Jianan Yao
Columbia University

Runzhou Tao
Columbia University

Ronghui Gu
Columbia University

Jason Nieh
Columbia University

Abstract
Distributed systems are complex and difficult to build correctly.
Formal verification can provably rule out bugs in such systems,
but finding an inductive invariant that implies the safety prop-
erty of the system is often the hardest part of the proof. We
present DuoAI, an automated system that quickly finds induc-
tive invariants for verifying distributed protocols by reducing
SMT query costs in checking invariants with existential quan-
tifiers. DuoAI enumerates the strongest candidate invariants
that hold on validate states from protocol simulations, then
applies two methods in parallel, returning the result from the
method that succeeds first. One checks all candidate invariants
and weakens them as needed until it finds an inductive invari-
ant that implies the safety property. Another checks invariants
without existential quantifiers to find an inductive invariant
without the safety property, then adds candidate invariants with
existential quantifiers to strengthen it until the safety property
holds. Both methods are guaranteed to find an inductive in-
variant that proves desired safety properties, if one exists, but
the first reduces SMT query costs when more candidate invari-
ants with existential quantifiers are needed, while the second
reduces SMT query costs when few candidate invariants with
existential quantifiers suffice. We show that DuoAI verifies
more than two dozen common distributed protocols automat-
ically, including various versions of Paxos, and outperforms
alternative methods both in the number of protocols it verifies
and the speed at which it does so, including solving Paxos more
than two orders of magnitude faster than previous methods.

1 Introduction

The world relies on distributed systems, but these systems are
increasingly complex and hard to design and implement cor-
rectly. To address this problem, developers are starting to turn
to formal verification techniques to prove the correctness of dis-
tributed systems [11, 20, 35]. This involves formally verifying
that desired safety properties hold for the distributed protocol.
A safety property is an invariant that should hold true at any

point in a system’s execution. It ensures the protocol does not
reach invalid or dangerous states. For example, the safety prop-
erty for a distributed lock protocol [11] is that no two nodes
in the system hold a lock at the same time. The proof requires
finding an invariant that implies the safety property, then prov-
ing that it is inductive. An invariant is inductive if it holds for
all initial states of the system, and is preserved on all valid
transitions so that it holds for any reachable state of the system.

Unfortunately, finding an inductive invariant is often the
hardest part of the proof [21]. Invariants can be expressed as
logical formulas consisting of universal (∀) and existential
(∃) quantifiers with a certain number of variables, and a set of
logical relations among the variables. Recent work has focused
on automating the process of finding an inductive invariant,
but has various limitations. I4 [21] was the first to automate the
process, but provides no guarantee that it can find the inductive
invariant and does not work for invariants with existential
quantifiers. Our previous work DistAI [38] provides speed ad-
vantages over I4 and a guarantee of finding an ∃-free inductive
invariant if one exists, but also does not work for invariants with
existential quantifiers. FOL-IC3 [13] was the first to handle
existential quantifiers, but is inefficient due to its heavy use
of expensive SMT queries. It often fails to find invariants for
protocols that can be solved by other approaches such as I4 and
DistAI. SWISS [10] can successfully find an inductive invari-
ant for Paxos, but does not work for more complex protocols
such as stoppable Paxos [27]. It fails or is much slower than I4
and DistAI for many protocols without existential quantifiers.

We present DuoAI, an automated system to quickly find
inductive invariants for verifying distributed protocols, with
and without existential quantifiers, including complex versions
of Paxos. Even though a distributed protocol may be used
in very large systems, its invariants are likely to be concise,
as protocols need to be designed and understood by humans
to be correct. As a result, DuoAI operates in formula space
and considers smaller formulas first to enumerate candidate
invariants, which are then checked by an SMT solver. Formula
size is defined by a maximum number of quantified variables (a
variable and its quantifier ∀ or ∃) and relations. If DuoAI does

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    485



not succeed with smaller formulas, it increases the formula
size and repeats the process until an inductive invariant is
found. Although the formula space within a given formula
size is finite, checking all possible invariants for even a
modest size formula is prohibitively expensive, especially
since SMT solvers are particularly inefficient at checking
invariants with existential quantifiers. It is crucial to avoid
too many SMT queries and SMT queries that are too complex.
Based on this observation, DuoAI introduces and combines
new techniques that avoid the limitations of SMT solvers in
checking invariants with existential quantifiers.

First, DuoAI runs protocol simulations at various instance
sizes and logs the reached protocol states, which we call
samples. Instance size refers to the size of distributed system
(number of nodes, packets, etc.) running the protocol. These
simulations are fast to execute. DuoAI directly checks
candidate invariants against the samples, pruning those that
do not hold to reduce the number of invariants checked by an
SMT solver. To do this systematically, DuoAI introduces the
minimum implication graph, which for a given invariant, shows
all its implied weaker invariants. It then selects the strongest
candidate invariants in the graph that hold for the samples.

Second, DuoAI combines the strongest candidate invariants
with the safety property and feeds them to an SMT solver
to check if the conjunction is inductive. If the check fails, it
monotonically weakens the invariants using the graph and
repeats the process until an inductive invariant is found. If
the number of candidate invariants is not too large and most
are required in the final solution, this method will be effective
at reducing the number of SMT queries by feeding all of the
candidate invariants to the SMT solver at once.

Third, DuoAI feeds the strongest candidate universal
invariants, those without existential quantifiers, from the graph
to an SMT solver to check if the conjunction, without the
safety property, is inductive. If the check fails, it monotonically
weakens the invariants using the graph, only considering
candidate universal invariants, and repeats the process until the
conjunction is inductive. We call this set of inductive ∀-only
invariants the universal core. It then strengthens the universal
core by iteratively adding a small subset of the strongest
candidate invariants with existential quantifiers from the graph
until the conjunction with the safety property is inductive. If
the number of candidate invariants with existential quantifiers
is large and most are not in the final solution, this method will
be effective at avoiding too complex SMT queries, because
it only feeds a few invariants to the SMT solver each time.

DuoAI runs these two methods for refining candidate
invariants in parallel, a top-down refinement that weakens the
candidates and a bottom-up refinement that strengthens the
candidates, returning the result from the method that succeeds
first. We prove that both methods are guaranteed to find the
inductive invariant that proves the desired safety property,
but they may have very different running times and resource
requirements depending on the distributed protocol being

1 type value
2 type quorum
3 type node
4

5 relation vote(N1:node , N2:node)
6 relation voted(N:node)
7 relation leader(N:node)
8 relation decided(N:node , V:value)
9 relation member(N:node , Q:quorum)

10 axiom forall
Q1, Q2. exists N. member(N, Q1) & member(N, Q2)

11

12 after init {
13 voted(N) := false;
14 vote(N1, N2) := false;
15 leader(N) := false;
16 decided(N, V) := false;
17 }
18

19 action cast_vote(n1: node , n2: node) = {
20 require ~voted(n1);
21 vote(n1, n2) := true;
22 voted(n1) := true;
23 }
24

25 action become_leader(n: node , q: quorum ) = {
26 require forall N. member(N, q) -> vote(N, n);
27 leader(n) := true;
28 }
29

30 action decide(n:node , v: value) = {
31 require leader(n);
32 require forall V. ~decided(n, V);
33 decided(n, v) := true;
34 }
35

36 invariant decided(N1,V1) & decided(N2,V2) -> V1=V2

Figure 1: The simplified consensus protocol written in Ivy. Capital-
ized variables are implicitly quantified. For example, Line 16 means
∀N :node,V :value. decided(N,V ) := f alse. “~” stands for negation.

verified. Using both methods together provides the best of
both worlds in addressing the inefficiencies of SMT solvers.

We evaluated DuoAI using 27 widely-used distributed
protocols in a head-to-head comparison against other ap-
proaches, including I4, DistAI, FOL-IC3, and SWISS. DuoAI
outperforms all of the other approaches in terms of both the
number of protocols for which it finds an inductive invariant
and the speed at which it does so. DuoAI solves Paxos more
than two orders of magnitude faster than any other approach,
and is the only system that can solve more complex versions of
Paxos including multi-Paxos, stoppable Paxos, and fast Paxos.

2 Overview

We use a simplified consensus protocol as an example to
show how DuoAI works. Figure 1 shows the protocol written in
Ivy [28], a language and tool for specifying, modeling, and ver-
ifying distributed protocols built on top of the Z3 SMT solver.
Each node can vote for another node to be the leader, and when
a node receives votes from a quorum of nodes, it can become
the leader and decide on a value. The protocol state at any mo-
ment is represented by five relations (Lines 5-9). vote(n1,n2)

486    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



indicates whether node n1 has voted for node n2. voted(n)
indicates whether node n has ever casted a vote. leader(n) in-
dicates if n is the leader among nodes. decided(n,v) indicates
whether node n has decided on value v. member(n,q) indicates
if node n belongs to quorum q, where each quorum is a set of
nodes. The axiom (Line 10) dictates a property of the member
relation: any two quorums of nodes must have at least one node
in common. After initialization (Lines 13-16), the protocol
can non-deterministically transition from one state to another
as described by the three actions cast_vote, become_leader,
and decide (Lines 19-34). For example, cast_vote(n1,n2) lets
a node n1 vote for another node n2, under the precondition
that n1 has not voted before (Line 20). Then the protocol
will transition to a new state where vote(n1,n2) = true and
voted(n1) = true. Finally, the safety property (Line 36)
encodes the desired property of correctness of the protocol
that the system cannot decide on two different values.

The safety property is an invariant of the protocol, but is not
inductive as taking an action from a state satisfying the safety
property may result in a new state that breaks the safety prop-
erty. To verify the protocol, we need four additional invariants:

∀N1,N2 :node. vote(N1,N2)→voted(N1) (1)

∀N1,N2,N3 :node. vote(N1,N2)∧vote(N1,N3)→N2=N3 (2)

∃Q :quorum. ∀N1,N2 :node.

leader(N1)∧member(N2,Q)→vote(N2,N1) (3)

∀N :node.V :value. decided(N,V )→ leader(N). (4)

The first invariant says that if a node has voted for another node,
then it must be recorded as voted in the protocol. The second
says that one node cannot vote for two different nodes. The
third says that a leader must be endorsed by a quorum of nodes.
More specifically, we can find a quorum Q that every node N2
in the quorum must have voted for the leader N1. The fourth
says that only a leader can decide on a value. The conjunction
of the four invariants and the safety property is inductive.

To find this inductive invariant, DuoAI simulates the proto-
col using different instance sizes and logs the samples. It then
builds a minimum implication graph,a small fragment of which
is shown in Figure 2. The full graph for simplified consensus
has over 35K nodes and 170K edges. Nodes represent formulas
and edges represent implication between formulas. A stronger
formula will have a directed edge to an implied weaker formula.
DuoAI enumerates possible candidate invariants following the
graph and adds it to the candidate invariant set if it holds on the
samples. For example, DuoAI checks the root node in Figure 2
and it does not hold on the samples. DuoAI then checks its
implied weaker formulas, the two nodes in the second layer,
iteratively going down the graph. For the simplified consen-
sus protocol, enumeration ends with 19 candidate invariants,
including equivalent forms of Eq. (1), (2), (3), and (4).

After enumeration, DuoAI runs top-down and bottom-up
refinement in parallel. Top-down refinement feeds all
candidate invariants and the safety property to Ivy to see if
their conjunction is inductive. For simplified consensus, the

 N. vote(N,N)

 N. vote(N,N) 
 leader(N)

 N. vote(N,N) 
 leader(N)  
  voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N) 
 leader(N)

Figure 2: Fragment of the minimum implication graph for the
simplified consensus protocol.

conjunction is inductive, so no further weakening is required.
Bottom-up refinement feeds all ∀-only invariants from the
initial candidate set to Ivy then weakens them until the set
of invariants is itself inductive, but may not imply the safety
property. For simplified consensus, this universal core includes
three invariants Eq. (1), (2), and (4). DuoAI then tries to search
a small number of ∃-included invariants to add to the universal
core along with the safety property so that the resulting set
is inductive. DuoAI uses counterexamples from Ivy to guide
the search for additional invariants and eventually identifies
invariant (3) for the simplified consensus protocol, forming
an inductive invariant set. For simplified consensus, top-down
refinement succeeds more quickly than bottom-up refinement.

3 Minimum Implication Graph

The backbone of DuoAI is the minimum implication graph,
which encodes implication relations among formulas. The
graph is used to determine the order of formulas to be
enumerated, and how invariants are weakened. We present
formulas in prenex normal form, where the quantified
variables, called the prefix, appear at the beginning of the
formula followed by quantifier-free relations, called the matrix.
The matrix is required to be in disjunctive normal form (DNF).
For simplicity, here we only consider predicate symbols
with equality. The methods can be extended to uninterpreted
functions in the same manner as DistAI [38].

A formula P is strictly stronger than Q if P⇒Q and Q ̸⇒P.
For two formulas P,Q∈S , where S is a finite formula search
space, there is a directed edge from P to Q in the minimum
implication graph if and only if P is strictly stronger than Q
and there is no formula R which is strictly weaker than P while
strictly stronger than Q. For example, the fragment of the min-
imum implication graph in Figure 2 includes three formulas:

∀N. vote(N,N) (5)

∃N. vote(N,N) (6)

∃N1,N2. vote(N1,N2) (7)

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    487



Eq. (5)⇒(6) since if vote(N,N) is true for all N, there must ex-
ist some N for which it is true. Eq. (6)⇒(7) since if vote(N,N)
is true for some N, there must exist some N1 =N2 for which
vote(N1,N2) is true. Because Eq. (5)⇒ (6)⇒ (7), there is an
edge from Eq. (5) to (6), an edge from Eq. (6) to (7), but no
edge from Eq. (5) to (7), because Eq. (6) is between them.

DuoAI defines the search space S as all formulas in
disjunctive normal form for a given set of quantified variables
and formula size. The formula size is defined by four param-
eters: max_exists sets the maximum number of existentially
quantified variables, max_literal sets the upper bound of
the total number of literals in the formula, max_and sets the
maximum number of literals connected by AND, and max_or
sets the maximum number of conjunctions connected by OR.

The minimum implication graph has two important
properties as stated in Lemmas 1 and 2:

Lemma 1. The minimum implication graph is a directed
acyclic graph (DAG).

Proof. Suppose there is a cycle P1→P2→ ... →Pk →P1. The
edges P1→P2, ... , Pk−1→Pk imply that P1⇒P2, ... , Pk−1⇒
Pk. From the transitivity of ⇒ we know P1⇒Pk. Since there is
an edge from Pk to P1, we know P1 ̸⇒Pk, a contradiction.

Lemma 2. For any P,Q∈S , there is a path from P to Q in the
minimum implication graph if and only if P⇒Q∧Q ̸⇒P.

Proof. We first prove the “if” direction by induction on the
number of formulas in S that are strictly weaker than P while
strictly stronger than Q. For the base case, if there are zero
such formulas, then by definition there is an edge from P to
Q. Next we prove the induction step. Suppose for any P,Q∈S,
if P⇒Q∧Q ̸⇒P, and there is no more than n formulas that
are strictly weaker than P while strictly stronger than Q, then
there is a path from P to Q. Now consider the case that there
are n+1 formulas that are strictly weaker than P while strictly
stronger than Q. Let R be one of the n+1 formulas. We know
P⇒R∧R ̸⇒P, and there can be no more than n formulas that
are strictly weaker than P while strictly stronger than R. By
the induction hypothesis, there is a path from P to R. In the
same manner, we can show there is a path from R to Q. Then
we concatenate the two paths and get a path from P to Q.

Next we prove the “only if” direction. If there is a path
from P to Q, Let P,F1,F2, ...,Fk,Q be the path. We know
P ⇒ F1, ... , Fk ⇒ Q, so P ⇒ Q. We prove Q ̸⇒ P by
contradiction. Suppose Q ⇒ P, then P ⇔ Q, so there must
be an edge from Fk to P. This forms a cycle P,F1,...,Fk,P, a
contradiction to Lemma 1.

To build the minimum implication graph, we need to deter-
mine the “root” nodes in the graph, that is, formulas with no
predecessors since they cannot be implied by any other formula,
and how to find their successors. In DuoAI, a formula P∈S is
added to the set of root nodes if it falls into one of two cases:

1. P has no ∃-quantified variable and no logical OR. For
example:

∀N :node. vote(N,N)∧leader(N). (8)

2. P has unique ∃-quantified variables and no logical OR. For
example:

∃N1,N2 :node. N1 ̸=N2∧vote(N1,N2). (9)

Intuitively, if a formula has an ∃, then by changing it to a ∀, we
can get a stronger formula. If a formula has a logical OR, then
by removing the OR and any literals followed by it, we can get a
stronger formula. So in general, a root formula should have no∃
and no OR, such as Eq. (8). There is one exception, represented
by Eq. (9). At first sight Eq. (9) has a predecessor ∀N1,N2 :
node. N1 ̸= N2 ∧ vote(N1,N2). However, this formula is a
contradiction because ∀N1,N2 :node. N1 ̸=N2 cannot be true.
The minimum implication graph does not include tautologies
and contradictions, so Eq. (9) itself is a root formula.

Starting from the root nodes, DuoAI incrementally builds
the minimum implication graph. For formulas P,Q∈S, DuoAI
adds an edge from P to Q if the shapes of P and Q fall into one
of five cases:
1. P and Q share the same matrix. Q replaces the ∀-quantified

variables of one type with ∃-quantified variables. For
example:

P=∀N :node,V :value.¬decided(N,V )

Q=∃N :node. ∀V :value.¬decided(N,V ).

2. P and Q share the same prefix. Q has one less ANDed
literal than P. For example:

P=Eq.(8) Q=Eq.(5).

3. P and Q share the same prefix. Q has one more ORed
conjunction than P. For example:

P=∀N :node. vote(N,N)

Q=∀N :node. vote(N,N)∨(voted(N)∧leader(N)).

DuoAI requires that the ORed conjunction be maximal,
which means it contains the maximum number of literals for
the search space. The conjunction voted(N)∧leader(N) in
Q is maximal if max_and=2 or max_literal=3. For exam-
ple, Q′ = ∀N : node. vote(N,N)∨voted(N) also adds one
more ORed conjunction from P, but DuoAI does not add an
edge from P to Q′, because Q is strictly stronger than Q′.

4. Starting from P, Q projects two ∀-quantified variables of
the same type into one variable. For example:

P=∀N1,N2 :node. vote(N1,N2)∨leader(N1)

Q=∀N :node. vote(N,N)∨leader(N).

5. Starting from Q, P projects two ∃-quantified variables of
the same type into one variable. For example:

P=Eq.(6) Q=Eq.(7).

488    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



The graph constructed in this way may differ slightly from
the exact minimum implication graph due to equivalent formu-
las. For example, formulas ∀X . p(X)∨ (¬p(X)∧q(X)) and
∀X . p(X)∨q(X) fall into the second case, so there is an edge
in the constructed graph. However, the two formulas are equiv-
alent so there is no edge in the exact graph. We call the graph
constructed by DuoAI an approximate minimum implication
graph, whose properties are formalized in Lemmas 3, 4, and 5:

Lemma 3. The approximate minimum implication graph is
a directed acyclic graph (DAG).

Proof. For all of the five cases, we can show that for formulas
along any path in the approximate minimum implication
graph, there exists one function that is strictly increasing, so
there can be no cycle. For example, this is true for the function
(#∃-variables)−(#∀ variables)+(max_and∗(#∨))−(#∧),
where # denotes “the number of” (e.g., (# ∨) is the number
of logical OR in a formula).

Lemma 4. For any P,Q∈S , there is a path from P to Q in the
approximate minimum implication graph only if P⇒Q.

Proof. From the transitivity of ⇒, we only need to show
that if there is an edge from P to Q in the approximate
minimum implication graph, then P⇒Q. This can be proved
by showing P ⇒ Q holds in each of the five cases. The first
three cases are trivial. For the fourth case, in general P =
... ∀X1X2 ... matrix(X1,X2) and Q= ... ∀X1 ... matrix(X1,X1).
Let P′= ... ∀X1X2 ...X1=X2→matrix(X1,X2), then P⇒P′⇔
Q. Similarly, for the fifth case, P = ... ∃X1 ... matrix(X1,X1)
and Q= ...∃X1X2 ...matrix(X1,X2). Let Q′= ...∃X1X2 ...X1=
X2∧matrix(X1,X2), then P⇔Q′⇒Q.

Lemma 5. For any formula P∈ S that is not a tautology or
a contradiction, there exists a directed path from a root node
Q∈S to P in the approximate minimum implication graph.

Proof. We prove this by construction. For a ∃-free formula P,
if it includes no logical OR, then it is a root formula itself. Other-
wise, we find the root formula Q by removing all but one ORed
conjunctions. Starting from Q, we can iteratively apply the sec-
ond and third cases to add conjunctions and remove literals un-
til we reach P. For a ∃-included formula P, if it includes unique
∃-quantified variables then it is a root formula itself. Other-
wise, we iteratively find a predecessor by replacing ∃with∀ for
quantified variables of each type, until the formula becomes the
∃-free P′. The first case guarantees that there is a path from P′

to P, and we have already shown for the ∃-free P′, there exists a
path from a root node Q. Putting it together,we have a path from
Q to P in the approximate minimum implication graph.

In other words, the approximate minimum implication graph
is as useful and complete as the exact graph. DuoAI uses
the approximate minimum implication graph, which, for
simplicity, we will continue to refer to as the minimum
implication graph unless otherwise specified.

DuoAI requires that formulas in S must be in a decidable
fragment of first-order logic. In general, satisfiability in first-
order logic is undecidable [23], so an SMT solver can get
stuck in infinite instantiations and never give the sat/unsat
answer. DuoAI ensures that the formulas are decidable by
enforcing a fixed order of types if there is quantifier alterna-
tion (i.e., alternating ∀ and ∃) [1]. If type A is ordered be-
fore type B, then for any formula, if there exists a quanti-
fied variable V of type A, any quantified variable of type B
can only occur after V if there is quantifier alternation. For
example, if type node is ordered before type packet, then
∀N : node. ∃P : packet and ∃N : node. ∀P : packet are al-
lowed while ∀P : packet. ∃N :node and ∃P : packet. ∀N :node
are not. DuoAI tries to infer the order of types from the protocol
specification and obtains input from the user when necessary.
For example, for the simplified consensus protocol, DuoAI can
infer from Line 10 that type quorummust be ordered before type
node, then ask the user to place type value in the order. Absent
user input, DuoAI will try different possible orders in parallel.

4 Candidate Invariant Enumeration

Similar to DistAI [38], DuoAI first repeatedly simulates the
distributed protocol using various instance sizes, and records
the reached states as samples. For example, DuoAI simulates
the simplified consensus protocol on concrete instances of
different numbers of values, quorums, and nodes. The simu-
lations of different instance sizes are done in parallel and yield
samples of different lengths. DuoAI follows the minimum
implication graph to enumerate candidate invariants, but rather
than feeding all of them to an inefficient SMT solver, it checks
them directly on the samples first. A correct invariant must hold
on every reachable protocol state and thus on every sample. A
key difference between DuoAI and DistAI is that DuoAI keeps
the original variable-length samples and uses them in invariant
enumeration, while DistAI projects all samples to fixed-length
vectors that it calls subsamples. The problem is that DistAI
is not exhaustive in its subsampling, so that a formula with
existential quantifiers that holds for DistAI’s subsamples may
not actually hold for the original samples. DuoAI avoids this
problem by effectively considering all possible subsamples
that can be derived from the original samples.

Algorithm 1 shows the enumeration algorithm, in which
pending is a queue whose elements are formulas that will be
checked on the samples, candidates is the set of formulas that
hold on all the samples and invalidated is the set of formulas
that do not hold on at least one of the samples. Both candidates
and invalidated are initially empty (Lines 2-3), and pending
initially consists of the root nodes of the minimum implication
graph, that is, formulas that cannot be implied by any other for-
mula. In each iteration, a formula f is popped from the pending
queue (Line 5). If one of f ’s ancestors in the graph has already
been added to candidates, DuoAI will not check f on the
samples or add f to the candidates invariants (Lines 6-7). Oth-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    489



pending candidates invalidated

 N. vote(N,N)

 N. vote(N,N) 
 leader(N)

 N. vote(N,N)  
 leader(N)  
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N) 
 leader(N)

A

B C

D E F

 N. vote(N,N)

 N. vote(N,N) 
 leader(N)

 N. vote(N,N)  
 leader(N)  
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N) 
 leader(N)

A

B C

D E F

 N. vote(N,N)

 N. vote(N,N) 
 leader(N)

 N. vote(N,N)  
 leader(N)  
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N) 
 leader(N)

A

B C

D E F

 N. vote(N,N)

 N. vote(N,N) 
 leader(N)

 N. vote(N,N)  
 leader(N)  
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N) 
 leader(N)

A

B C

D E F

Figure 3: Invariant enumeration procedure based on the minimum implication graph. Suppose formula A and formula C do not hold on all the
samples, while the other four formulas hold. Step 1: Only the root node A is in the pending queue. Step 2: The root node A is invalidated by the
samples. We add its two successors B and C to the pending queue. Step 3: Formula B holds on the samples thus being added to candidates, while
formula C is invalidated and its two successors E and F are added to the pending queue. Step 4: Formula E has an ancestor B which is already
in candidates, so E is simply skipped instead of being checked on the samples. Formula F holds on the samples and is added to candidates.

Algorithm 1 Invariant Enumeration Algorithm

Input: Distributed protocol P , invariant search
space S , a set of samples from protocol simulation samples
Output: Candidate invariants

1: graph := build_minimum_implication_graph(P ,S )
2: candidates, invalidated := /0, /0
3: pending := graph.rootNodes
4: while pending.notEmpty() do
5: f := pending.dequeue()
6: if graph.ancestors( f ) ∩ candidates ̸= /0 then
7: continue
8: if check_inv_holds( f , samples) then
9: candidates := candidates ∪ { f }

10: else
11: invalidated := invalidated ∪ { f }
12: for next_ f ∈ graph.successors( f ) do
13: if next_ f /∈ candidates and next_ f /∈ invalidated

and next_ f /∈ pending then
14: pending.enqueue(next_ f )
15: return candidates

erwise, DuoAI will check f on the samples and if it holds, add
it to candidates (Lines 8-9). If f does not hold on at least one
sample, DuoAI will add it to invalidated (Line 11), and add its
successors, which are formulas weaker than f , to the pending
queue if they have not already been added (Lines 12-14).

Figure 3 shows an example of invariant enumeration using
the graph in Figure 2. DuoAI starts from the root nodes,
iteratively goes down the minimum implication graph, and
checks formulas against the samples. Because of this design,
formulas D and E are never checked against the samples and
are not added to the candidates, because their predecessor B,
a formula stronger than both D and E, is already a candidate
invariant. This design not only saves time checking formulas
on samples, but also avoids burdening the SMT solver later

with checking the inductiveness of redundant invariants.
More importantly, this procedure guarantees that the resulting
invariants, formulas B and F in this example, are the strongest
candidate invariants that hold on the samples, which is
formally stated in the following theorem:

Theorem 1. For any correct invariant I ∈ S held by the
protocol P , at the end of invariant enumeration, either 1)
I∈candidates, or 2) one of I’s ancestors Ianc∈candidates.

Proof. Consider three cases: 1) I has been checked on the
samples, 2) I has been added to the pending queue but was
not checked on samples, and 3) I has been never added to the
pending queue. In the first case, since I is a correct invariant
held by the protocol, it must hold on all the samples and will be
added to candidates (Lines 8-9), so I∈candidates. In the sec-
ond case, after I is popped from the pending queue, there must
be an ancestor Ianc of I already in candidates (Line 6), other-
wise I will be checked on the samples, so Ianc ∈ candidates.
In the third case, we show that an ancestor Ianc ∈ candidates
exists. From Lemma 5, there must be a path from a root node I0
to I, namely I0,I1,...,I. On Line 3 the root node I0 is added to the
pending queue. Since I0 is added to the pending queue and I
is not, let Ik be the last formula on the path I0,I1,...,I that is ever
added to the pending queue. After Ik is dequeued, there are
three possible branches to take: Lines 6-7, Lines 8-9, or Lines
10-14. If it takes Lines 6-7, then there is an ancestor Ianc of Ik
such that Ianc∈candidates. If it takes Lines 8-9, then Ik will be
added to candidates so Ik can be the ancestor Ianc of I such that
Ianc∈candidates. If it takes Lines 10-14, its successors will be
added to the pending queue unless the branch condition at Line
13 evaluates to false. From our hypothesis, Ik is last formula on
path I0,...,Ik,Ik+1,...,I that is ever added to the pending queue.
Thus, the branch condition for Ik+1 must evaluate to false, so
either Ik+1∈candidates or Ik+1∈ invalidated. However, Ik+1
must be added to the pending queue before it can be added
to either candidates or invalidated, a contradiction.

Theorem 1 says that any correct invariant has either itself or

490    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A

D

E

B

F
G

H

C D

E

F
G

H

correct
invariants candidates

A B

C

Figure 4: Possible (left) and impossible (right) candidate invariants
after enumeration. Formulas C and E are correct invariants held by the
protocol. It is possible that after enumeration, candidates={C,D}
(left). Correct invariant C is in the candidate invariants itself. For
correct invariant E, its ancestor D is in the candidate invariants.
Theorem 1 guarantees that candidates= {B,F} is not a possibility
after enumeration, because for correct invariant C, neither itself nor
its lone ancestor A is in the candidate invariants.

its ancestor (a stronger formula) in the candidate invariants.
Figure 4 gives an illustration. A direct corollary is that, the
set of candidate invariants after the enumeration is at least as
strong as the correct invariant in S .

5 Top-down Invariant Refinement

Based on Theorem 1, the candidate invariants can only be too
strong, so DuoAI can monotonically weaken the candidate
invariants until a correct inductive invariant is reached, which
we refer to as top-down invariant refinement. Algorithm 2
shows the top-down refinement algorithm. In each iteration,
DuoAI feeds the current candidate invariants to Ivy. Ivy
invokes the Z3 SMT solver to check the inductiveness of
each candidate invariant and the safety property. Ivy will
return which invariants fail the check; if there are none, the
correct inductive invariant has been found (Lines 4-5). If
the safety property fails, there is no point to weaken it, and
the system returns NotProvable (Lines 6-7). If one of the
candidate invariants fails, DuoAI moves it from candidates to
invalidated (Lines 9-10), then adds its successors (i.e., formu-
las that can be implied by the failed invariant) to candidates
so long as the successor does not have a reachable ancestor in
candidates and has not already been invalidated (Lines 12-13).
An ancestor of a node is reachable if there is a path from the
ancestor to the node along which no node is invalidated.

Figure 5 shows an example of top-down refinement.
Suppose the current candidate invariants include formulas B
and F, and by invoking the Z3 SMT solver, Ivy indicates that
B is not inductive. Formulas D and E are not in candidates,
because they can be implied by formula B which is already
in candidates. After B is invalidated, both D and E will be
added to candidates to let Ivy decide their inductiveness in
future iterations. Alternatively, if formula F is invalidated by
Ivy, no formula will be added to candidates because F has no
successor in the minimum implication graph of search space S .

Algorithm 2 Top-down Invariant Refinement Algorithm

Input: Distributed protocol P , minimum implication
graph graph, candidate invariants from enumeration CI
Output: Either an inductive invariant II, or NotProvable

1: candidates, invalidated := CI, /0

2: while candidates.notEmpty() do
3: failed_inv := Ivy_check(P , candidates)
4: if failed_inv is None then
5: return candidates
6: else if failed_inv = safety_property then
7: return NotProvable
8: else
9: candidates := candidates \ {failed_inv}

10: invalidated := invalidated ∪ {failed_inv}
11: for next_inv ∈ graph.successors(failed_inv) do
12: if graph.reachable_ancestors(next_inv) ∩

candidates = /0 and next_inv /∈ invalidated then
13: candidates := candidates ∪ {next_inv}
14: return NotProvable

By weakening failed invariants based on the minimum
implication graph rather than discarding them, DuoAI can
guarantee that it never overweakens invariants to bypass
the correct invariants in between. In other words, top-down
refinement has a theoretical guarantee to eventually find an
inductive invariant if one exists in the search space, as stated
in the following theorem:

Theorem 2. For any protocol P and finite search space S , if
there exists an inductive invariant II∗⊂S that can prove the
safety property, then Algorithm 1 followed by Algorithm 2 will
output such an inductive invariant II in finite time.

Proof. The key is to prove that the while loop (Lines 2-13)
maintains the following loop invariant: For any invariant
I∈ II∗, either 1) I∈candidates, or 2) there exists a reachable
ancestor Ianc of I such that Ianc ∈ candidates. The loop
invariant says that after any rounds of invariant weakening,
the candidate invariants must be still at least as strong as the
correct invariants. If Algorithm 2 terminates, it is impossible
to have the safety property fail (Line 7). The only possibility
is that a correct inductive invariant is returned (Line 5).

Theorem 1 guarantees that the loop invariant holds before
entering the loop. We only need to prove that if this loop invari-
ant holds at the beginning of round k of invariant weakening,
it must still hold at the beginning of round k+1. This proof is
done by construction for each I∈ II∗. From the induction hy-
pothesis, at the beginning of round k, either 1) I∈candidates,
or 2) a reachable ancestor Ianc∈candidates. In the first case, I
cannot have been invalidated during round k because I∈ II∗, so
I∈candidates still holds at the beginning of iteration k+1. In
the second case, the invalidated invariant must either be on or

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    491



candidates invalidated

 N. vote(N,N)

 N. vote(N,N) 
 leader(N)

 N. vote(N,N)  
 leader(N)  
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N) 
 leader(N)

A

B C

D E F

 N. vote(N,N)

 N. vote(N,N) 
 leader(N)

 N. vote(N,N)  
 leader(N)  
 voted(N)

 N. vote(N,N)

 N1 N2.
vote(N1,N2)

 N. vote(N,N) 
 leader(N)

A

B C

D E F

Figure 5: One round of top-down refinement. Suppose candidate
invariant B fails the Ivy check. DuoAI removes B from candidates
and adds its successors D and E to candidates.

not on the path from Ianc to I. If it is not on the path, Ianc remains
a reachable ancestor of I and Ianc∈candidates still holds at the
beginning of iteration k+1. If it is on the path, let Id be the suc-
cessor of the invalidated invariant on the path. From Lines 11-
13, either Id is added to candidates, in which case Id can be the
new Ianc for iteration k+1, or Id has a reachable ancestor Ie∈
candidates, in which case we choose Ie as the new Ianc for itera-
tion k+1. In all cases, we can find either I or a reachable ances-
tor Ianc in the candidate set, therefore the loop invariant holds.

Now we only need to prove that Algorithm 2 terminates,
which follows from three observations: 1) In each loop
iteration a formula is removed from candidates (Line 9); 2)
each formula can only be added to candidates once (Lines 10
& 12); and 3) the formula search space S is finite.

6 Bottom-up Invariant Refinement

Although top-down refinement provides a strong theoretical
guarantee of finding an inductive invariant, it may take too
long or run out of memory given limited computing resources
if there are too many unnecessary invariants to consider. For
the simplified consensus protocol in Figure 1, besides the
four invariants (1)(2)(3)(4), many other invariants hold for the
protocol but are unnecessary to prove the inductiveness of the
safety property, for example,

∀V :value, Q :quorum. ∃N :node.

member(N,Q)∧(leader(N)∨¬decided(N,V )). (10)

Invariants such as Eq. (10) do not affect the soundness of
DuoAI, but they will significantly slow down the validation
of candidate invariants by the SMT solver. If there are m
candidate invariants, validating each invariant takes O(m)
time in the worst case, since the inductiveness of one invariant
can depend on any other invariant, so checking all candidate
invariants can take O(m2) time. Adding unnecessary invariants
can increase validation time quadratically.

The key issue though is not just how many unnecessary
invariants there are, but whether they have quantifier alter-
nation (i.e., alternating ∀ and ∃), which we observe causes

Algorithm 3 Bottom-up Invariant Refinement Algorithm

Input: Distributed protocol P , minimum implication
graph graph, candidate invariants from enumeration CI
Output: Either an inductive invariant II, or NotProvable

Procedure 1
1: CI∀ :={I|I∈CI∧I is ∃-free}
2: core := Algorithm2(P , graph∀, CI∀)
3: noncore :=CI\core

Procedure 2
4: CE := /0

5: for sub in powerset(noncore) do
6: if ∃s∈CE. invs_hold_on_state(sub,s) then
7: continue
8: result := Algorithm2(P , graph, core∪sub)
9: if result = NotProvable then

10: s a−→s′ := get_counterexample()
11: CE :=CE∪{s}
12: else
13: return result
14: return NotProvable

SMT solvers to struggle. For the Paxos protocol, a correct
inductive invariant set of size 14 can be validated in less than
a second. If we add 10 correct but unnecessary invariants with
quantifier alternation, the validation will take 5 minutes. If we
add 20 such invariants, the validation will take over 3 hours.In
contrast, the chord ring maintenance protocol [21] with 149
∀-only invariants only takes 8 seconds to validate.

However, a correct distributed protocol typically has a clear
and human-understandable intuition, which leads to concise
invariants [10]. This motivates our bottom-up invariant
refinement algorithm shown in Algorithm 3. In essence, the
algorithm tries to identify a small set of correct and helpful
invariants that can eventually prove the safety property. §8
shows that the combination of bottom-up with top-down
refinement provides fast performance for finding inductive
invariants across a wide-range of protocols.

Algorithm 3 consists of two procedures. In Procedure 1,
DuoAI first extracts all the∀-only invariants from the candidate
invariants (Line 1), which are guaranteed to be the strongest ∀-
only invariants that hold on the samples. Then, DuoAI runs the
top-down refinement algorithm (Line 2) using only the univer-
sal invariants and the universal portion of the minimum impli-
cation graph by removing all nodes representing existentially
quantified formulas. The safety property is neglected in this top-
down refinement. In this way, the ∀-only invariants are mono-
tonically weakened until they become inductive, regardless of
whether the safety property can be proved (it probably cannot).
Recall that we call the now inductive ∀-only invariants the
universal inductive core. DuoAI then puts every enumerated
candidate invariant that is not in the universal inductive core

492    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



into noncore (Line 3). noncore mainly consists of formulas
with existential quantifiers, but also includes ∀-only formulas
that are not in the core, whose inductiveness may depend on ∃-
included invariants. For example, for the simplified consensus
protocol, the universal inductive core includes five candidate
invariants, which are exactly the equivalent forms of Eq. (1),
(2), and (4). There are 14 non-core candidate invariants, 13 of
which have quantifier alternation, including Eq. (3) and (10).

Based on our observation that SMT solvers struggle with
quantifier alternation, we expect noncore formulas will have
a much higher cost of checking. Procedure 2 aims to identify a
small subset of noncore to strengthen the candidate invariants,
such that the conjunction of the universal inductive core and
the subset (denoted as core∪sub), or their weaker forms, can
prove the safety property. Procedure 2 enumerates each subset
sub of noncore (Line 5), and runs the monotonic weakening
algorithm (Algorithm 2) on core∪sub (Line 8). If Algorithm 2
returns NotProvable (Line 9), DuoAI moves on to consider the
next subset. Otherwise, Algorithm 2 outputs a correct inductive
invariant (Line 13). The enumeration of subsets is conducted
in increasing order of size, starting from the /0, followed by all
single formulas from noncore, then pairs, triples, and so on.

Whenever Algorithm 2 finds the safety property failed
and reports NotProvable, Ivy returns a counterexample
of inductiveness s a−→ s′ (Line 10), which means starting
from a protocol state s satisfying the safety property and
the candidate invariants, and taking an action a, the system
reaches a new state s′ where the safety property is violated.1

If we view the samples from protocol simulation as positive
samples on which the invariants must hold, then we can view
these counterexample states s as negative samples which
the invariants must exclude. DuoAI needs to identify and
include another invariant I that does not hold on s, so that the
counterexample s a−→ s′ can be excluded. When enumerating
a subset of noncore, Procedure 2 first checks if the subset
can exclude all counterexamples seen so far (Line 6). If there
exists one counterexample state s on which all invariants in
the subset hold, or in other words, the counterexample cannot
be excluded, the monotonic weakening algorithm is bound
to fail, because if a stronger invariant cannot exclude the coun-
terexample, then its weaker forms cannot either. So Procedure
2 simply moves on to enumerate the next subset (Line 7).

For the simplified consensus protocol, when sub = /0, the
safety property fails and Ivy gives the counterexample s =
{vote(n1,n1) = vote(n1,n2) = vote(n2,n1) = vote(n2,n2) =
f alse, voted(n1) = voted(n2) = f alse, leader(n1) =
leader(n2) = true, member(n1, q) = member(n2, q) =
true, decided(n2, v1) = true, decided(n1, v1) =
decided(n1, v2) = decided(n2, v2) = f alse}. Eq. (3)
does not hold on s, so it can exclude this counterexample.
In contrast, Eq. (10) holds on s, so the counterexample will

1In general, other than showing an invariant is not inductive, a counterex-
ample may also show an invariant does not hold at the protocol initial state.
But this cannot happen to the safety property, unless the protocol is wrong.

persist even if Eq. (10) is added to the candidate set. Therefore,
DuoAI will skip Eq. (10) and try Eq. (3), and run Algorithm 2
on its conjunction with the universal core, which gives a
correct inductive invariant set consisting of Eq. (1)(2)(3)(4).

Although counterexamples can be used for top-down re-
finement, DuoAI currently does not because Ivy cannot return
counterexamples in batch. When Ivy is configured to return a
counterexample, it terminates once it identifies the first broken
invariant. This is inefficient for top-down refinement, but for
bottom-up refinement, counterexamples are only needed for
the safety property, so DuoAI puts the safety property on top of
other invariants and Ivy will give the desired counterexample.

Like top-down refinement, bottom-up refinement has a theo-
retical guarantee to eventually find an inductive invariant if one
exists in the search space, as stated in the following theorem:

Theorem 3. For any protocol P and finite search space S , if
there exists an inductive invariant II∗⊂S that can prove the
safety property, then Algorithm 1 followed by Algorithm 3 will
output such an inductive invariant II in finite time.

Proof. We first prove that Algorithm 3 terminates in finite time.
This directly follows from three facts: 1) powerset(noncore)
is a finite set so the for loop (Line 5) has a finite number
of iterations; 2) In each loop iteration, there is at most one
invocation of Algorithm 2 (Line 8); and 3) From Theorem 2,
Algorithm 2 terminates in finite time.

To prove the soundness of Algorithm 3, we first observe
that if Algorithm 3 outputs an invariant, it must be a correct
inductive invariant, because the output must come from
Algorithm 2, in which the output can only occur when the
safety property is proved.

Now we prove that there will be an output invariant
eventually. Observe that noncore∈ powerset(noncore) (Line
5). When sub=noncore, we have CI⊂core∪sub, then Line 8
degenerates to Algorithm 2 in §5. From Theorem 2, we know
a correct inductive invariant will be outputted.

For both the top-down and bottom-up refinement, if
NotProvable is returned, we know the protocol cannot be
verified using invariants in the search space S . DuoAI will
try a larger search space by increasing either max_literal,
max_or, max_and, or max_exists, or the per-domain number
of quantified variables. By default, DuoAI alternates among
the five in a round-robin manner. DuoAI sets the initial
max_literal=4, max_or=max_and=3, and max_exists=1
unless the safety property already involves k≥2 existentially
quantified variables, in which case DuoAI sets max_exists=k.
DuoAI sets the initial number of quantified variables for
domain T as the maximum number of variables of type T in any
relation. For example, the relation vote(N1:node,N2:node)

guarantees type node has at least two variables.
Because SMT solvers are much less efficient at checking

invariants with existential quantifiers, and many distributed
protocols are provable by ∀-only invariants [21], DuoAI runs

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    493



a ∀-only instance (i.e., max_exists=0) in parallel. The ∀-only
instance only runs top-down refinement, as bottom-up refine-
ment degenerates to the same top-down refinement (Line 2).

7 Optimizations Based on Mutual Implication

In using the minimum implication graph, DuoAI introduces
several optimizations based on mutual implication relations
among formulas. These relations further prune the search
space and avoid redundant candidate invariants. DuoAI
considers two kinds of mutual implication relations, 1)
P1∧P2∧ ...∧Pk ⇒Q, and 2) P1∧P2∧ ...∧Pk ⇔Q. Although
the latter is a special case of the former, DuoAI treats them
differently. We refer to Q as a conjunction implied formula
in the former and an equivalently decomposable formula
in the latter. Since checking inductiveness has a quadratic
complexity with the number of invariants, these optimizations
have a significant improvement on efficiency.

Conjunction implied formulas. DuoAI identifies conjunc-
tion implied formulas to avoid redundant candidate invariants.
Given a mutual implication relation P1∧P2∧ ...∧Pk ⇒Q, if
all P1,P2,...Pk are already in the candidate invariants, DuoAI
will mark Q as a conjunction implied formula and not add Q
to the candidate invariants. Later during refinement, if one of
P1,P2,...Pk is invalidated by Ivy, then the conjunction implied
invariant Q is no longer redundant and will be added to the
candidate invariants.

For example, suppose we have a disk replication protocol
with the following three invariants:

∀E :epoch, R :replica. crashed(E,R)→¬readable(E,R) (11)

∀E :epoch. ∃R :replica. readable(E,R) (12)

∀E :epoch. ∃R :replica.¬crashed(E,R). (13)

One can check that among Eq. (11)(12)(13), no formula can
imply another. But the conjunction of Eq. (11) and (12) can im-
ply Eq. (13). This is because Eq. (12) says that for every epoch
E, there must be a readable replica R. Then from Eq. (11), the
readable replica R cannot be crashed. Therefore, for every
epoch E, there must be a replica R that does not crash, which
is expressed by Eq. (13). If Eq. (11) and (12) are already can-
didate invariants, DuoAI will mark Eq. (13) as a conjunction
implied formula and not add it to the candidate invariants.

There are many classes of mutual implication relations in
first-order logic. DuoAI identifies three classes of conjunction
implied formulas to prune candidate invariants; in each class,
the first two formulas mutually imply the third:

1. Replace a literal with a weaker literal, as discussed in the
example Eq. (11)(12)(13):

P1=∀X . r(X)→s(X)

P2= pre f ix. (r(X)∧...)∨...
Q= pre f ix. (s(X)∧...)∨...

2. Conjunct a literal with a weaker literal:

P1=∀X . r(X)→s(X)

P2= pre f ix. (r(X)∧...)∨...
Q= pre f ix. (r(X)∧s(X)∧...)∨...

3. “Merge” a ∀ formula and an ∃ formula:

P1=∃X . r(X)

P2=∀X . s(X)∨...
Q=∃X . (r(X)∧s(X))∨...

In all three classes, r and s can be generalized to conjunctions
(e.g., r1(X) ∧ ¬r2(X), ¬s1(X) ∧ s2(X) ∧ s3(X)). A key
advantage of this optimization is that given a finite search
space, DuoAI can identify conjunction implied formulas
based on invariants within that search space, even though the
conjunction of invariants is not in that search space.

Equivalently decomposable formulas. DuoAI also iden-
tifies equivalently decomposable formulas to avoid redundant
candidate invariants. Given a mutual implication relation
P1∧P2∧ ...∧Pk ⇔Q, DuoAI will mark Q as an equivalently
decomposable formula and never add Q to the candidate
invariants. Later during refinement, if one of P1,P2,...Pk is inval-
idated by Ivy, Q will also be invalidated and therefore there is
never any reason to consider Q further as a candidate invariant.

For example, suppose the disk replication protocol has
invariant:

∀E :epoch. ∃R1,R2 :replica.

readable(E,R1)∧writable(E,R2). (14)

There is no need to ever include such an invariant in the
candidate set, because it is equivalently decomposable to
invariants (15) and (16).

∀E :epoch. ∃R :replica. readable(E,R) (15)

∀E :epoch. ∃R :replica. writable(E,R). (16)

However, suppose we slightly modify invariant (14) to one
of the following two formulas:

∀E :epoch. ∃R1 :replica.

readable(E,R1)∧writable(E,R1) (17)

∀E :epoch. ∃R1,R2 :replica.

R1 ̸=R2∧readable(E,R1)∧writable(E,R2). (18)

These invariants are not equivalently decomposable to
invariants (15) and (16). Take Eq. (17) as an example. One can
verify that (17)⇒ (15)∧(16), but (15)∧(16) ̸⇒ (17), because
Eq. (17) requires the same replica to be both readable and
writable, while for Eq. (15) and (16), it is possible to have one
readable replica and a different writable replica.

DuoAI identifies if a formula is equivalently decomposable
based on the structure of the formula itself by considering two
classes of equivalently decomposable formulas. One class is
embodied by the following lemma:

494    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Lemma 6. For a formula F in prenex and disjunctive normal
form, we build a graph GC for each conjunction C in F. GC has
one node for each literal, and an edge between two literals if
and only if they share an existentially quantified variable. If for
some C in F, the graph GC has k≥2 connected components,
then F is equivalently decomposable into k formulas.

Proof. For simplicity, here we show the proof for k=2 (i.e., the
literals inC form two connected components). If there are k>2
connected components, then the same analysis below will show
that formula F is equivalently decomposable into k formulas.

Literals that share∃-variables must be in the same connected
component. So we can divide the ∃-variables into two sets
{Y1,...,Ym} and {Z1,...,Zn}. The first connected component
can only include ∃-variables Y1, ...Ym, while the second can
only include Z1,...,Zn. Assume the quantifier prefix has shape
∀X1 ...Xs∃Y1 ...Ym Z1 ...Zn. We use X⃗ ,Y⃗ , Z⃗ to denote X1 ...Xs,
Y1 ...Ym, and Z1 ...Zn. The proof can be generalized to any
alternating ∀/∃ using skolemization.

Let f (X⃗ , Y⃗ ) be the disjunction of literals in the first
connected component, and g(X⃗ , Z⃗) be the disjunction of
literals in the second connected component. Let h(X⃗ ,⃗Y ,⃗Z) be
the disjunction of all conjunctions other than C in formula F .
Then formula F can be rewritten as:

∀X⃗ ∃⃗Y Z⃗. ( f (X⃗ ,⃗Y )∧g(X⃗ ,⃗Z))∨h(X⃗ ,⃗Y ,⃗Z). (19)

We now show that, Eq. (19) is equivalently decomposable into:

∀X⃗ ∃⃗Y Z⃗. f (X⃗ ,⃗Y )∨h(X⃗ ,⃗Y ,⃗Z) (20)

∀X⃗ ∃⃗Y Z⃗. g(X⃗ ,⃗Z)∨h(X⃗ ,⃗Y ,⃗Z). (21)

It is trivial that Eq. (19) implies both Eq. (20) and (21). We now
show the interesting direction — the conjunction of Eq. (20)
and (21) implies Eq. (19). Suppose both Eq. (20) and (21) hold.
For any X⃗ , consider two cases: 1) ∃⃗Y Z⃗. h(X⃗ , Y⃗ , Z⃗). In this
case Eq. (19) directly holds. 2) ∀⃗Y Z⃗. ¬h(X⃗ ,Y⃗ , Z⃗). Then ac-
cording to Eq. (20), ∃Y⃗1Z⃗1. f (X⃗ ,Y⃗1). Similarly, from Eq. (21),
∃Y⃗2Z⃗2. g(X⃗ ,Z⃗2). If we select Y⃗1 and Z⃗2, then we have f (X⃗ ,Y⃗1)∧
g(X⃗ ,Z⃗2), so Eq. (19) still holds. Putting the two cases together,
when both Eq. (20) and (21) are true, Eq. (19) must be true.

The proof also gives an algorithm to find the k decomposed
formulas. Figure 6 shows how to apply Lemma 6 on the
aforementioned formulas. For Eq. (14), the two literals
readable(E,R1) and writable(E,R2) share no ∃-quantified
variable (E is∀-quantified), so there is no edge between the two
literals. The graph has two connected components, so Eq. (14)
is equivalently decomposable into two formulas (Eq. (15)(16)).
For Eq. (17), the two literals share an ∃-quantified variable
R1, so there is an edge between the two literals and the graph
is connected, which means Eq. (17) cannot be decomposed
in this way. The same analysis can be applied to Eq. (18).

We note a corollary of Lemma 6. For an ∃-free formula,
it is equivalently decomposable if it has any conjunction.

readable 
(E,R1)

writable 
(E,R2)

readable 
(E,R1)

writable 
(E,R1)

R1

readable 
(E,R1)

writable 
(E,R2)

R1 != R2

R1

R2

Figure 6: Checking equivalently decomposability of formulas
(14)(17)(18) (from left to right).

For example, ∀X . p(X) ∧ q(X) is equivalent with the pair
∀X . p(X) and ∀X . q(X). This indicates that we do not need to
consider any conjunction when enumerating ∀-only formulas,
a significant reduction in search space.

The other class of equivalently decomposable formulas that
DuoAI identifies is embodied in the following:

∀X1X2. matrix(X1,X2) (22)
∀X1. matrix(X1,X1) (23)
∀X1X2. X1 ̸=X2→matrix(X1,X2) (24)

One can check that Eq. (22) is equivalently decomposable
to Eq. (23) and (24), and will therefore not be added as
a candidate invariant. In general, DuoAI only considers
formulas whose leading ∀-quantified variables are unique.
Similar optimizations have been used in DistAI [38].

8 Evaluation

Experimental setup. To demonstrate the performance
of DuoAI, we implemented and evaluated DuoAI on 27
distributed protocols from multiple sources [12, 13, 21, 27, 28],
including those that can only be proved by inductive invariants
with ∃-quantifiers. The DuoAI implementation consists
of 6.1K lines of C++ code for invariant enumeration and
refinement, compiled by gcc 7.5.0, and 2.3K lines of Python
code running with Python 3.8.10 for protocol simulation.
For comparison, we also ran 6 other invariant inference
tools: SWISS [10], IC3PO [8, 9], FOL-IC3 [13], DistAI [38],
UPDR [12], and I4 [21]. All experiments were performed on
a Dell Precision 5829 workstation with a 4.3GHz 28-core Intel
Xeon W-2175, 62GB RAM, and a 512GB Intel SSD Pro 600p,
running Ubuntu 18.04.

We configured the alternative invariant inference tools
following their best practices. SWISS requires the user to
bound the search space by specifying 4 parameters, including
the number of existentially quantified variables and the number
of literals in a formula. For every protocol, we use the same
parameter settings as in SWISS’s own evaluation [10]. IC3PO
and I4 require the user to specify a finite instance size for their
model checkers to work on. For IC3PO, we only specified
the minimum size and the tool itself could determine how to
increase the instance size. For I4, we started from the minimum
size where the protocol can function and iteratively increased

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    495



the instance size upon failure (e.g., node = 2,node = 3, ...).
FOL-IC3 provides a ∀-only mode and a default mode. We ran
both and report the runtime of whichever succeeded first.

Results summary. Table 1 shows the running time in
seconds for each tool on each protocol. For each protocol, we
also report the number of relations and lines of code in its Ivy
specification; for example, Figure 1 is a simplified version of
consensus epr. The top portion of the table shows protocols
provable with a ∀-only inductive invariant, while the bottom
portion shows protocols that can only be proved with a ∃-
included inductive invariant. We allowed each tool to spend up
to an entire week trying to solve each protocol. For protocols
that a tool fails to solve, we report “fail” if the tool terminated
without an inductive invariant, “error” if the tool itself returned
an error, “Z3 error” if the underlying SMT solver used returned
an error, “memout” if the tool ran out of memory and termi-
nated, and “timeout” if the tool did not complete within a week.

DuoAI dominates all other tools in the number of protocols
it solves, solving all but 1 of the 27 protocols. SWISS cannot
solve 8 protocols, FOL-IC3 and IC3PO cannot solve 9
protocols, DistAI and UPDR cannot solve 13 protocols, while
I4 cannot solve 15 protocols. DuoAI is the only tool that solves
all ∀-only protocols, is the only tool that solves Paxos as well
as all other non-Paxos protocols with ∃ quantifiers, and is the
only tool that solves 3 of the more complex Paxos variants,
including multi-Paxos, stoppable Paxos, and fast Paxos. There
were no protocols solvable by another tool that were not solved
by DuoAI.

DuoAI also dominates all other tools in how fast it solves the
protocols, solving 15 of the protocols faster than any other tool.
DuoAI is faster than SWISS on all but 3 of the protocols solved
by SWISS, is faster than IC3PO on all but 3 of the protocols
solved by IC3PO, is faster than FOL-IC3 on all but 2 of the
protocols solved by FOL-IC3, and is faster than UPDR on all
of the protocols solved by UPDR. DuoAI is up to 3 orders of
magnitude faster than each of these protocols. DuoAI is faster
than DistAI on all but 5 of the protocols solved by DistAI,
and is faster than I4 on all but 2 of the protocols solved by I4.
DuoAI is up to an order of magnitude faster than either DistAI
or I4. The speed differences versus DistAI and I4 appear less
in part because neither could solve any of the protocols with
existential quantifiers. In most cases in which DuoAI is slower
than other protocols, it is by at most a few seconds.

Detailed comparison and discussion. For the protocols
provable with ∀-only invariants, DuoAI is the only tool that
solves all 15 protocols. On ∀-only protocols, DuoAI’s ∀-only
instance is similar to DistAI, without subsampling and with
mutual implication optimization and parallelism in simulation.
DuoAI beats DistAI on 10 protocols. Unlike DuoAI, DistAI
times out on ticket lock, which we discovered is due to a bug
in the implementation of its protocol simulation. Chord ring
maintenance is the only protocol on which DuoAI is much

slower than DistAI. DistAI only allows invariants as disjunc-
tion of literals, and implements an invariant as a vector<int>.
In contrast, DuoAI considers invariants in disjunctive normal
form, so an invariant is a disjunction of conjunction of literals,
implemented as a set<vector<int>>. This makes invariant
operation slower in DuoAI. Chord ring maintenance is the only
∀-provable protocol that takes significant time on candidate
invariant enumeration so the overhead is exacerbated.

For the protocols that require invariants with ∃-quantifiers
to prove, DuoAI solves 11 out of 12 protocols, more than any
other tool. DuoAI only fails on vertical paxos, which other tools
also fail on. DistAI, I4, and UPDR fail on all of these proto-
cols because they can only generate ∀-only invariants. IC3PO
solves 4 protocols and fails on 3 protocols, but runs out of mem-
ory on 6 protocols, because it requires model checking to infer
invariants on a finite instance. For more complex protocols like
fast Paxos, the model checker requires too large of an instance
size. In contrast, DuoAI searches in formula space and its
performance does not depend (exponentially) on instance size.

For the complex Paxos-family protocols, only SWISS also
verified Paxos and flexible Paxos, though it required several
hours to do so. All other tools failed on all Paxos-family
protocols. In contrast, DuoAI verified Paxos and flexible Paxos
in less than 2 minutes. Only DuoAI verified multi-Paxos,
stoppable Paxos, and fast Paxos.

As the only other tool that solves Paxos, it is instructive to
compare SWISS with DuoAI. Similar to DuoAI, SWISS also
enumerates candidate invariants given a bounded search space
and checks their inductiveness using the SMT solver. However,
it has two fundamental differences compared with DuoAI.
First, SWISS relies exclusively on the SMT solver to tell the
correctness of invariants, while DuoAI also uses the samples
from protocol simulation to filter out invalid invariants. As we
demonstrated in §6, SMT calls can be expensive with quantifier
alternation and will negatively affect performance. Second,
SWISS struggles to find mutually inductive invariants, i.e.,
a bundle of invariants that are inductive together but none are
inductive individually. This is because SWISS can only build
the invariant set by adding one and only one invariant each
time and keep the set inductive. In the lock server async and the
sharded key-value store protocols, where mutually inductive
invariants are required to prove the safety property, SWISS
has to manually increase the maximum number of literals
from 6 to 9. This allows the mutually inductive invariants to be
conjuncted into one big invariant, but results in a much larger
search space and long runtimes of 44 and 128 minutes, respec-
tively. DuoAI enumerates candidate invariants following the
minimum implication graph and generates the strongest can-
didate invariants. The mutually inductive invariants (or their
stronger forms) are guaranteed to be in the candidate invariants
together. DuoAI solved both protocols within 2 seconds.

For the vertical paxos protocol, the human-expert inductive
invariants include an invariant with 8 literals. Even after
the optimization based on mutual implication, it still has 7

496    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Distributed protocol Relations LoC DuoAI SWISS IC3PO FOL-IC3 DistAI UPDR I4
chord ring maintenance 8 123 200.9 timeout 17.1 timeoutc 58.0 Z3 error 673
consensus forall 7 55 11.9 40.3 457 1500 15.6 59.0 122
consensus wo decide 6 46 3.9 26.1 160 24.8 8.5 24.8 27.5
database chain replication 13 96 9.5 108951 4.5 559 90.3 57.6 66.6
decentralized lock 2 21 9.9 5.8 24.3 69.0 10.2 51.0 20.7
distributed lock 4 43 6.1 timeout 12856 1660 15.3 63568 195
ring leader election 3 45 3.5 14.3 memout 10.8 2.9 103 5.3
learning switch ternary 4 45 14.2 308 23.8 timeout 24.7 1334 12.9
learning switch quad 2 21 52.4 1322 63.6 timeout 372 273 memout
lock server async 5 45 1.9 2625 5.6 4.8 1.1 4.4 8.7
lock server sync 2 21 1.3 1.0 3.2 1.0 0.9 3.3 0.6
sharded key-value store 3 31 1.9 7662 5.4 9.7 1.2 3.5 error
ticket lock 5 49 23.9 fail 56.2 58.1 timeout 143 fail
toy consensus forall 4 27 1.9 5.9 3.0 5.4 3.1 3.4 9.4
two-phase commit 7 70 1.5 9.1 4.7 4.8 2.0 9.4 10.2
client server ae 4 28 1.5 5.2 2.3 355 timeout fail fail
client server db ae 7 48 3.1 33.7 memouti 4822 timeout fail fail
consensus epr 7 52 4.8 28.8 1118 471 timeout fail memout
hybrid reliable broadcast 12 120 1211.2 fail memouti 931 error fail error
sharded kv no lost keys 3 32 2.1 1.8 4.8 3.7 timeout fail error
toy consensus epr 4 25 2.6 4.3 2.4 32.9 timeout fail fail
Paxos 9 75 60.4 16665 faili timeout timeout timeout memout
flexible Paxos 10 77 78.7 28337 memouti timeout timeout fail memout
multi-Paxos 10 91 1549 timeout fail timeout timeout timeout memout
stoppable Paxos 11 118 4051 error fail timeout error timeout error
fast Paxos 12 102 26979 timeout memout memout timeout fail error
vertical Paxos 12 120 memout timeout memout memout error fail error

c The SWISS authors reported that FOL-IC3 solved chord ring maintenance [10], but we found that the chord.pyv file they used has 3 bugs.
i The IC3PO authors [8, 9] reported that IC3PO succeeded on client server db ae (17 s), hybrid reliable broadcast (587 s), Paxos (568 s), and flexible
Paxos (561 s). However, they retrofitted the protocols and manually provided clauses with quantifier alternation that could appear in the invariants,
which is difficult to do without first knowing the ground-truth invariants. The 4 protocols have much simpler inductive invariants when expressed on
top of these clauses, with all except the simplest, client server db ae, becoming ∃-free. Ivy fails when checking the invariants generated by IC3PO
for Paxos and flexible Paxos. The IC3PO authors [9] imply that the invariants had to be manually checked against the human-expert invariants.

Table 1: Comparison of different tools for finding inductive invariants for 27 distributed protocols (running time in seconds).

literals. Under the minimum per-domain number of quantified
variables that can encode the human-expert invariants, there
are 60 predicates that can appear in the invariants. Considering
their negations, the size of the invariant search space is at the
magnitude of 1207≈4e14, well exceeding the computational
power of a normal workstation. In comparison, for fast paxos,
the largest invariant includes 5 literals, and there are 38
predicates. The size of the search space is at the magnitude of
3e9. For vertical Paxos, DuoAI ends with a universal core and
a set of checked non-core invariants when exhausting memory.
These invariants are inductive and can be utilized as hints,
although they cannot imply the safety property.

As explained in §6, DuoAI runs top-down refinement,
bottom-up refinement, and a ∀-only instance in parallel. Not
surprisingly, the ∀-only instance generates the inductive
invariants first for all 15 protocols that do not require
existential quantifiers. Among the 11 protocols solved by
DuoAI that require existential quantifiers, the top-down
refinement gives the inductive invariants first for the 5 simpler
protocols — client server ae, client server db ae, toy consensus

epr, consensus epr, and sharded kv no lost keys. The bottom-up
refinement also succeeded but took longer. For example,
for client server db ae, there are 8 candidate invariants in
noncore. A subset of size 3 was sufficient to prove the safety
property. However, the bottom-up refinement would first
enumerate and fail on all single invariants and pairs before
enumerating the correct triple. This takes more than 3 times
longer than top-down refinement, in which after a single round
of weakening, DuoAI found an inductive invariant.

For the 6 more complicated protocols with existential
quantifiers, including hybrid reliable broadcast and the 5
Paxos-family protocols solved, only the bottom-up refinement
generated the inductive invariants. The top-down refinement
got stuck at checking the inductiveness of the invariants. For
example, for multi-Paxos, after enumeration, DuoAI has a
candidate invariant set of size 615, and 581 of them have
quantifier alternation. Checking inductiveness of this many
formulas is a hopeless task for the Z3 SMT solver. However, to
prove the safety property, only 2 of the 581 candidate invariants
are needed. In the bottom-up refinement, each time only a

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    497



small subset of noncore invariants conjuncted with the ∀-only
core are fed to Ivy, so the Z3 SMT solver could handle the
candidate invariants. For Paxos, flexible Paxos, multi-Paxos,
and stoppable Paxos, a subset of size 2 were sufficient, while a
subset of size 6 was needed for fast Paxos. This also validates
our assumption that real-world distributed protocols should
have concise invariants, and should not require too many
invariants with quantifier alternation to verify.

Limitations By requiring quantifier alternation to conform
to a fixed order of types, DuoAI ensures that the verification
condition is in a decidable fragment of first-order logic.
However, without decidability, an SMT solver may still
succeed. For client server db ae and hybrid reliable broadcast,
the invariants written by human experts are not in a decidable
fragment, yet they can be efficiently verified by the SMT
solver. For both protocols, DuoAI found alternative inductive
invariants within the decidable fragment. If a protocol cannot
be verified in decidable logic, DuoAI will fail to prove it.

9 Related Work

Many studies [11, 17, 20, 31, 34–36] verify the correctness
of distributed protocols with manually given inductive
invariants. Early systems [12, 21, 29, 38] for automatically
inferring inductive invariants do not work for invariants with
∃-quantifiers which are required for protocols such as Paxos,
though pdH [29] can find inductive invariants for retrofitted
Paxos-family protocols without ∃-quantifiers.

Recent systems consider invariants with ∃-quantifiers. FOL-
IC3 [13] generates an invariant candidate that can separate
a positive and negative example set, and iteratively adds more
examples until the invariant is correct. It has no theoretical
guarantee of success. Its heavy use of SMT queries to validate
as well as synthesize invariants makes it slow in practice,
timing out on even protocols with ∀-only inductive invariants.

SWISS [10] iteratively strengthens an invariant by adding
small inductive formulas until the invariant is strong enough to
prove the safety property. It was the first tool to automatically
verify Paxos. Its inefficiency in exploring the search space and
inability to infer mutually inductive invariants make it fail on
several protocols solved by alternative tools.

IC3PO [8, 9] applies model checking on a finite instance
similar to I4, while adding support to generalize existentially
quantified invariants. The model checker functions well on
small instances, but frequently exhausts memory on complex
protocols that require larger instances, as shown in Table 1.

P-FOL-IC3 [14] is concurrent work that extends FOL-IC3
by exploiting parallelism in formula search, introducing the
invariant-friendly k-Term Pseudo-DNF to bound the search
space, and randomly guessing some not-yet-inductive formu-
las to be eventually inductive, forcing their counterexamples
to be excluded. P-FOL-IC3 has no theoretical guarantee and

is less robust in practice due to its randomized nature; it failed
in three out of five trials on stoppable Paxos, and two out of
five trials on fast Paxos.

The tools discussed above, along with DuoAI, only verify
safety properties of distributed protocols. Complementary
work has explored connecting verification of protocols to their
practical implementations [11, 31], and verifying liveness
properties of distributed protocols [26].

AutoML [5, 18, 33] searches for machine learning models
and hyperparameters, which may appear similar to finding in-
ductive invariants. However, the inductiveness of invariants has
strong correlation, which is difficult to capture for AutoML.

Many automated invariant inference tools have been built for
other domains, mostly on learning loop invariants to verify se-
quential programs [3,4,6,7,15,24,25,30,32,37,39]. Invariant
inference has been used to prove properties on inductive alge-
braic data types [16,22], integer linear dynamical systems [19],
and deep neural networks [2]. None of these methods consider
nondeterminism in concurrent or distributed settings, thus
they cannot be directly applied to distributed protocols.

10 Conclusions

DuoAI automatically and efficiently infers inductive invariants
for verifying distributed protocols by reducing SMT costs.
It introduces the minimum implication graph to define the
structure of the invariant search space. This enables efficient
enumeration of possible invariants, which are checked on
samples from protocol simulation to reduce SMT queries.
DuoAI guarantees that the enumerated candidate invariants
are at least as strong as any correct invariants. DuoAI then runs
top-down and bottom-up refinement in parallel. The former
monotonically weakens the candidate invariants following the
minimum implication graph. The latter divides the candidate
invariants into an SMT-friendly universal inductive core and
other noncore invariants, and searches for a small subset of
noncore invariants that can be added to the core to prove the
safety property of the protocol. Both top-down and bottom-up
refinement have strong theoretical guarantees for finding
inductive invariants, and their combination is effective at
reducing SMT query costs for invariants with existential
quantifiers. DuoAI dominates alternative tools in both the
number of protocols it verifies and the speed at which it does so,
including giving automated proofs for several Paxos variants.

11 Acknowledgments

Ji-Yong Shin provided helpful comments on earlier drafts.
This work was supported in part by three Amazon Research
Awards, a Guggenheim Fellowship, DARPA contract N66001-
21-C-4018, and NSF grants CCF-1918400, CNS-2052947,
and CCF-2124080. Ronghui Gu is the Founder of and has an
equity interest in CertiK.

498    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Decidability in Ivy. http://microsoft.github.io/
ivy/decidability.html.

[2] Guy Amir, Michael Schapira, and Guy Katz. Towards
scalable verification of deep reinforcement learning.
In Proceedings of the 21st Conference on Formal
Methods in Computer Aided Design (FMCAD ’21),
pages 193–203, October 2021.

[3] Grigory Fedyukovich, Sumanth Prabhu, Kumar Mad-
hukar, and Aarti Gupta. Solving constrained Horn
clauses using syntax and data. In Proceedings of the
18th Conference on Formal Methods in Computer Aided
Design (FMCAD ’18), pages 1–9, October 2018.

[4] Grigory Fedyukovich, Sumanth Prabhu, Kumar
Madhukar, and Aarti Gupta. Quantified invariants
via syntax-guided synthesis. In Proceedings of the
31st International Conference on Computer Aided
Verification (CAV ’19), pages 259–277, July 2019.

[5] Matthias Feurer, Aaron Klein, Jost Eggensperger,
Katharina Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning.
In Proceedings of the 29th Conference on Neural
Information Processing Systems (NIPS ’15), pages
2962–2970, December 2015.

[6] Pranav Garg, Christof Löding, P Madhusudan, and
Daniel Neider. Learning universally quantified invari-
ants of linear data structures. In Proceedings of the
25th International Conference on Computer Aided
Verification (CAV ’13), pages 813–829, July 2013.

[7] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan
Roth. Learning invariants using decision trees and
implication counterexamples. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’16),
page 499–512, January 2016.

[8] Aman Goel and Karem Sakallah. On symmetry and
quantification: A new approach to verify distributed pro-
tocols. In Proceedings of the 13th NASA Formal Methods
Symposium (NFM ’21), pages 131–150, May 2021.

[9] Aman Goel and Karem A Sakallah. Towards an auto-
matic proof of Lamport’s Paxos. In Proceedings of the
21st Conference on Formal Methods in Computer Aided
Design (FMCAD ’21), pages 112–122, October 2021.

[10] Travis Hance, Marijn Heule, Ruben Martins, and Bryan
Parno. Finding invariants of distributed systems: It’s a
small (enough) world after all. In Proceedings of the 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’21), pages 115–131, April 2021.

[11] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R
Lorch, Bryan Parno, Michael L Roberts, Srinath Setty,
and Brian Zill. IronFleet: Proving practical distributed
systems correct. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15), pages
1–17, October 2015.

[12] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky,
Noam Rinetzky, and Sharon Shoham. Property-directed
inference of universal invariants or proving their absence.
Journal of the ACM, 64(1), March 2017.

[13] Jason R. Koenig, Oded Padon, Neil Immerman, and Alex
Aiken. First-order quantified separators. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’20), page
703–717, September 2020.

[14] Jason R. Koenig, Oded Padon, Sharon Shoham, and Alex
Aiken. Inferring invariants with quantifier alternations:
Taming the search space explosion. In Proceedings of the
28th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS

’22), pages 338–356, April 2022.

[15] Soonho Kong, Yungbum Jung, Cristina David, Bow-Yaw
Wang, and Kwangkeun Yi. Automatically inferring
quantified loop invariants by algorithmic learning from
simple templates. In Proceedings of the 8th Asian
Symposium on Programming Languages and Systems
(APLAS ’10), pages 328–343, November 2010.

[16] Yurii Kostyukov, Dmitry Mordvinov, and Grigory
Fedyukovich. Beyond the elementary representations
of program invariants over algebraic data types. In
Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and
Implementation (PLDI ’21), page 451–465, June 2021.

[17] Leslie Lamport. Byzantizing Paxos by refinement. In
Proceedings of the 25th International Symposium on
Distributed Computing (DISC ’11), pages 211–224,
September 2011.

[18] Trang T Le, Weixuan Fu, and Jason H Moore. Scaling
tree-based automated machine learning to biomedical
big data with a feature set selector. Bioinformatics,
36(1):250–256, January 2020.

[19] Engel Lefaucheux, Joël Ouaknine, David Purser, and
James Worrell. Porous invariants. In Proceedings
of 33rd International Conference on Computer Aided
Verification (CAV ’21), pages 172–194, July 2021.

[20] Mohsen Lesani, Christian J. Bell, and Adam Chlipala.
Chapar: Certified causally consistent distributed
key-value stores. In Proceedings of the 43rd Annual

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    499

http://microsoft.github.io/ivy/decidability.html
http://microsoft.github.io/ivy/decidability.html


ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’16), pages 357–370,
January 2016.

[21] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos
Kapritsos, Baris Kasikci, and Karem A Sakallah.
I4: Incremental inference of inductive invariants for
verification of distributed protocols. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19), pages 370–384, October 2019.

[22] Anders Miltner, Saswat Padhi, Todd Millstein, and
David Walker. Data-driven inference of representation
invariants. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’20), pages 1–15, June 2020.

[23] Donald Monk. Mathematical Logic. Springer, October
1976.

[24] ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef,
and Michael Hicks. Counterexample-guided approach to
finding numerical invariants. In Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering
(FSE ’17), pages 605–615, August 2017.

[25] Saswat Padhi, Rahul Sharma, and Todd Millstein.
Data-driven precondition inference with learned features.
In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’16), page 42–56, June 2016.

[26] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas
Podelski, Mooly Sagiv, and Sharon Shoham. Reducing
liveness to safety in first-order logic. Proceedings of the
ACM on Programming Languages, 2(POPL), January
2018.

[27] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon
Shoham. Paxos made EPR: Decidable reasoning about
distributed protocols. Proceedings of the ACM on
Programming Languages, 1(OOPSLA), October 2017.

[28] Oded Padon, Kenneth L McMillan, Aurojit Panda, Mooly
Sagiv, and Sharon Shoham. Ivy: Safety verification by
interactive generalization. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’16), pages 614–630,
June 2016.

[29] Oded Padon, James R Wilcox, Jason R Koenig,Kenneth L
McMillan, and Alex Aiken. Induction duality: Primal-
dual search for invariants. Proceedings of the ACM on
Programming Languages, 6(POPL), January 2022.

[30] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu,
and Suman Jana. CLN2INV: Learning loop invariants
with continuous logic networks. In Proceedings of 8th

International Conference on Learning Representations
(ICLR ’20), March 2020.

[31] Ilya Sergey, James R. Wilcox, and Zachary Tatlock.
Programming and proving with distributed protocols.
Proceedings of the ACM on Programming Languages,
2(POPL), January 2018.

[32] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex
Aiken, Percy Liang, and Aditya V Nori. A data driven
approach for algebraic loop invariants. In Proceedings of
the 22nd European Symposium on Programming (ESOP

’13), pages 574–592, March 2013.

[33] Christian Steinruecken, Emma Smith, David Janz,
James Lloyd, and Zoubin Ghahramani. The automatic
statistician. In Automated Machine Learning, pages
161–173. Springer, May 2019.

[34] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan,
Oded Padon, Mooly Sagiv, Sharon Shoham, James R.
Wilcox, and Doug Woos. Modularity for decidability
of deductive verification with applications to distributed
systems. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’18), pages 662–677, June 2018.

[35] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary
Tatlock, Xi Wang, Michael D Ernst, and Thomas
Anderson. Verdi: A framework for implementing and
formally verifying distributed systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15), pages
357–368, June 2015.

[36] Doug Woos, James R Wilcox, Steve Anton, Zachary
Tatlock, Michael D Ernst, and Thomas Anderson.
Planning for change in a formal verification of the Raft
consensus protocol. In Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs
(CCP ’16), pages 154–165, January 2016.

[37] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana,
and Ronghui Gu. Learning nonlinear loop invariants
with gated continuous logic networks. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’20), pages
106–120, June 2020.

[38] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh,
Suman Jana, and Gabriel Ryan. DistAI: Data-driven
automated invariant learning for distributed protocols.
In Proceedings of the 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’21), pages 405–421, July 2021.

500    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[39] He Zhu, Stephen Magill, and Suresh Jagannathan. A
data-driven CHC solver. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’18), pages 707–721,
June 2018.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    501





Verifying Hardware Security Modules with Information-Preserving Refinement
Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL

Abstract
Knox is a new framework that enables developers to build
hardware security modules (HSMs) with high assurance
through formal verification. The goal is to rule out all hard-
ware bugs, software bugs, and timing side channels.

Knox’s approach is to relate an implementation’s wire-
level behavior to a functional specification stated in terms of
method calls and return values with a new definition called
information-preserving refinement (IPR). This definition cap-
tures the notion that the HSM implements its functional speci-
fication, and that it leaks no additional information through its
wire-level behavior. The Knox framework provides support
for writing specifications, importing HSM implementations
written in Verilog and C code, and proving IPR using a com-
bination of lightweight annotations and interactive proofs.

To evaluate the IPR definition and the Knox framework,
we verified three simple HSMs, including an RFC 6238-
compliant TOTP token. The TOTP token is written in 2950
lines of Verilog and 360 lines of C and assembly. Its behavior
is captured in a succinct specification: aside from the defini-
tion of the TOTP algorithm, the spec is only 10 lines of code.
In all three case studies, verification covers entire hardware
and software stacks and rules out hardware/software bugs and
timing side channels.

1 Introduction
A powerful approach for building secure computer systems
is to factor out the core security functionality onto a separate
device. For example, on the server side, certificate authorities
use hardware security modules (HSMs) to store their signing
key and sign certificates [10, 58]; credit card networks use
HSMs for pin translation, secure re-encryption of payment re-
quests during routing; cloud providers use HSMs to safeguard
PIN-protected backup keys [9, 43, 47]; and some tax author-
ities require the use of an HSM to timestamp invoices. On
the client side, the iPhone uses its secure enclave processor
to enforce PIN guessing limits for unlocking the phone [15];
and users often rely on USB security keys to protect their
authentication private key in the face of a compromised com-
puter [65]. For simplicity, this paper refers to all of these
types of devices as HSMs. These devices are in widespread
use; e.g., there are hundreds of millions of deployed secure
enclaves and security keys.

This approach defends against a broad class of attacks
where an adversary gains access to any host computer that
the HSM might be connected to, regardless of the specific
attack vector (exploiting a buffer overflow, missing access

control checks, or even gaining access to the administrator’s
SSH key). As long as the security of the overall system is
rooted in the device, an adversary that controls the host cannot
undermine the security of the overall system. Of course, the
device must be correctly implemented to make sure that the
adversary cannot compromise it, which in practice means that
the device must provide simple, well-defined functionality.

Although HSMs are relatively simple, any vulnerability
in their hardware or software can undermine their security.
HSMs have suffered from bugs throughout the hardware/soft-
ware stack, such as logic bugs, memory corruption, hardware
bugs, and timing side channels [1–8, 21, 31, 45, 51, 68]. This
paper presents an approach for ruling out such bugs through
formal verification, with a particular focus on eliminating
leakage through timing side channels.

Our approach is to relate the behavior of the HSM imple-
mentation at the wire level interface — the ground truth of
what the host machine controls and observes at the digital
level, which captures timing channels at a cycle-accurate level
— to a functional specification of the methods that the HSM
exposes. Figure 1 shows the implementation of a simplified
PIN-protected backup HSM, which we use as a running ex-
ample through the paper. The host connects to this HSM via
two input wires and two output wires, which the host can
read/write at every cycle. Figure 2 shows the functional speci-
fication for this HSM. It exposes two operations, store and
retrieve. The specification does not have an operation for
reading back the PIN, and it enforces a guess limit on PINs.

We relate a physical implementation to a functional speci-
fication with a new definition called information-preserving
refinement (IPR), inspired by definitions of zero-knowledge
proofs in cryptography [40, 41]. IPR captures the notion that
the implementation implements the spec, and that its wire-
level I/O behavior leaks no additional information. In IPR,
a driver describes the I/O protocol that a host computer can
follow to get correct results from the HSM, describing how
each spec-level operation translates to wire-level I/O with the
HSM. The driver is a part of the specification (and is trusted).
Its dual, an emulator, is a proof artifact that describes how
wire-level behavior can be explained in terms of spec-level
operations. The existence of an emulator shows that no matter
what wire-level inputs are given to the device (including in-
puts that violate the I/O protocol), its outputs reveal no more
information than the specification.

Applied to HSMs, IPR can capture subtle security bugs:
for example, Figure 3 shows code that is correct and even
crash safe but has a subtle bug involving persistence and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    503



PIN-protected
backup HSM

tx

rx

rts

cts

Figure 1: The physical implementation of the PIN-protected
backup HSM. It connects to the host via 4 wires, speaking
UART with flow control.

var bad_guesses = 0, secret = 0, pin = 0

def store(new_secret, new_pin):
secret = new_secret
pin = new_pin
bad_guesses = 0

def retrieve(guess):
if bad_guesses >= 10:
return ’No more guesses’

if guess == pin:
bad_guesses = 0
return secret

bad_guesses = bad_guesses + 1
return ’Incorrect PIN’

Figure 2: A functional specification for a PIN-protected
backup HSM. The spec doesn’t support reading out the PIN,
and retrieval of the secret requires supplying the correct PIN.
Limiting guesses prevents brute-forcing.

timing. The way this code gets compiled, the circuit takes
longer to persist the incremented guess count, in the case of
an incorrect guess, than it takes to zero the guess count, in the
case of a correct guess (it takes longer to take the branch than
to fall through). This can be abused to reset the guess count by
repeatedly guessing every possible PIN and powering off the
device after just enough cycles to reset the guess count in the
case that the guess is correct (but not waiting long enough to
persist if the guess is incorrect). Verifying IPR caught this bug
in our implementation (§7.1.1). The buggy implementation
doesn’t enforce guess limits, which leaks more information
than the specification, and this is prohibited by IPR.

Existing security definitions like noninterference or declas-
sification either do not apply or are insufficient to capture the
security of wire-level observations and arbitrary wire-level
I/O as in the Knox setting (§9).

To be able to verify HSMs with IPR, we developed the
Knox framework. Developers using Knox write HSM im-
plementations using standard languages (i.e., Verilog and C
code), write specifications in Knox DSLs, and use a combi-
nation of lightweight annotations and interactive proofs to
show that the implementation is an information-preserving
refinement of the specification.

To demonstrate that IPR and the Knox framework can be
applied to HSMs and catch bugs in their implementations, we
developed and verified three HSMs: a PIN-protected backup
HSM, a password-hashing HSM, and an RFC 6238-compliant
TOTP token [54]. The Knox HSMs do not have the imple-

// return error if PIN guess limit exceeded
// ...

// check PIN guess and update guess_count accordingly
if (!constant_time_cmp(&entry->pin, guess)) {

entry->bad_guesses++;
uart_write(ERR_BAD_PIN);
return;

}
entry->bad_guesses = 0;

// output secret
// ...

Figure 3: Code snippet from an insecure retrieve imple-
mentation. entry points to persistent memory. The commit
point depends on whether the PIN guess is correct.

mentation complexity of commercial HSMs: for example,
the RISC-V processor they use is simpler than the ARM
Cortex-M series embedded processors ubiquitous in security
tokens such as SoloKeys. Still, the HSMs demonstrate many
of the hardware and software complexities present in real
HSMs. They all use an embedded processor (a RISC-V CPU)
and interface with the host via digital I/O (UART), and the
password hasher and TOTP token include hardware cryp-
tographic accelerators. All three run application-specific C
code, with some including cryptographic functionality, such
as HMAC in the TOTP token. Knox proofs are end-to-end,
encompassing hardware and software and showing that the
implementation is free of exploitable hardware bugs, software
bugs, and timing side channels.

In summary, this paper makes the following contributions:
• The definition of information-preserving refinement (IPR),

which relates a physical implementation to a functional
specification and captures that it: (1) implements the speci-
fication, and (2) leaks no additional information

• The Knox framework for proving that an HSM implemen-
tation satisfies its specification under the IPR definition

• An evaluation of the IPR definition and Knox’s application
to three simple HSMs
This paper applies IPR to HSMs, but we believe the def-

inition is broadly applicable to other contexts for capturing
non-leakage properties.

This paper has several limitations. The three HSMs verified
using Knox are relatively simple: for example, they do not use
public-key signatures, which are common HSM operations,
because it is difficult to scale up proofs in Knox to handle so-
phisticated arithmetic needed for public-key implementations.
Relatedly, for cryptographic operations such as public-key
signatures, IPR requires the emulator to be efficient. Knox
currently relies on a manual audit to ensure that the emulator
does not brute-force secrets or run in exponential time (§8.1).
Finally, IPR does not support true random number generators
(TRNGs) — the functional specification has to be determinis-
tic. We believe that a pseudo-random number generator is a
reasonable workaround that fits into IPR (§8.2).

504    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



2 Threat model and security goal
This paper considers a powerful adversary that gains direct
access to the wire-level digital I/O of the HSM, with the
ability to set logic levels on the input wires and read logic
levels on the output wires at every cycle. This captures many
realistic attacks, such as an adversary that compromises the
host computer and is able to send malformed commands or
observe all wire-level outputs at every clock cycle. Such an
adversary may be able to extract secrets from an HSM, even
if that HSM operates correctly when the host computer is
well-behaved.

Our threat model is focused on remote compromise of the
host machine, one of the primary attacks that HSMs aim to
defend against, so it does not include physical attacks on the
HSM. While the adversary can perform arbitrary digital I/O to
the HSM through a compromised host, remote compromise is
unlikely to allow the adversary to violate the HSM’s electrical
specifications (e.g., supply 5V into an input wire expecting
3.3V logic or supply current to an output pin of the HSM)
or observe analog characteristics of the I/O interface (e.g.,
measure analog voltage on a pin).

While the threat model includes (digital) timing side chan-
nels due to the level at which we model the host-HSM inter-
face (wire-level I/O at every cycle), the threat model does not
include arbitrary side channels [73] such as electromagnetic
radiation [12], temperature [44], and power [49], because a
remote attacker is unlikely to able to make such observations.

The goal of a Knox HSM is to be as secure as its specifica-
tion. A host machine should be able to follow an I/O protocol
to invoke spec-level operations on the HSM and obtain the
correct outputs, but the host machine should not be able to
abuse the wire-level interface to subvert the HSM and bypass
its API or cause it to leak secrets.

3 Information-preserving refinement
The goal of information-preserving refinement (IPR) is to
define what it means for an implementation with a wire-level
physical interface to implement a functional specification and
leak no additional information. IPR achieves this by estab-
lishing a bi-level correspondence between implementation
and specification, at both the level of the functional interface
(spec-level operations) and the physical interface (wire-level
I/O). Illustrated in Figure 4, IPR is defined as an indistin-
guishability between two worlds: the real world, and an ideal
world that is correct and secure by construction.

The real world models the host machine connected to the
actual HSM implementation. The host can take a physical
view of the device and directly perform arbitrary wire-level
I/O (reading and writing the I/O pins at every cycle). The
host can also take a functional view of the device and follow
the HSM’s I/O protocol, which is described by a driver that
is part of the specification. The driver translates spec-level
operations to wire-level I/O, describing how the host invokes

Physical

Implementa�on

Driver

mode

func�onal

interface

physical

interface

real world

Func�onal

Specifica�on

Emulator

mode

func�onal

interface

physical

interface

ideal world

≈

Figure 4: Information-preserving refinement (IPR), defined
as an indistinguishability between a real world and an ideal
world that is correct and secure by construction.

the operation and reads the return value by interacting with
the HSM over its wire-level interface.

The ideal world is set up to provide the same interface as
the real world but be correct and secure by construction. In
the ideal world, a host machine that takes a functional view of
the device invokes operations directly on the specification. To
provide a physical view, an emulator mimics wire-level be-
havior, given only query access to the functional specification.
The emulator is a dual of the driver; it translates wire-level
I/O into spec-level operations. Unlike the driver, the emulator
is merely a proof artifact. The ideal world can be instantiated
with any emulator, and it remains secure by construction. IPR
is defined to hold if there exists some emulator such that the
real and ideal worlds are indistinguishable.

The host can switch between the functional view and the
physical view at any time. Switching from the functional view
to the physical view models compromise of the host machine;
switching from the physical view back to the functional view
models recovery (for example, by unplugging the device and
moving it to an uncompromised machine). When switching
views from physical to functional, in the real world, the driver
is re-initialized; when switching from functional to physical,
in the ideal world, the emulator is re-initialized.

The ideal world is correct and secure by construction.
When the host takes a functional view of the device, opera-
tions are invoked directly on the specification, so the behavior
is correct and secure by definition. Under the functional view,
spec-level operations are not seen by the emulator. When the
host takes a physical view of the device, the wire-level I/O
behavior it observes is produced by an emulator that only
has query access to the specification, so the physical inter-
face leaks no more information than the specification exposes
through its API. Furthermore, when the host switches back
to the functional view of the device, it continues interacting
with the same specification that was queried by the emulator,
so the effect of any queries made by the emulator in order to
mimic wire-level outputs is present in the specification state.
In the ideal world, any execution, no matter how it switches
between functional and physical interfaces, maps to some
sequence of operations invoked on the specification.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    505



Due to the indistinguishability that IPR requires between
real and ideal worlds, any execution in the real world also
maps to some sequence of operations invoked on the speci-
fication. In other words, when IPR holds, any attack that an
adversary could execute on the real device could be trans-
formed into an attack on the specification itself: the adversary
could run the emulator and then execute the original attack
using the emulator, which matches the implementation’s wire-
level behavior, given only query access to the specification.
Indistinguishability between real and ideal worlds guarantees
that the implementation is as secure as the specification.

Definition (Information-preserving refinement). A physical
implementation is an information-preserving refinement of a
functional specification with respect to a driver if there exists
an emulator such that the real world is indistinguishable from
the ideal world as illustrated in Figure 4. �

3.1 Applying IPR to HSMs
IPR, without explicitly talking about hardware, software, or
timing side channels, captures exploitable bugs in all of those.
If there were such exploitable bugs, IPR would not be sat-
isfied: when there are implementation behaviors that can’t
be explained in terms of the specification, there does not ex-
ist an emulator that makes the real world and ideal world
indistinguishable.

IPR relates any wire-level interaction with the HSM to an
interaction with the specification. For example, suppose that
the host machine follows the driver to perform a number of
spec-level operations, and then it gets compromised, at which
point it begins performing arbitrary I/O in an attempt to sub-
vert the HSM. IPR, by requiring indistinguishability between
the real and ideal worlds, says that this scenario corresponds
to some sequence of spec-level operations, and that the arbi-
trary I/O reveals no more information than those spec-level
operations do. Furthermore, IPR says that after the HSM is
moved to an uncompromised host, normal operation can re-
sume (as the host follows the driver), and that the behavior
of the device will reflect any specification state changes that
were a result of queries made by the emulator (any operations
that were effectively invoked during arbitrary wire-level I/O).

The definition directly addresses host machine compromise
by an adversary while the host is in between spec-level opera-
tions. It might seem like IPR only addresses arbitrary I/O that
begins between these operations; however, a compromise in
the middle of an operation can be thought of as a compromise
that happens slightly earlier, at the start of the operation, and
IPR covers this case.

Information-preserving refinement transfers both crypto-
graphic and non-cryptographic security properties from the
specification to the implementation. For example, the PIN-
protected backup specification limits PIN guesses, and so
IPR implies that the implementation enforces the guess limit

as well. If it didn’t limit guesses, it would reveal more in-
formation than the specification (through subsequent retrieve
operations), which IPR prohibits. This rules out the subtle bug
shown in Figure 3, even though the information disclosure
manifests after the buggy code executes. If a specification
computed signatures without revealing a key, then IPR would
imply that the implementation also doesn’t leak the key, in-
cluding through its timing behavior.

4 Proving IPR
Knox models the specification and the implementation (§4.1)
as state machines, relates the two with a refinement relation,
and proves three properties: an initialization property (§4.2),
functional equivalence (§4.3, indistinguishability of the func-
tional view), and physical equivalence (§4.4, indistinguisha-
bility of the physical view), tying together these properties
with the refinement relation. Together, these properties imply
IPR.

4.1 Physical implementation
Knox models HSM implementations with a cycle-accurate
description of their wire-level I/O behavior, covering hard-
ware and software. Figure 1 shows the interface of a circuit
implementing PIN-protected backup. The HSM interface al-
lows for: (1) setting input wires, (2) reading output wires, and
(3) waiting for the HSM to execute for a clock cycle of the
HSM’s internal clock.

In the case of the PIN-protected backup HSM, the UART
rx and cts wires can be set and the tx and rts wires can
be read at every cycle. The baud rate is independent of the
HSM clock frequency; the IPR formalism itself has no notion
of a serial port or baud rate, only wires and hardware-level
clock cycles. The three main Knox case studies use UART,
but simpler Knox examples use different I/O protocols.

The HSM model comprises the circuit state, a step function
describing behavior for a single cycle, the initial state of
the HSM (contents of non-volatile memory, such as ROM
containing code and read-write persistent memory being zero-
initialized), and a description of the power-on / reset behavior
of the circuit (losing the contents of volatile memory).

4.2 Refinement relation and initialization
Knox uses a refinement relation R, a proof artifact supplied
by the developer, to relate the state of the implementation
to the state of the specification in between spec-level oper-
ations. That is, it is not required to hold at arbitrary steps
of the circuit, only before/after spec-level operations, or af-
ter switching from the physical view to the functional view,
which involves re-initializing the driver (which in our imple-
mentations, resets the circuit). Use of a common R connects
functional equivalence and physical equivalence.

R relates states and usually includes an invariant that cap-
tures circuit quiescence (it holds in between spec-level op-
erations). Figure 5 shows the refinement relation used in

506    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



spec.bad_guesses = swap32(impl.fram[0..3]) ∧
spec.pin = impl.fram[4..9] ∧

spec.secret = impl.fram[10..19] ∧
Inv(impl)

Figure 5: A simplified version of the refinement relation used
in the proof of PIN-protected backup. impl.fram refers to the
persistent memory of the implementation. swap32 performs a
byte order swap. Inv is the invariant (not shown here).
(define (store secret pin)
(send-byte #x02) ; command number
(send-bytes pin)
(send-bytes secret)
(recv-byte)) ; wait for ack

(define (wait-until-clear-to-send)
(while (get-output ’rts))
(tick))) ; wait a cycle

(define (send-bit bit)
(set-input ’rx bit)
(for ([i (in-range BAUD-RATE)])
(tick)))

(define (send-byte byte)
(wait-until-clear-to-send)
(send-bit #b0) ; send start bit
;; send data bits
(for ([i (in-range 8)])
(send-bit (extract-bit byte i)))

(send-bit #b1)) ; send stop bit

(define (send-bytes bytes)
(for ([byte bytes])
(yield) ; wait for arbitrary number of cycles
(send-byte byte)))

Figure 6: A code snippet from the PIN-protected backup
driver. The function corresponding to a spec-level operation
is shown in blue. Driver-language primitives are in red.

the proof of the PIN-protected backup HSM. It relates each
variable in the specification to the persistent memory of the
circuit.

Knox requires that the initial implementation state is related
by R to the initial specification state.

4.3 Functional equivalence
Functional equivalence states that spec-level behavior is ob-
tained from the implementation’s wire-level interface by fol-
lowing the I/O protocol described by the driver. The driver is
a program, written in Knox’s driver language, that is part of
the specification of the HSM. For every spec-level operation,
the driver has a corresponding function that describes how
the host invokes the operation on the HSM over its wire-level
I/O interface.

For example, Figure 6 shows the driver for the PIN-
protected backup HSM. The driver exposes a function corre-

c
1

f
1

R

c
2

f
2

R

op

v

.   .   .

driver[op]      v

Figure 7: Functional equivalence: for all implementation
states c1 and spec states f1 that are related by R, and for
all spec-level operations op:
(1) the spec-level output v matches the driver output
(2) the final states c2 and f2 are related by R

sponding to each spec-level function, such as (store ...),
implemented in terms of driver-language primitives for in-
teracting with the implementation: (set-input ...) and
(get-output ...) write the input wires and read the out-
put wires, respectively; (tick) waits for the HSM to execute
for a single cycle; (yield) models situations where the host
is allowed to wait for an arbitrary number of cycles, e.g., in
between sending bytes in an asynchronous protocol.

Figure 7 defines functional equivalence: starting from
circuit/spec states related by R, invoking an operation on
the specification gives the same result as running the cor-
responding driver function against the circuit, and the final
circuit/spec states continue to be related by R.

The HSM runs asynchronously from the host: its clock
keeps ticking even if there is no operation to perform. To
model this, the driver also describes a spec-level no-op: e.g.,
in the case of the PIN-protected backup HSM, the host sets
the rx line high, indicating that it has nothing to transmit.
Functional equivalence also covers this no-op case.

4.4 Physical equivalence
Physical equivalence states that wire-level behavior match-
ing the real circuit’s behavior can be obtained by running an
emulator (with query access to the specification), capturing
the notion that the circuit leaks no more information than
the specification. The emulator in IPR is a dual of the driver:
it is a program, written in Knox’s emulator language, that
implements wire-level interactions in terms of spec-level op-
erations. Unlike the driver, the emulator is a proof artifact:
if there exists an emulator that mimics circuit behavior, then
physical equivalence holds.

An emulator exposes a function corresponding to each
wire-level interaction: setting the input, getting the output,
and running for a cycle. These are implemented in terms
of emulator-language primitives for invoking spec-level op-
erations (e.g., (store ...) and (retrieve ...), for the
PIN-protected backup). Besides the ability to make black-
box queries to the functional specification, the emulator can
maintain auxiliary state across emulating multiple cycles;
the auxiliary state is initialized to a null value whenever the
emulator is re-initialized.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    507



R R

f
1

f
2

.    .    .    .

c
1

c
2

.    .    .    .    .    .    .    .
i
1

o
1

i
2

o
2

i
3

o
2

i
n

o
n

c
3

emulator[i
1
, i

2
, . . ., i

n
]      o

1
, o

2
, . . ., o

n

Figure 8: Physical equivalence: for all spec states f1 and
implementation states c1 that are related by R, and for all
wire-level inputs i1 . . . in:
(1) the circuit outputs o1 . . .on match the emulator outputs
(2) the final states f2 and c3 (c2 after a reset) are related by R

c
1

f
1

R

c
2

f
2

R      —OR—      R

op

.   .   .
driver[op]

Figure 9: Crash safety: for all implementation states c1 and
spec states f1 that are related by R, and for all spec-level
operations op: if the driver is interrupted at any point, the
post-reset state of the circuit c2 is related by R to either f1 or
f2.

Figure 8 defines physical equivalence: starting from cir-
cuit/spec states related by R, any wire-level I/O behavior
exhibited by the circuit is matched by the emulator, which
makes queries to the specification as it runs. Furthermore, the
final specification state is related by R to the final circuit state
(after the circuit is reset).

IPR is satisfied as long as there exists some emulator such
that the real and ideal worlds are indistinguishable. Proofs of
physical equivalence in Knox involve constructing an emu-
lator (i.e., writing a program in the emulator language) that
satisfies the definition of physical equivalence. Because the
emulator is merely a proof artifact, the details of the con-
struction do not matter, as long as the program satisfies the
definition. The Knox case studies (§7) describe the techniques
used in practice to write emulators.

4.5 Crash safety
Physical equivalence already covers the case of an inter-
rupted spec-level operation, because an interrupted protocol-
following execution can be viewed as a case of arbitrary I/O:
physical equivalence guarantees that any wire-level I/O corre-
sponds to some sequence of spec-level operations. However,
we can state an additional property that is stronger: when
the HSM is interrupted in the middle of an operation while
the host is following the driver, the implementation is crash
safe, acting either as if the operation never started or as if
the operation completed successfully. Figure 9 defines this
crash-safety property.

5 The Knox framework
The Knox framework uses hybrid symbolic execution [67]
and SMT solvers to help developers prove IPR. Knox includes
techniques to handle the challenges that arise when applying
symbolic execution for proving functional equivalence and
physical equivalence. In functional equivalence proofs, Knox
handles the nondeterminism of yield in drivers by automat-
ically finding fixed points (§5.1). In physical equivalence
proofs, Knox supports reasoning about unbounded-length in-
puts using an approach we call guided symbolic model check-
ing (§5.2). In both, Knox allows the proof developer to supply
hints, untrusted guidance where the framework invokes the
solver as necessary to ensure soundness (§5.3).

5.1 Nondeterminism
Knox verifies the functional equivalence property using sym-
bolic execution of the driver-language program against the
HSM implementation, comparing the execution of each driver
operation against the corresponding spec operation. However,
symbolic execution cannot directly handle the nondetermin-
ism of (yield), which has the semantics of the driver waiting
for an arbitrary number of cycles while the HSM runs.

Knox addresses this by finding a fixed point of the circuit’s
step function at every yield point. During symbolic execution,
the circuit’s state is a symbolic term. Stepping the circuit
produces a new symbolic term, and so on. At yield points,
Knox computes a set of symbolic terms such that the set is
closed under the circuit’s step function, and it forks symbolic
execution for each term in the set.

Closure is defined in terms of symbolic state subsumption.
A symbolic term t under a path condition p, written as t|p,
can be thought of as representing a set of concrete values,
Jt|pK, the set of values that t can evaluate to for all possible
assignments satisfying p of values to t’s symbolic variables. A
term t1 under path condition p1 is subsumed by a term t2 under
path condition p2, written as t1|p1 ⊆ t2|p2, if Jt1|p1K⊆ Jt2|p2K.
For a set S of symbolic terms paired with path conditions, let
JSK= {Jt|pK : t|p ∈ S}. Finally, call S a fixed point of the step
function if ∀x ∈ JSK,step(x) ∈ JSK.

Knox includes an efficient algorithm for subsumption
checks, and fixed points are found through iteratively calling
the step function on the symbolic circuit state to build up a set
of symbolic terms. Once a fixed-point S is found, symbolic
execution proceeds for each of the t|p ∈ S, similar to how
branching produces multiple paths to be checked.

Left unchecked, multiple (yield)s can result in an expo-
nential number of cases to check, analogous to the problem
of branching resulting in path explosion in symbolic execu-
tion. For this reason, Knox uses untrusted (merge) hints in
the driver at points where some branches could be merged
together. At merge points, Knox uses subsumption checks to
automatically find a smaller set of symbolic terms |S′| ≤ |S|
that still represent all the concrete values included in the
original, i.e., JSK ⊆ JS′K, which addresses case explosion.

508    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



.   .   .

subsumed

Figure 10: An illustration of guided symbolic model checking
exploring a state space. Each green circle is a symbolic term
representing a set of states. Black arrows show STEP invoca-
tions and purple arrows show SUBSUMED invocations.

5.2 Unbounded-length inputs
In Knox, emulators can be symbolically executed with black-
box query access to a functional specification. Unlike the
functional equivalence property which considers a single
(spec-level) input, the physical equivalence property consid-
ers an arbitrary-length sequence of (wire-level) inputs, so
Knox can’t prove the physical equivalence property in the
same way. Symbolic execution could verify this property for
a fixed-length input, but it cannot directly handle arbitrary-
length input.

The standard approach to handling arbitrary-length inputs
is to write down an inductive invariant and reason about one
step at a time. This approach does not work for large circuits
because of the infeasibility of manually writing down the
inductive invariant. It would have to include an invariant of
circuit execution, capturing which states are reachable and
which are not, and it is infeasible to manually write down
exactly how CPU microarchitectural registers, peripheral reg-
isters, RAM state, etc. are related to each other at every cycle
of execution of the software.

Instead, Knox uses an approach that we describe as guided
symbolic model checking. At a high level, Knox uses a model-
checking-style approach to start from the initial states of the
circuit and emulator in the definition of physical equivalence,
explore all reachable states, and ensure that the circuit’s be-
havior matches the emulator’s behavior and the recovery con-
dition holds at every step. Exploration starts out at a circuit
state c1, an emulator state e0 (the initial emulator auxiliary
state, null), and functional spec state f1, where both f1 and
c1 are symbolic terms, and R is assumed to relate f1 and
c1. Knox can step the circuit and step the emulator, given
the same symbolic input, and check that their outputs match.
Knox repeats this process until it has explored all reachable
states.

This model-checking process involves guidance from the
developer in the form of a proof script. Knox provides two
primitives that allow the developer to guide exploration of the
state space:
• STEP steps the circuit and the emulator/spec (with the same

symbolic input) for one cycle and verifies the output equiv-
alence and recovery properties for that single cycle

• SUBSUMED checks that the state currently under considera-

tion is subsumed by a state that was explored earlier, “tying
the knot” and finishing a branch of the exploration
Figure 10 illustrates how STEP and SUBSUMED let the

developer guide the model checker to explore the state space.
In addition to these primitives, the developer uses additional
hints (§5.3) to safely manipulate symbolic terms and help the
model checker efficiently explore the state space.

An alternative view of this process is that it incrementally
builds up the induction hypothesis that would have been used
in an induction-based approach. Once model checking has
explored all reachable states, it has visited a set of states S
that includes the initial circuit/emulator/spec state where R
holds, and the set S has the property of being closed under the
circuit/emulator step functions, and the property of matching
outputs for a single cycle holds for every state in S. The
induction hypothesis is that the state is contained in S.

The proof script is untrusted, and Knox checks that the
state space is fully explored. At worst, an incorrect proof
script can result in poor performance or Knox reporting that
the state space has not been fully explored.

5.3 Hints

In both functional equivalence proofs and physical equiv-
alence proofs, relying only on hybrid symbolic execution
quickly results in an explosion in term size, and in the case
of HSMs involving cryptography, queries that make the SMT
solver time out.

Knox addresses this with untrusted (solver-checked) hu-
man guidance called hints. Knox has 8 primitive hints:
• CASE-SPLIT performs case analysis
• CONCRETIZE invokes the solver to prove that a symbolic

term is concrete and replaces it with the concrete value
• OVERAPPROXIMATE replaces a term with a fresh variable
• WEAKEN weakens the current path condition
• REPLACE rewrites or simplifies terms
• REMEMBER, SUBSTITUTE, and CLEAR effectively allow

marking terms as opaque to symbolic execution and substi-
tuting in their values later
Furthermore, Knox supports writing higher-level tactics

that can reflect on the current state of symbolic execution
and invoke primitive hints (or other tactics). A tactic might,
for example, analyze the state of the circuit to determine if a
CPU is about to branch, and in that situation, it can invoke
a CASE-SPLIT hint with the appropriate cases constructed
based on analyzing the symbolic circuit state.

All invocations of hints are verified by the Knox framework
with an call to the SMT solver when necessary. Hints are
untrusted: at worst, hints can be incorrect and fail (e.g., when
attempting to replace a term with an unequal term), which
will result in an error message to the user, or the given hints
can be inadequate to ensure good performance, in which case
verification will be slow or fail to terminate.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    509



6 Implementation
The Knox framework builds on top of Racket [37] and the
Rosette solver-aided programming language [67], and it relies
on the Z3 SMT solver [32]. To compile circuits to a shallow
embedding in Rosette, Knox uses GCC and its RISC-V back-
end to compile C code, Yosys [69] and its SMT-LIB backend
to process Verilog, and #lang yosys (700 LOC of Racket
and Rosette) from Notary [16] to convert the SMT-LIB output
into a Rosette model.

The Knox framework’s core — the semantics for the driver
and emulator languages, and the tools for verifying functional
equivalence and physical equivalence — is implemented in
3000 lines of Racket and Rosette. Achieving good verifica-
tion performance required many optimizations and some new
techniques, including symbolic state serialization, term sub-
stitution, fixpoint finding, state merging, and a new algorithm
for symbolic subsumption checking based on a disjoint-set
data structure.

The case studies are implemented in Verilog, C, and as-
sembly (summarized in Figure 16). The case studies run on
a $65 1BitSquared iCEBreaker development board, which
has a Lattice iCE40UP5K FPGA, and use an open-source
FPGA toolchain: the Yosys synthesis tool, the nextpnr place
and route tool [72], and Project IceStorm [70] to create the
bitstream and flash the FPGA. The FPGA connects using an
FTDI cable to a host computer running Linux, for which we
wrote client libraries for the three HSMs.

Figure 11 shows an overview of the different components
that the developer writes when using Knox to verify an HSM.
The functional specification, physical implementation, and
refinement relation R are common inputs, used when veri-
fying both functional equivalence and physical equivalence.
When verifying functional equivalence, Knox takes as addi-
tional input the driver, along with hints to guide symbolic
execution. When verifying physical equivalence, Knox takes
as additional input the emulator and a proof script. The func-
tional specification and the driver, highlighted in green, com-
prise the code written by the developer that is trusted. Other
components, the HSM implementation and proof artifacts,
are verified by the framework. Similar to other tools based
on symbolic execution, when verification in Knox fails, the
framework can provide a concrete counterexample, aiding the
developer in debugging the implementation or the proof.

Source code for Knox and the case studies is available at
https://github.com/anishathalye/knox.

7 Evaluation
To evaluate information-preserving refinement and the Knox
framework, we ask the following questions:
• Can IPR and Knox be applied to HSM hardware/software?
• What types of bugs does verification prevent?
• What is the performance of the Knox framework?
• What is the performance of HSMs verified with Knox?

Func�onal

Specifica�on

Implementa�on
So ware (.c)

Hardware (.v)

R

Driver Hints

Func�onal equiv.

Physical equiv.

Knox

OK /

FAIL

Emulator Proof Script

Figure 11: An overview of the Knox workflow. Trusted inputs
are shown in green.

Methodology. We evaluate the first two questions through
case studies (§7.1) that formally verify three HSMs with dif-
ferent types of specification and implementation complexity:
a PIN-protected backup HSM, a password-hashing HSM,
and an RFC 6238-compliant TOTP token [54]. To answer
questions related to verification performance and the perfor-
mance of the HSM implementations, we report on measure-
ments (§7.2).

7.1 Case studies
7.1.1 PIN-protected backup HSM
Specification. A simplified PIN-protected backup HSM (Fig-
ure 2) was a running example through this paper; we verified
an HSM with additional functionality: storing multiple secrets,
each protected by its own PIN, and indexed by a slot number.
The specification exposes four functions: status, store,
retrieve, and delete. The specification demonstrates sup-
port for non-cryptographic security properties, such as the
guess limit on PINs.

Implementation. Figure 12 shows a schematic of the im-
plementation. It uses the PicoRV32 RISC-V CPU and the
SimpleUART peripheral from the PicoSoC [71] with mini-
mal modifications: we removed asynchronous reset from the
CPU and added hardware flow control to the UART. The
HSM uses ferroelectric RAM (FRAM) for persistent storage.
Knox requires cycle-accurate models of the entire hardware,
and FRAM has simple cycle-precise behavior, supporting
durable word-level writes in a single cycle. For convenience,
to avoid wiring an external chip, the prototype uses FPGA
Block RAM in place of FRAM for the experiments. In total,
the HSM hardware is described in 2670 lines of Verilog.

The software is written in a combination of C and assembly.
To simplify verification, the HSM uses a strategy inspired
by Notary [16] to minimize variation in the states that the
hardware can be in. The HSM uses a reset-based design: the
SoC is held in an “embryo” state until the host is ready to
perform an operation, and after the HSM performs a single
operation, it enters the embryo state again until the host begins
the next operation. This is done through a combination of
hardware and software: the HSM’s cts input doubles as a
signal that the host is ready to perform an operation, and a

510    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/anishathalye/knox


CPU

ROM
(C code)

RAM

FRAM
(durable)

UART

tx rx rts cts

Figure 12: A schematic of the PIN-protected backup HSM.

small amount of logic implemented in hardware holds the rest
of the circuit in a reset state until the host is ready to perform
an operation. After the HSM performs a single operation, it
signals this power management hardware to reset the SoC
and return to the embryo state.

The software on the HSM includes a driver for the memory-
mapped UART peripheral, along with code to implement each
of the operations. The main function of the HSM reads a com-
mand and arguments from the UART, calls the appropriate
handler, and then shuts down. The code for the HSM is written
in 150 lines of C and 40 lines of assembly.

Verification and bugs caught. Knox physical equivalence
proofs are constructive. We designed the emulator for the
PIN-protected backup as follows. The emulator runs a copy
of the circuit with dummy data. The emulator does not have
access to the data in the real circuit, in particular the read-
write persistent memory, but the structure of the circuit and
the code in the ROM is common knowledge. The emulator
carefully watches the internal state of its copy of the circuit:
when the circuit is about to perform an operation, the emula-
tor reads input data out of its circuit’s state and translates it
into a spec-level input, makes a query to the specification, and
injects the result back into its circuit’s state, so that the output
behavior of the circuit copy matches that of the real circuit.
For example, for the retrieve operation, when the emulator
sees that its circuit copy has just completed the equality com-
parison, the emulator extracts the slot number and PIN guess
from the circuit copy’s RAM, makes a retrieve query to the
specification, and injects the result (match or no match) back
into its copy of the circuit, also injecting the secret into the
appropriate location in memory if the guess indeed matched.
All of the emulators for the case studies follow this general
construction. Through the physical equivalence proof, we
show that all implementation-level behavior can be explained
with spec-level behavior, proving that the implementation
leaks no more than the spec.

Verifying physical equivalence catches classic security
bugs, such as a bug where the implementation’s timing behav-
ior leaks how many bytes of the PIN guess matches due to
using strcmp. This information is not revealed by the spec —
which only reveals whether or not the guess is correct (and the

var secret = 0

def config(new_secret):
secret = new_secret

def hash(password):
return sha256(password || secret)

Figure 13: The functional specification for the password-
hashing HSM.

secret, when the guess is correct), not how many bytes of the
guess match the PIN — so IPR prevents the implementation
from leaking it. For such a buggy implementation, an emula-
tor satisfying the IPR definition doesn’t exist: the emulator
doesn’t have direct access to the true PIN (only query access
through the specification), so its behavior can’t match the real
circuit’s leaky behavior.

Verifying physical equivalence caught a subtle security
bug involving persistence and timing. Figure 3 shows a
code snippet from the insecure implementation. The com-
piler happens to compile this code using a branch instruction,
branching in the case where the guess is incorrect, and the
CPU implementation takes longer to take the branch than to
fall through to the next instruction. This has the effect that
the circuit takes longer to write the updated bad_guesses
value to persistent memory in the case of an incorrect PIN
guess (where it’s executing entry->bad_guesses++) than
in the case of a correct PIN guess (where it’s executing
entry->bad_guesses = 0). An attacker can abuse this to
reset the guess count by guessing a PIN, powering off the
device after just enough cycles to reset the guess count in the
case that the guess is correct (but not waiting long enough
that entry->bad_guesses++ has a chance to run, in the
case that the guess is incorrect), and repeating this process
for every possible PIN. This is not a correctness or even a
crash-safety bug: this insecure implementation is both correct
and crash safe. However, physical equivalence prevents this
security bug in the implementation. The bug is fixed by using
constant-time code to make the commit point of the operation
independent of whether the PIN guess is correct.

7.1.2 Password-hashing HSM
Specification. Figure 13 outlines the specification for the
password-hashing HSM. It includes a specification of
SHA256 (not shown) that follows FIPS 180-4 [57]. The pass-
word hasher is configured with a secret, and then it computes
salted hashes using the stored secret. There is no function
to retrieve the secret after it is stored. The specification also
guarantees that future operations cannot leak past inputs, be-
cause the secret cannot be read back, and passwords are not
stored.

Implementation. The hardware is similar to that of the PIN-
protected backup HSM. This HSM adds a hardware SHA256
cryptographic accelerator (about 300 lines of Verilog), which

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    511



implements the SHA256 block function. We originally used
an off-the-shelf SHA256 core [66], but we switched to a
custom implementation to minimize FPGA area so the de-
sign would fit on our low-cost board. The software includes
a driver for the SHA256 peripheral, which implements the
message padding function and drives the memory-mapped
SHA256 peripheral, one block at a time. The software is
written in 200 lines of C code and 40 lines of assembly.

The HSM needs to be crash safe, and the specification has
operations that require updating multi-word values (the secret,
in our specification, is 20 bytes), but the FRAM only supports
word-level (32-bit) atomic writes. For this reason, the HSM
uses a simple journaling strategy where it keeps two copies
of the state in persistent memory and uses a flag to determine
which one is active. To do an atomic write, the HSM writes
to the inactive region and then toggles the flag.

Verification and bugs caught. The functional equivalence
proof caught a bug in the hardware implementation, in the
integration of the SHA256 peripheral into the SoC. The
memory-mapped SHA256 peripheral’s chip select input
was being set based on the CPU’s mem_addr bus, but the
mem_addr is uninitialized on reset (it becomes stable after a
couple cycles), so the SHA256 hardware could receive an un-
intended command right at boot. This bug would be difficult
to catch through testing because it is only triggered in rare
cases, when the uninitialized address bus contains a particular
value on reset. The bug was fixed by adding an additional
condition that mem_valid was also asserted (which all the
other peripherals did, but the SHA256 peripheral didn’t when
it was first integrated).

Verification caught a security bug in the software, where the
code branched on the flag indicating which region of persis-
tent memory was active, and so there was observable timing
variation where the circuit leaked more than the spec. Leak-
ing which region of memory was active effectively leaked the
parity of the total number of hash operations that the HSM
had processed, which the specification does not expose. We
fixed this by writing more careful C code that GCC compiled
without branches so that there was no leakage.

7.1.3 TOTP token
Specification. Figure 14 outlines the specification for the
TOTP token. It includes a specification of the TOTP algorithm
(not shown) that follows RFC 6238 [54], which relies on
HOTP [53], HMAC [46] and SHA1 [57]. The spec doesn’t
support reading back the secret after it has been set. It allows
computing TOTP values given a timestamp supplied by the
host machine, but it doesn’t allow rewinding the timestamp.
It supports an audit function to get the last timestamp value,
to be able to identify if the HSM was ever abused to compute
future TOTP values.

Implementation. The hardware is similar to that of the
password-hashing HSM, except this token uses a hardware

var secret = 0, last_timestamp = 0

def set_secret(new_secret):
secret = new_secret

def get_totp(timestamp):
if timestamp < last_timestamp:
return ’Cannot rewind timestamp’

last_timestamp = timestamp
return totp(secret, timestamp)

def audit():
return last_timestamp

Figure 14: The functional specification for the TOTP token.

/* old implementation:
uint32_t s = (buf[offset] & 0x7f) << 24

| (buf[offset+1] & 0xff) << 16
| (buf[offset+2] & 0xff) << 8
| (buf[offset+3] & 0xff);

*/
uint32_t s = 0;
for (int i = 0; i < 0x10; i++) {

uint32_t match = ((i != offset) - 1);
s += ((buf[i] & 0x7f) & match) << 24;
s += ((buf[i+1] & 0xff) & match) << 16;
s += ((buf[i+2] & 0xff) & match) << 8;
s += ((buf[i+3] & 0xff) & match);

}

Figure 15: Rewriting TOTP dynamic truncation to avoid sym-
bolic memory addresses.

SHA1 cryptographic accelerator. Its software includes a driver
for the SHA1 peripheral that implements message padding,
along with a software implementation of HMAC and the
TOTP algorithm. Part of the TOTP algorithm is implemented
in assembly, carefully written to prevent timing side chan-
nels. In one situation, we had to modify C code to be more
amenable to symbolic execution, avoiding symbolic memory
addresses in favor of fixed addresses and bit-twiddling tricks,
as shown in Figure 15. The software for the TOTP token
comprises 300 lines of C code and 60 lines of assembly.

Verification and bugs caught. The TOTP token uses a strat-
egy matching the password hasher for achieving atomic state
updates. Verifying functional equivalence caught a crash-
safety bug where a struct field was missing a volatile qual-
ifier and the compiler re-ordered a commit point (toggling the
flag) before a write that should happen first (updating state in
the inactive region of memory).

The emulator for the TOTP token follows the same ba-
sic construction as the others. One interesting detail: the
get_totp implementation branches based on whether the
timestamp is less than the last seen timestamp value; because
the timestamp is a 64-bit value and PicoRV32 uses a 32-bit ar-
chitecture, this turns into a number of comparisons/branches.
The emulator, in order to make sure its behavior matches the
real circuit’s timing behavior, calls the audit function to re-
trieve the real last timestamp value and inject it in place of the

512    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



HSM Spec Driver HW SW Proof
core total

PIN backup 32 60 110 2670 190 470
PW hasher 5 150 90 3020 240 650
TOTP 10 180 80 2950 360 830

Figure 16: Lines of code for case studies. Lines of code for
the spec are broken down into “core” and “total”, where core
is the main HSM functionality and doesn’t include boilerplate
or definitions of functions like SHA1, HMAC, and TOTP.

dummy data in the circuit copy, so that the timing behavior
matches the real circuit. Also, the commit point for the TOTP
operation is right after saving the new timestamp value, before
the actual call to the TOTP function, so the emulator calls the
functional specification’s get_totp operation at the commit
point in order to satisfy the recovery condition, stashes the
output in auxiliary state, and when the circuit copy gets to the
point where it’s returning from its call to the TOTP function
(computing with dummy data), injects the cached return value
in place of the dummy value in the circuit.

The physical equivalence proof caught an issue with the
TOTP implementation: it was using the C modulus (%) op-
erator to compute the final mod 106 operation, but this op-
eration had variable latency dependent on its input, which
leaks information that is not available in the functional spec-
ification. The spec doesn’t reveal the output of the HMAC
or dynamic truncation, only the final 6-digit code. The fix
was to implement this functionality in constant time, which
we did in assembly code using sltu and bitwise/arithmetic
instructions.

7.1.4 Summary

IPR and Knox can be applied to simple HSM hardware
and software. A design goal of the Knox HSMs, the im-
plementations are minimal, using simple hardware through-
out the SoC (e.g., a small RISC-V processor, simpler than
the ARM Cortex-M found in many security tokens). Still,
the Knox HSMs have implementation features found in real-
world HSM hardware (e.g., microprocessor, I/O peripheral,
persistent memory, cryptographic accelerator) and software
(e.g., peripheral drivers, cryptography, crash safety), and
Knox verification covers all of these.

Knox specs are succinct and proofs are manageable. Fig-
ure 16 shows lines of code in the spec and driver, imple-
mentation (hardware and software), and proof required for
verifying each HSM. We break down spec lines of code into
“core” and “total”, where core doesn’t include boilerplate or
definitions of functions like SHA1, HMAC, and TOTP. Knox
specifications are as short as their pseudocode: for example,
aside from the definition of the TOTP algorithm as specified
in RFC 6238, the core of the TOTP token specification in
Knox is only 10 lines of code, as shown in Figure 17.

(struct state (secret last-ts))

(define s0 (state (bv 0 160) (bv 0 64)))

(define ((set-secret secret) s)
(result #t (state secret (state-last-ts s))))

(define ((get-otp ts) s)
(if (bvult ts (state-last-ts s)) (result (bv 0 32) s)

(result (totp (state-secret s) ts)
(state (state-secret s) ts))))

(define ((audit) s)
(result (state-last-ts s) s))

Figure 17: The core of the Knox specification for the TOTP to-
ken. The definition of totp, not show here, is a pure function
that follows the spec in RFC 6238.

HSM FE-N FE-N+C FE FE+C PE

PIN backup 1 10 209 962 8
PW hasher 1 6 74 238 4
TOTP 3 8 44 141 8

Figure 18: Time taken (in minutes) for verification by Knox.
FE is functional equivalence; the -N variation disables nonde-
terminism in the driver; +C adds verification of crash safety.
PE is physical equivalence. The two bolded columns, FE and
PE, together imply IPR.

Knox catches bugs throughout hardware/software. Verifi-
cation caught bugs across hardware (e.g., SHA256 peripheral
initialization, in the password hasher) and software (e.g., com-
piler re-ordering a commit point, in the TOTP token), includ-
ing timing side channels (e.g., variable-time modulus, in the
TOTP token) and subtle bugs involving hardware, software,
timing, and persistence (e.g., commit point dependent on the
PIN guess being correct, in the PIN-protected backup).

7.2 Performance
Verification performance. Figure 18 shows Knox’s verifi-
cation performance, evaluated on a 2014-era Intel i7-5930K.
The implementation is currently single-threaded. Most of the
time in functional equivalence proofs is due to nondetermin-
ism (yield and merge) or verifying crash safety. The relatively
low performance of verifying PIN-protected backup is due to
performing case analysis on the slot number, which causes
many paths to be explored independently.

When developing functional equivalence proofs, we usually
begin by disabling driver nondeterminism and verification of
crash safety. This significantly reduces verification time, and
the tighter feedback loop speeds up the initial proof devel-
opment process. After verification completes successfully in
this simplified setting, we add back complexity and fix up the
implementation and proof as needed.

Implementation performance. The case studies showed
that hardware or software may need to be modified to satisfy

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    513



Metric Baseline Verified

FPGA LUTs 3966 3962 (−0%)
Max clock freq 20.01 MHz 20.53 MHz (+3%)
Code size 2412 B 2592 B (+7%)
TOTP op latency 0.73 ms 0.83 ms (+14%)

Figure 19: Overhead of modifications to TOTP token.

the strict definition of IPR and simplify verification. The
TOTP token required the most modifications among the case
studies. Figure 19 shows the impact of these modifications
on hardware (FPGA area and maximum clock frequency)
and software (code size and performance). Code performance
was measured at a clock of 12 MHz and baud rate of 2M for
the totp operation. Most of the slowdown results from the
modification to the dynamic truncation code (Figure 15).

The verified TOTP token can perform TOTP operations
with a latency of 0.83 ms, which is fast enough for interactive
use [50]. The other HSMs have similar per-operation latency.

8 Discussion

This section elaborates on some of the design decisions made
in IPR and Knox and discusses their implications.

8.1 Emulator efficiency
To meaningfully apply IPR to specifications that involve cryp-
tography, the adversary must be efficient, and therefore, the
emulator must be efficient as well. Without an efficiency re-
quirement, an implementation that, for example, leaks an
RSA signing key, could be justified by an emulator that calls
the specification to get the public key, factors products of
large primes in exponential time to compute the private key,
and then perfectly mimics the physical interface because it
has determined the implementation’s internal state.

The emulator must satisfy a coarse-grained notion of
efficiency: being prohibited from performing exponential-
time computation and brute-forcing secrets. Without an effi-
ciency requirement, information-preserving refinement cap-
tures an information-theoretic notion of information preserva-
tion, rather than a computational one.

The Knox framework does not fully formalize or mechan-
ically verify emulator efficiency. Instead, the proofs rely on
a manual audit of the emulator code. The emulators we con-
struct are simple, so the efficiency property is easy to check. In
fact, the Knox emulators in our case studies satisfy a stricter
definition of efficiency than necessary — per cycle of the
circuit that they emulate, they perform at most one query to
the specification and perform computation roughly equivalent
to what the circuit does in one cycle — meaning that an ad-
versary could run the emulator with computational resources
equivalent to the circuit itself.

8.2 Randomness
Functional specifications in IPR are deterministic, so IPR
cannot be used to verify HSMs that use true random num-
ber generators (TRNGs). As an alternative, HSMs can use
cryptographically-secure pseudo-random number generators
(CSPRNGs), and this fits into IPR, because IPR supports in-
ternal state. The specification can internally use a CSPRNG,
the spec can be augmented to expose an operation to add
entropy to the CSPRNG, and this operation can be called
by the host at device initialization time (and again at any
time later) to seed the random number generator. IPR ensures
that the CSPRNG’s internal state cannot be leaked by the
implementation.

8.3 Allowed leakage
IPR enforces that the implementation leaks no more than
the specification; sometimes, it is desirable to allow the im-
plementation to leak some non-sensitive information, e.g.,
the current bad_guesses count in the PIN-protected backup.
This fits in to IPR: the leakage can be expressed as a spec-
level leak operation. Knox supports leakage specifications
using this strategy, and it allows the user to skip proving func-
tional equivalence for leak operations (a well-behaved host
does not need to invoke this operation; it is only relevant for
modeling leakage as part of physical equivalence).

8.4 Monolithic end-to-end verification
Knox performs monolithic end-to-end verification, which has
some benefits over modular verification. There is no need to
define intermediate specifications and prove that layers satisfy
these specs; there is no distinction between hardware and
software, or a notion of, e.g., an instruction set architecture.
Knox simply reasons about the cycle-accurate behavior of
the entire circuit. If the circuit happens to contain a CPU that
runs some software, the software is “inlined” into hardware
(the initial contents of a ROM, for example).

Knox uses symbolic execution, and due to performing sym-
bolic execution end-to-end across software and hardware,
symbolic execution can be kept as concrete as possible, which
improves performance. For example, Knox doesn’t attempt to
prove a CPU correct (that it executes any program correctly);
this would require reasoning about symbolic instructions/pro-
grams. Instead, a proof of a Knox HSM only shows (indi-
rectly) that the CPU executes the HSM’s particular software
correctly, which is an easier task.

Lack of modularity could be a challenge when scaling up
Knox to more sophisticated HSM implementations, because
end-to-end symbolic execution across hardware and software
will perform poorly as hardware gets more sophisticated, and
the proof developer might have trouble with non-modular rea-
soning as complexity increases. But modular reasoning about
security properties is also challenging: e.g., proving software
correct with respect to an ISA specification is inadequate for
proving absence of timing side channels.

514    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A potential approach to this problem could involve struc-
turing the HSM implementation to delay responses until a
worst-case execution time bound, and then specializing the
verification framework to reason about HSMs following such
a design. With such a structure, precise Knox-style reasoning
about software executing on hardware may not be necessary,
making it possible to separately reason about correctness (fol-
lowing standard approaches) and then reason about worst-case
execution time bounds of software executing on hardware to
show a top-level property like IPR.

9 Related work
Noninterference. Noninterference [39] captures confiden-
tiality properties in systems where high-sensitivity inputs
should not affect low-sensitivity outputs, which are separate
from high-sensitivity outputs. seL4 [55], mCertiKOS [30],
Komodo [36], and Nickel [64] verify noninterference proper-
ties such as process isolation. HACL* [62, 74], Vale [25, 38],
EverCrypt [63], and Jasmin [14] phrase freedom from timing
side channels in crypto code as noninterference by defining
a leakage trace (the low-sensitivity output) that captures ad-
versary observations, such as every program counter value,
and showing that two executions that have matching public
inputs but differing secrets (high-sensitivity inputs) produce
identical leakage traces.

The Knox setting does not have separate low/high-
sensitivity outputs: there is just one output, the logic levels on
the output wires at every cycle, and this is what the adversary
observes. Noninterference does not hold in the Knox setting:
the output can and will be secret-dependent. Instead, IPR says
that the output does not leak more information than the spec,
which is not a noninterference property.

Declassification. Noninterference with declassification [56]
separates low and high-sensitivity inputs (i.e., public and
secret inputs) and supports controlled influence of secrets on
outputs through an explicit declassify function that marks
secret-dependent values as safe to output. Ironclad [42] uses
this style of security definition; the proofs cover only software,
not hardware, and do not rule out timing side channels.

The Knox setting does not separate low and high-sensitivity
inputs. There is just one input, the logic levels on the input
wires at every cycle. IPR says that after the HSM receives
inputs from the driver (i.e., corresponding to a spec-level
operation), its future behavior does not leak more information
than the specification, which is not a declassification property.

Ironclad contains a PassHash app similar to the Knox pass-
word hasher. PassHash generates a secret internally, from a
computer’s TPM, and it services network requests: given a
password, it returns a hash of the password salted with the se-
cret. The secret is a high-sensitivity input (from the TPM) and
the password is low-sensitivity input (from the network); the
security definition is phrased as noninterference with declas-
sification, allowing the final output to the network to depend

on the secret in a controlled way. In the Knox HSM, the se-
cret is not generated internally but received from the host,
and both secrets and passwords are received over the same
input wires (there are no separate public and secret inputs).
A declassification-style definition does not apply. IPR says
that the implementation’s behavior can’t leak more informa-
tion than the specification, so for example, after a host sets
the secret, the HSM can’t leak the secret. IPR also gives the
same property with passwords: the HSM can’t leak passwords
that were input earlier. In contrast, the noninterference prop-
erty for PassHash doesn’t prevent the implementation from
leaking passwords, because they are low-sensitivity inputs.

Hardware/software verification. A long line of work per-
forms end-to-end verification of functional correctness prop-
erties for hardware/software systems, with an emphasis on
modular verification [13, 23, 35, 48]. Proving functional cor-
rectness does not rule out timing side channels, while address-
ing side channels is a central goal of IPR and Knox.

Knox uses Notary’s toolchain to convert C/Verilog to
Rosette models, and Knox uses Notary’s idea of reset-based
design for simplifying verification [16, 52]. Knox solves a dif-
ferent problem than Notary. IPR is a new security definition
for HSMs that captures the notion that a hardware/software
implementation satisfies a functional specification and leaks
nothing more, and Knox is a framework for proving this prop-
erty, including support for writing specifications, encoding
drivers and emulators, and proving correctness and security.
Notary’s focus is a hardware/software architecture for better
isolation between multiple mutually-distrustful agents run-
ning on the same device, and Notary only verifies a simple
(but key) property of an embedded system and its boot code,
that all internal state is cleared after reset.

Simulation-based definitions of security. IPR is inspired
by simulation-based definitions of security for multiparty
computation (MPC) and universal composability (UC) [28,
40, 41]. The Knox emulator is similar to the MPC simulator,
which formalizes the notion of zero knowledge in an MPC
protocol. Knox uses this concept to define non-leakage for a
hardware/software system.

Verified cryptography. Some tools [18, 19, 24, 61] verify
cryptographic properties of functional specifications and pro-
tocols. These are complementary to Knox, as illustrated by
work that formally analyzes HSM interfaces [26, 33].

Other works prove functional correctness of crypto imple-
mentations [17, 22, 27, 29, 34]. Some of these provide side-
channel resistance with cryptographic constant-time code,
which can be compiled to machine code while preserving
constant-time [20], but the security property does not go down
to the hardware / wire I/O level.

Verifying efficiency. Cryptographic proofs generally reason
about efficient adversaries, and some frameworks for ver-
ified cryptography support proving polynomial bounds on

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    515



programs’ running time [18, 61]. Knox could follow their
approach, adding a cost semantics for the emulator language,
to formally reason about emulator efficiency.

Secure compilation. In Knox, the circuit is not derivable
from the specification via compilation, but the IPR defini-
tion bears some resemblance to the properties secure compil-
ers guarantee about their compilation results. Fully-abstract
compilers [11] preserve and reflect observational equivalence
from the source to the target language. Some security prop-
erties can be stated as program equivalences [60], but IPR’s
non-leakage property is not captured by this type of defi-
nition. In fact, some Knox specifications such as the pass-
word hasher have no instances that are observationally (exten-
sionally) equivalent but not intensionally equal, so a secure-
compilation-style equivalence preservation at the circuit level
would be vacuous. Trace-preserving compilation [59] pre-
serves trace equivalence between source and target and han-
dles invalid target-level inputs. The definition is not general
enough to apply to the HSM setting because source-level
inputs don’t map to single target-level inputs (function call
to wire input for a single cycle), and there is no notion of
“ignoring invalid inputs” (for any wire-level inputs, the HSM
will have wire-level outputs). Furthermore, similar to the case
of program equivalence, some Knox specifications such as the
password hasher have no instances that are trace-equivalent
but not equal, so trace-equivalence preservation at the circuit
level would be vacuous.

10 Conclusion
Information-preserving refinement (IPR) is a new security
definition that captures the idea that a circuit-level imple-
mentation should implement its logical-level specification
and leak nothing more. Knox demonstrates that IPR is useful
in practice for ruling out bugs in an HSM’s hardware and
software. We believe that IPR is applicable beyond HSMs
and hope that it can serve as a foundation of future security
definitions.

Acknowledgments
We would like to thank Henry Corrigan-Gibbs and Joseph
Tassarotti for insightful discussions that helped us develop
the IPR definition. We are grateful to Emina Torlak and Xi
Wang for their guidance on working with Rosette. This paper
has been improved thanks to feedback from many individu-
als, including Akshay Narayan, Alexandra Henzinger, Ariel
Szekely, Derek Leung, Kyle Hogan, Ralf Jung, Robert Mor-
ris, Sacha Servan-Schreiber, Stella Lau, Tej Chajed, Thomas
Bourgeat, Yun-Sheng Chang, the anonymous reviewers, and
our shepherd, George Candea. This research was supported
by NSF award CNS-1812522 and by Google.

References
[1] CVE-2004-0320. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2004-0320, Sept. 2004.

[2] YSA-2015-1. https://developers.yubico.com/
ykneo-openpgp/SecurityAdvisory%202015-04-14.
html, Apr. 2015.

[3] CVE-2018-6875. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2018-6875, Feb. 2018.

[4] YSA-2018-01. https://www.yubico.com/support/
security-advisories/ysa-2018-01/, Jan. 2018.

[5] CVE-2019-18671. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-18671, Nov. 2019.

[6] CVE-2019-18672. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-18672, Nov. 2019.

[7] YSA-2020-04. https://www.yubico.com/support/
security-advisories/ysa-2020-04/, July 2020.

[8] CVE-2021-31616. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2021-31616, Apr. 2021.

[9] WhatsApp security whitepaper: Security of end-to-end
encrypted backups. https://www.whatsapp.com/
security/WhatsApp_Security_Encrypted_Backups_
Whitepaper.pdf, Sept. 2021.

[10] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley,
A. Flores-López, J. A. Halderman, J. Hoffman-Andrews,
J. Kasten, E. Rescorla, S. Schoen, and B. Warren. Let’s En-
crypt: An automated certificate authority to encrypt the entire
web. In Proceedings of the 26th ACM Conference on Com-
puter and Communications Security (CCS), pages 2473–2487,
London, United Kingdom, Nov. 2019.

[11] M. Abadi. Protection in Programming-Language Translations,
pages 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg,
1999. ISBN 978-3-540-48749-4.

[12] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi.
The EM side-channel(s). In Proceedings of the 2002 IACR
Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES), Redwood City, CA, Aug. 2002.

[13] E. Alkassar, W. J. Paul, A. Starostin, and A. Tsyban. Pervasive
verification of an OS microkernel: Inline assembly, memory
consumption, concurrent devices. In Proceedings of the 3rd
Working Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE), pages 71–85, Edinburgh, United King-
dom, Aug. 2010.

[14] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire,
V. Laporte, T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y.
Strub. Jasmin: High-assurance and high-speed cryptography.
In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), pages 1807–1823, Dallas,
TX, Oct.–Nov. 2017.

516    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0320
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0320
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6875
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6875
https://www.yubico.com/support/security-advisories/ysa-2018-01/
https://www.yubico.com/support/security-advisories/ysa-2018-01/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18671
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18671
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18672
https://www.yubico.com/support/security-advisories/ysa-2020-04/
https://www.yubico.com/support/security-advisories/ysa-2020-04/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31616
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31616
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf


[15] Apple, Inc. Apple platform security. https:
//manuals.info.apple.com/MANUALS/1000/MA1902/
en_US/apple-platform-security-guide.pdf, May
2021.

[16] A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, and N. Zel-
dovich. Notary: A device for secure transaction approval. In
Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 97–113, Huntsville, Ontario,
Canada, Oct. 2019.

[17] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers,
K. Liao, and B. Parno. SoK: Computer-aided cryptography.
In Proceedings of the 42nd IEEE Symposium on Security and
Privacy, pages 777–795, Virtual conference, May 2021.

[18] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certi-
fication of code-based cryptographic proofs. In Proceedings
of the 36th ACM Symposium on Principles of Programming
Languages (POPL), pages 90–101, Savannah, GA, Jan. 2009.

[19] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin.
Computer-aided security proofs for the working cryptographer.
In Proceedings of the 31st Annual International Cryptology
Conference (CRYPTO), pages 71–90, Santa Barbara, CA, Aug.
2011.

[20] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte,
D. Pichardie, and A. Trieu. Formal verification of a constant-
time preserving C compiler. In Proceedings of the 47th ACM
Symposium on Principles of Programming Languages (POPL),
New Orleans, LA, Jan. 2020.

[21] J.-B. Bédrune and G. Campana. Everybody be cool,
this is a robbery! https://donjon.ledger.com/
BlackHat2019-presentation/, Aug. 2019.

[22] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel. Verified
correctness and security of OpenSSL HMAC. In Proceed-
ings of the 24th USENIX Security Symposium, pages 207–201,
Washington, DC, Aug. 2015.

[23] W. R. Bevier, W. A. Hunt Jr., J. S. Moore, and W. D. Young.
An approach to systems verification. Journal of Automated
Reasoning, 5(4):411–428, Dec. 1989.

[24] B. Blanchet. A computationally sound mechanized prover for
security protocols. In Proceedings of the 27th IEEE Symposium
on Security and Privacy, pages 140–154, Oakland, CA, May
2006.

[25] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R.
Lorch, B. Parno, A. Rane, S. Setty, and L. Thompson. Vale:
Verifying high-performance cryptographic assembly code. In
Proceedings of the 26th USENIX Security Symposium, pages
917–934, Vancouver, Canada, Aug. 2017.

[26] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attack-
ing and fixing PKCS#11 security tokens. In Proceedings of
the 17th ACM Conference on Computer and Communications
Security (CCS), pages 260–269, Chicago, IL, Oct. 2010.

[27] B. Boston, S. Breese, J. Dodds, M. Dodds, B. Huffman,
A. Petcher, and A. Stefanescu. Verified cryptographic code for
everybody. In Proceedings of the 33rd International Confer-
ence on Computer Aided Verification (CAV), pages 645–668,
Los Angeles, CA, July 2021.

[28] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 136–145, Las Vegas, NV, Oct. 2001.

[29] Y.-F. Chen, C.-H. Hsu, H.-H. Lin, P. Schwabe, M.-H. Tsai, B.-
Y. Wang, B.-Y. Yang, and S.-Y. Yang. Verifying Curve25519
software. In Proceedings of the 21st ACM Conference on Com-
puter and Communications Security (CCS), pages 299–309,
Scottsdale, AZ, Nov. 2014.

[30] D. Costanzo, Z. Shao, and R. Gu. End-to-end verification
of information-flow security for C and assembly programs.
In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 648–664, Santa Barbara, CA, June 2016.

[31] F. Cremonese. Security analysis of the Solo
firmware. https://blog.doyensec.com/2020/02/
19/solokeys-audit.html, Feb. 2020.

[32] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), pages 337–340, Budapest, Hungary, Mar.–Apr.
2008.

[33] S. Delaune, S. Kremer, and G. Steel. Formal analysis of
PKCS#11. In Proceedings of the 21st IEEE Computer Security
Foundations Symposium (CSF), pages 331–344, Pittsburgh,
PA, June 2008.

[34] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala.
Simple high-level code for cryptographic arithmetic – with
proofs, without compromises. In Proceedings of the 40th
IEEE Symposium on Security and Privacy, pages 73–90, San
Francisco, CA, May 2019.

[35] A. Erbsen, S. Gruetter, J. Choi, C. Wood, and A. Chlipala.
Integration verification across software and hardware for a
simple embedded system. In Proceedings of the 42nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2021.

[36] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Ko-
modo: Using verification to disentangle secure-enclave hard-
ware from software. In Proceedings of the 26th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 287–305,
Shanghai, China, Oct. 2017.

[37] M. Flatt and PLT. Reference: Racket. Technical Report PLT-
TR-2010-1, PLT Design Inc., 2010. https://racket-lang.
org/tr1/.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    517

https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://donjon.ledger.com/BlackHat2019-presentation/
https://donjon.ledger.com/BlackHat2019-presentation/
https://blog.doyensec.com/2020/02/19/solokeys-audit.html
https://blog.doyensec.com/2020/02/19/solokeys-audit.html
https://racket-lang.org/tr1/
https://racket-lang.org/tr1/


[38] A. Fromherz, N. Giannarakis, C. Hawblitzel, B. Parno, A. Ras-
togi, and N. Swamy. A verified, efficient embedding of a
verifiable assembly language. In Proceedings of the 46th ACM
Symposium on Principles of Programming Languages (POPL),
Cascais, Portugal, Jan. 2019.

[39] J. A. Goguen and J. Meseguer. Security policies and secu-
rity models. In Proceedings of the 3rd IEEE Symposium on
Security and Privacy, pages 11–20, Oakland, CA, Apr. 1982.

[40] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 218–229,
New York, NY, May 1987.

[41] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. In Proceedings of the
17th Annual ACM Symposium on Theory of Computing (STOC),
pages 291–304, Providence, RI, May 1985.

[42] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad Apps: End-to-end security
via automated full-system verification. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 165–181, Broomfield, CO, Oct.
2014.

[43] M. Hemmel, J. Meltzer, T. Pornin, K. Ryan, J. Samuel,
D. Wong, R. Wood, and G. Worona. Android cloud backup/re-
store. https://research.nccgroup.com/wp-content/
uploads/2020/07/Final_Public_Report_NCC_Group_
Google_EncryptedBackup_2018-10-10_v1.0.pdf, Oct.
2018.

[44] M. Hutter and J.-M. Schmidt. The temperature side chan-
nel and heating fault attacks. In Proceedings of the 12th
Smart Card Research and Advanced Application Confer-
ence (CARDIS), pages 219–235, Berlin, Germany, Nov. 2013.

[45] J. Jancar, V. Sedlacek, P. Svenda, and M. Sys. Minerva: The
curse of ECDSA nonces (systematic analysis of lattice attacks
on noisy leakage of bit-length of ECDSA nonces). IACR Trans-
actions on Cryptographic Hardware and Embedded Systems,
2020(4):281–308, 2020.

[46] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
hashing for message authentication. RFC 2104, Network
Working Group, Feb. 1997.

[47] I. Krstić. Behind the scenes with iOS security.
https://www.blackhat.com/docs/us-16/materials/
us-16-Krstic.pdf, Aug. 2016.

[48] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish,
O. Abrahamsson, and A. Fox. Verified compilation on a ver-
ified processor. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI), pages 1041–1053, Phoenix, AZ, June 2019.

[49] R. Mayer-Sommer. Smartly analyzing the simplicity and the
power of simple power analysis on smartcards. In Proceedings
of the 2000 IACR Workshop on Cryptographic Hardware and
Embedded Systems (CHES), pages 78–92, Worcester, MA,
Aug. 2000.

[50] R. B. Miller. Response time in man-computer conversational
transactions. In Proceedings of the AFIPS 1968 Fall Joint
Computer Conference, pages 267–277, San Francisco, CA,
Dec. 1968.

[51] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger. TPM-
FAIL: TPM meets timing and lattice attacks. In Proceedings
of the 29th USENIX Security Symposium, pages 2057–2073,
Aug. 2020.

[52] N. Moroze, A. Athalye, M. F. Kaashoek, and N. Zeldovich. rtlv:
push-button verification of software on hardware. In Proceed-
ings of the 5th Workshop on Computer Architecture Research
with RISC-V (CARRV), Virtual conference, June 2021.

[53] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ra-
nen. HOTP: An HMAC-based one-time password algorithm.
RFC 4226, Network Working Group, Dec. 2005.

[54] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-
based one-time password algorithm. RFC 6238, Network
Working Group, May 2011.

[55] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from
general purpose to a proof of information flow enforcement.
In Proceedings of the 34th IEEE Symposium on Security and
Privacy, pages 415–429, San Francisco, CA, May 2013.

[56] A. Myers and B. Liskov. A decentralized model for information
flow control. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP), pages 129–147, Saint-
Malo, France, Oct. 1997.

[57] National Institute of Standards and Technology. Secure hash
standard. Federal Information Processing Standards (FIPS)
180-4, U.S. Department of Commerce, Washington, DC, Aug.
2015.

[58] OASIS PKCS 11 Technical Committee. PKCS #11 cryp-
tographic token interface current mechanisms specification
version 3.0. https://docs.oasis-open.org/pkcs11/
pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html,
June 2020.

[59] M. Patrignani and D. Garg. Secure compilation and hyperprop-
erty preservation. In Proceedings of the 30th IEEE Computer
Security Foundations Symposium (CSF), pages 392–404, Santa
Barbara, CA, Sept. 2017.

[60] M. Patrignani, A. Ahmed, and D. Clarke. Formal approaches
to secure compilation: A survey of fully abstract compilation
and related work. ACM Computing Surveys, 51(6), Nov. 2019.

[61] A. Petcher and G. Morrisett. The Foundational Cryptography
Framework. In Proceedings of the 4th International Confer-
ence on Principles of Security and Trust, pages 53–72, Apr.
2015.

518    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html


[62] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananan-
dro, P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud,
C. Hritcu, K. Bhargavan, C. Fournet, and N. Swamy. Veri-
fied low-level programming embedded in F*. In Proceedings
of the 22nd ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), Oxford, United Kingdom, Sept.
2017.

[63] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Pol-
ubelova, K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-
Lavaud, C. Fournet, N. Kulatova, T. Ramananandro, A. Ras-
togi, N. Swamy, C. Wintersteiger, and S. Zanella-Beguelin. Ev-
erCrypt: A fast, verified, cross-platform cryptographic provider.
In Proceedings of the 41st IEEE Symposium on Security and
Privacy, pages 983–1002, San Francisco, CA, May 2020.

[64] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt,
E. Torlak, and X. Wang. Nickel: A framework for design and
verification of information flow control systems. In Proceed-
ings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 287–306, Carlsbad,
CA, Oct. 2018.

[65] S. Srinivas, D. Balfanz, E. Tiffany, and A. Czeskis. Universal
2nd Factor (U2F) overview. https://fidoalliance.
org/specs/fido-u2f-v1.1-id-20160915/
fido-u2f-overview-v1.1-id-20160915.pdf, Sept.
2016.

[66] J. Strömbergson. sha256. https://github.com/
secworks/sha256, 2013.

[67] E. Torlak and R. Bodik. A lightweight symbolic virtual ma-
chine for solver-aided host languages. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 530–541, Edin-
burgh, United Kingdom, June 2014.

[68] F. Uekermann. Buggy OTP slot range check. https:
//github.com/Nitrokey/nitrokey-pro-firmware/
issues/4, June 2016.

[69] C. X. Wolf. Yosys Open SYnthesis Suite. https://github.
com/YosysHQ/yosys, 2012.

[70] C. X. Wolf. Project IceStorm — Lattice iCE40 FPGAs
bitstream documentaion. https://github.com/YosysHQ/
icestorm, 2015.

[71] C. X. Wolf. PicoRV32 – a size-optimized RISC-V CPU.
https://github.com/YosysHQ/picorv32, 2015.

[72] C. X. Wolf, gatecat, D. Gisselquist, S. Bazanski, M. Milanovic,
and E. Hung. nextpnr. https://github.com/YosysHQ/
nextpnr, 2018.

[73] Y. Zhou and D. Feng. Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security
testing. Cryptology ePrint Archive, Report 2005/388, Oct.
2005.

[74] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beur-
douche. HACL*: A verified modern cryptographic library. In
Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    519

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://github.com/secworks/sha256
https://github.com/secworks/sha256
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/icestorm
https://github.com/YosysHQ/icestorm
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/nextpnr
https://github.com/YosysHQ/nextpnr




ORCA: A Distributed Serving System for
Transformer-Based Generative Models

Gyeong-In Yu
Seoul National University

Joo Seong Jeong
Seoul National University

Geon-Woo Kim
FriendliAI

Seoul National University

Soojeong Kim
FriendliAI

Byung-Gon Chun∗

FriendliAI
Seoul National University

Abstract
Large-scale Transformer-based models trained for generation
tasks (e.g., GPT-3) have recently attracted huge interest, em-
phasizing the need for system support for serving models in
this family. Since these models generate a next token in an au-
toregressive manner, one has to run the model multiple times
to process an inference request where each iteration of the
model generates a single output token for the request. How-
ever, existing systems for inference serving do not perform
well on this type of workload that has a multi-iteration char-
acteristic, due to their inflexible scheduling mechanism that
cannot change the current batch of requests being processed;
requests that have finished earlier than other requests in a
batch cannot return to the client, while newly arrived requests
have to wait until the current batch completely finishes.

In this paper, we propose iteration-level scheduling, a new
scheduling mechanism that schedules execution at the gran-
ularity of iteration (instead of request) where the scheduler
invokes the execution engine to run only a single iteration of
the model on the batch. In addition, to apply batching and
iteration-level scheduling to a Transformer model at the same
time, we suggest selective batching, which applies batching
only to a selected set of operations. Based on these two tech-
niques, we have implemented a distributed serving system
called ORCA, with additional designs for scalability to models
with hundreds of billions of parameters. Our evaluation on a
GPT-3 175B model shows that ORCA can significantly out-
perform NVIDIA FasterTransformer in terms of both latency
and throughput: 36.9× throughput improvement at the same
level of latency.

1 Introduction

Language generation tasks are becoming increasingly
paramount to many types of applications, such as chatbot [9,
52], summarization [41,45,54], code generation [13], and cap-
tion generation [65,66]. Moreover, recent works published by

∗Corresponding author.

AI21 Labs [37], DeepMind [26,48], Google [15,21,63], Meta
Platforms [10,67], Microsoft [50], Microsoft & NVIDIA [59],
and OpenAI [12] have reported that every language process-
ing task, including translation [11, 17], classification [20, 53],
question-answering [32, 33, 40] and more, can be cast as a
language generation problem and have shown great improve-
ments along this direction. The rise of generative models is
not limited to the language domain; the AI community has
also given growing interest to generation problems in other do-
mains such as image, video, speech, or a mixture of multiple
domains [19,38,51,62]. At the heart of generative models lies
the Transformer architecture [60] and its variants [15, 47–49].
By relying on the attention mechanism [60], Transformer
models can learn better representations where each element
of the sequence may have a direct connection with every other
element, which was not possible in recurrent models [25].

To use generative models in real-world applications, we
often delegate the inference procedure to a separate service
responsible for ML inference serving. The growing demands
for this service, which should provide inference results for
client requests at low latency and high throughput, have fa-
cilitated the development of inference serving systems such
as Triton Inference Server [7] and TensorFlow Serving [42].
These systems can use a separately-developed DNN execution
engine to perform the actual tensor operations. For example,
we can deploy a service for language generation tasks by
using a combination of Triton and FasterTransformer [4], an
execution engine optimized for the inference of Transformer-
based models. In this case, Triton is mainly responsible for
grouping multiple client requests into a batch, while Faster-
Transformer receives the batch from Triton and conducts the
inference procedure in the batched manner.

Unfortunately, we notice that the existing inference sys-
tems, including both the serving system layer and the execu-
tion engine layer, have limitations in handling requests for
Transformer-based generative models. Since these models are
trained to generate a next token in an autoregressive manner,
one should run the model as many times as the number of to-
kens to generate, while for other models like ResNet [24] and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    521



BERT [18] a request can be processed by running the model
once. That is, in order to process a request to the generative
model, we have to run multiple iterations of the model; each
iteration generates a single output token, which is used as
an input in the following iteration. Such multi-iteration char-
acteristic calls into question the current design of inference
systems, where the serving system schedules the execution
of the engine at the granularity of request. Under this design,
when the serving system dispatches a batch of requests to
the engine, the engine returns inference results for the entire
batch at once after processing all requests within the batch.
As different client requests may require different numbers of
iterations for processing, requests that have finished earlier
than others in the batch cannot return to the client, resulting
in an increased latency. Requests arrived after dispatching the
batch also should wait for processing the batch, which can
significantly increase the requests’ queueing time.

In this paper, we propose to schedule the execution of the
engine at the granularity of iteration instead of request. In
particular, the serving system invokes the engine to run only a
single iteration of the model on the batch. As a result, a newly
arrived request can be considered for processing after waiting
for only a single iteration of the model. The serving system
checks whether a request has finished processing after every
return from the engine – hence the finished requests can also
be returned to the clients immediately.

Nevertheless, a noticeable challenge arises when we at-
tempt to apply batching and the iteration-level scheduling at
the same time. Unlike the canonical request-level scheduling,
the proposed scheduling can issue a batch of requests where
each request has so far processed a different number of tokens.
In such a case, the requests to the Transformer model cannot
be processed in the batched manner because the attention
mechanism calls for non-batchable tensor operations whose
input tensors have variable shapes depending on the number
of processed tokens.

To address this challenge, we suggest to apply batching
only to a selected set of operations, which we call selective
batching. By taking different characteristics of operations into
account, selective batching splits the batch and processes each
request individually for the Attention1 operation while apply-
ing batching to other operations of the Transformer model.
We observe that the decision not to batch the executions of
the Attention operation has only a small impact on efficiency.
Since the Attention operation is not associated with any model
parameters, applying batching to Attention has no benefit of
reducing the amount of GPU memory reads by reusing the
loaded parameters across multiple requests.

Based on these techniques, we design and implement
ORCA, a distributed serving system for Transformer-based
generative models. In order to handle large-scale models,

1In some literature the Attention operation has an extended definition that
includes linear layers (QKV Linear and Attn Out Linear; Figure 1b). On the
other hand, we use a narrow definition as described in Figure 1b.

ORCA adopts parallelization strategies including intra-layer
and inter-layer model parallelism, which were originally de-
veloped by training systems [55, 58] for Transformer models.
We also devise a new scheduling algorithm for the proposed
iteration-level scheduling, with additional considerations for
memory management and pipelined execution across work-
ers.

We evaluate ORCA using OpenAI GPT-3 [12] models with
various configurations, scaling up to 341B of parameters. The
results show that ORCA significantly outperforms FasterTrans-
former [4], showing 36.9× throughput improvement at the
same level of latency. While we use a language model as
a driving example throughout the paper and conduct experi-
ments only on language models, generative models in other
domains can benefit from our approach as long as the mod-
els are based on the Transformer architecture and use the
autoregressive generation procedure [19, 38, 51, 62].

2 Background

We provide background on the inference procedure of
GPT [12, 47], a representative example of Transformer-based
generative models that we use throughout this paper, and ML
inference serving systems.

Inference procedure of GPT. GPT is an autoregressive
language model based on one of architectural variants of
Transformer [60]. It takes text as input and produces new text
as output. In particular, the model receives a sequence of input
tokens and then completes the sequence by generating subse-
quent output tokens. Figure 1a illustrates a simplified compu-
tation graph that represents this procedure with a three-layer
GPT model, where nodes and edges indicate Transformer
layers and dependencies between the layers, respectively. The
Transformer layers are executed in the order denoted by the
numbers on the nodes, and the nodes that use the same set
of model parameters (i.e., nodes representing the same layer)
are filled with the same color.

The generated output token is fed back into the model to
generate the next output token, imposing a sequential, one-
by-one inference procedure. This autoregressive procedure of
generating a single token is done by running all the layers of
the model with the input, which is either a sequence of input
tokens that came from the client or a previously generated out-
put token. We define the run of all layers as an iteration of the
model. In the example shown in Figure 1a, the inference pro-
cedure comprises three iterations. The first iteration (“iter 1”)
takes all the input tokens (“I think this”) at once and generates
the next token (“is”). This iteration composes an initiation
phase, a procedure responsible for processing the input tokens
and generating the first output token. The next two iterations
(“iter 2” and “iter 3”), which compose an increment phase,
take the output token of the preceding iteration and generate

522    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



I think this

1 4 7

5 8

is great

6 9

is great <EOS>

2

iter 1 iter 2 iter 3

3

(a) A computation graph representing
an inference procedure using a GPT
model. The graph does not depict lay-
ers other than Transformer layers (e.g.,
embedding) for simplicity.

MLP

LayerNorm

QKV Linear

Attention

Query ValueKey

Attn Out Linear

Add

Input

LayerNorm

Linear

GeLU

Linear

Add

Output

(b) A Transformer layer used in GPT.

kl,1:t−1

vl,1:t−1

kl,1:t−1

vl,1:t−1

Transformer 
layer

Transformer 
layer

LSTM
layer

LSTM
layer

kl,1:t
vl,1:t

kl,1:t
vl,1:t

kl,1:t+1

vl,1:t+1

kl,1:t+1

vl,1:t+1

cl,t−1

hl,t−1

cl,t−1

hl,t−1

cl,t
hl,t

cl,t
hl,t

cl,t+1

hl,t+1

cl,t+1

hl,t+1

hl−1,thl−1,t

hl,thl,t

hl−1,t+1hl−1,t+1

hl,t+1hl,t+1

hl−1,thl−1,t

hl,thl,t hl,t+1hl,t+1

hl−1,t+1hl−1,t+1

(c) Internal state usage of Transformer. h, k, v, and c refer
to layer input/output, Attention key, Attention value, and
LSTM internal memory, respectively. l denotes layer
index and t denotes token index.

Figure 1: Illustrations for GPT’s inference procedure, Transformer layer, and internal state usage.

the next token. In this case, “iter 3” is the last iteration because
it produces “<EOS>”, a special end-of-sequence token that
terminates output generation. Note that while the increment
phase comprises multiple iterations because each iteration
is only able to process a single token, the initiation phase is
typically implemented as a single iteration by processing all
the input tokens in parallel.

The original Transformer [60] employs two stacks of Trans-
former layers, while GPT’s architecture consists of a single
layer stack, namely decoder. Figure 1b shows a Transformer
layer used in GPT. Among the operations that compose the
Transformer layer, Attention is the essence that distinguishes
Transformer from other architectures. At a high level, the At-
tention operation computes a weighted average of the tokens
of interest so that each token in the sequence is aware of the
other. It takes three inputs, query, key, and value, computes dot
products of the query (for the current token) with all keys (for
the tokens of interest), applies Softmax on the dot products
to get weights, and conducts weighted average of all values
associated with the weights.

Since the Attention requires keys and values of all pre-
ceding tokens,2 we consider the keys and values as internal
states that should be maintained across multiple iterations. A
naïve, state-less inference procedure would take all tokens in
the sequence (including both the client-provided input tokens
and the output tokens generated so far) to recompute all the
keys and values at every iteration. To avoid such recomputa-
tion, fairseq [43] suggests incremental decoding, which saves
the keys and values for reuse in successive iterations. Other
systems for Transformer such as FasterTransformer [4] and
Megatron-LM [3] also do the same.

2Language models like GPT use causal masking, which means all pre-
ceding tokens are of interest and participate in the Attention operation.

Figure 1c illustrates the state usage pattern of Transformer,
along with LSTM [25] that also maintains internal states. The
main difference is that the size of the states (k for Attention
key and v for value) in Transformer increases with iteration,
whereas the size of the states (c for LSTM internal memory
and h for LSTM layer’s input/output) in LSTM remains con-
stant. When processing the token at index t, the Attention
operation takes all previous Attention keys kl,1:t−1 and values
vl,1:t−1 along with the current key kl,t and value vl,t .3 There-
fore, the Attention operation should perform computation on
tensors of different shapes depending on the number of tokens
already processed.

Prior to the Attention operation, there are the layer normal-
ization operation (LayerNorm) and the QKV Linear (linear
and split operations to get the query, key and value). Opera-
tions performed after Attention are, in order, a linear operation
(Attn Out Linear), an add operation for residual connection
(Add), layer normalization operation (LayerNorm), the multi-
layer perceptron (MLP) operations, and the other residual
connection operation (Add).

ML inference serving systems. Growing demands for ML-
driven applications have made ML inference serving service
a critical workload in modern datacenters. Users (either the
end-user or internal microservices of the application) submit
requests to an inference service, and the service gives replies
on the requests based on a pre-defined ML model using its
provisioned resource, typically equipped with specialized ac-
celerators such as GPUs and TPUs. In particular, the service
runs a DNN model with input data to generate output for the

3kl,1:t−1 represents Attention keys of the l-th layer for tokens at indices
1 to t−1 while kl,t is for the Attention key of the l-th layer for the token at
index t. Same for vl,1:t−1 and vl,t .

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    523



request

response

Serving System

E
n
d
p
o
in

t
Scheduler

E
x
ec

u
ti

o
n

E
n
g
in

e

Request Queue

!

" #

$

x1x1: I think
x2x2: I love

x1x1: this is great
x2x2: you

Figure 2: Overall workflow of serving a generative language
model with existing systems.

request. Just like other services operating on datacenters, a
well-managed inference service should provide low latency
and high throughput within a reasonable amount of cost.

To meet such constraints, service operators often use ML
inference serving systems such as Triton Inference Server [7]
and TensorFlow Serving [42]. These systems can be seen as
an abstraction sitting atop underlying model execution en-
gines such as TensorRT [6], TVM [14], TensorFlow [8], and
many others [44, 46], being agnostic to various kinds of ML
models, execution engines, and computing hardware. While
delegating the role of driving the main mathematical opera-
tions to the engines, serving systems are in charge of exposing
endpoints that receive inference requests, scheduling execu-
tions of the engine, and sending responses to the requests.
Accordingly, these systems focus on aspects such as batch-
ing the executions [7, 16, 35, 42, 56], selecting an appropriate
model from multiple model variants [16,27,30,57], deploying
multiple models (each for different inference services) on the
same device [7, 29, 35, 56], and so on.

Among the features and optimizations provided by serv-
ing systems, batching is a key to achieve high accelerator
utilization when using accelerators like GPUs. When we run
the execution engine with batching enabled, the input tensors
from multiple requests coalesce into a single, large input ten-
sor before being fed to the first operation of the model. Since
the accelerators prefer large input tensors over small ones to
better exploit the vast amount of parallel computation units,
the engine’s throughput is highly dependent on the batch size,
i.e., the number of inference requests the engine processes
together. Reusing the model parameters loaded from off-chip
memory is another merit in batched execution, especially
when the model involves memory-intensive operations.

Figure 2 shows an overall workflow of serving a generative
language model with existing serving systems and execution
engines. The main component of the serving system (e.g., Tri-
ton [7]) is the scheduler, which is responsible for À creating
a batch of requests by retrieving requests from a queue and Á
scheduling the execution engine (e.g., FasterTransformer [4])
to process the batch. The execution engine Â processes the
received batch by running multiple iterations of the model
being served and Ã returns the generated text back to the
serving system. In Figure 2, the serving system schedules the
engine to process two requests (x1: “I think”, x2: “I love”) in

iter 1

x1x1

x2x2

iter 2

I think

I love

this

you

this

you

iter 3

is

-

is

<EOS>

great

-

iter 4

great

-

<EOS>

-

Figure 3: An illustration for a case where the requests have the
same input length but some requests finish earlier than others.
Shaded tokens represent input tokens. “-” denotes inputs and
outputs of extra computation imposed by the scheduling.

a batch and the engine generates “this is great” and “you” for
requests x1 and x2, respectively.

3 Challenges and Proposed Solutions

In this section, we describe challenges in serving Transformer-
based generative models and propose two techniques:
iteration-level scheduling and selective batching.

C1: Early-finished and late-joining requests. One major
limitation of existing systems is that the serving system and
the execution engine interact with each other only when (1)
the serving system schedules the next batch on an idle engine;
or (2) the engine finishes processing the current batch. In
other words, these systems are designed to schedule execu-
tions at request granularity; the engine maintains a batch of
requests fixed until all requests in the batch finish. This can be
problematic in the serving of generative models, since each
request in a batch may require different number of iterations,
resulting in certain requests finishing earlier than the others.
In the example shown in Figure 3, although request x2 finishes
earlier than request x1, the engine performs computation for
both “active” and “inactive” requests throughout all iterations.
Such extra computation for inactive requests (x2 at iter 3 and
4) limits the efficiency of batched execution.

What makes it even worse is that this behavior prevents an
early return of the finished request to the client, imposing a
substantial amount of extra latency. This is because the engine
only returns the execution results to the serving system when
it finishes processing all requests in the batch. Similarly, when
a new request arrives in the middle of the current batch’s
execution, the aforementioned scheduling mechanism makes
the newly arrived request wait until all requests in the current
batch have finished. We argue that the current request-level
scheduling mechanism cannot efficiently handle workloads
with multi-iteration characteristic. Note that this problem of
early-finished and late-joining requests does not occur in the
training of language models; the training procedure finishes
processing the whole batch in a single iteration by using the
teacher forcing technique [64].

524    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



response

Orca System

E
n
d
p
o
in

trequest

Scheduler

Request Pool

E
x
ec

u
ti

o
n

E
n
g
in

e

!

"

#

x1x1 x11x11 x12x12 x13x13 x14x14

x2x2 x21x21 x22x22

x3x3 x31x31 x32x32

x4x4 x41x41 x42x42 x43x43

x1, x2, x3, x4x1, x2, x3, x4

· · ·· · ·

x15, x23, x33, x44x15, x23, x33, x44$

Figure 4: System overview of ORCA. Interactions between
components represented as dotted lines indicate that the inter-
action takes place at every iteration of the execution engine.
xi j is the j-th token of the i-th request. Shaded tokens repre-
sent input tokens received from the clients, while unshaded
tokens are generated by ORCA. For example, request x1 ini-
tially arrived with two input tokens (x11,x12) and have run
two iterations so far, where the first and second iterations gen-
erated x13 and x14, respectively. On the other hand, request
x3 only contains input tokens (x31,x32) because it has not run
any iterations yet.

S1: Iteration-level scheduling. To address the above limi-
tations, we propose to schedule executions at the granularity
of iteration. At high level, the scheduler repeats the follow-
ing procedure: (1) selects requests to run next; (2) invokes
the engine to execute one iteration for the selected requests;
and (3) receives execution results for the scheduled iteration.
Since the scheduler receives a return on every iteration, it can
detect the completion of a request and immediately return its
generated tokens to the client. For a newly arrived request, the
request gets a chance to start processing (i.e., the scheduler
may select the new request to run next) after execution of
the currently scheduled iteration, significantly reducing the
queueing delay. With iteration-level scheduling, the sched-
uler has a full control on how many and which requests are
processed in each iteration.

Figure 4 depicts the system architecture and the overall
workflow of ORCA using the iteration-level scheduling. ORCA
exposes an endpoint (e.g., HTTPS or gRPC) where inference
requests arrive at the system and responses to the requests
are sent out. The endpoint puts newly arrived requests in the
request pool, a component that manages all requests in the
system during their lifetime. The pool is monitored by the
scheduler, which is responsible for: selecting a set of requests
from the pool, scheduling the execution engine to run an it-
eration of the model on the set, receiving execution results
(i.e., output tokens) from the engine, and updating the pool
by appending each output token to the corresponding request.
The engine is an abstraction for executing the actual tensor
operations, which can be parallelized across multiple GPUs
spread across multiple machines. In the example shown in
Figure 4, the scheduler À interacts with the request pool to

decide which requests to run next and Á invokes the engine
to run four selected requests: (x1,x2,x3,x4). The scheduler
provides the engine with input tokens of the requests sched-
uled for the first time. In this case, x3 and x4 have not run
any iterations yet, so the scheduler hands over (x31,x32) for
x3 and (x41,x42,x43) for x4. The engine Â runs an iteration
of the model on the four requests and Ã returns generated
output tokens (x15,x23,x33,x44), one for each scheduled re-
quest. Once a request has finished processing, the request pool
removes the finished request and notifies the endpoint to send
a response. Unlike the method shown in Figure 2 that should
run multiple iterations on a scheduled batch until finish of
all requests within the batch, ORCA’s scheduler can change
which requests are going to be processed at every iteration.
We describe the detailed algorithm about how to select the
requests at every iteration in Section 4.2.

C2: Batching an arbitrary set of requests. When we try
to use the iteration-level scheduling in practice, one major
challenge that we are going to face is batching. To achieve
high efficiency, the execution engine should be able to process
any selected set of requests in the batched manner. Without
batching, one would have to process each selected request
one by one, losing out on the massively parallel computation
capabilities of GPUs.

Unfortunately, there is no guarantee that even for a pair of
requests (xi,x j), for the next iteration, their executions can be
merged and replaced with a batched version. There are three
cases for a pair of requests where the next iteration cannot
be batched together: (1) both requests are in the initiation
phase and each has different number of input tokens (e.g.,
x3 and x4 in Figure 4); (2) both are in the increment phase
and each is processing a token at different index from each
other (x1 and x2); or (3) each request is in the different phase:
initiation or increment (x1 and x3). Recall that in order to
batch the execution of multiple requests, the execution of each
request must consist of identical operations, each consuming
identically-shaped input tensors. In the first case, the two
requests cannot be processed in a batch because the “length”
dimension of their input tensors, which is the number of input
tokens, are not equal. The requests in the second case have
difference in the tensor shape of Attention keys and values
because each processes token at different index, as shown in
Figure 1c. For the third case, we cannot batch the iterations of
different phases because they take different number of tokens
as input; an iteration of the initiation phase processes all input
tokens in parallel for efficiency, while in the increment phase
each iteration takes a single token as its input (we assume the
use of fairseq-style incremental decoding [43]).

Batching is only applicable when the two selected requests
are in the same phase, with the same number of input tokens
(in case of the initiation phase) or with the same token index
(in case of the increment phase). This restriction significantly
reduces the likelihood of batching in real-world workloads,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    525



QKV Linear

Split

Attention K/V Manager

Attn x4x4

Attn x3x3

Attn x2x2

Attn x1x1

Layer Input

Key

Value

x1 : (x11, x12, x13)x1 : (x11, x12, x13) x2 : (x21)x2 : (x21)

Merge

Attn Out 
Linear

[7, H][7, H]

· · ·· · ·

[7, H][7, H]

[2, 3H][2, 3H]

[3, 3H][3, 3H]

[1, 3H][1, 3H]

[1, 3H][1, 3H]

[7, 3H][7, 3H]

[7, H][7, H]

x32x32

x41x41 x42x42 x43x43

x14x14

x22x22

x31x31

[2, H][2, H]

[3, H][3, H]

[1, H][1, H]

[1, H][1, H]

Figure 5: An illustration of ORCA execution engine running
a Transformer layer on a batch of requests with selective
batching. We only depict the QKV Linear, Attention, and
Attention Out Linear operations for simplicity.

because the scheduler should make a wish for the presence
of two requests eligible for batching at the same time. The
likelihood further decreases exponentially as the batch size
increases, making it impractical to use a large batch size that
can pull out better throughput without compromising latency.

S2: Selective batching. We propose selective batching, a
technique for batched execution that allows high flexibility in
composing requests as a batch. Instead of processing a batch
of requests by “batchifying” all tensor operations composing
the model, this technique selectively apply batching only to a
handful of operations.

The main problem regarding batching described above is
that the three aforementioned cases4 correspond to irregu-
larly shaped input (or state) tensors, which cannot be coa-
lesced into a single large tensor and fed into a batch opera-
tion. In the canonical batching mechanism, at each iteration,
a Transformer layer takes a 3-dimensional input tensor of
shape [B,L,H] generated by concatenating multiple [L,H] in-
put tensors of requests in a batch, where B is the batch size,
L is the number of tokens processed together, and H is the
hidden size of the model. For example, in Figure 3, “iter 1”
(initiation phase) takes an input tensor of shape [2,2,H] and
“iter 2” (increment phase) takes a tensor of shape [2,1,H].
However, when the scheduler decides to run an iteration on
batch (x1,x2,x3,x4) in Figure 4, the inputs for requests in the
initiation phase (x3 : [2,H] and x4 : [3,H]) cannot coalesce
into a single tensor of shape [B,L,H] because x3 and x4 have
different number of input tokens, 2 and 3.

Interestingly, not all operations are incompatible with such
irregularly shaped tensors. Operations such as non-Attention
matrix multiplication and layer normalization can be made to
work with irregularly shaped tensors by flattening the tensors.

4We use the first case as a driving example, but the argument can be
similarly applied to the other two cases.

For instance, the aforementioned input tensors for x3 and x4
can compose a 2-dimensional tensor of shape [∑L,H] = [5,H]
without an explicit batch dimension. This tensor can be fed
into all non-Attention operations including Linear, Layer-
Norm, Add, and GeLU operations because they do not need to
distinguish tensor elements of different requests. On the other
hand, the Attention operation requires a notion of requests
(i.e., requires the batch dimension) to compute attention only
between the tokens of the same request, typically done by
applying cuBLAS routines for batch matrix multiplication.

Selective batching is aware of the different characteristics
of each operation; it splits the batch and processes each re-
quest individually for the Attention operation while applying
token-wise (instead of request-wise) batching to other oper-
ations without the notion of requests. Figure 5 presents the
selective batching mechanism processing a batch of requests
(x1,x2,x3,x4) described in Figure 4. This batch has 7 input
tokens to process, so we make the input tensor have a shape
of [7,H] and apply the non-Attention operations. Before the
Attention operation, we insert a Split operation and run the
Attention operation separately on the split tensor for each
request. The outputs of Attention operations are merged back
into a tensor of shape [7,H] by a Merge operation, bringing
back the batching functionality to the rest of operations.

To make the requests in the increment phase can use the
Attention keys and values for the tokens processed in previous
iterations, ORCA maintains the generated keys and values in
the Attention K/V manager. The manager maintains these
keys and values separately for each request until the scheduler
explicitly asks to remove certain request’s keys and values,
i.e., when the request has finished processing. The Attention
operation for request in the increment phase (x1 and x2) takes
keys and values of previous tokens (x11,x12,x13 for x1; x21 for
x2) from the manager, along with the current token’s query,
key, and value from the Split operation to compute attention
between the current token and the previous ones.

4 ORCA Design

Based on the above techniques, we design and implement
ORCA: a distributed serving system for Transformer-based
generative models. We have already discussed the system
components and the overall execution model of ORCA while
describing Figure 4. In this section, we answer the remaining
issues about how to build an efficient system that can scale to
large-scale models with hundreds of billions of parameters.
We also describe the scheduling algorithm for iteration-level
scheduling, i.e., how to select a batch of requests from the
request pool at every iteration.

4.1 Distributed Architecture
Recent works [12, 31] have shown that scaling language mod-
els can dramatically improve the quality of models. Hence,

526    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Layer1 Layer2 Layer3 Layer4

GPU1

GPU2

GPU3

GPU4

GPU5

GPU6

Figure 6: An example of intra- and inter- layer parallelism. A
vertical dotted line indicates partitioning between layers and
a horizontal line indicates partitioning within a layer.

Execution Engine

S
ch

ed
u
le

r

Controller

Control Plane

Data Plane

Worker 1

GPU

GPU

GPU

E
n
g
in

e 
M

as
te

rschedule

tokens

Controller

Worker 2

GPU

GPU

GPU

tokens

control
message

control
message

tokens

Figure 7: An illustration of the distributed architecture of
ORCA’s execution engine using the parallelization configura-
tion shown in Figure 6. For example, the first inter-layer parti-
tion (Layer1 and Layer2) in Figure 6 is assigned to Worker1,
while the second partition is assigned to Worker2.

system support for serving such large language models is get-
ting more importance, especially when the model does not fit
in a single GPU. In such a case, one should split the model
parameters along with the corresponding computation and
distribute them across multiple GPUs and machines.

ORCA composes known parallelization techniques for
Transformer models: intra-layer parallelism and inter-layer
parallelism. These two model parallelism strategies, which
are also used by FasterTransformer [4], have been origi-
nally developed for distributed training. Intra-layer paral-
lelism [55, 58] splits matrix multiplications (i.e., Linear and
Attention operations) and their associated parameters over
multiple GPUs. We omit the detail about how this strat-
egy partitions each matrix multiplication. On the other hand,
inter-layer parallelism splits Transformer layers over multiple
GPUs. ORCA assigns the same number of Transformer layers
to each GPU. Figure 6 illustrates an example application of
intra- and inter- layer parallelism to a 4-layer GPT model. The
4 layers are split into 2 inter-layer partitions, and the layers in
the partition are subdivided into 3 intra-layer partitions. We
assign each partition to a GPU, using a total of 6 GPUs.

The ORCA execution engine supports distributed execution
using the techniques described above. Figure 7 depicts the
architecture of an ORCA engine. Each worker process is re-
sponsible for an inter-layer partition of the model and can be

placed on a different machine from each other. In particular,
each worker manages one or more CPU threads each dedi-
cated for controlling a GPU, the number of which depends on
the degree of intra-layer parallelism.

The execution procedure of the ORCA execution engine is
as follows. Once the engine is scheduled to run an iteration of
the model for a batch of requests, the engine master forwards
the received information about the scheduled batch to the first
worker process (Worker1). The information includes tokens
for the current iteration and a control message, which is com-
posed of ids of requests within the batch, current token index
(for requests in the increment phase), and number of input
tokens (for requests in the initiation phase). The controller of
Worker1 hands over the information received from the engine
master to the GPU-controlling threads, where each thread
parses the information and issues proper GPU kernels to its
associated GPU. For example, the kernel for the Attention
operation uses the request id and the current token index to get
the GPU memory address of previous keys and values kept by
the Attention K/V manager. In the meantime, the controller
also forwards the control message to the controller of the next
worker (Worker2), without waiting for the completion of the
kernels issued on the GPUs of Worker1. Unlike Worker1, the
controller of the last worker (Worker2) waits for (i.e., syn-
chronize with) the completion of the issued GPU kernels, in
order to fetch the output token for each request and send the
tokens back to the engine master.

To keep GPUs busy as much as possible, we design the
ORCA engine to minimize synchronization between the CPU
and GPUs. We observe that current systems for distributed
inference (e.g., FasterTransformer [4] and Megatron-LM [3])
have CPU-GPU synchronization whenever each process re-
ceives control messages5 because they exchange the messages
through a GPU-to-GPU communication channel – NCCL [5].
The exchange of these control messages occurs at every iter-
ation, imposing a non-negligible performance overhead. On
the other hand, ORCA separates the communication channels
for control messages (plus tokens) and tensor data transfer,
avoiding the use of NCCL for data used by CPUs. Figure 7
shows that the ORCA engine uses NCCL exclusively for ex-
changing intermediate tensor data (represented by dashed
arrows) as this data is produced and consumed by GPUs. Con-
trol messages, which is used by the CPU threads for issuing
GPU kernels, sent between the engine master and worker con-
trollers by a separate communication channel that does not
involve GPU such as gRPC [2].

4.2 Scheduling Algorithm
The ORCA scheduler makes decisions on which requests
should be selected and processed at every iteration. The sched-
uler has high flexibility in selecting a set of requests to com-

5This includes various metadata such as batch size, sequence length, and
whether a request within the batch has finished processing.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    527



pose a batch, because of the selective batching technique that
allows the engine to run any set of requests in the batched
manner. Now the main question left is how to select the re-
quests at every iteration.

We design the ORCA scheduler to use a simple algorithm
that does not change the processing order of client requests;
early-arrived requests are processed earlier. That is, we en-
sure iteration-level first-come-first-served (FCFS) property.
We define the iteration-level FCFS property for workloads
with multi-iteration characteristics as follows: for any pair
of requests (xi,x j) in the request pool, if xi has arrived ear-
lier than x j, xi should have run the same or more iterations
than x j. Note that some late-arrived requests may return ear-
lier to clients if the late request requires a smaller number of
iterations to finish.

Still, the scheduler needs to take into account additional
factors: diminishing returns to increasing the batch size and
GPU memory constraint. Increasing the batch size trades off
increased throughput for increased latency, but as the batch
size becomes larger, the amount of return (i.e., increase in
throughput) diminishes. Therefore, just like other serving sys-
tems [7, 16], ORCA also has a notion of a max batch size: the
largest possible number of requests within a batch. The ORCA
system operator can tune this knob to maximize throughput
while satisfying one’s latency budget. We will discuss this in
more details with experiment results in Section 6.2.

Another factor is the GPU memory constraint. Optimiz-
ing memory usage by reusing buffers for intermediate results
across multiple operations is a well-known technique used by
various systems [4, 6], and ORCA also adopts this technique.
However, unlike the buffers for intermediate results that can
be reused immediately, buffers used by the Attention K/V
manager for storing the keys and values cannot be reclaimed
until the ORCA scheduler notifies that the corresponding re-
quest has finished processing. A naïve implementation can
make the scheduler fall into a deadlock when the scheduler
cannot issue an iteration for any requests in the pool because
there is no space left for storing a new Attention key and value
for the next token. This requires the ORCA scheduler to be
aware of the remaining size of pre-allocated memory regions
for the manager.

The ORCA scheduler takes all these factors into account:
it selects at most “max batch size” requests based on the ar-
rival time, while reserving enough space for storing keys and
values to a request when the request is scheduled for the first
time. We describe the scheduling process in Algorithm 1. The
algorithm selects a batch of requests from the request pool
(line 4) and schedules the batch (line 5). The Select function
(line 17) selects at most max_bs requests from the pool based
on the arrival time of the request (lines 20-22). Algorithm 1
does not depict the procedure of request arrival and return;
one may think of it as there exist concurrent threads insert-
ing newly arrived requests into request_pool and removing
finished requests from request_pool.

Algorithm 1: ORCA scheduling algorithm
Params: n_workers: number of workers, max_bs:

max batch size, n_slots: number of K/V slots
1 n_scheduled← 0
2 n_rsrv← 0
3 while true do
4 batch,n_rsrv← Select(request_pool,n_rsrv)
5 schedule engine to run one iteration of

the model for the batch
6 foreach req in batch do
7 req.state← RUNNING
8 n_scheduled← n_scheduled +1
9 if n_scheduled = n_workers then

10 wait for return of a scheduled batch
11 foreach req in the returned batch do
12 req.state← INCREMENT
13 if finished(req) then
14 n_rsrv← n_rsrv− req.max_tokens
15 n_scheduled← n_scheduled−1
16

17 def Select(pool, n_rsrv):
18 batch←{}
19 pool←{req ∈ pool|req.state 6= RUNNING}
20 SortByArrivalTime(pool)
21 foreach req in pool do
22 if batch.size() = max_bs then break
23 if req.state = INITIATION then
24 new_n_rsrv← n_rsrv+ req.max_tokens
25 if new_n_rsrv > n_slots then break
26 n_rsrv← new_n_rsrv
27 batch← batch

⋃{req}
28 return batch,n_rsrv

When the scheduler considers a request in the initiation
phase, meaning that the request has never been scheduled
yet, the scheduler uses the request’s max_tokens6 attribute
to reserve max_tokens slots of GPU memory for storing the
keys and values in advance (lines 23-26). The scheduler deter-
mines whether the reservation is possible (line 25) based on
n_rsrv, the number of currently reserved slots, where a slot
is defined by the amount of memory required for storing an
Attention key and value for a single token. Here, n_slots is a
parameter tuned by the ORCA system operator indicating the
size of memory region (in terms of slots) allocated to the At-
tention K/V manager. Since the number of tokens in a request
cannot exceed max_tokens, if the reservation is possible, it
is guaranteed that the manager can allocate buffers for the
newly generated keys and values until the request finishes.

Unlike the tuning of max_bs that requires quantifying the
trade-off between latency and throughput, the ORCA system

6The max_tokens attribute is a per-request option, meaning the maximum
number of tokens that a request can have after processing.

528    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Worker1

Worker2

Worker3

Time

A
1
B
1

A
1
B
1

A
1
B
1

C
1
D
1

C
1
D
1

C
1
D
1

E
1
F
1

E
1
F
1

E
1
F
1

A
2
B
2

A
2
B
2

A
2
B
2

C
2
D
2

C
2
D
2

E
2
F
2

(a) ORCA execution pipeline.

Partition1

Partition2

Partition3

A
1

Time

B
1

A
1

B
1

A
1

B
1

A
2

B
2

A
2

B
2

A
2

B
2

A
3

(b) FasterTransformer execution pipeline.

Figure 8: Comparison of the use of pipeline parallelism in
ORCA and FasterTransformer where Xi is the i-th iteration of
request X .

operator can easily configure n_slots without any experiments.
Given a model specification (e.g., hidden size, number of
layers, etc.) and degrees of intra- and inter- layer parallelism,
ORCA’s GPU memory usage mostly depends on n_slots. That
is, the operator can simply use the largest possible n_slots
under the memory constraint.

Pipeline parallelism. ORCA’s scheduler makes the execu-
tion of workers in the engine to be pipelined across multi-
ple batches. The scheduler does not wait for the return of a
scheduled batch until n_scheduled, the number of currently
scheduled batches, reaches n_workers (line 9-10 of Algo-
rithm 1). By doing so, the scheduler keeps the number of
concurrently running batches in the engine to be n_workers,
which means that every worker in the engine is processing
one of the batches without being idle.

Figure 8a depicts the execution pipeline of 3 ORCA work-
ers, using a max batch size of 2. We assume that the request
A arrives before B, which arrives before C, and so on. At first,
the scheduler selects requests A and B based on the arrival
time and schedules the engine to process a batch of requests
A and B (we call this batch AB), where Worker1, Worker2,
and Worker3 process the batch in turn. The scheduler waits
for the return of the batch AB only after the scheduler injects
two more batches: CD and EF. Once the batch AB returns,
requests A and B get selected and scheduled once again, be-
cause they are the earliest arrived requests among the requests
in the pool.

In contrast, the interface between current serving systems
and execution engines (e.g., a combination of Triton [7]
and FasterTransformer [4]) does not allow injecting another
batch before the finish of the current running batch, due to
the request-level scheduling. That is, Triton cannot inject
the next request C to FasterTransformer until the current

# Params # Layers
Hidden

size
# Inter-

partitions
# Intra-

partitions

13B 40 5120 1 1
101B 80 10240 1 8
175B 96 12288 2 8
341B 120 15360 4 8

Table 1: Configurations of models used in the experiments.

batch AB finishes. To enable pipelined execution of multiple
inter-layer partitions under such constraint, FasterTransformer
splits a batch of requests into multiple microbatches [28] and
pipelines the executions of partitions across the microbatches.
In Figure 8b, FasterTransformer splits the batch AB into two
microbatches, A and B. Since each partition processes a mi-
crobatch (which is smaller than the original batch) in the
batched manner, the performance gain from batching can
become smaller. Moreover, this method may insert bubbles
into the pipeline when the microbatch size is too large, mak-
ing the number of microbatches smaller than the number of
partitions. While FasterTransformer needs to trade batching
efficiency (larger microbatch size) for pipelining efficiency
(fewer pipeline bubbles), ORCA is free of such a tradeoff –
thanks to iteration-level scheduling – and can easily pipeline
requests without dividing a batch into microbatches.

5 Implementation

We have implemented ORCA with 13K lines of C++, based
on the CUDA ecosystem. We use gRPC [2] for the com-
munication in the control plane of the ORCA engine, while
NCCL [5] is used in the data plane, for both inter-layer and
intra-layer communication. Since we design ORCA to fo-
cus on Transformer-based generative models, ORCA pro-
vides popular Transformer layers as a building block of mod-
els including the original encoder-decoder Transformer [60],
GPT [47], and other variants discussed in Raffel et al. [49].

We have also implemented fused kernels for LayerNorm,
Attention, and GeLU operators, just like other systems for
training or inference of Transformer models [1, 4, 58]. For
example, the procedure of computing dot products between
Attention query and keys, Softmax on the dot products, and
weighted average of Attention values are fused into a single
CUDA kernel for the Attention operator. In addition, we go
one step further and fuse the kernels of the split Attention
operators by simply concatenating all thread blocks of the
kernels for different requests. Although this fusion makes the
thread blocks within a kernel have different characteristics and
lifetimes (which is often discouraged by CUDA programming
practice) because they process tensors of different shapes, we
find this fusion to be beneficial by improving GPU utilization
and reducing the kernel launch overhead [34, 39].

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    529



6 Evaluation

In this section, we present evaluation results to show the
efficiency of ORCA.

Environment. We run our evaluation on Azure ND96asr
A100 v4 VMs, each equipped with 8 NVIDIA 40-GB A100
GPUs connected over NVLink. We use at most four VMs
depending on the size of the model being tested. Each VM
has 8 Mellanox 200Gbps HDR Infiniband adapters, providing
an 1.6Tb/s of interconnect bandwidth between VMs.

Models. Throughout the experiments, we use GPT [12] as a
representative example of Transformer-based generative mod-
els. We use GPT models with various configurations, which is
listed in Table 1. The configurations for 13B and 175B models
come from the GPT-3 paper [12]. Based on these two mod-
els, we change the number of layers and hidden size to make
configurations for 101B and 341B models. All models have
a maximum sequence length of 2048, following the setting
of the original literature [12]. We use fp16-formatted model
parameters and intermediate activations for the experiments.
We also apply inter- and intra- layer parallelism strategies
described in Section 4.1, except for the 13B model that can fit
in a GPU. For example, the 175B model is partitioned over a
total of 16 GPUs by using 2 inter-layer partitions subdivided
into 8 intra-layer partitions, where the 8 GPUs in the same
VM belongs to the same inter-layer partition.

Baseline system. We compare with FasterTransformer [4],
an inference engine that supports large scale Transformer
models via distributed execution. While there exist other
systems with the support for distributed execution such as
Megatron-LM [3] and DeepSpeed [1], these systems are pri-
marily designed and optimized for training workloads, which
makes them show relatively lower performance compared to
the inference-optimized systems.

Scenarios. We use two different scenarios to drive our eval-
uation. First, we design a microbenchmark to solely assess the
performance of the ORCA engine without being affected by
the iteration-level scheduling. In particular, we do not run the
ORCA scheduler in this scenario. Instead, given a batch of re-
quests, the testing script repeats injecting the same batch into
the ORCA engine until all requests in the batch finishes, mim-
icking the behavior of the canonical request-level scheduling.
We also assume that all requests in the batch have the same
number of input tokens and generate the same number of
output tokens. We report the time taken for processing the
batch (not individual requests) and compare the result with
FasterTransformer [4].

The second scenario tests the end-to-end performance of
ORCA by emulating a workload. We synthesize a trace of

client requests because there is no publicly-available request
trace for generative language models. Each request in the syn-
thesized trace is randomly generated by sampling the number
of input tokens and a max_gen_tokens attribute, where the
number of input tokens plus max_gen_tokens equals to the
max_tokens attribute described in Section 4.2. We assume
that all requests continue generation until the number of gen-
erated tokens reaches max_gen_tokens. In other words, we
make the model never emit the “<EOS>” token. This is be-
cause we have neither the actual model checkpoint nor the
actual input text so we do not have any information to guess
the right timing of the “<EOS>” token generation. Once the
requests are generated, we synthesize the trace by setting the
request arrival time based on the Poisson process. To assess
ORCA’s behavior under varying load, we change the Poisson
parameter (i.e., arrival rate) and adjust the request arrival time
accordingly. We report latency and throughput using mul-
tiple traces generated from different distributions for better
comparison and understanding of the behavior of ORCA and
FasterTransformer.

6.1 Engine Microbenchmark

We first compare the performance of FasterTransformer and
the ORCA engine using the first scenario. We set all requests
in the batch to have the same number of input tokens (32 or
128) and generate 32 tokens. That is, in this set of experiments,
all requests within the batch start and finish processing at the
same time. We conduct experiments using three different
models: 13B, 101B, and 175B. For each model, we use the
corresponding parallelization strategy shown in Table 1.

Figure 9 shows the performance of FasterTransformer and
the ORCA engine for processing a batch composed of the same
requests. In Figure 9a, the ORCA engine shows a similar (or
slightly worse) performance compared to FasterTransformer
across all configurations. This is because ORCA does not
apply batching to the Attention operations, while FasterTrans-
former apply batching to all operations. Still, the performance
difference is relatively small. Despite not batching the Atten-
tion operation, the absence of model parameters in Attention
makes this decision has little impact on efficiency as there
is no benefit of reusing model parameters across multiple
requests.

Figure 9b presents similar results for the 101B model that
uses all of the 8 GPUs in a single VM. From these results, we
can say that the ORCA engine and FasterTransformer have
comparable efficiencies in the implementations of CUDA
kernels and the communication between intra-layer partitions.
Note that FasterTransformer cannot use a batch size of 8 or
larger with the 13B model (16 or larger with the 101B model)
because of the fixed amount of memory pre-allocation for
each request’s Attention keys and values, which grows in
proportion to the max sequence length of the model (2048
for this case). In contrast, ORCA avoids redundant memory

530    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 2 4 8 16 32
Batch Size

0

500

1000

1500

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(a) 13B model, 1 GPU.

1 2 4 8 16 32
Batch Size

0

1000

2000

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(b) 101B model, 8 GPUs.

1 2 4 8 16 32
Batch Size

0

1000

2000

3000

Ex
ec

uti
on

 T
im

e (
ms

) ft(32)
orca(32)

ft(128)
orca(128)

(c) 175B model, 16 GPUs.

Figure 9: Execution time of a batch of requests using FasterTransformer and the ORCA engine without the scheduling component.
Label “ft(n)” represents results from FasterTransformer processing requests with n input tokens. Configurations that incurs out of
memory error are represented as missing entries (e.g., ft(32) for the 101B model with a batch size of 16).

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(a) 101B model, 8 GPU.

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(b) 175B model, 16 GPUs.

0 2 4 6
Throughput (req/s)

102

103

No
rm

 L
ate

nc
y (

ms
/to

ke
n)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(c) 341B model, 32 GPUs.

Figure 10: Median end-to-end latency normalized by the number of generated tokens and throughput. Label “orca(max_bs)” rep-
resents results from ORCA with a max batch size of max_bs. Label “ft(max_bs, mbs)” represents results from FasterTransformer
with a max batch size of max_bs and a microbatch size of mbs.

allocation by setting the size of buffers for the keys and values
separately for each request based on the max_tokens attribute.

Next, we go one step further and experiment with the 175B
model, which splits the layers into two inter-layer partitions.
In this case, for better comparison, we disable pipelined execu-
tion of the inter-layer partitions for both systems. For Faster-
Transformer, we set the size of a microbatch to be equal to the
batch size to disable pipelining. As shown in Figure 9c, the
ORCA engine outperforms FasterTransformer by up to 47%.
We attribute this performance improvement to the control-
data plane separation described in Section 4.1. We omit the
341B model as it has similar results compared to the 175B
model.

6.2 End-to-end Performance
Now we assess the end-to-end performance of ORCA by
measuring the latency and throughput with the synthesized
request trace under varying load. When synthesizing the
trace, we sample each request’s number of input tokens from
U(32,512), a uniform distribution ranging from 32 to 512
(inclusive). The max_gen_tokens attributed is sampled from
U(1,128), which means that the least and the most time-
consuming requests require 1 and 128 iterations of the model
for processing, respectively.

Unlike the microbenchmark shown in Section 6.1, to mea-
sure the end-to-end performance, we test the entire ORCA
software stack including the ORCA scheduler. Client requests
arrive to the ORCA scheduler following the synthesized trace
described above. We report results from various max batch
size configurations. For FasterTransformer that does not have
its own scheduler, we implement a custom scheduler that re-
ceives client requests, creates batches, and injects the batches
to an instance of FasterTransformer. We make the custom
scheduler create batches dynamically by taking at most max
batch size requests from the request queue, which is the most
common scheduling algorithm used by existing serving sys-
tems like Triton [7] and TensorFlow Serving [42]. Again,
we report results from various max batch size configurations,
along with varying microbatch sizes, an additional knob in
FasterTransformer that governs the pipelining behavior (see
Section 4.2).

Figure 10 shows median end-to-end latency and throughput.
Since each request in the trace requires different processing
time, which is (roughly) in proportion to the number of gener-
ated tokens, we report median latency normalized by the num-
ber of generated tokens of each request. From the figure, we
can see that ORCA provides significantly higher throughput
and lower latency than FasterTransformer. The only excep-
tion is the 101B model under low load (Figure 10a). In this

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    531



0 5 10 15 20
Throughput (req/s)

103

104

La
ten

cy
 (m

s)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(a) (# in, # gen) = (32, 32)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Throughput (req/s)

104

105

La
ten

cy
 (m

s)

ft(1, 1)
ft(8, 8)

orca(1)
orca(8)

orca(16)
orca(32)

(b) (# in, # gen) = (256, 256)

Figure 11: Median end-to-end latency and throughput, using
the 175B model with traces composed of homogeneous re-
quests. We do not normalize the latency since all requests
have the same characteristic.

case, both ORCA and FasterTransformer do not have enough
number of requests to process in a batch. That is, the latency
will mostly depend on the engine’s performance, which is
shown in Figure 9b. As the load becomes heavier, ORCA
provides higher throughput with a relatively small increase
in latency, because the ORCA scheduler makes late-arrived
requests hitch a ride with the current ongoing batch. In con-
trast, FasterTransformer fails to efficiently handle multiple
requests that (1) arrive at different times; (2) require differ-
ent number of iterations to finish; or (3) start with different
number of input tokens, resulting in a peak throughput of 0.49
req/s and much higher latency. If we use the 175B or 341B
model (Figures 10b and 10c) that employs more than one
inter-layer partitions, ORCA outperforms FasterTransformer
under every level of load in terms of both latency and through-
put, resulting in an order of magnitude higher throughput
when we compare results at a similar level of latency. For
example, to match a median normalized latency of 190ms for
the 175B model, which is a double of the normalized execu-
tion time (by the number of generated tokens) of “orca(128)”
shown in Figure 9c, FasterTransformer provides a throughput
of 0.185 req/s whereas ORCA provides a throughput of 6.81
req/s, which is a 36.9× speedup.

Varying batch size configurations. Figure 10 shows that
the increase of the max batch size of ORCA results in a higher
throughput without affecting the latency. This is because the
iteration-level scheduling of ORCA resolves the problem of
early-finished and late-joining requests. Nevertheless, there is
no guarantee that increasing the batch size will not negatively
affect the latency, for arbitrary hardware settings, models, and
workloads. As mentioned in Section 4.2, the max batch size

must be set carefully by considering both the required latency
and throughput requirements.

Interestingly, larger max batch size in FasterTransformer
does not necessarily help improving throughput. By testing
all possible combinations of max batch size (max_bs) and
microbatch size (mbs) on all models under varying load, we
find that (max_bs, mbs) = (1, 1) or (8, 8) are the best op-
tions. Per our discussion in Section 4.1, FasterTransformer’s
microbatch-based pipelining can be less efficient because the
engine is going to process at most mbs number of requests
in the batched manner, which explains why the configura-
tions with the maximum possible mbs (which is the same
as max_bs) have better performance than others. In addition,
while increasing max_bs can improve performance due to the
increased batch size, at the same time, this also increases the
likelihood of batching requests with large difference in the
number of input tokens or the number of generated tokens. In
such cases, FasterTransformer cannot efficiently handle the
batch because (1) for the first iteration of the batch, Faster-
Transformer processes requests as if they all had the same
input length as the shortest one; and (2) early-finished requests
cannot immediately return to the clients.

Trace of homogeneous requests. We test the behavior of
ORCA and FasterTransformer when using a trace of homoge-
neous requests, i.e., all requests in a trace have the same num-
ber of input tokens and the same max_gen_tokens attribute.
Since all requests require the same number of iterations to
finish processing, the problem of early-leaving requests does
not occur for this trace. As a result, now the increase of the
max_bs has a noticeable positive impact on the performance
of FasterTransformer, as shown in Figure 11. Still, ORCA out-
performs FasterTransformer (max_bs=8) except for the case
using a max batch size of 1, where ORCA degenerates into a
simple pipeline of the ORCA workers that does not perform
batching.

7 Related Work and Discussion

Fine-grained batching for recurrent models. We would
like to highlight BatchMaker [23] as one of the most relevant
previous works. BatchMaker is a serving system for RNNs
that performs scheduling and batching at the granularity of
RNN cells, motivated by the unique RNN characteristic of re-
peating the same computation. Once a request arrives, Batch-
Maker breaks the dataflow graph for processing the request
into RNN cells, schedules execution at the granularity of cells
(instead of the entire graph), and batches the execution of iden-
tical cells (if any). Since each RNN cell always performs the
exact same computation, BatchMaker can execute multiple
RNN cells in a batched manner regardless of the position (i.e.,
token index) of the cell. By doing so, BatchMaker allows a
newly arrived request for RNN to join (or a finished request

532    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



to leave) the current executing batch without waiting for the
batch to completely finish.

However, BatchMaker cannot make batches of cells for
Transformer models because there are too many distinct cells
(a subgraph that encapsulates the computation for processing
a token; Figure 1c) in the graph. Each cell at a different to-
ken index t must use a different set of Attention Keys/Values.
As the cell for each t is different, the graph comprises L dif-
ferent cells (L denotes the number of input and generated
tokens), significantly lowering the likelihood of cells of the
same computation being present at a given moment (e.g., in
Figure 10, L ranges from 33 = 32+ 1 to 640 = 512+ 128).
Thus execution of the cells will be mostly serialized, making
BatchMaker fall back to non-batched execution. BatchMaker
also lacks support for large models that require model and
pipeline parallelism.

While BatchMaker is geared towards detecting and aligning
batch-able RNN cells, our key principle in designing ORCA is
to perform as much computation as possible per each round of
model parameter read. This is based on the insight that reading
parameters from GPU global memory is a major bottleneck
in terms of end-to-end execution time, for large-scale models.
Adhering to this principle, we apply iteration-level scheduling
and selective batching to process all “ready” tokens in a single
round of parameter read, regardless of whether the processing
of tokens can be batched (non-Attention ops) or not (Attention
ops).

Specialized execution engines for Transformer models.
The outstanding performance of Transformer-based models
encourages the development of inference systems specialized
for them. FasterTransformer [4], LightSeq [61], TurboTrans-
formers [22] and EET [36] are such examples. Each of these
systems behave as an backend execution engine of existing
serving systems like Triton Inference Server [7] and Tensor-
Flow Serving [42]. That is, these systems delegate the role
of scheduling to the serving system layer, adhering to the
canonical request-level scheduling. Instead, ORCA suggests
to schedule executions at a finer granularity, which is not pos-
sible in current systems without changing the mechanism for
coordination between the scheduler and the execution engine.
Note that among these systems, FasterTransformer is the only
one with the support for distributed execution. While systems
like Megatron-LM [3] and DeepSpeed [1] can also be used for
distributed execution, these systems are primarily optimized
for large-scale training rather than inference serving.

Interface between serving systems and execution engines.
Current general-purpose serving systems such as Triton In-
ference Server [7] and Clipper [16] serve as an abstraction
for handling client requests and scheduling executions of the
underlying execution engines. This approach is found to be
beneficial by separating the design and implementation of
the serving layer and the execution layer. However, we find

that the prevalent interface between the two layers is too re-
stricted for handling models like GPT [12], which has the
multi-iteration characteristic. Instead, we design ORCA to
tightly integrate the scheduler and the engine, simplifying the
application of the two proposed techniques: iteration-level
scheduling and selective batching. While in this paper we
do not study a general interface design that supports the two
techniques without losing the separation of abstractions, it
can be an interesting topic to explore such possibility; we
leave this issue to future work.

8 Conclusion

We present iteration-level scheduling with selective batch-
ing, a novel approach that achieves low latency and high
throughput for serving Transformer-based generative mod-
els. Iteration-level scheduling makes the scheduler interact
with the execution engine at the granularity of iteration in-
stead of request, while selective batching enables batching
arbitrary requests processing tokens at different positions,
which is crucial for applying batching with iteration-level
scheduling. Based on these techniques, we have designed
and implemented a distributed serving system named ORCA.
Experiments show the effectiveness of our approach: ORCA
provides an order of magnitude higher throughput than current
state-of-the-art systems at the same level of latency.

Acknowledgments

We thank our shepherd Amar Phanishayee and the anony-
mous reviewers for their insightful comments. This work was
supported by FriendliAI Inc.

References

[1] DeepSpeed. Retrieved Dec 13, 2021 from https://
github.com/microsoft/DeepSpeed.

[2] gRPC. Retrieved Dec 13, 2021 from https://grpc.
io.

[3] Megatron-LM. Retrieved Dec 13, 2021 from https:
//github.com/NVIDIA/Megatron-LM.

[4] NVIDIA FasterTransformer. Retrieved Dec
13, 2021 from https://github.com/NVIDIA/
FasterTransformer.

[5] NVIDIA NCCL. Retrieved Dec 13, 2021 from https:
//github.com/NVIDIA/nccl.

[6] NVIDIA TensorRT. Retrieved Dec 13, 2021 from
https://developer.nvidia.com/tensorrt.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    533

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://grpc.io
https://grpc.io
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://developer.nvidia.com/tensorrt


[7] NVIDIA Triton Inference Server. Retrieved Dec
13, 2021 from https://developer.nvidia.com/
nvidia-triton-inference-server.

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A System for Large-
Scale Machine Learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, pages 265–283, 2016.

[9] Daniel Adiwardana, Minh-Thang Luong, David R So,
Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al.
Towards a Human-like Open-Domain Chatbot. arXiv
preprint arXiv:2001.09977, 2020.

[10] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Xi Victoria Lin, Jingfei
Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anan-
tharaman, Xian Li, Shuohui Chen, Halil Akin, Man-
deep Baines, Louis Martin, Xing Zhou, Punit Singh
Koura, Brian O’Horo, Jeff Wang, Luke Zettlemoyer,
Mona Diab, Zornitsa Kozareva, and Ves Stoyanov. Effi-
cient Large Scale Language Modeling with Mixtures of
Experts. arXiv preprint arXiv:2112.10684, 2021.

[11] Peter F. Brown, John Cocke, Stephen A. Della Pietra,
Vincent J. Della Pietra, Fredrick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. A Statisti-
cal Approach to Machine Translation. Computational
Linguistics, 16(2):79–85, 1990.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language Models are Few-Shot Learn-
ers. Advances in Neural Information Processing Sys-
tems, 2020.

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri-
son Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,

Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira
Murati, Katie Mayer, Peter Welinder, Bob McGrew,
Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating Large Language Mod-
els Trained on Code. arXiv preprint arXiv:2107.03374,
2021.

[14] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An Automated End-
to-End Optimizing Compiler for Deep Learning. In
Proceedings of the 13th USENIX Conference on Operat-
ing Systems Design and Implementation, pages 579–594,
2018.

[15] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard, Guy
Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan, Hyeon-
taek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sep-
assi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zong-
wei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and
Noah Fiedel. PaLM: Scaling Language Modeling with
Pathways. arXiv preprint arXiv:2204.02311, 2022.

[16] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper: A
Low-Latency Online Prediction Serving System. In Pro-
ceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation, pages 613–627,
2017.

534    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server


[17] Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.
A Survey of Multilingual Neural Machine Translation.
ACM Computing Surveys, 53(5), 2020.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, 2019.

[19] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, and Jie Tang. CogView: Mastering Text-
to-Image Generation via Transformers. Advances in
Neural Information Processing Systems, 2021.

[20] Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain,
and Lucy Vasserman. Measuring and Mitigating Unin-
tended Bias in Text Classification. In Proceedings of the
2018 AAAI/ACM Conference on AI, Ethics, and Society,
pages 67–73, 2018.

[21] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi
Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam
Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang,
Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin
Robinson, Kathy Meier-Hellstern, Toju Duke, Lucas
Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. GLaM: Efficient Scaling of Lan-
guage Models with Mixture-of-Experts. arXiv preprint
arXiv:2112.06905, 2021.

[22] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
TurboTransformers: An Efficient GPU Serving System
for Transformer Models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 389–402, 2021.

[23] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low
Latency RNN Inference with Cellular Batching. In Pro-
ceedings of the Thirteenth EuroSys Conference, 2018.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition. In
Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-
Term Memory. Neural Computation, 9(8):1735–1780,
1997.

[26] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl,

Aidan Clark, Tom Hennigan, Eric Noland, Katie Milli-
can, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen,
Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Train-
ing Compute-Optimal Large Language Models. arXiv
preprint arXiv:2203.15556, 2022.

[27] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Query-
ing Large Video Datasets with Low Latency and Low
Cost. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, pages
269–286, 2018.

[28] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. GPipe: Efficient
Training of Giant Neural Networks Using Pipeline Par-
allelism. Advances in Neural Information Processing
Systems, 2019.

[29] Angela H. Jiang, Daniel L.-K. Wong, Christopher Canel,
Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A.
Kozuch, Padmanabhan Pillai, David G. Andersen, and
Gregory R. Ganger. Mainstream: Dynamic Stem-
Sharing for Multi-Tenant Video Processing. In Proceed-
ings of the 2018 USENIX Annual Technical Conference,
pages 29–42, 2018.

[30] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. NoScope: Optimizing Neural Net-
work Queries over Video at Scale. Proceedings of the
VLDB Endowment, 10(11):1586–1597, 2017.

[31] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling
Laws for Neural Language Models. arXiv preprint
arXiv:2001.08361, 2020.

[32] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh Ha-
jishirzi. UNIFIEDQA: Crossing Format Boundaries
with a Single QA System. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1896–1907, 2020.

[33] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. Natural Questions: a Benchmark for Question
Answering Research. Transactions of the Association
for Computational Linguistics, 7:452–466, 2019.

[34] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and Parallel GPU Task

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    535



Scheduling for Deep Learning. Advances in Neural
Information Processing Systems, 2020.

[35] Yunseong Lee, Alberto Scolari, Byung-Gon Chun,
Marco Domenico Santambrogio, Markus Weimer, and
Matteo Interlandi. PRETZEL: Opening the Black Box
of Machine Learning Prediction Serving Systems. In
Proceedings of the 13th USENIX Symposium on Operat-
ing Systems Design and Implementation, pages 611–626,
2018.

[36] Gongzheng Li, Yadong Xi, Jingzhen Ding, Duan Wang,
Bai Liu, Changjie Fan, Xiaoxi Mao, and Zeng Zhao.
Easy and Efficient Transformer: Scalable Inference
Solution For large NLP model. arXiv preprint
arXiv:2104.12470, 2021.

[37] Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
Jurassic-1: Technical details and evaluation. 2021.

[38] Xudong Lin, Gedas Bertasius, Jue Wang, Shih-Fu
Chang, Devi Parikh, and Lorenzo Torresani. Vx2text:
End-to-end learning of video-based text generation from
multimodal inputs. In Proceedings of the 2021 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 7005–7015, 2021.

[39] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lin-
tao Zhang, and Lidong Zhou. Rammer: Enabling Holis-
tic Deep Learning Compiler Optimizations with rTasks,
pages 881–897. 2020.

[40] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. Can a Suit of Armor Conduct Electricity?
A New Dataset for Open Book Question Answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2381–
2391, 2018.

[41] Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. Abstractive
Text Summarization using Sequence-to-sequence RNNs
and Beyond. In Proceedings of the 20th SIGNLL Con-
ference on Computational Natural Language Learning,
pages 280–290, 2016.

[42] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
TensorFlow-Serving: Flexible, High-Performance ML
Serving. Workshop on Machine Learning Systems at
NIPS 2017, 2017.

[43] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. fairseq: A Fast, Extensible Toolkit for Sequence

Modeling. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics (Demonstrations), pages 48–53,
2019.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Advances in Neu-
ral Information Processing Systems, 2019.

[45] Romain Paulus, Caiming Xiong, and Richard Socher. A
Deep Reinforced Model for Abstractive Summarization.
In Proceedings of the 6th International Conference on
Learning Representations, 2018.

[46] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot,
and Édouard Duchesnay. Scikit-Learn: Machine Learn-
ing in Python. Journal of Machine Learning Research,
12(85):2825–2830, 2011.

[47] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language Models are Un-
supervised Multitask Learners. 2019.

[48] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Mil-
lican, Jordan Hoffmann, Francis Song, John Aslanides,
Sarah Henderson, Roman Ring, Susannah Young, Eliza
Rutherford, Tom Hennigan, Jacob Menick, Albin Cas-
sirer, Richard Powell, George van den Driessche,
Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang,
Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saf-
fron Huang, Jonathan Uesato, John Mellor, Irina Hig-
gins, Antonia Creswell, Nat McAleese, Amy Wu, Erich
Elsen, Siddhant Jayakumar, Elena Buchatskaya, David
Budden, Esme Sutherland, Karen Simonyan, Michela
Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gri-
bovskaya, Domenic Donato, Angeliki Lazaridou, Arthur
Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli,
Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas
Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama,
Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi,
Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Chris Jones, James Bradbury,
Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osin-
dero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem

536    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hass-
abis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling
Language Models: Methods, Analysis & Insights from
Training Gopher. arXiv preprint arXiv:2112.11446,
2021.

[49] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the Limits of Trans-
fer Learning with a Unified Text-to-Text Transformer.
Journal of Machine Learning Research, 21(140):1–67,
2020.

[50] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE:
Advancing Mixture-of-Experts Inference and Training
to Power Next-Generation AI Scale. arXiv preprint
arXiv:2201.05596, 2022.

[51] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-Shot Text-to-Image Generation. In
Proceedings of the 38th International Conference on
Machine Learning, pages 8821–8831, 2021.

[52] Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason Weston.
Recipes for Building an Open-Domain Chatbot. In Pro-
ceedings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 300–325, 2021.

[53] Timo Schick and Hinrich Schütze. Exploiting Cloze-
Questions for Few-Shot Text Classification and Natural
Language Inference. In Proceedings of the 16th Con-
ference of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages 255–
269, 2021.

[54] Abigail See, Peter J. Liu, and Christopher D. Man-
ning. Get To The Point: Summarization with Pointer-
Generator Networks. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1073–1083, 2017.

[55] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. Mesh-
TensorFlow: Deep Learning for Supercomputers. Ad-
vances in Neural Information Processing Systems, 2018.

[56] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A GPU Cluster Engine for

Accelerating DNN-Based Video Analysis. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 322–337, 2019.

[57] Haichen Shen, Seungyeop Han, Matthai Philipose, and
Arvind Krishnamurthy. Fast Video Classification via
Adaptive Cascading of Deep Models. In Proceedings
of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3646–3654, 2017.

[58] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[59] Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared Casper,
Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vi-
jay Korthikanti, Elton Zhang, Rewon Child, Reza Yaz-
dani Aminabadi, Julie Bernauer, Xia Song, Moham-
mad Shoeybi, Yuxiong He, Michael Houston, Saurabh
Tiwary, and Bryan Catanzaro. Using DeepSpeed
and Megatron to Train Megatron-Turing NLG 530B,
A Large-Scale Generative Language Model. arXiv
preprint arXiv:2201.11990, 2022.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. Ad-
vances in Neural Information Processing Systems, 2017.

[61] Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang,
and Lei Li. LightSeq: A High Performance Inference
Library for Transformers. In Proceedings of the 2021
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies: Industry Papers, pages 113–120, 2021.

[62] Zihao Wang, Wei Liu, Qian He, Xinglong Wu, and Zili
Yi. Clip-gen: Language-free training of a text-to-image
generator with clip. arXiv preprint arXiv:2203.00386,
2022.

[63] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai,
and Quoc V Le. Finetuned Language Models are Zero-
Shot Learners. In Proceedings of the 10th International
Conference on Learning Representations, 2022.

[64] Ronald J. Williams and David Zipser. A Learning Algo-
rithm for Continually Running Fully Recurrent Neural
Networks. Neural Computation, 1(2):270–280, 1989.

[65] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. Show, Attend and Tell: Neural Image

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    537



Caption Generation with Visual Attention. In Proceed-
ings of the 32nd International Conference on Machine
Learning, pages 2048–2057, 2015.

[66] Zhilin Yang, Ye Yuan, Yuexin Wu, William W. Cohen,
and Ruslan R. Salakhutdinov. Review Networks for
Caption Generation. Advances in Neural Information
Processing Systems, 2016.

[67] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. OPT: Open Pre-trained Transformer
Language Models. arXiv preprint arXiv:2205.01068,
2022.

538    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences

Mingcong Han1,2, Hanze Zhang1,4, Rong Chen1,2, and Haibo Chen1,3

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University 2Shanghai AI Laboratory
3Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

4MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China

Abstract
Many intelligent applications like autonomous driving and
virtual reality require running both latency-critical and best-
effort DNN inference tasks to achieve both real time and
work conserving on GPU. However, commodity GPUs lack
efficient preemptive scheduling support and state-of-the-art
approaches either have to monopolize GPU or let the real-
time tasks to wait for best-effort tasks to complete, which
causes low utilization or high latency, or both.

This paper presents REEF, the first GPU-accelerated DNN
inference serving system that enables microsecond-scale ker-
nel preemption and controlled concurrent execution in GPU
scheduling. REEF is novel in two ways. First, based on the
observation that DNN inference kernels as mostly idempo-
tent, REEF devises a reset-based preemption scheme that
launches a real-time kernel on the GPU by proactively killing
and restoring best-effort kernels at microsecond-scale. Sec-
ond, since DNN inference kernels have varied parallelism
and predictable latency, REEF proposes a dynamic kernel
padding mechanism that dynamically pads the real-time ker-
nel with appropriate best-effort kernels to fully utilize the
GPU with negligible overhead. Evaluation using a new DNN
inference serving benchmark (DISB) with diverse workloads
and a real-world trace on an AMD GPU shows that REEF
only incurs less than 2% overhead in the end-to-end latency
for real-time tasks but increases the overall throughput by up
to 7.7×, compared to dedicating the GPU to real-time tasks.
To demonstrate the feasibility of our approaches on closed-
source GPUs, we further ported and evaluated a restricted
version of REEF on an NVIDIA GPU with a reduction of the
preemption latency by up to 12.3× (from 6.3×).

1 Introduction
Deep Neural Network (DNN) inference has been widely
adopted by modern intelligent applications, such as au-
tonomous driving [2, 37, 41, 80], virtual reality [58, 83],
speech/image recognition [32, 75], and healthcare [19, 24],
just to name a few. Many of them demand real-time infer-
ence serving in mission-critical tasks, where GPUs have
emerged as a popular accelerator to serve DNN infer-
ences [15, 33, 47, 89].

Although the low-latency demand of DNN inferences can
be fulfilled by dedicating the whole GPU to sequentially serve

 0

 60

 120

 180

 240

 300

0 1 2 4 8

T
h

ro
u

g
h

p
u

t 
(r

e
q

s
/s

)

Number of Best-effort Tasks

Real-time Task

Best-effort Task

   0

  12

  24

  36

  48

  60

0 1 2 4 8

T
a

s
k
 L

a
te

n
c
y
 (

m
s
)

Number of Best-effort Tasks

Real-time Task

BE1

BE2

BE4

BE8

   0

   2

   4

   6

   8

  10

0 1 2 4 8

T
a

s
k
 L

a
te

n
c
y
 (

m
s
)

Number of Best-effort Tasks

Execution

Preemption

 0

 20

 40

 60

 80

 100

 0  60  120  180  240  300

T
h

ro
u

g
h

p
u

t 
(r

e
q

s
/s

)

Frequency (reqs/s)

Concurrent

Preemptive

Fig. 1: (a) The overall throughput of DNN inferences (both real-
time and best-effort tasks) and (b) the end-to-end latency of real-time
tasks when using concurrent GPU scheduling (i.e., multiple GPU
streams [46, 49, 60]), (c) the end-to-end latency of real-time tasks
when using preemptive GPU scheduling (i.e., wait-based preemp-
tion [12, 77, 90]), and (d) the throughput of best-effort tasks as
the frequency of real-time tasks increases. Workload: VGG [68]
(real-time) and ResNet [30] (best-effort). Testbed: one AMD Radeon
Instinct MI50 GPU with 16 GB of memory (see §7 for details).

requests from a single DNN application [10, 80, 91], it is
hard to fully exploit the massive parallelism of the GPU [47].
Hence, it is a common practice to share a GPU among mul-
tiple applications with different timing constraints in emerg-
ing intelligent systems [41, 78], which can greatly improve
overall throughput, as shown in Fig. 1(a). For example, au-
tonomous vehicles use DNNs to recognize obstacles and traf-
fic lights [9, 59], which are latency-critical tasks (called real-
time tasks in this paper). Meanwhile, other tasks with no hard
real-time requirement [78] (called best-effort tasks in this pa-
per), such as monitoring human driver’s emotion and fatigue,
are also served within the GPU using DNNs [19, 48, 84].

Typically, DNN inferences have two potentially conflicting
goals for GPU scheduling. First, the real-time tasks should be
treated as first-class citizens on the GPU without interference
from other tasks to achieve low end-to-end latency. Second,
both real-time tasks and best-effort tasks should be served
concurrently on the GPU to achieve high overall throughput
(work-conserving).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    539



State-of-the-art GPU libraries (e.g., CUDA [52] and
ROCm [3]) commonly provide multiple GPU streams (e.g.,
CUDA Streams [60]) to concurrently execute multiple tasks
on the same GPU. However, as shown in Fig. 1(b), although
the end-to-end inference latency of real-time tasks is low
(about 4 ms) and stable when monopolizing the GPU, the tail
latency of real-time tasks significantly increases by over an or-
der of magnitude (close to 50 ms) when running concurrently
with best-effort tasks. This, unfortunately, is unacceptable for
real-time scenarios [85].

Similar to operating systems using preemptive scheduling
to provide real-time guarantees, an intuitive approach is to pro-
vide preemption for GPU scheduling, which is unfortunately
missing in commodity GPUs [70]. Prior work [12, 77, 90]
proposed a wait-based approach to passively waiting until
the completion of running blocks, which may cause a pre-
emption delay of several milliseconds. Although it may be
sufficient for traditional GPU workloads, this approach is still
far from optimal for DNN inference tasks since the preemp-
tion latency is non-trivial compared to the execution time of
real-time inference tasks, as shown in Fig. 1(c). Further, when
the real-time inference requests arrive at a high frequency
(e.g., camera (120 reqs/s) [16] or multiple sensors [41]), the
best-effort tasks may even get starved, as shown in Fig. 1(d).

This paper presents REEF, the first DNN inference serving
system for commodity GPUs with microsecond-scale ker-
nel preemption and controlled concurrent execution in GPU
scheduling to achieve both real time and work conserving.
Specifically, the arriving real-time task should instantly pre-
empt the GPU from the running best-effort kernels without
waiting for their completion. Meanwhile, the best-effort ker-
nels should be executed concurrently by using GPU resources
leftover from the real-time kernels.

A key insight of REEF is that each kernel in DNN inference
is mostly idempotent. This implies that the running best-effort
kernels can be proactively killed and restored without saving
contexts. Based on this, REEF proposes a reset-based preemp-
tion scheme. To thoroughly flush hundreds of outstanding
kernels in both GPU runtime and devices, REEF designs
different approaches to resetting different software queues
and retrofits the GPU driver to exactly use existing hardware
mechanisms to reset compute units while preserving device
memory of the GPU. It can improve both kernel preemption
and restore. Therefore, REEF can launch a real-time task on
the GPU in tens of microseconds, regardless of the number
of preempted kernels and their execution time.

REEF further proposes a dynamic kernel padding mech-
anism based on the observation that the execution time of
GPU kernels in DNN inferences is deterministic and pre-
dictable. This implies that the pending best-effort kernels
can be carefully selected to pad the real-time kernel with-
out performance interference, based on offline profiling in
advance. REEF extended GPU compiler to construct a tem-
plate of padded kernels by using function pointers. Further, to

eliminate the overhead of indirect function calls on the GPU,
REEF introduces proxy kernels to address register allocation
problem and avoid unnecessary context saving at runtime.
Therefore, REEF can concurrently execute the real-time task
with best-effort tasks at the expense of negligible performance
and memory overhead (less than 1% and about 10 KB).

We have implemented REEF by extending Apache
TVM [73] (a compiler for deep learning) and AMD ROCm [3]
(an open-source GPU computing platform). We evaluate
REEF using a new DNN Inference Serving Benchmark
(DISB) with diverse workloads and models, as well as a
real-world trace from Apollo [7] (an open autonomous driv-
ing platform). Our experimental results show that REEF only
incurs less than 2% of the end-to-end latency overhead for
real-time tasks but increases overall throughput by up to 4.3×,
compared to dedicating the GPU to real-time tasks. Our ap-
proach further reduces the preemption latency by over one
order of magnitude against the state-of-the-art, less than 40
microseconds for all models. To demonstrate the feasibility
of our approaches on closed-source GPUs, we further ported
and evaluated a restricted version of REEF on an NVIDIA
GPU with a reduction of the preemption latency by up to
12.3× (from 6.3×).

Contributions. We summarize our contributions as follows.

• An in-depth understanding on the characteristics of
GPU-accelerated DNN inferences such as idempotence and
the issues of state-of-the-art GPU scheduling schemes (§2).

• A new reset-based preemption scheme that can launch
a real-time kernel on the GPU in a few microseconds,
regardless of the number of preempted kernels (§4).

• An elegant mechanism that can dynamically pad the
real-time kernel with best-effort kernels to fully exploit the
massive parallelism of the GPU (§5).

• An implementation (§6) on both AMD and NVIDIA GPUs
and an evaluation that demonstrates the advantage and effi-
cacy of REEF over state-of-the-art (§7).

The source code of REEF is publicly available at https:
//github.com/SJTU-IPADS/reef. The DNN Inference
Serving Benchmark (DISB) framework can be obtained sepa-
rately from https://github.com/SJTU-IPADS/disb.

2 Background and Motivation
2.1 Characterizing GPU-Accelerated DNN Inference
Deep neural network (DNN) comprises multiple instances
of versatile layers, such as convolutional, pooling and fully-
connected layers. GPUs have been widely exploited to ac-
celerate DNN inference serving [20, 28, 64]. To serve infer-
ence requests on GPUs, the pre-trained DNN model (e.g.,
ResNet [30]) is loaded into GPU memory ahead of time.
Fig. 2 outlines the implementation of GPU-accelerated DNN
inference. For each arriving request, all kernels of the DNN

540    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SJTU-IPADS/reef
https://github.com/SJTU-IPADS/reef
https://github.com/SJTU-IPADS/disb


# device codes

__global__ void conv_relu(in, weight, out):

1   sum = 0;

2   for i in range(0,3)

3 for j in range(0,3)

4 sum += in[..]   weight[..]

5 out[..] = ReLU(sum)

__global__ void dense(in, weight, bias, out):

6 sum = 0;

7 for i in range(0,512)

8 sum += in[..]   weight[..]

9 out[..] = sum + bias[..]

# host codes

void inference(...):

10  memcpyH2D(in, in_host, in_sz)  # copy in to GPU

11 conv_relu <<<dim(32), ..>>> (in, .., buf_conv)

12 ...  # launch other kernels

13 pooling <<<dim(64), ..>>> (.., buf_pool)

14 dense <<<dim(10), ..>>> (buf_pool, .., buf_dense)

15 softmax <<<dim(1), ..>>> (buf_dense, .., out)

16  memcpyD2H(out_host, out, out_sz)  # copy out to CPU

Fig. 2: An example of DNN inference using a model like ResNet.

model are executed in turn with the input, and the resulting
output is returned to the DNN application.

DNN inference is now used by both real-time (RT) tasks,
such as obstacle and traffic lights recognition [9, 59], and
best-effort (BE) tasks, such as emotion and fatigue moni-
toring [19, 48, 84]. The real-time tasks are latency-critical,
because violating the end-to-end latency requirement may
cause system failures or even safety problems. In addition,
such requests are usually issued periodically at various fre-
quencies by input sensors (e.g., camera and LiDAR [7, 41]).
On the contrary, the best-effort tasks have no hard timing
requirement, but are repetitively executed in the background.

Idempotence. The GPU-accelerated DNN model for infer-
ence tasks consists of a sequence of kernels, which implement
one or several DNN layers. We observe that GPU kernels in
DNN models are mostly idempotent as they consist of almost
only dense linear algebra computations without side effects.1

Hence, the kernel can always produce the same output with
the same input no matter it has been retried or not. Meanwhile,
in the DNN model, the (k)-th kernel always uses the outputs
of the (k-1)-th kernel and static arguments (e.g., weight) as
inputs, e.g., conv_relu and dense kernel in Fig. 2. There-
fore, the execution of DNN inference task can be restored
from any kernel before the interrupted kernel and will not
change the inference results.

Massive kernels. Unlike traditional GPU applications that
only contain a few kernels (e.g., at most 14 kernels in Ro-
dinia [11]), it is common to see hundreds of kernels in modern
DNN models (see Table 1). In response, large amounts of
kernels—usually hundreds or more—would be submitted in

1We validated using our tool that all 320 GPU kernels of the 11 DNN models
from Apache TVM’s test suite [72] are idempotent.

Table 1: The amount of GPU kernels in DNN models evaluated in
§7 and the execution time (in millisecond). The codes are generated
by TVM [15] and run on AMD Radeon Instinct MI50 GPU.

Model ResNet DenseNet VGG Inception Bert

#Kernels 307 207 55 146 205
Exec. Time 13.6 3.5 4.4 8.3 5.4

advance to hide the lengthy kernel launching time. Further, to
fully exploit the GPU, the serving system may concurrently
execute multiple kernels from different inference tasks using
the same or different DNN models. Therefore, the perfor-
mance penalty of preempting the GPU would be significant
(a few milliseconds) and even comparable to the execution
time of hundreds of kernels.

Latency predictability. We observe that the execution time
of GPU kernels in DNN inferences is deterministic and pre-
dictable when running individually on the GPU (no interfer-
ence). The reasons are two-fold. First, the kernel is mostly
linear algebra computations such as matrix multiplication and
convolution, which contains neither conditional branches nor
inconstant loops. Second, all kernel arguments (e.g., input
and weights) and the output are fixed-size arrays. Therefore,
the execution time of such kernels is independent of the input
of inference request and can be measured and accurately pre-
dicted in advance. In practice, we observe that the variance in
kernel execution time of DNN models is typically only a few
microseconds (see Fig. 3(a)). This is also confirmed in recent
literature [6, 28, 47].

99.99

99.9

99

90

0
 0  50  100  150  200  250

P
e

rc
e

n
ti
le

Execution Time (µs)

softmax

dense

conv64

conv128

conv256

conv512

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5

86.7%

 6.7%

71.7%

53.3%

13.3%

26.7%C
U

 u
s
a

g
e

 (
%

)

Time (ms)

VGG

Fig. 3: (a) The CDF of execution time of several typical kernels in
VGG, and (b) the timeline of CU usage during VGG execution on a
GPU with 60 CUs. Note that the execution time of GPU kernels in
VGG covers a fairly wide range from 10µs to 255µs (see Fig. 10).

Varied parallelism. The GPU kernels in DNN inferences
usually exhibit completely different parallelism due to varied
input scales. For example, as shown in Fig. 2, the pooling
kernel uses 64 thread blocks, while the softmax kernel just
uses 1 thread block. Consequently, the computational demand
for DNN inferences, namely the number of compute units
(CUs), is ever-changing during the execution. As an example,
Fig. 3(b) shows the CU usage during VGG execution varies
between 6.7% and 86.7%. Therefore, to efficiently exploit the
GPU, it is indispensable to leverage a dynamic mechanism
to select and execute multiple kernels from different DNN
inference tasks at runtime.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    541



block

kernel

task

(a)

(b)

(c)

Fig. 4: An example of GPU task scheduling with different kernel
preemption and parallelism schemes for a hybrid workload, which
contains two best-effort and one real-time DNN inference tasks. The
GPU has four compute units (CUs).

2.2 State-of-the-art GPU Scheduling
As stated before, DNN inference serving system relies on
GPU scheduling to meet two potentially conflicting perfor-
mance goals: low latency and work conserving. Although
GPU scheduling has been widely studied in the HPC com-
munity [1, 8, 12, 13, 27, 43, 77, 82, 88], the unique charac-
teristics of DNN inferences and the two performance goals
introduce new challenges for GPU scheduling. We review the
state-of-the-art schemes of GPU scheduling and discuss the
performance issues when serving various DNN inferences
through a brief example, as shown in Fig. 4.

Sequential execution. Most existing DNN serving systems,
such as Clockwork [28], use sequential execution to avoid in-
terferences among tasks. Thus, each task can achieve optimal
execution latency, as shown in Fig. 4(a). However, the end-to-
end latency of RT tasks might be significantly extended due to
lengthy preemption latency (red dimension line), since it has
to wait for the completion of previous tasks (no preemption).
Further, this scheme has a poor overall throughput, due to
sequentially serving inference tasks (i.e., no concurrency).

Block-level preemption. To reduce end-to-end latency for
real-time tasks, it is necessary to preempt the GPU from run-
ning best-effort tasks. However, it is difficult to implement
preemptive scheduling on the GPU due to the large context
(e.g., a large amount of registers) [56, 70]. Meanwhile, com-

modity GPUs also lack hardware support for the preemption
mechanism.2 As a compromise, prior work [8, 90] proposes
wait-based approaches to implementing block-level preemp-
tion for GPU scheduling. The real-time task still needs to
passively wait until the completion of running blocks, as
shown in Fig. 4(b). Further, the preemption latency will in-
crease with the number of preempted kernels (see Fig. 1(c)).
As a compromise, prior work [8, 90] has to limit the num-
ber of kernels submitted to the GPU, which is impractical
for DNN inferences. Further, a high-frequency real-time task
will break the execution of best-effort tasks, even leading to
starvation (see Fig. 1(d)).

Multiple GPU streams. To improve overall throughput,
modern GPU libraries (e.g., CUDA [52] and ROCm [3])
commonly provide multiple GPU streams (e.g., CUDA
Streams [60]) to concurrently execute kernels from indepen-
dent tasks. The runtime scheduler dispatches kernels from
GPU streams on demand to keep all compute units (CUs)
busy, as shown in Fig. 4(c). Although leveraging multiple
GPU streams can improve throughput (see Fig. 1(a)), the
latency of real-time tasks can be significantly degraded by
concurrent tasks, e.g., the last kernel of RT Task#1 in Fig. 4(c).
Even worse, the latency overhead will increase with the num-
ber of concurrent tasks (see Fig. 1(b)).

3 REEF Overview
3.1 System Architecture
The goal of REEF is to provide preemptive GPU scheduling to
achieve real time for latency-critical tasks and work conserv-
ing for best-effort tasks (see ideal scheduling for the example
in Fig. 4). Based on the insight that DNN inference kernels
are mostly idempotent and there are a massive number of
kernels with varied parallelism and predictable latency, REEF
provides two novel designs called reset-based preemption and
dynamic kernel padding.

Fig. 5 illustrates an overview of REEF’s architecture. REEF
consists of (a) an offline part, which compiles and loads user-
provided DNN models, and (b) an online part, which sched-
ules and serves DNN inference requests.

DNN model preparation (offline). Typically, DNN models
are first compiled and optimized for accelerator back-ends
(e.g., GPU) and then loaded into the model pool. Inspired by
prior work [12, 36, 77], REEF extends the model compiler
(e.g., TVM [15]) with a code transformer module, which first
validates the idempotence of kernels in DNN models and then
transforms the source code to assist GPU scheduling in REEF.
Moreover, REEF develops a kernel profiler to measure the
computational requirements and the execution time for each
kernel of the model, which is accurate and practical for DNN
models (see §2).
2Although NVIDIA claims that their GPUs have been equipped with pre-
emption support since Pascal architecture [51], there is no public available
information or a software controllable interface [12, 39, 77].

542    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Fig. 5: Architecture of REEF. Modules in boxes with dashed border
are on the critical path of serving DNN inference requests. Other
modules do not directly impact serving latency and throughput.

DNN inference serving (online). REEF extends a state-of-
the-art GPU runtime (e.g., ROCm [3]) with four major com-
ponents for DNN inference serving.

Task Queues. REEF maintains one real-time task queue and
several best-effort task queues. Each queue is bound to a GPU
stream for launching GPU kernels, where inference requests
are served in a FIFO order. For simplicity, REEF executes
real-time requests one at a time. Note that any scheduling
policy that treats the whole GPU as a single device, such as
EDF [10], can be adopted by REEF for real-time requests.
Further, REEF offers an RPC-based interface for DNN-based
applications to deliver inference requests to task queues.

Scheduler. The scheduler in REEF uses busy polling on task
queues and assigns tasks to the associated GPU streams. Cor-
responding to whether there are real-time tasks, REEF pro-
vides two execution modes, namely real-time mode and nor-
mal mode. The scheduler will switch from normal mode to
real-time mode when encountering real-time tasks, and switch
back to normal mode when the real-time task queue is empty.

Preemption module. In normal mode, REEF concurrently
serves best-effort tasks from different task queues using mul-
tiple GPU streams [3, 60] provided by GPU runtime. In real-
time mode, REEF first uses the preemption module to instantly
preempt the GPU from all running best-effort tasks (§4) and
then launches the real-time task on the GPU immediately.

Dynamic kernel padding (DKP). In real-time mode, before
launching a real-time kernel, the DKP module will select
appropriate best-effort kernels and dynamically pad them to
the real-time kernel (§5). REEF will execute the padded kernel
on the GPU to achieve high throughput. Note that the best-
effort kernels will only use GPU resources leftover from the
real-time kernel.

G
P

U

real-time mode

reset-based preemption (§4)

Block of BE Task Block of RT Task Task Arriving

Time

dynamic kernel padding (§5)

Fig. 6: An example of timeline in REEF. The DNN inference tasks
here are the same as that in Fig. 4.

3.2 An Illustrative Example

Fig. 6 illustrates the timeline of scheduling five DNN infer-
ence tasks in REEF. Upon receiving the first two best-effort
requests r1 and b1, REEF runs in normal mode, and the ker-
nels of two different tasks are scheduled to two different
GPU streams. The GPU runtime will concurrently execute
the kernels on the GPU. While r1 and b1 execute, a real-
time request v1 arrives. The scheduler immediately switches
to real-time mode, and GPU runtime instantly preempts the
GPU by killing all running kernels of best-effort tasks (i.e.,
r1 and b1). Meanwhile, the DKP module selects appropriate
kernels from restored tasks to dynamically pad the kernels of
real-time task v1. After that, the padded kernel will be exe-
cuted on the GPU alone. While v1 is completed, the scheduler
switches back to normal mode. All running and later best-
effort tasks (i.e., r1, b1, b2, and r2) will concurrently execute
on the GPU through two GPU streams.

4 Reset-based Preemption
The key insight behind our idea, namely reset-based preemp-
tion, is that the GPU kernels in DNN models are mostly
idempotent, which enables proactive preemption—killing all
running kernels on the GPU immediately and restoring them
later. The benefits are two-fold. First, it avoids saving and
restoring the large context of the GPU (e.g., a 256 KB reg-
ister file per CU) [70]. Second, there is no need to wait for
all running kernels to complete, which can take hundreds of
microseconds.

However, there are still new challenges before making our
reset-based preemption come true on commodity GPUs. Ex-
cept for the kernels running on the GPU, hundreds of launched
kernels are buffered in multiple queues maintained by GPU
runtime. This is necessary to hide the kernel launch time and
fully exploit the massive parallelism of GPU. Whereas, evict-
ing all launched kernels makes it indeed difficult to preempt
the GPU in tens of microseconds.

Fig. 7 illustrates the lifetime of launched kernels in the
GPU runtime and devices. First, the scheduler launches all
kernels of an inference task and specifies a GPU stream for
each task. The GPU runtime maintains a linked list, called

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    543



Device 
Memory

Host Queue

Device Queue

GPU

Reset DQs

Reset CUs

Preemption
Module

Scheduler

Reset HQs

GPU Runtime
GPU Streams API

block

kernel

Command Processor

Fig. 7: Extended GPU runtime in REEF for instant preemption.

host queue, for each GPU stream to buffer launched kernels.
Each host queue has a background thread that transmits the
buffered kernels asynchronously to a ring buffer, called device
queue, which is accessed by CPU and GPU simultaneously.
The command processor of GPU will poll all device queues
to fetch the buffered kernels and eventually dispatches them
to compute units. Therefore, launched kernels of an inference
task may exist in three places, namely host queues (HQs),
device queues (DQs), and compute units (CUs). To achieve
instant preemption, kernels in all three places must be evicted.

4.1 Evicting Buffered Kernels
The reset-based approach requires proactively evicting all
buffered kernels from both host queues and device queues.
For host queues, it is straightforward to reset them (Ê in
Fig. 7), dequeuing all buffered kernels and reclaiming mem-
ory, as they are fully controlled by the GPU runtime. For de-
vice queues, however, the GPU runtime cannot evict buffered
kernels from device queues, because the command processor
of GPU can directly fetch kernels from device queues [23],
resulting in data races and unpredictable results. In addition,
the CPU also does not provide a way to safely evict kernels
from device queues. A potential solution is to notify the GPU
to re-register a new device queue [62]. However, it would
incur an unacceptable latency overhead (e.g., about 1 ms on
our testbed).

Inspired by evictable kernels [12], we propose lazy eviction
to reset device queues without extending GPU runtime and
hardware. The code transformer of REEF injects a piece of
code at the beginning of each kernel in advance, which checks
the preemption flag to realize whether it has been evicted.
When the preemption flag is true, the kernel will voluntarily
terminate itself. Therefore, when a preemption occurs, the
preemption module will immediately set the preemption flag
to true in GPU memory (see Ë in Fig. 7). The kernels buffered
in device queues will be fetched and dispatched to the CUs
as usual, but will terminate themselves immediately.

Our initial queue eviction mechanism imposes a non-trivial

overhead on the preemption process, taking more than 500µs
to preempt a single task (see §7.3). An in-depth analysis shows
that the overhead comes mainly from (a) reclaiming memory
from the host queue and (b) waiting to fetch kernels from the
device queue. Therefore, we propose two optimizations to
mitigate overheads.

Asynchronous memory reclamation. The preemption la-
tency is proportional to the host queue length when using syn-
chronous memory reclamation for evicted kernels in the host
queues. Therefore, the performance penalty of preempting
a DNN inference task would be significant, since it requires
buffering hundreds of kernels in the host queue. To instantly
evict GPU kernels from the host queue, REEF leverages a
background GC thread to reclaim memory asynchronously.
Specifically, REEF resets the host queue by simply nullifying
the head pointer first and then notifying the GC thread to
reclaim memory in the background.

Device queue capacity restriction. Although using lazy
eviction can terminate kernels in the device queue imme-
diately at the beginning of execution, the kernels still have
to be fetched and dispatched to the CU, which takes around
20µs per kernel. It is common to buffer hundreds of ker-
nels in a device queue, since it can reduce the frequency of
context switches by filling up the device queue with a large
number of kernels from host queues at a time. However, it
may also increase the preemption delay to even more than
1 ms. Therefore, REEF restricts the capacity of the device
queue to achieve microsecond-scale kernel preemption. Tun-
ing the device queue capacity provides a tradeoff between
preemption latency and execution time. As the queue capac-
ity decreases, the preemption latency also decreases because
fewer kernels need to be evicted, but normal execution time
increases because the GPU has more idle time waiting for
the runtime to fill device queues with the kernels from host
queues. We empirically choose a device queue capacity to 4
on our testbed, since it is sufficient to reset the device queue in
30µs with negligible overhead on normal execution time (i.e.,
less than 0.3%). Furthermore, using a smaller device queue
also produces slightly higher CPU utilization (e.g., about 15%
increase) due to more frequent filling of the device queue.

4.2 Killing Running Kernels
To avoid waiting for the completion of running kernels, the
reset-based preemption proactively kills the running kernels
in the GPU. Unfortunately, there is neither an API provided by
GPU runtime nor a functionality exposed by GPU driver that
can kill the running kernels from the host side. We observed
that GPU driver has the ability to terminate CPU process and
also kill associated GPU kernels, even when the kernel stucks
in an infinite loop. It implies that GPU driver can indeed
kill an uncompleted kernel. However, this function will also
reclaim GPU memory allocated by the process and GPU
kernels. Thus, the preempted kernel has to reload DNN model
parameters to GPU memory, taking even a few seconds.

544    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



To remedy it, REEF retrofits the kernel killing function
of GPU driver and exposes it to the preemption module in
GPU runtime. The new function will instruct the command
processor to kill all running kernels on the CUs but preserve
their running state in GPU memory. The preemption module
will use it to kill all running kernels (see Ì in Fig. 7) after
evicting host queues and device queues.

4.3 Restoring Preempted Tasks
The best-effort tasks should be restored after being preempted.
In general, the task has to be re-executed from the beginning,
and is assumed to have no side effects. Fortunately, the idem-
potence characteristic of kernels in the DNN model ensures
that the execution of DNN inference task can be restored from
any kernel before the interrupted kernel. This implies that the
scheduler can safely re-execute the preempted best-effort
tasks. However, this may incur severe additional overhead
because DNN models commonly have massive kernels (usu-
ally hundreds or more). Therefore, it is important to restore
the preempted task from the kernel close to where it was in-
terrupted. Unfortunately, it is almost impossible to precisely
identify the interrupted kernel, because the kernel running on
the CUs is killed directly by the command processor of GPU.

To remedy this problem, REEF adopts an approximation
approach to ensure that the preempted task is restored from
at most a constant number (c) of kernels before the inter-
rupted kernel. More specifically, the preemption module first
records the last kernel (kl) transmitted to the device queue
when it starts resetting the task queue, and then restores the
preempted task from c kernels before kl, where c denotes the
device queue capacity. We observe that the command proces-
sor sequentially fetches a kernel from the device queue and
runs it on the CUs. This implies that the interrupted kernel
will not be earlier than c kernels before the last kernel (kl) in
the device queue. Furthermore, REEF will redundantly exe-
cute at most c+1 kernels. Since c is configured to be relatively
small (i.e., 4), the restore overhead is negligible (about 30µs).

4.4 Preemption on closed-source GPUs
Many commodity GPUs (e.g., NVIDIA GPUs) are still closed
source. This poses new challenges to our reset-based preemp-
tion scheme, which has to treat the GPU runtime as a black
box. The primary limitation is that we cannot reset CUs to
proactively kill running kernels (Ì in Fig. 7). Apart from that,
REEF is also unable to manipulate host queues and device
queues directly outside of the GPU runtime. But fortunately,
the lazy eviction scheme proposed by REEF for resetting DQs
(Ë in Fig. 7) does not require any modification to the GPU
runtime.

We propose a restricted version of reset-based preemption,
called REEF-N, for closed-source GPUs. REEF-N first wraps
each GPU stream, the general abstraction provided by GPU
runtime, into a virtual host queue (vHQs), which intercepts
and buffers all launched kernels. Similar to the (physical) HQ
inside the GPU runtime, each vHQ also has a background

Time
dynamic kernel padding

inter-stream barrier

G
P

U
G

P
U

Block of BE Task

Block of RT Task

(RT)Task Latency

dispatch delay

Fig. 8: An example of serving multiple kernels in parallel with
different approaches.

thread to transmit buffered kernels asynchronously to the
GPU runtime. After that, REEF-N treats the whole GPU
runtime as several device queues (one for each GPU stream),
such that REEF can easily reset vHQs to evict buffered kernels,
instead of resetting HQs directly (Ê in Fig. 7). REEF-N still
follows the lazy eviction to reset DQs, and then waits for all
running kernels to complete. Finally, to simulate DQ capacity
restriction, REEF limits the number of outstanding kernels in
the GPU runtime; the background thread of vHQ transmits a
fixed number of kernels to the GPU runtime in a closed loop.

5 Dynamic Kernel Padding
To achieve high throughput, both real-time and best-effort
tasks should be concurrently executed on the GPU to achieve
work conserving. However, to avoid interference with real-
time tasks, the best-effort tasks should be only served by using
GPU resources leftover from the real-time tasks. Regrettably,
none of the existing approaches can provide such controlled
concurrent execution on the GPU.

First, using different GPU streams to launch real-time and
best-effort tasks cannot avoid interfering with each other. As
shown in Fig. 8, the dispatch delay between GPU streams
(20–40µs) might postpone the execution of real-time kernels
or limit the available resources (e.g., CUs) to them. Using
additional inter-stream barriers to synchronize kernel dispatch
among CUs will also cause performance overhead.

Second, static kernel fusion [74] can merge multiple ker-
nels from different tasks into a single one at compile time
and then launch the fused kernel on the GPU using a single
stream. It can avoid interference between real-time tasks and
best-effort tasks in advance. However, static kernel fusion
has to pre-compile all possible combinations of all kernels in
DNN models to enable scheduling at runtime. As mentioned
above, DNN inferences have hundreds of kernels in common
(see Table 1), which makes it impractical for static kernel
fusion. For example, it requires more than 35 GB of GPU
memory to store the fused kernels for five DNN models in
Table 1—considering only all combinations of no more than
three kernels.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    545



# device codes

__device__ void dense(in, weight, bias, out): ...

__global__ void dkp(rt_kern, rt_args,

be_kerns, be_argss):

1   ncus = rt_kern.ncus  # number of CUs

2 if (cu_id() < ncus) then

3 rt_kern(rt_args) # run RT/kernel

4 else

5      ncus += be_kerns[i=0].ncus

6      while (cu_id() >= ncus)

7         ncus += be_kerns[++i].ncus

8 be_kerns[i](be_argss[i]) # run BE/kernel 

# host codes

void inference(...):

# set the real-time kernel w/ its args (e.g., dense)

9 rt_kern, rt_args = ...     

# select a set of best-effort kernels w/ their args

10  be_kerns, be_argss = kern_select(rt_kern) 

11  dkp <<<..>>> (rt_kern, rt_args, be_kerns, be_argss)

12 ... # launch other dynamic padded kernels

Fig. 9: Pseudocode for dynamic kernel padding in REEF.

Our approach: dynamic kernel padding. Inspired by ker-
nel fusion, our approach also combines real-time kernels and
best-effort kernels into a single one and launches it using a
single GPU stream, as shown in Fig. 8. Differently, we con-
struct a template (called dkp kernel) at compile time and use
function pointer to fill and execute kernels at runtime. Further,
we dynamically select best-effort kernels to avoid interference
with the real-time kernel.

Fig. 9 shows an example of a dkp kernel (dkp) for dy-
namic kernel padding, declared as a global function (i.e.,
kernel entry). Instead of being statically inlined into the dkp
kernel, candidate kernel functions (e.g., dense) are declared
as individual device functions, which can be passed as dkp
kernel arguments and called by function pointers (line 3 and
8). The dkp kernel partitions the CUs to execute one real-
time candidate kernel (rt_kern) and a set of best-effort
candidate kernels (be_kerns) in parallel. It first allocates
sufficient CUs for the real-time kernel (line 1–3) and then
assigns the leftover CUs to the best-effort kernels (line 5–8).
When launching a real-time kernel, the DKP module selects
appropriate best-effort kernels to concurrently execute with
the real-time kernel (line 10, see also §5.2).

5.1 Efficient Function Pointers
Without specific optimizations, the naive design would sig-
nificantly decrease the performance of real-time kernels, due
to the unique characteristics of function pointers on the GPU.
We summarize the two key performance issues of the default
function pointer mechanism on the GPU.

Limited register allocation. Unlike CPU programs, GPU pro-
grams require a diverse yet fixed amount of registers, which
is counted at compile time and encoded into the model exe-
cutable. Such an attribute prohibits the direct use of function
pointers in GPU kernels, as the number of registers used by

the indirectly called function cannot be determined statically.
The default behavior of the GPU compiler is to assign a pre-
defined static upper bound to limit the callee’s register usage,
which may force the callee to save variables on the stack
due to the insufficient registers, leading to poor performance
compared to purely using registers [43].

Expensive context saving. Indirect function calls on GPUs
are much more expensive than CPU programs, due to the
enormous context (e.g., dozens of registers) that needs to
be saved and restored before and after the function call. For
thousands of threads, there might be MB-sized registers saved
and restored, introducing significant overheads. Although the
compiler will inline as many functions as possible to avoid
this overhead, indirect function calls via function pointers
cannot be inlined, which may impose significant performance
penalty on dynamic kernel padding.

REEF tackles the two above issues by introducing global
function pointer as a substitution of the default function
pointer mechanism. Since global functions are treated as ker-
nel entries, the compiler neither applies register limitations
nor adds context saving/restoring code to them. Thus, declar-
ing candidate kernels as global functions instead of device
functions can solve both issues. According to our observation,
context saving in candidate kernels is actually unnecessary, as
the dkp kernel exits immediately after calling rt_kern or
be_kerns[i] (see Fig. 9). Therefore, the lack of context
saving code in candidate kernels does not affect the execution
correctness.

However, as the kernel entry, a global function cannot be
called by another global function (e.g., dkp kernel). To bypass
this restriction, we replace indirect function calls with jump
instructions in assembly code, and manually prepare the initial
state of candidate kernels by following the conventions [45].
This approach makes no changes to the compiler and only
incurs a trivial function call overhead (around 1%).

Dynamic register allocation. The real-time kernel perfor-
mance is still not ideal after applying the global function
pointer technique because of the over-allocation problem. To
meet the varied register demands of candidate kernels, the
dkp kernel has to allocate as many registers as possible (i.e.,
over-allocation), which may decrease the CU occupancy3,
and thus increase the execution time. An intuitive solution is
to overwrite the register count of the dkp kernel just-in-time
before it is launched, making it adaptive to selected candidate
kernels. Unfortunately, the kernel’s register count has been
loaded to the GPU memory with the model in the off-line
phase (§3), which means overwriting its value requires a CPU-
to-GPU memory copy before every kernel execution, severely
affecting the execution performance.

REEF addresses the dynamic register allocation problem

3The CU occupancy implies how many blocks can be executed on a CU
simultaneously. It depends on how many resources (e.g., register) each
block demands. Higher CU occupancy can lead to better performance.

546    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0

 100

 200

 300

ResNet DenseNet VGG Inception Bert

T
im

e
 (

µ
s
)

Fig. 10: The measured execution time of kernels in five DNN models.
The details of DNN models can be found in Table 1.

by introducing a set of proxy kernels. Proxy kernels share
the same source code as the dkp kernel in Fig. 9, but allo-
cate different number of registers, allowing the scheduler to
dynamically pick the proper proxy kernel according to each
candidate kernel’s register demand. Unfortunately, generat-
ing proxy kernels for every possible register count faces the
kernel amount explosion problem. For example, on AMD
Instinct MI50 GPU with at most 128 scalar registers and 256
vector registers for each thread, it will generate 32,768 proxy
kernels to cover all possible register configurations.

To reduce the proxy kernel amount, we generate proxy
kernels to cover all possible CU occupancies rather than reg-
ister counts. Since proxy kernels are introduced to prevent
over-allocation from decreasing the CU occupancy, proxy
kernels that have different register count yet share the same
CU occupancy are actually redundant and can be merged to-
gether. More specifically, there are 10 CU occupancy levels
on AMD Instinct MI50 GPU we use, corresponding to 10
register count ranges, which allows us to generate only 10
proxy kernels, each allocating the maximum amount of reg-
isters allowed in a CU occupancy level. For each candidate
kernel, the scheduler picks the proxy kernel with the fewest
allocated registers that fulfill the candidate kernel’s demand,
which achieves the highest CU occupancy possible. This way,
the amount of proxy kernels is narrowed down from 32,768
to 10 without affecting the candidate kernel’s performance.

Dynamic shared memory. In addition to registers, over-
allocation of shared memory may also decrease the CU oc-
cupancy of proxy kernels. Fortunately, the kernel is enabled
to dynamically allocate shared memory by setting a property
(i.e., “dynamic shared memory”) when launching the kernel.
During model compilation, REEF converts the declaration of
variables from fixed-size shared memory to dynamic shared
memory (i.e., adding extern before __shared__). Conse-
quently, the amount of shared memory used by proxy kernels
can be set at runtime, depending on the maximum demand of
candidate kernels.

5.2 Kernel Selection

For dynamic kernel padding, the kernel selection policy is
important to avoid latency interference with real-time tasks,
which selects a set of blocks from candidate best-effort ker-
nels to share the GPU with the arriving real-time kernel.
REEF proposes a greedy heuristic to ensure that the best-

effort blocks will only use GPU resources (i.e., CUs) leftover
from the real-time kernel. Specifically, it first reserves enough
CUs for the real-time kernel, and then checks best-effort task
queues to select appropriate blocks for the remaining CUs,
until there are no free CUs or candidate tasks. The selected
best-effort blocks should meet the following two rules.

Rule 1. The execution time of best-effort kernels must be
shorter than that of the real-time kernel, since the execu-
tion time of the dkp kernel is determined by the slowest block.
Based on the observation of latency predictability for GPU
kernels in DNN models (see §2.1), we develop an offline ker-
nel profiler to measure the computational requirements and
the execution time for each kernels of loaded models.

Rule 2. The CU occupancy of best-effort kernels must be
higher than that of the real-time kernel, since the CU occu-
pancy of the dkp kernel is determined by the minimum of
kernels. Note that the CU occupancy of kernels can be directly
obtained from the source code of DNN models.

The kernel selection policy fully meets the design goal of
treating the real-time tasks as first-class citizens on the GPU.
It is not only efficient, selecting best-effort kernels in less
than 1µs, but also effective, limiting the latency overhead
of real-time kernels to less than 1% on average, see §7.4 for
details. However, the policy is also conservative, so the con-
straint may limit room for improvement in overall throughput.
For example, when the execution time of best-effort kernels
is often longer than that of real-time kernels (e.g., VGG and
DenseNet in Fig. 10), the throughput improvement of dy-
namic kernel padding may be trivial, even if the real-time
tasks only use a few CUs.

6 Implementation
We first implemented and deployed REEF on AMD GPUs
because of its open-source platform and ISA [26, 54], which
can fully demonstrate the efficacy of reset-based preemption
and dynamic kernel padding. REEF was implemented by ex-
tending Apache TVM [73] and AMD ROCm [3], with about
5,500 lines of C++ code. Beyond that, to further show the
feasibility of REEF on closed-source GPUs, we also ported
REEF-N, a restricted version of reset-based preemption, on
NVIDIA GPUs with CUDA [52].

Model compiler. REEF extends Apache TVM [15], a ma-
chine learning compiler framework, with a code transformer,
which mainly adds two modifications to the source code of
DNN inference: (1) a preemption flag, which is injected into
kernel arguments to lazily evict the kernel; (2) a set of proxy
kernels, which is constructed for the padded kernels.

GPU runtime. For AMD GPUs, REEF builds the preemp-
tion module on HIP [63] of ROCm, a portable GPU runtime
and programming library. similar to NVIDIA CUDA [52].
Specifically, REEF adds three new APIs to GPU runtime:
(1) hip_reset_hq, which resets host queues and moves

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    547



commands to the GC thread; (2) hip_set_stream_cap,
which limits the capacity of the device queue used by a GPU
stream; (3) hip_reset_kern, which resets the compute
units by using hardware mechanisms via the GPU driver in
Linux [61].

For NVIDIA GPUs, REEF-N intercepts three CUDA APIs
related to kernel launch and stream management, and adds
the following operations: (1) cuStreamCreate, which cre-
ates a vHQ and links it to the created CUDA stream; (2)
cuKernelLaunch, which buffers the launched kernel in
the vHQ and transmits it to GPU runtime (i.e., CUDA [52])
in the background; (3) cuStreamSynchronize, which
waits for GPU runtime to complete all launched kernel of
the CUDA stream. Finally, REEF-N provides a new API
cuResetHQ to reset vHQ by dequeuing all buffered kernels.

7 Evaluation
7.1 Experimental Setup

Testbed. The experiments were mainly conducted on a GPU
server that consists of one Intel Core i7-10700 CPU (to-
tal 8 cores), 16 GB of DRAM, and one AMD Radeon In-
stinct MI50 GPU (60 CUs and 16GB of memory). The soft-
ware environment of the server was configured with ROCm
4.3.0 [3], Apache TVM [73] 0.8.0, and Ubuntu 18.04. The
hardware platform resembles the computational resources of
autonomous vehicles [4, 71]. We further evaluate REEF-N on
a closed-source GPU (NVIDIA V100 GPU) to demonstrate
the generality of our approach, using the same server with
CUDA 10.2 [52] installed.

Workloads. Inspired by YCSB [17, 18], we build a new DNN
inference serving benchmark (DISB) that contains a suite of
tools and five workloads: (A) low load, (B) high RT load,
(C) high BE load, (D) multi-RT load, and (E) random load,
summarized in Table 2. The real-time (RT) clients in DISB
A–D uniformly send inference requests at a given frequency,
which simulates real-time DNN applications in autonomous
driving (e.g., obstacle recognition with cameras [7]), while the
clients in DISB E send 20 requests per second with a Poisson
arrival distribution, which simulates event-driven real-time
DNN applications (e.g., speech recognition [32, 75]). Note
that serving 220 RT requests per second sequentially for VGG
model would saturate our testbed (see Fig. 1(d)). On the other
hand, the closed-loop best-effort (BE) client continuously
issues inference requests, which simulates a contention load
on the GPU (e.g., driver monitoring).

Five representative DNN models are deployed in DISB,
including ResNet-152 [30] (RNET), DenseNet-201 [35]
(DNET), VGG-19 [68] (VGG), Inception v3 [69] (IN3), and
DistilBert [66] (BERT), all generated by Apache TVM [15].
Each client always submits inference requests for a certain
DNN model. Specifically, VGG is used by DISB A–C for
their RT clients, and RNET is used by DISB A and B for their
BE clients. Workloads with 5 RT/BE clients deploy all five

Table 2: DISB workload description. #/model denotes the number
of clients and their DNN models. [U/P] denotes an arrival distribu-
tion (i.e., Uniform or Poisson).

DISB A B C D E

Num. of RT clients 1/VGG 1/VGG 1/VGG 5/ALL 5/ALL
Frequency (reqs/s) 100 [U] 220 [U] 100 [U] 20 [U] 20 [P]

Num. of BE clients 1/RNET 1/RNET 5/ALL 5/ALL 5/ALL

DNN models in their clients separately, which simulates mul-
tiple DNN applications in a single scenario (e.g., autonomous
vehicles [7, 41]).

Furthermore, we use a real-world trace from an open au-
tonomous driving platform (i.e., Apollo [7]) as the real-time
workload, which provides a realistic arrival distribution of
real-time tasks in autonomous driving. The trace was col-
lected from the logs of the perception module [5] when run-
ning Apollo with SVL simulator [42, 65], and we selected
the closest DNN models in terms of execution time from the
above five models for the inference requests. Meanwhile, the
same best-effort workload as DISB C–E is used, where five
clients continuously issue different DNN inference requests.

Currently, each workload in DISB represents a particular
mix of real-time and best-effort DNN inference tasks, the
number of clients, and request frequency, which focuses on a
particular point in the performance space. Users can further
extend DISB with new workloads, or even some production
traces from specific applications, to model more different
scenarios.

Comparing targets. We compare REEF with typical schedul-
ing approaches. SEQ sequentially runs each DNN inference
task on the GPU with passive task preemption, which is
adopted by Clockwork [28]. Specifically, when there are mul-
tiple tasks waiting in the queue, it prioritizes real-time tasks,
but still needs to wait for the completion of launched best-
effort tasks. GPUStreams runs both real-time and best-effort
tasks simultaneously on the same GPU through multiple GPU
streams, which is adopted by TensorRT [50]. As a reference,
we further provide RT-Only, which represents the optimal
end-to-end latency for real-time tasks, as it dedicates the GPU
to real-time tasks.4

7.2 Overall Performance
We first compare the end-to-end latency of real-time tasks and
the overall throughput of REEF with other approaches using
DISB workloads and a real-world trace, as shown in Fig. 11.

Single BE Client (DISB A and B). For workloads with a
single BE client, the performance impact of using SEQ or
GPUStreams is relatively low, since GPU contention from
best-effort tasks is not severe, either in terms of wait time
(SEQ) or concurrent interference (GPUStreams). For DISB

4In this case, additional GPUs are dedicated to best-effort tasks, which also
result in extra cost and energy consumption, as well as low GPU utilization.

548    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0

 10

 20

 30

 40

DISB A DISB B DISB C DISB D DISB E

L
a

te
n

c
y
 (

m
s
)

RT-Only

SEQ

GPUStreams

REEF

 0

 10

 20

 30

 40

REAL

 0

 150

 300

 450

 600

DISB A DISB B DISB C DISB D DISB E

T
h

ro
u

g
h

p
u

t 
(r

e
q

s
/s

)

RT-Only

SEQ

GPUStreams

REEF

 0

 150

 300

 450

 600

REAL

Fig. 11: Comparison of (a) end-to-end real-time task latency, and
(b) overall throughput (including both real-time and best-effort tasks)
using different scheduling approaches.

A, compared with RT-Only, SEQ and GPUStreams improve
overall throughput by 1.46× and 1.66×, but also amplify
real-time task latency by 1.95× and 1.84×, respectively. In
contrast, REEF incurs negligible (0.5%) overhead on real-
time task latency, but improves overall throughput by 1.60×,
comparable to GPUStreams.

For DISB B, due to running real-time tasks more fre-
quently, SEQ suffers 1.12× slowdown on real-time task la-
tency, slightly better than DISB A, as it only has to wait for
fewer best-effort tasks. However, its throughput only achieves
96% of RT-Only, since real-time tasks saturate the GPU and
best-effort tasks have little chance to run. For similar reasons,
the overall throughput of GPUStreams also drops to 76% of
RT-Only, while its real-time task latency is still 1.70× higher
than RT-only. Conversely, REEF can still limit the overhead
on real-time task latency to 1% (about 60µs) and provides
a 1.14× speedup on overall throughput, thanks to our reset-
based kernel preemption and dynamic kernel padding.

Multiple BE Clients (DISB C, D, and E). With the increase
of best-effort workloads, the overall throughput of all ap-
proaches improve to varying degrees over RT-Only by sharing
the GPU between two types of tasks. However, they have very
different performance in terms of real-time task latency. Both
SEQ and GPUStream make the same tradeoff between real-
time task latency and overall throughput, differing only in the
magnitude of the performance impact. For three workloads,
SEQ improves overall throughput by 1.34× to 2.10×, but
also amplifies real-time task latency by 1.51× to 1.86×. For
GPUStreams, the above numbers become 3.94× to 8.19×
and 2.65× to 3.31×.

Differently, REEF improves overall throughput as much as
possible, based on the premise that real-time tasks should not
be affected in any way. As a result, REEF offers almost the
same real-time task latency as RT-Only in all workloads, with
less than 1.5% overhead (0.1 ms). For overall throughput,

10
1

10
2

10
3

10
4

A B C D E

L
a

te
n

c
y
 (

µ
s
)

DISB

Wait-based

Reset-based

10
1

10
2

10
3

10
4

RNET DNET VGG IN3 BERT

L
a

te
n

c
y
 (

µ
s
)

DNN Models

Wait-based

Reset-based

Fig. 12: Comparison of preemption latency between reset-based
and wait-based approaches (a) on DISB workloads, and (b) when
preempting one DNN inference task of different DNN models.

REEF provides a close result of GPUStreams on DISB C,
since VGG is easy to be padded with most DNN models (see
§5.2). On DISB D and E, the throughput of REEF is about
25% lower than that of GPUStreams, due to using a mix of
five DNN models for real-time tasks, while DKP does not
always work well on a few combinations of real-time and
best-effort tasks (see §7.4 for details). However, REEF still
outperforms RT-Only by 3.00× and 2.96×, respectively.

Real-world workload from Apollo (REAL). For the real-
world workload, compared to RT-Only, SEQ and GPUStreams
increase overall throughput by 3.6× and 8.3×, while ampli-
fying the latency of real-time tasks by 1.35× and 3.35×,
respectively. Due to the low load of real-time tasks in the real-
world trace (about 43 reqs/s), REEF stays in normal mode
to execute best-effort tasks concurrently most of the time,
similar to GPUStreams. Therefore, compared to RT-Only,
REEF achieves 7.7× throughput improvement with less than
2% latency overhead for real-time tasks, thanks to our reset-
based preemption, which can preempt the GPU within tens
of microseconds after the real-time task arrives.

7.3 DNN Inference Preemption

The vanilla wait-based preemption approach proposed in prior
work [12] is not practical for DNN inference serving, since
it only allows executing tasks one by one. Therefore, we ex-
tended it to allow concurrent inference serving by removing
the limit on the amount of launched kernels and also imple-
menting lazy eviction. This version is used as the baseline to
demonstrate the efficiency of our reset-based preemption.

Preemption latency. Fig. 12(a) compares the preemption
latency of two approaches. The reset-based preemption out-
performs the wait-based approach by more than an order of
magnitude for all DISB workloads, from 15.3× (DISB E)
to 18.5× (DISB C). The main reason is that the wait-based
approach has to passively wait for the completion of running
kernels in CUs and the eviction of massive kernels in host
and device queues, while the reset-based approach is able
to proactively kill all kernels (usually much less) in these
three places. As expected, both approaches take more time
to handle multiple concurrent BE clients (DISB C, D, and E)
than a singel BE client (DISB A and B).

Furthermore, we evaluate the preemption latency for di-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    549



 0

 300

 600

 900

 1200

 50 100  200  300  400  500

L
a

te
n

c
y
 (

µ
s
)

Number of Kernels

Wait-based

Reset-based

 0

 300

 600

 900

 1200

20  100  200  300  400  500

L
a

te
n

c
y
 (

µ
s
)

Execution Time (µs)

Wait-based

Reset-based

Fig. 13: Comparison of preemption latency with the increase of (a)
launched kernels and (b) kernel execution time.

10
1

10
2

10
3

10
4

1 2 4 6 8

L
a

te
n

c
y
 (

µ
s
)

Number of BE Tasks

Wait-based

Reset-based w/o OPT

Reset-based

 0

 300

 600

 900

w/o w/

L
a

te
n

c
y
 (

µ
s
)

Optimization

Reset CUs

Reset DQs

Reset HQs

Fig. 14: (a) Comparison of preemption latency with the increase
of BE clients, and (b) the latency breakdown of the reset-based
approach w/o and w/ optimizations.

verse DNN models, where we use a single BE client to send
inference requests for a given model and send a real-time
request after a random time interval to preempt the GPU. As
shown in Fig. 12(b), the wait-based preemption latency highly
depends on the type of models, from 268µs (VGG) to 790µs
(RNET), due to the difference in the number of kernels and
the execution time (see Table 1). In contrast, the reset-based
approach is not sensitive to DNN models and can preempt the
GPU in the range of 35µs to 38µs for all five models.

To further investigate the impact of different model prop-
erties on the preemption latency, we simulate DNN models
with different number of launched kernels and kernel execu-
tion times. By default, we set the number of launched kernels
and the kernel execution time to 100 and 100µs, respectively.
As shown in Fig. 13, the preemption latency of wait-based
approach raises linearly, while our reset-based preemption
approach remains stable at very low latency (less than 40µs).
For wait-based approach, the preemption latency is signifi-
cantly positively correlated with as number of launched ker-
nels and the kernel execution time, since it has to wait for the
eviction of launched kernels and the completion of running
kernels. In contrast, the reset-based approach proactively re-
sets the host and device queues in GPU runtime, as well as
the CUs, where the cost is independent of model properties.

Optimizations. We propose two optimizations on the reset-
based preemption approach, namely asynchronous memory
reclamation and queue capacity restriction. To demonstrate
the effect of optimizations, Fig. 14 shows the preemption la-
tency with the increase of BE clients (RNET), and the latency
breakdown for a single BE client. By enabling two optimiza-
tions, the preemption latency significantly drops by up to 92%
(from 87%), as shown in Fig. 14(a). As a reference, even with-

 0

 200

 400

 600

 800

 1  4  16  64  256

 10

 12

 14

 16

 18

P
re

e
m

p
t.

 L
a

te
n

c
y
 (

µ
s
)

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

DQ Capacity

Preemption

Execution

[42%] [31%] [22%] [19%] [17%]

 0

 2

 4

 6

 8

RNET DNET VGG IN3 BERT

O
v
e

rh
e

a
d

 (
%

)

DNN Models

245 70

224

224
102

Restore 
Time: µs

Fig. 15: (a) The preemption latency and execution time with the
increase of device queue capacity, where [%] shows the CPU uti-
lization during normal execution, and (b) the restore overhead for
different DNN models, where labels show the restore time (in µs).

out optimization, the reset-based approach still outperforms
wait-based approach by up to 3.0× (from 1.7×).

Since the two optimizations are used when resetting host
and device queues, respectively, Fig. 14(b) breaks down the
preemption latency to show the contribution of two optimiza-
tions separately. For a single BE client, using asynchronous
memory reclamation reduces the latency of resetting host
queue from 17µs to 3µs. Meanwhile, using queue capac-
ity restriction further reduces the latency of resetting device
queue from 424µs to 31µs. Note that using command pro-
cessor to reset CUs is extremely fast (less than 3µs).

Queue capacity. We restrict the device queue capacity to mit-
igate the overhead incurred by lazily evicting the remaining
kernels in the queue (see §4.1 for details). However, reduc-
ing queue capacity also increases normal execution time and
CPU utilization. Fig. 15(a) shows the preemption latency and
normal execution time when serving RNET inferences as the
queue capacity increases. When the device queue capacity in-
creases from 1 to 4, the execution time reduces from 14.3 ms
to 12.3 ms. However, when the capacity further increases, the
change in execution time becomes trivial (less than 0.3%).
Conversely, the preemption latency increases linearly with the
queue capacity. Therefore, as a reasonable tradeoff between
preemption latency and normal execution time, REEF adopts
a default capacity of 4 for the device queue on our testbed,
which has almost zero overhead for normal execution and
provides acceptable preemption performance (about 30µs).
Finally, using a smaller device queue also results in higher
CPU utilization. For instance, reducing the queue capacity
from 256 to 4 increases CPU utilization from 17% to 31%.

Task restore. We further evaluate the execution time over-
head of preempted tasks due to task restore. We use a single
BE client to send inference requests; for each task, we ran-
domly preempt and restore it. As shown in Fig. 15(b), the
restore time for all DNN models is low, ranging from 70µs to
245µs, which mainly depends on the kernel execution time
of DNN models (see Fig. 10). Note that REEF redundantly
executes at most five kernels for restoring preempted tasks,
thanks to the queue capacity restriction. Further, the execution
time overhead is about 2% for all DNN models, except for
VGG (5.1%), as it has the fewest kernels (55), and its kernel

550    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0

 6

 12

 18

 24

R D V I B R D V I B R D V I B R D V I B R D V I B

L
a

te
n

c
y
 (

m
s
)

 

RT-Only/RT

GPUStreams/RT

DKP/RT

RNET DNET VGG IN3 BERT

BE:

RT:

 0

 200

 400

 600

 800

R D V I B R D V I B R D V I B R D V I B R D V I B

T
h

ro
u

g
h

p
u

t 
(r

e
q

s
/s

)

RT-Only/BE

GPUStreams/BE

DKP/BE

RT-Only/RT

GPUStreams/RT

DKP/RT

RNET DNET VGG IN3 BERT

BE:

RT:

Fig. 16: Comparison of (a) end-to-end latency of RT tasks and (b)
overall throughput using different concurrent execution schemes.

 0

 25

 50

 75

 100

R D V I B R D V I B R D V I B R D V I B R D V I B

C
U

 U
s
a

g
e

 (
%

)

 

RT BE

RNET DNET VGG IN3 BERT

BE:

RT:

Fig. 17: The average CU usage for running real-time and best-effort
kernels with different combinations of DNN models using dynamic
kernel padding.

execution time is longer (see Fig. 10).

7.4 Dynamic Kernel Padding

To study the efficacy of dynamic kernel padding, we use
a high contention workload, where one RT client and one
BE client simultaneously send requests at a high-enough fre-
quency to keep the GPU busy. RT-Only serves only real-time
tasks to ensure optimal (real-time) task latency, while GPUS-
treams serves both types of requests concurrently to achieve
the highest overall throughput. Differently, dynamic kernel
padding also serves only real-time tasks but pads best-effort
tasks to avoid starvation and improve overall throughput.

Performance. Fig. 16 reports the experimental results for
one-to-one combinations among five DNN models using
above workload. As expected, GPUStreams significantly am-
plifies real-time task latency by an average of 1.35×, ranging
from 1.04× to 1.70×, due to severe interference from con-
current best-effort tasks. However, REEF is able to provide
almost optimal latency to real-time tasks, with an average
overhead of just 1% (up to 3%).

For overall throughput, we separately report the throughput
of real-time tasks and the normalized throughput of best-effort

 0

 50

 100

 150

 200

RNET DNET VGG IN3 BERT

O
v
e

rh
e

a
d

 (
%

)

DNN Models

Default

+GlobalPtr

+ProxyKernel

0
.7

2

0
.6

0

0
.7

3

1
.2

1

1
.1

8

503%

10
0

10
3

10
6

10
9

M
e

m
o

ry
 (

K
B

)

Methods

Kernel Fusion

DKP w/o OPT

DKP w/ OPT

10KB

32MB

35GB

Fig. 18: Comparison of (a) execution time overhead and (b) mem-
ory overhead for padded kernels using different optimizations.

tasks.5 For RT-Only, the GPU is busy serving real-time tasks,
so the throughput of best-effort tasks is zero (even if RT-Only
is willing to serve them). Although GPUStreams increases
overall throughput by an average of 1.52×, the throughput
of real-time tasks drops by 24.4% on average, due to severe
interference in concurrent execution. Conversely, REEF first
guarantees throughput for real-time tasks and then leverages
dynamic kernel padding to increase overall throughput. The
performance improvement mainly depends on two conditions.
First, the execution of real-time tasks on the GPU leaves
room for improvement. As shown in Fig. 17, the real-time
kernels in IN3 and BERT use an average of 85% and 70% of
CUs, respectively. Therefore, dynamic kernel padding hardly
improves such cases, increasing just 6% on average. Note
that GPUStreams can still improve overall throughput of
them, but also greatly sacrifices the performance of real-time
tasks. Second, the execution time of best-effort kernels must
be shorter than that of the padded real-time kernels. This
explains why REEF can achieve large improvement (1.41×)
by padding VGG with RNET, but not vice versa, which is
also confirmed by the increase of CU usage (BE) in Fig. 17

Optimizations. To investigate the impact of optimizations
on both performance and memory usage, we first evaluate
the overhead using different implementations of the function
pointer on the GPU. We measured such overhead by launch-
ing real-time kernels through the dkp kernel without padding
any best-effort kernels. As shown in Fig. 18(a), the default
function pointer implementation (Default) incurs execution
time overhead from 78% up to 503% for real-time tasks with
different DNN models. By using the global function pointer
(GlobalPtr), the overhead is significantly reduced to 46.4%
on average (from 11.5% to 120%), as it eliminates the limit
on the number of registers for device function pointers and
avoids additional register saving and restoring during the
function call. Finally, the overhead drops to 0.8% on average
(1.21% at most) by using proxy kernel (ProxyKernel), which
can dynamically allocate registers to each kernel and maxi-
mize CU occupancy. The minimal overhead comes from the
logic branch of CU partition and the initial state preparation
for global function pointers.

We further evaluate the impact of optimizations on reduc-

5The throughput of best-effort tasks is normalized to that of real-time tasks,
following the formula: throughputBE × (latencyBE / latencyRT ).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    551



0.0

0.2

0.4

0.6

0.8

1.0

A B C D E

L
a

te
n

c
y
 (

µ
s
)

DISB

Kernel Selection

 0

 25

 50

 75

 100

 0  10  20  30

37.8%

26.4 µs

C
D

F
 (

%
)

Overhead (µs) 

Fig. 19: (a) The execution time of kernel selection for DISB A-E
and (b) the CDF of execution time overhead for real-time kernels
using dynamic kernel padding.

10
1

10
2

10
3

10
4

DISB-A DISB-B DISB-C DISB-D DISB-E

L
a

te
n

c
y
 (

µ
s
)

Wait-based on NVIDIA

REEF-N on NVIDIA

REEF-N on AMD

REEF on AMD

Fig. 20: Comparison of preemption latency on NVIDIA and AMD
GPUs using different preemption schemes with DISB workloads.

ing GPU memory usage. As shown in Fig. 18(b), using static
kernel fusion (Kernel Fusion) requires over 35 GB of GPU
memory to store the fused kernels for five DNN models—all
combinations of no more than three kernels, which even ex-
ceeds the memory capacity of most commodity GPUs. REEF
proposes proxy kernels (DKP w/o OPT) to reduce GPU mem-
ory usage to about 32 MB. Finally, generating proxy kernels
to cover all possible CU occupancies (DKP w/ OPT), instead
of all possible register configurations, can dramatically reduce
GPU memory usage to only 10 KB.

Kernel selection. Fig. 19(a) shows the average time of kernel
selection for DISB A-E during dynamic kernel padding. For
workloads with a single BE client (DISB A and B), REEF
takes about 0.2µs to select best-effort kernels for the given
real-time kernel. The selection time increases to 0.4µs for
workloads with multiple BE clients (DISB C, D, and E) due
to more candidates. In general, the cost of kernel selection is
quite trivial and can be easily hidden by kernel execution.

To further study the accuracy of kernel selection, we evalu-
ate the execution time overhead for the real-time kernel due to
padding best-effort kernels on all DISB workloads. As shown
in Fig. 19(b), over 37% of real-time kernels are not negatively
impacted by concurrent execution with best-effort kernels,
and the overhead of more than 90% real-time kernels is still
less than 4µs. The increase of execution time is mainly due
to the contention on GPU memory and shared L2 cache.

7.5 Closed-source GPUs
Finally, we evaluate REEF-N, a restricted version of reset-
based preemption using DISB workloads on both NVIDIA
and AMD GPUs, and compare it to the wait-based approach
and REEF, respectively. As shown in Fig. 20, even if REEF-N

does not reset CUs to proactively kill running kernels, the
preemption latency just ranges from 71µs to 288µs, which
still outperforms the wait-based approach by up to 12.3×
(from 6.3×) on the NVIDIA GPU. By comparing REEF-N
and REEF on the AMD GPU, we observe that killing running
kernels proactively further contributes to an average speedup
of 2.0× in preemption latency, especially for preempting
concurrent tasks (e.g., 2.3× for DISB C). In addition, the
performance of REEF-N is close on two GPUs.

8 Discussion
Assumption of idempotence. The reset-based preemption in
REEF is based on the assumption that each kernel in DNN
inference should be idempotent. Currently, all DNN inference
kernels we encountered, a total of 320 kernels from 11 mod-
els [72], are shown to be idempotent. However, readers might
be interested in whether our approach still works with kernels
without the idempotence assumption. Strictly speaking, the
reset-based preemption demands that the kernel always pro-
duces the same output for the same input no matter it has been
retried or not. Therefore, a transactionization approach [40]
can be used to transform non-idempotent kernels into idem-
potent ones if necessary. Furthermore, since only best-effort
kernels may be preempted in REEF, this transformation only
sacrifices the performance of transformed kernels (i.e., best-
effort kernels) to ensure that real-time kernels can be instantly
executed upon arrival with no performance penalty. We leave
the incorporation of this technique to future work until we
actually encounter non-idempotent DNN kernels.

Restrictions on kernel selection. The current kernel selec-
tion policy is effective but conservative, since the primary
goal of REEF is to avoid performance interference with real-
time tasks. An obvious limitation is the constraint that the
execution time of best-effort kernels must be shorter than
that of the padded real-time kernel, which limits room for
improvement in overall throughput. We found that the GPU
kernel can be tailored towards shorter execution time per
block by using more thread blocks during model compilation.
For example, Apache TVM automatically tunes the number of
thread blocks for overall performance, but also allows devel-
opers to customize it [38]. Currently, the overall throughput
improvement of REEF is largely attributed to enabling instant
kernel preemption, which allows the idle GPU to perform
best-effort tasks. Thus, we leave it to future work to overcome
the restriction on kernel selection. Furthermore, the policy
does not consider the contention for GPU memory between
real-time and best-effort kernels, since it is still sufficient for
running multiple DNN inference tasks. We also leave it to
future work.

Future GPU APIs and runtime. We leverage several subtle
hacks on the GPU runtime to enable µs-scale reset-based
preemption on commodity GPUs. Our work also informs the
design of future GPU APIs and runtime. First, given that com-

552    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



modity GPUs are generally capable of resetting compute units
(CUs), a separate GPU API to precisely reset CUs is feasible
and would be useful to kill and restore all running kernels. Sec-
ond, we propose a new GPU API that instructs the command
processor to discard fetched kernels and stop fetching more
kernels from the device queue (DQs). Based on it, DQs can be
proactively reset with a hardware-software co-design, replac-
ing our software-only solution (i.e., lazy eviction). Finally, the
GPU runtime could provide a high-level API for developers
to reset the GPU stream, by discarding kernels buffered in
internal data structures (e.g., host queues) and resetting the
GPU via two new APIs. We believe that these extensions can
greatly simplify implementation, even fully implementing
reset-based preemption on closed-source GPUs, and further
improve performance, for example instantly preempting the
GPU in 10µs.

9 Related Work

DNN inference serving systems. Prior model serving sys-
tems [21, 25, 29, 53, 79] mainly focus on meeting service-
level objectives (SLO), typically in the tens of millisec-
onds [22, 31, 81], and improving overall throughput of dat-
acenter applications. Clockwork [28] leverages the latency
predictability of DNN inference to achieve low tail latency.
It runs inferences sequentially on dedicated GPUs to provide
predictable performance. Clipper [20] and Nexus [67] en-
ables batching inferences on the same model to improve GPU
utilization and inference throughput. Abacus [22] enables
simultaneous DNN inferences by accurately predicting the
latency of the overlapped operators. INFaaS [64] can automat-
ically select the right variant with different optimizations for
each inference to meet diverse SLOs. However, the latency
SLOs for datacenter applications are much more relaxed than
those for real-time systems, for example 2× of their solo-run
latencies [22]. Therefore, using non-preemptive scheduling
or batching scheme is effective for datacenter applications,
but not for real-time scenarios (e.g., autonomous vehicles).
Furthermore, the design of REEF is orthogonal to the above
distributed serving systems. Two key mechanisms in REEF
can also be integrated into them to improve per-GPU through-
put and preserve low latency for real-time inferences.

GPU kernel preemption. Apart from the software pre-
emption techniques, prior work also has proposed hard-
ware enhancement to support preemptive GPU schedul-
ing [44, 56, 70]. An intuitive solution is to support context
switch on GPUs [70]. However, it is far more expensive on
GPU than CPU due to the large context (e.g., a large amount
of registers). Zhen et al. [44] proposed lightweight context
switching to avoid unnecessary register saving. Tanasić et
al. [70] extended the hardware to passively preempt a stream-
ing multiprocessor (SM) of GPU by stopping issuing new
thread blocks. Chimera [56] further proposed SM flushing
to instantly preempt an SM when detecting idempotent exe-

cution. Differently, our approach retrofits existing hardware
mechanism and requires no modification on the GPU to im-
plement instant preemption.

GPU multitasking. There have been many efforts to con-
currently execute multiple GPU kernels for high through-
put [27, 43, 55, 57, 74, 76]. For DNN computation, Ram-
mer [47] takes a holistic approach to exploit both inter- and
intra-kernel parallelisms at compile time, which uses static
kernel fusion [74] to enforce the CU assignments of the con-
current kernels. However, static kernel fusion requires the
fused kernels to be known at compile time, which is not appli-
cable for dynamic task scheduling in REEF. REEF proposes
dynamic kernel padding to allow making scheduling deci-
sions at runtime. Prior work has also proposed approaches
to model and predict the slowdown of concurrent kernel ex-
ecution [13, 14, 86, 88]. DASE [34] models the memory
contention of concurrent kernels. Themis [87] uses a neural
network to predict the performance interference. The predic-
tion can help make scheduling decisions to match the latency
requirements of real-time kernels. However, the prediction
cannot always be accurate, and the slowdown actually hap-
pens. Differently, dynamic kernel padding in REEF enforces
concurrent kernels to use only GPU resources leftover from
the real-time kernel. Currently, REEF mainly focuses on GPU
computational resources (i.e., CUs) and assumes that other
resources are sufficient (e.g., GPU memory and bandwidth).
We leave it as future work.

10 Conclusion
This paper presented REEF, the first DNN inference serv-
ing system for commodity GPUs. It enables microsecond-
scale kernel preemption and controlled concurrent execu-
tion in GPU scheduling to achieve real time and work con-
serving. First, REEF can launch a real-time kernel on the
GPU by proactively killing and restoring best-effort kernels
at microsecond-scale. Second, REEF can dynamically pad
the real-time kernel with appropriate best-effort kernels to
fully exploit the GPU with negligible overhead. In addition,
we built a new benchmark (DISB) for DNN inference serv-
ing that contains diverse workloads and a real-world trace.
Evaluation using DISB and microbenchmarks confirmed the
efficacy and efficiency of REEF on AMD and NVIDIA GPUs.

11 Acknowledgment
We sincerely thank our shepherd Dejan Kostić and the anony-
mous reviewers for their insightful comments and feedback,
and Xiaoniu Song for sharing his experience in prepar-
ing the Artifact Evaluation. This work was supported in
part by the National Natural Science Foundation of China
(No. 61925206, 62132014), the HighTech Support Program
from Shanghai Committee of Science and Technology (No.
19511121100), and Shanghai AI Laboratory. Corresponding
author: Rong Chen (rongchen@sjtu.edu.cn).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    553

rongchen@sjtu.edu.cn


References
[1] Jacob Adriaens, Katherine Compton, Nam Sung Kim, and

M. Schulte. The Case for GPGPU Spatial Multitasking. IEEE
International Symposium on High-Performance Comp Archi-
tecture, pages 1–12, 2012.

[2] Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico
Mezzetti, Jaume Abella, and Francisco J. Cazorla. Tim-
ing of Autonomous Driving Software: Problem Analysis and
Prospects for Future Solutions. IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pages 267–280,
2020.

[3] AMD ROCm. AMD ROCm Platform Documentation. https:
//rocmdocs.amd.com/, 2022.

[4] Apollo Auto. Apollo: Architecture/Hardware Connection.
https://github.com/ApolloAuto/apollo, 2022.

[5] Apollo Auto. Apollo Perception Module. https:
//github.com/ApolloAuto/apollo/tree/
master/modules/perception, 2022.

[6] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. PipeSwitch:
Fast Pipelined Context Switching for Deep Learning Appli-
cations. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI’20, pages 499–514, Novem-
ber 2020.

[7] Baidu. Apollo. https://apollo.auto/, 2022.

[8] C. Basaran and K. Kang. Supporting Preemptive Task Exe-
cutions and Memory Copies in GPGPUs. In 24th Euromicro
Conference on Real-Time Systems, ECRTS’12, pages 287–296,
2012.

[9] Karsten Behrendt, Libor Novak, and Rami Botros. A Deep
Learning Approach to Traffic Lights: Detection, Tracking, and
Classification. IEEE International Conference on Robotics
and Automation, pages 1370–1377, 2017.

[10] N. Capodieci, R. Cavicchioli, M. Bertogna, and Aingara Para-
makuru. Deadline-Based Scheduling for GPU with Preemption
Support. IEEE Real-Time Systems Symposium, pages 119–130,
2018.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Sheaffer, Sang ha Lee, and Kevin Skadron. Rodinia:
A Benchmark Suite for Heterogeneous Computing. IEEE In-
ternational Symposium on Workload Characterization, pages
44–54, 2009.

[12] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou.
EffiSha: A Software Framework for Enabling Efficient Pre-
emptive Scheduling of GPU. 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2017.

[13] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan,
Jason Mars, and Lingjia Tang. Prophet: Precise QoS Predic-
tion on Non-Preemptive Accelerators to Improve Utilization
in Warehouse-Scale Computers. Twenty-Second International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2017.

[14] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang.
Baymax: QoS Awareness and Increased Utilization for Non-
Preemptive Accelerators in Warehouse Scale Computers.
Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
2016.

[15] T. Chen, T. Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei
Hu, L. Ceze, Carlos Guestrin, and A. Krishnamurthy. TVM:
An Automated End-to-End Optimizing Compiler for Deep
Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI’18, 2018.

[16] Green Car Congress. New ultrafast camera for self-driving ve-
hicles and drones. https://www.greencarcongress.
com/2017/02/20170217-ntu.html, 2017.

[17] Brian F. Cooper. YCSB Core Workloads. https:
//github.com/brianfrankcooper/YCSB/wiki/
Core-Workloads, 2022.

[18] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ra-
makrishnan, and Russell Sears. Benchmarking Cloud Serving
Systems with YCSB. In 1st ACM Symposium on Cloud Com-
puting, SoCC’10, pages 143—-154, 2010.

[19] Alexander Craik, Yongtian He, and José Luis Contreras-Vidal.
Deep Learning for Electroencephalogram (EEG) Classification
Tasks: A Review. Journal of neural engineering, 16(3), 2019.

[20] D. Crankshaw, Xin Wang, Giulio Zhou, M. Franklin, Joseph E.
Gonzalez, and I. Stoica. Clipper: A Low-Latency Online Pre-
diction Serving System. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’17, 2017.

[21] Weihao Cui, Mengze Wei, Quan Chen, Xiaoxin Tang, Jingwen
Leng, Li Li, and Ming Guo. Ebird: Elastic Batch for Improving
Responsiveness and Throughput of Deep Learning Services.
IEEE 37th International Conference on Computer Design,
pages 497–505, 2019.

[22] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen
Leng, Jieru Zhao, Zhuo Song, Tao Ma, Yong Yang, Chao Li,
and Minyi Guo. Enable Simultaneous DNN Services Based
on Deterministic Operator Overlap and Precise Latency Pre-
diction. International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2021.

[23] ROCm documentation. GCN Native ISA LLVM Code Gener-
ator: Kernel Dispatch. https://rocmdocs.amd.com/
en/latest/ROCm_Compiler_SDK/ROCm-Native-
ISA.html, 2022.

[24] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar,
Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire
Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A Guide
to Deep Learning in Healthcare. Nature medicine, 25(1):24–29,
2019.

554    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://rocmdocs.amd.com/
https://rocmdocs.amd.com/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo/tree/master/modules/perception
https://github.com/ApolloAuto/apollo/tree/master/modules/perception
https://github.com/ApolloAuto/apollo/tree/master/modules/perception
https://apollo.auto/
https://www.greencarcongress.com/2017/02/20170217-ntu.html
https://www.greencarcongress.com/2017/02/20170217-ntu.html
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html


[25] Jiarui Fang, Yang Yu, Chen liang Zhao, and Jie Zhou. Tur-
boTransformers: An Efficient GPU Serving System for Trans-
former Models. 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2021.

[26] AMD GPUOpen. AMD GPU ISA documentation.
https://gpuopen.com/documentation/amd-
isa-documentation, 2021.

[27] Chris Gregg, Jonathan Dorn, K. Hazelwood, and K. Skadron.
Fine-grained resource sharing for concurrent GPGPU kernels.
In 4th USENIX Workshop on Hot Topics in Parallelism, Hot-
Par’12, 2012.

[28] A. Gujarati, Reza Karimi, Safya Alzayat, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. Serving DNNs like
Clockwork: Performance Predictability from the Bottom Up.
In 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI’20, 2020.

[29] Johann Hauswald, Yiping Kang, Michael Laurenzano, Quan
Chen, Cheng Li, Trevor N. Mudge, Ronald G. Dreslinski, Ja-
son Mars, and Lingjia Tang. DjiNN and Tonic: DNN as A
Service and Its Implications for Future Warehouse Scale Com-
puters. ACM/IEEE 42nd Annual International Symposium on
Computer Architecture, pages 27–40, 2015.

[30] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. IEEE Conference
on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[31] Jeremy Hermann and Mike Del Balso. Meet
Michelangelo: Uber’s Machine Learning Platform.
https://eng.uber.com/michelangelo-
machine-learning-platform/, 2017.

[32] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep Neu-
ral Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups. IEEE Signal
Processing Magazine, 29(6):82–97, 2012.

[33] Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan,
and Bo Wu. GRNN: Low-Latency and Scalable RNN Inference
on GPUs. 14th European Conference on Computer Systems,
2019.

[34] Qingda Hu, J. Shu, Jie Fan, and Youyou Lu. Run-Time Per-
formance Estimation and Fairness-Oriented Scheduling Policy
for Concurrent GPGPU Applications. 45th International Con-
ference on Parallel Processing, pages 57–66, 2016.

[35] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely
Connected Convolutional Networks. IEEE Conference on
Computer Vision and Pattern Recognition, pages 2261–2269,
2017.

[36] Saksham Jain, Iljoo Baek, Shige Wang, and R. Rajkumar. Frac-
tional gpus: Software-based compute and memory bandwidth
reservation for gpus. IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, pages 29–41, 2019.

[37] Won-Seok Jang, Hansaem Jeong, Kyungtae Kang, Nikil D.
Dutt, and Jong-Chan Kim. R-TOD: Real-Time Object Detector
with Minimized End-to-End Delay for Autonomous Driving.
IEEE Real-Time Systems Symposium, pages 191–204, 2020.

[38] Ziheng Jiang. Schedule Primitives in TVM. https:
//tvm.apache.org/docs/how_to/work_with_
schedules/schedule_primitives.html.

[39] Hyeonsu Lee, Hyunjune Kim, Cheolgi Kim, Hwansoo Han,
and Euiseong Seo. Idempotence-Based Preemptive GPU Ker-
nel Scheduling for Embedded Systems. IEEE Transactions on
Computers, 70:332–346, 2021.

[40] Hyeonsu Lee, Jaehun Roh, and Euiseong Seo. A GPU Kernel
Transactionization Scheme for Preemptive Priority Schedul-
ing. In 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS’18, pages 202–213, 2018.

[41] TIMOTHY B. LEE. Tesla’s autonomy event:Impressive
progress with an unrealistic timeline. https:
//arstechnica.com/cars/2019/04/teslas-
autonomy-event-impressive-progress-with-
an-unrealistic-timeline/, 2019.

[42] LG Electronics Inc. Running Apollo 5.0 with SVL Simulator.
https://www.svlsimulator.com/docs/system-
under-test/apollo5-0-instructions/, 2022.

[43] Yun Liang, Huynh Phung Huynh, Kyle Rupnow, R. Goh, and
Deming Chen. Efficient GPU Spatial-Temporal Multitask-
ing. IEEE Transactions on Parallel and Distributed Systems,
26:748–760, 2015.

[44] Zhen Lin, L. Nyland, and Huiyang Zhou. Enabling Efficient
Preemption for SIMT Architectures with Lightweight Context
Switching. International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 898–908,
2016.

[45] LLVM. User Guide for AMDGPU Backend. https://
llvm.org/docs/AMDGPUUsage.html, 2021.

[46] Justin Luitjens. CUDA Streams—Best Practices and
Common Pitfalls. http://on-demand.gputechconf.
com/gtc/2014/presentations/S4158-cuda-
streams-best-practices-common-pitfalls.
pdf.

[47] Lingxiao Ma, Z. Xie, Zhi Yang, J. Xue, Youshan Miao, Wei
Cui, W. Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. Ram-
mer: Enabling Holistic Deep Learning Compiler Optimizations
with rTasks. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI’20, pages 881–897,
2020.

[48] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Kari Pulli.
Multi-sensor System for Driver’s Hand-gesture Recognition.
11th IEEE International Conference and Workshops on Auto-
matic Face and Gesture Recognition, 1:1–8, 2015.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    555

https://gpuopen.com/documentation/amd-isa-documentation
https://gpuopen.com/documentation/amd-isa-documentation
https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://tvm.apache.org/docs/how_to/work_with_schedules/schedule_primitives.html
https://tvm.apache.org/docs/how_to/work_with_schedules/schedule_primitives.html
https://tvm.apache.org/docs/how_to/work_with_schedules/schedule_primitives.html
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://www.svlsimulator.com/docs/system-under-test/apollo5-0-instructions/
https://www.svlsimulator.com/docs/system-under-test/apollo5-0-instructions/
https://llvm.org/docs/AMDGPUUsage.html
https://llvm.org/docs/AMDGPUUsage.html
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf


[49] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee,
and Matei Zaharia. Accelerating Deep Learning Workloads
Through Efficient Multi-model Execution. In NeurIPS Work-
shop on Systems for Machine Learning, page 20, 2018.

[50] NVIDIA. NVIDIA TensorRT. https://developer.
nvidia.com/tensorrt.

[51] NVIDIA. NVIDIA Tesla P100. http://www.
nvidia.com/object/pascal-architecture-
whitepaper.html, 2016.

[52] NVIDIA. CUDA Toolkit: Develop, Optimize and Deploy
GPU-Accelerated Apps. https://developer.nvidia.
com/cuda-toolkit, 2021.

[53] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan
Soyke, Kiril Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh,
and Vinu Rajashekhar. Tensorflow-serving: Flexible, high-
performance ml serving. In Workshop on ML Systems at NIPS
2017, 2017.

[54] Nathan Otterness and James H. Anderson. AMD GPUs as
an Alternative to NVIDIA for Supporting Real-Time Work-
loads. In 32nd Euromicro Conference on Real-Time Systems,
ECRTS’20, 2020.

[55] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improv-
ing GPGPU Concurrency with Elastic Kernels. In Eighteenth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS’13,
2013.

[56] J. Park, Yongjun Park, and S. Mahlke. Chimera: Collabora-
tive Preemption for Multitasking on a Shared GPU. Twentieth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2015.

[57] J. Park, Yongjun Park, and S. Mahlke. Dynamic Resource
Management for Efficient Utilization of Multitasking GPUs.
Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
2017.

[58] Reid Pinkham, Andrew Berkovich, and Zhengya Zhang. Near-
Sensor Distributed DNN Processing for Augmented and Vir-
tual Reality. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 2021.

[59] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,
and Ali Farhadi. You Only Look Once: Unified, Real-Time
Object Detection. IEEE Conference on Computer Vision and
Pattern Recognition, pages 779–788, 2016.

[60] Steve Rennich. CUDA C/C++ Streams
and Concurrency. https://developer.
download.nvidia.cn/CUDA/training/
StreamsAndConcurrencyWebinar.pdf.

[61] ROCm Core Technology. AMD GPU kernel driver with
KFD. https://github.com/RadeonOpenCompute/
ROCK-Kernel-Driver, 2022.

[62] ROCm Core Technology. AMD GPU kernel driver
with KFD: unmap_queues_cpsch. https://github.
com/RadeonOpenCompute/ROCK-Kernel-
Driver/blob/master/drivers/gpu/drm/amd/
amdkfd/kfd_device_queue_manager.c, 2022.

[63] ROCm Developer Tools. Hip: C++ heterogeneous-compute
interface for portability. https://github.com/ROCm-
Developer-Tools/HIP, 2022.

[64] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. INFaaS: Automated Model-less Inference Serving.
In USENIX Annual Technical Conference, ATC’21, pages 397–
411, 2021.

[65] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu,
Steve Lemke, Mārtin, š Možeiko, Eric Boise, Geehoon Uhm,
Mark Gerow, Shalin Mehta, Eugene Agafonov, Tae Hyung
Kim, Eric Sterner, Keunhae Ushiroda, Michael Reyes, Dmitry
Zelenkovsky, and Seonman Kim. LGSVL Simulator: A High
Fidelity Simulator for Autonomous Driving. In IEEE 23rd
International Conference on Intelligent Transportation Systems
Conference, ITSC’20, pages 1–6, 2020.

[66] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf. DistilBERT, A Distilled Version of BERT: Smaller,
Faster, Cheaper and Lighter. CoRR, abs/1910.01108, 2019.

[67] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu
Kong, Matthai Philipose, Arvind Krishnamurthy, and Ravi Sun-
daram. Nexus: A GPU Cluster Engine for Accelerating DNN-
based Video Analysis. 27th ACM Symposium on Operating
Systems Principles, 2019.

[68] Karen Simonyan and Andrew Zisserman. Very Deep Convo-
lutional Networks for Large-scale Image Recognition. CoRR,
abs/1409.1556, 2014.

[69] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, and Zbigniew Wojna. Rethinking the Inception Archi-
tecture for Computer Vision. IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826, 2016.

[70] I. Tanasić, Isaac Gelado, Javier Cabezas, A. Ramírez,
N. Navarro, and M. Valero. Enabling Preemptive Multipro-
gramming on GPUs. ACM/IEEE 41st International Symposium
on Computer Architecture, pages 193–204, 2014.

[71] TESLARATI. AMD confirms Tesla’s new Model S
and Model X will boast RDNA 2 GPUs. https:
//www.teslarati.com/tesla-model-s-model-
x-mcu3-specs-amd-gpu-confirmed-video/,
2021.

[72] Apache TVM. A test suite of DNN models.
https://github.com/apache/tvm/tree/v0.
8/python/tvm/relay/testing, 2021.

[73] Apache TVM. Apache TVM: An End to End Machine Learn-
ing Compiler Framework for CPUs, GPUs and accelerators.
https://tvm.apache.org/, 2021.

556    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://www.teslarati.com/tesla-model-s-model-x-mcu3-specs-amd-gpu-confirmed-video/
https://www.teslarati.com/tesla-model-s-model-x-mcu3-specs-amd-gpu-confirmed-video/
https://www.teslarati.com/tesla-model-s-model-x-mcu3-specs-amd-gpu-confirmed-video/
https://github.com/apache/tvm/tree/v0.8/python/tvm/relay/testing
https://github.com/apache/tvm/tree/v0.8/python/tvm/relay/testing
https://tvm.apache.org/


[74] Guibin Wang, Yisong Lin, and Wei Yi. Kernel Fusion: An
Effective Method for Better Power Efficiency on Multithreaded
GPU. IEEE/ACM Int’l Conference on Green Computing and
Communications & Int’l Conference on Cyber, Physical and
Social Computing, pages 344–350, 2010.

[75] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui
Wu, Ron J Weiss, Navdeep Jaitly, Zongheng Yang, Ying
Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: A Fully
End-to-end Text-to-speech Synthesis Model. arXiv preprint
arXiv:1703.10135, 2017.

[76] Zhenning Wang, J. Yang, R. Melhem, B. Childers, Youtao
Zhang, and M. Guo. Simultaneous Multikernel GPU: Multi-
tasking Throughput Processors via Fine-grained Sharing. IEEE
International Symposium on High Performance Computer Ar-
chitecture, pages 358–369, 2016.

[77] Bo Wu, Xu Liu, Xiaobo Zhou, and C. Jiang. Flep: Enabling
flexible and efficient preemption on gpus. Twenty-Second
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2017.

[78] Yecheng Xiang and Hyoseung Kim. Pipelined Data-Parallel
CPU/GPU Scheduling for Multi-DNN Real-Time Inference.
IEEE Real-Time Systems Symposium, pages 392–405, 2019.

[79] Feng Yan, Yuxiong He, Olatunji Ruwase, and Evgenia Smirni.
Efficient Deep Neural Network Serving: Fast and Furious.
IEEE Transactions on Network and Service Management,
15:112–126, 2018.

[80] Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F. Donel-
son Smith, James H. Anderson, and Jan-Michael Frahm. Re-
Thinking CNN Frameworks for Time-Sensitive Autonomous-
Driving Applications: Addressing an Industrial Challenge.
IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 305–317, 2019.

[81] Wai Chee Yau. How Zendesk Serves TensorFlow Models in
Production. https://zendesk.engineering/how-
zendesk-serves-tensorflow-models-in-
production-751ee22f0f4b, 2017.

[82] T. Yeh, Matthew D. Sinclair, Bradford M. Beckmann, and
Timothy G. Rogers. Deadline-Aware Offloading for High-
Throughput Accelerators. IEEE International Symposium
on High-Performance Computer Architecture, pages 479–492,
2021.

[83] Juheon Yi and Youngki Lee. Heimdall: mobile gpu coordi-
nation platform for augmented reality applications. In 26th
Annual International Conference on Mobile Computing and
Networking, MobiCom’20, pages 1–14, 2020.

[84] Sebastian Zepf, Javier Hernandez, Alexander Schmitt, Wolf-
gang Minker, and Rosalind W. Picard. Driver Emotion Recog-
nition for Intelligent Vehicles. ACM Computing Surveys, 53:1–
30, 2020.

[85] Hengyu Zhao, Yubo Zhang, Pingfan Meng, Hui Shi, Erran L.
Li, Tiancheng Lou, and Jishen Zhao. Towards Safety-Aware
Computing System Design in Autonomous Vehicles. ArXiv,
abs/1905.08453, 2019.

[86] Wenyi Zhao, Quan Chen, and M. Guo. KSM: Online
Application-Level Performance Slowdown Prediction for Spa-
tial Multitasking GPGPU. IEEE Computer Architecture Let-
ters, 17:187–191, 2018.

[87] Wenyi Zhao, Quan Chen, H. Lin, Jianfeng Zhang, Jingwen
Leng, C. Li, Wenli Zheng, Linlin Li, and M. Guo. Themis:
Predicting and Reining in Application-Level Slowdown on
Spatial Multitasking GPUs. IEEE International Parallel and
Distributed Processing Symposium, pages 653–663, 2019.

[88] Xia Zhao, Magnus Jahre, and L. Eeckhout. HSM: A Hy-
brid Slowdown Model for Multitasking GPUs. Twenty-Fifth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2020.

[89] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang
Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. An-
sor : Generating High-Performance Tensor Programs for Deep
Learning. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI’20, 2020.

[90] H. Zhou, G. Tong, and Cong Liu. GPES: A Preemptive Execu-
tion System for GPGPU Computing. 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages
87–97, 2015.

[91] Husheng Zhou, Soroush Bateni, and Cong Liu. S3DNN: Su-
pervised Streaming and Scheduling for GPU-Accelerated Real-
Time DNN Workloads. 2018 IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pages 190–201,
2018.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    557

https://zendesk.engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b
https://zendesk.engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b
https://zendesk.engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b


A Artifact Appendix
This artifact provides the source code of REEF, a detailed readme,
and scripts to reproduce the main experimental results from the
OSDI 2022 paper—“Microsecond-scale Preemption for Concurrent
GPU-accelerated DNN Inferences” by M. Han, H. Zhang, R. Chen,
and H. Chen. REEF is the first GPU-accelerated DNN inference
serving system that enables microsecond-scale kernel preemption
and controlled concurrent execution in GPU scheduling. We provide
instructions to build the software package and run experiments. Our

artifact obtained the “Artifacts Available”, “Artifacts Functional” and
“Artifacts Reproduced” badges from the Artifact Evaluation process
of OSDI 2022. The DOI of our artifact is https://doi.org/
10.5281/zenodo.6586106.

Artifact repository. All project source code, including full
instructions on how to build and run the main experi-
ments on REEF and benchmarks is available in the following
git repository: https://github.com/SJTU-IPADS/reef-
artifacts/tree/osdi22-ae.

558    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.org/10.5281/zenodo.6586106
https://doi.org/10.5281/zenodo.6586106
https://github.com/SJTU-IPADS/reef-artifacts/tree/osdi22-ae
https://github.com/SJTU-IPADS/reef-artifacts/tree/osdi22-ae


Alpa: Automating Inter- and Intra-Operator Parallelism
for Distributed Deep Learning

Lianmin Zheng1,∗ Zhuohan Li1,∗ Hao Zhang1,∗ Yonghao Zhuang4

Zhifeng Chen3 Yanping Huang3 Yida Wang2 Yuanzhong Xu3 Danyang Zhuo6 Eric P. Xing5

Joseph E. Gonzalez1 Ion Stoica1

1UC Berkeley 2Amazon Web Services 3Google 4Shanghai Jiao Tong University
5MBZUAI, Carnegie Mellon University 6Duke University

Abstract
Alpa automates model-parallel training of large deep learning
(DL) models by generating execution plans that unify data,
operator, and pipeline parallelism. Existing model-parallel
training systems either require users to manually create a par-
allelization plan or automatically generate one from a limited
space of model parallelism configurations. They do not suf-
fice to scale out complex DL models on distributed compute
devices. Alpa distributes the training of large DL models by
viewing parallelisms as two hierarchical levels: inter-operator
and intra-operator parallelisms. Based on it, Alpa constructs a
new hierarchical space for massive model-parallel execution
plans. Alpa designs a number of compilation passes to auto-
matically derive efficient parallel execution plans at each par-
allelism level. Alpa implements an efficient runtime to orches-
trate the two-level parallel execution on distributed compute
devices. Our evaluation shows Alpa generates parallelization
plans that match or outperform hand-tuned model-parallel
training systems even on models they are designed for. Unlike
specialized systems, Alpa also generalizes to models with
heterogeneous architectures and models without manually-
designed plans. Alpa’s source code is publicly available at
https://github.com/alpa-projects/alpa.

1 Introduction
Several of the recent advances [10, 22, 49] in deep learning
(DL) have been a direct result of significant increases in model
size. For example, scaling language models, such as GPT-3,
to hundreds of billions of parameters [10] and training on
much larger datasets enabled fundamentally new capabilities.

However, training these extremely large models on dis-
tributed clusters currently requires a significant amount of
engineering effort that is specific to both the model definition
and the cluster environment. For example, training a large
transformer-based language model requires heavy tuning and
careful selection of multiple parallelism dimensions [40].

∗Lianmin, Zhuohan, and Hao contributed equally. Part of the work was
done when Lianmin interned at Amazon and Zhuohan interned at Google.

Training the large Mixture-of-Expert (MoE) transformers
model [16, 31] on TPU clusters requires manually tuning
the partitioning axis for each layer, whereas training the same
model on an AWS GPU cluster calls for new pipeline schemes
that can depend on the choices of partitioning (§8.1).

More generally, efficient large-scale model training re-
quires tuning a complex combination of data, operator, and
pipeline parallelization approaches at the granularity of the in-
dividual tensor operators. Correctly tuning the parallelization
strategy has been shown [30, 33] to deliver an order of magni-
tude improvements in training performance, but depends on
strong machine learning (ML) and system expertise.

Automating the parallelization of large-scale models would
significantly accelerate ML research and production by en-
abling model developers to quickly explore new model de-
signs without regard for the underlying system challenges.
Unfortunately, it requires navigating a complex space of plans
that grows exponentially with the dimensions of parallelism
and the size of the model and cluster. For example, when all
parallelism techniques are enabled, figuring out the execution
plan involves answering a web of interdependent questions,
such as how many data-parallel replicas to create, which axis
to partition each operator along, how to split the model into
pipeline stages, and how to map devices to the resulting par-
allel executables. The interplay of different parallelization
methods and their strong dependence on model and cluster se-
tups form a combinatorial space of plans to optimize. Recent
efforts [17, 38, 55] to automatically parallelize model training
are constrained to the space of a single model-parallelism
approach, or rely on strong assumptions on the model and
cluster specifications (§2.1).

Our key observation is that we can organize different paral-
lelization techniques into a hierarchical space and map these
parallelization techniques to the hierarchical structure of the
compute cluster. Different parallelization techniques have dif-
ferent bandwidth requirements for communication, while a
typical compute cluster has a corresponding structure: closely
located devices can communicate with high bandwidth while
distant devices have limited communication bandwidth.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    559

https://github.com/alpa-projects/alpa


With this observation in mind, in this paper, we take a differ-
ent view from conventional data and model parallelisms, and
re-categorize ML parallelization approaches as intra-operator
and inter-operator parallelisms. Intra-operator parallelism
partitions ML operators along one or more tensor axes (batch
or non-batch) and dispatches the partitions to distributed de-
vices (Fig. 1c); inter-operator parallelism, on the other hand,
slices the model into disjoint stages and pipelines the execu-
tion of stages on different sets of devices (Fig. 1d). They take
place at two different granularities of the model computation,
differentiated by whether to partition operators.

Given that, a parallel execution plan can be expressed hier-
archically by specifying the plan in each parallelism category,
leading to a number of advantages. First, intra- and inter-
operator parallelisms feature distinct characteristics: intra-
operator parallelism has better device utilization, but results
in communicating at every split and merge of partitioned
operators, per training iteration; whereas inter-operator par-
allelism only communicates between adjacent stages, which
can be light if sliced properly, but incurs device idle time due
to scheduling constraints. We can harness the asymmetric
nature of communication bandwidth in a compute cluster,
and map intra-operator parallelism to devices connected with
high communication bandwidth, while orchestrating the inter-
operator parallelism between distant devices with relatively
lower bandwidth in between. Second, this hierarchical design
allows us to solve each level near-optimally as an individual
tractable sub-problem. While the joint execution plan is not
guaranteed globally optimal, they demonstrate strong perfor-
mance empirically for training various large models.

Guided by this new problem formulation, we design and
implement Alpa, the first compiler that automatically gen-
erates parallel execution plans covering all data, operator,
and pipeline parallelisms. Given the model description and a
cluster configuration, Alpa achieves this by partitioning the
cluster into a number of device meshes, each of which con-
tains devices with preferably high-bandwidth connections,
and partitioning the computation graph of the model into
stages. It assigns stages to device meshes, and automatically
orchestrates intra-operator parallelisms on a device mesh and
inter-operator parallelisms between device meshes.

In summary, we make the following contributions:
• We construct a two-level parallel execution plan space
(Fig. 1e) where plans are specified hierarchically using inter-
and intra-operator parallelisms.
•We design tractable optimization algorithms to derive near-
optimal execution plans at each level.
•We implement Alpa, a compiler system for distributed DL
on GPU clusters. Alpa features: (1) a set of compilation passes
that generate execution plans using the hierarchical optimiza-
tion algorithms, (2) a new runtime architecture that orches-
trates the inter-op parallelism between device meshes, and (3)
a number of system optimizations that improve compilation
and address cross-mesh communication.

A B DC

A B DC

…

A B DC

A B DC

A B DC

A B DC

A B DC

A

A B DC

B DC

… …

… …

(c) The space of intra-operator
      parallelism (e.g., Tofu [55])

(e) Our hierarchical space

(a) Computational graph

(b) Manual plan
     (e.g., Megatron-LM [40])

(d) The space of inter-operator
      parallelism (e.g., DAPPLE [17])

A B DC

Figure 1: Generation of parallelization plans for a computa-
tional graph shown in (a). Different colors represent different
devices, dashed boxes represent pipeline stages. (b) creates
the plan manually. (c) and (d) automatically generate plans
using only one of intra- and inter-operator parallelisms. (e)
shows our approach that creates a hierarchical space to com-
bine intra- and inter-operator parallelisms.

• We evaluate Alpa on training large models with billions
of parameters. We compare Alpa with state-of-the-art dis-
tributed training systems on an Amazon EC2 cluster of 8
p3.16xlarge instances with 64 GPUs. On GPT [10] models,
Alpa can match the specialized system Megatron-LM [40,49].
On GShard MoE models [31], compared to a hand-tuned
system Deepspeed [45], Alpa achieves a 3.5× speedup on
2 nodes and a 9.7× speedup on 4 nodes. Unlike specialized
systems, Alpa also generalizes to models without manual
strategies and achieves an 80% linear scaling efficiency on
Wide-ResNet [59] with 4 nodes. This means developers can
get efficient model-parallel execution of large DL models
out-of-the-box using Alpa.

2 Background: Distributed Deep Learning
DL computation is commonly represented by popular ML
frameworks [1, 9, 42] as a dataflow graph. Edges in the graph
represent multi-dimensional tensors; nodes are computational
operators, such as matrix multiplication (matmul), that trans-
form input tensors into output tensors. Training a DL model
for one iteration consists of computing a loss by forward-
ing a batch of data through the graph, deriving the updates
via a reverse backward pass, and applying the updates to the
parameters via weight update operations. In practice, model
developers define the dataflow graph. An execution engine
then optimizes and executes it on a compute device.

When either the model or data is large that a single device
cannot complete the training in a reasonable amount of time,
we resort to ML parallelization approaches that parallelize
the computation on distributed devices.

560    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



x matmul matmul

w1 w2

(a) Data Parallelism (b) Operator Parallelism

x matmul matmul

w1 w2

x matmul matmul

w1 w2

(c) ZeRO Optimizer

x

matmul w1

w2

matmul matmul matmul 

matmul matmul matmul matmul 

Time = 0 Time = 1 Time = 2 Time = 3 Time = 4

(d) Pipeline Parallelism

Device 1 Device 2 Replicated Column-partitionedRow-partitioned

Intra-Operator Parallelism

Inter-Operator Parallelism

Figure 2: Common parallelization techniques for training a 2-layer Multi-layer Perceptron (MLP). Only the forward pass is
shown. “x” is the input data. “w1” and “w2” are two weight matrices.

2.1 Conventional View of ML Parallelism
Existing ML parallelization approaches are typically catego-
rized as data, operator, and pipeline parallelisms.
Data parallelism. In data parallelism, the training data is
partitioned across distributed workers, but the model is repli-
cated. Each worker computes the parameter updates on its
independent data split, and synchronizes the updates with
other workers before the weight update, so that all workers
observe consistent model parameters throughout training.
Operator parallelism. When the model is too large to fit in
one device, operator parallelism is an effective model paral-
lelism option. Operator parallelism refers to approaches that
partition the computation of a specific operator (abbreviated
as op in the following text), such as matmul shown in Fig. 2b,
along non-batch axes, and compute each part of the operator
in parallel across multiple devices.

Because input tensors are jointly partitioned, when a de-
vice computes its op partition, the required portions of input
tensors may not reside in its local memory. Communication is
thus required to fetch the input data from other devices. When
the tensors are partitioned evenly, i.e., SPMD [57], all devices
will follow the same collective communication patterns such
as all-reduce, all-gather, and all-to-all.
Pipeline parallelism. Instead of partitioning ops, pipeline
parallelism places different groups of ops from the model
graph, referred as stages, on different workers; meanwhile, it
splits the training batch as a number of microbatches, and
pipelines the forward and backward passes across micro-
batches on distributed workers, as Fig. 2d shows. Unlike
operator parallelism, pipeline parallelism transfers intermedi-
ate activations at the forward and backward passes between
different workers using point-to-point communication.
Manual combination of parallelisms. Recent development
shows the approaches mentioned above need to be combined
to scale out today’s large DL models [40, 57]. The state-
of-the-art training systems, such as Megatron-LM [40, 49],
manually design a specialized execution plan that combines
these parallelisms for transformer language models, which is
also known as 3D Parallelism. By assuming the model has the
same transformer layer repeated, it assigns an equal number
of layers to each pipeline stage and applies a hand-designed
operator and data parallelism configuration uniformly for
all layers. Despite the requirement of strong expertise, the
manual plan cannot generalize to different models or different

cluster setups (§8.1).
Automatic combination of parallelisms. The configurations
of each individual parallelism, their interdependence, and their
dependence on model and cluster setups form an intractable
space, which prevents the trivial realization of automatically
combining these parallelisms. For examples, when coupled
with operator parallelism, each time adding a data-parallel
replica would require allocating a new set of devices (in-
stead of one single device) as the worker, and figuring out
the optimal operator parallelism configurations within those
devices. When including pipeline parallelism, the optimal
pipelining scheme depends on the data and operator paral-
lelism choices of each pipeline stage and how devices are
allocated for each stage. With this conventional view, prior
explorations [17, 25, 55, 60] of auto-parallelization are lim-
ited to combining data parallelism with at most one model
parallelism approach, which misses substantial performance
opportunities. We next develop our view of ML parallelisms.

2.2 Intra- and Inter-Operator Parallelisms
Different from the conventional view, in this paper, we re-
catalog existing parallelization approaches into two orthogo-
nal categories: intra-operator and inter-operator parallelisms.
They are distinguished by if they involve partitioning opera-
tors along any tensor axis. We next use the examples in Fig. 2
to introduce the two types of parallelisms.
Intra-operator parallelism. An operator works on multi-
dimensional tensors. We can partition the tensor along some
dimensions, assign the resulting partitioned computations to
multiple devices, and let them execute different portions of
the operator at the same time. We define all parallelization
approaches using this workflow as intra-operator parallelism.

Fig. 2a-c illustrates the application of several typical in-
stantiations of intra-op parallelism on an MLP. Data paral-
lelism [29], by definition, belongs to intra-op parallelism –
the input tensors and matmuls are partitioned along the batch
dimension, and weight tensors are replicated. Alternatively,
when the weights are very large, partitioning the weights
(Fig. 2b) leads to the aforementioned operator parallelism
adopted in Megatron-LM. Besides operators in the forward
or backward passes, one can also partition the operators from
the weight update phase, yielding the weight update shard-
ing or equivalently the ZeRO [44, 56] technique, commonly
comprehended as an optimization of data parallelism.

Due to the partitioning, collective communication is re-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    561



quired at the split and merge of the operator. Hence, a key
characteristic of intra-operator parallelism is that it results in
substantial communication among distributed devices.
Inter-operator parallelism. We define inter-operator paral-
lelism as the orthogonal class of approaches that do not per-
form operator partitioning, but instead, assign different opera-
tors of the graph to execute on distributed devices.

Fig. 2d illustrates the batch-splitting pipeline parallelism
as a case of inter-operator parallelism.2 The pipeline exe-
cution can follow different schedules, such as Gpipe [22],
PipeDream [38], and synchronous 1F1B [17, 39]. We adopt
the synchronous 1F1B schedule throughout this paper as it
respects synchronous consistency, and has the same pipeline
latency but lower peak memory usage compared to Gpipe.

In inter-operator parallelism, devices communicate only be-
tween pipeline stages, typically using point-to-point commu-
nication between device pairs. The required communication
volume can be much less than the collective communication
in intra-operator parallelism. Regardless of the schedule used,
due to the data dependency between stages, inter-operator par-
allelism results in some devices being idle during the forward
and backward computation.

By this categorization, the two parallelisms take place at
different granularities of the DL computation and have distinct
communication requirements, which happen to match the
structure of today’s compute clusters. We will leverage these
properties to design hierarchical algorithms and compilation
passes to auto-generate execution plans. Several concurrent
work [2, 33, 39, 50] have proposed similar categorization, but
Alpa is the first end-to-end system that uses this categorization
to automatically generate parallel plans from the full space.

3 Overview
Alpa is a compiler that generates model-parallel execution
plans by hierarchically optimizing the plan at two different
levels: intra-op and inter-op parallelism. At the intra-op level,
Alpa minimizes the cost of executing a stage (i.e., subgraph)
of the computational graph, with respect to its intra-operator
parallelism plan, on a given device mesh, which is a set of
devices that may have high bandwidth between each other
(e.g., GPUs within a single server). Different meshes might
have different numbers of computing devices according to the
workload assigned. At the inter-op level, Alpa minimizes the
inter-op parallelization latency, with respect to how to slice
the model and device cluster into stages and device meshes
and how to map them as stage-mesh pairs. The inter-op op-
timization depends on knowing the execution cost of each
stage-mesh pair reported by the intra-op optimizer. Through
this hierarchical optimization process, Alpa generates the exe-
cution plan consisting of intra-op and inter-op plans which are

2Device placement [36] is another case of inter-op parallelism, which
partitions the model graph and executes them on different devices but does not
saturate pipelines using multiple microbatches. Hence pipeline parallelism is
often seen as a better alternative to it because of less device idle time.

Computational 
Graph

Device 
Cluster

Inter-op Pass

Intra-op Pass

Runtime
Orchestration

Mesh Executable 1 Mesh Executable 2 Mesh Executable N

Stage 1 Stage 2 Stage N

Sharded
Stage 1

Sharded
Stage 2

Sharded 
Stage N

…

Device Mesh 1

Worker D0 D1 D2 D3

Worker D0 D1 D2 D3
…

Device Mesh 2

Worker D0 D1 D2 D3

Worker D0 D1 D2 D3
…

Device Mesh N

Worker Devices …

Worker Devices …
…

Intra-op Parallelism

Inter-op Parallelism

R
un

tim
e

C
om

pi
le

r

Figure 3: Compiler passes and runtime architecture. A
sharded stage is a stage annotated with the sharding specs
generated by intra-op pass.

# Put @parallelize decorator on top of the Jax functions
@parallelize
def train_step(state, batch):

def loss_func(params):
out = state.forward(params, batch["x"])
return jax.numpy.mean((out - batch["y"]) ** 2)

grads = grad(loss_func)(state.params)
new_state = state.apply_gradient(grads)
return new_state

# A typical training loop
state = create_train_state()
for batch in data_loader:

state = train_step(state, batch)

Figure 4: An example to demonstrate Alpa’s API for Jax.
The developers uses a Python decorator @parallelize to
annotate functions that need to be parallelized. The rest of the
program is kept intact.

locally near-optimal at their respective level of the hierarchy.
To achieve this, Alpa implements three novel compilation

passes as Fig. 3 shows. Given a model description, in the
form of a Jax [9] intermediate representation (IR), and a clus-
ter configuration, the inter-op compilation pass slices the IR
into a number of stages, and slices the device cluster into a
number of device meshes. The inter-op pass uses a Dynamic
Programming (DP) algorithm to assign stages to meshes and
invokes the intra-op compilation pass on each stage-mesh pair,
to query the execution cost of this assignment. Once invoked,
the intra-op pass optimizes the intra-op parallel execution
plan of the stage running on its assigned mesh, by minimizing
its execution cost using an Integer Linear Programming (ILP)
formulation, and reports the cost back to the inter-op pass. By
repeatedly querying the intra-op pass for each allocation of
a stage-mesh pair, the inter-op pass uses the DP to minimize
the inter-op parallel execution latency and obtains the best
slicing scheme of stages and meshes.

Given the output hierarchical plan and a designated
pipeline-parallel schedule, each stage is first compiled as a

562    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



parallel executable on its located mesh. A runtime orchestra-
tion pass is invoked to fulfill the communication requirement
between two adjacent stages that require communication be-
tween the two meshes they locate on. The runtime orchestra-
tion pass then generates static instructions specific to each
mesh according to the pipeline-parallel schedule and invokes
the execution on all meshes.
API. Alpa has a simple API shown in Fig. 4. Alpa requires
developers to annotate functions to be parallelized, such as
the train_step(), using a Python decorator @parallelize.
Upon the first call to train_step(), Alpa traces the whole
function to get the model IR, invokes the compilation, and
converts the function to a parallel version.

Since the inter-op pass depends on the intra-op pass, in the
following text, we first describe the intra-op pass, followed by
the inter-op pass, and finally the runtime orchestration pass.

4 Intra-Operator Parallelism
Alpa optimizes the intra-operator parallelism plan within a de-
vice mesh. Alpa adopts the SPMD-style intra-op parallelism
[31, 57] which partitions operators evenly across devices and
executes the same instructions on all devices, as per the fact
that devices within a single mesh have equivalent compute
capability. This SPMD style significantly reduces the space
of intra-op parallelism plans; meanwhile, it conveniently ex-
presses and unifies many important approaches such as data
parallelism, ZeRO, Megatron-LM’s operator parallelism, and
their combinations, which are not fully covered by existing
automatic operators parallelism systems, such as Tofu [55]
and FlexFlow [25]. Unlike systems that perform randomized
search [25] or assume linear graphs [55], Alpa formalizes the
problem as an integer linear programming (ILP) and shows it
can be solved efficiently for computational graphs with tens
of thousands of operators. Next, we describe the space of
intra-op parallelism and our solution.

4.1 The Space of Intra-Operator Parallelism
Given an operator in the computational graph, there are multi-
ple possible parallel algorithms to run it on a device mesh. For
example, a matrix multiplication Ci j = ∑k AikBk j corresponds
to a three-level for-loop. To parallelize it, we can parallelize
the loop i, loop j, loop k, or combinations of them across
devices, which would have different computation and commu-
nication costs, require different layouts for the input tensors,
and result in output tensors with different layouts. If an input
tensor does not satisfy the layout requirement, a layout conver-
sion is required, which introduces extra communication costs.
The goal of the intra-op pass is to pick one parallel algorithm
for every operator to minimize the execution time of the en-
tire graph. Next, we formally define the device mesh and the
layout of a tensor and discuss the cost of layout conversion.
Device mesh. A device mesh is a 2-dimensional logical view
of a set of physical devices. Each device in the mesh has the
same compute capability. Devices can communicate along

Table 1: Sharding specs of a 2-dimentional tensor on a 2×2
device mesh. A is a (N,M) tensor. The device mesh is [[De-
vice 0, Device 1], [Device 2, Device 3]]. Each device stores a
partition of A. The first column is the name of the sharding
spec. The latter columns use Numpy syntax to describe the
partitions stored on each device.

Spec Device 0 Device 1 Device 2 Device 3

RR A[0 : N,0 : M] A[0 : N,0 : M] A[0 : N,0 : M] A[0 : N,0 : M]

S0S1 A[0 : N
2 ,0 : M

2 ] A[0 : N
2 ,

M
2 : M] A[N

2 : N,0 : M
2 ] A[N

2 : N, M
2 : M]

S1S0 A[0 : N
2 ,0 : M

2 ] A[N
2 : N,0 : M

2 ] A[0 : N
2 ,

M
2 : M] A[N

2 : N, M
2 : M]

S0R A[0 : N
2 ,0 : M] A[0 : N

2 ,0 : M] A[N
2 : N,0 : M] A[N

2 : N,0 : M]

S1R A[0 : N
2 ,0 : M] A[N

2 : N,0 : M] A[0 : N
2 ,0 : M] A[N

2 : N,0 : M]

RS0 A[0 : N,0 : M
2 ] A[0 : N,0 : M

2 ] A[0 : N, M
2 : M] A[0 : N, M

2 : M]

RS1 A[0 : N,0 : M
2 ] A[0 : N, M

2 : M] A[0 : N,0 : M
2 ] A[0 : N, M

2 : M]

S01R A[0 : N
4 ,0 : M] A[N

4 : N
2 ,0 : M] A[N

2 : 3N
4 ,0 : M] A[ 3N

4 : N,0 : M]

RS01 A[0 : N,0 : M
4 ] A[0 : N, M

4 : M
2 ] A[0 : N, M

2 : 3M
4 ] A[0 : N, 3M

4 : M]

Table 2: Several cases of resharding. all-gather(x, i) means
an all-gather of x bytes along the i-th mesh axis. M is the size
of the tensor. (n0,n1) is the mesh shape.

# Src Spec Dst Spec Communication Cost

1 RR S0S1 0
2 S0R RR all-gather(M,0)
3 S0S1 S0R all-gather( M

n0
,1)

4 S0R RS0 all-to-all( M
n0
,0)

5 S0S1 S01R all-to-all( M
n0 ·n1

,1)

the first mesh dimension and the second mesh dimension with
different bandwidths. We assume different groups of devices
along the same mesh dimension have the same communi-
cation performance. For a set of physical devices, there can
be multiple logical views. For example, given 2 nodes and 8
GPUs per node (i.e., 16 devices in total), we can view them as
a 2×8, 1×16,4×4,8×2, or 16×1 device mesh. The map-
ping between physical devices and the logical device mesh
view is optimized by the inter-op pass (§5). In the rest of this
section, we consider one fixed device mesh view.
Sharding Spec. We use sharding spec to define the layout
of a tensor. For an N-dimensional tensor, its sharding spec
is defined as X0X1 · · ·Xn−1, where Xi ∈ {S,R}. If Xi = S, it
means the i-th axis of the tensor is partitioned. Otherwise, the
i-th axis is replicated. For example, for a 2-dimensional tensor
(i.e., a matrix), SR means it is row-partitioned, RS means it
is column-partitioned, SS means it is both row- and column-
partitioned. RR means it is replicated without any partitioning.
After we define which tensor axes are partitioned, we then
have to map the partitioned tensor axes to mesh axes. We
only consider 2-dimensional device meshes, so a partitioned
tensor axis can be mapped to either the first or the second
axis of the device mesh, or both. We added a superscript to
S to denote the device assignment. For example, S0 means

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    563



Table 3: Several parallel algorithms for a batched matmul
Cb,i, j = ∑k Ab,i,kBb,k, j. The notation all-reduce(x, i) means
an all-reduce of x bytes along the i-th mesh axis. M is the size
of the output tensor. (n0,n1) is the mesh shape.

# Parallel Output Input Communication
Mapping Spec Specs Cost

1 i→ 0, j→ 1 RS0S1 RS0R,RRS1 0
2 i→ 0,k→ 1 RS0R RS0S1,RS1R all-reduce( M

n0
,1)

3 j→ 0,k→ 1 RRS0 RRS1,RS1S0 all-reduce( M
n0
,1)

4 b→ 0, i→ 1 S0S1R S0S1R,S0RR 0
5 b→ 0,k→ 1 S0RR S0RS1,S0S1R all-reduce( M

n0
,1)

6 i→{0,1} RS01R RS01R,RRR 0
7 k→{0,1} RRR RRS01,RS01R all-reduce(M,{0,1})

the partitions are along the 0-th axis of the mesh, S01 means
the partitions take place along both mesh axes. S0R means
the tensor is row-partitioned into two parts – The first part is
replicated on device 0 and device 1, and the second part is
replicated on device 2 and device 3. Table 1 shows all possible
sharding specs of a 2-dimensional tensor on a 2×2 mesh with
4 devices.

Resharding. When an input tensor of an operator does not
satisfy the sharding spec of the chosen parallel algorithm
for the operator, a layout conversion, namely resharding, is
required, which might require cross-device communication.
Table 2 lists several cases of resharding. For instance, to con-
vert a fully replicated tensor to any other sharding specs (case
#1), we can slice the tensor locally without communication; to
swap the partitioned axis (case #4), we perform an all-to-all.

Parallel algorithms of an operator. With the definitions
above, consider parallelizing a batched matmul Cb,i, j =

∑k Ab,i,kBb,k, j on a 2D mesh – Table 3 lists several intra-op
parallel algorithms for a batched matmul. Algorithm#1 maps
loop i to the 0-th mesh axis and loop j to the 1-th mesh axis,
resulting in the output tensor C with a sharding spec RS0S1.
As the LHS operand Ab,i,k and RHS operand Bb,k, j both have
only one parallelized index, their sharding specs are writ-
ten as RS0R and RRS1, respectively. In this algorithm, each
device has all its required input tiles (i.e., a partition of the
tensor) stored locally to compute its output tile, so there is no
communication cost. In Algorithm #2 in Table 3, when the
reduction loop k is parallelized, all-reduce communication is
needed to aggregate the partial sum. Similarly, we can derive
the sharding specs and communication costs of other parallel
algorithms for a batched matmul.

For other primitive operators such as convolution and re-
duction, we can get a list of possible parallel algorithms fol-
lowing a similar analysis of their math expressions. In the
intra-op pass, the model graph is represented in XLA’s HLO
format [51], which summarizes common DL operators into
less than 80 primitive operators, so we can manually enu-
merate the possible parallel algorithms for every primitive
operator.

4.2 ILP Formulation
The total execution cost of a computational graph G = (V,E)
is the sum of the compute and communication costs on all
nodes v ∈ V and the resharding costs on all edges e ∈ E.
We formulate the cost minimization as an ILP and solve it
optimally with an off-the-shelf solver [18].

For node v, the number of possible parallel algorithms is
kv. It then has a communication cost vector cv of length kv,
or cv ∈ Rkv , where cvi is the communication cost of the i-th
algorithm. Similarly, node v has a compute cost vector dv ∈
Rkv . For each node v, we define an one-hot decision vector
sv ∈ {0,1}kv to represent the algorithm it uses. svi = 1 means
we pick the i-th algorithm for node v. For the resharding
cost between node v and node u, we define a resharding cost
matrix Rvu ∈ Rkv×ku , where Rvui j is the resharding cost from
the output of i-th strategy of node v to the input of j-th strategy
of node u. The objective of the problem is

min
s ∑

v∈V
sᵀv (cv +dv)+ ∑

(v,u)∈E
sᵀv Rvusu, (1)

where the first term is the compute and communication cost of
node v, and the second is the resharding cost of the edge (v,u).
In this formulation, s is the variable, and the rest are constant
values. The term sᵀv Rvusu in Eq. 1 is quadratic, and cannot be
fed into an ILP solver. We linearize [19] the quadratic term
by introducing a new decision vector evu ∈ {0,1}kv·ku which
represents the resharding decision between node v and u.

Although we can use profiling to get the accurate costs
for cv, dv, and Rvu, we use the following methods to estimate
them for simplicity. For communication costs dv and Rvu, we
compute the numbers of communicated bytes and divide them
by the mesh dimension bandwidth to get the costs. For com-
pute costs cv, we set all of them as zero following the same
motivation in [55]. This is reasonable because: (1) For heavy
operators such as matmul, we do not allow replicated compu-
tation. All parallel algorithms always evenly divide the work
to all devices, so all parallel algorithms of one operator have
the same arithmetic complexity; (2) For lightweight operators
such as element-wise operators, we allow replicated computa-
tion of them, but their computation costs are negligible.

To simplify the graph, we merge computationally-trivial
operators, such as element-wise operators, transpose, and re-
duction, into one of their operands and propagate the sharding
spec from the operand. This greatly reduces the number of
nodes in the graph, thus the ILP problem size. We do a breath-
first-search and compute the depth of each node. The node is
merged to the deepest operand.

Once the parallel plan is decided by ILP, we also apply a
set of post-ILP communication optimizations, such as replac-
ing all-reduce with reduce-scatter and all-gather, whenever
applicable, because the latter reduces the number of replicated
tensors and corresponding computations, while keeping the
communication volume the same. This achieves the effect of
weight update sharding [56] or ZeRO optimizer [44].

564    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



5 Inter-Operator Parallelism
In this section, we develop methods to slice the model and
device cluster into stage-mesh pairs. Our optimization goal
is to minimize the end-to-end pipeline execution latency for
the entire computational graph. Previous works [17, 33] have
considered simplified problems, such as assuming the device
for each stage is pre-assigned, and all stages have fixed data
or operator parallelism plan. Alpa rids these assumptions by
jointly considering device mesh assignment and the existence
of varying intra-op parallelism plans on each stage.

5.1 The Space for Inter-Operator Parallelism
Assume the computational graph contains a sequence of
operators following the topology order of the graph3, no-
tated as o1, . . . ,oK , where the inputs of an operator ok are
from operators o1, . . . ,ok−1. We slice the operators into S
stages s1, . . . ,sS, where each stage si consists of operators
(oli , . . . ,ori), and we assign each stage si to a submesh of
size ni×mi, sliced from a computer cluster that contains de-
vices, notated as the cluster mesh with shape N ×M. Let
ti = tintra(si,Mesh(ni,mi)) be the latency of executing stage si
on a submesh of ni×mi, minimized by the ILP and reported
back by the intra-op pass (§4). As visualized in Fig. 5, assum-
ing we have B different input microbatches for the pipeline,
the total minimum latency4 for the entire computation graph
is written as:

T ∗ = min
s1,...,sS;

(n1,m1),...,(nS,mS)

{
S

∑
i=1

ti +(B−1) · max
1≤ j≤S

{t j}

}
. (2)

The overall latency contains two terms: the first term is the
total latency of all stages, interpreted as the latency of the first
microbatch going through the pipeline; the second term is the
pipelined execution time for the rest of B−1 microbatches,
which is bounded by the slowest stage (stage 3 in Fig. 5).

We aim to solve Eq. 2 with two additional constraints: (1)
For an operator in the forward pass of the graph, we want
to colocate it with its corresponded backward operator on
the same submesh. Since backward propagation usually uses
the similar set of tensors during forward propagation, this
effectively reduces the amount of communication to fetch the
required tensors generated at the forward pass to the backward
pass. We use the sum of forward and backward latency for
tintra, so Eq. 2 reflects the total latency, including both forward
and backward propagation. (2) We need the sliced submeshes
(n1,m1), . . . ,(nS,mS) to fully cover the N×M cluster mesh
– we do not waste any compute device resources. We next
elaborate on our DP formulation.

3We simply use the order of how users define each operator, reflected in
the model IR, with the input operator as the origin. This allows us to leverage
the inherent locality present in the user’s program – closely related nodes in
the graph will be more likely to be partitioned into the same stage.

4This formulation holds for GPipe and synchronous 1F1B schedules.
Other pipeline schedules may require a different formulation.

Stage 4

Time

Stage 3

Stage 2

Stage 1

b

a b c d

a b c

a b c

a

d

d

e f g h

e f g

e f g h

h

dc fe hgt
3

(B - 1) ⋅ t
3

t
4t

2

t
1

Figure 5: Illustration of the total latency of a pipeline, which
is determined by two parts: the total latency of all stages (t1 +
t2 + t3 + t4) and the latency of the slowest stage ((B−1) · t3).

5.2 DP Formulation

To ensure all submeshes (n1,m1), . . . ,(nS,mS) fully cover
the N×M cluster mesh, we reduce the available submesh
shapes into two options: (1) one-dimensional submeshes of
sizes (1,1),(1,2),(1,4) . . .(1,2m) and (2) two-dimensional
submeshes of size (2,M),(3,M), . . . ,(N,M) that fully use
the second dimension of the cluster mesh (i.e., on a GPU
cluster, this means using all compute devices in each physical
machine). We include a theorem in Appendix A that proves
these submesh shapes can always fully cover the cluster mesh.
To assign physical devices in the cluster to the resulting sub-
meshes find by the DP algorithm, we enumerate by assigning
devices to larger submeshes first and then to smaller ones.
When there are multiple pipeline stages with the same sub-
mesh shape, we tend to put neighboring pipeline stages closer
on the device mesh to reduce communication latency.

The simplification on submesh shapes works well for most
available cloud deep learning setups: On AWS [3], the GPU
instances have 1, 2, 4, or 8 GPUs; on GCP [20], the TPU
instances have 8, 32, 128, 256 or 512 TPUs. The set of
submesh shapes (n,m) excluded by the assumption is with
n > 1 and m < M, which we observe lead to inferior re-
sults, since an alternative submesh with shape (n′,M) where
n′ ·M = n ·m has more devices that can communicate with
high bandwidth. With this reduction, we only need to ensure
that ∑

S
i=1 ni ·mi = N ·M.

To find T ∗ in Eq. 2, we develop a DP algorithm. The DP
first enumerates the second term tmax = max1≤ j≤S t j and min-
imizes the first term ttotal(tmax) = ∑1≤i≤S ti for each differ-
ent tmax. Specifically, we use the function F(s,k,d; tmax) to
represent the minimal total latency when slicing operators
ok to oK into s stages and putting them onto d devices so
that the latency of each stage is less than tmax. We start with
F(0,K +1,0; tmax) = 0, and derive the optimal substructure
of F as

F(s,k,d; tmax) (3)

= min
k≤i≤K

ns·ms≤d


tintra((ok, . . . ,oi),Mesh(ns,ms),s)

+F(s−1, i+1,d−ns ·ms; tmax)

| tintra((ok, . . . ,oi),Mesh(ns,ms),s)≤ tmax

 ,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    565



and derive the optimal total latency as

T ∗(tmax) = min
s
{F(s,0,N ·M; tmax)}+(B−1) · tmax. (4)

The value of tintra((ok, . . . ,oi),Mesh(ns,ms),s) is deter-
mined by the intra-op pass. It is the lowest latency of exe-
cuting the subgraph (ok, . . . ,oi) on mesh Mesh(ns,ms) with s
subsequent stages. Note that Mesh(ns,ms) is a set of physical
devices – hence, we enumerate all the potential choices of
logical device mesh shapes (nl ,ml) satisfying nl ·ml = ns ·ms.
For each choice, we query the intra-op pass with subgraph
(ok, . . . ,oi), logical mesh (nl ,ml), and other intra-op options
as inputs and get an intra-op plan. We then compile the sub-
graph with this plan and all other low-level compiler optimiza-
tions (e.g., fusion, memory planning) to get an executable for
precise profiling. The executable is profiled in order to get
the stage latency (tl) and the memory required on each device
to run the stage (memstage) and to store the intermediate ac-
tivations (memact). We check whether the required memory
fits the device memory (memdevice) according to the chosen
pipeline execution schedule. For example, for 1F1B sched-
ule [17, 39], we check

memstage + s ·memact ≤ memdevice. (5)

We pick the logical mesh shape that minimizes tl and fits into
the device memory. If none of them fits, we set tintra = ∞.

Our algorithm builds on top of that in TeraPipe [33]. How-
ever, TeraPipe assumes all pipeline stages are the same, and
the goal is to find the optimal way to batch input tokens into
micro-batches of different sizes. Instead, Alpa aims to group
the operators of a computational graph into different pipeline
stages, while assuming the input micro-batches are of the
same size. In addition, Alpa optimizes the mesh shape in the
DP algorithm for each pipeline stage in inter-op parallelism.
Complexity. Our DP algorithm computes the slicing in
O(K3NM(N+ log(M))) time for a fixed tmax. tmax has at most
O(K2(N+ log(M))) choices: tintra((oi, . . . ,o j),Mesh(ns,ms))
for i, j = 1, . . . ,K and all the submesh choices. The complex-
ity of this DP algorithm is thus O(K5NM(N + log(M))2).

This complexity is not feasible for a large computational
graph of more than ten thousand operators. To speed up this
DP, we introduce a few practical optimizations.
Performance optimization #1: early pruning. We use one
optimization that is similar to that in TeraPipe [33]. We enu-
merate tmax from small to large. When B · tmax is larger than
the current best T ∗, we immediately stop the enumeration.
This is because larger tmax can no longer provide a better so-
lution. Also, during enumeration of tmax, we only evaluate a
choice of tmax if it is sufficiently larger than the last tmax (by
at least ε). This allows the gap between the solution found
by the DP algorithm and the global optima to be at most B · ε.
We empirically choose ε = 10−6 s, and we find that the solu-
tion output by our algorithm is the same as the real optimal
solution (ε = 0) for all our evaluated settings.

Algorithm 1 Inter-op pass summary.

1: Input: Model graph G and cluster C with shape (N,M).
2: Output: The minimal pipeline execution latency T ∗.
3: // Preprocess graph.
4: (o1, . . . ,oK)← Flatten(G)
5: (l1, . . . , lL)← OperatorClustering(o1, . . . ,oK)
6: // Run the intra-op pass to get costs of different stage-

mesh pairs.
7: submesh_shapes ← {(1,1),(1,2),(1,4), . . . ,(1,M)} ∪
{(2,M),(3,M), . . . ,(N,M)}

8: for 1≤ i≤ j ≤ L do
9: stage← (li, . . . , l j)

10: for (n,m) ∈ submesh_shapes do
11: for s from 1 to L do
12: t_intra(stage,Mesh(n,m),s)← ∞

13: end for
14: for (nl ,ml),opt ∈ LogicalMeshShapeAndIntraOp

Options(n,m) do
15: plan← IntraOpPass(stage,Mesh(nl ,ml),opt)
16: tl ,memstage,memact← Profile(plan)
17: for s satisfies Eq. 5 do
18: if tl < t_intra(stage,Mesh(n,m),s) then
19: t_intra(stage,Mesh(n,m),s)← tl
20: end if
21: end for
22: end for
23: end for
24: end for
25: // Run the inter-op dynamic programming
26: T ∗← ∞

27: for tmax ∈ SortedAndFilter(t_intra,ε) do
28: if B · tmax ≥ T ∗ then
29: break
30: end if
31: F(0,L+1,0; tmax)← 0
32: for s from 1 to L do
33: for l from L down to 1 do
34: for d from 1 to N ·M do
35: Compute F(s, l,d; tmax) according to Eq. 3
36: end for
37: end for
38: end for
39: T ∗(tmax)←mins{F(s,0,N ·M; tmax)}+(B−1) · tmax
40: if T ∗(tmax)< T ∗ then
41: T ∗← T ∗(tmax)
42: end if
43: end for

Performance optimization #2: operator clustering. Many
operators in a computational graph are not computationally
intensive (e.g., ReLU), and the exact placement of these oper-
ators has little impact on the total execution time. We develop
another DP algorithm [4] to cluster neighboring operators to

566    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



reduce the total size of the graph Eq. 2 works on. We cluster
the operators (o1, . . . ,oK) into a series of layers5 (l1, . . . , lL),
where L�K. The goal of the algorithm is to merge two types
of operators: (1) those that do not call for much computation
but lengthen the computational graph and (2) neighboring
operators that may cause substantial communication if put
on different device meshes. We define function G(k,r) as
the minimum of maximal amount of data received by a sin-
gle layer when clustering operators (o1, . . . ,ok) into r layers.
Note that G has the following optimal substructure:

G(k,r) (6)

= min
1≤i≤k


max{G(i−1,r−1),C(i,k)}∣∣∣∣ FLOP(oi, . . . ,ok)≤

(1+δ)FLOPtotal

L

 ,

where C(i,k) denotes the total size of inputs of (oi, . . . ,ok) re-
ceived from (o1, . . . ,oi−1) and FLOPtotal =FLOP(o1, . . . ,oK)
is the total FLOP of the whole computational graph. We make
sure that each clustered layer’s FLOP is within 1+δ times of
the average FLOP per layer while minimizing the communi-
cation. For the solutions with the same communication cost,
we choose the one with the most uniform structure by also
minimizing the variance of per-layer FLOP. With our DP al-
gorithm, we can compute the best layer clustering in O(K2L)
time. Note that L here is a hyperparameter to the algorithm.
In practice, we choose a small L based on the number of de-
vices and the number of heavy operators in the graph. We
find different choices of L do not affect the final performance
significantly.

Alg. 1 summarizes the workflow of the inter-op pass and
illustrates its interactions with the intra-op pass in §4.

6 Parallelism Orchestration
After stages, device meshes, and their assignments are de-
cided, at the intra-op level, Alpa compiles each stage against
its assigned device mesh, respecting the intra-op parallelism
plan output by the ILP solver. The compilation depends on
XLA [51] and GSPMD [57], and generates parallel executa-
bles for each stage-mesh pair. When needed, the compilation
automatically inserts collective communication primitives
(see §4) to address the within-mesh communication caused
by intra-op parallelism.

At the inter-op level, Alpa implements an additional paral-
lelism orchestration pass to address the cross-mesh commu-
nication between stages, and generate static instructions for
inter-op parallel execution.
Cross-mesh resharding. Existing manual systems, such as
Megatron-LM [45, 49], constrain all pipeline stages to have
the same degrees of data and tensor model parallelism, so
the communication between pipeline stages is trivially re-
alized by P2P send/recv between corresponded devices of

5Note that the clustering does not exactly reproduce the layers with
original machine learning semantics in the model definition.

Mesh 1 Mesh 2

Tile 0
Tile 1

Device 0

(a) Megatron-LM

Tile 0
Tile 1

Device 1

Tile 0
Tile 1

Device 0

Tile 0
Tile 1

Device 1

Mesh 1

Mesh 2

Tile 0
Tile 1

Device 0

(b) Naïve send/recv

Tile 0
Tile 1

Device 0

Tile 0
Tile 1

Device 1

Mesh 1

Mesh 2

Tile 0
Tile 1

Device 0

(c) Local all-gather

Tile 0
Tile 1

Device 0

Tile 0
Tile 1

Device 1

Figure 6: Cross-mesh resharding. Red arrows denote
send/recv on slow connections. Green arrows denote all-
gather on fast connections. (a) The scatter-gather optimiza-
tion for equal mesh shapes in Megatron-LM. (b) The naive
send/recv for unequal mesh shapes. (c) The generalized local
all-gather optimization for unequal mesh shapes.

two equivalent device meshes (Fig. 6a). In Alpa, the device
meshes holding two adjacent stages might have different mesh
shapes, and the tensor to communicate between two stages
might have different sharding specs (Fig. 6b and Fig. 6c). We
call this communication pattern as cross-mesh resharding,
which is a many-to-many multicast problem.

Given the sharding specs of the tensor on the sender and re-
ceiver mesh, Alpa generates a communication plan to address
cross-mesh sharding in two iterations. In the first iteration,
Alpa calculates the correspondences between tensor partitions
(a.k.a. tiles) on the source and destination mesh. Based on
that, it generates P2P send/recv primitives between the source
devices and destination devices to fulfill the communication.
It then takes a second iteration to identify opportunities where
the destination tensor has a replication in its sharding spec.
In this case, the tensor only needs to be transferred once be-
tween two meshes, then exchanged via all-gather across the
devices on the destination mesh using its higher bandwidth
(Fig. 6) – it rewrites send/recv generated at the first iteration
into all-gather to avoid repeated communication.

We call this approach as local all-gather cross-mesh re-
sharding. Since the communication between stages is nor-
mally small by our design, our experiments show that it per-
forms satisfactorily well (§8.5). We defer the development of
the optimal cross-mesh resharding plan to future work.
Generating pipeline execution instructions. As the final
step, Alpa generates static execution instructions to launch
the training on clusters. Since each stage has different sets of
operators and may locate on meshes with different shapes, in
contrast to many SPMD pipeline-parallel training systems [40,
57], Alpa adopts an MPMD-style runtime to orchestrate the
inter-op parallel execution – Alpa generates distinct static
execution instructions for each device mesh.

Alpa develops a set of instructions for inter-op parallel
execution, including instructions for allocating and deallocat-
ing memory for tensors in a stage, communicating tensors
between stages following the cross-mesh resharding plan,
synchronization, and computation, etc. According to a user-
selected pipeline schedule, Alpa uses a driver process to gen-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    567



erate the instructions in advance and dispatches the whole
instruction lists to each worker before execution, avoiding
driver-worker coordination overheads during runtime.

7 Limitations and Discussion
In this section, we discuss advantages of our view of paral-
lelisms and several limitations of our algorithms.

Compared to existing work that manually combines data,
operator, and pipeline parallelism, such as 3D parallelism [45]
and PTD-P [40], Alpa’s hierarchical view of inter- and intra-
op parallelisms significantly advances them with three major
flexibility: (1) pipeline stages can contain an uneven number
of operators or layers; (2) pipeline stages in Alpa might be
mapped to device meshes with different shapes; (3) within
each stage, the data and operator parallelism configuration is
customized non-uniformly on an operator-by-operator basis.
Together, they allow Alpa to unify all existing model paral-
lelism approaches and generalize to model architectures and
cluster setups with more heterogeneity.

Despite these advantages, Alpa’s optimization algorithms
currently have a few limitations:
• Alpa does not model the communication cost between dif-
ferent stages because the cross-stage communication cost is
by nature small. In fact, modeling the cost in either the DP or
ILP is possible, but would require enumerating exponentially
more intra-op passes and DP states.
• The inter-op pass currently has a hyperparameter: the num-
ber of micro-batches B, which is not optimized by our current
formulation but can be searched by enumeration.
• The inter-op pass models pipeline parallelism with a static
linear schedule, without considering more dynamic schedules
that, for example, parallelize different branches in a computa-
tional graph on different devices.
• Alpa does not optimize for the best scheme of overlapping
computation and communication; Alpa can only handle static
computational graphs with all tensor shapes known at compi-
lation time.

Nevertheless, our results on weak scaling (§8) suggest that
Alpa is able to generate near-optimal execution plans for many
notable models.

8 Evaluation
Alpa is implemented using about 16K LoC in Python and
6K LoC in C++. Alpa uses Jax as the frontend and XLA as
the backend. The compiler passes are implemented on Jax’s
and XLA’s intermediate representation (i.e., Jaxpr and HLO).
For the distributed runtime, we use Ray [37] actor to imple-
ment the device mesh worker, XLA runtime for executing
computation, and NCCL [41] for communication.

We evaluate Alpa on training large-scale models with bil-
lions of parameters, including GPT-3 [10], GShard Mixture-
of-Experts (MoE) [31], and Wide-ResNet [59]. The testbed
is a typical cluster consisting of 8 nodes and 64 GPUs. Each
node is an Amazon EC2 p3.16xlarge instance with 8 NVIDIA

Table 4: Models used in the end-to-end evaluation. LM =
language model. IC = image classification.

Model Task Batch size #params (billion) Precision

GPT-3 [10] LM 1024 0.35, 1.3, 2.6, 6.7, 15, 39 FP16
GShard MoE [31] LM 1024 0.38, 1.3, 2.4, 10, 27, 70 FP16
Wide-ResNet [59] IC 1536 0.25, 1.0, 2.0, 4.0, 6.7, 13 FP32

V100 16 GB GPUs, 64 vCPUs, and 488 GB memory. The
8 GPUs in a node are connected via NVLink. The 8 nodes
are launched within one placement group with 25Gbps cross-
node bandwidth.

We compare Alpa against two state-of-the-art distributed
systems for training large-scale models on GPUs. We then iso-
late different compilation passes and perform ablation studies
of our optimization algorithms. We also include a case study
of the execution plans found by Alpa.

8.1 End-to-End Performance
Models and training workloads. We target three types of
models listed in Table 4, covering models with both homoge-
neous and heterogeneous architectures. GPT-3 is a homoge-
neous transformer-based LM by stacking many transformer
layers whose model parallelization plan has been extensively
studied [40, 49]. GShard MoE is a mixed dense and sparse
LM, where mixture-of-experts layers are used to replace the
MLP at the end of a transformer, every two layers. Wide-
ResNet is a variant of ResNet with larger channel sizes. It is
vastly different from the transformer models and there are no
existing manually designed strategies.

To study the ability to train large models, we follow com-
mon ML practice to scale the model size along with the num-
ber of GPUs, with the parameter range reported in Table 4.
More precisely, for GPT-3, we increase the hidden size and the
number of layers together with the number of GPUs follow-
ing [40], whereas for MoE we mainly increase the number of
experts suggested by [31, 57]. For Wide-ResNet, we increase
the channel size and width factor in convolution layers. For
each model, we adopt the suggested global batch size per ML
practice [10, 31, 40, 59] to keep the same statistical behavior.
We then tune the best microbatch size for each model and
system configuration that maximizes the system performance.
The gradients are accumulated across microbatches. The de-
tailed model specifications are provided in Appendix B.
Baselines. For each model, we compare Alpa against a strong
baseline. We use Megatron-LM v2 [40] as the baseline system
for GPT-3. Megatron-LM is the state-of-the-art system for
training homogeneous transformer-based LMs on GPUs. It
combines data parallelism, pipeline parallelism, and manually-
designed operator parallelism (denoted as TMP later). The
combination of these techniques is controlled by three integer
parameters that specify the parallelism degrees assigned to
each technique. We grid-search the three parameters follow-
ing the guidance of their paper and report the results of the
best configuration. Megatron-LM is specialized for GPT-like
models, so it does not support other models in Table 4.

568    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 4 8 16 32 64
The number of GPUs

0.0

1.0

2.0

3.0

4.0

Th
ro

ug
hp

ut
 (P

FL
OP

S)

Megatron-LM
Inter-op only
Intra-op only
Alpa (ours)
Linear-scaling

(a) GPT

1 4 8 16 32 64
The number of GPUs

0.0

1.0

2.0

3.0

Th
ro

ug
hp

ut
 (P

FL
OP

S)

X XX

Deepspeed
Inter-op only
Intra-op only
Alpa (ours)
Linear-scaling

(b) MoE

1 4 8 16 32 64
The number of GPUs

0.0

0.2

0.4

0.6

Th
ro

ug
hp

ut
 (P

FL
OP

S)

XX XX

PP-DP
Inter-op only
Intra-op only
Alpa (ours)
Linear-scaling

(c) Wide-ResNet

Figure 7: End-to-end evaluation results. “×” denotes out-of-memory. Black boxes represent linear scaling.

We use DeepSpeed [45] as the baseline for MoE. Deep-
Speed provides a state-of-the-art implementation for training
MoE on GPUs. It combines handcrafted operator parallelism
for MoE layers and ZeRO-based [44] data parallelism. The
combination of these techniques is controlled by several inte-
ger parameters that specify the parallelism degree assigned to
each technique. We also grid-search them and report the best
results. The performance of DeepSpeed on GPT-3 is similar
to or worse than Megatron-LM, so we skip it on GPT-3. Note
that original GShard-MoE [31] implementation is only avail-
able on TPUs, thus we do not include its results, though their
strategies [31] are covered by Alpa ’s strategy space.

For large Wide-ResNet, there is no specialized system or
manually designed plan for it. We use Alpa to build a baseline
“PP-DP” whose space only consists of data parallelism and
pipeline parallelism, which mimics the parallelism space of
PipeDream [38] and Dapple [17].

For all models, we also include the results of using Alpa
with only one of intra- and inter-operator parallelism, which
mimics the performance of some other auto-parallel systems.
The open-source Flexflow [25] does not support the models
we evaluate, as it lacks support for many necessary opera-
tors (e.g., layer normalization [5], mixed-precision operators).
Tofu [55] only supports single node execution and is not open-
sourced. Due to both theoretical and practical limitations, we
do not include their results and we do not expect Flexflow or
Tofu to outperform the state-of-the-art manual baselines in
our evaluation.
Evaluation metrics. Alpa does not modify the semantics of
the synchronous gradient descent algorithm, thus does not
affect the model convergence. Therefore, we measure training
throughput in our evaluation. We evaluate weak scaling of the
system when increasing the model size along with the number
of GPUs. Following [40], we use the aggregated peta floating-
point operations per second (PFLOPS) of the whole cluster
as the metric6. We measure it by running a few batches with
dummy data after proper warmup. All our results (including
those in later sections) have a standard deviation within 0.5%,
so we skip the error bars in our figures.
GPT-3 results. The parallelization plan for GPT-3 has been
extensively studied [10, 33, 40]. We observe in Fig. 7a that

6As the models are different for different numbers of GPUs, we cannot
measure scaling on the system throughput such as tokens per second or
images per second.

this manual plan with the best grid-searched parameters en-
ables Megatron-LM to achieve super-linear weak scaling on
GPT-3. Nevertheless, compared to Megatron-LM, Alpa auto-
matically generates execution plans and even achieves slightly
better scaling on several settings. If compared to methods that
only use intra-operator parallelism, our results are consistent
with recent studies – “Intra-op only” performs poorly on >16
GPUs because even the best plan has to communicate tensors
heavily on cross-node connections, making communication a
bottleneck. Surprisingly, “Inter-op only” performs well and
maintains linear scaling on up to 64 GPUs.

We investigate the grid-searched parameters of the manual
plan on Megatron-LM, and compare it to the plan generated
by Alpa. It reveals two major findings. First, in Megatron-LM,
the best manual plan has TMP as 1, except in rare settings,
such as fitting the 39B model on 64 GPUs, where pipeline
parallelism alone is unable to fit the model (stage) in GPU
memory; meanwhile, data parallelism is maximized whenever
memory allows. In practice, gradient accumulation (GA) is
turned on to achieve a desired global batch size (e.g., 1024
in our setting). GA amortizes the communication of data
parallelism and reduces the bubbles of pipeline parallelism,
but the communication of TMP grows linearly with GA steps,
which puts TMP disadvantaged. Second, Alpa-generated plan
closely resembles the best-performed ones in Megatron-LM,
featuring (1) evenly-sized stages, (2) partitioning along the
batch dimension in stages when memory is not stressed, but
along non-batch dimensions when memory is stressed. One
key difference between our plan and the manual plan is that
Alpa also partitions the weight update operations when data
parallelism exists, which contributes to the slight performance
improvement over Megatron-LM. This attributes to the fact
that Alpa, as a generic compiler system, can compose a wide
range of parallelism approaches, while Megatron-LM, for
now, misses weight update sharding support.
MoE results. DeepSpeed adopts a manual operator paral-
lelism plan for MoE models, developed by GShard [31], called
expert parallelism, which uses a simple rule: it partitions the
expert axis for the operators in MoE layers, but switches back
to data parallelism for non-expert layers. This expert paral-
lelism is then combined with ZeRO data parallelism and TMP.
All of these techniques belong to intra-operator parallelism.
Unfortunately, DeepSpeed’s specialized implementation does
not include any inter-operator parallelism approach, which is

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    569



1 2 4 8
The number of GPUs

0.15

0.3

0.45

0.6

Th
ro

ug
hp

ut
 (P

FL
OP

S)

X X X X

Data
Heuristic
ZeRO-2

ZeRO-3
ILP (ours)
Linear-scaling

(a) GPT

1 2 4 8
The number of GPUs

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut
 (P

FL
OP

S)

X X X X

Data
Heuristic
ZeRO-2

ZeRO-3
ILP (ours)
Linear-scaling

(b) MoE

1 2 4 8
The number of GPUs

0.02

0.04

0.06

Th
ro

ug
hp

ut
 (P

FL
OP

S)

X X X

Data
Heuristic
ZeRO-2

ZeRO-3
ILP (ours)
Linear-scaling

(c) Wide-ResNet
Figure 8: Intra-operator parallelism ablation study. “×” denotes out-of-memory. Black boxes represent linear scaling.

required for scaling across multiple nodes with low inter-node
bandwidth. Therefore, Deepspeed only maintains a good per-
formance within a node (≤ 8 GPUs) on this cluster. “Intra-op
only” fails to scale across multiple nodes due to the same
reason. “Inter-op only” runs out of memory on 32 GPUs and
64 GPUs because it is not easy to equally slice the model
when the number of GPUs is larger than the number of layers
of the model. The imbalanced slicing makes some memory-
intensive stages run out of memory.

By contrast, Alpa automatically discovers the best execu-
tion plans that combine intra- and inter-operator parallelism.
For intra-operator parallelism, Alpa finds a strategy similar
to expert parallelism and combines it with ZeRO data par-
allelism, thanks to its ILP-based intra-op pass. Alpa then
constructs stages and uses inter-operator parallelism to fa-
vor small communication volume on slow connections. Alpa
maintains linear scaling on 16 GPUs and scales well to 64
GPUs. Compared to DeepSpeed, Alpa achieves 3.5× speedup
on 2 nodes and a 9.7× speedup on 4 nodes.
Wide-ResNet results. Unlike the previous two models that
stack the same layer, Wide-ResNet has a more heterogeneous
architecture. As the data batch is forwarded through layers,
the size of the activation tensor shrinks while the size of the
weight tensor inflates. This leads to an imbalanced distribu-
tion of memory usage and compute intensity across layers.
For this kind of model, it is difficult, if not impossible, to
manually design a plan. However, Alpa still achieves a scal-
able performance on 32 GPUs with 80% scaling. The base-
lines “PP-DP” and “Inter-op only” run out of memory when
training large models, because they cannot partition weights
to reduce the memory usage, and it is difficult to construct
memory-balanced stages for them. “Intra-only” requires a lot
of communication on slow connections, so it cannot scale
across multiple nodes. A case study on the generated plan for
Wide-ResNet is in §8.6.

8.2 Intra-Op Parallelism Ablation Study
We study the effectiveness of our intra-operator parallelism
optimization algorithm. We compare our ILP-based solution
against alternatives such as ZeRO optimizer and rule-based
partitioning strategies.
Experimental setup. We run a weak scaling benchmark in
terms of model size similar to §8.1, but disable pipeline par-
allelism and gradient accumulation to control variables. The

Equal operator Equal layer DP (ours)

16
#GPUs

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (P

FL
OP

S)

(a) GPT

8 16 32
#GPUs

0.05
0.1

0.15
0.2

0.25

Th
ro

ug
hp

ut
 (P

FL
OP

S)

(b) Wide-ResNet
Figure 9: Inter-operator parallelism ablation study.

benchmark is done on one AWS p3.16xlarge instance with
8 GPUs. In order to simulate an execution environment of
large-scale training in one node, we use larger hidden sizes,
smaller batch sizes, and smaller numbers of layers, compared
to the model configurations in §8.1.
Baselines. We compare automatic solutions for intra-operator
parallelism. “Data” is vanilla data parallelism. “ZeRO-2” [44]
is a memory-efficient version of data parallelism which par-
titions gradients and optimizer states. “ZeRO-3” [44] addi-
tionally partitions parameters on top of “ZeRO-2”. “Heuris-
tic” uses a rule combined with the sharding propagation in
GSPMD. It marks the largest dimension of every input tensor
as partitioned and runs sharding propagation to get the shard-
ing specs for all nodes in the graph. “ILP” is our solution
based on the ILP solver.
Results. As shown in Fig. 8, “Data” runs out of memory
quickly and cannot train large models. “ZeRO-2” and “ZeRO-
3” resolve the memory problem of data parallelism, but they
do not optimize for communication as they always commu-
nicate the gradients. When the gradients are much larger
than activations, their performance degenerates. “Heuristic”
solves the memory issue by partitioning all tensors, but can
be slowed down by larger communication. “Auto-sharding”
performs best in all cases and maintains a near-linear scaling,
because it figures out the correct partition plan that always
minimizes the communication overhead.

8.3 Inter-Op Parallelism Ablation Study
We study the effectiveness of our inter-operator parallelism
optimization algorithm. We use “DP” to denote our algorithm.
Experimental setup. We report the performance of three
variants of our DP algorithm on GPT and Wide-ResNet. The

570    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



2 4 8 16 32 64
The number of GPUs

1000
2000
3000

Ti
m

e 
(s

)

Figure 10: Alpa’s compilation time on all GPT models. The
model size and #GPUs are simultaneously scaled.

benchmark settings are the same as the settings in §8.1.
Baselines. We compare our DP algorithm with two rule-based
algorithms. “Equal operator” disables our DP-based operator
clustering but assigns the same number of operators to each
cluster. “Equal layer” restricts our DP algorithm to use the
same number of layers for all stages.
Results. Fig. 9 shows the result. “DP” always outperforms
“Equal operator”. This is because “Equal operator” merges op-
erator that should be put onto different device meshes. Alpa’s
algorithm can cluster operators based on the communication
cost and computation balance. Whether “DP” can outperform
“Equal layer” depends on the model architecture. On homo-
geneous models like GPT, the solution of our DP algorithm
uses the same number of layers for all stages, so “Equal layer”
performs the same as “DP”. On Wide-ResNet, the optimal
solution can assign different layers to different stages, so
“Equal layer” is worse than the full flexible DP algorithm. For
Wide-ResNet on 32 GPUs, our algorithm outperforms “Equal
operator” and “Equal layer” by 2.6× and 1.6×, respectively.

8.4 Compilation Time
Fig. 10 shows Alpa’s compilation time for all the GPT set-
tings in §8.1. The compilation time is a single run of the full
Alg. 1 with a provided number of microbatches B. According
to the result, Alpa scales to large models or large clusters
well, because compilation time grows linearly with the size
of the model and the number of GPUs in the cluster. Table 5
reports the compilation time breakdown for the largest GPT
model in our evaluation (39B, 64 GPUs). Most of the time
is spent on enumerating stage-mesh pairs and profiling them.
For the compilation part, we accelerate it by compiling differ-
ent stages in parallel with distributed workers. For profiling,
we accelerate it using a simple cost model built at the XLA
instruction level, which estimates the cost of matrix multipli-
cation and communication primitives with a piece-wise linear
model. With these optimizations, the compilation and search
for a model take at most several hours, which is acceptable
as it is much shorter than the actual training time, which can
take several weeks.

8.5 Cross-Mesh Resharding
We evaluate our generalized local all-gather optimization for
cross-mesh resharding between meshes with different shapes
on Wide-ResNet, as shown in Fig. 11. “signal send/recv” is
a synthetic case where we only send 1 signal byte between
stages, which can be seen as the upper bound of the perfor-

Table 5: Compilation time breakdown of GPT-39B.

Steps Ours w/o optimization

Compilation 1582.66 s > 16hr
Profiling 804.48 s > 24hr

Stage Construction DP 1.65 s N/A
Other 4.47 s N/A
Total 2393.26 s > 40hr

16 32
#GPUs

0.05
0.1

0.15
0.2

0.25
0.3

Th
ro

ug
hp

ut
 (P

FL
OP

S)

Signal send/recv
w/o local all-gather
w/ local all-gather

Figure 11: Cross-mesh resharding on Wide-ResNet.

mance. “w/o local all-gather” disables our local all-gather
optimization and uses only send/recv. “w/ local all-gather”
enables our local all-gather optimization to move more com-
munication from slow connections to fast local connections,
which brings 2.0× speedup on 32 GPUs.

8.6 Case Study: Wide-ResNet
We visualize the parallelization strategies Alpa finds for Wide-
ResNet on 16 GPUs in Fig. 12. We also include the visualiza-
tion of results on 4 and 8 GPUs in Appendix C. On 4 GPUs,
Alpa uses only intra-operator parallelism. The intra-operator
solution partitions along the batch axis for the first dozens of
layers and then switches to partitioning the channel axis for
the last few layers. On 16 GPUs, Alpa slices the model into 3
stages and assigns 4, 4, 8 GPUs to stage 1, 2, 3, respectively.
Data parallelism is preferred in the first two stages because
the activation tensors are larger than weight tensors. In the
third stage, the ILP solver finds a non-trivial way of partition-
ing the convolution operators. The result shows that it can be
opaque to manually create such a strategy for a heterogeneous
model like Wide-ResNet, even for domain experts.

9 Related Work
Systems for data-parallel training. Horovod [47] and Py-
TorchDDP [32] are two commonly adopted data-parallel
training systems that synchronize gradients using all-reduce.
BytePS [26, 43] unifies all-reduce and parameter servers and
utilizes heterogeneous resources in data center clusters. Au-
toDist [60] uses learning-based approaches to compose a
data-parallel training strategy. ZeRO [44, 56] improves the
memory usage of data parallelism by reducing replicated ten-
sors. MiCS [61] minimizes the communication scale on top of
ZeRO for better scalability on the public cloud. In Alpa, data
parallelism [27] reduces to a special case of intra-operator
parallelism – partitioned along the batch axis.
Systems for model-parallel training. The two major classes
of model parallelisms have been discussed in §2. Mesh-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    571



Stage 1: 4 GPUs Stage 2: 4 GPUs

Stage 3: 8 GPUsInputs/activations

Weights

Partitioned on batch/input axis
Partitioned on hidden/output axis
Replicated

Figure 12: Visualization of the parallel strategy of Wide-ResNet on 16 GPUs. Different colors represent the devices a tensor is
distributed on. Grey blocks indicate a tensor is replicated across the devices. The input data and resulting activation of each
convolution and dense layer can be partitioned along the batch axis and the hidden axis. The weights can be partitioned along the
input and output channel axis.

TensorFlow [48], GSPMD [31,57] and OneFlow [58] provide
annotation APIs for users to manualy specifiy the intra-op
parallel plan. ColocRL [36] puts disjoint model partitions
on different devices without pipelining, thereby the concur-
rency happens only when there exist parallel branches in the
model. In contrast, Gpipe [22] splits the input data into micro-
batches and forms pipeline parallelisms. PipeDream [38, 39]
improves GPipe by using asynchronous training algorithms,
reducing memory usage, and integrating it with data paral-
lelism. However, PipeDream is asynchronous while Alpa is a
synchronous training system. TeraPipe [33] discovers a new
pipeline parallelism dimension for transformer-based LMs.
Google’s Pathway system [7] is a concurrent work of Alpa.
Pathway advocates a single controller runtime architecture
combining "single program multiple data" (SPMD) and "mul-
tiple program multiple data" (MPMD) model. This is similar
to Alpa’s runtime part, where SPMD is used for intra-op par-
allelisms and MPMD is used for inter-op parallelism.

Automatic search for model-parallel plans. Another line
of work focuses on the automatic discovery of model-parallel
training plans. Tofu [55] develops a dynamic programming
algorithm to generate the optimal intra-op strategy for lin-
ear graphs on a single node. FlexFlow [25] proposes a
“SOAP” formulation and develops an MCMC-based random-
ized search algorithm. However, it only supports device place-
ment without pipeline parallelism. Its search algorithm cannot
scale to large graphs or clusters and does not have optimality
guarantees. TensorOpt [11] develops a dynamic program-
ming algorithm to automatically search for intra-op strategies
that consider both memory and computation cost. Varuna [2]
targets low-bandwidth clusters and focuses on automating
pipeline and data parallelism. Piper [50] also finds a parallel
strategy with both inter- and intra-op parallelism, but it re-
lies on manually designed intra-op parallelism strategies and
analyzes on a uniform network topology and asynchronous
pipeline parallel schedules.

Techniques for training large-scale models. In addition to
parallelization, there are other complementary techniques for
training large-scale models, such as memory optimization [12,

14, 21, 23, 28, 46], communication compression [6, 53], and
low-precision training [35]. Alpa can incorporate many of
these techniques. For example, Alpa uses rematerialization to
reduce memory usage and uses mixed-precision training to
accelerate computation.
Compilers for deep learning. Compiler techniques have
been introduced to optimize the execution of DL mod-
els [13,24,34,51,52,54,62]. Most of them focus on optimizing
the computation for a single device. In contrast, Alpa is a com-
piler that supports a comprehensive space of execution plans
for distributed training.
Distributed tensor computation in other domains. Besides
deep learning, libraries and compilers for distributed tensor
computation have been developed for linear algebra [8] and
stencil computations [15]. Unlike Alpa, they do not consider
necessary parallelization techniques for DL.

10 Conclusion
We present Alpa, a new architecture for automated model-
parallel distributed training, built on top of a new view of
machine learning parallelization approaches: intra- and inter-
operator parallelisms. Alpa constructs a hierarchical space
and uses a set of compilation passes to derive efficient parallel
execution plans at each parallelism level. Alpa orchestrates
the parallel execution on distributed compute devices on two
different granularities. Coming up with an efficient paral-
lelization plan for distributed model-parallel deep learning is
historically a labor-intensive task, and we believe Alpa will de-
mocratize distributed model-parallel learning and accelerate
the adoption of emerging large deep learning models.

11 Acknowledgement
We would like to thank Shibo Wang, Yu Emma Wang, Jinliang
Wei, Zhen Zhang, Siyuan Zhuang, anonymous reviewers, and
our shepherd, Ken Birman, for their insightful feedback. In
addition to NSF CISE Expeditions Award CCF-1730628, this
research is supported by gifts from Alibaba Group, Ama-
zon Web Services, Ant Group, CapitalOne, Ericsson, Face-
book, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank,
Splunk, and VMware.

572    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 265–283,
2016.

[2] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ra-
machandran Ramjee, and Nipun Kwatra. Varuna: scal-
able, low-cost training of massive deep learning models.
In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 472–487, 2022.

[3] AWS Cluster Configuratoins. https://aws.amazon.
com/ec2/instance-types/p3/.

[4] Kevin Aydin, MohammadHossein Bateni, and Vahab
Mirrokni. Distributed balanced partitioning via linear
embedding. In Proceedings of the Ninth ACM Inter-
national Conference on Web Search and Data Mining,
pages 387–396, 2016.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[6] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong,
Feng Yan, Ruichuan Chen, and Yinlong Xu. Gradient
compression supercharged high-performance data par-
allel dnn training. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles CD-
ROM, pages 359–375, 2021.

[7] Paul Barham, Aakanksha Chowdhery, Jeff Dean, San-
jay Ghemawat, Steven Hand, Daniel Hurt, Michael Is-
ard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, et al.
Pathways: Asynchronous distributed dataflow for ml.
Proceedings of Machine Learning and Systems, 4, 2022.

[8] L Susan Blackford, Jaeyoung Choi, Andy Cleary, Ed-
uardo D’Azevedo, James Demmel, Inderjit Dhillon, Jack
Dongarra, Sven Hammarling, Greg Henry, Antoine Pe-
titet, et al. ScaLAPACK users’ guide. SIAM, 1997.

[9] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang. JAX: com-
posable transformations of Python+NumPy programs,
2018.

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[11] Zhenkun Cai, Xiao Yan, Kaihao Ma, Yidi Wu, Yuzhen
Huang, James Cheng, Teng Su, and Fan Yu. Tensoropt:
Exploring the tradeoffs in distributed dnn training with
auto-parallelism. IEEE Transactions on Parallel and
Distributed Systems, 33(8):1967–1981, 2021.

[12] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan
Wang, Ion Stoica, Michael W Mahoney, and Joseph E
Gonzalez. Actnn: Reducing training memory footprint
via 2-bit activation compressed training. In International
Conference on Machine Learning, 2021.

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: An au-
tomated end-to-end optimizing compiler for deep learn-
ing. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578–594,
2018.

[14] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

[15] Tyler Denniston, Shoaib Kamil, and Saman Amaras-
inghe. Distributed halide. ACM SIGPLAN Notices,
51(8):1–12, 2016.

[16] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi
Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam
Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang,
Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin
Robinson, Kathy Meier-Hellstern, Toju Duke, Lucas
Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. Glam: Efficient scaling of lan-
guage models with mixture-of-experts, 2021.

[17] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, et al. Dapple: A pipelined data paral-
lel approach for training large models. In Proceedings
of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 431–445,
2021.

[18] John Forrest and Robin Lougee-Heimer. Cbc user guide.
In Emerging theory, methods, and applications, pages
257–277. INFORMS, 2005.

[19] Richard J Forrester and Noah Hunt-Isaak. Computa-
tional comparison of exact solution methods for 0-1
quadratic programs: Recommendations for practitioners.
Journal of Applied Mathematics, 2020, 2020.

[20] Google Clould TPU Cluster Configurations. https:
//cloud.google.com/tpu.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    573

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://cloud.google.com/tpu
https://cloud.google.com/tpu


[21] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapad-
visor: Pushing deep learning beyond the gpu memory
limit via smart swapping. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 1341–1355, 2020.

[22] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32:103–112, 2019.

[23] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-
lami, Pieter Abbeel, Kurt Keutzer, Ion Stoica, and
Joseph E Gonzalez. Checkmate: Breaking the mem-
ory wall with optimal tensor rematerialization. arXiv
preprint arXiv:1910.02653, 2019.

[24] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 47–
62, 2019.

[25] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
arXiv preprint arXiv:1807.05358, 2018.

[26] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20),
pages 463–479, 2020.

[27] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo
Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong
Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
data parallel training of deep neural networks. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1–15, 2019.

[28] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jen-
nifer Brennan, Mike He, Jared Roesch, Tianqi Chen,
and Zachary Tatlock. Dynamic tensor rematerialization.
arXiv preprint arXiv:2006.09616, 2020.

[29] Alex Krizhevsky. One weird trick for paralleliz-
ing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

[30] Woo-Yeon Lee, Yunseong Lee, Joo Seong Jeong,
Gyeong-In Yu, Joo Yeon Kim, Ho Jin Park, Beomyeol
Jeon, Wonwook Song, Gunhee Kim, Markus Weimer,

et al. Automating system configuration of distributed
machine learning. In 2019 IEEE 39th International Con-
ference on Distributed Computing Systems (ICDCS),
pages 2057–2067. IEEE, 2019.

[31] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

[32] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, et al. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. arXiv preprint arXiv:2006.15704, 2020.

[33] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang
Zhuo, Hao Zhang, Dawn Song, and Ion Stoica. Terapipe:
Token-level pipeline parallelism for training large-scale
language models. arXiv preprint arXiv:2102.07988,
2021.

[34] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 881–897, 2020.

[35] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,
et al. Mixed precision training. arXiv preprint
arXiv:1710.03740, 2017.

[36] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit
Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar,
Mohammad Norouzi, Samy Bengio, and Jeff Dean. De-
vice placement optimization with reinforcement learn-
ing. In International Conference on Machine Learning,
pages 2430–2439. PMLR, 2017.

[37] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I Jordan,
et al. Ray: A distributed framework for emerging ai
applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
561–577, 2018.

[38] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

574    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[39] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie
Chen, and Matei Zaharia. Memory-efficient pipeline-
parallel dnn training. In International Conference on
Machine Learning, pages 7937–7947. PMLR, 2021.

[40] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language
model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–15, 2021.

[41] NVIDIA. The nvidia collective communication library,
2018.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: an imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems, pages 8024–8035, 2019.

[43] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 16–
29, 2019.

[44] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[45] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion pa-
rameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[46] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: De-
mocratizing billion-scale model training. arXiv preprint
arXiv:2101.06840, 2021.

[47] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[48] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff

Young, et al. Mesh-tensorflow: Deep learning for super-
computers. arXiv preprint arXiv:1811.02084, 2018.

[49] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[50] Jakub M Tarnawski, Deepak Narayanan, and Amar Phan-
ishayee. Piper: Multidimensional planner for dnn paral-
lelization. Advances in Neural Information Processing
Systems, 34, 2021.

[51] Google XLA Team. Xla: Optimizing compiler for ma-
chine learning, 2017.

[52] The Theano Development Team, Rami Al-Rfou, Guil-
laume Alain, Amjad Almahairi, Christof Angermueller,
Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien,
Justin Bayer, Anatoly Belikov, et al. Theano: A python
framework for fast computation of mathematical expres-
sions. arXiv preprint arXiv:1605.02688, 2016.

[53] Thijs Vogels, Sai Praneeth Karinireddy, and Martin
Jaggi. Powersgd: Practical low-rank gradient compres-
sion for distributed optimization. Advances In Neu-
ral Information Processing Systems 32 (Nips 2019),
32(CONF), 2019.

[54] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. Pet: Optimizing tensor
programs with partially equivalent transformations and
automated corrections. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
21), pages 37–54, 2021.

[55] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting very large models using automatic dataflow
graph partitioning. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–17, 2019.

[56] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Hongjun
Choi, Blake Hechtman, and Shibo Wang. Automatic
cross-replica sharding of weight update in data-parallel
training. arXiv preprint arXiv:2004.13336, 2020.

[57] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
Gspmd: General and scalable parallelization for ml
computation graphs. arXiv preprint arXiv:2105.04663,
2021.

[58] Jinhui Yuan, Xinqi Li, Cheng Cheng, Juncheng Liu, Ran
Guo, Shenghang Cai, Chi Yao, Fei Yang, Xiaodong Yi,
Chuan Wu, et al. Oneflow: Redesign the distributed

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    575



deep learning framework from scratch. arXiv preprint
arXiv:2110.15032, 2021.

[59] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

[60] Hao Zhang, Yuan Li, Zhijie Deng, Xiaodan Liang,
Lawrence Carin, and Eric Xing. Autosync: Learning to
synchronize for data-parallel distributed deep learning.
Advances in Neural Information Processing Systems, 33,
2020.

[61] Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu,
George Karypis, Trishul Chilimbi, Mu Li, and Xin Jin.
Mics: Near-linear scaling for training gigantic model on
public cloud. arXiv preprint arXiv:2205.00119, 2022.

[62] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 863–879, 2020.

576    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A Proof of Submesh Shape Covering
We prove the following theorem which shows we can al-
ways find a solution that fully covers the cluster mesh
(N,M) with our selected submesh shapes in §5.2: (1) one-
dimensional submeshes of shape (1,1),(1,2),(1,4) . . .(1,2m)
where 2m = M and (2) two-dimensional submeshes of shape
(2,M),(3,M), . . . ,(N,M) .

Theorem 1. For a list of submesh shapes
(n1,m1), . . .(nS,mS), if ∑i ni ·mi = N ·M and each (ni,mi)
satisfies either (1) ni = 1 and mi = 2pi is a power of 2 or
(2) mi = M, then we can always cover the full (N,M) mesh
where M = 2m with these submesh shapes.

Proof. We start with putting the second type submesh into
the full mesh. In this case, because mi = M, these submeshes
can cover the full second dimension of the full mesh. After
putting all the second kind of submeshes into the mesh, we
reduce the problem to fit a cluster mesh of shape (N,M) with
submeshes with shape (1,2p1), . . . ,(1,2pS) where all pi ∈
{0,1, . . . ,m−1}. Note that now we have

2p1 + · · ·+2pS = N ·2m. (7)

We start an induction on m. When m = 1, we have all pi = 0
and thus all the submeshes are of shape (1,1), which means
that all the submeshes can definitely cover the full mesh. As-
sume the above hold for all m = 1,2, . . . ,k−1. When m = k,
note that in this case the number of submeshes with pi = 0
should be an even number, because otherwise the left hand
side of Eq. 7 will be an odd number while the right hand side is
always an even number. Then we can split all submeshes with
shape pi = 0 into pairs, and we co-locate each pair to form
a (1,2) mesh. After this transformation, we have all pi > 0,
so we can subtract all pi and m by 1 and reduce to m = k−1
case. Therefore, the theorem holds by induction.

B Model Specifications
For GPT-3 models, we use sequence length = 1024 and vo-
cabulary size = 51200 for all models. Other parameters of the
models are listed in Table. 6. The last column is the number
of GPUs used to train the corresponding model.

For GShard MoE models, we use sequence length = 1024
and vocabulary size = 32000 for all models. Other parameters
of the models are listed in Table. 7. The last column is the
number of GPUs used to train the corresponding model.

For Wide-ResNet models, we use input image size = (224,
224, 3) and #class = 1024 for all models. Other parameters
of the models are listed in Table. 8. The last column is the
number of GPUs used to train the corresponding model.

C Extra Case Study
We visualize the parallelization strategies Alpa finds for Wide-
ResNet on 4 and 8 GPUs in Fig. 13.

Table 6: GPT-3 Model Specification

#params Hidden size #layers #heads #gpus

350M 1024 24 16 1
1.3B 2048 24 32 4
2.6B 2560 32 32 8
6.7B 4096 32 32 16
15B 5120 48 32 32
39B 8192 48 64 64

Table 7: GShard MoE Model Specification

#params Hidden size #layers #heads #experts #gpus

380M 768 8 16 8 1
1.3B 768 16 16 16 4
2.4B 1024 16 16 16 8
10B 1536 16 16 32 16
27B 2048 16 32 48 32
70B 2048 32 32 64 64

Table 8: Wide-ResNet Model Specification

#params #layers Base channel Width factor #gpus

250M 50 160 2 1
1B 50 320 2 4
2B 50 448 2 8
4B 50 640 2 16

6.8B 50 320 16 32
13B 101 320 16 64

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    577



Stage 1: 4 GPUs

Inputs/activations Weights Partitioned on batch/input axis Partitioned on hidden/output axis Replicated

(a) Parallel strategy of Wide-ResNet on 4 GPUs.

Stage 1: 4 GPUs

Stage 2: 4 GPUs

(b) Parallel strategy of Wide-ResNet on 8 GPUs.

Figure 13: Visualization of the parallel strategy of Wide-ResNet on 4 and 8 GPUs. Different colors represent the devices a tensor
is distributed on. Grey blocks indicate a tensor is replicated across all devices. The input data and resulting activation of each
convolution or dense layer can be partitioned along the batch axis and the hidden axis. The weights can be partitioned along the
input and output channel axis.

578    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Looking Beyond GPUs for DNN Scheduling on Multi-Tenant Clusters

Jayashree Mohan?∗, Amar Phanishayee?, Janardhan Kulkarni?, Vijay Chidambaram†‡

?Microsoft Research †University of Texas at Austin ‡VMware Research

Abstract
Training Deep Neural Networks (DNNs) is a popular work-
load in both enterprises and cloud data centers. Existing
schedulers for DNN training consider GPU as the dominant
resource and allocate other resources such as CPU and mem-
ory proportional to the number of GPUs requested by the
job. Unfortunately, these schedulers do not consider the im-
pact of a job’s sensitivity to allocation of CPU and mem-
ory resources. In this work, we propose Synergy, a resource-
sensitive scheduler for shared GPU clusters. Synergy infers
the sensitivity of DNNs to different resources using optimistic
profiling; some jobs might benefit from more than the GPU-
proportional allocation and some jobs might not be affected
by less than GPU-proportional allocation. Synergy performs
such multi-resource workload-aware assignments across a
set of jobs scheduled on shared multi-tenant clusters using
a new near-optimal online algorithm. Our experiments show
that workload-aware CPU and memory allocations can im-
prove average job completion time by upto 3.4×, by better
utilizing existing cluster resources, compared to traditional
GPU-proportional scheduling.

1 Introduction

The widespread popularity of Deep Neural Networks (DNNs)
makes training such models an important workload in both en-
terprises and cloud data centers. Training a DNN is resource-
intensive and time-consuming. Enterprises typically setup
large multi-tenant clusters, with expensive hardware accelera-
tors like GPUs, to be shared by several users and production
groups [31, 56]. In addition to the model-specific parame-
ters and scripts, jobs specify their GPU demand before being
scheduled to run on available servers. Jobs are scheduled and
managed either using traditional big-data schedulers, such as
Kubernetes [10] or YARN [51], or using modern schedulers
that exploit DNN job characteristics for better performance
and utilization [11, 26, 33, 35, 42, 46, 55]. These DNN sched-
ulers decide how to allocate GPU resources to many jobs
while implementing complex cluster-wide scheduling poli-
cies to optimize for objectives such as average job completion
times (JCT), makespan, or user-level fairness.

∗Work done as a MSR intern in Project Fiddle.

Figure 1: Average JCT with Synergy. Synergy is able to
significantly reduce average JCT and support higher load for
different scheduling policies (shown here on a cluster of 128
GPUs for a Philly-derived trace as we vary load [5]).

Current DNN cluster schedulers assume GPUs to be the
dominant resource in the scheduling task [11, 26, 31, 33, 35,
42, 46, 55]; i.e., a user requests a fixed number of GPUs for
her DNN job, and when the requested number of GPUs are
all available, the job is scheduled to run. Other resources such
as CPU and memory are allocated proportional to the number
of GPUs assigned to the job (GPU-proportional allocation).

However, we identify an important property of DNN train-
ing jobs that GPU-proportional allocation is unable to exploit:
DNNs exhibit varied sensitivity to the amount of auxiliary
resources like CPU and memory allocated to the job. Prior
work has shown that ingesting data for ML training jobs, i.e.,
reading data from storage to memory, and pre-processing
them at the CPU is computationally expensive, thereby re-
sulting in data stalls in both research [39] and industry scale
training at large enterprises such as Google [40] and Face-
book [59]. For instance, some image and video recognition
models achieve up to 3× speedup by overcoming data stalls
(§2) when the CPUs allocated exceed their GPU-proportional
share, while other models like GNMT are unaffected when
the CPUs assigned are less than GPU-proportional share.

Our main insight here is that allocating these auxiliary
resources in a workload-aware fashion, rather than the tra-
ditional GPU-proportional allocation can significantly im-
prove performance by effectively utilizing cluster-wide re-
sources. Based on this insight, we propose Synergy, a resource-
sensitive scheduler for homogeneous, multi-tenant GPU clus-
ters. Figure 1 shows the average job completion time (JCT)

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    579



in the cluster as we vary load, for two scheduling policies;
Synergy’s resource-sensitive allocation is able to significantly
improve average JCT in the cluster and sustain a higher load
compared to GPU-proportional allocation.

Synergy profiles the sensitivity of DNNs to auxiliary re-
sources and allocates them disproportionately among jobs
rather than using traditional GPU-proportional allocation.
While doing so, Synergy ensures that a job gets less than
GPU-proportional auxiliary resources only if such an alloca-
tion does not degrade the job throughput compared to a GPU-
proportional allocation. Such allocation enables Synergy to
mitigate data stalls in several models, thereby significantly
increasing the overall cluster throughput.

Efficiently exploiting the heterogeneity in resource sensi-
tivity among DNN jobs raises two important problems which
have not been tackled by prior work:
• What is the ideal resource requirement for each job (with

fixed GPU demand) and how can this be determined with
low overhead?
• How should we pack these jobs onto servers along multi-

ple resource dimensions efficiently, especially when we
can tune the job’s demand for these resources?

Optimistic profiling. Synergy exploits the predictability of
DNN computation to measure the job throughput as we vary
the amount of CPU and memory allocated to the job. This
is performed offline by the Synergy scheduler, prior to job
execution on the cluster. However, profiling all possible com-
binations of CPU, and memory values is computationally
expensive. Therefore, Synergy introduces optimistic profil-
ing; it empirically profiles the job throughput for varying CPU
allocations, assuming maximum memory allocation. It then
analytically estimates the job throughput for all combinations
of CPU and memory.A key insight that makes such analytical
modelling feasible is the predictable nature of job perfor-
mance to memory allocation when using DNN-aware caching
like MinIO [39] that guarantees a certain cache hit rate. We
show in §3.1 that our optimistically profiled model perfor-
mance closely resembles the true empirical values, while sig-
nificantly reducing profiling time (by up to 30×). Using these
profiles, Synergy identifies the best resource allocation be-
yond which the job throughput has diminishing returns.

Scheduling mechanism. Synergy makes a round-based
scheduling decision similar to prior DNN schedulers [42].
In each round (say 5 minutes), we identify the set of jobs that
are runnable in the cluster using a scheduling policy such as
FIFO [51, 57], SRTF [12], LAS [26, 43], FTF [35], etc. Syn-
ergy’s scheduling mechanism then packs these jobs among
available servers in the cluster along all resource dimensions
identified in the profiling phase. This is analogous to multi-
dimensional bin-packing problem, which is NP-Hard [53],
and hence requires approximate solutions. But unlike prior
work in big-data scheduling which tackles the problem of
multi-dimensional bin-packing with fixed resource demands

(for e.g., Tetris [23], DRF [21]), Synergy has to contend with
fungible resource demands. This introduces two challenges
that need to be solved in tandem: First to find an optimal parti-
tion of CPU and memory among jobs to maximize throughput
while ensuring fair allocations (every job’s throughput is at
least that of GPU-proportional allocation), and second, a fea-
sible packing of these resources among jobs.

In this paper, we propose two effective algorithms to enable
such fungible multi-dimensional bin-packing. Our first algo-
rithm, Synergy-OPT, is formulated as a linear program and
enables determining an upper-bound on achievable through-
put by an optimal solution for a given workload trace. How-
ever, we find that Synergy-OPT is impractical for two reasons:
(1) it is computationally expensive as we scale cluster size,
and (2) it produces fractional GPU allocations that cannot
be achieved in real deployments. Nevertheless, its solution
provides an aspirational optimal goal that we can use to mea-
sure the efficacy of any practical solution. The second algo-
rithm, Synergy-TUNE, is fast and near-optimal (within 10%
of Synergy-OPT in evaluation). If a job to be scheduled does
not fit in the cluster along all the resource dimensions, we
revert the job demands to GPU-proportional if its current
demands are above it. If the job’s demands are already GPU-
proportional or below, then we find a suitable job in the cluster
with higher than GPU-proportional allocation, which is then
reverted to GPU-proportional. Synergy-TUNE also outper-
forms simpler greedy approaches (Synergy-GREEDY) that
recursively pack jobs along multiple resource dimensions
using a first-fit allocation strategy [20].

We implement a prototype of Synergy and an accompany-
ing event-driven simulator in Python. Synergy transparently
communicates with the DNN job using a thin iterator API,
that is a wrapper around the existing data iterator, thereby re-
quiring minimal code changes to the DNN job script. Across
various scheduling policies, and workload traces, we show
that Synergy improves cluster objectives such as average
JCT by up to 1.5× on a physical cluster of 32 GPUs. On
a large simulated cluster of up to 512 GPUs, Synergy im-
proves average JCT by up to 3.4×. Synergy is open sourced
at https://github.com/msr-fiddle/synergy.

In summary, our paper makes the following contributions.
• We identify the importance and need for resource-sensitive

scheduling of DNN jobs in multi-tenant GPU clusters (§2).
• We present Synergy, a resource-sensitivity aware sched-

uler that optimistically profiles the job’s resource demands
and performs disproportionate allocations such that no job
achieves lower than GPU-proportional throughput (§3).

• We present a heuristic scheduling mechanism Synergy-
TUNE, that maps the allocations calculated by the profiler
onto the cluster, while better utilizing the resources com-
pared to a GPU-proportional allocation (§4).

• In extensive experimentation on physical and simulated
clusters, Synergy’s techniques improve average JCT by up
to 3.4×, thus supporting a higher input load (§5).

580    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/msr-fiddle/synergy


(a) CPU sensitivity

CPU: SKUGPU

3:1 NVIDIA DGX-2
Internal servers at X

4:1 AWS p3.16xlarge

5:1 NVIDIA DGX-1
Azure NDv2

6:1 Azure NC24s_v3

(b) GPU VM SKUs

Figure 2: CPU sensitivity. This graph plots the epoch time for DNNs as we vary the CPU:GPU ratio for single-GPU training.
Some jobs such as Transformers need as few as 1 CPU core per GPU to achieve maximum training speed; others like ShuffleNet
need more than 12 CPU cores per GPU to eliminate data stalls. State-of-the-art GPU VMs have a CPU:GPU ratio as few as 3.

2 Background and Motivation

In this section, we briefly describe DNN scheduling, introduce
the terminology used in the rest of the paper, and motivate
resource-sensitive DNN cluster scheduling.

Scheduling ML training jobs in a cluster. Training a ML
model is a resource intensive and long-running task (order
of hours to days). Collocating ML training workloads in a
shared, multi-tenant cluster is a very common setup in several
large organizations, for both research and production [26,
35, 42, 46, 55]. Our work targets state-of-the-art multi-tenant
clusters similar to the ones published by prior large-scale
studies by organizations like Microsoft [31] and Alibaba [56].
These clusters use on-premise servers or cloud VMs with
pre-defined GPU, CPU, and memory resources. The cluster
itself is shared by multiple users and jobs, and each server
can host more than one job each with varying resource usage
(some heavy on CPU side pre-processing, while others heavy
on GPU computation). For example, a server with 8 GPUs
can host 8 single-GPU jobs from different users.

Scheduling policy and mechanism. When jobs are sub-
mitted to a scheduler, a scheduling policy such as First In,
First Out (FIFO) [51, 57], Shortest Remaining Time First
(SRTF) [12], Least Attained Service (LAS) [26,43], or Finish
Time Fairness (FTF) [35] decides the set of jobs (J) to be run
on the cluster. A scheduling mechanism then identifies where
job J should be run, and how much resources to allocate to
the job. The GPU demand for a job is fixed (requested by the
user), while the CPU and memory allocation is fungible.

GPU-proportional allocation. During DNN training, a mini-
batch of data is first fetched from storage to memory, where
it is cached for subsequent accesses. It is then pre-processed
at the CPU, and then copied over to the GPU for processing.
Existing DNN schedulers [26, 35, 42, 55], and those used in
real-world GPU clusters [5, 31], including recent schedulers
that offer GPU elasticity [30, 48], all allocate CPU and mem-

ory resources to a job using a GPU-proportional allocation.
For instance, consider a server with 4 GPUs, 16 CPUs and
200 GB memory. If a job requests 1 GPU, then it is allocated
4 CPUs and 50GB memory.

2.1 Motivation : Resource sensitivity

Insight. The main insight that motivates our work is that
DNNs co-scheduled on a cluster exhibit different levels of
sensitivity to CPU and memory allocations during training.
Therefore, it is possible to improve the overall cluster uti-
lization and efficiency by performing resource-sensitive al-
locations instead of the ubiquitously used GPU-proportional
allocation. Prior work on characterization study of jobs in
Microsoft’s Philly cluster [31] shows that CPU cycles are
under-utilized in multi-tenant clusters; we use this as moti-
vation to show that we can exploit the disparity in resource
requirements across jobs to improve overall cluster utilization
without any hardware upgrades (storage, CPU, or memory).

Figure 2a plots the per-epoch time for various DNNs when
trained on a single GPU by varying the number of CPUs al-
located to the job (ensuring that the dataset is fully cached
for each job). Figure 2a(i) shows that most image and speech
models are sensitive to CPU allocations; smaller models like
ShuffleNet and ResNet18 require 9–24 CPU cores per GPU
to pre-process data items. However, state-of-the-art ML opti-
mized servers and cloud GPU VMs have a CPU:GPU ratio as
few as 3 as shown in Table 2b [1–3, 6, 18, 34]. Increasing the
CPU:GPU ratio from 3 to 12 results in 3.1× faster training
for AlexNet, and increasing it to 9 results in 2.3× faster train-
ing for ResNet18. On the other hand, most language models
are insensitive to CPU allocations as shown in Figure 2a(ii).
This is because they have modest input data pre-processing
requirements. Transformer models for example, unlike image
classification models, do not perform several unique data aug-
mentation operations for each data item in every epoch [39].

Next, to understand the importance of memory alloca-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    581



Job Model
J1 ResNet18
J2 Audio-M5
J3 Transformer
J4 GNMT

Table 1: Example jobs

Server Job GPU CPU Mem

S1
J1 4 12 250
J2 4 12 250

S2
J3 4 12 250
J4 4 12 250

Table 2: GPU-proportional allocation

Server Job GPU CPU Mem

S1
J1 4 23 400
J3 4 1 100

S2
J2 4 12 450
J4 4 12 50

Table 3: Resource-sensitive allocation

Figure 3: Resource sensitive scheduling. We compare the
runtime of the jobs with two different schedules; GPU-
proportional and resource-sensitive. By allocating resources
disproportionately, CPU and memory sensitive jobs see in-
creased throughputs which reduces the average JCT by 1.5×.

tions, we train two models; an image classification model -
ResNet18 on OpenImages [22] and a language model GNMT
on WMT, with varying memory allocations on a server whose
GPU-proportional share of memory per GPU is 62GB. We
observe that GNMT is insensitive to memory allocation; even
if only 20GB memory is allocated (which is the required
process memory for training), the training throughput is unaf-
fected. However, increasing the memory from 62GB (GPU-
proportional allocation) to 500GB (max) for ResNet18 speeds
up training by almost 2×. This is because, language mod-
els like GNMT, and transformers are GPU compute bound.
Therefore, fetching data items from storage if they are not
available in memory does not affect training throughput. On
the other hand, image and speech models benefit from larger
DRAM caches. If a data item is not cached, the cost of fetch-
ing it from the storage device can introduce fetch stalls in
training [39, 40, 59].

Takeaway. When two jobs have to be scheduled on the same
server, it is possible to co-locate a CPU-sensitive job with
a CPU-insensitive one. This allows CPU allocation to be
performed in a resource-sensitive manner rather than GPU-
proportional allocation. Similarly, it is always beneficial to
pack a memory-sensitive job with an insensitive one, allowing
disproportionate resource-sensitive sharing of memory to
improve the aggregate cluster throughput.

Example. We now show how resource-sensitivity-aware
scheduling can improve cluster efficiency using a simple
example. We run the experiment on two physical servers
each with 8 GPUs, 24 CPUs and 500GB DRAM (internal
servers at a large cloud provider X). Let’s say we have 4 jobs
in the scheduling queue, each requesting 4 GPUs as shown
in Table 1. We consider two different schedules; (1) GPU-
proportional allocation and (2) resource-sensitive allocation.
The results of these schedules are shown in Table 2 and Ta-

ble 3. Figure 3 compares the epoch time of each of these jobs
in the two scenarios. The increased resource allocation to
CPU and memory sensitive jobs in Schedule 2 speeds up J1
and J2 significantly, while leaving the runtime of J3 and J4
unaffected. The average JCT in the cluster thus drops by 1.5×
due to resource-sensitive allocations.

2.2 Synergy Scheduling Policies
Synergy is not constrained to one particular scheduling pol-
icy, but is instead general enough to improve a wide range of
scheduling policies (e.g., LAS, FIFO, SRTF, FTF, etc), cre-
ating Synergy-augmented variants for all of them. The main
challenge that Synergy addresses is, finding an efficient par-
tition of available cluster CPU and memory among jobs to
maximize throughput while ensuring that every job’s through-
put is at least that of GPU-proportional allocation. Synergy ’s
innovation thus lies in exploiting the differences in resource
sensitivity across jobs to improve overall cluster metrics.

2.3 Assumptions & Limitations
In the context of this work, we explicitly highlight certain
practical assumptions, many of which are derived directly
from large multi-tenant clusters we analyze - homogeneous
clusters, fixed GPU allocation for the lifetime of a job, and
the use of MinIO cache. Synergy ’s design is not tied to these
assumptions, but it aids in focused profiling (reducing the
dimensionality of the search space). In a large scale, multi-
tenant, production cluster, it is practical to assume that there
are tens of thousands of accelerators per homogeneous clus-
ter, and the GPU allocation for a job remains constant. While
recent works explore scheduling DNN jobs in heterogeneous
clusters [11,33,42], and GPU elasticity [48], there are several
practical challenges in seamlessly supporting these features.
For instance, with elastic training, the impact of changing
batch sizes and hyperparameters on training accuracy is un-
clear for a wide variety of tasks. We provide a detailed dis-
cussion on the practicality of each of these assumptions made
by Synergy, and what it means to relax these assumptions for
Synergy in Section 6.

3 Synergy: Design

Overview. Synergy is a round-based scheduler that arbitrates
multi-dimensional resources (GPU, CPU, and memory) in a

582    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 4: Optimistic profiling empirically evaluates the sen-
sitivity of a model to varying # CPUs assuming a fully cached
dataset; the rest of the matrix is completed using estimation

homogeneous cluster. Synergy augments existing scheduling
policies with resource sensitivity in two steps. First, it identi-
fies the job’s best-case CPU and memory requirements using
optimistic profiling (§3.1). Synergy then identifies a set of
runnable jobs for the given round using a scheduling policy
(e.g., SRTF, FTF, LAS, etc) such that their collective GPU de-
mand is less than or equal to the GPUs available in the cluster.
Then, using the profiled resource demands, Synergy packs
these jobs on to the available servers along multiple resource
dimensions using a near-optimal heuristic algorithm ( §4).
At the end of a round, the set of runnable jobs are updated
using the scheduling policy, and their placement decisions are
recomputed. We now discuss both the components of Synergy
in detail. Note that Synergy only alters the auxiliary resource
allocations; GPU demands are left unaltered for the lifetime
of a job and are provided as inputs by the user.

3.1 Optimistic Profiling

A DNN job is profiled for its resource sensitivity once per
lifetime of the job, i.e. on job arrival. Each incoming job is
profiled by varying the CPU and memory allocated to the
job. A resource sensitivity matrix is then constructed for dis-
crete combinations of CPU and memory allocations as shown
in Figure 4. Since DNN training has a highly predictable
structure, empirically evaluating training throughput for a
few iterations gives a fair estimate of the actual job through-
put [39, 55].

It is easy to see that naively profiling different combinations
of CPU and memory can be very expensive. For instance, if
the cost of profiling one combination of CPU, and memory
for a job is 1 minute, then to profile all discrete combinations
of CPU and memory (assuming allocation in units of 50GB)
on a server with 24 CPUs and 500GB DRAM takes about
24*10 = 240 minutes (4 hours)!

To tackle this problem, Synergy introduces an optimistic
profiling technique that exploits the predictability in the re-
lationship between job throughput and memory allocation.
We observe that, with DNN-specific, application-level caches
like MinIO [39], it is easy to model the job throughput be-
haviour as we vary the amount of memory allocated to a job
at fixed CPU allocation. This is because, MinIO ensures that

a job gets a fixed number of cache hits per epoch. Synergy
makes a conscious decision to use application-level MinIO
cache instead of Page Cache because MinIO provides mem-
ory isolation across independent jobs sharing the machine. If
we do not use MinIO, we will have to profile the model at
discrete memory allocations which could result in increased
profiling costs, and also potentially change the trends in pro-
filing matrix. However, the use of MinIO in Synergy makes
cache performance predictable and hence reduces Synergy ’s
profiling costs – allowing optimistic profiling.

For a given CPU allocation that determines the pre-
processing speed, and a known storage bandwidth, it is easy
to analytically model the job throughput for varying mem-
ory allocation. Therefore, we only need to empirically profile
the job for varying CPU values at full memory allocation as
shown in Figure 4. All the other entries can be estimated using
the above technique. This leads to a 10× reduction in profil-
ing time, bringing it down to 24 minutes! We experimentally
validate this in Figure 5a. For a 8-GPU ResNet18 job, we
compare the modeled job throughput using Synergy to the
empirical results obtained by training the job for 2 epochs
with varying memory allocations. As we see in Figure 5a,
Synergy’s estimations are within 3% of the empirical results,
without having to actually run the model.

To further optimize profiling time, we observe that we do
not require exact throughput values for a job with varying
CPU allocations. We instead need a curve depicting the em-
pirical job throughput. Therefore, instead of profiling the job
for all possible CPU values, we pick discrete points for CPU
profiling using the following algorithm. We start with the
maximum CPU allocation and do a binary search on the CPU
values to estimate job throughput. If the profiled point re-
sulted in a throughput improvement that is less than a fixed
threshold (say 10%), then we continue binary search on the
lower half of CPU values, else we profile more points on the
upper half. The idea here is to empirically profile CPU regions
that show significant difference in job throughput, while skip
those regions with little to no improvement in throughput. We
experimentally show the efficacy of our CPU profiling tech-
nique in Fig 5b for a 1-GPU ResNet18 job. We compare the
normalized job runtime (wrt 1 CPU) using empirical results
averaged over 2 epochs of the job and Synergy’s optimistic
profiling averaged over 50 iterations (approximately, a minute
per profile). Synergy is able to mimic the empirical job per-
formance very closely, in under 8 minutes (using just 8 CPU
profile points instead of 24). We believe that this is a reason-
able overhead as it is incurred only once per lifetime of the
job, which typically runs for hours.

After profiling a job on arrival, the job along with its re-
source sensitivity matrix is enqueued into the main schedul-
ing queue, from which the scheduling policy picks a set of
runnable jobs every round.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    583



(a) Memory Validation (b) CPU validation

Figure 5: Optimistic profiling. The graphs compare the pro-
filing results to empirical runs for ResNet18

3.2 Scheduling mechanism
Synergy performs round-based scheduling. At the beginning
of each scheduling round, Synergy identifies a set of runnable
jobs from the scheduling queue that can be packed on the
cluster in the current round duration using a scheduling policy
such as FIFO, SRTF, LAS, or FTF. Using the resource sen-
sitivity matrix, Synergy packs these jobs onto the available
servers in the cluster while satisfying the multi-dimensional
resource constraints as opposed to simply performing a GPU-
proportional allocation .

Job demand vector. To pack the jobs onto servers, we first
construct a job demand vector that indicates the GPU demand,
and best-case CPU and memory requirements for the job. We
identify the best-case values using the resource sensitivity
matrix. We pick the minimum value of CPU and memory that
saturates the job throughput.

Packing a job with multi-dimensional resource demands is
analogous to multi-dimensional bin packing problem which
is NP hard [53]. Therefore, we first evaluate the efficacy of a
naive greedy scheduling mechanism as an approximation to
tackle the multi-dimensional resource allocation problem.

3.3 Synergy-GREEDY: Greedy Scheduling
A naive greedy multi-resource packing algorithm translates to
a first-fit approximation of the multi-dimensional bin packing
problem [20]. Given a job demand vector, the greedy algo-
rithm picks the next runnable job decided by the scheduling
policy, and places it on the server that can satisfy the job’s
demands in all dimensions. If no such server exists, the job
is skipped over for this round and the next runnable job is
checked for schedulability. Synergy-GREEDY thus introduces
two major problems in the cluster -
• It can result in auxiliary resources being exhausted by

jobs, while leaving GPUs underutilized, and fragmented.
We show that GPU fragmentation in Synergy-GREEDY
severely degrades cluster objectives (5.4).
• It also hurts the fairness of the scheduling policy as some

jobs can be skipped over for a long time if their resource
demands cannot be satisfied in the cluster.

The challenge ahead of us is to design a scheduling mecha-
nism that eliminates GPU under-utilization due to fragmenta-
tion, and upholds the fairness properties of the given schedul-
ing policy, while performing multi-dimensional resource al-
location. Before we come up with a heuristic scheduling
approach to tackle the above problems, one pertinent question
is to understand how good is the allocation produced by our
heuristic when compared to an optimal solution.

To this end, we first formulate a theoretical upper bound
on the optimal throughput achieved by the cluster given a set
of jobs and their resource sensitivity profiles. We then discuss
the challenges associated with materializing the optimal allo-
cation on a physical cluster and introduce Synergy-TUNE, an
empirically close-to-optimal heuristic solution.

4 Scheduling Algorithms

We first present our formulation of an optimal allocation that
provides an upper bound on the achievable cluster throughput.

4.1 Synergy-OPT

Our goal is to allocate CPU and memory to each job so as to
maximize overall throughput, while guaranteeing that each
job makes at least as much progress as it would do if we allo-
cate its GPU-proportional share. It is not hard to show that
our problem is NP-hard. So, we resort to finding approximate
solutions using LP formulation. To find an upperbound on
achievable throughput, we solve two LPs. In the interest of
space, we describe the first LP formulation here, and sum-
marize the challenges in operationalizing Synergy-OPT. A
complete description of Synergy-OPT formulation and proof
can be found in the extended version [38]. While the focus
of this work is on homogeneous cluster, we show how our
formulation can be extended to a heterogeneous GPU cluster
in the extended version of the paper [38].

4.1.1 Finding ideal allocation

First, we assume an idealized setting: all the CPU and memory
available across all the machines is present in one (super)
machine. Say there are a total of s homogeneous machines in
the cluster. We assume that, there is only one machine with
G units of GPU, C units of CPU, and M units of memory.
Note that, in reality Gi, Ci, and Mi denote the total GPU,
CPU, and memory in each machine i, which is G/s, C/s, and
M/s respectively in a homogeneous cluster. Based on this
assumption, we find the ideal CPU (c∗j ) and memory (m∗j )
allocation for every job j (whose GPU demand is denoted by
g j) in the set of runnable jobs (Jt ) for a round.

The variables of our LP are denoted by y{c,m, j}, which
should be interpreted as follows. If for a job j∈ Jt , y{c,m, j}= 1,
then it means that in the LP solution c units of CPU and
m units of memory are allocated. We further note that for

584    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



every job j, there is a variable y{c,m, j} for for every possible
allocation of CPU and memory. We consider these variables
in the discrete space as identified by our resource sensitivity
matrix (Wj). Wj[c,m] denotes the amount of progress made
by job j per round if c units of CPU and m units of (RAM)
memory are allocated to job j. For each machine i ∈ [s], we
denote Cg,Mg as the GPU-proportional allocation of CPU and
memory. That is, Cg =Ci/Gi ∗g j and Mg = Mi/Gi ∗g j. With
a baseline GPU-proportional allocation strategy the progress
a job makes in each round is equal to W [Cg,Mg].

Our objective function is to maximize the throughput. We
formulate it as follows using our LP variables.

Maximize ∑
j∈Jt

∑
[c,m]

Wj[c,m] · y{c,m, j} (1)

Now, we enforce constraints such that LP solution is feasible
in the idealized setting we talked about.
• Total CPU and memory allocated to jobs is no more than

the total capacity available:

∑
j∈Jt

∑
[c,m]

c · y{c,m, j} ≤C (2)

∑
j∈Jt

∑
[c,m]

m · y{c,m, j} ≤M (3)

• We want the LP to allocate only one configuration of
CPU and memory to each job.

∀j ∈ Jt : ∑
[c,m]

y{c,m, j} = 1 (4)

• LP solution is atleast as good as the fair allocation.

∀j ∈ Jt : ∑
[c,m]

Wj[c,m] · y{c,m, j} ≥Wj[Cg,Mg] (5)

Theorem 4.1. Throughput achieved by LP(1-5) is at least the
throughput achieved by an optimal solution to our problem.

Proof. Consider an optimal solution O to our problem. Sup-
pose job j receives c∗ units of CPU and m∗ units of memory
in O. Then we define the following feasible solution to our
LP (1-5): Set yc∗,m∗, j = 1. Clearly, this is a valid solution and
satisfies constraints (1-4).

In our experiments, we solve this as a Integer Linear Pro-
gram (ILP) where y{c,m, j} takes boolean values. For every job,
we define the total CPU (c∗j ) and memory (m∗j ) allocated by
the optimal ILP solution as follows.

For each job j, define c∗j := c if y{c,m, j}==1. (6)

and m∗j := m if y{c,m, j}==1. (7)

4.1.2 Feasible Allocation on Multiple Machines

Recall that in the LP(1-5), we assumed that all the resources
are present on a single machine. In reality, since these re-
sources are spread across machines, we find a feasible allo-
cation on multiple machines by solving a second LP. The
objective here is to minimize the number of jobs that get frag-
mented to account for the communication overhead when jobs
are split across machines. The variables of the second LP are
denoted by xi, j. Here index i denotes the machine and j de-
notes the job. If xi, j = 1, it means that resources of job j (that
g j units of GPU, c∗j units of CPU, and m∗j units of memory)
are allocated on machine i. Note that xi, j can be fractional;
if so, then job j is split across multiple machines. We can
prove that the solution to the second LP ensures that the total
number of jobs that get fragmented is at most 3s. Detailed
formulation is in the extended version of the paper [38].

4.1.3 Challenges with operationalizing Synergy-OPT

While the allocations identified by Synergy-OPT provides an
upper bound on the optimal cluster throughput, it is challeng-
ing to materialize these allocations in the real world due to
two main reasons;
• Solving two LPs per scheduling round is computation-

ally expensive. As cluster size and the number of jobs per
round increases, the time to find an optimal allocation
increases exponentially (§5.6)
• The allocation matrix obtained with the second LP can

result in fractional GPU allocations when jobs are split
across servers; for instance, a valid allocation might as-
sign 3.3 GPUs on server 1 and 2.7 GPUs on server 2
for a 6 GPU job. Realizing such an allocation requires a
heuristic rounding off strategy to ensure non-fractional
GPU allocations, as GPU time or space sharing, and its
impact on job performance is considered beyond the
scope of this work.

4.2 Synergy-TUNE

We now describe Synergy-TUNE, our heuristic scheduling
mechanism. Our goal is to design a scheduling mechanism
that performs multi-dimensional resource allocation for DNN
jobs, where the GPU demand is fixed, but the auxiliary re-
source allocations are fungible. In doing so, we want to ensure
that (1) we do not affect the fairness properties of the schedul-
ing policy used, (2) the expensive GPU resources are not
underutilized.

Allocation Requirements. Synergy-TUNE’s allocation must
satisfy the following requirements.
• The GPU, CPU, and memory resources requested by a

single-GPU job must all be allocated on the same server.
• A multi-GPU distributed-training job can either be consol-

idated on one machine, or split across multiple machines.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    585



In the latter case, the CPU and memory allocations must
be proportional to GPU allocations across servers. For in-
stance, if a job requires (2GPU, 12 CPU, 300GB DRAM),
then while splitting it across two servers, we need to en-
sure that each server gets (1GPU, 6CPU, 150GB DRAM).
This is because, multi-GPU jobs train on a separate process
on each GPU, and synchronize at regular intervals, i.e., af-
ter one or many iterations. The job performance will vary
across processes if each GPU does not get the same ratio
of resources, and will eventually proceed at the speed of
the process with the lowest allocation of CPU and memory.
In a multi-tenant cluster, while carving out resources such

as CPUs and memory for jobs, it is import to enforce fairness
in terms of throughput achieved by individual jobs. We need
to ensure that no job runs at a throughput lower than what
it would have achieved if we allocated a GPU-proportional
share of CPU and memory resources. Additionally, we need to
respect the priority order of jobs identified by the scheduling
policy. For instance, a FIFO scheduling policy can be im-
plemented using a priority queue sorted by job arrival times.
Synergy-TUNE identifies a set of runnable jobs for a round
as the top n jobs from the scheduling queue, whose GPU de-
mands can be exactly satisfied by the available servers in the
cluster. Synergy-TUNE picks this runnable job set irrespec-
tive of the job’s other resource demands - which are fungible.
Note that, unlike Synergy-GREEDY, we do not skip over any
jobs unless it cannot be scheduled (GPU demand cannot be
met). Therefore, we never underutilize the GPUs when the
cluster is at full load.

Next, Synergy-TUNE greedily packs each of these runnable
jobs along multiple resource dimensions on one of the avail-
able servers, with the objective of minimizing fragmentation.
To achieve this, Synergy-TUNE sorts the runnable jobs by
their GPU demands, followed by CPU, and memory demand.
For each job j in order, Synergy-TUNE then picks the server
with the least amount of free resources just enough to fit the
demand vector of j. If it is a multi-GPU job, then we find a
minimum set of servers with sufficient GPU availability that
can fit the job’s demands in entirety. However, it is possible
that the job cannot fit in the cluster along all dimensions. In
such a case,
1. We check if the job’s demand vector is greater than pro-
portional share of resources, In this case, we switch the job’s
demand to GPU-proportional share and retry.

2. If the job still does not fit the cluster, or if the job’s demand
vector was less than or equal to GPU proportional allocation
in step (1), then, we do the following.

(a) We repeat step (1) ignoring the job’s CPU and memory
requirements. We find a server that can just satisfy the
job’s GPU requirements. We know by construction that
there is atleast one job on this server, which is allocated
more than GPU-proportional share of resources. We
identify the job or a set of jobs (Js) on this server by

switching whom to GPU-proportional share, we can
release just as much resources required by the current
job j. We switch the jobs in Js to fair-share and by
design, job j will fit this server.

(b) We continue this recursively for all runnable jobs.

In the worst case, all the running jobs in a round could
be allocated GPU-proportional share of resources. Therefore,
Synergy ensures that its allocations results in job throughputs
that are never worse than GPU-proportional allocation. In
§5.6, we empirically compare Synergy-TUNE to Synergy-
OPT showing that it is practical and near-optimal.

4.3 Implementation

We implement Synergy and an associated simulator in Python.
Our scheduler is event-driven. There is a global event queue
where job arrivals, schedule events, and deploy events are
queued. These events are handled in the order of their arrival
time. There is a priority job queue, where all the jobs arriving
into the cluster are added, post profiling. This queue is sorted
by the priorty metric decided by the scheduling policy; for
instance, SRTF sorts the jobs in the order of job remaining
time.

When a schedule event occurs, the scheduler collects a
list of runnable jobs from the job queue and identifies the
appropriate placement for these jobs for the following round,
either using Synergy-GREEDY, Synergy-TUNE or Synergy-
OPT. Then when a deploy event is triggered, these allocations
are deployed on to the cluster. By default, every job requests
for a lease update to continue running on the same server [42].
The scheduler then either grants a lease update or terminates
the lease for the job, adding it back to the job queue.

The scheduler and the DNN jobs interact via a thin API
provided by the Synergy data iterator. DNN job scripts must
be updated to call the Synergy iterator which is a wrapper
around the default PyTorch [8] and DALI [7] iterators. The
iterator handles registering the job with the scheduler, and
appropriately sending lease updates. It also checkpoints the
job to a shared storage if its lease is terminated. The iterator
also synchronizes across GPU processes for a multi-GPU job
to ensure that each process makes identical progress. We use
gRPC [4] to communicate between the scheduler and the jobs.

We implement Synergy-OPT in cvxpy [19] for use in our
simulator. The optimistic profiling module is also imple-
mented in Python, and it profiles the incoming jobs hooked
to the Synergy iterator, prior to the job’s initial addition to the
scheduling queue (a one time overhead for each job).

5 Evaluation

In this section, we use trace-driven simulations from produc-
tion cluster traces, and physical cluster deployment to evaluate

586    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Task Model Dataset

Image

Shufflenetv2 [58]

ImageNet [49]
AlexNet [32]

Resnet18 [28]
MobileNetv2 [50]

ResNet50 [28]

Language
GNMT [54] WMT16 [9]
LSTM [47] Wikitext-2 [36]

Transformer-XL [16] Wikitext-103 [36]

Speech M5 [15] Free Music [17]
DeepSpeech [27] LibriSpeech [45]

Table 4: Models used in this work.

the efficacy of Synergy. Our evaluation seeks to answer the
following questions.
• Does Synergy’s resource-sensitive scheduling improve

cluster objectives such as makespan and average JCT in
a physical cluster (§5.2) and in trace-driven simulations
of large-scale clusters (§5.3) ?
• How does Synergy-TUNE and Synergy-GREEDY per-

form with different workload splits and how well do they
utilize available resources (§5.4)?
• How does Synergy perform on different CPU:GPU ratios

(§5.5)?
• Compare Synergy-TUNE to Synergy-OPT (§5.6)?
• Compare Synergy to big data schedulers (§5.7)?

5.1 Experimental setup

Clusters. Our experiments run on both a physical and a large
simulated, homogeneous cluster. Our experiments are per-
formed on state-of-the-art internal servers at Microsoft - these
servers are part of a larger multi-tenant cluster. We run phys-
ical cluster experiments on a cluster with 32 V100 GPUs
across 4 servers. Each server has 500GB DRAM, 24 CPU
cores, and 8 GPUs. Unless otherwise specified, our experi-
ments assume a CPU:GPU ratio of 3 and fair-share memory
allocation of 62.5GB per GPU, matching the server configu-
rations above. For simulations, we assume two cluster sizes;
a 128 GPU cluster across 16 servers and a 512 GPU clus-
ter across 64 machines, where each machine resembles the
physical server configuration mentioned above.

Models. Our experiments consider 10 different DNNs (CNNs,
RNNs, and LSTMs) as shown in Table 4. We categorize these
models by task (image, language, and speech) and assign a cer-
tain weight to these tasks in our traces. We call this a workload
split. For instance, if the split for a given trace is (30,40,30),
then the percentage of image, language, and speech models
in the job trace is 30%, 40% and 30% respectively. All exper-
iments are performed on PyTorch 1.1.0.

Traces. We run our physical and simulated experiments using
publicly available production traces from Microsoft Philly
cluster [5].We show evaluation with the actual Philly trace
preserving the job GPU demand, arrival time, and duration,

Policy Workload Mechanism Time (hrs)
(Metric) Split Deploy Simulate

FIFO
(Makespan) 60-30-10 Proportional 16 15.67

Tune 11.6 11.33
Opt - 11.01

SRTF
(Avg JCT) 30-60-10 Proportional 4.81 4.52

Tune 3.21 3.19
Opt - 3.06

SRTF
(99 Percentile

JCT)

30-60-10 Proportional 17.32 16.85
Tune 8.59 8.54
Opt - 8.21

Table 5: Physical cluster experiments. This table compares
the makespan, average JCT, and 99th percentile JCT for two
different traces; (1) a static trace using FIFO (2) a dynamic
trace using SRTF. Synergy-TUNE improves makespan by
1.4×, average JCT by 1.5 × and 99th percentile JCT by 2×.

on a cluster of 512 GPUs in §5.3.1. We use a subrange of the
trace containing 8000 jobs.

However, to comprehensively evaluate how Synergy re-
acts to varying cluster load, workload composition, and job
duration, for all other experiments, we construct a production-
derived trace as follows: we extract job GPU demand from
the Philly trace and assign a model based on the chosen split.
We then appropriately scale the job runtime and arrival time
for the chosen cluster size, while keeping the job duration
distribution similar to the one in Philly trace as follows:
• Duration. The duration of each job for the baseline

GPU-proportional allocation is sampled from an expo-
nential distribution: the job duration is set to 10x minutes,
where x is drawn uniformly from [1.5,3] with 80% prob-
ability, and from [3,4] with 20% probability similar to
the trace duration used in prior work [42].
• Arrival. We classify derived traces into two kinds based

on the job arrival time : (1) a static trace where all the
jobs arrive at the start of the workload, and (2) a dynamic
trace, where the job arrival time is determined by load, a
Poisson distribution at a rate λ.

The derived traces with varying job arrival rates uses a 128
GPU cluster. In both cases, we report the average metrics such
as JCT across a set of 1000 jobs in steady state.

For the physical cluster experiment, we choose a fixed ar-
rival rate for the derived trace that keeps our cluster at full
load (GPU demand of all runnable jobs > available GPUs
in the cluster). For the simulated experiments, we vary the
load λ on the cluster to evaluate its impact on cluster metrics.
For the simulated experiments, we show results for two trace
categories - (1) all jobs request single-GPU (2) multi-GPU
distributed training jobs that request upto 16 GPUs.

Policies and metrics. We evaluate Synergy against GPU-
proportional scheduling for 4 different scheduling polices;
FIFO, SRTF, LAS, and FTF. For a static trace, we measure
makespan (time to complete all jobs submitted at the begin-
ning of the trace) and for the dynamic job traces, we measure

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    587



Avg JCT(hrs)
Policy SRTF LAS FIFO

GPU-prop. 30 32 71
Synergy 26 28 62

(a) Average JCT with Synergy

JCT (hrs) Short Long

Avg Prop. 2 80
Synergy 1.7 68

99p Prop. 9 660
Synergy 4 641

(b) Cluster metrics (SRTF) (c) JCT speedup across jobs
Figure 6: Evaluation on Philly Trace. On a real production trace, Synergy improves avg JCT across a range of scheduling
policies over GPU-proportional scheduling. The JCT of individual jobs improves by upto 9× with Synergy.

(a) LAS (multi) (b) CDF of JCT at load 4 (short) (c) CDF of JCT at load 4 (long)
Figure 7: Average JCT and CDF of long and short jobs for LAS policy.

(a) SRTF (multi) (b) CDF of JCT at load 5.5 (short) (c) CDF of JCT at load 5.5 (long)
Figure 8: Average JCT and CDF of long and short jobs for SRTF policy.

the average job completion time (JCT) of a subset of jobs in
steady state (cluster at full load), and their CDF.

5.2 End-to-End Physical Cluster Experiments

For the physical cluster experiments, we run a Synergy-TUNE
(tune) and GPU-proportional allocation (proportional) for
two different workload traces. (1) A static production-derived
trace of 100 jobs with a split (60,30,10), scheduled using
FIFO and evaluated for makespan. (2) A dynamic production-
derived trace with continuous job arrivals and a split of
(30,60,10), scheduled using SRTF and evaluated for average
and 99th percentile JCT. Both scenarios use an appropriately
sized trace that keeps the cluster fully loaded. We compare
the obtained results to that of the simulator by replaying the
same trace. Additionally, we compare our metrics to the upper
bound generated by the optimal solution, Synergy-OPT (opt).
The results are shown in Table 5.

Synergy-TUNE reduces the makespan of static trace by
1.4× when compared to GPU-proportional allocation. For

the dynamic trace, Synergy-TUNE reduces average JCT of
steady-state jobs by 1.5× while reducing the 99th percentile
JCT of these jobs by 2× as shown in Table 5.

We compare the observed results from physical experi-
ments to the same trace replayed on our simulator. As shown
in Table 5, the difference between metrics in real and sim-
ulated clusters are less than 5%, demonstrating the fidelity
of the simulator. We also see from Table 5 that the cluster
objectives achieved by Synergy-TUNE are within 4% of the
optimal solution in this case. We do not deploy the optimal
allocations due to the challenges enumerated in §4.1.3

5.3 End-to-end results in simulation
5.3.1 Simulation with production traces

We run simulated experiments on a cluster of 512 GPUs across
64 servers using a subrange of the publicly available Philly
trace published by Microsoft [5]. We assume a workload split
of (20,70,10) for this trial. Table 6a lists the average JCT with
Synergy and GPU-proportional scheduling for three differ-

588    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



(a) FIFO (single) (b) CDF (9 jobs/hr)

Figure 9: Average JCT and CDF for FIFO. Synergy im-
proves the average JCT significantly compared to alllocation
for varying cluster load. At a load of 9 jobs/hr, Synergy re-
duces average JCT from 81hrs to 22hrs, which is close to the
upperbound of 20hrs predicted by Synergy-OPT.

ent scheduling policies. Across all policies, Synergy is able
to reduce the average JCT compared to GPU-proportional
scheduling due to better split of resources between jobs. The
gains in Synergy can be attributed to reallocating the underuti-
lized resources from a job to a different, resource-sensitive job
whose throughput can improve with the increased allocation.

We show a detailed overview of the average and 99th per-
centile JCT for SRTF policy in Table 6b.We split the set of
1000 monitored jobs into short (JCT < 4 hrs) and long jobs.
Synergy reduces the tail of the distribution by 2.2× for short
jobs and the average JCT of both long and short jobs by 15%.
For each of the 1000 monitored jobs, we plot the individual
job speedup with respect to GPU-proportional scheduling in
Figure 6c. We see that Synergy speeds up jobs by upto 9×
using better resource allocations.

5.3.2 Simulation with varying load

We run simulated experiments on a cluster of 128 GPUs across
16 servers using production-derived traces. We evaluate Syn-
ergy against GPU-proportional allocation mechanism for 4
different scheduling policies - FIFO, SRTF, LAS and FTF. We
run dynamic workload traces, where jobs arrive continuously
at a rate governed by a Poisson distribution. We show results
for both single-GPU traces (where all jobs request 1 GPU)
and multi-GPU traces (where jobs request upto 16 GPUs).
Our metric of evaluation is the average JCT of a set of 1000
jobs in cluster steady state.

We show the results for three scenarios : LAS (multi-GPU
trace) in Figure 7, SRTF (multi-GPU trace) in Figure 8, and
FIFO (single GPU trace) in Figure 9. In all cases, we assume
a workload split of (20,70,10). We plot both average JCT and
the CDF of job completion times for a specific cluster load
in both scenarios. For the multi-GPU trace, we split the CDF
into those for short and long jobs to distinctly differentiate
the tail of the distribution. We make three key observations.

First, Synergy-TUNE improves average JCT by up to 3.4×
in the single-GPU trace, and up to 1.6× in the multi-GPU
trace by speeding up resource sensitive jobs with dispropor-
tionate allocation. The improvement in average JCT is higher

(a) GPU utilization (b) CPU utilization
Figure 10: Cluster resource utilization

as the load increases, because at low load the cluster is not at
full capacity. As load increases, jobs start to get queued and in-
cur queuing delay before being scheduled on the cluster. Since
Synergy significantly speeds up individual jobs using dispro-
portionate resource allocation, pending jobs can get sched-
uled faster, thereby reducing their queuing delays. Therefore
Synergy improves cluster metrics by both reducing qeuing
delays and speeding up individual jobs. Note that, in GPU-
proportional allocation, at higher loads, all CPUs and memory
in the system are allocated to the running jobs but they can
still be underutilized by individual jobs. We show later in Fig-
ure 10b, how Synergy’s resource-sensitivity aware allocation
improves CPU utilization in the system compared to GPU-
proportional allocation. At low load, jobs are spread across
the cluster and the unallocated CPU and memory is assigned
to the jobs that benefit from additional auxiliary resources.
Second, Synergy-TUNE is able to sustain a larger cluster load
than GPU-proportional allocation. For multi-GPU scheduling
with LAS, Synergy-TUNE reduced the 95th percentile JCT
of long jobs by 2×. Third, the average JCT achieved with
Synergy-TUNE is within 10% of the optimal solution in all
cases.

Similarly, for FTF scheduling policy, Synergy-TUNE ob-
served 2.3× and 2× improvement in average JCT for a single-
GPU and multi-GPU trace respectively.

5.4 Impact of workload split
Workload split decides the percentage of resource sensitive
jobs in the workload. As the percentage of speech and im-
age models increase in the trace, there may not be enough
spare CPU and memory resources to perform disproportion-
ate allocation, as they are mostly CPU- and memory-hungry.
Figure 11 plots the average JCT with varying load for 3 dif-
ferent workload splits with FIFO scheduling for multi-GPU
jobs. As the percentage of resource-sensitive jobs increase, we
observe that Synergy-GREEDY breaks down, and ends up de-
grading JCTs significantly compared to a GPU-proportional
allocation. This is because, the naive greedy technique results
in resource fragmentation when the demand along CPU and
memory dimensions are high, leaving several GPUs underuti-
lized. Whereas, by the design of Synergy-TUNE, it allocates
at least as many resources required to achieve the throughput
of GPU-proportional allocation; therefore, even in the worst
case workload split shown in Figure 11c, where all the jobs

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    589



(a) Split=(20,70,10) (b) Split=(33,33,33) (c) Split=(50,0,50)
Figure 11: Evaluation of Synergy with varying workload split

(a) Ratio 4 (b) Ratio 5 (c) Ratio 6
Figure 12: Evaluation of Synergy across different CPU:GPU Ratio

are CPU- and memory-sensitive, Synergy-TUNE performs as
good as GPU-proportional allocation.

Resource utilization. Figure 10a plots the GPU allocation
over time for the workload in Figure 11c at a load of 5.5
jobs/hr where the cluster GPU demand is higher than 100%.
While Synergy-TUNE is able to sustain a higher load by fin-
ishing jobs faster, Synergy-GREEDY severely under-utilizes
GPU resources throughout the workload, trading it off for
higher CPU and memory allocation. At low loads, as shown
in Figure 10b, GPU-proportional allocation only utilized 60%
of the available CPU resources, while Synergy-TUNE utilized
it up to a 90%, resulting in 1.5× lower average JCT.

5.5 Impact of CPU:GPU ratio
While our prior experiments assume a CPU:GPU ratio of 3
(similar to the NVIDIA DGX-2), Figure 12 plots the aver-
age JCT for a FIFO scheduler on a single-GPU trace as we
increase cluster load and vary the CPU:GPU ratio from 4
to 6 (corresponding to other server SKUs in Table 2b). As
the CPU:GPU ratio in a server increases, the baseline GPU-
proportional scheduler gets more CPU cores per GPU, thereby
reducing data stalls in the baseline. This in turn, reduces the
gap between GPU-proportional and Synergy-TUNE. Despite
that, at a load of 9 jobs/hr, Synergy-TUNE lowers the avg JCT
by 3.4×, 3×, 2.2×, and 1.8× for a CPU:GPU ratio for 3, 4, 5
and 6 respectively.

5.6 Comparison to Synergy-OPT

Calculating optimal allocations for every scheduling round
with Synergy-OPT can be quite expensive, especially for large

Figure 13: Comparison to big data scheduling policies

cluster sizes. We experimentally validated that the time taken
for per-round allocations for Synergy-OPT increases expo-
nentially with increasing cluster sizes, while that for Synergy-
TUNE is hardly a second. We also show experimentally that
the allocations given by Synergy-TUNE are close to those
estimated by Synergy-OPT in §5.2 and §5.3.2. For a cluster
size of 128 GPUs used in our experiments, Synergy-TUNE
converges at allocations that are within 10% of the optimal
value, 200× faster than Synergy-OPT.

5.7 Comparison to DRF and Tetris

Big data schedulers like Dominant Resource Fairness
(DRF) [21] and Tetris [23] have explored multi-dimensional
resource allocation for map-reduce jobs. DNN jobs have dif-
ferent properties when compared to big-data jobs. DNN jobs
are gang-scheduled, meaning they can run only when all the
GPUs requested by them are available on the cluster at once.
Further, the auxiliary resource requirements like CPU and
memory are fungible unlike the GPU demand. DRF and Tetris
assume resources to be statically allocated throughout the life-

590    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



time of a job, whereas Synergy assumes these resources to be
fungible and could result in varied allocations throughout the
lifetime of a DNN job. Furthermore, profiling the DNN job’s
resource demands is unique to Synergy; big data schedulers
assume that the job request already encodes resource demands
across all dimensions. To evaluate Synergy against these poli-
cies, we assume that the best-case resource requirement for
CPU and memory is fed as input to the bigdata scheduling
policies using Synergy’s profiling mechanism.

On a cluster of 128 GPUs, we evaluate these policies on
two different workload compositions : W1 (20,70,10), and
W2 (50,0,50) and compare the naive policy with its Synergy-
variant, which allows resource tuning. W1 represents a work-
load split with a good mix of resource-sensitive as well as
resource-insensitive jobs. W2 is a workload dominated by
resource-sensitive jobs, which is one of the worst-case scenar-
ios for multi-dimensional scheduling as it could lead to GPU
fragmentation (explained in §5.4)

We plot the results in Figure 13. Tuning resource allocation
across jobs using Synergy reduced the average JCT of DRF
by 7.2× and that of Tetris by 1.8× for the workload split W2.
This is because Synergy is able to allocate auxiliary resources
in a fungible-manner every round, whereas the big-data sched-
uler’s static allocations performs similar to greedy techniques,
resulting in GPU fragmentation, and thereby degrading the
overall cluster metrics. Synergy performs the best in each
scenario as it uses the best-case resource demands of jobs to
perform fungible, disproportionate allocation.

6 Discussion and Future Work

In this section, we elaborate on some of the assumptions made
by Synergy, derived from our experiences with large scale
deployed cluster schedulers at Microsoft, and discuss what
happens if these assumptions are relaxed.

Homogeneous clusters. Scheduling in Synergy assumes that
the GPU cluster is homogeneous. This assumption is based
on the practical observation that our clusters have thousands
of accelerators per homogeneous cluster [5]. While there is
heterogeneity in hardware across clusters, it is often the case
that users select one homogeneous cluster to run their job in
production. For instance, a production cluster could have two
homogeneous virtual clusters (VCs), each comprising of a
specific generation of GPU. Each VC is managed separately,
and assigned to a specific task - training or inference, for pre-
dictable performance. While recent works have explored the
impact of blurring these boundaries and scheduling across
heterogeneous hardware [11, 33, 42], such co-scheduling
poses several practical challenges [52]. For example, some
tasks such as low-latency inference are business-critical, user-
facing applications which need to run on specific hardware,
and need data isolation. Others have specific GPU memory re-
quirements, or need advanced hardware features like NVLink.

Hence, users in our production settings specify a specific in-
stance type to run each of their jobs on. Hence it is useful for
a scheduler to optimize resource utilization in the context of
homogeneous clusters. That said, Synergy ’s ideas can also
be extended to a heterogeneous cluster by profiling CPU and
memory requirements along an additional dimension - GPU
type, at an additional profiling cost. The optimal algorithm can
then maximize throughput based on a 3-dimensional resource-
sensitivity matrix Wj. We present the formulation for this in
the extended version of the paper [38].

Use of MinIO. Synergy assumes the use of MinIO [39] be-
cause it is a DNN-aware caching mechanism that outper-
forms traditional OS page caching and allows performance
predictability. It provides resource isolation and reduces stor-
age fetch stalls [39]. If we do not use MinIO, we will have to
profile the model at discrete memory allocations which will
increase the profiling costs, and also potentially change the
trends in profiling matrix.

Preprocessing overhead. Preprocessing for vision tasks in-
cludes random cropping and transformations of the image
in the critical path. Reusing the same transformed images
across epochs hurts accuracy [34, 37, 39], whereas it is practi-
cally infeasible to pre-process offline due to the prohibitive
storage cost (dataset size * epochs). It is possible to alter the
extent of CPU intensiveness by varying the number of aug-
mentations performed. In this work, we have assumed that
the augmentations required for each model are as specified by
the published models themselves and we do not change this
so as to not affect accuracy. On the horizon, we do observe re-
cent schemes such as RandAugment [14], AutoAugment [13]
which consider more computationally-intensive augmentation
schemes (and associated accuracy gains). Such a rising trend
in extreme preprocessing, makes a strong case for a system
like Synergy.

Sharing storage and network. In our paper, we show how
to reallocate CPUs and memory across jobs resident on the
same server, for example, by co-locating a CPU-intensive
task with a non CPU-intensive task. For our DNN training
jobs, we assume that a dataset is downloaded locally and
loaded into server memory when the job is started (con-
strained by the memory allocation limits). Prior work has
similarly looked at co-locating network-intensive jobs with
non network-intensive jobs [26, 35], but unlike Synergy, re-
allocation of shared network bandwidth is not explicitly han-
dled by those schedulers. We leave it to future work to explore
how ideas in Synergy can also be extended to reason about
demands that individual jobs place on storage and network
bandwidths.

GPU elasticity and sharing. While some recent works ex-
plore transparently changing the GPU allocation during the
life of a job [48], the impact of changing batch sizes and
hyperparameters on training accuracy is unclear for a wide
variety of tasks. It is therefore practical to assume that the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    591



GPU demand of a job is constant throughout its lifetime as is
the case for jobs in our production clusters.

Synergy works by improving the throughput of jobs that
are bottlenecked on data stalls. For jobs that have data stalls,
GPU efficiency cannot be improved by multiplexing (spatial
sharing) because they are waiting for input data. However,
for a subset of jobs that are insensitive to auxiliary resource
allocation, GPUs could be multiplexed between jobs. It would
be interesting to explore how to impart resource-sensitivity
awareness alongside GPU spatial sharing, which we leave for
future work.

Tradeoff between consolidation and allocation. When
multi-GPU jobs are split across physical servers, they may
incur a penalty due to network communication [41,55]. DNN
jobs therefore prefer consolidation. In this work, we assume
that no more than a server’s worth of CPU or memory re-
sources can be allocated to a job if its GPU demands can be
satisfied by one server. However, we find that some jobs may
benefit from giving up consolidation if the throughput gain
due to increased CPU or memory allocation is higher than the
penalty due to splitting. We leave the exploration of the trade
off between consolidation and allocation, while taking into
account the network overhead, to future work.

Leveraging model and pipeline parallelism. Our evalua-
tion assumes distributed data-parallel jobs. But model and
pipeline parallel execution schemes also have an input stage
that ingest and pre-process data. Unlike data-parallel training,
each stage in the pipeline might have a different CPU-GPU
and memory-GPU requirement. While these jobs would have
to be profiled to identify the CPU and memory sensitivity of
each stage of the pipeline, Synergy ’s contributions directly
carry forward to such settings.

7 Related Work

DNN cluster schedulers. A number of recent schedulers for
DNN workloads each focus on improving a certain objec-
tive; Cluster utilization (Gandiva [55]), JCT (Tiresias [26]),
and fairness (Themis [35], Gandiva-Fair [11]). Some have
also looked at exploiting performance heterogeneity among
accelerators to improve cluster objectives [33, 42]. All these
schedulers assume GPU to be the dominant resource in the
scheduling task; i.e., a user requests a fixed number of GPUs
for her DNN job, and when the requested number of GPUs
are all available, the job is scheduled to run. Rather than allo-
cating a fixed number of GPUs, building on GPU-elasticity
for a single job [44], some recent schedulers like AFS [30]
and Pollux [48] leverage throughput metrics to provide GPU
elasticity in multi-tenant clusters (in addition to tuning batch
size and learning rate). However, in all these cases, auxiliary
resources such as CPU and memory are allocated propor-
tional to the number of GPUs allocated to the job. Existing
schedulers thus ignore resource-sensitivity of the DNN tasks

to CPU and memory. Synergy shows that, irrespective of
the number of GPUs allocated, auxiliary resource-sensitive
allocation is crucial to achieve better cluster utilization.

Big data schedulers. Our work builds upon the insights
drawn from the rich literature of schedulers for big data
jobs [21, 23–25, 29, 51]. Big data schedulers like Tetris [23],
and DRF [21] have looked at the problem of multi dimen-
sional resource allocation for big data jobs. They propose
new scheduling policies aimed at optimizing a specific cluster
objective for jobs whose resource demands are prior known.
In contrast, the primary resource in a DNN job is the acceler-
ator (GPU), whose requirement is specified by the job; other
resources are fungible. Our work exploits this insight to per-
form disproportionate allocations by profiling job resource
sensitivity, and then appropriately packing them onto servers.

Data stalls. Recent, deep characterization studies explored
the impact of CPU and memory on individual DNN jobs [39,
40] Unlike prior work that focuses on individual jobs, the
focus of our paper is on the tricks we can play when we
schedule multiple jobs together in a cluster.

Disaggregated data prep. There have been recent orthogo-
nal efforts that aim at reducing the cost of data preprocess-
ing, and thereby the load on CPUs using disaggregated data
prep [59]. However, one has to pay the network cost of shuf-
fling preprocessed tensors, which could quickly become the
bottleneck especially for vision models with rich datasets.
Synergy on the other hand, assumes standard pre-processing
pipelines at the training servers, and aims to reduce the cost
of pre-processing using better resource allocation.

8 Conclusion

This paper introduces Synergy, a resource-sensitive sched-
uler for DNN training jobs. Synergy is based on the insight
that not all jobs exhibit the same level of sensitivity to CPU
and memory allocation during DNN training; breaking the
shackles of GPU-proportional allocation can result in im-
proved utilization of existing cluster resources and improved
job and cluster-wide objectives. Our experiments on physical
and large simulated clusters show that Synergy can reduce
average JCT by upto 3.4× over GPU-proportional allocation.

Acknowledgements

We thank our shepherd Ravi Netravali, the anonymous OSDI
reviewers, members of the UT SaSLab, and many of our MSR
colleagues for their invaluable feedback that made this work
better. Sincere thanks to the fellow Project Fiddle interns
Kshiteej Mahajan and Andrew Or for their contributions to
the simulator infrastructure. We thank Microsoft Research for
their generous support of JM’s internships, and for the many
resources required to develop and evaluate this work.

592    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Amazon EC2 P3 - Ideal for Machine Learning and HPC
- AWS. https://aws.amazon.com/ec2/instance-
types/#p3.

[2] Azure NC_v3 Series. https://docs.microsoft.com/
en-us/azure/virtual-machines/ncv3-series.

[3] Azure ND_v2 Series. https://docs.microsoft.com/
en-us/azure/virtual-machines/ndv2-series.

[4] gRPC. https://grpc.io/.

[5] Microsoft philly traces. https://github.com/msr-
fiddle/philly-traces.

[6] NVIDIA DGX-2: Enterprise AI Research System.
https://www.nvidia.com/en-us/data-center/
dgx-2/.

[7] NVIDIA DALI. https://github.com/NVIDIA/DALI,
2018.

[8] Pytorch. https://github.com/pytorch/pytorch,
2019.

[9] Wmt16. http://www.statmt.org/wmt16/, 2020.

[10] Brendan Burns, Brian Grant, David Oppenheimer,
Eric A. Brewer, and John Wilkes. Borg, omega, and
kubernetes. Commun. ACM, 59(5):50–57, 2016.

[11] Shubham Chaudhary, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. Bal-
ancing efficiency and fairness in heterogeneous GPU
clusters for deep learning. In EuroSys ’20: Fifteenth Eu-
roSys Conference 2020, Heraklion, Greece, April 27-30,
2020, pages 1:1–1:16. ACM, 2020.

[12] Mark Crovella, Robert Frangioso, and Mor Harchol-
Balter. Connection scheduling in web servers. In 2nd
USENIX Symposium on Internet Technologies and Sys-
tems, USITS’99, Boulder, Colorado, USA, October 11-
14, 1999. USENIX, 1999.

[13] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay
Vasudevan, and Quoc V. Le. Autoaugment: Learning
augmentation strategies from data. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pages
113–123. Computer Vision Foundation / IEEE, 2019.

[14] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Advances in
Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[15] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samar-
jit Das. Very deep convolutional neural networks for
raw waveforms. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 421–425. IEEE, 2017.

[16] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G.
Carbonell, Quoc Viet Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a
fixed-length context. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 2978–2988. Association for
Computational Linguistics, 2019.

[17] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst,
and Xavier Bresson. Fma: A dataset for music analysis.
arXiv preprint arXiv:1612.01840, 2016.

[18] NVIDIA DGX-1. https://www.nvidia.com/en-us/
data-center/dgx-1/.

[19] Steven Diamond and Stephen P. Boyd. CVXPY: A
python-embedded modeling language for convex opti-
mization. J. Mach. Learn. Res., 17:83:1–83:5, 2016.

[20] György Dósa and Jirí Sgall. First fit bin packing: A
tight analysis. In Natacha Portier and Thomas Wilke,
editors, 30th International Symposium on Theoretical
Aspects of Computer Science, STACS 2013, February 27
- March 2, 2013, Kiel, Germany, volume 20 of LIPIcs,
pages 538–549. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2013.

[21] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In Proceedings of the 8th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011.
USENIX Association, 2011.

[22] Google. Open images dataset. https:
//opensource.google/projects/open-images-
dataset.

[23] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In ACM SIG-
COMM 2014 Conference, SIGCOMM’14, Chicago, IL,
USA, August 17-22, 2014, pages 455–466. ACM, 2014.

[24] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic scheduling in
multi-resource clusters. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016, pages
65–80. USENIX Association, 2016.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    593

https://aws.amazon.com/ec2/instance-types/#p3
https://aws.amazon.com/ec2/instance-types/#p3
https://docs.microsoft.com/en-us/azure/virtual-machines/ncv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ncv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ndv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ndv2-series
https://grpc.io/
https://github.com/msr-fiddle/philly-traces
https://github.com/msr-fiddle/philly-traces
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://github.com/NVIDIA/DALI
https://github.com/pytorch/pytorch
http://www.statmt.org/wmt16/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://opensource.google/projects/open-images-dataset
https://opensource.google/projects/open-images-dataset
https://opensource.google/projects/open-images-dataset


[25] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. GRAPHENE: Packing
and dependency-aware scheduling for data-parallel clus-
ters. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 81–97,
Savannah, GA, November 2016. USENIX Association.

[26] Juncheng Gu, Mosharaf Chowdhury, Kang G.
Shin, Yibo Zhu, Myeongjae Jeon, Junjie Qian,
Hongqiang Harry Liu, and Chuanxiong Guo. Tiresias:
A GPU cluster manager for distributed deep learning. In
16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019, pages 485–500. USENIX Association,
2019.

[27] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng. Deep speech: Scaling up end-to-end
speech recognition. CoRR, abs/1412.5567, 2014.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[29] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy H. Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Proceed-
ings of the 8th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2011, Boston,
MA, USA, March 30 - April 1, 2011. USENIX Associa-
tion, 2011.

[30] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo
Shin, and KyoungSoo Park. Elastic resource sharing
for distributed deep learning. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2021, April 12-14, 2021, pages 721–739. USENIX
Association, 2021.

[31] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 947–
960, 2019.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[33] Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhen-
hua Liu. Allox: compute allocation in hybrid clusters. In

Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos,
Dejan Kostic, and Margo Seltzer, editors, EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, pages 31:1–31:16. ACM, 2020.

[34] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyung-Geun
Lee, Hwarim Hyun, Ahnjae Shin, and Byung-Gon Chun.
Refurbish your training data: Reusing partially aug-
mented samples for faster deep neural network train-
ing. In Irina Calciu and Geoff Kuenning, editors, 2021
USENIX Annual Technical Conference, USENIX ATC
2021, July 14-16, 2021, pages 537–550. USENIX Asso-
ciation, 2021.

[35] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, pages 289–304. USENIX Association, 2020.

[36] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In
5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[37] Jayashree Mohan, Amar Phanishayee, and Vijay Chi-
dambaram. Checkfreq: Frequent, fine-grained DNN
checkpointing. In 19th USENIX Conference on File
and Storage Technologies, FAST 2021, February 23-25,
2021, pages 203–216. USENIX Association, 2021.

[38] Jayashree Mohan, Amar Phanishayee, Janardhan Kulka-
rni, and Vijay Chidambaram. Synergy: Resource sen-
sitive DNN scheduling in multi-tenant clusters. CoRR,
abs/2110.06073, 2021.

[39] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala,
and Vijay Chidambaram. Analyzing and mitigating data
stalls in DNN training. Proc. VLDB Endow., 14(5):771–
784, 2021.

[40] Derek Gordon Murray, Jiri Simsa, Ana Klimovic, and
Ihor Indyk. tf.data: A machine learning data processing
framework. Proc. VLDB Endow., 14(12):2945–2958,
2021.

[41] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. PipeDream: Gen-
eralized Pipeline Parallelism for DNN Training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15. ACM, 2019.

594    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[42] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-aware cluster scheduling policies for
deep learning workloads. In 14th USENIX Symposium
on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020, pages
481–498. USENIX Association, 2020.

[43] Misja Nuyens and Adam Wierman. The foreground-
background queue: A survey. Perform. Evaluation, 65(3-
4):286–307, 2008.

[44] Andrew Or, Haoyu Zhang, and Michael J. Freedman.
Resource elasticity in distributed deep learning. In Pro-
ceedings of Machine Learning and Systems 2020, ML-
Sys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org,
2020.

[45] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. Librispeech: An ASR corpus based on
public domain audio books. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing,
ICASSP 2015, South Brisbane, Queensland, Australia,
April 19-24, 2015, pages 5206–5210. IEEE, 2015.

[46] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In Pro-
ceedings of the Thirteenth EuroSys Conference, EuroSys
2018, Porto, Portugal, April 23-26, 2018, pages 3:1–3:14.
ACM, 2018.

[47] PyTorch. Word-level language modeling rnn.
https://github.com/pytorch/examples/tree/
master/word_language_model.

[48] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learning.
In 15th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2021, July 14-16, 2021.
USENIX Association, 2021.

[49] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-
agenet large scale visual recognition challenge. Inter-
national journal of computer vision, 115(3):211–252,
2015.

[50] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[51] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache hadoop YARN: yet another resource negotia-
tor. In ACM Symposium on Cloud Computing, SOCC

’13, Santa Clara, CA, USA, October 1-3, 2013, pages
5:1–5:16. ACM, 2013.

[52] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. {MLaaS} in the wild: Workload analysis
and scheduling in {Large-Scale} heterogeneous {GPU}
clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
945–960, 2022.

[53] Gerhard J. Woeginger. There is no asymptotic PTAS
for two-dimensional vector packing. Inf. Process. Lett.,
64(6):293–297, 1997.

[54] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Ja-
son Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between
human and machine translation. CoRR, abs/1609.08144,
2016.

[55] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018, pages 595–610. USENIX Association, 2018.

[56] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. Antman: Dynamic scaling on GPU clus-
ters for deep learning. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020, pages 533–
548. USENIX Association, 2020.

[57] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In 2nd USENIX Work-
shop on Hot Topics in Cloud Computing, HotCloud’10,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    595

https: //github.com/pytorch/examples/tree/master/ word_language_model
https: //github.com/pytorch/examples/tree/master/ word_language_model


Boston, MA, USA, June 22, 2010. USENIX Association,
2010.

[58] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6848–6856, 2018.

[59] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik,
Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry
Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,
Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-
Jean Wu, Christos Kozyrakis, and Parik Pol. Under-
standing and co-designing the data ingestion pipeline for
industry-scale recsys training. CoRR, abs/2108.09373,
2021.

596    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



CAP-VMs: Capability-Based Isolation and Sharing in the Cloud

Vasily A. Sartakov
Imperial College London

Lluís Vilanova
Imperial College London

David Eyers
University of Otago

Takahiro Shinagawa
The University of Tokyo

Peter Pietzuch
Imperial College London

Abstract
Cloud stacks must isolate application components, while

permitting efficient data sharing between components de-
ployed on the same physical host. Traditionally, the MMU
enforces isolation and permits sharing at page granularity.
MMU approaches, however, lead to cloud stacks with large
TCBs in kernel space, and page granularity requires inefficient
OS interfaces for data sharing. Forthcoming CPUs with hard-
ware support for memory capabilities offer new opportunities
to implement isolation and sharing at a finer granularity.

We describe cVMs, a new VM-like abstraction that uses
memory capabilities to isolate application components while
supporting efficient data sharing, all without mandating ap-
plication code to be capability-aware. cVMs share a single
virtual address space safely, each having only capabilities to
access its own memory. A cVM may include a library OS, thus
minimizing its dependency on the cloud environment. cVMs
efficiently exchange data through two capability-based primi-
tives assisted by a small trusted monitor: (i) an asynchronous
read/write interface to buffers shared between cVMs; and
(ii) a call interface to transfer control between cVMs. Using
these two primitives, we build more expressive mechanisms
for efficient cross-cVM communication. Our prototype im-
plementation using CHERI RISC-V capabilities shows that
cVMs isolate services (Redis and Python) with low overhead
while improving data sharing.

1 Introduction
Cloud environments require application compartmentaliza-
tion. Today, isolation between application components is en-
forced by virtual machines (VMs) [10, 32, 63] and contain-
ers [2, 40], either separately or in combination. Yet, current
applications push the limits of these mechanisms in terms
of performance and security: when application components
communicate heavily with each other, VMs and containers
add substantial overheads, even when they are co-located to
improve communication performance; furthermore, the im-
plementation of the isolation mechanisms may also rely on a
large trusted computing base (TCB).

VMs provide strong isolation through a relatively narrow
hardware interface. Since a guest VM has its own OS kernel,
its TCB can be reduced to a relatively small hypervisor, which
multiplexes VM access to the hardware [56]. Efficient inter-
VM data sharing, however, is challenging to achieve due to
performance and page granularity trade-offs [17, 71].

In contrast, containers isolate processes into groups [2]
and provide faster inter-process communication (IPC) primi-
tives, including pipes, shared memory, and sockets. Similar
to VMs, they face problems of page-level sharing granularity
and overheads due to frequent user/kernel transitions. Their
richer IPC primitives for data sharing come at the cost of a
larger TCB—a shared OS kernel implements both namespace
isolation between process groups and complex IPC primitives,
increasing the likelihood of security vulnerabilities.

Existing cloud stacks thus face a fundamental tension when
application components are compartmentalized but must com-
municate. They must either copy data or modify page tables,
both of which are expensive operations that involve a privi-
leged intermediary, e.g., a hypervisor or OS kernel, and lead
to coarse-grained interfaces designed around page granularity.

In this work, we explore a different approach to designing
a cloud stack that isolates application components, while sup-
porting efficient sharing. We ask the question “if the hardware
supported dynamic, low-overhead sharing of arbitrary-sized
memory regions between otherwise isolated regions, how
would this impact the cloud stack design?” We exploit hard-
ware support for memory capabilities [23, 70], which impose
flexible bounds on all memory accesses, allowing components
to be isolated without page table modifications or adherence
to page boundaries. This offers a new opportunity to design
memory sharing primitives between isolated compartments
with zero-copy semantics.

We describe CAP-VMs (cVMs), a new VM-like abstrac-
tion for executing isolated components and sharing data across
them. cVMs are enforced by a small TCB that uses memory
capabilities to isolate and share data between compartments
efficiently. Through the use of a hybrid capability model [66],
cVMs avoid having to port application components to use

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    597



capability instructions, circumventing compatibility issues
that typically plague capability architectures.

Using memory capabilities as part of a cloud stack, how-
ever, raises new challenges: the cloud stack must (i) support
existing capability-unaware software without cumbersome
code changes, bespoke compiler support, or manual manage-
ment of capabilities across isolation boundaries; (ii) remain
compatible with existing OS abstractions, e.g., POSIX inter-
faces, all while keeping the TCB small; and (iii) offer efficient
IPC-like primitives for otherwise untrusted components to
share data safely and take advantage of the potential zero-copy
sharing enabled by capabilities.

To address the above challenges, cVMs make the following
design contributions:

(1) Strong isolation through capabilities. Multiple cVMs
share a single virtual address space safely through capabili-
ties. Each cVM is sandboxed by a pair of default capabilities,
which confine the accesses of all instructions inside a cVM to
its own memory boundaries. To avoid having to port existing
application components to a capability architecture, cVMs
allow them to execute unmodified by using CHERI’s hybrid
capability architecture [66], which integrates capabilities with
a conventional MMU architecture. In addition, cVMs strictly
limit how CHERI capabilities can be used to avoid known
capability revocation overheads: cVMs are not permitted to
store or export capabilities, and the transitions of communica-
tion capabilities are controlled by a trusted component.

(2) Bespoke OS support through a library OS. cVMs are
self-contained with a small TCB, reducing reliance on the
external cloud stack, while providing POSIX compatibility.
They include a bespoke library OS with POSIX interfaces
for, e.g., filesystem and network operations with cryptography
for transparent protection, which is protected from applica-
tion code using capabilities. In the library OS, each cVM
implements its own namespace for filesystem objects, virtual
devices, cryptographic I/O keys etc. Only low-level resources,
e.g., execution contexts for threads and I/O device operations,
are shared and provided by an external host OS kernel.

(3) Efficient data sharing primitives. cVMs offer two low-
level primitives to share data efficiently without exposing ap-
plication code to capabilities, which are hidden behind a small,
trusted Intravisor: (i) a CP_File API allows application com-
ponents to share arbitrary buffers through an asynchronous
read/write interface. Under the hood, the cVM implementa-
tion uses capability-aware instructions to exchange the rights
to safely access each other’s memory, and read/write data at
byte granularity at the cost of a single memory copy (whereas
traditional file-oriented IPC would require two copies); and
(ii) a CP_Call API transfers control between cVMs, which,
e.g., can be used to implement synchronization mechanisms.
By combining these two primitives, higher-level APIs are pos-
sible: (iii) a CP_Stream API supports efficient stream-oriented
data exchange between cVMs with one memory copy.

We implement cVMs on the CHERI RISC-V64 architecture,
executable on FPGA hardware with CHERI support and multi-
core RISC-V hardware. Our evaluation shows that cVMs
provide a practical isolation abstraction with efficient data
sharing: using the CP_Stream API for inter-cVM communi-
cation reduces latency for Redis by up to 54% compared to
classical socket interfaces, and reduces its standard deviation
by up to 2.1×. When isolating a cryptography component of
a Python-based service, cVMs introduce an overhead of up to
12% compared to a monolithic baseline.

2 Hardware Isolation Support
Next we survey the design space for isolation and sharing
in cloud environments in more detail (§2.1), provide back-
ground on capability support on modern hardware (§2.2), and
describe our threat model (§2.3).

2.1 Isolation and sharing in the cloud

We argue that VMs and containers are two extremes of com-
ponent isolation. VMs virtualize hardware interfaces such as
page tables, instructions, traps, and physical device interfaces
to manage both isolation and communication; containers vir-
tualize pure software interfaces such as processes, files, and
sockets for the same purposes.

Compatibility. Both VMs and containers are compatible with
existing applications, which is critical for adoption in cloud
environments. VMs can execute an unmodified guest OS
on top of a hypervisor, making virtualization transparent to
applications inside VMs. Conversely, containers execute un-
modified applications on top of the same host OS kernel that
manages other containerized and non-containerized applica-
tions. In both cases, OS interfaces and semantics used by the
virtualized applications remain unmodified compared to a
non-virtualized environment.

But the compatibility offered by these technologies lowers
communication performance, which is often exacerbated as
we try to achieve better isolation between components.

Isolation. Despite strict isolation between the memory of con-
tainers, there is a lack of isolation of the TCB that manages
the virtualization mechanism itself. Conventional container
platforms, e.g., Linux containers [2], share privileged state, as
they employ namespace virtualization: the OS kernel creates
separate process identifiers, devices, filesystem views etc.,
which offer the illusion that a process group exists in isola-
tion. In reality, containers share kernel data structures, and
privilege escalation inside one container may lead to the com-
promise of all containers [3,5]. In comparison, VMs are virtu-
alized through narrower interfaces, resulting in a conceptually
simpler hypervisor that is harder to compromise [15, 56].

Unfortunately, stronger isolation comes at a performance
price from both known hardware inefficiencies [14, 41, 61] as
well as less flexible mechanisms for data sharing.

Sharing. Components of cloud applications typically use

598    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



networking as a means of communication. Even if multiple
components are co-located on the same host, they may use
a reliable network transport protocol, e.g., TCP. While this
helps with scalability, it adds overhead for co-located compo-
nents, making optimizations based on direct memory sharing
attractive. Both VMs and containers use page-based memory
isolation, which limits the performance of memory sharing:
mechanisms must be aware of page boundaries to avoid leak-
ing sensitive data, and page table modifications for on-demand
sharing are known to be expensive [62].

Co-location opens up two avenues for performance im-
provements: (1) sharing can transparently speed up communi-
cation of co-located components [44, 47]; and (2) new com-
munication interfaces can be tailored toward efficient sharing
between components.

2.2 CHERI capability architecture

In cloud applications with many services [26], traditional
network-based communication shows its performance lim-
its between tightly-coupled components [33]. Therefore, we
aim to co-locate components and design a cloud stack with
efficient isolation and communication interfaces and mech-
anisms. This requires, however, new hardware support for
isolation and sharing that is free of the “MMU tax” of page-
level privileged memory protection.

Memory capabilities [18] are a protection and sharing
mechanism supported by the hardware. The CHERI archi-
tecture [64, 70] implements capabilities as an alternative to
traditional memory pointers. A capability is stored in memory
or registers, and encodes an address range with permissions,
e.g., referring to a read-only buffer or a callable function.

CHERI protects capabilities by enforcing three properties:
(1) provenance validity ensures that a capability can only
be “derived”, i.e., constructed, from another valid capability,
i.e., it is not possible to cast an arbitrary byte sequence to
a capability; (2) capability integrity means that capabilities
stored in memory cannot be modified, which CHERI achieves
through transparent memory tagging [70]; and (3) capability
monotonicity requires that, if a capability is stored in a register,
its bounds and permissions can only be reduced, e.g., a read-
only capability cannot be turned into a read-write one.

Building capability-based compartments. CHERI capabili-
ties can be used to compartmentalize software components,
e.g., plugins or libraries in a program, by giving each capa-
bilities to separate memory regions. The above properties
enforced by CHERI ensure that compartments can coexist in
the same address space, and remain isolated as long as their
initial capabilities point to disjoint data and code in memory.
The application can, of course, grant each compartment ex-
tra capabilities, e.g., to allow particular cross-compartment
memory accesses or function calls.

Pure- and hybrid-cap code. CHERI distinguishes between
two execution modes [66]: (i) in pure-cap mode, all point-

ers must be capabilities,1 and code must use a new set of
capability-aware instructions; and (ii) in hybrid-cap mode,
code can mix ordinary and capability-aware instructions,
which allows the coexistence of capability-unaware and pure-
cap code via wrapping functions. This facilitates the incre-
mental adoption of capabilities in software.

When accessing memory, pure-cap code must use new
instructions that use capability registers instead of regular
registers. In addition, secure calls across capability-isolated
components must use a CInvoke instruction, which requires
a pair of capabilities: the target function address, and an arbi-
trary value that is meaningful to the callee function (e.g., an
identifier for an object managed by the callee).

To ensure that both capabilities are used correctly by
CInvoke, e.g., thwarting a malicious caller from passing a
callee object identifier that was meant for a different callee
function, the callee can “seal” pairs of capabilities together
using the CSeal instruction. CInvoke only accepts correctly
sealed pairs of capabilities.

Hybrid-cap code relies on two new capability registers, the
default data capability (ddc) and the program counter capa-
bility (pcc), which are used implicitly by capability-unaware
instructions. The OS starts all processes by setting ddc and
pcc to the entire virtual address space. Capability-aware code
then creates new capabilities from these registers, preserving
CHERI’s provenance, integrity and monotonicity properties.

Pure-cap code thus introduces compatibility challenges:
• All pointers in pure-cap code are capabilities that occupy

16 bytes instead of the ordinary 8 bytes, and must be 16-
byte aligned. This decreases CPU cache effectiveness,
and may require extra effort to align capability and non-
capability elements in data structures.

• It is not possible to cast between addresses and various
types of capability-based pointers, because CHERI distin-
guishes between them and imposes bounds on pointers [65].
C/C++ code that uses raw casts—a commonly found idiom
in low-level system software—requires substantial modifi-
cations. For example, the strict bounds in capabilities are
typically incompatible with memory allocators that place
metadata before allocated data.

• While CHERI compresses capabilities, they can still result
in memory bloat, because larger sizes are subject to coarser
address discretization. Large allocations with capabilities
may require stronger alignment and extra padding [69].

• CHERI advocates for a trusted, system-wide garbage col-
lector to manage capabilities to dynamically-allocated
memory [66]. It is important to ensure that allocations
are not reused while valid capabilities pointing to them
still exist. Since new capabilities can be derived from ex-
isting ones, and stored on the heap, stack, and in registers,
all capabilities derived from an allocation must be either
invalidated (i.e., revoked), or allocations cannot be reused

1CHERI has separate registers for regular data and capabilities.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    599



while such capabilities are valid. A garbage collector (as
opposed to expensive hardware support for capability re-
vocation) addresses this issue, but it is a disruptive change
in cloud environments, potentially leading to delays in re-
source reclamation and increased tail latencies.
Removing the need to use capability-aware code is impor-

tant in cloud environments with limited control over tenant
code. Therefore, we want to explore a design for a cloud
stack that compartmentalizes application components using
CHERI’s hybrid-cap mode, without the disadvantages of pure
capability-aware code.

2.3 Threat model

Cloud environments support multiple, isolated application
components, and thus we consider attacks in which an at-
tacker controls a malicious component that interferes with
another component by probing interfaces or trying to escape
its sandbox. We assume that the attacker has full control over
the application components and a library OS, e.g., by exploit-
ing vulnerabilities inside the compartment or by executing
arbitrary code that includes capability-aware instructions.

Our TCB includes the underlying host OS kernel, but the
entire application stack (program, libraries and library OS) is
considered untrusted. We assume that the CHERI hardware
implementation is correct. We do not analyse side-channel
attacks against CHERI, which is an important, yet orthogonal
consideration that affects both the architectural and micro-
architectural levels [67].

3 cVM Design
cVMs are a new virtualisation and compartmentalization ab-
straction for application components. Such components can
often be co-located and exchange data, and cVMs isolate them
with support for low-overhead data exchange using CHERI
capabilities. The design of cVMs has the following features:

Separate namespaces. Unlike containers, cVMs do not rely
on a shared OS kernel for namespace isolation. They use ca-
pabilities to add a new userspace-level isolation boundary,
moving OS kernel functionality from a privileged to an un-
privileged layer. cVMs only use the host OS for execution
contexts, synchronisation, and I/O, thus resembling VMs.

Bypassed communication. cVMs are mutually untrusted,
but communication bypasses the host OS kernel for perfor-
mance. They use capabilities for on-demand access to mem-
ory regions used for communication, without compromising
neighbouring memory.

Low-overhead isolation. cVMs use capabilities for low-
overhead isolation of both process and program modules.
For example, cVMs can isolate shared libraries with minimal
changes to the calling interface.

Compatibility. cVMs use CHERI’s hybrid-cap mode. Ca-
pabilities are thus hidden from application code, which only
needs changes to use new communication APIs.

syscall interface syscall interface

Library OS
(namespace+environment) Library OS

hostcall interfacehostcall interface

Intravisor

Host OS kernel

CP
FILE

C libraryC libraryC library

MicroserviceComponent 2Component 1
src

dst

cVM isolation

A
B B

CC

Fig. 1: cVM architecture

3.1 Architecture overview

Fig. 1 shows the architecture of cVMs. Each cVM A is an
application component, such as a process or library, and has
three parts: (i) program binaries and their libraries; (ii) a
standard C library; and (iii) a library OS.

cVMs add two new isolation boundaries, enforced through
capabilities. The Intravisor boundary B separates the Intravi-
sor from all cVMs, and cVMs from each other. The Intravisor
is responsible for the lifecycle and isolation of cVMs, allows
safe communication between them, and provides other prim-
itives that cannot be implemented inside the unprivileged
library OS (e.g., storage and networking I/O, time, thread-
ing and synchronisation). It has access to the memory of all
cVMs, but not the other way around.

The Program boundary C separates programs from the
library OS that provides them the namespace for all OS prim-
itives. A single library OS instance can thus host multiple,
mutually-isolated programs with their own code and data
(left-most cVM in Fig. 1).

These isolation boundaries are enforced by CHERI capa-
bilities; compartmentalized content cannot access memory
beyond its boundary, except through the controlled interfaces
described next. Finally, there is a classical separation from
the host OS, using CPU rings and MMU-based isolation.

3.2 Isolation boundaries

We now describe how cVM are isolated in more de-
tail (see Fig. 2). Each program compartment contains the
code and data of its binary, its dependencies (shared libraries),
and the standard C library; the cVM also contains the library
OS, which provides the OS functionality.

Isolation boundaries are enforced by giving each its own
default CHERI capabilities using the pcc and dcc regis-
ters (see §2.2) with non-overlapping address ranges; compart-
mentalized code thus cannot load, store or jump into memory
outside that granted by the capabilities that it holds. To allow
1 program → libOS and 2 libOS → Intravisor calls, cVMs
use extra capabilities that grant controlled access to functions
outside the respective compartment.

600    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Tab. 1: cVM API

Type API function Description

Creation
cp_cvm_make(cp_config_t *cfg, char *libos, char *disk.img, int argc,
char *argv[])

Create new cVM

CP_File

cp_file_make(char *key, size_t key_size, void *addr, size_t size) Make CP_File for buffer addr & publish with key
cp_file_destroy(int file) Destroy CP_File
cp_file_get(char *key, size_t key_size) Get CP_File with key from another cVM
cp_file_read,cp_file_write(int file, char *key, size_t key_size) Read/write data via CP_File file
cp_file_wait,cp_file_notify(int file) Wait/notify signal via CP_File file

CP_Call
cp_call_make(char *key, size_t key_size, void *func) Make CP_Call for func & publish with key
cp_call_destroy(int call) Destroy previously created CP_Call
cp_call_get(char *key, size_t key_size) Get CP_Call with key from another cVM
cp_call(int call, bool async, void *arg, size_t size) Call CP_File call with arguments

CP_Stream

cp_stream_make(char *key, size_t key_size) Make CP_Stream & publish with given key
cp_stream_destroy(int stream) Destroy CP_Stream
cp_stream_get(char *key, size_t key_size) Get CP_Stream with key from another cVM
cp_stream_send(int stream, void *buf, size_t size) Send buffer through CP_Stream
cp_stream_recv(int stream, long id, void *buf, size_t size) Post buffer to receive through CP_Stream.
cp_stream_poll(int stream, long *id, size_t nid, int timeout) Poll for data on receive buffers of CP_Stream

C library (musl)

CAP control

Intravisor

threadsdisk I/O

time/rnet I/O

namespace /dev/cfstorage

network Library OS Init

Program/library Shared libraries (.so)

hostcall via CINVOKE

syscall via CINVOKE 1

2 A

B
C

Fig. 2: Anatomy of a cVM

cVMs need to implement the equivalent of user/kernel sep-
aration using CHERI capabilities in userspace. When loading
a program, a set of capabilities is therefore given to the syscall
handler functions of the library OS. The standard C library
uses these capabilities to invoke system calls on the library
OS through the CInvoke instruction, while the rest of the ap-
plication remains capability-unaware. The library OS has full
access to the programs that it manages.

cVMs also need to implement the equivalent of guest/host
(or VM/hypervisor) separation using CHERI capabilities in
userspace. When creating a cVM, the Intravisor installs capa-
bilities to its own host system call handlers on the new library
OS instance; in turn, the library OS uses CInvoke to invoke
Intravisor operations.

3.3 Creation and communication API

cVMs combine compatibility and flexibility when isolating
cloud services. They support the execution of complete appli-
cation components using a process isolation abstraction, but
also that of individual library components.

Tab. 1 shows the cVM API. New cVMs are created by
cp_cvm_make(); similar to fork()/exec(), it accepts a disk
image file, a program binary to load into the cVM, and a func-
tion in that binary to launch. If a cVM isolates a standalone

library, cp_call() invokes functions in the library.
cVMs use CHERI capabilities for efficient inter-cVM com-

munication. The Intravisor exchanges an initial set of capabil-
ities between cVMs to allow communication.

CP_File. This primitive introduces a file-like API to access
memory from another cVM at arbitrary granularity; the use
of capabilities in CP_File permits bypassed access to memory
without repeated mediation by the Intravisor.

A donor cVM registers a memory region with the Intravi-
sor to share with other cVMs via cp_file_make(); a recipi-
ent cVM calls cp_file_get() with the same key to obtain
access. The cVMs then access data in the memory region
via cp_file_read/write(). Internally, the library OS uses
capability-aware code to copy data directly between the cVMs
(using capcpy; see §4).

To support asynchronous data transfers, cp_file_wait()
and cp_file_notify() allow callers to wait for and notify
events on a CP_File, respectively. Finally, the donor cVM
calls cp_file_destroy() to destroy it, revoking all access.

CP_Call. This primitive invokes functions outside the calling
cVM, e.g., a callback function in the library OS, or a func-
tion in a shared library. cVMs manage CP_Calls as follows:
cp_call_make() registers a function in the donor that recip-
ients can look up using cp_call_get() and then call with
cp_call(). The call is received by the Intravisor, which cre-
ates a new thread in the donor’s cVM, sets it to execution
to the target function with given arguments and, optionally,
waits for its completion, based on the async argument.

CP_Stream. By composing the CP_Files and CP_Calls APIs,
it is possible to construct more complex communication mech-
anisms. For example, we have built a stream-oriented API for
inter-cVM communication in which the sender does not need
to know where data is copied.

A recipient cVM calls cp_stream_recv() to register
buffers for incoming messages (internally, a list of CP_Files);
a sender cVM calls cp_stream_send() to copy data into any
of the buffers available in the recipient. The recipient is then
informed of data transfers when calling cp_stream_poll().

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    601



3.4 Capability management

The use of CHERI capabilities introduces two problems that
cVMs must avoid: avoiding the need for application code to
become capability-aware and performance problems when
revoking capabilities.

As explained in §2.2, making an application fully
capability-aware requires code changes. The design of cVMs
avoids this by limiting the use of capability-aware code to a
small portion of the standard C library, the library OS and the
Intravisor, which explicitly handle the CP_Files and CP_Calls
abstractions through syscall trampolines.

In the cVM design, we want to avoid centralized trusted
mechanisms for capability revocation (see §2.2), as this goes
against our goal of minimizing overheads and TCB size.
Therefore, only the Intravisor is permitted to store CHERI
capabilities in memory: all capabilities that are passed by the
Intravisor to cVMs have the CAP_STORE permission withheld.
Instead of having to perform expensive garbage collection,
revocation can now be done by clearing a small number of ca-
pability registers. This can be done efficiently when programs
call the cVM API to avoid interrupting execution.

4 Implementation
Next, we report implementation details of cVMs on the
CHERI RISC-V64 platform. Our implementation consists
of 5,200 lines of C code and 100 lines of assembly for the In-
travisor, and 1,800 lines of C code and 200 lines of assembly
for the Init service, the Hostcall interface and CAP Devices.
It uses the Linux Kernel Library (LKL) v4.17.0 [36] as the
library OS and the musl standard C library v1.2.1 [42]. As
the host OS kernel, we use CheriBSD [25].

4.1 cVM lifecycle

Initialisation. The boot process of a cVM is trigged by the In-
travisor. It receives a deployment configuration for the cVM,
which includes the heap size, the disk image location, the per-
mitted interfaces, etc. It also defines the version and location
of an Init service (see below) and the library OS binaries. The
Intravisor first allocates memory for the cVM binary, stack
and heap. It also allocates memory for the thread stack pool.
Our implementation of cVMs cannot change the size of heap
and stack at runtime, but this is a minor limitation given the
size is in terms of virtual memory, and is only committed to
physical memory on demand. Just as cloud providers prefer
re-instantiating VMs over the use of memory ballooning, we
expect large resource size changes to re-instantiate cVMs.

All threads must be created inside a compartment’s mem-
ory, thus the Intravisor pre-allocates memory for future thread
stacks. After that, the Intravisor deploys the image of the Init
service into the cVM and spawns the initial thread in the con-
text of the cVM. This thread prepares the hostcall callback
tables, and enters the cVM via the CInvoke-based interface
created by the Intravisor.

SETUP :
SC RET.seal
SC MON.DDC.seal

CALL(Init,arg1,arg2) :
CSeal ENTRY
$a0=arg1
$a1=arg2
$t0=ID_INIT
$ddc=COMP.DDC
CInvoke ENTRY.seal

RET :
$ddc=MON.DDC

ENTRY :
JR CALL_TABLE[$t0]

LC MON.DDC.seal
LC RET.seal
CInvoke RET.seal, MON.DDC.seal

OR :
CInvoke OCALL.seal, MON.DDC.seal

Outer Compartment
(e.g. Intravisor)

Inner Compartment
(e.g. Init)

Fig. 3: ICALL and OCALL implementation

The Init service (see Fig. 2) is responsible for initializing
all components at deployment, and creates the communication
interface between the library OS and the host system. It is
part of the library OS isolation layer, which means that it can
access the memory of the application component. It initialises
the library OS, builds the syscall interface for the program (or
library), deploys its binary and calls the entry function (e.g.,
c_start()). For an executable binary, it launches the pro-
gram; for a library, the entry function initializes a CP_Stream
and registers the public library functions with the Intravisor.

Execution. cVMs use the Linux kernel library (LKL) [36] as
a library OS that provides a Linux-compatible environment.
LKL processes system calls and requests the host OS kernel
to perform actions as needed.

LKL’s storage and networking backends implement lean
interfaces for hardware I/O devices: disk I/O has three host-
calls (disk_read/write(), disk_getsize()); networking
uses only net_read/write(). The disk_read/write func-
tions are applied to a file descriptor of the disk image; the net-
work functions are invoked on a TAP device. The remaining
functions in the hostcall interface are straightforward: they of-
fer support for time and timer functions, debug output, thread-
ing and locking, and management of CAP Devices (see §4.3).

Threading. For simplicity, cVMs use a 1-to-1 threading
model. When a cVM creates a thread, the pthread library re-
quests an execution context from LKL, which in turn, requests
a new thread from the host OS kernel. This requires the inte-
gration of the pthread implementations inside the cVM and
the host—both must maintain their own thread-local stores,
pointers to thread_structs, etc.

When LKL requests a thread, it prepares a structure with
an address of the entrance function, and a pointer to the argu-
ments. This is passed to the host OS kernel, and the Intravisor
creates a new thread with the provided arguments: it allocates
a stack for the thread from the thread stack pool, pre-allocated
at boot. After that, the new thread is ready to enter the cVM
using CInvoke and capabilities are created by the hostcall
interface. Prior to entering, the Intravisor switches the thread
pointer tp register. Inside a cVM, threads have LKL TP val-
ues; when processing hostcalls, they have host ones.

602    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



4.2 Calls between nested compartments

cVMs use the CInvoke instruction to call functions be-
tween isolation layers, both (i) from an outer to an inner
layer (ICALL), e.g., when the Intravisor invokes Init; and
(ii) from an inner to an outer layer (OCALL), e.g., when per-
forming a syscall or hostcall.

CInvoke takes two sealed capabilities (see §2.2) as argu-
ments: (i) one with a new Program Counter Capability (pcc)
value and another that points to a memory region that becomes
accessible after the instruction execution. The pcc is replaced
by the first unsealed capability; the second capability moves
to the ct6 (C31) register in the unsealed form.

Next, we explain how CInvoke is used to implement both
ICALLs and OCALLs:

ICALLs. Fig. 3 shows the switching mechanism for ICALLs.
In this example, the Intravisor in the outer layer calls Init in
the inner layer. To make the call, the caller prepares the first
capability that points to the entry point inside the compart-
ment. This capability, together with the corresponding data
capability, defines the default capabilities of the inner compart-
ment. Inside the compartment, these capabilities, COMP.DDC
and ENTRY.PCC become ddc and pcc, respectively. While the
ENTRY.PCC capability can be passed as the first argument
of CInvoke, COMP.DCC must be loaded by the caller prior to
switching (see Fig. 3).

To return from the compartment or grant permission to
invoke functions in the outer layer from the inner layer, fur-
ther capabilities are needed: these are stored in memory by
the Intravisor before CInvoke is called, in a structure that
we call the Affix. They include a sealed ddc of the outer
layer (MON.DDC.sealed). Without this capability, the Intravi-
sor could not change ddc from the inner to the outer layer on
return in order to access the Intravisor’s data. This capabil-
ity can only be fetched from the inner layer—the accessible
memory is restricted by the ddc of the inner layer.

The Affix also includes RET.sealed and OCALL.sealed,
which are two sealed pcc capabilities to entry functions in
the outer layer. The former is used to return from the com-
partment; the latter points to an entry function, which is used
when the inner layer calls a function of the outer layer (e.g.,
print()) and returns to continue execution inside the com-
partment. This is used for the syscall and hostcall interfaces.
Capabilities in the Affix are created by the Intravisor and
stored on the stack and inside per-compartment private stores.

OCALLs share many similarities with ICALLS. The caller
prepares a sealed capability of the return address. After the
end of a function, the callee uses CInvoke and the execu-
tion of the caller continues from the desired address. To-
gether with CInvoke, the callee passes the sealed capability
MON.DDC.seal, which was passed originally inside the Affix.
It is put into ddc after the function returns.

DST
CAP
DRV

capcpy

CAP
MNG

CAP
DRV

SRC

_get("key")

_read("key")

probe("key")

SRC_CAP

advertise("key", src, M) _make("key", *src)

ld.cap a0, SRC_CAPsd a0, DST

ProgramProgram library OSlibrary OS Intravisor

(a) CP_Files

PY CAP
DRV

CAP
MNG

CAP
DRV

reg.
enc()

enc()

_get("key")

_call("key", args)

probe("key")

call("key", args)

advertise("key", &enc, M) _make("key", &enc)

CALL(enc, args)

ProgramProgram library OSlibrary OS Intravisor

(b) CP_Calls

Fig. 4: Implementation of communication mechanisms

4.3 Communication mechanisms

The data sharing API between cVMs from §3.3 is also based
on capabilities. Data referenced by capabilities, however, can
only be manipulated by capability-aware instructions, which
do not exist in native code. To resolve this issue, we mediate
the interaction between hybrid-cap code and capabilities using
virtual devices called CAP Devices.

The CP_Files, CP_Calls, and CP_Streams primitives are
implemented using character devices, which are created by the
library OS and Intravisor. A program can read/write from/to
these devices, and the corresponding operations are performed
by capability-aware code inside drivers.

This design has two advantages: (i) despite its one mem-
ory copy, it is faster than traditional communication inter-
faces (see §6.5); and (ii) it supports a simple mechanism to
revoke capabilities. A remote cVM can inform the Intravisor
of the revocation, which then requests the library OS to de-
stroy the corresponding CAP Device. To revoke capabilities
in pure-cap code, a Intravisor would have to stop the cVM
execution and destroy capabilities manually.

CP_Files support regular POSIX file operations. In contrast
to ordinary files, the content of CP_Files is not cached by the
page cache, and read/write operations can be unaligned.

Fig. 4a shows the implementation. A donor cVM advertises
one or more memory regions defined by keys, and a recipient
cVM probes the Intravisor for a given key. The Intravisor
verifies the access control list and builds a CAP Device for the
target CP_File (e.g., /dev/cf0). For the donor cVM to revoke
access, it uses its own CAP Device to request revocation,
and the Intravisor, together with the library OS, destroy the
CP_Files (cf0) driver along with its capabilities.

When the recipient cVM issues a cp_file_read() call,
the driver uses capcpy to copy data. For cp_file_read(), it
uses ld.cap to read data from a remote cVM and store it via
sd; a cp_file_write() does the reverse.

CP_Calls. To expose a function, a cVM creates an ICALL
entry and registers it with the Intravisor (see Fig. 4b). The In-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    603



travisor maintains a table of exported functions for each cVM,
called cVM-RPCs. It consists of access control records with
capabilities, name identifiers and permissions. Application
components interact with the cVM-RPCs via CAP Devices, a
management interface (/dev/cf), and the Intravisor.

Any function can be invoked by CP_Calls including ones
inside the library OS. This enables the use of CP_Calls as a
notification mechanism between CP_Files. The donor blocks
execution until the recipient cVM reads data. It makes the
wait() call with the driver, the driver puts the execution
thread in the work queue and waits for the signal. Prior to
blocking, it registers a wake-up CP_Call with the Intravisor.
The recipient cVM, in turn, finishes its operations with the
CP_Files, and notifies the donor via this CP_Call.

These basic operations can be composed to create higher-
level protocols, and a single CAP Device can handle multiple
memory regions. For example, for Redis (see §6.3), we use
a series of read/write operations with a single notification as
well as batched reads with different capabilities.

CP_Streams. In contrast to CP_Files, when sending
data, the destination for CP_Streams is unknown, and
cp_stream_send() only knows the source. Therefore,
one side of the communication pre-registers one or
more destination buffers via cp_stream_recv(), and uses
cp_stream_poll() to block. The remote side uses CP_Call
to enter the remote compartment, atomically fetches one des-
tination buffer from a pre-registered queue of buffers, and
copies into this buffer data via capcpy. It then wakes up the
poll queue and returns.

Hostcall Interface. The Intravisor does not impose restric-
tions on the number of calls in the hostcall interface. For
the LKL library OS, the Intravisor provides 24 hostcalls for
minimal operation. In addition, 2 hostcalls are necessary for
disk I/O, 3 for network I/O, and 10 for the capability-based
communication primitives.

4.4 Capability revocation

Data transfers (capcpy) are performed by the drivers of CAP
Devices without direct involvement of the Intravisor, which
enhances performance and reduces the TCB. This, however,
means that the driver must have access to the capabilities pro-
vided by the donor. We do not consider the driver trusted, thus
it may be compromised by an adversary who obtains access
to capabilities and memory outside the cVM after the end of a
communication session. To mitigate against this threat, cVMs
support a revocation mechanism. It guarantees that, once the
donor cVM revokes capabilities, they are destroyed, and a
recipient cVM cannot use them.

First, cVMs or communication capabilities are not created
with the PERMIT_STORE_CAP permission. Code inside a cVM
thus cannot store capabilities to memory: it can load them,
modify, create new capabilities, but it fails on ST. The commu-
nication capabilities are stored once by the Intravisor, when
the communication is established, and destroyed at the end.

Second, the revoked capabilities in the CPU context are de-
stroyed after a context switch by the host OS kernel.

5 Security Analysis
According to our threat model from §2.3, an attacker can
gain control over a cVM. However, we guarantee that they
cannot escape the compartment or access memory beyond its
boundary due to the CHERI architectural properties (see §2.2):
the ddc and pcc capabilities always apply, are non-extensible,
and are controlled by the Intravisor.

Hybrid-cap code may be vulnerable to attacks that attempt
to break execution flow. An adversary may inject capability-
aware instructions (e.g., CLD/CSD, CInvoke) to access data and
code outside of the compartment. To do this, the adversary
requires capabilities, which they cannot construct from the
available data inside a cVM.

To escape a compartment, an adversary must obtain ap-
propriate capabilities. Each cVM, however, only maintains
a few capabilities: a compartment (i) receives three sealed
capabilities via Affixes, which can be inspected by an adver-
sary but not unsealed to create new capabilities; and (ii) may
receive capabilities used by CP_Files and CP_Streams. These
capabilities can be exploited by an adversary after gaining full
control over the library OS. Since these are data capabilities,
they cannot be used to create code capabilities, which are
needed to escape the compartment. The adversary also can-
not store these capabilities due to their permissions. Finally,
they also cannot be exported outside of the compartment via
the hostcall interface, because the interface does not handle
capabilities and instead corrupts them.

Hybrid-cap code may contain security flaws, but an adver-
sary cannot escape confinement, unless a flaw in the outer
level provides them with unsealed capabilities. In our de-
sign, this is unlikely due to the Intravisor’s small TCB. The
adversary cannot export or import capabilities via the host-
call interface or use them beyond a communication session.
Vulnerable hybrid-cap code cannot abuse host system calls,
escalate privileges or attack other cVMs, because the host OS
kernel ignores all direct system calls from cVMs.

cVMs are intra-process compartments that share micro-
architectural state and rely on the correctness of the CHERI
architecture, which does not have special mechanisms to pre-
vent side-channel attacks. Nonetheless, there are plans for
CHERI to include explicit compartment identifiers (CIDs) in
a future version of the architecture [67]. This will ensure that
sensitive micro-architectural state is appropriately tagged by
each cVM, similar to tagged TLB entries. This can be used to
prevent attacks, such as training the branch predictor by one
cVM to direct speculative execution in another cVM.

6 Evaluation
We now explore the performance of cVMs and the proposed
communication interfaces. We begin with an overview of our
evaluation platforms and workloads (§6.1). We then compare

604    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the performance of applications deployed with cVMs and
Docker containers (§6.2). In §6.3, we validate the efficiency
of inter-cVM communication mechanisms; in §6.4, we ex-
plore the use of cVMs for component compartmentalisation;
and in §6.5, we compare inter-cVM communication mecha-
nisms with existing OS mechanisms. Finally, §6.6 explores
the deployment performance of cVMs and Docker containers.

6.1 Experimental environment

The CHERI architecture is under active development and,
while ARM’s Morello board with CHERI support has been
announced [9], it is unavailable at the time of writing. There-
fore, we use two evaluation platforms: (1) a single-core
FPGA-based CHERI implementation [21]; and (2) a multi-
core SiFive RISC-V implementation without CHERI support.

FPGA CHERI. We synthesize an FPGA image from DARPA’s
CHERI FETT program [22] (agfi-026d853003d6c433a),
that ships with a single-core RISC-V64 CHERI system based
on the FLUTE core (5-stage, in-order pipeline, running at
100 MHz) [49], and execute it on AWS F1 [8]. We use
CheriBSD as the host OS kernel, compiled as a hybrid-cap
system with LLVM v11.0.0 and cheribuild [16].

The FPGA implementation enables a quantitative evalu-
ation of cVMs, but has limitations: (i) it has a single-core
CPU with low clock frequency; (ii) its peripheral devices,
in particular storage devices, are emulated by the host; and
(iii) DRAM latency is disproportionately low compared to the
CPU clock speed. As a consequence, we cannot realistically
execute typical cloud workloads that are memory- and I/O-
bound and use multiple CPU cores. We also cannot eliminate
system noise by pinning tasks to separate cores.

SiFive RISC-V. To avoid the abovementioned limitations,
we also evaluate cVMs on a HiFive Unmatched RISC-V
board [30], which has 4 RISC-V64 (dual-issue, in-order)
CPU cores running at 1.2 GHz. The CPU does not have
CHERI support, and we instead replace all CHERI instruc-
tions with their native RISC-V versions. Our applications ex-
ecute on Ubuntu v20.04 with Linux v5.11.0 and the RISC-V
Docker port [48] with Alpine containers [7]. Our IPC micro-
benchmarks execute on FreeBSD 14, as the FPGA version
uses CheriBSD, and we run them on both platforms.

This approach allows us to execute realistic cloud applica-
tions. We run CHERI-equivalent code and data paths while re-
maining compatible with existing RISC-V platforms (e.g., by
replacing capability loads/stores with ordinary ld/st instruc-
tions, CInvoke with jr, etc.). Note that security is therefore
not enforced.

Application workloads. We explore cVMs using several
cloud applications and micro-benchmarks to evaluate their
performance and isolation requirements:

NGINX/Redis (§6.2). This is a two-tier microservice deploy-
ment that evaluates the YCSB benchmark [72] using the NG-
INX [43] web server and the Redis [46] key/value store. NG-

IN IN

OUT

Redis
engine

Redis
mod.

OUT

TCP

se
nd

re
cv

re
cv

se
nd

re
cv

se
nd

N
G

IN
X

R
ed

is

(a) Docker containers

IN IN
Redis
engine

Redis
mod.

OUT

Intravisor

se
nd

re
cv

C
P_

St
re

am

NGINX Redis

(b) cVMs

Fig. 5: Control/data flow in multi-tier deployment (NGINX/Redis)

INX acts as an API gateway and translates REST requests into
Redis queries. When co-located, these services have a substan-
tial amount of communication between them. We demonstrate
that the cVMs interfaces, CP_Files and CP_Streams, signifi-
cantly reduce overhead, using the SiFive platform to compare
cVMs against a deployment using Docker containers [40].

Redis (§6.3). We execute a single-core Redis instance [46] and
measure the latency of fixed-size GET and SET operations,
comparing sockets and the equivalent cVM interface with
CP_Streams. This experiment validates our previous results
by also comparing the FPGA and SiFive environments.

Python/Library (§6.4). We measure the cost of using cVMs to
isolate the components of a simple cryptographic application
in Python, by deploying the Python runtime [58] and the
PyCrypto cryptographic library [1] in mutually isolated cVMs
that use the CP_Call and CP_File interfaces to communicate.
This experiment runs on the FPGA environment.

6.2 Multi-tier deployment with NGINX/Redis

First, we compare the benefits of using cVMs when co-
locating communicating components, compared to a tradi-
tional deployment with Docker containers [40].

The computational limitations of our FPGA and SiFive plat-
forms make it unfeasible to execute a complete microservice
benchmark suite such as DeathStarBench [26]. Instead, we
deploy a representative YCSB benchmark [72] (workloadb;
1 KB records; read/update ratio of 95%/5%) on the SiFive
platform with two-tiers: the NGNIX web server [43] acts
as an API gateway that redirects incoming HTTP requests
to the Redis key/value store [46], which acts as a cache for
frequently used data. We use wrk2 [6] to generate NGINX
requests over a 1 GbE network, measuring the latency of
different configurations (10 connections; 4 I/O threads).

The application components benefit from co-location due
to the frequent interaction between the (NGINX) API gateway

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    605



0 500 1,000 1,500 2,000 2,500 3,000

2

4

6

8

10
Containers

HGETALL
ZRANGE
ZADD
HMSET

0 500 1,000 1,500 2,000 2,500 3,000

2

4

6

8

10

50
pe

rc
en

til
e

la
te

nc
y,

m
s

0 500 1,000 1,500 2,000 2,500 3,000

2

4

6

8

10

0 500 1,000 1,500 2,000 2,500 3,000

2

4

6

8

10

Requests per second

95
pe

rc
en

til
e

la
te

nc
y,

m
s

cVMs
HGETALL
ZRANGE
ZADD
HMSET

Fig. 6: Multi-tier deployment performance (NGINX/Redis)

and its (Redis) cache. Fig. 5 compares the Docker and cVM
deployments. Docker incurs multiple data copies between
the components and the TCP/IP network stacks. As Fig. 5a
shows, Redis copies values into a send buffer that is passed to
the TCP/IP stack, which NGINX copies into an output buffer
that is, in turn, passed to the client’s network stack (for a total
of 4 copies, including the kernel’s TCP/IP stack).

In contrast, cVMs reduce the number of copies. Fig. 5b
shows that the CP_Stream primitive requires only 2 copies:
Redis values are always copied directly into NGINX’s output
buffer. To support this optimization, NGINX and Redis must
replace their use of sockets with CP_Streams. NGINX regis-
ters the output buffer with a CP_Stream, and the CP_Stream
write in Redis uses capabilities to copy data directly into the
output buffer, which NGINX can then send to the client.

Fig. 6 shows the median and 95th percentile latencies for
the 4 YCSB queries under various throughput regimes, com-
paring the baseline Docker deployment with cVMs. We can
see that cVMs are more efficient: they have lower latencies
in all cases (20–40% for median latency), and substantially
higher throughput, with send latencies below 5 ms (33–50%
for median latency).

Conclusion. In a typical deployment with multiple applica-
tion components, cVMs can achieve isolation while lowering
latencies and increasing throughput compared to containers.
This performance gain is due to a reduced number of memory
copies (via CP_Stream), using fast calls to the capability-
hiding TCB in cVMs (via CP_Call within CP_Streams). Fur-
thermore, cVMs come with a smaller TCB compared to con-
tainers. We also expect cVMs to outperform VMs because
of VMs’ higher overheads caused by memory virtualization

20 40 60 80
0

0.2
0.4
0.6
0.8

1

Latency (ms)

C
D

F

TCP/IP (set)
TCP/IP (get)

CP_Streams (set)
CP_Streams (get)

(a) FPGA platform

0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Latency (ms)

C
D

F

TCP/IP (set)
TCP/IP (get)

CP_Streams (set)
CP_Streams (get)

(b) SiFive platform

Fig. 7: Latency CDF for Redis (platform validation)

(especially for memory-bound applications) and communi-
cation mechanisms (e.g., extra data copies by the guest OS
and/or hypervisor, or cross-VM copies via PCIe with directly
assigned devices).

6.3 Platform validation with Redis

We now validate our results by comparing the FPGA and
SiFive platforms. We use Redis with a single connection
that measures the latency of 1000 GET or SET operations
with fixed-size keys (1 byte) and values (100 bytes). We use
a simple client application that is co-located with the Redis
instance. The baseline system uses separate processes and
TCP/IP sockets; we use separate cVMs for each application
and CP_Stream for communication (similarly to §6.2).

Fig. 7 shows the latency distribution of the GET and SET
requests for all configurations. The results indeed validate
our observations from the multi-tier YCSB benchmark in
§6.2. cVMs exhibit lower latencies with less deviation on
both platforms, compared to a native system with TCP/IP
sockets: 90% of cVM requests take 14–19 ms; the baseline
takes 19–35 ms on the FPGA platform. The SiFive platform
supports the same conclusions, albeit with different absolute
numbers. This is because the FPGA device runs at a lower
clock frequency, and two processes must be co-scheduled on
the same core (with both the baseline and cVMs).

Conclusion. The CP_Stream primitive in cVMs shows better
performance on both the FPGA and SiFive platforms, achiev-
ing lower communication latencies across the whole through-
put spectrum. We thus conclude that our end-to-end evaluation
in §6.2 is representative of how cVMs would perform on a
real-world CHERI-enabled CPU. In §6.5, we re-validate this
by comparing cVMs against IPC primitives on all platforms.

606    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



16 256 4K 64K 1M 8M
0

0.2

0.4

0.6

0.8

1

data size (bytes), log scale

ra
te

(M
B

/s
)

baseline (decrypt)
cVM (decrypt)
baseline (encrypt)
cVM (encrypt)

Fig. 8: cVMs with Python (AES cryptographic performance)

6.4 Process compartmentalization with Python library

Next, we explore the overhead of compartmentalizing a shared
library with cryptographic operations in Python. In this case,
we harden the security of a cloud application by mutually
isolating the Python runtime and a native cryptographic mod-
ule, PyCryptodome [1]. By using separate cVMs, we can
safeguard the application against malicious interference by
package managers [59], or protect the library against unau-
thorized access to its cryptographic keys [4].

Python creates CP_Files for the input/output buffers that
it passes to the PyCryptodome library, and it uses CP_Call
to transfer control to the library, using the CP_Files as argu-
ments. (The original version instead passes raw buffer point-
ers.) PyCryptodome then uses these CP_Files to read its input
and encrypt/decrypt it into the output buffer(using AES-128.
Finally, it uses CP_Call to return execution to Python.

Fig. 8 shows the average throughput for encryption/decryp-
tion with different buffer sizes for cVMs, using the FPGA
platform, and the baseline (non-isolated) system. Note that
the low absolute numbers and variance (shown as shaded
areas) are due to the platform limitations (single core), de-
scribed in §6.1. The results in §6.3, however, show the same
trend on a platform without these limitations.

We observe that cVMs have a negligible performance im-
pact. Throughput grows until its peak with 32 KB buffers,
where the encryption/decryption rates of cVMs are only 7%
and 12% lower than the baseline, respectively. This amounts
to 0.79 MB/s and 0.96 MB/s for the baseline, and 0.74 MB/s
and 0.85 MB/s for cVMs, respectively. As expected, these
overheads become even smaller as the buffer sizes grow.

Our experiment shows that CP_Call and calls into the In-
travisor are reasonably efficient. For reference, the mean ex-
ecution time for the AES cryptographic code with a 16 byte
buffer is comparable to the time for a C binding invocation in
Python. At such sizes, CP_Call invocations account for half
of the overhead, which is at 97% and 101% for encryption
and decryption, respectively, only slightly above a C binding
invocation. The overhead reduces to 7% with larger buffers.

Conclusion. cVMs is effective at hardening applications by
isolating some of their components, such as shared libraries.
The required changes are minimal and do not change the se-
mantics of the application interfaces, because the CP_File and

4K 512K 1M 2M 2.4M 4M
0

20

40

data size (bytes)

ra
te

(M
B

/s
) MEMCPY CP_File CP_Stream

PIPE UNIX TCP

MAP+CPY

(a) FPGA CHERI

4K 512K 1M 2M 2.4M 4M
0

50

100

150

data size (bytes)
ra

te
(M

B
/s

)

MEMCPY CP_File CP_Stream

PIPE UNIX TCP

MAP+CPY

(b) SiFive RISC-V

Fig. 9: Comparison of communication mechanisms

CP_Call primitives follow well-understood memory copy and
function call semantics. Note that CP_Streams are constructed
on top of these. The cost of this extra isolation is small, even
for small buffers, and it becomes negligible as the amount of
work performed between cVMs-enabled operations increases.

6.5 Inter-cVM communication

We compare cVMs to other IPC primitives in a baseline sys-
tem, and re-validate our performance results across our two
platforms (FPGA and SiFive). The baseline system uses two
threads in a single process instead of cVMs; otherwise the
FPGA implementation shows low TLB performance. We
measure the performance of CP_Files and CP_Streams, pipes
(PIPE), unix sockets (UNIX), TCP/IP sockets (TCP) and a com-
bination of mmap+memcpy+munmap (MAP+CPY). For compari-
son, we also consider a raw local memcpy (MEMCPY; 4 instruc-
tions; aligned data; double-word load/store operations) as an
upper performance bound. We do not evaluate CP_Calls due
to the lack of an equivalent operation in the baseline kernel.

Fig. 9 shows the results under different buffer sizes on both
the FPGA and SiFive platforms. First, the peak performance
of MEMCPY on the FPGA platform is limited and fluctuates
due to the TLB size and simple indexing function of its Flute
CPU—these issues carry onto the other primitives, too.

The overhead of CP_Files is 6% compared to MEMCPY on
the FPGA platform and negligible for SiFive; it significantly
outperforms all baseline IPC mechanisms. This is because we
do a simple cross-cVM memcpy using CHERI’s ld.cap and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    607



cincoffsetimm instructions to perform the memory access
and to increment the capability offset, respectively. The results
also show that domain transitions via CInvoke are efficient,
as every CP_File operation requires one capability call and
its return (user→library OS, and back).

All baseline IPC primitives have 2× overhead or more,
because they perform more data copies than MEMCPY and
CP_Files, closely following ideal performance. Interestingly,
CP_Streams have worse performance on the FPGA platform,
despite the lower number of copies, whereas they show per-
formance close to CP_File on the SiFive platform. This is
because CP_Streams offer an asynchronous communication
primitive in which two concurrent processes time-share a sin-
gle CPU core on the FPGA platform when using the cVM
API. For the same reason, all IPC primitives have lower rela-
tive performance on the FPGA platform compared to SiFive.

UNIX sockets are the closest to CP_Streams, because both
are bi-directional, support more than two parties, and have
sequenced packet modes. They exhibit only 10% and 54%
of the performance of CP_Streams for 4 MB buffers on the
FPGA and SiFive platforms, respectively. Here, the impact of
MMU manipulation can be seen: the combination of memory
copies and remapping reaches 3.4 MB/s and 89 MB/s on the
FPGA and SiFive platforms, respectively. This mechanism
lacks a notification primitive, and, compared to CP_Files, it
is 15× and 1.5× slower on each platform, respectively.

Conclusion. For a multi-core CPU architecture with CHERI,
we would expect the results to be close to those of the SiFive
platform, with a minor performance decrease, similar to the
difference between memcpy and CP_Files in Fig. 9a. This
potential performance degradation is significantly smaller
than the measured improvements: they range between 2×
for the multi-core SiFive platform against the best baseline
primitive, and 2× to an order of magnitude for the single-core
FPGA platform, depending on the mechanism and buffer size.

6.6 Deployment time

We compare the deployment time of cVMs with that of
Docker containers. We create a Docker image with a sim-
ple “hello world” program and measure the time to execute it
using a cVM and a container. For the cVM, we use a debug-
free binary with the LKL library OS and the musl standard C
library (≈30 MB in size) and a 10 MB application disk image.
We measure two intervals, averaged over 5 runs: from the
start until the output of the program, and until its termination.

On average, the Docker container requires 1.9 s to produce
the output, and 2.8 s until container termination. The times
for the cVM deployment are comparable, which demonstrates
their low overhead: 1.7 s and 2.6 s, respectively.

7 Related Work

Intra-process compartments. Various projects apply intra-
process isolation or introduce isolation primitives. Cubi-
cleOS [52] isolates components of a user-level library OS

using Intel MPK; unlike cVMs, it cannot readily and effi-
ciently support legacy POSIX calls. Shreds [20], Janus [28],
Erim [60], Hodor [29], and Donkey [53] use page tag-based
isolation (ARM Domains, Intel MPK, or a custom RISC-V
implementation) to implement protection domains and com-
munication. In cases in which tags can be manipulated directly
by user code, e.g., using MPK’s wrpkru instruction, the sys-
tem requires a trusted toolchain or program verifier, unlike
cVMs. Page tags also limit the number of compartments and
communication buffers, as well as their granularity, which is
not a problem for cVMs with capabilities.

NaCl [73] and WASM [27] face similar problems, as they
require obsolete Intel segmentation and/or proof-carrying
code that must be verified by a toolchain or loader. Conf-
LLVM [12] also uses MPK to isolate code inside a process,
but only supports two domains with asymmetric data ex-
change: trusted code can only interact with untrusted code.
cVMs do not limit the number of protection domains, and
inter-cVM communication is symmetric.

LwCs [37] are an OS abstraction for intra-process protec-
tion, but they have page granularity, and switching domains
comes at the cost of switching page tables. XFI [24] provides
fine-grained memory protection and control flow integrity by
extending software-based fault isolation (SFI), but SFI incurs
runtime overheads and is error-prone due to its complexity.

Compartmentalisation frameworks. cVMs allow the de-
ployment of isolated shared libraries. Prior work proposes
frameworks for such compartmentalization: Wedge [11] iden-
tifies code parts that can be isolated; PrivTrans [13] is a
source-code partitioning tool that separates trusted and un-
trusted components; Glamdring [35] does the same for trusted
execution. These approaches are orthogonal to cVMs, and
they could be used to generate application components.

Trusted execution. Intel SGX [31, 38, 39] provides enclaves
as an intra-process isolation primitive. Enclaves are part of
processes and cannot be accessed by privileged software or
other enclaves. Frameworks, such as Graphene-SGX [19],
SGX-LKL [45], Panoply [55], and Spons and Shields [51],
deploy programs inside enclaves together with a library OS.
Such designs decrease the potential impact of the untrusted
OS kernel on enclaved software.

cVMs also use a library OS and share design features with
these frameworks, but provide effective data sharing that can-
not be implemented using enclaves. Enclaves can only share
untrusted memory and cannot access each others memory,
which is necessary for fast inter-cVM communication. Since
enclaves do not trust the host, they must use encryption, im-
pacting performance [50]. Therefore, an interface similar to
CP_Files cannot be implemented with enclaves.

Library OSs can be used to de-privilege OS kernel compo-
nents or create user-level containers. µKontainer [57] offers
containers based on the LKL library OS [36]; Williams et
al. [68] show that library OSs can be executed efficiently on

608    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



top of processes instead of bare VMs; X-Containers [54] offer
a cloud platform using library OSs. cVMs share similarities
with user-level library OS-based containers but enhance them
with strong isolation and a secure communication mechanism
using capabilities.
Machine and process isolation. As discussed in §2.1, tradi-
tional process-based isolation has shortcomings in terms of
performance and TCB size when compared to cVMs. One
could envision using virtualization and Intel’s vmfunc to
strike a balance between shared TCB size and communica-
tion performance [34]. Virtualization introduces well-known
I/O and memory translation overheads, which are costly in a
cloud stack, but are not present in cVMs.

8 Conclusions
cVMs are a new VM-like abstraction for cloud applications
that use memory capabilities for secure isolation. cVMs in-
clude a library OS to minimize how much of the cloud envi-
ronment is within the TCB. Multiple cVMs safely share an
address space, allowing more efficient interaction of applica-
tion components than when crossing current VM/container
boundaries. Their asynchronous read/write and synchronous
call interfaces allow capability-unaware, legacy code to run
within cVMs.
Acknowledgements. This work was funded by the UK Gov-
ernment’s Industrial Strategy Challenge Fund (ISCF) under
the Digital Security by Design (DSbD) Programme (UKRI
grant EP/V000365 “CloudCAP”), and the Technology Innova-
tion Institute (TII) through its Secure Systems Research Cen-
ter (SSRC). It was also supported by JSPS KAKENHI grant
number 18KK0310. We thank our shepherd, Ana Klimovic,
and the anonymous reviewers for their helpful comments.
Source code availability. The source code of cVMs, the
Intravisor, and various application examples can be found at
https://github.com/lsds/intravisor.

References
[1] A self-contained cryptographic library for Python.

https://github.com/Legrandin/pycryptodome.
Last accessed: June 1, 2022.

[2] Linux containers. https://linuxcontainers.org.
Last accessed: June 1, 2022.

[3] CVE-2013-6441. Available from MITRE, CVE-ID
CVE-2013-6441, December 2013.

[4] CVE-2014-016021284. Available from MITRE, CVE-
ID CVE-2014-0160, December 2014.

[5] CVE-2021-21284. Available from MITRE, CVE-ID
CVE-2021-21284, December 2021.

[6] A constant throughput, correct latency recording variant
of wrk. https://github.com/giltene/wrk2. Last
accessed: June 1, 2022.

[7] Alpine Linux. https://alpinelinux.org. Last ac-
cessed: June 1, 2022.

[8] Amazon EC2 F1 Instances. https://aws.amazon.
com/ec2/instance-types/f1/. Last accessed: June
1, 2022.

[9] Arm Morello program. https://developer.
arm.com/architectures/cpu-architecture/
a-profile/morello. Last accessed: June 1, 2022.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the Art of Virtualization.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 164–
177. ACM, 2003.

[11] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad
Karp. Wedge: Splitting Applications into Reduced-
Privilege Compartments. In 5th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
08). USENIX Association, April 2008.

[12] Ajay Brahmakshatriya, Piyus Kedia, Derrick P. McKee,
Deepak Garg, Akash Lal, Aseem Rastogi, Hamed Ne-
mati, Anmol Panda, and Pratik Bhatu. ConfLLVM: A
Compiler for Enforcing Data Confidentiality in Low-
Level Code. In Proceedings of the Fourteenth European
Conference on Computer Systems, EuroSys ’19. ACM,
2019.

[13] David Brumley and Dawn Song. Privtrans: Automati-
cally Partitioning Programs for Privilege Separation. In
13th USENIX Security Symposium (USENIX Security
04). USENIX Association, August 2004.

[14] Jeffrey Buell, Daniel Hecht, Jin Heo, Kalyan Saladi, and
R Taheri. Methodology for performance analysis of
VMware vSphere under Tier-1 applications. VMware
Technical Journal, 2(1):19–28, 2013.

[15] Reto Buerki and Adrian-Ken Rueegsegger. Muen - An
x86/64 Separation Kernel for High Assurance. Univer-
sity of Applied Sciences Rapperswil (HSR), Tech. Rep,
2013.

[16] Building system for CHERI software. https://
github.com/CTSRD-CHERI/cheribuild. Last ac-
cessed: June 1, 2022, commit a37f5cc.

[17] Anton Burtsev, Kiran Srinivasan, Prashanth Radhakrish-
nan, Kaladhar Voruganti, and Garth R. Goodson. Fido:
Fast Inter-Virtual-Machine Communication for Enter-
prise Appliances. In 2009 USENIX Annual Technical
Conference (USENIX ATC 09), San Diego, CA, June
2009. USENIX Association.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    609

https://github.com/lsds/intravisor
https://github.com/Legrandin/pycryptodome
https://linuxcontainers.org
https://github.com/giltene/wrk2
https://alpinelinux.org
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://github.com/CTSRD-CHERI/cheribuild
https://github.com/CTSRD-CHERI/cheribuild


[18] Nicholas P. Carter, Stephen W. Keckler, and William J.
Dally. Hardware Support for Fast Capability-Based
Addressing. SIGPLAN Not., 29(11):319–327, November
1994.

[19] Chia che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A Practical Library OS for Unmodi-
fied Applications on SGX. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 645–
658, Santa Clara, CA, July 2017. USENIX Association.

[20] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang
Sun, and Long Lu. Shreds: Fine-Grained Execution
Units with Private Memory. In 2016 IEEE Symposium
on Security and Privacy, pages 56–71, 2016.

[21] CHERI-modified versions of the Flute processor. https:
//github.com/CTSRD-CHERI/Flute. Last accessed:
June 1, 2022.

[22] Darpa FETT Bug Bounty Program. https://fett.
darpa.mil. Last accessed: June 1, 2022.

[23] Joe Devietti, Colin Blundell, Milo M. K. Martin, and
Steve Zdancewic. Hardbound: Architectural Support
for Spatial Safety of the C Programming Language.
SIGOPS Oper. Syst. Rev., 42(2):103–114, March 2008.

[24] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George Necula. XFI: Software Guards for
System Address Spaces. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 06), pages 75–88, January 2006.

[25] FreeBSD adapted for CHERI-MIPS, CHERI-RISC-
V, and Arm Morello. https://github.com/
CTSRD-CHERI/cheribsd. Last accessed: June 1, 2022.

[26] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, pages 3–18. ACM,
2019.

[27] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the web
up to speed with WebAssembly. SIGPLAN Notices,
52(6):185–200, June 2017.

[28] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael Scott, Kai Shen, and
Mike Marty. Janus: Intra-Process Isolation for High-
Throughput Data Plane Libraries. Technical report,
Technical Report UR CSD/1004, 2018.

[29] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
489–504, Renton, WA, July 2019. USENIX Association.

[30] HiFive Unmatched. https://www.sifive.com/
boards/hifive-unmatched. Last accessed: June 1,
2022.

[31] Simon P. Johnson. Scaling Towards Confidential
Computing. https://systex.ibr.cs.tu-bs.de/
systex19/slides/systex19-keynote-simon.pdf,
2019.

[32] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and
Anthony Liguori. kvm: the Linux Virtual Machine Mon-
itor. In Proceedings of the Linux Symposium, volume 1,
pages 225–230, 2007.

[33] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs
first-class datacenter citizens. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19). USENIX
Association, July 2019.

[34] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No Need to Hide: Protecting
Safe Regions on Commodity Hardware. In Proceed-
ings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, pages 437–452. ACM, 2017.

[35] Joshua Lind, Christian Priebe, Divya Muthukumaran,
Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert,
Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. Glamdring: Automatic Application Parti-
tioning for Intel SGX. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), pages 285–298.
USENIX Association, 2017.

[36] Linux Kernel Library. https://github.com/lkl. Last
accessed: June 1, 2022.

[37] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-Weight Contexts: An OS Abstraction
for Safety and Performance. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 49–64. USENIX As-
sociation, November 2016.

610    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Flute
https://fett.darpa.mil
https://fett.darpa.mil
https://github.com/CTSRD-CHERI/cheribsd
https://github.com/CTSRD-CHERI/cheribsd
https://www.sifive.com/boards/hifive-unmatched
https://www.sifive.com/boards/hifive-unmatched
https://systex.ibr.cs.tu-bs.de/systex19/slides/systex19-keynote-simon.pdf
https://systex.ibr.cs.tu-bs.de/systex19/slides/systex19-keynote-simon.pdf
https://github.com/lkl


[38] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror
Caspi, Simon Johnson, Rebekah Leslie-Hurd, and Car-
los Rozas. Intel® Software Guard Extensions (Intel®
SGX) Support for Dynamic Memory Management In-
side an Enclave. In Proceedings of the Hardware and
Architectural Support for Security and Privacy 2016,
pages 1–9. 2016.

[39] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. HASP@ ISCA, 10,
2013.

[40] Dirk Merkel. Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux
Journal, 2014(239):2, 2014.

[41] Gal Motika and Shlomo Weiss. Virtio network paravir-
tualization driver: Implementation and performance of
a de-facto standard. Computer Standards & Interfaces,
34(1):36–47, 2012.

[42] musl libc. https://musl.libc.org. Last accessed:
June 1, 2022.

[43] nginx – HTTP and reverse proxy server. https://
nginx.org. Last accessed: June 1, 2022.

[44] Fengfeng Ning, Chuliang Weng, and Yuan Luo. Virtu-
alization I/O optimization based on shared memory. In
IEEE Intl. Conference on Big Data, 2013.

[45] Christian Priebe, Divya Muthukumaran, Joshua Lind,
Huanzhou Zhu, Shujie Cui, Vasily A Sartakov, and Peter
Pietzuch. SGX-LKL: Securing the Host OS Interface for
Trusted Execution. arXiv preprint arXiv:1908.11143,
2019.

[46] Redis is an in-memory database that persists on disk.
https://github.com/redis/redis. Last accessed:
June 1, 2022.

[47] Yi Ren, Ling Liu, Qi Zhang, Qingbo Wu, Jianbo Guan,
Jinzhu Kong, Huadong Dai, and Lisong Shao. Shared-
Memory Optimizations for Inter-Virtual-Machine Com-
munication. ACM Computing Surveys, February 2016.

[48] RISC-V bring-up tracker. https://github.com/
carlosedp/riscv-bringup. Last accessed: June 1,
2022.

[49] RISC-V CPU, simple 5-stage in-order pipeline. https:
//github.com/bluespec/Flute. Last accessed: June
1, 2022.

[50] Vasily A. Sartakov, Stefan Brenner, Sonia Ben Mokhtar,
Sara Bouchenak, Gaël Thomas, and Rüdiger Kapitza.
EActors: Fast and Flexible Trusted Computing Using
SGX. In Proceedings of the 19th International Middle-
ware Conference, Middleware ’18, pages 187–200, New
York, NY, USA, 2018. ACM.

[51] Vasily A. Sartakov, Daniel O’Keeffe, David Eyers, Lluís
Vilanova, and Peter Pietzuch. Spons & Shields: Practical
Isolation for Trusted Execution. In Proceedings of the
17th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE 2021, pages
186–200, New York, NY, USA, 2021. ACM.

[52] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch.
CubicleOS: A Library OS with Software Componen-
tisation for Practical Isolation. In Proceedings of the
Twenty-Sixth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’21, pages 575–587. ACM, 2021.

[53] David Schrammel, Samuel Weiser, Stefan Steinegger,
Martin Schwarzl, Michael Schwarz, Stefan Mangard,
and Daniel Gruss. Donky: Domain Keys – Efficient In-
Process Isolation for RISC-V and x86. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1677–
1694. USENIX Association, August 2020.

[54] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert Van Renesse,
and Hakim Weatherspoon. X-Containers: Breaking
Down Barriers to Improve Performance and Isolation of
Cloud-Native Containers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’19, pages 121–135. ACM, 2019.

[55] Shweta Shinde, DL Tien, Shruti Tople, and Prateek Sax-
ena. Panoply: Low-TCB Linux Applications With SGX
Enclaves. In Proceedings of the Annual Network and
Distributed System Security Symposium (NDSS), 2017.

[56] Udo Steinberg and Bernhard Kauer. NOVA: A
Microhypervisor-Based Secure Virtualization Architec-
ture. In Proceedings of the Fifth European Conference
on Computer Systems, EuroSys ’10, pages 209–222.
ACM, 2010.

[57] Hajime Tazaki, Akira Moroo, Yohei Kuga, and Ryo
Nakamura. How to Design a Library OS for Practi-
cal Containers? In Proceedings of the 17th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, VEE 2021, pages 15–28. ACM,
2021.

[58] The Python programming language. https://github.
com/python/cpython. Last accessed: June 1, 2022.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    611

https://musl.libc.org
https://nginx.org
https://nginx.org
https://github.com/redis/redis
https://github.com/carlosedp/riscv-bringup
https://github.com/carlosedp/riscv-bringup
https://github.com/bluespec/Flute
https://github.com/bluespec/Flute
https://github.com/python/cpython
https://github.com/python/cpython


[59] There’s a RAT in my code: new npm malware with Blad-
abindi trojan spotted. https://blog.sonatype.com/
bladabindi-njrat-rat-in-jdb.js-npm-malware.
Last accessed: June 1, 2022.

[60] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, efficient in-process isolation with
protection keys (MPK). In 28th USENIX Security
Symposium (USENIX Security 19), pages 1221–1238.
USENIX Association, August 2019.

[61] Lluís Vilanova, Nadav Amit, and Yoav Etsion. Using
SMT to accelerate nested virtualization. In Proceed-
ings of the 46th International Symposium on Computer
Architecture, ISCA ’19, pages 750–761. ACM, 2019.

[62] Carlos Villavieja, Vasileios Karakostas, Lluís Vilanova,
Yoav Etsion, Alex Ramirez, Avi Mendelson, Nacho
Navarro, Adrian Cristal, and Osman Unsal. DiDi: Mit-
igating the performance impact of TLB shootdowns
using a shared TLB directory. In Intl. Conf. on Paral-
lel Arch. and Compilation Techniques (PACT), pages
340–349, October 2011.

[63] Carl A. Waldspurger. Memory Resource Management
in VMware ESX Server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, December 2003.

[64] Robert NM Watson, Peter G Neumann, Jonathan
Woodruff, Michael Roe, Jonathan Anderson, David Chis-
nall, Brooks Davis, Alexandre Joannou, Ben Laurie, Si-
mon W Moore, et al. Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture
(Version 8). Technical report, University of Cambridge,
Computer Laboratory, 2019.

[65] Robert NM Watson, Alexander Richardson, Brooks
Davis, John Baldwin, David Chisnall, Jessica Clarke,
Nathaniel Filardo, Simon W Moore, Edward Napierala,
Peter Sewell, et al. CHERI C/C++ Programming Guide.
Technical report, University of Cambridge, Computer
Laboratory, 2020.

[66] Robert NM Watson, Jonathan Woodruff, Peter G Neu-
mann, Simon W Moore, Jonathan Anderson, David Chis-
nall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Lau-

rie, et al. CHERI: A Hybrid Capability-System Archi-
tecture for Scalable Software Compartmentalization. In
2015 IEEE Symposium on Security and Privacy, pages
20–37. IEEE, 2015.

[67] Robert NM Watson, Jonathan Woodruff, Michael Roe,
Simon W Moore, and Peter G Neumann. Capability
hardware enhanced RISC instructions (CHERI): Notes
on the Meltdown and Spectre attacks. Technical report,
University of Cambridge, Computer Laboratory, 2018.

[68] Dan Williams, Ricardo Koller, Martin Lucina, and
Nikhil Prakash. Unikernels as Processes. In Proceed-
ings of the ACM Symposium on Cloud Computing, SoCC
’18, pages 199–211. ACM, 2018.

[69] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia,
Anthony Fox, Robert M Norton, David Chisnall, Brooks
Davis, Khilan Gudka, Nathaniel W Filardo, A Theodore
Markettos, et al. CHERI Concentrate: Practical Com-
pressed Capabilities. IEEE Transactions on Computers,
68(10):1455–1469, 2019.

[70] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. The CHERI capability model: Re-
visiting RISC in an age of risk. In 2014 ACM/IEEE
41st International Symposium on Computer Architec-
ture (ISCA), pages 457–468, 2014.

[71] Xen project. Event channel internals. https://wiki.
xenproject.org/wiki/Event_Channel_Internals.
Last accessed: June 1, 2022.

[72] Yahoo! Cloud Serving Benchmark. https://github.
com/brianfrankcooper/YCSB. Last accessed: June 1,
2022.

[73] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In
2009 IEEE Symposium on Security and Privacy, pages
79–93. IEEE, 2009.

612    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://blog.sonatype.com/bladabindi-njrat-rat-in-jdb.js-npm-malware
https://blog.sonatype.com/bladabindi-njrat-rat-in-jdb.js-npm-malware
https://wiki.xenproject.org/wiki/Event_Channel_Internals
https://wiki.xenproject.org/wiki/Event_Channel_Internals
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB


KSplit: Automating Device Driver Isolation
Yongzhe Huang∗1, Vikram Narayanan∗2, David Detweiler2, Kaiming Huang1, Gang Tan1, Trent Jaeger1,

and Anton Burtsev2,3

1Pennsylvania State University
2University of California, Irvine

3University of Utah

Abstract
Researchers have shown that recent CPU extensions sup-

port practical, low-overhead driver isolation to protect kernels
from defects and vulnerabilities in device drivers. With perfor-
mance no longer being the main roadblock, the complexity of
isolating device drivers has become the main challenge. De-
vice drivers and kernel extensions are developed in a shared
memory environment in which the state shared between the
kernel and the driver is mixed in a complex hierarchy of data
structures, making it difficult for programmers to ensure that
the shared state is synchronized correctly. In this paper, we
present KSplit, a new framework for isolating unmodified
device drivers in a modern, full-featured kernel. KSplit per-
forms automated analyses on the unmodified source code
of the kernel and the driver to: 1) identify the state shared
between the kernel and driver and 2) to compute the syn-
chronization requirements for this shared state for efficient
isolation. While some kernel idioms present ambiguities that
cannot be resolved automatically at present, KSplit classifies
most ambiguous pointers and identifies ones requiring manual
intervention. We evaluate our solution on nine subsystems in
the Linux kernel by applying KSplit to 354 device drivers and
validating isolation for 10 drivers. For example, for a complex
ixgbe driver, KSplit requires only 53 lines of manual changes
to 2,476 lines of automatically generated interface specifica-
tions and 19 lines of changes to the driver’s code. The KSplit
analysis of the 354 drivers shows a similar fraction of manual
work is expected, showing that KSplit is a practical tool for
automating key tasks to enable driver isolation.

1 Introduction
Device drivers have long been and continue to be a major
source of defects and vulnerabilities in modern kernels [19,32,
50, 65]. Drivers are expected to support a variety of complex
protocols and comply with numerous kernel conventions [23,
76, 77], creating challenges in ensuring that device drivers
operate correctly in the face of concurrent and asynchronous
accesses on multiple CPU cores. In addition, while the core
kernel is relatively stable, the number of kernel extensions

∗Contributed equally
†Work done partly at the University of California, Irvine

and device drivers is large and continues to grow. A modern
Linux 5.12 kernel contains around 8,960 device drivers that
account for 67.7% of the kernel source [3], a number that has
nearly doubled since 2013. With a rate of 80,000 commits
a year, defects and vulnerabilities are an inherent part of the
fast growing and evolving driver codebase.

The recent availability of hardware features for efficient
isolation [1, 5] and system support that leverages such fea-
tures [40, 43, 47, 61, 63, 82] have made low-overhead device
isolation frameworks practical [66, 68]. The upcoming hard-
ware extensions, e.g., native page-granularity support for iso-
lation of kernel code [5], and 16 byte-granularity isolation
with memory tagging extensions (MTE) [1], which are key for
enabling low-overhead software fault isolation (SFI) imple-
mentations [53], will reduce isolation overheads even more.

Despite the availability of low-overhead isolation mecha-
nisms, the task of isolating existing driver code remains chal-
lenging. For decades, device drivers and kernel extensions
have been developed in the shared memory environment of a
monolithic kernel, where they freely exchange references to
large and complex data structures (e.g., hierarchical, cyclic
data structures with many data and pointer fields) that mix the
state of the driver and the kernel. Isolating a driver requires
a careful analysis of the flow of execution between isolated
subsystems to identify how the complex state of the system is
accessed on both sides of the isolation boundary.

Recent techniques to isolate legacy driver code utilize man-
ual analysis of complex kernel-driver dependencies [18, 62,
66, 68, 80], requiring an immense decomposition effort that
limits their applicability. Moreover, proposed techniques to
automate such analyses [33, 72] only address a small fraction
of the task. For example, LXFI, an SFI framework, utilized
an iterative procedure to identify all the state required for
execution of a driver, gradually annotating the missing parts
of the shared state [62]. The scale and complexity of modern
drivers make such manual analysis impractical. In the Linux
kernel, even simple drivers like msr, that provide an interface
to model specific CPU registers (MSRs), require analysis of
459 functions and around 10,000 object fields that are transi-
tively reachable from the 21 functions of the driver interface.
A more complex network driver, ixgbe, requires analysis of

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    613



5,782 functions and over 900,000 object fields—a number
that is well beyond the reach of manual analysis. Decaf [72]
and Microdrivers [33] took initial steps towards automated
analysis for driver isolation prior to the advent of efficient
isolation hardware, so these works focused on techniques to
isolate only a subset of driver functionalty that could be effi-
ciently executed in isolation. As a result, many challenging
parts of the drivers, e.g., interrupt handlers and optimized
data-plane functions, remained inside the unisolated kernel.
In addition, these techniques did not aim to minimize data
synchronization overhead and required several manual tasks.

In this paper, we present KSplit, a new framework for iso-
lating device drivers in the Linux kernel. KSplit performs a
collection of static analyses on the source code of the kernel
and the driver to generate the synchronization code that is
required to execute the driver in isolation. Specifically, KSplit
identifies the shared state that is accessed by both driver and
kernel, computing how this state is used on either side of the
isolation boundary, and how it should be synchronized on
each kernel-driver invocation, or when a shared synchroniza-
tion primitive (e.g. a spinlock or an RCU) is invoked. The
result of the analysis is a collection of procedure call specifi-
cations in the KSplit interface definition language (IDL). The
KSplit IDL compiler then generates glue code that ensures
synchronization of data structures between isolated subsys-
tems. Some kernel idioms, such as concurrency and complex
data structures, present ambiguities that cannot be resolved au-
tomatically at present, so KSplit also identifies these specific
problems for developers to focus their effort. This allows one
to take an existing driver and produce the data synchronization
code necessary to run the driver in isolation, automatically,
if possible, and identify remaining tasks that require manual
intervention, if needed.

Kernel software presents several challenges for developing
accurate and scalable analyses for automating the isolation of
legacy drivers, which we address in the design of KSplit.1

First, modern kernels have evolved to share fine-grained
access to large, hierarchical data structures with their drivers,
which enables joint, optimized operation over shared state
using complex memory references. To compute shared state
accurately, KSplit employs a field-sensitive data flow analysis
using a modular alias analysis to identify shared fields while
accounting for memory references accurately. To compute
shared state scalably, KSplit provides a two-stage analysis to
identify the kernel functions that could possibly share access
to a data structure with a particular driver, enabling more
accurate analysis methods to be targeted to the relevant subset
of the kernel.

Second, modern drivers execute in a concurrent, fully-
reentrant environment of the kernel, which complicates the
challenge of ensuring that the shared state is synchronized cor-
rectly when the driver is isolated. KSplit provides algorithms

1KSplit is developed for Linux, but our techniques can be applied to
other commodity kernels.

to ensure correct synchronization of shared state for driver in-
vocations, nested calls to kernel functions by drivers, and a va-
riety of concurrency primitives, including spin and sequential
locks, read-copy-update (RCU), mutexes, and atomics. KSplit
provides an analysis to identify concurrency primitives that
operate over shared data, finding that such primitives rarely
cross the kernel-driver boundary.

Third, kernels utilize a wide range of low-level idioms that
create ambiguities for marshaling in synchronization, e.g.,
sentinel-terminated and sized arrays, tagged and anonymous
unions, self-referential data structures like linked lists, etc.
To separate complete drivers, these ambiguities need to be
resolved automatically. KSplit partitions these data structures
into classes to apply algorithms to determine whether mar-
shaling requirements can be inferred or not. KSplit is able to
automate most cases and provide warnings for the rest.

We develop KSplit for the Linux kernel and a recent de-
vice driver isolation framework, LVDs [68]. KSplit is a fully
parallel analysis that takes only a few seconds to complete
for simple drivers, and completes within minutes for complex
device drivers like ixgbe. We evaluate driver isolation using
KSplit on 10 Linux device drivers, intentionally choosing
drivers representing a wide variety of functionality and kernel
programming idioms. Simple device drivers like msr can be
isolated with no changes to their code, and only 2 lines of IDL
changes are required to resolve ambiguities in the driver’s
IDL. More complex drivers like ixgbe require less than 19
lines of driver code changes and only 53 lines of IDL changes
for the 2,476 lines of device interface definitions. We also
apply KSplit to 354 drivers, finding that the amount of manual
effort is expected to be a similar fraction of the driver size.
Drivers isolated using KSplit leverage the low-overhead hard-
ware and software isolation mechanisms, retaining 5.4–18.7%
of the non-isolated system’s performance. Our experience
with isolating device drivers confirms that KSplit is a prac-
tical tool for enabling isolation of complete, legacy device
drivers through the use of emerging low-overhead hardware
and software isolation mechanisms.

2 Background: Device Driver Isolation
Over the years, a range of techniques to isolate kernel ex-
tensions explored execution of device drivers in clean-slate
microkernels [10,12,13,27,30,35,39,44–46,49,57] and virtual
machines [14, 15, 31, 34, 55, 70, 75], re-implementing device
drivers in safe programming languages [9,11,37,48,56,67,84],
developing backward-compatible driver execution frame-
works [8,17,22,24,29,36,38,42,52,71,81,83,86], and finally,
isolating unmodified driver code with hardware [33,66,68,80]
and software [18, 25, 62] mechanisms. While it is possible
to enforce isolation of the driver code through programming
language safety [11, 48, 56] and formal verification [7, 20], to
achieve isolation of unmodified drivers, driver isolation frame-
works rely on either hardware isolation mechanisms (e.g.,
segmentation, paging, extended page table (EPT) switching),

614    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



core-isolation [66], or techniques of software fault isolation
(SFI) [18, 25, 62, 85] that enforce a segment-like isolation
boundary around the driver code through instrumentation of
control flow and memory instructions.

The main challenge in isolating legacy drivers is to provide
controlled access to the state that is shared by the kernel and
the isolated driver. Commodity operating systems allow ker-
nels to share an address space, and hence, its entire state with
drivers, implementing driver operations on objects jointly ac-
cessible to both the kernel and the driver. Often these objects
have a complex, hierarchical structure, e.g., sk_buff network
packet buffers, but only a fraction of these objects (i.e., a
small subset of their fields) are accessed by both the kernel
and the driver in practice, these forming the shared state. In
order for the isolated driver to work correctly, KSplit must
identify this shared state comprehensively, but to provide effi-
cient isolation, KSplit must not overapproximate the shared
state significantly.

Hardware and SFI frameworks take different approaches
to protecting access to the state shared between the kernel
and the driver. Hardware approaches control access by ex-
ecuting the driver on an isolated copy of the shared state
that is synchronized with the kernel on each driver invoca-
tion [33, 66, 68, 80]. SFI approaches, in contrast, execute the
driver and the kernel on a single copy of the shared state. This
eliminates the need for maintaining two copies of the shared
state, but requires access-control checks on each memory ac-
cess to the shared state [62]. To provide fine-grained access
control on the kernel state, SFI systems implement a concept
of “capability tables”, which allow quick byte-granularity
lookup of each kernel field accessible to the driver [62].

Irrespective of the isolation mechanism, however, both so-
lutions require analysis of which state can be accessed by the
driver and the kernel, and when each access is allowed [62].
Decaf [72] and Microdrivers [33] took a first step in automated
analysis of shared state for isolated drivers by computing the
state accessed by the driver on each invocation. However,
not all of this state is shared with the kernel, as we find that
drivers operate on a significant amount of state that is private
to the driver. In addition, these projects only decomposed the
non-performance-critical driver code into isolated domains to
retain reasonable performance.

Historically, isolation in the kernel remained prohibitive
due to the high overhead of hardware and software isola-
tion mechanisms. Recent CPUs, however, signal the grow-
ing support for low-overhead isolation primitives. Extended
page-table switching with VM functions [6] and user-space
memory protection keys (MPKs) [6] already provide support
for memory isolation with overheads comparable to system
calls for Intel machines [43, 63, 68, 82]. The next generation
of Intel machines promises to extend MPK with native sup-
port for isolation of ring 0 code [5]. Similarly, the newest
ARM CPUs provide support for 16 byte-granularity isolation
with memory tagging extensions (MTE) [1], which is key for

enabling low-overhead SFI implementations [53].
Recent work has shown that using domain-based isola-

tion can be practical. LXDs [66] and LVDs [68] develop
a Nooks-like isolation framework using extended page ta-
bles to improve boundary-crossing performance, providing
an interface definition language (IDL) for specifying which
data requires synchronization in driver interfaces. This work
demonstrates the potential for the efficient hardware-based
protection domain isolation of legacy drivers. However, such
isolation required a significant manual effort to develop IDL
definitions for complete drivers. While previous work [33,72]
proposed a method to generate the base IDL, configuring the
marshalling requirements for a variety of complex data types
and handling concurrency was performed manually. While
SFI does not require synchronization on boundary crossings,
SFI methods must compute essentially the same information
to enable correct isolation with good performance.

A variety of projects have explored techniques to au-
tomate various aspects of decomposing user-space pro-
grams [16, 21, 41, 58–61, 74, 87–89], called privilege sepa-
ration [78], but these techniques fail to address issues critical
to isolating kernel code. For example, PtrSplit [59] proposed
techniques to compute marshalling requirements for objects
based on runtime tracking, but this adds non-trivial overhead.
In addition, these techniques are not designed to handle multi-
threaded programs like a kernel.

3 KSplit Overview
KSplit transforms complete, shared-memory device drivers
into equivalent drivers that can execute in an isolated domain
and on an isolated copy of the driver state. Specifically, KSplit
identifies the subset of the kernel state that is required for an
isolated driver to run, and derives how this state must be syn-
chronized on invocations that cross the isolation boundary,
and also at the points where the driver uses concurrency prim-
itives,2 e.g., atomics, spinlocks, mutexes, ready-copy-update
(RCU), etc.

For example, the kernel submits a network packet to a
network device with the ndo_start_xmit() function:
1 ndo_start_xmit(struct sk_buff *skb,
2 struct net_device *netdev)

KSplit ensures that all the fields shared between the kernel and
driver of all the data structures that are recursively reachable
from the two input arguments (i.e., skb and netdev), and all
global kernel variables, are synchronized with the driver. After
the invocation completes, the fields updated by the driver are
synchronized back to the kernel. Nested invocations into the
kernel also trigger synchronization to ensure that the kernel
and driver use the current state. If the driver code uses a
concurrency primitive that is shared with the kernel, e.g., a
global lock, like the rtnl_lock used by network device drivers

2To distinguish between the synchronization of shared state in general
with primitives to synchronize state used in concurrent operations, we refer
the latter as concurrency primitives in this paper.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    615



1 struct sk_buff {
2 struct net_device *dev;
3 unsigned int len, data_len;
4 u8 xmit_more:1;
5 ...
6 sk_buff_data_t tail;
7 sk_buff_data_t end;
8 unsigned char *head, *data;
9 unsigned int truesize;

10 };

(a) sk_buff definition
sk_buff

*head header

payload

data

*data

len

end

tail

skb_shared_infonr_frags
*frag_list
frags[]

pointer

offset

(b) sk_buff layout in memory

Figure 1: Definition of the sk_buff data structure and its layout

to register with the kernel, KSplit synchronizes the state of
the driver with the kernel on entry and exit from the atomic
region to maintain up-to-date copies in both domains.

KSplit provides software analysis algorithms that 1) com-
pute the subset of the kernel state that is accessed by the
driver (i.e., the shared state) and 2) synchronize the shared
state on cross-domain invocations and on the use of concur-
rency primitives that access shared state. While appearing
to be conceptually straightforward, isolating legacy drivers
is complicated by several factors caused by how drivers are
currently deployed in monolithic kernels, specifically:

Complex shared state Kernel data structures often consist of
a large number of fields that may be referenced in a variety of
ways. The sk_buff structure that represents a network packet
has 66 fields (5 pointers and 2 offsets) through which 3,132
fields (1,214 pointers) are recursively reachable in other data
structures (Figure 1a). The kernel and driver operate jointly on
only a small fraction (52 shared fields) of these fields. In ad-
dition, like many kernel data structures, the sk_buff structure
is accessed through complex memory references (Figure 1b).
For example, some sk_buff pointers are used for in-place ac-
cess to parts of the network packet, i.e., head and data mark
the beginning of the packet header, and the data regions from
which the packet is assembled, respectively.

To compute shared state accurately under these require-
ments, KSplit employs a field-sensitive data-flow analysis
using a modular alias analysis to capture field references
common to the kernel and the driver. To do this efficiently,
we apply the parameter tree approach [59], which computes
aliases intra-procedurally [79] and propagates those alias re-
sults inter-procedurally. This approach was employed previ-

ously in user-space privilege separation [59]. However, user-
space privilege separation aims to isolate sensitive data se-
lected manually by programmers, whereas KSplit needs to
identify the data shared between the kernel and a driver auto-
matically. Prior techniques to estimate sharing between the
kernel and a driver [33, 72] greatly overestimate shared data
because they collect all the fields that the driver will access,
instead of those that are actually shared.
Size and complexity of the kernel In order for the isolated
driver and kernel to operate correctly, we must identify all
the shared state. Using a sound alias analysis, we can over-
approximate the shared state, but the kernel is too large (e.g.,
contains 53,000 functions) to directly apply the field-sensitive
analysis needed to compute shared state accurately. KSplit
handles this challenge by first performing an analysis to iden-
tify the subset of kernel functions that can access the state
involved in interaction with the driver. Then, KSplit performs
an accurate shared state analysis on this subset of the kernel
functions, along with the driver.
Concurrency and parallelism KSplit must ensure that the
kernel and the isolated driver operate on up-to-date shared
state, regardless of how the kernel and driver interact. The
kernel, however, invokes functions of the driver in parallel on
multiple CPUs. Moreover, device drivers are concurrent and
fully reentrant. As a result, it is possible that the driver updates
the shared state that is concurrently accessed by the kernel or
vice versa, using one of various concurrency primitives. For
example, most drivers use the read-copy-update (RCU) syn-
chronization pattern to synchronize their state across multiple
invocations in a lightweight manner, e.g., the ixgbe network
driver holds an rcu_read_lock to access the ring statistics to
prevent deallocation of driver queues by a concurrent thread.
However, many drivers rely on atomic primitives and criti-
cal sections (e.g., ixgbe communicates state updates to the
New-API (NAPI) state to the softirq framework with atomic
variables). Finally, some device subsystems rely on global
locks (e.g., rtnl_lock in the network subsystem) during driver
registration.

KSplit leverages the critical observation that synchroniza-
tion mechanisms rarely cross the driver-kernel boundary, e.g.,
out of 73 uses of concurrency primitives in the ixgbe driver,
only 3 atomic primitives synchronize state across the isolation
boundary. We develop a collection of algorithms that care-
fully classify shared and private critical sections for a range of
kernel concurrency primitives (mutexes, spinlocks, sequential
locks, atomic primitives, and RCU locks). For shared concur-
rency primitives, KSplit computes the state that is accessed
within the critical section and requires synchronization.
Low-level C idioms Kernel code utilizes a range of low-level
idioms that create ambiguities for static analysis (Figure 2).
For example, device drivers rely on sentinel values (e.g., null)
to represent variable-sized arrays, e.g., the PCI subsystem
uses the pci_id_table array to store a set of devices supported
by a particular driver (Figure 2a). To optimize allocation and

616    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 struct pci_dev { // sized array
2 struct resource resource[DEVICE_COUNT_RESOURCE];
3 };
4
5 static const struct pci_device_id ixgbe_pci_tbl[]
6 = {
7 { PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82598),
8 board_82598 },
9 { }, /* sentinel */

10 };

(a) Sized and sentinel arrays

1 #define skb_shinfo(SKB) \
2 ((struct skb_shared_info *)(SKB->end))
3
4 static inline void
5 *blk_mq_rq_to_pdu(struct request *rq)
6 {
7 return rq + 1;
8 }

(b) Collocated data structures

1 ssize_t msr_read(struct file *file,
2 char __user *buf, ...)
3
4 dev->bar = ioremap(pci_resource_start(pdev, 0),
5 8192);

(c) Special memory regions.

1 struct skb_shared_info {
2 struct sk_buff *frag_list;
3 };

(d) Recursive data structures

1 union acpi_object {
2 acpi_object_type type; /* tag */
3 struct {
4 acpi_object_type type;
5 u64 value;
6 } integer;
7 ...
8 };

(e) Tagged unions

1 static int ixgbe_set_mac(struct net_device *netdev,
2 void *p) {
3 struct sockaddr *addr = p;
4 memcpy(netdev->dev_addr, addr->sa_data,
5 netdev->addr_len);
6 ...
7 }

(f) Opaque pointers

Figure 2: Code idioms typical of the Linux kernel

deallocation of objects, kernel can collocate multiple data
structures into one memory area, and use pointer arithmetic
to access them (Figure 2b). Further, the lack of a fast array or
vector abstraction forces the kernel to use references in place
of arrays and keep the length as a separate field. Some mem-
ory regions, like user and device I/O memory, require special
treatment, when passed into an isolated driver, e.g., marked as
allocated in user memory with the user attribute (Figure 2c).
While recursive data structures are rarely passed across the
kernel-driver interface, some drivers use linked lists, and even
generic graphs of recursive objects (Figure 2d). Tagged and
anonymous unions are used by the driver to implement poly-
morphic functions that can take generic arguments of a union
type (Figure 2e). Device drivers frequently rely on void* point-
ers to express type polymorphism (Figure 2f). Another typical

pattern for the kernel APIs is to return an error as a specially
formed pointer—this allows a simple unified function sig-
nature, e.g., the struct rquest *blk_mq_alloc_request() func-
tion from the block driver returns a pointer to the block request
on successful invocation, but can return a specially formed
pointer that represents an error otherwise. KSplit provides
support for these cases, and the necessary IDL annotations
and library support to generate correct code.

Prior approaches assumed that programmers would provide
the annotations to resolve ambiguities in marshaling manually
for most cases [33,51,62,66,68], but that is impractical when
isolating complete device drivers. Instead, KSplit takes the
opposite approach, aiming to resolve ambiguities in most
cases and providing warnings in the remaining ones. For
example, char * references, such as the head* and tail* fields
in the sk_buff data structure, may refer to singletons, arrays,
strings, or even other data types (e.g., for type casts). KSplit
utilizes a series of classification methods to distinguish among
these caonesutomatically, enabling nearly all ambiguities to
be resolved for the drivers we have isolated.

Prior work Microdrivers [33], Decaf [72], and FGFT [51]
developed static analysis methods aimed at the isolation of
legacy driver code. Due to the sheer complexity of the whole-
driver analysis, these past approaches were limited to isolating
only select driver functions, and supported only a limited
subset of kernel idioms. KSplit leverages advances in static
analysis: specifically, a combination of an accurate program
dependence graph (PDG) representation, and modular alias
analysis with parameter trees [59]. This allows KSplit to scale
the analysis and implement isolation of the entire driver. A
clean separation of shared and private state allows us to scale
static analysis and resolve almost all ambiguous annotations
required for marshalling of data in the low-level driver code.

3.1 Threat Model and Security Goal
The goal of KSplit is the same as the majority of prior research
on driver isolation [35, 66, 68, 80]. Specifically, KSplit aims
to improve kernel reliability, i.e., prevent flaws in the driver
domain, such as memory errors, from affecting the rest of the
kernel. We trust that the kernel domain is free of software
flaws, but assume that the driver domain may contain flaws
that, for example, may result in writes to kernel memory,
possibly causing the kernel to crash.

We leave the feasibility analysis of whether KSplit driver
isolation prevents attacks originating from a driver as fu-
ture work. We note that LXFI [62] prevents certain driver-
originated attacks by generating dynamic checks based on
user-specified safety conditions at the kernel-driver bound-
ary. However, identifying and specifying safety conditions
for individual drivers is a labor-intensive task. Plus a range of
security attacks are still possible, such as resource exhaustion
(e.g., the driver can allocate objects to consume memory), pro-
tocol violations (e.g., the driver can unregister itself from the
kernel), and even use-after-free (e.g., driver can trigger deallo-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    617



PDG

Construction
clangSource LLVM IR PDG

Shared Data 

Computation

Data

Synchronization

Concurrency

Marshaling

Requirements
IDL

IDL Compiler Interface

Code

Figure 3: KSplit analysis workflow.

cation of objects in an unexpected way). We, however, believe
that KSplit is a critical step towards shaping the foundation of
future isolation mechanisms. We plan to study what security
guarantees may be possible to achieve automatically as future
work. Finally, speculative execution and side-channel attacks
are outside the scope of this work as well.

4 KSplit Static Analysis
Figure 3 presents KSplit analysis workflow. KSplit takes the
source code (i.e., the code of the kernel and a device driver)
as input, and converts it into LLVM IR using Clang, LLVM’s
frontend. KSplit then provides analyses to: (1) identify shared
data between the kernel and the driver; (2) compute data syn-
chronization on each boundary crossing for that shared data;
(3) compute data synchronization for concurrency primitives
that access shared data; and (4) infer marshaling requirements
for data types where such requirements are ambiguous, e.g.,
tagged unions, void pointers, arrays, linked data structures,
etc. The result of the analysis is a collection of definitions for
the KSplit interface definition language (IDL) compiler. For
some cases whose IDL configuration (e.g., size and/or format)
remains ambiguous after analysis, KSplit generates warnings
for developers to resolve the ambiguity. These warnings must
be resolved by developers to obtain a working IDL. The IDL
compiler then generates glue code that ensures synchroniza-
tion of data structures between isolated subsystems.

In this section, we present KSplit’s core static-analysis
algorithms to address the aforementioned problems. The al-
gorithms are designed to solve these problems in the general
case, but the C language is ambiguous about some key infor-
mation required by the algorithms (e.g., pointer type infor-
mation). We defer to Section 5 for a discussion of how we
leverage C programming idioms used in the Linux kernel to
resolve these ambiguities in most cases. While some of these
idioms are commonly applied in C programs, some idioms
may need to be replaced for other kernels.

4.1 Program Dependence Graph
KSplit reasons about the kernel and drivers using an interpro-
cedural program dependence graph (PDG) [59]. PDG repre-
sents individual LLVM instructions as nodes with edges that

capture control and data dependencies between instructions.
An instruction n1 is control dependent on n2 if, intuitively,
n2’s outcome decides whether n1 gets executed [26]. An in-
struction n1 is data dependent on instruction n2 if n1 uses
some data produced by n2. Data dependence is critical for de-
termining how the data structures that are exchanged between
the driver and the kernel are used in cross-domain invoca-
tions. Specifically, KSplit computes how the objects are used
by each side of the isolation boundary to then compute data
synchronization requirements, as described in Section 4.3.
In particular, we need to find all operations that may read or
write data, which should be marshaled across the boundary.

Scaling alias analysis with parameter trees A common
type of data dependence happens when an instruction writes to
a memory region from which another instruction reads. Com-
puting such memory-related data dependenciiiesss requires
alias analysis, which computes the variables or expressions
that may reference (i.e., point to) the same memory object,
and are called aliases. We must compute aliases in KSplit
because we must detect all objects that may be accessed by
both the kernel and the drivers. Further, the isolation of the
driver code requires an interprocedural alias analysis, as both
the kernel and driver code may pass pointers to data objects
through function calls, as well as through global variables.
The alias analysis problem is known to be undecidable; de-
vising a precise analysis that is scales well and is guaranteed
to capture all aliases is a challenge. Current interprocedural
alias analysis techniques (e.g., [54,79]), however, do not scale
to low-level kernel code with its complex uses of memory
references. Instead, we propose to deploy a modular form
of alias analysis that enables us to manage scalability more
effectively.

In the KSplit approach to modular alias analysis, we em-
ploy SVF [79] to compute aliases intra-procedurally and
then propagate those alias results inter-procedurally using
the parameter tree approach [59]. This allows us to efficiently
compute memory dependencies across function boundaries
in a context-insensitive way. Specifically, it first constructs
PDGs for each function in the program (which includes intra-
procedural memory dependencies) and then glues them to-
gether by connecting actual parameter trees for arguments at
function call sites with formal parameter trees for parameters;
details can be found in [59].

To illustrate the idea of parameter trees, consider the
msr_read() function of the MSR driver. For each argument of
the function we construct a parameter tree that represents stor-
age locations that the callee can access. For example, Figure 4
shows a parameter tree for two arguments of the msr_read()

function: 1) the file argument of type struct file * and
2) the int argument count. The parameter tree for the file

argument has a root node labeled “file:struct file*” for rep-
resenting the storage for the pointer, and a child node labeled
“*file:struct file” for the memory region that the pointer
points to. The references of each storage location in the pro-

618    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



*file: struct file

Kernel

Driver

call msr_read

file: struct file*

msr_read

*file: struct file

file: struct file*

f_inode: struct inode*

count: int

count: int

if(file->f_op->read)

file->f_inode

if(count % 8)

__vfs_read

Control dependency

Parameter tree

Data dependency

Figure 4: Partial PDG for the msr_read() function which is
invoked with the call instruction from the __vfs_read()

gram are connected with corresponding tree nodes through
data-dependency edges. We note that, for brevity, the figure
does not show the fields of struct file; the actual representa-
tion maintains information about each field in a separate node
to allow field-sensitive analysis.

4.2 Computing Shared and Private Data
Accurate separation of shared and private state is critical for
the precision and scalability of KSplit analyses. However, the
size of the kernel makes it impractical to perform an accurate
analysis to find the shared state at the level of fields (i.e., field-
sensitive analysis). On the other hand, the kernel’s use of
interrupt handlers makes it difficult to ensure that all the code
that may impact a particular driver interface invocation has
been accounted for. For example, an interrupt handler does
not have an explicit caller and is thus unreachable in a typical
control-flow graph (CFG) from neither the driver nor regular
kernel code. It only runs in response to the corresponding
interrupt.

As a result, we develop a shared-state algorithm that first
determines the scope of code in the kernel and driver to con-
sider (i.e., the functions and data types that may be shared),
as described in steps (1) and (2) of the detailed algorithm be-
low. Then, we perform an accurate, field-sensitive analysis on
the PDG. This analysis leverages the modular alias analysis
described above to capture the shared state of the kernel and
driver in terms of data-structure fields.

The detailed algorithm steps are as follows: (1) the algo-
rithm computes a set of struct types that are accessible by
both sides of the isolation boundary. This is performed by
collecting all the struct types that are accessible transitively
through interface function parameters, global variables, and
interrupt handlers. These struct types are referred as shared

struct types. (2) For each shared struct type, we identify the
functions in the kernel and driver that contain variables whose
type matches one of the shared struct types. The functions
accessible from the isolation boundary in step (1) and those
found in step (2) are used to compute the shared state in (3)
below. Steps (1) and (2) do not use the CFG and work even
for interrupt handlers (unreachable in the CFG). (3) For each
set of variables that match a shared struct type, we use the
PDG to analyze the accesses via the variables to collect the
field accesses for that type. (4) For each field, if the field has
accesses from both the kernel and the driver, we consider the
field to be shared. Otherwise, the field is private.

The output of the algorithm is a set of shared struct types
associated with their shared and private fields. For illustra-
tion, the struct net_device type contains the following fields
(among others): wanted_features, features, and hw_features.
By analyzing the ixgbe driver and the kernel code, our analysis
determines that the features field has accesses from both the
driver and the kernel, while the other two fields are only ac-
cessed in the kernel. Our algorithm determines that features
is shared, while the other two fields are private to the kernel.

This algorithm relies on two assumptions. First, in step
(2), we assume that any state shared between the kernel and
driver is accessed using one of the shared struct types from
step (1). While this is not guaranteed, the kernel generally
obeys typing for the types it shares with the drivers. If we
miss a data type, we may under-approximate shared state,
causing correctness issues, but we have not found any viola-
tions so far. Second, we rely on the observation that the type
of a composite object correlates with how it is shared across
the isolation boundary. In other words, it is uncommon for
one instance of a given type to be shared while a different
instance being private; e.g., if a device driver accesses the
inode field of the struct file * object, it is typical that inode
is shared for all instances of the struct file * type. Thus, the
analysis cannot determine whether a field of one instance is
shared while the same field of another instance is private. The
algorithm may over-approximate the shared state, which may
cause unnecessary data synchronization, but does not affect
correctness.

4.3 Cross-Domain Synchronization
When a function invocation crosses the domain boundary,
KSplit synchronizes the shared state required by the callee
domain to execute the call. Similarly, when the function re-
turns, the changes the callee made to any shared state must
be synchronized back to the caller, to reflect updates on its
copy. We develop parameter access analysis to compute all
data structures and fields that require synchronization.

Basic parameter access analysis At a high level, this algo-
rithm tracks the parameter reads that require data to be syn-
chronized on calls and parameter writes that require data to be
synchronized on responses for each cross-domain invocation
and any functions reachable from that invocation. Algorithm 1

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    619



presents a worklist-based algorithm: 1) for each function in
the worklist, it performs an intraprocedural parameter access
analysis; 2) it collects call instructions in the function be-
ing analyzed and performs an interprocedural analysis; and
3) it repeats steps (1) and (2) until the analysis reaches a
fixed point (when the worklist becomes empty). Algorithm 1
computes field usage that is only dependent on parameters
passed between domains. Dependence is computed using the
parameter-tree alias analysis to ensure an overapproximation.

Algorithm 1: Parameter access analysis
Input: G is a PDG, T is a parameter tree, f is the target function of

a cross-domain call
Output: Access Information Map AM

1 initialize AM to be empty
2 worklist←{ f}
3 while worklist is not empty do
4 f1← remove_any(worklist)
5 for node n in T do
6 for instruction i in f1 do
7 if G has a dependence edge from i to n then
8 AL← the edge’s access label
9 AM[n]← AM[n]∪AL

10 else if i calls f2 then
11 worklist← worklist ∪{ f2}
12 end
13 end
14 end
15 end

The analysis goal is to compute a set of access labels (AL)
for each parameter tree node of a function parameter. The
access label of a node represents how the storage represented
by the node is used by the callee of a cross-domain call
(READ/WRITE). We further define a global map AM, which
maps from parameter tree nodes to sets of access labels AL.
For example, if there is a read access to the f_inode field of
the file data structure, we associate a READ label with the
parameter tree node that represents the storage of that f_inode.
After AM is computed, the fields for shared state correspond-
ing to nodes with the READ label are copied from the caller
to the callee when the call happens, and those for shared state
with the WRITE label are copied from the callee to the caller
when the callee returns.

The previous analysis identifies the correct state to synchro-
nize, but might include unnecessary fields because of nested
boundary crossings, which cause the call-graph transitive clo-
sure to include functions from both sides of the isolation
boundary. KSplit distinguishes reads and writes of different
domains and avoids sending shared data to a callee if the data
is only used in the caller’s domain due to a nested call. Simi-
larly, KSplit avoids copying shared data back to the caller if
the writes only occur in the caller domain, To do this, KSplit
removes shared fields accessed only in the caller domain from
the closure computed in Algorithm 1. For the above example,
suppose the driver function d reads shared field fd1 and k′

reads shared field fd2. The previous analysis determines both

fd1 and fd2 need to be sent when k calls d. However, our
optimization distinguishes the two reads and sends only fd1.

4.4 Critical Sections and Atomic Primitives
Modern device drivers are often invoked in parallel on all
CPUs of the system, and are fully concurrent outside of small
critical sections. The kernel and drivers synchronize access to
the shared state through a variety of kernel-provided concur-
rency mechanisms: atomic operations, spinlocks, sequential
and reader/writer locks, read-copy-update critical sections
(RCU), etc. To support correct execution of an isolated driver,
we provide support for concurrency primitives across the iso-
lation boundary. We identify two large classes of concurrency
primitives: locking and lock-free (i.e., atomic operations). For
atomic update primitives, e.g., atomic_inc(), atomic_set(), we
perform all updates on the primary copy of the data main-
tained in the kernel; i.e., drivers call into the kernel to update
the primary copy. For synchronization primitives that acquire
and release a lock (we support spinlocks, seqlocks, RCU, read-
er/writer locks, and mutexes), we compute the state that is
accessed in each critical section and synchronize it across
the isolation boundary. To enforce atomicity across isolated
domains, we rely on a mechanism similar to combolocks [33].

The high-level steps for the analysis are as follows: 1) iden-
tify shared critical sections where cross-subsystem synchro-
nization is required; and 2) identify read/write accesses to
shared data in critical sections.
Identifying critical sections To identify critical sections, we
perform a search in the CFG of the program, looking for a set
of function invocations that implement critical section syn-
chronization primitives, e.g., spin_lock(), mutex_lock(), etc.
For each call to a function marking the beginning of a critical
section, we follow the CFG to identify a matching invocation
that marks its end, i.e., spin_unlock() for spin_lock(). Next,
we use alias analysis to check whether the beginning (lock)
and end (unlock) use the same lock. Finally, we output only
critical sections defined by lock/unlock call pairs found by
the CFG that are associated with the same lock.
Shared data accesses in critical sections Given a critical
section, we identify all shared state that is modified within the
critical section. Our goal is to: 1) classify critical sections and
atomic operations as either private or shared, i.e., whether the
data accessed is private or shared, and then 2) if the critical
section operates on shared data, compute the state required
for correct synchronization. Specifically, we identify read and
write accesses to shared data from inside the critical section
(similar to Algorithm 1). For read accesses, we ensure that the
state is synchronized right after entering the critical section—
this ensures that the code inside operates on a consistent,
fresh copy of the state. For write accesses, we synchronize
all updates by sending it to the other side of the isolation
boundary right before exiting the critical section.
Handling optimized primitives KSplit has support for a va-
riety of concurrency primitives that are optimized to reduce

620    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the use of locking. In most cases, such as sequential locks,
the main issue is to determine the corresponding reader and
writer critical sections accurately without explicitly locking.
For example, we describe how KSplit handles RCU primi-
tives. An RCU lock is often used in manipulating linked list
data structures inside the kernel to enable multiple readers
and a single writer to access the same data structure concur-
rently, which reduces the time-consuming lock acquire and re-
lease operations. In KSplit, we consider the non-preemptable
reader implementation of RCU locks. In this implementa-
tion, the start and end of a reader section is defined by calls
to rcu_read_lock() and rcu_read_unlock() functions, respec-
tively. The reader critical section disables preemption. For an
RCU writer, KSplit searches for the call sites of functions that
may update the data reachable through a pointer used in one
of the RCU update primitives, such as rcu_assign_pointer()

and rcu_replace_pointer(). After identifying those reader and
writer sections, the same synchronization algorithm as before
is used. While this design negates the benefits of RCU locks,
they are rarely used across the isolation boundary. Designing
a more optimal cross-domain primitive is future work.

5 Low-Level Kernel Programming Idioms
Interface definition language KSplit IDL builds on the
ideas from existing driver isolation projects [33, 62, 66].
Specifically, we borrow the idea of “projections”, which de-
scribe the state synchronized across domains, from LXDs [66]
and extend them with rich IDL annotations that provide sup-
port for marshaling of low-level C idioms [33]. For every
function crossing the boundary of an isolated domain, an IDL
remote procedure call declaration is generated.

1 rpc netdev_tx_t ixgbe_xmit_frame(
2 projection sk_buff [alloc(callee)] *skb,
3 projection net_device *netdev)

For each argument of a composite type, e.g., struct, union,
the IDL includes a projection that lists the shared-state fields
that are read or written by the callee function, as determined
by the parameter-access analysis (see the example projection
for struct sk_buff in Section 7.1.1). For ambiguous cases,
additional annnotations are included to specify type of the
object and in-memory representation (e.g., whether a pointer
refers to a singleton or an array, and also type-specific for-
matting, such as null-termination) and size. KSplit aims to
produce these annotations automatically, or generate warnings
for programmers to address.
Pointer classification The main challenge for the static anal-
ysis is to infer IDL specifications from the low-level type
information available in C. For each field type in a projection
whose marshaling requirements are ambiguous, we leverage
our PDG representation to compute: 1) aliases and def-use
chains for references to the ambiguous argument, in order
to determine what kinds of operations may be performed on
it (e.g., to distinguish singletons and arrays), and 2) all the
call sites in which the ambiguous argument is used to infer

semantics from uses (e.g., to infer strings from the argument’s
use in string manipulation functions).

KSplit uses this information to iteratively refine knowledge
about the marshaling requirements of arguments, resolving
the ambiguities in some cases, and producing specific warn-
ings in others. For example, suppose that an argument has the
type char *, but we do not know whether this type refers to
a singleton, an array, a null-terminated array (i.e., a sentinel
array), or another data type altogether (e.g., due to a type cast).
KSplit resolves such ambiguities by first leveraging the def-
use information of the argument’s aliases and then refining the
knowledge by applying further analyses. For classification, we
employ the CCured method [69], as implemented for LLVM
in the NesCheck system [64]. CCured classifies pointers by
whether they are involved in type casts (wild), are referenced
using pointer arithmetic (sequential), or neither (safe). Point-
ers classified as safe by CCured/NesCheck are singletons, as
these pointers reference only one location. Sequential point-
ers may be either arrays or structures, although these can be
distinguished based on the way they are accessed. Finally,
wild pointers involve type cast operations, which make their
types ambiguous; although, we can still infer type information
in several cases for common patterns.

Once we have performed the classification, we then per-
form specialized analyses based on the pointer class for fur-
ther disambiguation:

Sized and null-terminated arrays KSplit can identify ar-
rays whose size is determined at allocation time. It statically
detects strings from uses of pointer aliases in any string ma-
nipulation functions.

Tagged and anonymous unions Deriving projections for
union types is challenging: types and named of the union’s
fields are lost at the level of LLVM IR, as the compiler treats
unions as raw bytes, and simply accesses the fields as offsets.
We develop an analysis algorithm that reconstructs field name
information by matching the offsets accessed by the IR in-
structions with the offsets of each field. To marshal the union,
the IDL compiler relies on a user-supplied discriminator func-
tion to determine the union’s active field at runtime.

Recursive data structures KSplit supports marshaling of
generic recursive data structures, e.g., linked lists, trees, and
graphs. For example, to support a linked list, the static analysis
generates a projection that includes a pointer to a projection of
the same type as one of the fields. The marshaling code gen-
erated by the IDL compiler traverses all the pointers creating
a map of visited objects until a fixed point is reached.

Opaque pointers and error pointers If an argument is
found to be wild, KSplit can resolve the type in some cases,
e.g., void pointers cast to a single type [33]. KSplit handles
some other common cases, such as the pattern where kernel
APIs may return a reference to either an object or an error.

Other idioms KSplit is able to detect other special cases,
such as buffers allocated in user space, co-located data struc-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    621



tures, and “container-of”/“member-of” data structures, to en-
able special handling (e.g., marshaling of user memory) and
targeted warnings (e.g., for marshaling objects collocated
within a memory region or a data structure).

6 Implementation
The KSplit system consists of a set of LLVM passes to per-
form the static analyses, an IDL compiler to generate synchro-
nization code, and a runtime component to track the allocation
and deallocation of objects. The LLVM static analysis passes
consist of 8,373 SLOC in C++ for PDG construction [59],
shared data analysis (Section 4.2), parameter access analy-
sis (Section 4.3), and atomic region analysis (Section 4.4).
PDG construction additionally uses the SVF framework [79]
for performing the intra-procedural alias analysis. We also
use NesCheck [64] for pointer classification required to re-
solve ambiguities in kernel idioms. To preserve the source
semantics, we use optimization level 0 to generate the LLVM
bitcode.

We implement KSplit for the LVDs framework, which sup-
ports isolation of privileged kernel code through a combi-
nation of hardware-assisted virtualization and EPT switch-
ing [68]. Specifically, we rely on the LVDs execution envi-
ronment to run isolated drivers. We, however, implement a
new IDL compiler to support synchronization between sub-
systems; LVDs supported synchronization of only basic types
and data structures, but lacked support for arrays, unions, and
recursive data structures. The compiler is implemented from
scratch in 4,100 lines of C++.

Object lifetimes The main challenge for the runtime is to
ensure that object allocation and deallocation on one side of
the isolation boundary is reflected on the other side. Tight
integration of the kernel and drivers has historically created
irregular allocation and deallocation patterns. KSplit relies
on a hybrid static and dynamic approach in which the exe-
cution runtime tracks new objects and allocates them each
time a new object is passed across the isolation boundary. We,
however, rely on static analysis to identify deallocation sites
and instrument them to propagate deallocations across the
isolation boundary.

7 Evaluation
To evaluate KSplit, we utilize CloudLab [73] c220g2 servers
configured with two Intel E5-2660 v3 10-core Haswell CPUs
running at 2.60 GHz, 160 GB RAM, and a dual-port Intel
X520 10Gb NIC. We use an Intel i7-4790K desktop for eval-
uation of the alx network, xhci USB host-controller, and Intel
ME drivers. Both machines run 64-bit Ubuntu 18.04 Linux,
with kernel version 4.8.4.

7.1 Generality of Static Analysis
The main question is whether KSplit can be used as a general
tool for the isolation of device drivers in the Linux kernel.
To answer this question, we use the KSplit analysis to pro-

duce IDL for 354 drivers from multiple Linux subsystems
(Table 2), and then evaluate the effectiveness of the analysis
and IDL generation algorithms by isolating and validating
the correctness of 10 drivers (Table 1). We chose a range
of device and protocol drivers that represent typical kernel
programming and communication idioms: 1) msr: a high-level
interface to the model specific registers (MSRs) on the Intel
CPUs, which exercises several patterns typical for nearly ev-
ery Linux device driver—dynamic registration of interfaces
and callbacks, synchronization of null-terminated and stati-
cally sized arrays; 2) nullnet: a software-only network driver
that emulates an infinitely fast network adapter, which relies
on complex allocation of objects on both sides of the isolation
boundary, and implements a fast data plane, requiring careful
handling of data structures to achieve optimal performance;
3) coretemp: temperature monitoring for CPU cores, which
utilizes void pointers and two-dimensional arrays; 4) sb_edac:
error detection and correction (EDAC) for the Intel Skylake
server integrated memory controllers, which requires marshal-
ing of a graph of objects that describe the hierarchy of DRAM
banks and memory controllers across the isolation bound-
ary; 5) null_blk: a software-only emulation of the NVMe
interface; the driver is similar to nullnet, i.e., it allows us to
stress-test the overheads of isolation on a fast NVMe inter-
face; 6) ixgbe: an Intel 82599 10Gbps Ethernet driver, which
exhibits several critical characteristics that are interesting for
decomposition: first, it relies on atomic operations to update
packet statistics in the kernel; second, it exhibits a broad
range of asynchronous accesses from system calls, interrupt
contexts, software IRQs, and New API (NAPI) threads that
implement submission of packets and polling; third, it relies
on system timers for several control-plane operations that al-
low us to test static analysis for support of callback functions
dynamically registered with the kernel; 7) alx: a Linux Qual-
comm Atheros ethernet driver; we select alx to compare the
complexity and manual effort of decomposing device drivers
within the same device class (i.e., we compare three ethernet
drivers: ixgbe, alx, and nullnet); 8) can_raw: a raw CAN pro-
tocol driver using the sockets API, which represents a class
of protocol drivers that exhibit typical protocol-layer patterns
by interacting with the kernel network stack; 9) dm_zero a
software block driver that returns 0 on reads and drops writes;
dm_zero tests if KSplit can fully automate isolation of simple
device drivers; 10) xhci-hcd: an xHCI protocol driver for sup-
porting USB 3.0, which handles complex interactions of the
USB communication protocol.

A wide variety of drivers allows us to examine the general-
ity of the KSplit analyses for producing IDL specifications,
and assess the manual effort required for isolation. While we
did not run all 354 drivers, we compare metrics related to the
effort of isolating an average driver to those we validated. To
validate the 10 drivers, we first perform manual tasks required
to complete the IDL by resolving all warnings generated by
KSplit, and then test the isolated driver trying to evaluate cor-

622    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



co
re

te
m

p

nu
lln

et

ix
gb

e

al
x

ca
n-

ra
w

sb
_e

da
c

nu
ll_

bl
k

dm
_z

er
o

m
sr

xh
ci

-h
cd

SLOC 562 194 27K 3K 615 2K 690 54 218 10K
Drv.→kern. 21 14 134 61 36 15 36 3 16 45
Kern.→drv. 2 11 81 26 17 1 9 2 5 27
Functions 643 1K 5K 3K 1K 912 1K 133 459 1K

(a) Complexity of driver analysis
Deep copy 31K 46K 999K 214K 153K 24K 75K 11K 24K 134K
Access analysis [33] 127 231 4K 1K 696 91 562 29 66 375
Shared analysis 87 156 3K 831 368 70 406 21 55 265
Boundary analysis 87 155 2K 806 333 70 379 21 51 194

(b) Total number of fields marshaled across all interface functions by each algorithm
Pointers 12K/76 19K/96 404K/1,529 84K/356 60K/178 9K/58 29K/220 4K/16 9K/44 51K/189
Unions 0/0 5/3 114/33 29/17 22/30 0/0 1/12 0/0 0/0 0/7
Critical sections 5/0 5/1 70/3 25/2 19/2 2/0 31/0 0/0 8/0 10/0
RCU 0/0 1/0 8/0 6/0 9/0 0/0 6/0 0/0 0/0 0/0
Seqlock 0/0 0/0 3/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Atomic operations 0/0 25/1 173/35 59/22 49/1 5/0 37/2 3/0 3/0 50/4
Container of 225/4 557/2 2K/20 1K/12 749/8 419/0 627/5 73/3 68/2 1K/6

(c) Impact of shared state optimizations (private/shared)
Singleton 70/0 84/0 1,261/0 307/0 147/0 39/0 183/0 15/0 41/0 172/0
Array 0/1 3/2 92/27 32/2 21/5 5/6 10/5 0/0 0/1 1/0
String 1/0 1/0 2/0 0/0 0/0 2/0 2/0 0/0 1/0 0/0
Wild pointer (void) 2/1 4/0 142/1 12/0 5/0 3/0 17/0 1/0 1/0 16/0
Wild pointer (other) 1/0 0/2 1/3 0/3 0/0 0/3 0/3 0/0 0/0 0/0

(d) Inference type semantics on shared pointers (handled/manual)
Time 17 217 546 190 135 22 490 5 7 238

(e) Analysis execution time (seconds)
Statements 70% 86% 50% 72% 79% 63% 79% 85% 77% 55%
Branches 57% 81% 48% 76% 79% 65% 91% 100% 96% 53%

(f) Test coverage
IDL (LOC) 163 221 2K 674 470 236 306 47 109 1K
IDL changes (LOC) 1 5 53 25 30 5 11 0 2 7
Drv. changes (LOC) 10 6 19 11 12 0 0 0 0 0
False positives 1 25 129 43 30 6 34 2 5 12
Ptr. misclassifications 0 0 7 3 2 2 3 0 2 0
Warnings 1 8 65 22 35 5 20 0 3 7

(g) Manual effort

Table 1: Driver complexity and impact of shared state optimizations.

rectness of isolation what allows us to judge precision and
accuracy of the static analysis.

Complexity of driver interfaces To justify the need for au-
tomated analysis techniques, we collect several metrics that il-
lustrate the complexity of the 10 drivers isolated using KSplit
(Table 1a). The two most complex drivers are ixgbe (over 27K
SLOC) and xhci (over 10K SLOC). The ixgbe driver consists
of over 2,000 functions, registers 81 callback functions with
the kernel, and relies on 134 kernel functions for its oper-
ation. Isolation of the ixgbe driver involves analysis of the

5,782 functions that may access the state shared between the
kernel and the driver. A total of 999,136 fields and scalar ar-
guments are transitively reachable from the arguments of the
driver functions that define its isolation boundary (Table 1b).
While partial isolation of the ixgbe driver was demonstrated
before [66, 68], isolation of the complete driver is beyond the
reach of manual human analysis.

Impact of shared state optimizations KSplit distinguishes
the shared state from the private state, which is critical for
the scalability of the analysis algorithms (Section 4.3). We

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    623



ch
ar

/tt
y

(7
7)

bl
oc

k
(1

7)

ne
t(

89
)

ed
ac

(1
3)

hw
m

on
(6

7)

sp
i/i

2c
(3

8)

us
b

(5
3)

SLOC 1047 2535 13302 896 556 471 1340
Drv.→kern. 11 60 25 18 10 14 16
Kern.→drv. 10 16 47 4 5 3 13
Functions 546 2588 2691 839 462 772 784

(a) Complexity of driver interfaces

Pointers
15K
/64

53K
/310

73K
/353

16K
/107

10K
/61

12K
/71

18K
/92

Unions 0/2 3/12 7/6 0/2 <1/<1 0/2 <1/4
Crit. sec. 5/<1 51/<1 25/<1 5/<1 6/<1 9/<1 9/<1
Atomic op. <1/0 6/0 2/0 0/0 <1/0 <1/0 <1/<1
RCU <1/0 <1/0 <1/0 0/0 <1/0 0/0 <1/<1
Seqlock 9/<1 45/2 45/11 6/0 <1/<1 4/0 10/<1
Container of 145/4 833/3 1K/9 338/2 133/2 207/2 215/3

(b) Impact of shared state optimizations (private/shared)
Singleton 53/0 26/0 303/0 84/0 56/0 66/0 81/0
Array 5/2 27/15 44/20 22/6 2/<1 4/2 4/1
String <1/0 3/0 <1/0 2/0 <1/0 <1/0 <1/0
Wild (void) 5/<1 18/0 12/1 3/0 1/<1 2/<1 6/<1
Wild (other) 0/<1 0/2 0/3 0/3 0/<1 0/<1 0/2

(c) Inferred type semantics on shared pointers (handled/manual)

Table 2: Performance and complexity metrics across several subsys-
tems (average per driver).

Reference ixgbe skx_edac
nullnet alx sb_edac

Shared rpcs 11 73 13
Shared rpcs IDL∆ +0/-51 +12/-29 +1/-1
Shared rpcs Annotat.∆ 0 +3/-3 0
New IDL 77 36 0

Table 3: Similarity within a class

collect the total number of fields in all data structures that are
recursively reachable from all the arguments passed across
the isolation boundary—previous approaches relied on naive
“deep copy” [59] and field-access approaches [33] (Table 1b).
Out of 999K fields reachable through the isolation boundary
of the ixgbe driver, only 4,509 fields are accessed, and an even
smaller fraction of them, or 3,029, are shared (Table 1a). Fur-
thermore, by reasoning about nested crossings of the isolation
boundary, we reduce this number to 2,669. Most critically, the
shared-state optimization radically simplifies the isolation of
the driver, as in many cases, complex low-level idioms, e.g.,
tagged unions, stay on only one side of the isolation boundary
(Table 1c). For example, out of 73 critical sections in ixgbe,
only 3 are shared (ixgbe relies on the global rtnl_lock to reg-
ister the driver with the kernel); all RCU and seqlocks are
private, and do not trigger cross-boundary synchronization.

Pointer classification To understand how well KSplit sup-
ports the classification of pointer references, we characterize
the number of supported and problematic pointer patterns in
our drivers (Table 1d). In many cases, KSplit is able to in-

fer the types and sizes to enable automatic IDL generation.
Table 1d shows that for ixgbe, out of 1,529 pointers (“Point-
ers” in Table 1c) that require marshalling across the isolation
boundary, only 31 require manual inspection to generate cor-
rect marshaling attributes. There is a small number of mis-
classified pointers (“Ptr. misclassifications” in Table 1g). We
found that these misclassified pointers are sequential point-
ers that are wrongly classified as singleton pointers; CCured
fails to identify pointer-arithmetic operations on them. A de-
tailed study of these misclassified pointers revealed the main
reason for misclassification is due to not analyzing library
code. For example, the ixgbe driver calls the kernel func-
tion pci_request_selected_regions() with a reference to the
driver name string, but the kernel function itself does not per-
form pointer-arithmetic operations on the reference; instead it
passes the reference to a string library. This causes CCured to
misclassify the pointer as a singleton pointer. It is possible to
resolve some misclassification cases by either extending our
analysis to kernel libraries (note, some library functions like
printk() are challenging for static analysis), and by manually
annotating how pointers are used in such functions. For ex-
ample, if a pointer is passed to a string manipulation function,
e.g., strcmp(), we can classify the pointer as sequential.

Analysis execution time To understand the practicality of
KSplit and its fit for the kernel development toolchain, we
measure the execution time of the analysis (Table 1e). The ex-
ecution time is largely influenced by the number of functions
that are involved in the analysis (this number is determined
primarily by the size of the driver and by the size of the kernel
subsystem the driver interacts with). Complex device drivers
that interact with multiple subsystems (e.g., can_raw, null_blk,
xhci, and ixgbe), require 190-546 seconds to complete. Simple
device drivers finish in under a minute.

Precision of the analysis and manual effort To understand
the precision of the analysis and the manual effort involved
in the isolation of a driver, we compare an automatically-
generated IDL with the final, manually-checked and tested
IDL used for the isolation of the driver. As we do not have
the ground truth, to gain confidence in the correctness of
the isolated driver, we execute a collection of tests on each
driver. We use Gcov to collect the code-coverage metrics for
the tests we run (Table 1f). The code coverage is less than
50% in some cases, since we can only trigger the execution
of a subset of the driver code. For example, EDAC drivers
support multiple generations of Intel CPUs from Ivy Bridge
to Xeon Phi; ixgbe supports multiple hardware interfaces,
e.g., x540, 82599, 82598; xhci, being a protocol driver, has a
lot of error handling code, e.g., in a representative function
handle_tx_event() that handles all the USB transmit events,
out of 348 source lines, 198 lines (or 56%) are error handling
code that we cannot trigger without fault injection; sb_edac
driver consists of 1162 lines of code, out of which only 492
(42%) are executable on our Haswell hardware, out of which
our tests cover 373 lines of code (thus increasing our coverage

624    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



from 63% to 76%).
We collect several metrics that characterize the amount of

manual effort involved in resolving IDL warnings (Table 1g).
The IDL of a complex driver like ixgbe, generated by KSplit,
consists of 2,476 lines of code. Isolation of the driver required
changing 53 lines of automatically-generated IDL (or 2% of
the IDL). We only had to introduce 19 lines of changes to
the driver’s code, which mostly involve redefinition of certain
macros as helper functions (e.g., setup_timer, INIT_WORK, etc.).
KSplit misclassified 7 out of 1,529 pointers shared across
the isolation boundary. Two pointers were strings that were
passed across the isolation boundary, but were not accessed
through pointer arithmetic or string-manipulation functions.
One pointer was referring to a DMA memory region that
was only accessed by the device but was not involved in any
pointer arithmetic in the driver. Four pointers were misclassi-
fied due to being passed as arguments to the memcpy() function.
For smaller drivers, isolation required less than 30 lines of
IDL changes. Furthermore, most small drivers required no
changes to the driver code.

The “False positives” row lists the number of fields falsely
classified by KSplit as shared. We identify them as not shared
through manual inspection and driver profiling. The ground
truth may be incomplete, so this number represents an upper
bound on the number of false positives. The fraction of false
positives is generally low (<10%). The dominant reason for
false positives are aliases in the shared-data analyses (shared
data uses a type-based approach that leads to the overapproxi-
mation of fields and in/out attributes).

Finally, the “Warnings” row shows the number of warnings
KSplit’s static analyses generate for each driver. These warn-
ings must be resolved by developers to obtain a working IDL.

Similarity within a class A key insight for scaling the iso-
lation to a large fraction of all kernel drivers is grounded on
the assumption that drivers within the same class have a sig-
nificant degree of similarity across their interfaces. Isolation
of one driver within the class, therefore, could guide the iso-
lation of other drivers in a relatively straightforward manner,
hence amortizing manual effort across the class. To under-
stand the effort involved in isolating multiple drivers in the
same class, we choose a base driver within a class and com-
pare it with other drivers in its class (Table 3). We compare
two network drivers, alx and nullnet, to the base ixgbe driver.
The alx driver shares 73 function definitions with ixgbe (the
total number of functions crossing the isolation boundary in
both directions is in Table 1a). After ixgbe was decomposed,
decomposition of alx required changes to 6 annotations and a
total 41 lines of changes in the shared part of the IDL.

Generality of IDL generation To judge if KSplit can be
used as an isolation tool for the entire population of drivers,
we apply it to 354 drivers across nine subsystems in the Linux
kernel (Table 2). To make a prediction about the manual
effort involved in isolation of the average driver, we collect

Null Integer Array String Void Union

Bytes 0 8 32 * 8 256 4096 24 + 32
Cycles 502 532 690 1310 919 710

Table 4: Overhead of marshaling various data structures

the same metrics as the ones collected for the validated drivers
(Table 1), although all the counts in Table 2 are averages per-
driver. In general, we see a huge impact due to the shared-state
optimizations (Table 2b) and a low number of problematic
pointer instances (i.e., cases that are not “singletons”) that
could result in warnings (Table 2c). We therefore believe that
the effort of isolating an average driver in these subsystems is
comparable to the drivers we validated.

IDL warnings KSplit produces IDL warnings for the follow-
ing patterns in Table 2c: 1) arrays and “strings” of undeter-
mined size; 2) wild pointers whose type cannot be inferred
deterministically from “wild (void)”; 3) anonymous unions
in “wild (other)”; and 4) potential cases of collocated data
structures in “wild (other)”. In general, the number of IDL
warnings for each driver is dependent not only on the size of
the driver, i.e., lines of code, and complexity of the driver in-
terface, i.e., lines of IDL code, but also on the types of kernel
idioms used for communication across the isolation boundary.
For example, isolation of the alx driver involves an IDL file
that consists of 674 lines of code and requires analysis of 22
warnings. The alx driver contains 17 anonymous unions, 2
undetermined size arrays and 3 non-void wild pointers. At the
same time, isolation of the can-raw driver that uses a smaller
IDL (470 lines of IDL code) yields 35 warnings. The high
number of warnings for can-raw is attributed to the 30 in-
stances of anonymous unions and 5 indeterminate-size arrays
in its interface.

7.1.1 Case Study: Ixgbe Network Driver

To illustate the process of decomposition, we consider an ex-
ample, the ixgbe driver, that combines a representative set of
complex kernel data structures, low-level idioms, and synchro-
nization patterns. As discussed above, separation of shared
and private state is critical for reducing the complexity of the
IDL required for the isolation of ixgbe. KSplit automatically
resolves all function pointers that ixgbe registers with the ker-
nel as its interface, identifies five user and ioremap memory
regions used by the interfaces of the driver. Out of 143 wild
void pointers that ixgbe exchanges across the isolation bound-
ary only one required manual intervention (“Wild pointer
(void)” in Table 1d). We then had to inspect 3 wild pointers
that are type casted between non-void types (“Wild pointer
(other)” in Table 1d). The driver requires manual inspection of
27 array pointers (out of 119 exchanged across the boundary).
The driver uses one function that returns a pointer-as-error,
which is successfully identified by KSplit.

One of the most challenging parts of the ixgbe interface is
the proper handling of the sk_buff data structure, representing
a network packet (Figure 1). Several integer fields are used

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    625



1 projection<struct sk_buff> skb_xmit {
2 projection net_device *dev;
3 unsigned int len;
4 unsigned int data_len;
5 ...
6 void * [alloc_sized<callee>(self->true_size)] head;
7 void * [within<self->head, self->true_size>] data;
8 unsigned int [within<_, self->true_size>] tail;
9 unsigned int [within<_, self->true_size>] end;

10 };

Listing 1: Projection of an sk_buff data structure

as offsets into the data: 1) tail marks the end of the packet’s
data, and 2) end represents the start of the struct skb_shinfo

that is collocated inside the data memory. The low-level PDG
representation of the program allows us to derive that the
skb_shinfo data structure is allocated within the data object.
As the tail and end fields participate in pointer-arithmetic
operations, KSplit generates a special within IDL attribute
that instructs the marshaling code to check that the field is
within a specific range, but the range has to be specified manu-
ally (Listing 1). KSplit’s support for recursive data structures
allows us to marshal sk_buff buffers that consist of multiple
fragments (sk_buff contains an optional list of fragments).

7.2 Performance
In general, the performance of the isolated driver is largely
determined by the performance of the underlying isolation
framework, i.e., LVDs, in our current implementation [68].
We, however, quantify the impact of the KSplit marshaling
protocol, and conduct an end-to-end performance measure-
ment of an application using the isolated ixgbe driver.
Marshaling overheads We perform microbenchmarks to
evaluate the overheads of marshaling various data structures
that are commonly used in the Linux kernel (Table 4). For
each data structure, the test involves marshaling the data struc-
ture, passing it across the isolation boundary, and unmarshal-
ing it. We perform ten million iterations and report an average.
On the LVDs system, a null call-reply invocation takes 502
cycles, which includes the overhead of executing the vmfunc

instruction, saving and restoring general registers, and select-
ing a stack inside the driver domain. KSplit adds 30 cycles for
marshaling simple scalar fields, such as integers. For marshal-
ing tagged unions, we rely on a user-supplied discriminator
function that identifies the tag and marshals the union accord-
ing to the active field’s type. In our experiment, we marshal a
union that represents a string of 32 characters, which incurs
an overhead of 208 cycles.
Memcached To understand end-to-end overheads of isola-
tion on real application workloads, we utilize an experiment
that runs memcached, a high-performance, in-memory object-
caching system [4] and compare a native, non-isolated kernel
with the performance of a system that utilizes an isolated ver-
sion of the ixgbe network driver. We run memcached version
1.5.12 with a single service thread and a cache size of 5GB.
We use the memaslap [2] load-generator to send random UDP

200

400

600

800

1000

1200

1 2 4 10

2

4

6

8

10

12

T
ra

n
s
a

c
ti
o

n
s
 p

e
r 

 s
e

c
o

n
d

B
a

n
d

w
id

th
 (

G
b

p
s
)

Number of server processes

TPS (Native)
TPS (Isolated)

Bw (Native)
Bw (Isolated)

Figure 5: Memcached performance

requests of 64B keys and 1024B values to the server (90%
get and 10% set) with a concurrency of 128. To ensure a fair
comparison, we limit the number of available cores to 10, as
we are limited by the performance of a 10Gbps adapter (all 20
cores would allow isolated drivers to bridge the performance
gap, but at a cost of higher CPU utilization). We report both
the number of key-value transactions per second and total net-
work bandwidth (Figure 5). For experiments with 1-4 threads,
KSplit stays within 5.4-18.7% of the non-isolated system’s
performance. With 10 threads, both isolated and native drivers
saturate the network interface and hence demonstrate nearly
identical performance (albeit at higher CPU utilization, due
to domain crossings).

8 Conclusions
After decades of research, commodity CPUs are converging
on a set of practical hardware mechanisms capable of pro-
viding support for low-overhead isolation. With performance
no longer being the main roadblock, complexity becomes the
main challenge for enabling isolation in commodity systems.
Our work on KSplit takes a step forward by enabling iso-
lation of unmodified device drivers in the Linux kernel. A
combination of practical static analysis techniques allows us
to address the daunting complexity of the driver interfaces—
KSplit supports isolation of complex, fully-featured device
drivers with only minimal changes or human involvement.
While our current implementation works with Linux and a
specific isolation framework, we argue that our analysis and
state-synchronization techniques are general and can serve as
a foundation for a range of isolation solutions enabled by the
emerging hardware mechanisms.

Acknowledgments
We thank the ASPLOS’21, OSDI’21, SOSP’21 and OSDI’22
reviewers and our shepherd, Rüdiger Kapitza, for in-depth
feedback on earlier versions of the paper. We would like
to thank the Utah CloudLab team for continual support in
accommodating our hardware requests. Finally, we would
like to thank the artifact evaluation committee for numer-
ous comments that greatly improved the artifact. This re-
search is supported in part by the National Science Foun-
dation under Grant Numbers CNS-1527526, OAC-1840197,
CNS-1801534, CNS-1816282, and DARPA HR0011-19-C-
0106. Vikram Narayanan is partly supported by an IBM PhD
fellowship.

626    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References
[1] Armv8.5-A Memory Tagging Extension.

https://developer.arm.com/-/media/Arm%

20Developer%20Community/PDF/Arm_Memory_

Tagging_Extension_Whitepaper.pdf.

[2] libmemcached. https://libmemcached.org/

libMemcached.html.

[3] LKDDb: Linux Kernel Driver DataBase. https://

cateee.net/lkddb/. Accessed on 04.23.2019.

[4] Memcached. https://memcached.org/.

[5] PKS: Add protection keys supervisor (PKS) support.
https://lwn.net/Articles/826091/.

[6] Intel 64 and IA-32 Architectures Software Developer’s
Manual, 2020. https://software.intel.com/

content/www/us/en/develop/download/intel-64-

and-ia-32-architectures-sdm-combined-volumes-

1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html.

[7] Sidney Amani, Alex Hixon, Zilin Chen, Christine
Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren,
Yutaka Nagashima, Japheth Lim, Thomas Sewell,
Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. Cogent: Verifying high-
assurance file system implementations. In Proceedings
of the 21st International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS ’16), page 175–188, 2016.

[8] Jonathan Appavoo, Marc Auslander, Dilma DaSilva,
David Edelsohn, Orran Krieger, Michal Ostrowski,
Bryan Rosenburg, R Wisniewski, and Jimi Xenidis. Uti-
lizing linux kernel components in K42. Technical report,
IBM Watson Research, 2002.

[9] Godmar Back and Wilson C Hsieh. The KaffeOS
Java Runtime System. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 27(4):583–
630, 2005.

[10] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Tim-
othy Roscoe, Adrian Schüpbach, and Akhilesh Sing-
hania. The Multikernel: A new OS architecture for
scalable multicore systems. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples (SOSP ’09), pages 29–44, 2009.

[11] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility Safety and Performance in the SPIN Operat-
ing System. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (SOSP ’95), page
267–283, 1995.

[12] D. W. Boettner and M. T. Alexander. The Michigan
Terminal System. Proceedings of the IEEE, 63(6):912–
918, June 1975.

[13] Bomberger, A.C. and Frantz, A.P. and Frantz, W.S.
and Hardy, A.C. and Hardy, N. and Landau, C.R. and
Shapiro, J.S. The KeyKOS nanokernel architecture. In
Proceedings of the USENIX Workshop on Micro-Kernels
and Other Kernel Architectures, pages 95–112, 1992.

[14] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating
malicious device drivers in Linux. In 2010 USENIX
Annual Technical Conference (USENIX ATC ’10), 2010.

[15] Bromium. Bromium micro-virtualization,
2010. http://www.bromium.com/misc/

BromiumMicrovirtualization.pdf.

[16] David Brumley and Dawn Song. Privtrans: Automati-
cally Partitioning Programs for Privilege Separation. In
13th Usenix Security Symposium, pages 57–72, 2004.

[17] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. Disco: Running commodity oper-
ating systems on scalable multiprocessors. ACM Trans-
actions on Computer Systems (TOCS), 15(4):412–447,
1997.

[18] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples (SOSP ’09), pages 45–58, 2009.

[19] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Frans Kaashoek. Linux
kernel vulnerabilities: state-of-the-art defenses and open
problems. In Proceedings of the 2nd Asia-Pacific Work-
shop on Systems, pages 1–5, 2011.

[20] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Using
Crash Hoare Logic for Certifying the FSCQ File System.
In Proceedings of the 25th Symposium on Operating Sys-
tems Principles (SOSP ’15), page 18–37, 2015.

[21] Stephen Chong, Jed Liu, Andrew Myers, Xin Qi,
K. Vikram, Lantian Zheng, and Xin Zheng. Secure Web
Applications via Automatic Partitioning. In Proceedings
of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP ’07), pages 31–44, 2007.

[22] DDEKit and DDE for linux. http://os.inf.tu-

dresden.de/ddekit/.

[23] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz
Qadeer, Sriram Rajamani, and Damien Zufferey. P:

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    627

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://libmemcached.org/libMemcached.html
https://libmemcached.org/libMemcached.html
https://cateee.net/lkddb/
https://cateee.net/lkddb/
https://memcached.org/
https://lwn.net/Articles/826091/
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://os.inf.tu-dresden.de/ddekit/
http://os.inf.tu-dresden.de/ddekit/


Safe Asynchronous Event-driven Programming. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI ’13), pages 321–332, 2013.

[24] Kevin Elphinstone and Stefan Götz. Initial evaluation
of a user-level device driver framework. In Asia-Pacific
Conference on Advances in Computer Systems Architec-
ture, pages 256–269. Springer, 2004.

[25] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C. Necula. XFI: Software Guards
for System Address Spaces. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), pages 75–88, 2006.

[26] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. War-
ren. The Program Dependence Graph and its Use in
Optimization. ACM Transactions on Programming Lan-
guages and Systems, 9(3):319–349, 1987.

[27] Feske, N. and Helmuth, C. Design of the Bastei OS
architecture. Technical Report TUD-FI06-07, 2006.

[28] Flux Research Group. CloudLab Web site. http://www.
cloudlab.us.

[29] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The Flux OSKit: A Sub-
strate for Kernel and Language Research. In Proceed-
ings of the Sixteenth ACM Symposium on Operating
Systems Principles (SOSP ’97), pages 38–51, 1997.

[30] Alessandro Forin, David Golub, and Brian N Bershad.
An I/O system for Mach 3.0. Carnegie-Mellon Univer-
sity. Department of Computer Science, 1991.

[31] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt,
Andrew Warfield, and Mark Williamson. Safe hardware
access with the Xen virtual machine monitor. In In
1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS),
2004.

[32] Archana Ganapathi, Viji Ganapathi, and David Patterson.
Windows XP Kernel Crash Analysis. In Proceedings
of the 20th Conference on Large Installation System
Administration (LISA ’06), 2006.

[33] Vinod Ganapathy, Matthew J Renzelmann, Arini Balakr-
ishnan, Michael M Swift, and Somesh Jha. The design
and implementation of microdrivers. In ACM SIGARCH
Computer Architecture News, volume 36, pages 168–
178, 2008.

[34] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh. Terra: a virtual machine-based platform
for trusted computing. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP
’03), pages 193–206, 2003.

[35] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen
Liedtke, Kevin J Elphinstone, Volkmar Uhlig,
Jonathon E Tidswell, Luke Deller, and Lars Reuther.
The SawMill multiserver approach. In Proceedings of
the 9th workshop on ACM SIGOPS European workshop:
beyond the PC: new challenges for the operating system,
pages 109–114, 2000.

[36] Shantanu Goel and Dan Duchamp. Linux device driver
emulation in Mach. In Proceedings of the 1996 annual
conference on USENIX Annual Technical Conference,
pages 65–74, 1996.

[37] Michael Golm, Meik Felser, Christian Wawersich, and
Jürgen Kleinöder. The JX Operating System. In Pro-
ceedings of the General Track of the Annual Conference
on USENIX Annual Technical Conference (USENIX
ATC ’02), page 45–58, 2002.

[38] David B Golub, Guy G Sotomayor, and Freeman L Raw-
son III. An architecture for device drivers executing as
user-level tasks. In USENIX MACH III Symposium,
pages 153–172, 1993.

[39] Google. Fuchsia project. https://fuchsia.dev/

fuchsia-src/getting_started.md.

[40] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi,
Yubin Xia, and Haibo Chen. Harmonizing Performance
and Isolation in Microkernels with Efficient Intra-kernel
Isolation and Communication. In 2020 USENIX Annual
Technical Conference (USENIX ATC ’20), pages 401–
417, 2020.

[41] Khilan Gudka, Robert N. M. Watson, Jonathan An-
derson, David Chisnall, Brooks Davis, Ben Laurie, Il-
ias Marinos, Peter G. Neumann, and Alex Richardson.
Clean application compartmentalization with SOAAP.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS ’15),
pages 1016–1031, 2015.

[42] Hermann Härtig, Jork Löser, Frank Mehnert, Lars
Reuther, Martin Pohlack, and Alexander Warg. An I/O
architecture for microkernel-based operating systems.
Technical report, TU Dresden, Dresden, Germany, 2003.

[43] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In Proceedings of the
2019 USENIX Annual Technical Conference (USENIX
ATC ’19), pages 489–504, 2019.

628    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.cloudlab.us
http://www.cloudlab.us
https://fuchsia.dev/fuchsia-src/getting_started.md
https://fuchsia.dev/fuchsia-src/getting_started.md


[44] Heiser, G. and Elphinstone, K. and Kuz, I. and Klein,
G. and Petters, S.M. Towards trustworthy computing
systems: taking microkernels to the next level. ACM
SIGOPS Operating Systems Review, 41(4):3–11, 2007.

[45] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Hom-
burg, and Andrew S Tanenbaum. Minix 3: A highly
reliable, self-repairing operating system. ACM SIGOPS
Operating Systems Review, 40(3):80–89, 2006.

[46] Hohmuth, M. and Peter, M. and Härtig, H. and Shapiro,
J.S. Reducing TCB size by using untrusted compo-
nents: small kernels versus virtual-machine monitors.
In Proceedings of the 11th workshop on ACM SIGOPS
European workshop, page 22. ACM, 2004.

[47] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and
Binyu Zang. Epti: Efficient defence against meltdown
attack for unpatched vms. In 2018 USENIX Annual
Technical Conference (USENIX ATC ’18), pages 255–
266, 2018.

[48] Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the Software Stack. ACM SIGOPS Operating
Systems Review, 41(2):37–49, April 2007.

[49] INTEGRITY Real-Time Operating System. http://

www.ghs.com/products/rtos/integrity.html.

[50] Trent Jaeger. Operating System Security. Morgan &
Claypool, 2008.

[51] Asim Kadav, Matthew J. Renzelmann, and Michael M.
Swift. Fine-grained fault tolerance using device check-
points. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, page
473–484, 2013.

[52] Antti Kantee. Flexible Operating System Internals: The
Design and Implementation of the Anykernel and Rump
Kernels. Doctoral thesis, School of Science, 2012.

[53] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No need to hide: Protecting
safe regions on commodity hardware, 2017.

[54] C. Lattner, A. Lanharth, and V. Adve. Making context-
sensitive points-to analysis with heap cloning practical
for the real world. In ACM Conference on Programming
Language Design and Implementation (PLDI), pages
278–289, 2007.

[55] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Ste-
fan Götz. Unmodified Device Driver Reuse and Im-
proved System Dependability via Virtual Machines. In
Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation - Volume
6 (OSDI ’04), pages 17–30, 2004.

[56] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kB Computer Safely and
Efficiently. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17), pages 234–
251, 2017.

[57] Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar
Heinrichs, Rudolf Ruland, and Gyula Szalay. Two Years
of Experience with a µ-Kernel Based OS. ACM SIGOPS
Operating Systems Review, 25(2):51–62, April 1991.

[58] Joshua Lind, Christian Priebe, Divya Muthukumaran,
Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert, To-
bias Reiher, David Goltzsche, David M. Eyers, Rüdi-
ger Kapitza, Christof Fetzer, and Peter R. Pietzuch.
Glamdring: Automatic Application Partitioning for Intel
SGX. In 2017 USENIX Annual Technical Conference
(USENIX ATC ’17), pages 285–298, 2017.

[59] Shen Liu, Gang Tan, and Trent Jaeger. PtrSplit: Support-
ing General Pointers in Automatic Program Partitioning.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17),
pages 2359–2371, 2017.

[60] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capo-
bianco, Stephen McCamant, Trent Jaeger, and Gang Tan.
Program-mandering: Quantitative Privilege Separation.
In 26th ACM Conference on Computer and Communi-
cations Security (CCS ’19), pages 1023–1040, 2019.

[61] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting Memory Disclosure with Efficient
Hypervisor-Enforced Intra-Domain Isolation. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’15), pages
1607–1619, 2015.

[62] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M. Frans Kaashoek. Software
Fault Isolation with API Integrity and Multi-Principal
Modules. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11), pages 115–
128, 2011.

[63] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels. In Proceedings of
the 14th EuroSys Conference 2019 (EuroSys ’19), pages
1–15, 2019.

[64] Daniele Midi, Mathias Payer, and Elisa Bertino. Mem-
ory Safety for Embedded Devices with NesCheck. In
Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security (ASIA CCS
’17), page 127–139, 2017.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    629

http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html


[65] Brendan Murphy. Automating Software Failure Report-
ing: We Can Only Fix Those Bugs We Know About.
Queue, 2(8):42–48, November 2004.

[66] Vikram Narayanan, Abhiram Balasubramanian, Charlie
Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley,
Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak
Bhattacharyya, and Anton Burtsev. LXDs : Towards Iso-
lation of Kernel Subsystems. In 2019 USENIX Annual
Technical Conference (USENIX ATC ’19), 2019.

[67] Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton
Burtsev. Redleaf: Isolation and communication in a
safe operating system. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’20), pages 21–39, 2020.

[68] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight Kernel Isolation
with Virtualization and VM Functions. In Proceedings
of the 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE ’20),
page 157–171, 2020.

[69] George Necula, Jeremy Condit, Matthew Harren, Scott
McPeak, and Westley Weimer. CCured: type-safe
retrofitting of legacy software. ACM Transactions on
Programming Languages and Systems, 27(3):477–526,
2005.

[70] Ruslan Nikolaev and Godmar Back. VirtuOS: An oper-
ating system with kernel virtualization. In Proceedings
of the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’13), pages 116–132, 2013.

[71] Octavian Purdila. Linux kernel library. https://lwn.

net/Articles/662953/.

[72] Matthew J Renzelmann and Michael M Swift. Decaf:
Moving Device Drivers to a Modern Language. In 2009
USENIX Annual Technical Conference (USENIX ATC
’09), 2009.

[73] Robert Ricci, Eric Eide, and The CloudLab Team. Intro-
ducing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. USENIX ;login:,
39(6), December 2014.

[74] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and
Abhik Roychoudhury. Automated Partitioning of An-
droid Applications for Trusted Execution Environments.
In Proceedings of the 38th International Conference on
Software Engineering (ICSE ’16), pages 923–934, 2016.

[75] Rutkowska, J. and Wojtczuk, R. Qubes OS architecture.
Invisible Things Lab Tech Rep, 2010.

[76] Leonid Ryzhyk. On the Construction of Reliable Device
Drivers. PhD thesis, UNSW, January 2010.

[77] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot
Heiser. Dingo: Taming Device Drivers. In Proceed-
ings of the 4th ACM European Conference on Computer
Systems (EuroSys ’09), page 275–288, 2009.

[78] Jerome Saltzer and Michael Schroeder. The protection
of information in computer systems. Proceedings of The
IEEE, 63(9):1278–1308, September 1975.

[79] Yulei Sui and Jingling Xue. SVF: Interprocedural Static
Value-Flow Analysis in LLVM. In Proceedings of the
25th International Conference on Compiler Construc-
tion, pages 265–266, 2016.

[80] Michael M Swift, Steven Martin, Henry M Levy, and
Susan J Eggers. Nooks: An architecture for reliable
device drivers. In Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pages 102–107,
2002.

[81] Hajime Tazaki. An introduction of library operating sys-
tem for linux (LibOS). https://lwn.net/Articles/

637658/.

[82] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In Proceedings of the 28th
USENIX Security Symposium (USENIX Security ’19),
pages 1221–1238, 2019.

[83] Kevin Thomas Van Maren. The Fluke device driver
framework. Master’s thesis, The University of Utah,
1999.

[84] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Cza-
jkowski, Chris Hawblitzel, Deyu Hu, and Dan Spoon-
hower. J-Kernel: A Capability-Based Operating System
for Java. In Secure Internet Programming: Security Is-
sues for Mobile and Distributed Objects, pages 369–393.
1999.

[85] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-based Fault Iso-
lation. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles (SOSP ’93), pages 203–
216, 1993.

[86] Dan Williams, Patrick Reynolds, Kevin Walsh,
Emin Gün Sirer, and Fred B. Schneider. Device Driver
Safety Through a Reference Validation Mechanism.
In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI
’08), pages 241–254, 2008.

630    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lwn.net/Articles/662953/
https://lwn.net/Articles/662953/
https://lwn.net/Articles/637658/
https://lwn.net/Articles/637658/


[87] Yang Liu Yongzheng Wu, Jun Sun and Jin Song Dong.
Automatically partition software into least privilege
components using dynamic data dependency analysis.
In International Conference on Automated Software En-
gineering (ASE), pages 323–333, 2013.

[88] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom,
and Andrew Myers. Secure program partitioning.
ACM Transactions on Compututer Systems (TOCS),
20(3):283–328, 2002.

[89] Lantian Zheng, Stephen Chong, Andrew Myers, and
Steve Zdancewic. Using replication and partitioning to
build secure distributed systems. In IEEE Symposium
on Security and Privacy (S&P), pages 236–250, 2003.

A Artifact Appendix
Abstract
We release the source code of all software used in this paper
along with detailed build instructions and automated scripts
used for running the benchmarks as a collection of publicly-
hosted Git repositories.

Scope
The artifact allows one to run static analysis on the set of
drivers we isolated for this paper and collect metrics that are
reported in Table 1, Table 2, and Table 4.

Contents
The artifact consists of the source code for the following
subsystems: 1) KSplit analysis framework used to generate
interface definition language (IDL) files https://github.

com/ksplit/pdg; 2) LLVM bitcode files for the drivers ana-
lyzed in the paper https://github.com/ksplit/bc-files
(we provide detailed instructions for how to re-generate
the bitcode files, however, to simplify the process of re-

creating results reported in the paper, we provide a collection
of pre-generated files); 3) KSplit IDL compiler that gener-
ates the glue code required to execute the driver in isola-
tion from the IDL files https://github.com/ksplit/idlc;
4) a modified Linux kernel that executes isolated drivers
in Lightweight Virtualized Domains (LVDs) [68] https:

//github.com/ksplit/lvd-linux; and 5) a modified Bare-
flank hypervisor that provides secure and efficient isolation
boundary based on VMFUNC EPT switching interface used
by LVDs https://github.com/ksplit/bflank.

Hosting
The artifact is hosted on GitHub. The README.md file
under https://github.com/ksplit/ksplit-artifacts de-
tails the steps required to build and run the benchmarks.

We conduct all experiments in the openly-available Cloud-
Lab cloud infrastructure testbed [28] and make our experi-
mentation environment available via an open CloudLab [73]
profile that automatically instantiates the software setup re-
quired to run KSplit: https://github.com/ksplit/ksplit-
cloudlab/.

Requirements
The KSplit build infrastructure was tested on an x86-64
Ubuntu 18.04 LTS system. The static analysis framework is
built and tested against LLVM v10.0.1. We rely on LVDs [68]
to execute isolated drivers. LVDs run on any modern Intel
x86-64 hardware (Haswell or later) that supports virtualiza-
tion (Intel VT-x) and EPTP switching via VMFUNC. LVDs
rely on a customized Bareflank hypervisor and a modified
Linux kernel based on v4.8.4. We have tested KSplit on the
following hardware (available in CloudLab): a Cisco UCS
C220 machine configured with an Intel Xeon E5-2660 CPU,
and a Dell PowerEdge C6420 machine configured with an
Intel Xeon Gold 6142 CPU.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    631

https://github.com/ksplit/pdg
https://github.com/ksplit/pdg
https://github.com/ksplit/bc-files
https://github.com/ksplit/idlc
https://github.com/ksplit/lvd-linux
https://github.com/ksplit/lvd-linux
https://github.com/ksplit/bflank
https://github.com/ksplit/ksplit-artifacts
https://github.com/ksplit/ksplit-cloudlab/
https://github.com/ksplit/ksplit-cloudlab/




Operating System Support for Safe and Efficient Auxiliary Execution

Yuzhuo Jing Peng Huang

Johns Hopkins University

Abstract
Modern applications run various auxiliary tasks. These tasks
gain high observability and control by executing in the ap-
plication address space, but doing so causes safety and per-
formance issues. Running them in a separate process offers
strong isolation but poor observability and control.

In this paper, we propose special OS support for auxiliary
tasks to address this challenge with an abstraction called orbit.
An orbit task offers strong isolation. At the same time, it
conveniently observes the main program with an automatic
state synchronization feature. We implement the abstraction in
the Linux kernel. We use orbit to port 7 existing auxiliary tasks
and add one new task in 6 large applications. The evaluation
shows that the orbit-version tasks have strong isolation with
comparable performance of the original unsafe tasks.

1 Introduction
Applications in production frequently require maintenance
to examine, optimize, debug, and control their execution. In
the past, maintenance was primarily manual work done by
administrators. Today, there are increasing needs for applica-
tions to self-manage and provide good observability. Indeed,
many modern applications execute auxiliary tasks. These
tasks are designed for various purposes including fault de-
tection [18, 27, 37, 43], performance monitoring [21, 28, 35],
online diagnosis [25], resource management [14, 31], etc.

For example, PostgreSQL users can enable a periodic main-
tenance operation called autovacuum [17] that removes dead
rows and updates statistics; MySQL provides an option to run
a deadlock detection task [30], which tries to detect transac-
tion deadlocks and roll back a transaction to break a detected
deadlock; HDFS server includes multiple daemon threads,
such as a checkpointer that periodically wakes up to take a
checkpoint of the namespace and saves the snapshot.

Essentially, the structure of applications splits into two log-
ical realms of activities (Figure 1)—the main and the auxil-
iaries. Despite being peripheral, the latter tasks are important
for the reliability and observability of production software.

At the implementation level, though, auxiliary tasks’ exe-
cution is mixed with the main program’s in the same address
space, via direct function calls or as threads. Unfortunately,
this choice means the auxiliary tasks can incur severe inter-

Application

1

secure partition

(session handler, 
key signing, etc.)

2

maintenance

(deadlock detector, 
garbage collector, etc.)

3

main

extensibility

(UDF, browser 
extension, etc.)

aux-

iliaries

Figure 1: Three protection scenarios for modern applications. This
paper focuses on ®.

ference to the application’s performance, due to unnecessary
blocking and contention on CPU, memory, network, and other
resources. In addition to costs, bugs in the auxiliary tasks can
easily affect the application reliability, e.g., a null-pointer bug
inside a checker function can crash the whole process.

The alternative is to execute an auxiliary task externally
in another process. This choice, however, would impose sig-
nificant limitations on what can be observed and what can
be changed. If the deadlock detector, for example, is run in a
separate process, it would not be able to directly inspect the
latest transactions or locks; even if it finds a deadlock it could
not apply changes to mitigate the issue.

A fundamental problem is that existing OS abstractions
for task execution—processes and threads—are designed for
the main activities, but are unfit for auxiliary tasks. They
force developers to either choose strong isolation but very
limited observability and control (in a separate process), or
high observability and control but little isolation (in a thread).
In this paper, we advocate direct OS support for the trend of
auxiliary execution to tackle this tension.

OS support for sub-process protection is not new. The
systems and security communities have proposed various
mechanisms [10, 12, 16, 24, 29, 40, 42, 47]. However, they
are designed for two other different purposes. As illustrated
in Figure 1, mechanisms such as SFI [42] are designed for
application extensibility (¬). That is, safely execute some
untrusted third-party extension code, e.g., browser extensions
and user-defined-functions in database queries. Another cat-
egory of abstractions such as Wedge [10] and lwC [24] are
designed for secure partitioning (), i.e., protecting some sen-
sitive procedures in the main program, e.g., session handler

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    633



or key signing, in case the application is compromised.
These existing mechanisms are insufficient for the third

protection scenario (®)—maintenance. The auxiliary tasks
are written by the same developers and are trusted. They are
also by nature interactive with the main program and need to
constantly inspect the latest states of the main program. They
often need to additionally alter the main program execution.

In this paper, we investigate this under-explored protection
scenario. We summarize the common characteristics of auxil-
iary tasks, articulate the unique challenges of protecting such
tasks, and advocate for special OS support to close this gap.

We then take the first step to propose a new OS abstraction
called orbit for auxiliary execution. Orbit enables develop-
ers to conveniently add a wide range of auxiliary tasks that
execute safely and efficiently while assisting the application.

Orbit has several unique features compared to existing
sub-process abstractions such as threads, SFI, and lwC. An
orbit is a first-class execution entity with a dedicated address
space and is schedulable. Each orbit is bound with a main
process but provides strong isolation: (i) if an orbit task is
buggy and crashes, it does not affect the main process; (ii)
orbit executes asynchronously and can be directly enforced
with resource control, thus the main process is isolated from
an auxiliary task’s performance interference. At the same
time, orbit provides high observability. Each orbit’s address
space is mostly a mirror of the main program’s. Thus, when
the main process calls an orbit, the orbit can run the task
functions with the latest main program states. To meet the
need for some auxiliary task to change the main process, orbit
provides controlled alteration to safely apply updates.

There are two challenges in designing orbit. First, isolation
and observability are difficult to achieve together. Second,
isolation is known to be costly. Since the main process often
calls auxiliary tasks continuously, orbit can incur large perfor-
mance slowdown to the main process. Optimizations such as
using shared memory conflict with the goal of isolation.

To address the first challenge, we design a lightweight
memory snapshotting solution that leverages the copy-on-
write mechanism and provides automatic state synchroniza-
tion from the main process’ address space to orbit’s address
space whenever the main process calls the orbit task. To ad-
dress the second challenge, our insight is that while an aux-
iliary task may inspect various state variables in the main
program, the total size of the inspected state at each invoca-
tion is often a relatively small portion of the entire program
state. Thus, we take a simple approach that coalesces only
those state variables that an orbit task needs into what we call
orbit areas. The kernel dynamically identifies the active mem-
ory pages in the orbit areas that an orbit invocation requires
and only synchronizes these pages to the orbit side.

The lightweight memory snapshotting solution works at
page granularity, which has the advantages of simplicity, ro-
bustness, and ease of integration with all mainstream OSes
without depending on perfect instrumentations as in more

complex techniques such as shadow memory. The disadvan-
tage is that the page granularity incurs higher snapshot over-
head due to write amplification (snapshot an entire page even
if only one small object is changed) and often false sharing
(write protection on shared COW pages). We design several
optimizations including incremental snapshot, dynamic page
mode selection, and delegate objects to reduce the cost.

We have implemented a prototype of orbit in the Linux ker-
nel 5.4.91. To evaluate the generality of the orbit abstractions,
we collect 7 auxiliary tasks from 6 large applications includ-
ing MySQL, Apache, and Redis, and successfully port these
tasks using orbit. We also use orbit to write a new auxiliary
task for Apache. To demonstrate the isolation capability of
orbit, we inject faults to the orbit version of the tasks. Some
faults are directly based on real bugs in the task code. The
experiments show that the applications are protected from the
faults in all cases. We measure the cost of the isolation by
comparing the end-to-end application performance. The orbit
version applications only incur a median overhead of 3.3%.

In summary, this paper’s main contributions are as follows:
• We identify an under-explored category in protection for

auxiliary execution and summarize its characteristics.
• We design a new OS abstraction orbit to enable auxiliary

tasks that have both strong isolation and high observability.
• We implement orbit in the Linux kernel and evaluate it on

real-world auxiliary tasks in large applications.
The source code of orbit is publicly available at:

https://github.com/OrderLab/orbit

2 Motivation and Goals
2.1 Auxiliary Tasks
Modern applications often execute various auxiliary tasks
designed for assisting reliability, performance, and security.
A few typical categories of auxiliary tasks include:
• Fault detection. Many applications have checkers to detect

faults dynamically. Examples include watchdogs [26] to
catch gray failures [19], deadlock checkers, and GC pause
detector. Some checkers are instrumented with compilers,
such as sanitizers to detect memory leaks.

• Performance monitor. It is common for applications to
have monitors that collect performance data. For instance,
Redis includes a slow log monitor to record queries that
take unusually long time.

• Resource management. Large applications run resource
management routines. For example, Cassandra periodically
runs compaction tasks to improve performance for future
queries; it also runs a task to asynchronously remove stale
records based on past delete requests.

• Recovery. Some routines in an application are designed for
assisting active recovery. HDFS continuously scans blocks
and schedules tasks to reconstruct blocks with low redun-
dancies. Databases also often employ checkpoint threads
that flush modified pages and write checkpoint records.

634    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/OrderLab/orbit


const trx_t* check_and_resolve(lock_t* lock, trx_t* trx) {

do {

DeadlockChecker checker(trx, lock, mark_counter);

victim_trx = checker.search();

if (victim_trx != NULL && victim_trx != trx)

checker.trx_rollback();

} while (victim_trx != NULL && victim_trx != trx);

return victim_trx;

}

Figure 2: Deadlock checker function in MySQL.

The workflow of these tasks typically has three steps: (1) read
program states; (2) perform inspection work; (3) take actions
and modify some states. Depending on their goals, some tasks
only read a few program states, while others may inspect lots
of states. Some auxiliary tasks are relatively simple that exe-
cute synchronously with the main program, e.g., control flow
checks [8]. Others are long-running operations that usually
execute asynchronously, e.g., in a background thread. Our
main focus in this work is the latter type of auxiliary tasks,
since they often pose potential issues to the main program.

Note that some existing auxiliary tasks are written in their
current forms, not because of their inherent nature, but often
due to the lack of system support. For example, an existing
detection task may execute synchronously, because otherwise
the program state may be changed while the task is checking
it. However, if an efficient mechanism exists to automatically
snapshot the state to be checked, this task could be easily made
asynchronous. We aim to provide the support that improves
existing auxiliary tasks while enabling novel ones.

2.2 Example: MySQL Deadlock Checker
To make the discussion concrete, we use a representative
auxiliary task, the MySQL deadlock checker, as the running
example throughout the paper. Figure 2 shows its simplified
code snippet. This task is invoked regularly in the main pro-
gram. Specifically, in handling an update query, MySQL may
need to lock a record; if the locking fails, the checking task is
invoked. Each checking function invocation takes the blocked
lock and the transaction as arguments.

Inside check_and_resolve, a deadlock checker instance is
created, which runs a search algorithm to inspect the wait-for
graph involving the lock and trx objects as well as other
dependent variables. If the checker detects one potential dead-
lock, it will try to resolve the issue by choosing a victim
transaction and rolling it back (modify the state victim_trx).

2.3 Safety and Performance Concerns
Developers usually write auxiliary tasks to execute inside the
application process. While this choice makes it convenient
for the tasks to assist and monitor the main program, their
execution poses safety concerns because they execute in the
main program’s address space. A common issue is a buggy
task accessing invalid memory, which crashes the entire appli-
cation. In other scenarios, a buggy task may cause the main
program to get stuck, e.g., a low-priority data gathering thread
blocks the high-priority tasks in a similar vein as the infamous

Mars Pathfinder incident [36]. Or, the buggy task accidentally
modifies some global variables and causes the main program
to misbehave. Some issues occur indirectly because of the
address space sharing. For example, a defect in HDFS cre-
ates too many SafeModeMonitor threads and causes the main
program to fail with out of memory errors [4].

It might seem that crashing the main program when the aux-
iliary task is broken is acceptable for some critical auxiliary
tasks. For example, since the deadlock detector is important
for resolving deadlocks in transactions, if the detector has an
invalid memory access, it might be reasonable to crash the
main program. However, in practice, crashing the main pro-
gram is usually too costly (unavailability and slow recovery)
and often incurs unintended side effect (inconsistency and
data loss), especially considering that the bugs are not from
the main program. Alternatively, if we provide strong isola-
tion for auxiliary tasks, we can decouple the fate of the main
program from the fates of the auxiliary tasks, which will allow
developers to make better choices. For instance, developers
can implement a policy that if an auxiliary task dies, it will
be automatically restarted and pick up the previous progress,
without affecting the main program’s execution.

Besides safety, auxiliary tasks can also incur interference
to the main program’s performance. For instance, we mea-
sure the MySQL performance with the deadlock detector task
running. The result shows a 3.5%–79.5% drop in the query
throughput. This issue was reported by users [1].

In summary, auxiliary tasks are designed to actively im-
prove application reliability and performance, but paradox-
ically the shared-address-space execution model can cause
them to hurt the main program.

2.4 Why Fork or Sandbox Is Insufficient?
To address the safety and performance concerns of auxiliary
tasks, two potential alternatives exist: fork and sandbox.

Fork-based Execution Model In this approach, the appli-
cation makes a fork() system call before an auxiliary task
executes and switches to run the task functions in the child
process. The separate address space provides strong memory
isolation. In addition, the task has a copy of address space and
thus can inspect any main program states easily. Once fork()

completes, the main program can continue, while allowing
the auxiliary task to execute asynchronously.

Unfortunately, there are several issues. First, the cost is
substantial, which includes the creation of a heavy-weight
execution entity, as well as the copying of an address space.
Even with the copy-on-write optimization, the main program
may modify many pages afterward and trigger excessive copy-
ing. Moreover, for auxiliary tasks that execute frequently, the
fork overhead will be incurred at each task invocation.

Besides overhead, with the auxiliary task running as a child
process, it is difficult for the task to perform maintenance work
that requires modifying the main program states. For instance,
the MySQL checker can identify a victim transaction and

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    635



perform a rollback, but the resolution only affects the child
process and would not help the parent process.

Sandbox-based Execution Model Another solution is to
execute an auxiliary task in a sandbox, which is well-suited to
execute untrusted code, e.g., browser renderer. A sandboxed
process has reduced privileges in accessing resources includ-
ing file systems and system calls, and may reside in a separate
fault domain using SFI techniques [42].

However, auxiliary tasks are not untrusted codes that sand-
boxes are designed for. They are written by the application
developers and are trusted. Their safety issues arise because
of bugs or unintended side effects such as invalid memory
access, infinite loops, using too much CPU, etc., rather than
accessing unwanted system calls or files. A sandboxed pro-
cess in a separate fault domain can access only the memory
segment allocated to them. It thus gains little observability of
the main program and cannot change the main program state.

RPCs or Shared Memory In principle, some aforemen-
tioned limitations can be circumvented using RPCs or shared
memory. In practice, such workarounds are not favored by de-
velopers, because neither model matches with how developers
write auxiliary tasks. Developers currently add auxiliary tasks
directly in the application codebase and can easily refer to
variables in the main program or invoke its functions. To use
the RPC model, developers need to convert many variables
and functions to be amenable to RPCs. Variables such as lock
and trx in MySQL are difficult to marshal and unmarshal
across calls. Frequent RPCs also add large overhead.

The shared memory model similarly requires cumbersome
setup and coordination. In addition, the main process would
have to wait until the auxiliary task finishes before continuing.
Otherwise, the task would inspect inconsistent states. Another
issue is that shared memory defeats the isolation purpose.
An auxiliary task may need to access variables that scatter
across the main program’s address space. As a result, the main
process may share a large portion of its address space, posing
significant safety issues like a thread-based auxiliary task.

3 Orbit: OS Support For Auxiliary Executions
The aforementioned challenges are largely because existing
OS abstractions for execution are designed for activities that
have clear modularity and isolation boundaries. Auxiliary
tasks are inherently interactive with the main program, but it
is also desirable to isolate their faults and avoid interference.
Developers are forced to choose either an abstraction that
offers high observability but weak isolation (e.g., thread), or
one with strong isolation but low observability (e.g. process).

To address this gap, we propose direct OS support for auxil-
iary execution with a new abstraction called orbit. Orbit offers
high observability of another execution entity, while providing
strong isolation. Its end goal is to enable developers to create a
variety of auxiliary tasks that assist applications in production
to enhance the applications’ reliability and performance.

orbit1Main

Application

orbit2

orbit3

thread

address 

space

automatic 

state sync

scratch

alteration

Figure 3: Multiple orbits co-exist with the main program at runtime
to provide observability and maintenance support.

3.1 Overview
An orbit task is a lightweight OS execution entity. Each task
is bound to “watch” one target process. A process can have
multiple orbit tasks as shown in Figure 3. They inspect dif-
ferent parts of the target’s states for different maintenance
purposes. Compared to existing abstractions, orbit has several
major unique properties:

• Strong Isolation. Each orbit task has its own address space.
Faults in an orbit would not jeopardize the main program or
other orbit tasks. Most orbit tasks execute asynchronously
without blocking the main program for a long time.

• Convenient Programming Model. The orbit abstraction
preserves the current way of how developers write auxiliary
tasks. Developers write the orbit task functions within the
main program and directly refer to almost any state vari-
ables of the main program. They can also easily convert
existing functions into orbits. This programming model is
close to the thread model that developers are familiar with.

• Automatic State Synchronization. A defining character-
istic of the orbit task’s address space is that it is mostly a
mirror of fragments in the target’s address space. The frag-
ments are those states that the orbit task needs to inspect.
The underlying OS will automatically synchronize the spec-
ified states to the orbit address space in one direction, which
occurs before each task invocation in the main program.

• Controlled Alteration. A regular orbit only observes the
main program, while a privileged orbit is allowed to alter
the main program state. However, it cannot change arbitrary
state at arbitrary times. The modification has to be made
using scratch space and well-defined interfaces.

• First-class Entity. Orbit tasks are first-class OS entities.
They are schedulable like a normal process or thread. This
property differs from existing sub-process abstractions
such as SFI-based sandboxes and lightweight-context [24],
which are subordinates to the main program and not schedu-
lable. These abstractions typically have to execute syn-
chronously. An orbit task can be also directly enforced with
various limits such as CPU quota.

3.2 Design Challenges and Insight
There are two core challenges that we need to address. First,
how to enable orbit tasks to continuously inspect the main

636    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



API Description

orbit *orbit_create(const char *name, orbit_entry entry, create an orbit task with a name, an entry function, and an
void* (*init)(void)) optional initialization function

int orbit_destroy(orbit *ob) destroy the specified orbit task
orbit_area *orbit_area_create(size_t init_size, orbit *ob) create an orbit memory area with an initial size
void *orbit_alloc(orbit_area *area, size_t size) allocate an object of size from the orbit area

long orbit_call(orbit *ob, size_t narea, orbit_area** areas, invokes a synchronous call to the orbit task function with
orbit_entry func_once, void *arg, size_t argsize) the specific area(s) and arguments, blocks until task finishes

orbit_future *orbit_call_async(orbit *ob, int flags, size_t narea, invokes an asynchronous call to the orbit task function,
orbit_area** areas, orbit_entry func_once, ...) returns an orbit_future that can be later retrieved

long pull_orbit(orbit_future *f, orbit_update *update) main program waits and retrieves update from orbit future f

long orbit_push(orbit_update *update, orbit_future *f) orbit passes update to an existing orbit future f

Table 1: Main orbit APIs.

program states conveniently, given that observability and iso-
lation are difficult to achieve together? Second, how to mini-
mize the performance cost while providing strong isolation?
Isolation inevitably incurs cost. A straightforward design can
incur excessive performance slowdowns. Optimizations that
can potentially reduce costs, such as using shared memory,
are often in conflict with the goal of fault isolation.

Our observations about the characteristics of typical aux-
iliary tasks reveal insight to address the challenges. While
an auxiliary task may inspect various states in an execution,
the total size of the inspected state at each invocation is often
a relatively small portion of the entire program state. In ad-
dition, an auxiliary task often performs work incrementally:
once the task inspects some state instance in one invocation,
the task may not inspect that instance in the next invocation.

4 Orbit Designs

In this section, we describe the designs of the orbit abstraction
and how to achieve the properties described in Section 3.

4.1 System Interfaces
The orbit abstraction is exposed through system calls accom-
panied by a user-level library. Table 1 shows the major APIs.

Developers create an orbit task in place in the appli-
cation codebase using orbit_create, specifying the task
entry function. The entry function pointer is defined as
long(*orbit_entry)(void *argbuf, void *store), which is similar
to the entry function definition in pthread_create. However,
the orbit entry function executes in a separate address space.
This function is also only invoked later by the main program
through explicit orbit calls. In other words, the orbit task in-
vocation is decoupled from the orbit creation and can occur
repeatedly. The void *argbuf points to a buffer in the orbit’s
address space, which is used later during each task invoca-
tion to hold the arguments. An optional initialization function
can be passed to orbit_create. It is useful when some orbit
task needs to allocate structure in its address space to keep
bookkeeping information. The orbit_create returns an orbit
handle for the main program to use in later invocations.

+ struct orbit *dlc;
+ struct orbit_area *area;

int mysqld_main() {
+ dlc = orbit_create("dl_checker",check_and_resolve,NULL);
+ area = orbit_area_create(4096);
}

lock_t* RecLock::lock_alloc(trx_t* trx) {
  lock_t* lock;
- lock = (lock_t*) mem_heap_alloc(heap, sizeof(*lock));
+ lock = (lock_t*) orbit_alloc(area, sizeof(*lock));
  return lock;
}

dberr_t lock_rec_lock() {
  if (status == LOCK_REC_FAIL) {
-   check_and_resolve(lock, m_trx);
+   dlc_args args = {lock, m_trx};
+   orbit_call(dlc, 1, &area, &args, sizeof(dlc_args));
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Figure 4: Using orbit to enhance the MySQL deadlock detector.
The core logic check_and_resolve in Figure 2 remains the same.

The orbit task invocations are done through either the syn-
chronous orbit_call or asynchronous orbit_call_async.
The latter would be particularly common to use. The seman-
tics of the orbit_call_async guarantee that the states needed
for the task are snapshotted before the API returns. As a result,
the main program can continue executing other logic while
the orbit task runs concurrently.

This API will return an orbit_future f. The main pro-
gram can wait on f later through orbit_future_get when
it requires knowing the update from the orbit task, just like
the typical asynchronous programming models that devel-
opers are familiar with. Asynchronous orbit task execution
along with the automatic state synchronization feature allows
developers to exploit concurrency in the system.

Figure 4 shows an example of using orbit for the MySQL
deadlock detector. The task core logic remains the same,
but the invocation is split into two steps. Developers use
orbit_create to create an orbit at the beginning (line 4),
which specifies the entry function check_and_resolve. An
orbit area is created. The allocations of the lock (line 12) and
trx objects are changed to allocate from the orbit area. The
original function call (line 19) is replaced with an orbit_call

to invoke the previously created orbit with the area and argu-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    637



main
orbit1

orbit2

orbit_area1

orbit_area2

orbit_area3

unused/inactive region
state synchronization

orbit3

Figure 5: Orbit areas in the main program to be monitored.

ments. Alternatively, developers can use orbit_call_async

to asynchronously perform deadlock checking.

4.2 Managing Orbit
When a process creates an orbit using orbit_create, the
kernel internally represents the orbit with a control block and
records the target process the orbit is bound with. To avoid
intrusive code changes to the Linux kernel function interfaces,
we currently re-use the existing task_struct (with new fields
and a subset of existing fields) to represent the orbit entity.

The main program maintains a orbit_children list
in its task_struct, mapping orbit IDs to the orbit’s
task_struct. Each orbit maintains a orbit_info structure
in its task_struct, that contains the basic execution states of
orbit and a FIFO queue of orbit calls.

The kernel also allocates a dedicated address space for the
orbit, which is initially kept to a minimum (mostly code pages
of the main program). As a first-class OS abstraction, orbit is
a schedulable entity and can be enforced with resource limits
like a regular process. At the creation time, the orbit is in an
idle state, waiting for the task invocations. If an orbit task is
terminated (e.g., because of its own bugs), it can be configured
to be automatically restarted. In that case, after a restart, the
orbit task will be reattached to the main program. The main
program can explicitly destroy a specific orbit task.

4.3 Synchronizing States to Orbit
Each orbit executes in a separate address space but regularly
inspects the state in the main program. To facilitate conve-
nient inspection, the orbit abstraction provides a key feature
of automatic synchronization for the referenced state. This
automatic synchronization is one-way from the address space
of the main to the orbit’s. We propose a lightweight memory
snapshotting solution for providing this feature.

Determining States One challenge is that an orbit task
often inspects state variables that scatter across the main pro-
gram’s address space. Therefore, coarse-grained snapshot-
ting would include too many unneeded objects in the snap-
shot memory regions, which would not only waste significant
memory but also incur large overhead to the application. In
addition, while the set of variables an orbit task inspects may
be fixed and known at the static compilation time, the dynamic
addresses and sizes of these variables can change over time.

For example, the MySQL deadlock detector checks different
lock and txn objects in different invocations.

To address this challenge, we take a simple approach that
coalesces only those state variables that the orbit tasks need
into what we call orbit areas. Orbit areas are fragments of the
main program’s address space. Each orbit area is composed of
contiguous virtual pages. An orbit’s address space is mostly
a mirror of orbit areas (Figure 5). The main program creates
an orbit area through orbit_area_create with an initial size
that is dynamically expandable. This API takes an orbit

argument. If specified, the kernel will create a memory region
in the orbit’s address space and ensure it has the same virtual
address of the orbit area in the main program before the API
returns. Otherwise, this mapping mirroring will be done when
an orbit later binds to an orbit area.

For the state variables that may be accessed by some orbit
task, their allocation points need to be replaced to allocate
from an orbit area through the orbit_alloc API. Similarly,
these variables can be freed using the orbit_free API. The
main program can still use these variables like before.
Taking a Snapshot Dynamically, when the main program
makes a call to an orbit task function, the kernel identifies
the memory pages in the orbit area that contain the variables
the orbit task requires. Then the kernel updates the page table
entries (PTEs) of these pages to mark them as write pro-
tected for copy-on-write (COW). The PTEs are also copied
to orbit task’s page table with write-protected bit set. For con-
sistent snapshotting, the orbit call will return only after all
needed mappings are updated. Afterward, as long as the main
program and orbit task do not modify a page, no copying is
incurred; otherwise, they will have separate copies of the page.
Note that the above snapshotting process occurs on each orbit
call, so the mappings in the orbit address space constantly
change, but the orbit task is not re-created.
Concurrency To ensure safety under concurrency, the ker-
nel acquires necessary locks (e.g., mmap_sem in Linux) while
accessing the PTEs in the main program and the orbit. In
one orbit call, multiple pages may need to be snapshotted. To
provide a consistent snapshot for multi-threaded applications,
a conservative solution is to pause all the application threads
so that these pages are not modified during the snapshotting.
This pausing will incur a significant performance penalty.

We instead rely on application-level synchronization to
handle this situation properly. Indeed, if the objects needed
in an orbit call may be concurrently modified by some other
thread, the application would add proper locks in the original
call site to prevent race conditions. For example, the MySQL
deadlock checker invocation (Figure 4) is already inside a
critical section. Thus, when we port it to an orbit call, the
snapshot of the lock and m_trx objects is consistent.

Locks are intentionally not shared between orbit and the
main program, and thus orbit cannot directly alter the main
program’s lock states. It is possible that a complex orbit task
function acquires and releases locks during its execution. In

638    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



such cases, acquiring locks can be moved upfront before the
orbit call. From our experience of porting tasks that require
synchronization (MySQL and Apache), we find that the origi-
nal auxiliary functions only run within a single global critical
section, which makes it straightforward to guarantee consis-
tency. Also, since a consistent snapshot is obtained under a
global lock, the orbit task can omit lock acquires in these
cases, since it runs singled-threaded in another address space.
Concurrent Orbit Calls Another challenge is to handle
state synchronization when some orbit tasks may be invoked
concurrently. For example, the MySQL deadlock detector is
invoked during request handling. Since MySQL uses multiple
threads to handle concurrent requests, the main program may
make another orbit call while the previous call is ongoing.

To address this challenge, the kernel maintains a task queue
for each orbit (Section 4.4 will describe this part). After
introducing the task queue mechanism, we need to ensure
orbit_call(_async) preserves the semantics that the task
invocation will get a consistent snapshot of relevant objects
at the time of the API call. The kernel does so by marking
COW for the main program’s PTEs of relevant orbit area
pages, storing the marked PTEs, and returning. The stored
PTEs will be installed to the orbit’s page table later when the
queued task executes. This works because, assume that the
main program has modified some page in the orbit area while
this invocation is in the task queue, COW will be triggered
in the main program side and the main program will get a
new page. The stored PTEs still point to the old physical page
containing the data at the time of the invocation.
Design Choice Rationale Our memory snapshotting lever-
ages the page protection and COW mechanism. Although
snapshot at the page granularity can be costly, it integrates
well in mainstream OSes and works reliably. Through sev-
eral optimizations (Section 4.6), we can effectively reduce
its performance costs. An alternative solution is to use fine-
grained object-level shadow memory, which allocates shadow
memory region, uses static analysis to identify and instrument
memory writes to the target objects, and checkpoints these
writes to the shadow memory region. We did not choose this
approach for several reasons. First, the shadow memory con-
sumes significant (often half) of the main program’s address
space, and because it is in the same address space, the isola-
tion is weak. Second, there can be many objects repeatedly
and unnecessarily checkpointed even when the orbit task does
not need them. Third, handling concurrency is challenging.
Lastly, it makes strong assumptions about the target appli-
cation and instrumentation accuracies, which are fragile to
apply to many complex applications.

4.4 Orbit Task Execution
When an orbit is created, it waits for the main program to
make orbit calls. Implementing the task execution is non-
trivial, because each call crosses two address spaces. In ad-
dition, the orbit may receive different styles of orbit calls,

User
mode

Kernel
mode

unsigned long ret = 0;

orbit_entry func_ptr = NULL; 

char argbuf[ARG_SIZE_MAX];

...

while (true) {

if (orbit_task_return(ret) < 0) break;

ret = func_ptr ? func_ptr(store, argbuf)

: entry_func(store, argbuf);

}

orbit_info

orbit1

First half: return ret to main program  

Second half: wait for next task, setup 

user-level func_ptr, argbuf  
sema

1

2

3

4

5

6

7

8

9

Figure 6: Orbit execution loop waiting for task invocations from
main, facilitated by the helper system call orbit_task_return.

including concurrent calls. The kernel side needs to support
these different styles together.

For supporting potential concurrent calls, the kernel main-
tains a task queue for each orbit. For each invocation from the
main program, the kernel assigns a call id with an internal call
struct and inserts it into the queue. The orbit task execution
workflow processes the pending invocations in FIFO order.
Serializing the task invocation processing makes it much sim-
pler to ensure the correctness of the state synchronization.

To properly implement orbit task execution, we introduce
a helper system call orbit_task_return. As Figure 6 shows,
each orbit is a single-threaded worker executing this loop,
and invokes this system call in each iteration. When trapped
into the orbit_task_return syscall, the kernel knows which
main program this orbit corresponds to by looking up the
information in its orbit_info.

Internally, this kernel function consists of two halves. In
the first half, it returns the return value of the last orbit call to
the main program. Specifically, the kernel stores the passed
ret value into an internal struct corresponding to the last orbit
call, and then signals the thread that was executing the last
orbit call and blocked waiting for the call to finish. If no orbit
call has been made, this first half is skipped.

In the second half, the function waits for the next task from
the main program. This is done by waiting on a semaphore
in the orbit control block. Once the orbit tasks queue is non-
empty, the orbit_task_return proceeds and dequeues an
invocation. Recall that state snapshotting stores the marked
PTEs (Section 4.3) in an array for the pending invocation. The
kernel function at this point applies the snapshot by installing
the PTEs to the orbit’s page table. It then sets up the user-
space argbuf and func_ptr, and returns.

The kernel setups the user-level argbuf by copying the
orbit call arguments into it. The arguments are typically point-
ers (e.g., lock and m_trx in Figure 4), thus only the address
values are copied. The actual objects to be referenced in the
task are in the orbit area. With the mirroring setup of the orbit
area (Section 4.3), the addresses map to equivalent objects.
The func_ptr is set to either the task entry function or the
function pointer specified in the pending orbit_call. The

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    639



void trx_rollback(trx_t *victim) { // within orbit task

orbit_update *scratch = orbit_update_create();

orbit_update_add_data(scratch, &victim->version);

victim->lock.cancel = true;

orbit_update_add_modify(scratch, &victim->lock.cancel, true);

orbit_update_add_operation(scratch, pthread_cond_signal,

&trx->slot->condvar);

...

orbit_push(scratch);

}

void handle_rollback(orbit_future *future) { // in main program

orbit_update update;

long ret = pull_orbit(future, &update);

TrxVersion *version = orbit_update_first(update)->data;

if (trx_is_alive(version))

orbit_apply(update);

}

Figure 7: Controlled state alteration for MySQL deadlock detector.

latter is particularly useful for an orbit to provide query func-
tionalities. For example, if an orbit stores some bookkeeping
information, the main program may want to query the orbit
about this information occasionally. Finally, the orbit exe-
cution loop invokes the appropriate task function with the
prepared argbuf (line 7 in Figure 6) at the user level.

The major task execution workflow described earlier
applies to the asynchronous orbit calls as well. The
orbit_call_async returns an orbit_future, which is a ref-
erence to the asynchronous task. The main program can later
wait on this reference and retrieves updates from the com-
pleted asynchronous task, just like the typical asynchronous
programming models that developers are familiar with.

4.5 Controlled State Alteration
A privileged orbit is allowed to modify the main program
states. One solution is to identify pages in the orbit area that
the orbit has modified in its private copies and transparently
update the corresponding copies in the main program. The
updates are restricted to states belonging to an orbit area. A
complication arises if the main program also has since made
modifications to some pages in an orbit area. Automatically
merging the updates could introduce accidental changes.

To avoid introducing such accidental incorrectness, we in-
stead use a more controlled alteration mechanism by exposing
the pull_orbit and orbit_push system calls. Developers
call the orbit_push API in the orbit task functions to explic-
itly decide which updates to push to the main program side.
A corresponding call of pull_orbit in some main program
function will retrieve the updates and explicitly apply the up-
dates to the appropriate state variables. The orbit_push API
supports pushing flexible data types including raw bytes.

A scratch space is backed by some memory region holding
the data. The pushing is done efficiently by moving the PTEs
of the scratch space pages in the orbit page table to the main
program’s page table. Besides data, orbit_push also supports
pushing some operation (function pointer). This is useful if
the maintenance operation is difficult to conduct in the orbit
side, such as killing some main program’s thread.

Example Figure 7 shows an example for the MySQL dead-
lock detector, which represents a relatively complex use case.
Function trx_rollback creates a scratch orbit_update and
then pushes a TrxVersion by calling add_data. This data can
later be used to check whether the victim transaction is still
alive. A following add_modify call records the modification
of a single field. The next add_operation pushes a function
with its argument, which will later be invoked in the main
program side when the updates are applied and will signal the
specified conditional variable. The function pointers are valid
for both sides, since the code pages mapping are preserved.
The updates are then sent in a batch by calling orbit_push.

The handle_rollback function then pulls updates from
the future. If the task fails, the orbit task is recreated (omitted
in the figure). When the main program retrieves an update, it
applies the update if the transaction’s version is still alive.

4.6 Optimizations
We design several optimizations to further reduce the cost
of our memory snapshotting. There are two main overhead
sources: (1) iterate the PTEs for the active pages in an orbit
area, update COW flags, and create mappings in the orbit’s
address space; (2) page faults when an orbit area is modified.

4.6.1 Incremental Snapshotting
Overhead source (1) is incurred upon each orbit_call. In ad-
dition, we tear down the orbit’s mappings and reset the COW
flags of relevant PTEs in the main program when the orbit
runs finishes to avoid unnecessary page faults. For orbit areas
that have many active pages, this overhead can be significant.

We introduce an incremental snapshotting optimization to
reduce this overhead. We keep the mappings after an orbit
run finishes. Upon the next orbit_call, we iterate through
each remained PTE and check if it is the same as the main
program’s counterpart. If so, we keep it. Otherwise, we recre-
ate the mapping or discard it if the orbit area page is no longer
active. Thus, we only pay the mapping cost for the orbit area’s
pages that are modified by the main program since the last
run. One caveat is that keeping the mappings may incur un-
necessary page faults. This optimization helps when the main
program is not intensively updating the orbit area. We allow
developers to pass a flag in an orbit_call to indicate whether
to enable this mode (keep the mappings).

A second part of this optimization is a region-based mark-
ing scheme that aims to reduce the cost of looping through
each PTE in an orbit area. We track the PTEs by regions.
Specifically, we maintain a bitmap for each range of 512
PTEs (one PMD entry) in the orbit area. A 64-bit bitmap
partitions the 512 entries into 64 groups of 8 PTEs. Each bit
represents whether the consecutive 8 PTEs have faulted since
the last snapshot. During a page fault, the corresponding bit
is set to 1. After a snapshot, the snapshotted groups’s bits are
set to 0. In this way, we can jump to the next group of PTEs
that have changed by using bit-wise operation on the bitmap.

640    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



// allocate with normal malloc

struct trx_t {

  struct {

    ...

-   lock_t* wait_lock;

+   lock_t*& wait_lock;

    ...

  } lock;

+ trx_t_delegate *delegate();

};

// allocate with orbit_alloc

struct trx_t_delegate {

  struct {

  lock_t* wait_lock;

  } lock;

};

(a) original full object (b) delegate object

Figure 8: Delegate object for the struct trx_t in MySQL.

// new constructors

trx_t::trx_t(trx_t_delegate *d) : lock(d) {}

trx_lock_t::trx_lock_t(trx_t_delegate *d)

: wait_lock(d->lock.wait_lock) {}

// creating and binding delegate objects

void trx_init(trx_t *trx) {

auto delegate = (trx_t_delegate *)orbit_alloc(area,

sizeof(*trx_delegate));

new(trx) trx_t(delegate);

}

Figure 9: Create and bind delegate object for trx_t in MySQL.

4.6.2 Dynamic Page Mode Choice
Overhead source (2) is inherent in the COW mechanism. This
cost becomes significant when the orbit area pages are fre-
quently updated by the main program. In this case, COW
may perform worse than directly copying the page, which
eliminates later page fault penalty to the main program. COW
is effective if an orbit area page is infrequently updated.

We support page mode choice (COW or COPY) for an
entire orbit area and each page in the orbit area. The for-
mer is specified by developers when creating an orbit area.
The (likely) update-intensive objects can then be allocated
from a COPY-mode orbit area, which will use copying during
snapshot. For page-level mode choice, the kernel tracks the
statistics of fault rate as # of faults/# of snapshots for
each page. If the percentage exceeds a heuristic threshold of
30%, we determine the page mode as COPY. Besides, we also
impose a limit of 32KB on the total size of COPY pages, and
we choose the pages with the highest scores. This is used to
prevent exhausting too much memory, and achieve a relatively
balanced performance between COPY and COW (because
copying large memory region is slower than snapshotting).

4.6.3 Delegate Objects for Large Structs
Complex applications may define large structs, while the
states that an orbit is concerned with may be only a small
subset of the fields in a large struct. If we allocate the en-
tire large struct from the orbit area, it can incur unnecessary
snapshot and page faults due to false sharing.

We use delegate objects to mitigate this issue. The basic
strategy is to define a delegate struct for the large struct and
keep only the fields that are needed in the orbit task functions.
Then we allocate the delegate struct from an orbit area but pre-
serve the normal allocation (e.g., malloc) for the underlying
large struct. Each delegate object has a one-to-one binding to
its original struct. It is created at the same time of the orig-

inal struct as an additional argument to its constructor. To
connect the two structs, the relevant fields in the large struct
are changed to reference types (e.g., int to int &, int * to
int *&), and the struct constructor is modified to bind the
references to the delegate struct argument. The main program
still uses these fields like before without changes.

Figures 8 and 9 show an example of defining and using del-
egate object for the trx_t struct in MySQL. After introducing
this delegate object, the main program does not need to change
its usages, e.g., trx->lock.wait_lock still works. The orbit
task function uses the delegate object from trx->delegate().

In our ported systems, we pick those large structs whose
total size of accessed fields is smaller than the size of the
remaining fields as the target for optimization. Developers
can have their own choices to determine what are large structs
for delegate object optimization.

4.7 Compiler Support
Our current design requires replacing allocation points for
needed state variables (Section 4.3). Some applications al-
ready use custom functions to allocate their main objects. In
these cases, developers may only need to make minor changes
in the custom allocation function to use orbit_alloc.

In other cases, developers may need to find individual allo-
cation points and replace them. To help developers with this
task, we build an analyzer on top of LLVM [23].

Given an entry function to be converted to an orbit task, e.g.,
check_and_resolve in Figure 2, the analyzer runs forward
data-flow analyses to locate all relevant definition and allo-
cation points. Specifically, the analyzer first identifies heap
allocation calls in the main program. For each call, it con-
structs a use graph with the return value variable as the root.
Nodes in the use graph include both direct and indirect usage
points of the root based on the standard def-use chain analysis.

After constructing the use graphs, the analyzer checks
whether any use graph can reach the arguments in a callsite of
the target function. If so, the allocation point associated with
the use graph is included in the result. Besides arguments, the
compiler also analyzes the non-local variables referenced in
the target function body and leverages the use graphs to iden-
tify their allocation points. If no allocation points are found
for an argument or non-local variable, the analyzer identifies
the definition point (e.g., it is a static global variable) using
reaching definition analysis and includes it in the result.

Currently, the analyzer only outputs a list of candidate al-
location or definition points. It does not replace these points
with orbit_alloc automatically, although that is feasible.

5 Evaluation
Our evaluation aims to answer several major questions: (1) Is
orbit general to (re)write auxiliary tasks in complex applica-
tions? (2) Can orbit-based tasks provide strong isolation? (3)
How much overhead does orbit incur for achieving isolation?

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    641



No. Application Auxiliary Task Source Description

t1 MySQL deadlock detector port Automatically detect transaction deadlocks & rollback transaction(s) to break deadlock

t2 Apache proxy balancer port Load balancing to determine suitable proxy backend worker for request
t3 Apache lock watchdog new Periodically check for long mutex lock waits and output notifications to the log

t4 Nginx WebDAV PUT handler port File upload handler for WebDAV PUT requests

t5 Varnish pool herder port Dynamically adjust thread pool sizes

t6 Redis Slow log port A system to log queries that exceeded a specified execution time
t7 Redis RDB persistence port Performs point-in-time snapshots of dataset at specified intervals

t8 LevelDB background compaction port Compact sorted table files to maintain level size limit and improve performance

Table 2: Evaluated auxiliary tasks in six large software.

small (32 MB) medium (1G) large (8G)

orbit 80.51 (8.67) 116.36 (9.12) 115.30 (11.09)
fork 294.24 (27.99) 6859.36 (43.87) 53519.45 (1150.71)

Table 3: Mean latencies (in microseconds) of creating orbit versus
process. Numbers in parentheses are standard deviations in 100 runs.

5.1 Evaluation Setup
The experiments are performed in a KVM-enabled QEMU
virtual machine with 4-core vCPU and 10GB memory by
default, running Debian 10 with our custom kernel. The host
machine provides a 20-core Intel Xeon Silver 4114 CPU
(2.20GHz), 32GB memory and 480GB SSD running Ubuntu
18.04 LTS. We run all experiments using Linux’s default
4KB-sized pages on x86-64, with huge page disabled.

We additionally repeat the experiments on a bare-metal
machine, which show matching relative results. Our technical
report [20] presents the bare-metal version experiment results.

5.2 Microbenchmark
We first evaluate the performance of creating and invoking
orbit with microbenchmarks. We measure the orbit creation
under different memory footprint settings of the main program.
For a given memory setting, the benchmark program allocates
the size, fills it with non-zero data to ensure the kernel actually
allocated a physical page for it before running the measured
action. It then calls orbit_create and measures the latency.
We compare the orbit creation with fork.

Table 3 shows the result averaged over 100 runs. The initial
address space for orbit is minimum with mostly code and
stack pages (Section 4.2). Compared to fork, this gives per-
formance benefits for creating isolated address spaces even
with a large memory footprint, as most unneeded data are
not copied. When the main program has an 8 GB memory
footprint, fork is 464× slower than creating an orbit.

We also measure the latency of orbit_call_async. Fig-
ure 10 shows the result averaged over 20 runs. In general, orbit
call time increases almost linearly with the size of orbit area,
because it is dominated by the snapshotting cost. For example,
making an orbit call with 32MB memory snapshotted takes
272.9 µs, which is comparable to the performance of forking
a process with 32MB data shown in Table 3. An orbit call
with 8GB snapshotted takes 58.6 ms, which is slightly higher

4KB 32KB 256KB 2MB 16MB 128MB 1GB 8GB

State size

101

102

103

104

L
a
te

n
c
y
 (

u
s
)

orbit_call_async

Figure 10: Orbit call latencies with different sizes of snapshot state.

than forking 8GB memory. This is due to the more compli-
cated implementation of snapshotting, such as incremental
snapshotting and support for several snapshotting modes.

5.3 Applying Orbit on Large Applications
To evaluate the generality of the orbit abstraction, we apply
orbit on 6 large applications, MySQL, Apache, Nginx, Var-
nish, Redis and LevelDB, which have complex codebases and
use diverse programming paradigms.

We use orbit to port 7 existing, representative auxiliary
tasks in the applications (Table 2). They cover typical auxil-
iary tasks ranging from fault detection, debugging, resource
management, and performance optimization. Two tasks, the
Apache proxy balancer and the Nginx WebDAV handler, can
be also considered main features. We evaluate them to test the
boundaries of tasks that orbit can support. We successfully
port all 7 tasks. We run each application’s unit tests to verify
the ported tasks preserve the original functionalities, even
though the tasks now execute the separate address spaces.

We also use orbit to write a new auxiliary task, a lock
watchdog, in Apache as an exercise. This task periodically
checks if some thread in Apache is stuck and pinpoints the
long-holding locks. We add a counter and held locks in thread-
local storage. For every lock operation, the main program
threads increment the counter, and the number of held locks.
A background thread makes an orbit_call to the watchdog
every second with all threads’ counters and held locks. The
orbit resets all counters. It also stores historic data of the last
held locks and the number of iterations that there is no activity
for each thread. When the orbit finds that some thread has has
no activity over a threshold (60s), it orbit_pushes a return
value to inform the main program, which triggers another
orbit_call to the orbit’s diagnosis function that finds the
root cause. Figure 11 shows the watchdog thread function.

642    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



void watchdog_loop() {

long next_op = WATCHDOG;

while (true) {

if (next_op == WATCHDOG)

next_op = orbit_call(..., wd_areas, wd_func, ...);

else if (next_op == DIAGNOSIS)

next_op = orbit_call(..., diag_areas, diag_func, ...);

...

}

}

Figure 11: The Apache lock watchdog thread

5.4 Fault Isolation
5.4.1 Fault Injection Testing
We evaluate the isolation capability of orbit by performing
fault injection testing on all 8 auxiliary tasks. We inject null
pointer deference faults at different times during a task’s exe-
cution. In all cases, the system successfully isolates the faulty
orbit without causing impact to the application and restarts
the task gracefully to reattach to the running main process. In
some systems, graceful failure handling is implemented by re-
turning an application-specific error code after witnessing an
error return code from orbit_call. For example, in Apache
proxy handler, we return a HTTP_SERVICE_UNAVAILABLE after
checking the orbit state in main program.

As a first-class OS entity, orbit also provides isolation of
performance interference and resource overuse faults in aux-
iliary tasks. We inject two such faults in Redis slowlog (t6),
and mitigate them with cgroup. We enforce a memory limit
of 256 MB on the orbit task, and inject a memory allocation
of 512 MB in orbit task, which this task would never use
up. Cgroup triggers an OOM kill immediately when the task
goes over the memory limit, and the main process gracefully
restarts the orbit task. We also inject one CPU hogging for
10 seconds, and modify cfs_quota scheduler parameter with
cgroup to bring CPU usage from taking up one whole core
down to 10% of single-core CPU time shown in top.

For our newly implemented task in Apache (t3), we inject
a long sleep right after one thread has acquired a lock. The
watchdog immediately triggers a diagnosis once it finds the
counter has not been updated for 60s. The diagnosis function
pinpoints the thread ID that holds the lock, along with the
location where the lock is acquired.

5.4.2 Real-world Bug Testing
We reproduced 4 real-world bug cases from MySQL, Apache,
Redis and Nginx that involve the four tasks.

MySQL assertion failure We reproduced the MySQL Bug
#28523042 [7]. This bug is introduced in MySQL 8.0 and
adds incorrect assertions, which result in assertion failures.
We reintroduced this bug into our orbit-enabled MySQL
5.7.31. For demonstration purposes, we modified some part of
the expressions that touch the new variables in the 8.0 version,
to make the backported code run on the 5.7.31 version.

When a deadlock occurs in the original buggy version, the
whole MySQL server crashes, and all clients’ connections
are dropped. With the orbit-protected deadlock detector, even

though the orbit task crashed, the MySQL server is still alive.
After the default MySQL lock wait timeout is exceeded, one
transaction is chosen as the victim, and all other transactions
can continue to finish successfully.
Apache proxy balancer segfault We reproduced Apache
Bug #59864 [6]. The user reported that under a proxy balancer
configuration with a pair of unavailable fail-over backends
pointing to each other, Apache entered infinite recursion when
it searched for suitable backend, resulting in stack overflow.
We isolate the backend selection in orbit, and successfully
catch such failure. Instead of dropping connection, the main
program now returns a more meaningful “Temporary Un-
available” message when it finds that orbit task has failed.

Furthermore, although web servers like Apache and Ng-
inx often use fault-tolerance mechanisms like multi-process
workers, such mechanisms cannot provide fault isolation for
concurrent requests within the same worker. When one of the
requests triggers a fault, all other connections to this worker
also gets disconnected. This applies to both multi-threading
(Apache) and event-driven architecture (Nginx) within one
worker. Orbit further provides a finer level of isolation by
isolating auxiliary tasks within one worker.
Nginx WebDAV segfault Nginx Bug #238 [5] was triggered
when a custom WebDAV PUT (i.e., file upload) user request
did not include document body. The PUT handler assumes the
request body pointer to have been allocated, and thus causes
null pointer dereference. Similar to the previous Apache bug,
the ported orbit version gracefully catches the failure and
returns meaningful messages, while also preventing other
requests in the same worker from disruption.
Redis Slowlog memory leak Although Redis uses single-
threads for its request processing, its background threads can
still cause issues. In case #4323 [2], a race condition happens
when both slowlog and asynchronous lazy-free thread decre-
ment a refcount, leading to neither of them freeing the object.
Developer mitigated this issue by making a copy of the object.
Our orbit implementation, on the other hand, transfers the
object from snapshotted orbit area and designates resource
management solely to the orbit’s address space. Since orbit
and the main process do not share the reference counter, race
condition is eliminated in the first place.

5.5 Performance Overhead
We measure the end-to-end application performance impact
with the orbit-based tasks. We choose application workloads
that ensure the auxiliary tasks are triggered frequently.

For MySQL (t1), we run OLTP read-write test provided
by the sysbench [3] benchmark tool with 16 clients. We run
both Apache watchdog task (t3) and Varnish (t5) using ab with
1KB document length and 4 clients. Varnish web cache service
uses a stock Nginx as backend. For Apache proxy balancer
case (t2), we wrote a custom benchmark using libcurl to
mix 90% non-proxy requests with 10% proxy requests with
4 clients because ab does not support mixed requests. Nginx

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    643



t1 t2 t3 t4 t5 t6 t7 t8

Task

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d
 t

h
p
u
t Vanilla Orbit

Figure 12: End-to-end application performance with the orbit-based
(safe) tasks versus the original (unsafe) tasks.

Task t1 t2 t3 t4 t5 t6 t7 t8

Calls/s 510.1 1127.8 1 1142.0 1 80.7 0.2 9.9

Table 4: Orbit call frequency in evaluated auxiliary tasks.

WebDAV (t4) benchmark is written in a similar way, with
10% WebDAV upload requests. We run both of the Redis
tasks (t6, t7) with YCSB 95% read 5% write test using 32
threads, with either of the tasks enabled separately. We run
LevelDB (t8) using a sequential-fill workload with LevelDB
built-in benchmark tool to trigger compaction frequently.

Figure 12 shows the normalized throughput for the 8 cases.
Most of the (safe) orbit tasks show comparable performance to
vanilla (unsafe) tasks. The median overhead is 3.3%. The new
task t3 in Apache is compared with the original Apache with-
out our lock watchdog. It has the smallest overhead (0.04%).
The largest overhead (10.2%) is the MySQL deadlock checker,
which is acceptable considering the strong isolation.

We choose workloads that stress test the orbit tasks. As
Table 4 shows, all the tasks are frequently invoked. For exam-
ple, the MySQL deadlock checker orbit is invoked 510 times
per second. In practice, it may not be invoked this frequently.
Developers can also add sampling logic for orbit calls.

We also tested less intensive workloads. We reduced
the write operations in MySQL (t1)’s OLTP workload, and
changed the 90%/10% mix of t2 and t4 to 99%/1% mix. Task
t1 and t2 only incur 1.6% and 1.2% overhead, respectively,
while t4 has a negligible overhead of 0.18%.

For the MySQL deadlock detector, we implemented a
fork version by creating a fork on each invocation to
check_and_resolve. However, we did not implement IPC
to pass results back to the main process, but if implemented,
the fork-based performance would become even worse. In
comparison, the orbit version has full functionality of push-
ing updates. We compare the MySQL performance under
the three versions of detector: vanilla, fork-based, and orbit-
based, using a user workload [1]. Figure 13 shows the result.
The orbit version is slower than the vanilla as expected, but
6× faster than the fork-based version. For the orbit version
we also compare the performance difference using the syn-
chronous orbit_call versus using orbit_call_async. Un-
der 8 threads, the performance with asynchronous call is only
1.2% faster than the synchronous call because of limited con-
currency opportunities. But under 16 threads, the performance
difference becomes much larger as Figure 14 shows.

Throughput Latency Orbit area FPQ TRX size

No-opt. 1728.0 QPS 340.5 µs 25.7 MB 11.70 912 bytes
Delegate 3308.1 QPS 39.3 µs 1.0 MB 6.91 104 bytes

Changes +91.4% -88.5% -96.1% -40.9% -88.6%

Table 5: Optimization effect of delegate object technique. (FPQ
stands for page faults per query)

Task t1 t2 t3 t4 t5 t6 t7 t8

Orbit area 828 20 8 4 8 268 80,644 240
Percentage 0.33 0.40 0.12 0.12 0.001 1.6 76.9 0.65

Table 6: Snapshot sizes (KB) in evaluated auxiliary tasks and their
relative percentages (%) of the main program memory footprint.

5.6 Effectiveness of Optimizations
Incremental snapshotting We show the effect of incremen-
tal snapshotting by gradually allocating new objects in the
orbit area and making orbit calls. We measure orbit call laten-
cies with area sizes from 2 to 256MB with an increment of
2 MB. Figure 15 shows the result averaged over 20 runs.

Without the optimization, the kernel wastes most cycles
walking all the unchanged PTEs and thus requires longer
latency. With the optimization, the new data that needs to be
snapshotted in every call is a constant (2 MB). For an orbit
area of 256 MB, the optimization reduces the latency by 40×.

Delegate Objects We use delegate object technique to mini-
mize states size during snapshots, while also reduce unnec-
essary page faults due to main process memory writes to the
other fields that orbit task does not use.

In the MySQL deadlock detector, we applied delegate ob-
ject technique to transaction type trx_t, lock type lock_t,
and lock information lock_sys. We observe that identifying
such optimization opportunities is straightforward. For exam-
ple, the trx_t is 70-field struct with only 4 fields being used
in the orbit task, which is clearly an optimization target.

We run the user workload [1] with 16 clients on a 8-core
vCPU QEMU VM and compare the throughput, latency, orbit
area size, and average page faults per query. Table 5 shows
the results. The optimization improves average throughput by
91%, and the orbit call latency to be 7.7× shorter. The total
number of page faults throughout the run increases because
the throughput also improves, but on average, the number of
page faults each request incurs is reduced by 40.9%. In orbit
calls, 96.1% of unneeded memory is saved from snapshots.
In particular, the delegate object size for trx_t is only 11%
of the original transaction structure.

5.7 Memory Footprint
Orbit provides efficient snapshotting because orbit only snap-
shots on necessary data for auxiliary task. We measure the
average memory footprint of orbit area that was snapshotted
during orbit calls. Table 6 shows the snapshot sizes along
with their percentages of the main process’s memory foot-
print. Among the ported tasks, 6 out of 8 allocate less than 1%
of process data in orbit area. Redis RDB takes snapshot on its

644    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



20 40 60 80 100 120

Time (s)

0

800

1600

2400

3200

T
h
ro

u
g
h
p
u
t 

(Q
P
S
)

vanilla (unsafe) dl detector

orbit (safe) dl detector 

fork (safe) dl detector 

Figure 13: MySQL deadlock detector vanilla
versus the orbit-based and fork-based version.

20 40 60 80 100 120

Time (s)

0

1000

2000

3000

4000

5000

T
h
ro

u
g
h
p
u
t 

(Q
P
S
)

orbit_call (sync) to dl detector

orbit_call_async to dl detector 

Figure 14: MySQL performance under 16
threads with sync. and async. orbit calls.

2 32 64 96 128 160 192 224 256

Size (MB)

0

1000

2000

3000

4000

L
a
te

n
c
y
 (

u
s
) No optimization

Incremental snapshot

Figure 15: Orbit incremental snapshotting la-
tency on a growing allocation size.

Task t1 t2 t4 t5 t6 t7 Total

Manual port 7 16 7 3 11 12 56
Compiler 7 56 44 3 20 65 195
Common 5 8 5 1 9 11 39

Table 7: Allocation points in our manual port and compiler result.

key-value dictionary that dominates the memory usage, and
thus require the largest portion of memory to be snapshotted.

5.8 Usage Effort
We count the lines of code changes we make to applications in
porting the 7 existing auxiliary tasks. The changes include (1)
replacing the allocation and free points with orbit allocations;
(2) making orbit calls, pushing updates, and applying updates.

The combined changes for (1) range from 40 to 158 lines
with a median of 115 lines. The Redis RDB task requires the
most changes. We modified some application functions that
create certain data structures to provide two versions (one for
regular code paths, another for code paths to the orbit task) to
avoid putting many unneeded objects in the orbit area. These
modifications involved either duplicating the original function
or changing its interface. The combined changes for (2) range
from 45 to 272 lines with a median of 96 lines.

Our analyzer (Section 4.7) was developed after and moti-
vated by our manual porting effort. We apply it on 6 of the
evaluated tasks. The new implementation (t3) case has 0 orig-
inal allocation points, thus it does not apply. The tool cannot
analyze allocations in C++ STL container accurately due to
its limited support for STL’s complicated internal allocation
implementation, thus t8 is excluded.

Table 7 shows the result of manually ported allocation
points, detected points and the common ones between the two.
From all 56 ported allocation points, our compiler detects
39 of them (70%). The detected points include ported, un-
ported correct points, and false points. For the tasks that have
larger number of detected but un-ported points (such as t7),
we observe that most of these detected points are correct.
They are missed from porting because our workload does
not exercise those functionalities. There are also a few cases
missing from detection because of unexpected corner cases.
For example, a variable in Varnish (t5) used by the auxiliary
task was directly allocated on stack instead of using allocator.

6 Discussions and Limitations
As a new abstraction support for auxiliary tasks, our current
orbit design has several limitations.

State synchronization Our state synchronization mecha-
nism works at the page granularity, which can incur unneces-
sary snapshot costs and page faults. Fine-grained object-level
snapshotting is feasible but heavily depends on accurate static
analysis and instrumentation. We plan to explore potential
hybrid solutions that have the advantages of both approaches.

Observable states Our design only considers observing
memory states, but not other system states such as file states.
Those states would be more complicated to coordinate as they
involve kernel and library buffer and position pointer. Creat-
ing file snapshots will require a different technique. The tasks
we ported are relatively modular and self-contained. For ex-
ample, our ported checkpointing tasks (Redis RDB, LevelDB
compaction) require file operations, but they can create, write,
close, and move files within the same orbit context, without
the need to share file descriptors with the main program.

Code changes and compiler support We currently require
developers to replace the allocation points of needed state
variables. For some tasks, a relatively large number of places
may need to be replaced. Our future work plans to leverage
lightweight memory tracing [32] to dynamically identify the
state variables and minimize the code changes.

The analysis in our compiler support for assisting develop-
ers to use orbit is basic. Although it supports field-sensitive
pointer analysis, it can still miss corner-case allocation points.
Developers need to manually find these points. Furthermore,
our implementation of def-use chain analysis is not accurate
enough to determine complex data flow, and thus will yield
a handful of false positives. We will enhance the compiler
support to enable fully automated porting for developers.

Comparison of programming difficulty Compared to pro-
gramming with threads, using orbit requires the additional
effort to properly change some allocation points. However,
although developers do not need to change allocations when
using threads, they still need clear knowledge of all the global
variables that will be accessed in the thread, and ensure proper
synchronizations for them. Thus, developers likely already
have some knowledge about the allocation points of these vari-
ables. In addition, some of the synchronization would become
unnecessary when using orbit. Therefore, the programming
overall would be comparable.

Compared to the RPC model, orbit allows developers to
write task functions in the same application codebase and di-
rectly refer to existing variables and functions. Unlike RPCs

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    645



that require code changes to enable object marshalling and
unmarshalling, which are difficult for complex objects like
transactions and locks, using orbit does not require such
changes. With the mirroring orbit area, orbit calls directly
access needed objects when crossing the address spaces.

Tolerance of bugs Orbit aims to protect the main program
from issues in the auxiliary task execution. It tolerates com-
mon bugs such as memory errors in the auxiliary task func-
tions, as well as bugs in the main program that pass bad (or
corrupt) values to the auxiliary tasks.

It does not prevent an auxiliary task from sending an in-
correct update back to the main program and cause the main
program to malfunction. But the orbit abstraction encour-
ages modularization for auxiliary execution, i.e., an orbit task
performs most of its operations in a separate address space
before pushing updates back. This modularization minimizes
the time window for the main program to see bad values and
increases the chance that the orbit task itself encounters issues
(e.g., dereferencing a bad pointer) before the main program
does, which still achieves protection. This is also one reason
we choose to provide one-way automatic state synchroniza-
tion (Section 4.3) with controlled state alteration, instead of a
transparent, eager bidirectional state synchronization.

Auxiliary versus main tasks Determining whether a task is
auxiliary or main can be subjective. While orbit is designed
for auxiliary tasks, it does not require a clear-cut distinction—
developers can use it to execute some tasks that they consider
as main features for achieving strong isolation. We demon-
strate this usage in the evaluation with two cases (t2 and t4).

7 Related Work
There is a wealth of work on protection and fault isolation.
They vary widely in their target scenarios (OS extensibility,
application extensions, sensitive code, etc.), goals (reliability,
security, etc.), and approaches (software, hardware, hybrid).
Our work is complementary to the existing efforts and targets
a different, emerging protection scenario—auxiliary tasks in
modern applications. Our proposed orbit abstraction aims to
provide strong isolation for auxiliary tasks, while also achiev-
ing high observability and convenient usage.

SFI [42] is a software isolation technique that restricts
the memory accesses of untrusted code in an application by
rewriting the application binary. XFI [16] similarly uses bi-
nary rewriting to instrument software guards to check memory
accesses. Extensive work has followed up this direction, such
as NaCl [47] and RLBox [29]. As Section 2.4 elaborates, the
sandbox model is not well suited for auxiliary tasks.

Several sub-process OS abstractions [10, 12, 24] provide
secure partitioning in applications. They generally use pri-
vate memory for executing sensitive code to ensure security.
Wedge [10] provides the sthread primitive to partition an
application into compartments and a scheme to tag memory
regions and define access rights for the tags. Shreds [12] pro-
vides a segment of an execution unit called shred and relies

on the ARM memory domains hardware feature to provide
a private memory pool for each shred. Lightweight context
(lwC) [24] creates a separate address space for each lwC in an
application and allows a process to switch to some lwC when
executing sensitive code. These abstractions typically get exe-
cuted synchronously and are not independently schedulable.

Determinator OS [9] provides a private workspace model
for deterministic parallelism. It runs user code in spaces and
relies on processes to explicitly synchronize the spaces. Orbit
provides automatic, fine-grained state address space synchro-
nization between orbit and the main program. An orbit also
has richer features due to its completely different design pur-
pose. SpaceJMP [15] allows a process to define multiple
address spaces and switch between address spaces, but with
a main goal of enabling applications to use more physical
memory rather than fault isolation.

Memory checkpointing takes snapshots of a running pro-
gram’s memory for debugging, failure recovery, quick ini-
tialization, etc. [11, 13, 22, 46] The checkpoint techniques
usually rely on the copy-on-write (COW) mechanism through
fork [33, 34, 38] or mprotect. On-demand-fork [48] opti-
mizes the fork performance by extending COW to page tables.
Orbit synchronizes only needed objects in the orbit areas.
Lightweight memory checkpointing [41] uses shadow mem-
ory to checkpoint at object granularity. While it is more fine-
grained than the page-level COW, shadow memory has several
disadvantages for our scenario as described in Section 4.3.
Overall, we focus on designing a complete OS abstraction for
the isolation of auxiliary tasks. Our work is complementary
to existing solutions and can benefit from their optimizations.

Protection schemes are also extensively explored in the
context of OS extensibility. To name a few, Nooks [39] pro-
vides isolation of device drivers by executing them in dif-
ferent protection domains and using Extension Procedure
Call (XPC) for control transfer; Mondrian memory protection
(MMP) [44, 45] provides fine-grained protection by using
hardware extensions and permission tables.

8 Conclusion
We discuss the trend of auxiliary tasks in applications and the
lack of system support for providing safe and efficient execu-
tion for these tasks. We propose a new OS abstraction orbit

to address the gap. Orbit offers high observability and flexible
control, while providing strong isolation and efficiency. We
evaluate orbit on 8 auxiliary tasks from 6 large applications.
The applications achieve enhanced safety with the orbit tasks,
and only incur a median of 3.3% performance overhead.

Acknowledgments
We thank the anonymous OSDI reviewers and our shepherd
Gerd Zellweger for their valuable feedback. We thank Shreyas
Aiyar for his contribution to the orbit compiler. This work
was supported in part by NSF grants CNS-1942794, CNS-
2149664, CNS-1910133, and CCF-1918757.

646    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] InnoDB deadlock detection is CPU intensive with many locks
on a single row. https://bugs.mysql.com/bug.php?id=

49047.

[2] Redis 4.x lazyfree: memory leak may happen when free
slowlog entry. https://github.com/redis/redis/issues/

4323.

[3] Sysbench. https://github.com/akopytov/sysbench.

[4] Too many safemode monitor threads being created in the
standby namenode causing it to fail with out of memory error.
https://issues.apache.org/jira/browse/HDFS-5140.

[5] Segfault in DAV module during PUT processing. https://

trac.nginx.org/nginx/ticket/238, 2012.

[6] Bug 59864 - segfault when using route-redirect pairs and both
servers are disabled/in error mode. https://bz.apache.org/
bugzilla/show_bug.cgi?id=59864, 2016.

[7] Bug 28523042 - innodb: assertion failure:
lock0lock.cc:7034 in deadlockchecker::search.
https://github.com/mysql/mysql-server/commit/

97c49a66cea30c96ebc48129f3c4d59ac7a7c913, 2018.

[8] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM Conference
on Computer and Communications Security, CCS ’05, page
340–353, Alexandria, VA, USA, 2005.

[9] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI ’10, Vancouver, BC, Canada, Oct. 2010.

[10] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge:
Splitting applications into reduced-privilege compartments. In
Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’08, page 309–322,
San Francisco, California, 2008.

[11] E. Bugnion, V. Chipounov, and G. Candea. Lightweight snap-
shots and system-level backtracking. In Proceedings of the
14th USENIX Conference on Hot Topics in Operating Systems,
HotOS’13, page 23, Santa Ana Pueblo, New Mexcio, 2013.

[12] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. Shreds: Fine-
grained execution units with private memory. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 56–71, 2016.

[13] G. Cox, Z. Yan, A. Bhattacharjee, and V. Ganapathy. Secure,
consistent, and high-performance memory snapshotting. In
Proceedings of the Eighth ACM Conference on Data and Ap-
plication Security and Privacy, CODASPY ’18, page 236–247,
Tempe, AZ, USA, 2018.

[14] S. Dong, A. Kryczka, Y. Jin, and M. Stumm. Evolution of
development priorities in key-value stores serving large-scale
applications: The RocksDB experience. In Proceedings of the
19th USENIX Conference on File and Storage Technologies,
FAST ’21, pages 33–49. USENIX Association, Feb. 2021.

[15] I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Acher-
mann, P. Faraboschi, W.-m. Hwu, T. Roscoe, and K. Schwan.
SpaceJMP: Programming with multiple virtual address spaces.

In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’16, page 353–368, Atlanta, Georgia,
USA, 2016.

[16] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Nec-
ula. XFI: Software guards for system address spaces. In Pro-
ceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, page 75–88, Seattle, Washing-
ton, 2006.

[17] P. G. D. Group. PostgreSQL’s routine vacuum-
ing. https://www.postgresql.org/docs/current/

routine-vacuuming.html, 2022.

[18] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang. Capturing
and enhancing in situ system observability for failure detection.
In 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’18, pages 1–16, Carlsbad, CA, October
2018.

[19] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalap-
ati, and R. Yao. Gray failure: The Achilles’ heel of cloud-scale
systems. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems, HotOS ’17, pages 150–155, Whistler,
BC, Canada, 2017.

[20] Y. Jing and P. Huang. Operating system support for safe
and efficient auxiliary execution (technical report). Tech-
nical report, Johns Hopkins University, July 2022. https:

//orderlab.io/paper/orbit-tr.pdf.

[21] C. H. Kim, J. Rhee, K. H. Lee, X. Zhang, and D. Xu. Perf-
Guard: Binary-centric application performance monitoring in
production environments. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, page 595–606, Seattle, WA,
USA, 2016.

[22] P. F. Klemperer, H. Y. Jeon, B. D. Payne, and J. C. Hoe. High-
performance memory snapshotting for real-time, consistent,
hypervisor-based monitors. IEEE Transactions on Dependable
and Secure Computing, 17(3):518–535, 2020.

[23] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings
of the International Symposium on Code Generation and Opti-
mization: Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Palo Alto, California, 2004.

[24] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg,
B. Bhattacharjee, and P. Druschel. Light-weight contexts: An
OS abstraction for safety and performance. In Proceedings of
the 12th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’16, page 49–64, Savannah, GA,
USA, 2016.

[25] H. Liu, S. Silvestro, W. Wang, C. Tian, and T. Liu. iReplayer:
In-situ and identical record-and-replay for multithreaded appli-
cations. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
2018, page 344–358, Philadelphia, PA, USA, 2018.

[26] C. Lou, P. Huang, and S. Smith. Comprehensive and efficient
runtime checking in system software through watchdogs. In
Proceedings of the 17th Workshop on Hot Topics in Operating
Systems, HotOS ’19, Bertinoro, Italy, May 2019.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    647

https://bugs.mysql.com/bug.php?id=49047
https://bugs.mysql.com/bug.php?id=49047
https://github.com/redis/redis/issues/4323
https://github.com/redis/redis/issues/4323
https://github.com/akopytov/sysbench
https://issues.apache.org/jira/browse/HDFS-5140
https://trac.nginx.org/nginx/ticket/238
https://trac.nginx.org/nginx/ticket/238
https://bz.apache.org/bugzilla/show_bug.cgi?id=59864
https://bz.apache.org/bugzilla/show_bug.cgi?id=59864
https://github.com/mysql/mysql-server/commit/97c49a66cea30c96ebc48129f3c4d59ac7a7c913
https://github.com/mysql/mysql-server/commit/97c49a66cea30c96ebc48129f3c4d59ac7a7c913
https://www.postgresql.org/docs/current/routine-vacuuming.html
https://www.postgresql.org/docs/current/routine-vacuuming.html
https://orderlab.io/paper/orbit-tr.pdf
https://orderlab.io/paper/orbit-tr.pdf


[27] C. Lou, P. Huang, and S. Smith. Understanding, detecting and
localizing partial failures in large system software. In Proceed-
ings of the 17th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’20. USENIX, February
2020.

[28] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dynamic
causal monitoring for distributed systems. In Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP
’15, pages 378–393. ACM, 2015.

[29] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm,
S. Lerner, H. Shacham, and D. Stefan. Retrofitting fine grain
isolation in the firefox renderer. In 29th USENIX Security
Symposium, USENIX Security ’20, pages 699–716, Aug. 2020.

[30] Oracle. MySQL’s deadlock detection. https://dev.mysql.

com/doc/refman/8.0/en/innodb-deadlock-detection.

html, 2022.

[31] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In Proceedings of the 4th ACM European
Conference on Computer Systems, EuroSys ’09, page 13–26,
Nuremberg, Germany, 2009.

[32] M. Payer, E. Kravina, and T. R. Gross. Lightweight memory
tracing. In Proceedings of the 2013 USENIX Annual Technical
Conference, USENIX ATC ’13, pages 115–126, San Jose, CA,
USA, June 2013.

[33] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Trans-
parent checkpointing under UNIX. In Proceedings of the 1995
USENIX Technical Conference, USENIX ATC ’95, New Or-
leans, LA, USA, Jan. 1995.

[34] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs
as allergies—a safe method to survive software failures. In
Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, SOSP ’05, page 235–248, Brighton, United
Kingdom, Oct. 2005.

[35] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Ober-
miller, and S. Shayandeh. Appinsight: Mobile app performance
monitoring in the wild. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation,
OSDI ’12, page 107–120, Hollywood, CA, USA, 2012.

[36] G. E. Reeves. What really happened on Mars? http://hdl.

handle.net/2014/19020, February 1998.

[37] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst., 15(4):391–411, Nov.
1997.

[38] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and determin-
istic replay for software debugging. In Proceedings of the
2004 USENIX Annual Technical Conference, USENIX ATC
’04, Boston, MA, USA, June 2004.

[39] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’03, page 207–222, Bolton Landing, NY, USA,
Oct. 2003.

[40] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Samm-
ler, P. Druschel, and D. Garg. ERIM: Secure, efficient in-
process isolation with protection keys (MPK). In Proceedings
of the 28th USENIX Security Symposium, USENIX Security
’19, pages 1221–1238, Santa Clara, CA, USA, Aug. 2019.

[41] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum.
Lightweight memory checkpointing. In Proceedings of the
45th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN ’15, pages 474–484, Rio de
Janeiro, Brazil, June 2015.

[42] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient software-based fault isolation. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Principles,
SOSP ’93, page 203–216, Asheville, North Carolina, USA,
Dec. 1993.

[43] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke.
Gadara: Dynamic deadlock avoidance for multithreaded pro-
grams. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI ’08,
page 281–294, San Diego, California, 2008.

[44] E. Witchel, J. Cates, and K. Asanović. Mondrian memory
protection. In Proceedings of the 10th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, ASPLOS X, page 304–316, San Jose,
California, 2002.

[45] E. Witchel, J. Rhee, and K. Asanović. Mondrix: Memory
isolation for linux using mondriaan memory protection. In
Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, SOSP ’05, page 31–44, Brighton, United
Kingdom, 2005.

[46] W. Xu, S. Kashyap, C. Min, and T. Kim. Designing new operat-
ing primitives to improve fuzzing performance. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, page 2313–2328, Dallas, Texas,
USA, 2017.

[47] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sand-
box for portable, untrusted x86 native code. In 2009 IEEE
Symposium on Security and Privacy (SP), 2009.

[48] K. Zhao, S. Gong, and P. Fonseca. On-demand-fork: A mi-
crosecond fork for memory-intensive and latency-sensitive ap-
plications. In Proceedings of the Sixteenth European Con-
ference on Computer Systems, EuroSys ’21, page 540–555,
Online Event, United Kingdom, 2021.

648    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://dev.mysql.com/doc/refman/8.0/en/innodb-deadlock-detection.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-deadlock-detection.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-deadlock-detection.html
http://hdl.handle.net/2014/19020
http://hdl.handle.net/2014/19020


From Dynamic Loading to Extensible Transformation:

An Infrastructure for Dynamic Library Transformation

Yuxin Ren, Kang Zhou, Jianhai Luan, Yunfeng Ye,

Shiyuan Hu, Xu Wu, Wenqin Zheng, Wenfeng Zhang, Xinwei Hu

Poincare lab, Huawei Technologies Co., Ltd, China

Abstract

The dynamic linker and loader has been one of the fundamen-

tal software, and more than 99% of binaries are dynamically

linked on Ubuntu. On one hand, vendors are going to break

production software into more and more dynamic libraries

to lower the maintenance cost. On the other hand, customers

require the dynamic loader to provide rich functionalities

to serve their isolation, security, and performance demands.

However, existing dynamic loaders are implemented in a

monolithic fashion, so they are difficult to extend, configure

and optimize.

This paper presents iFed, an infrastructure for extensible

and flexible dynamic library transformation. We design iFed

in a pass-based architecture to compose various functional

and optimization passes. iFed uses a runnable in-memory

format to represent libraries and coordinate among multiple

transformation passes. We further implement two optimiza-

tion passes in iFed, which efficiently leverages hugepages and

eliminates relocation overhead. iFed is implemented as a drop-

in replacement of the current system default dynamic loader.

We evaluate iFed and its optimization passes with a wide

range of applications on different hardware platforms. Com-

pared to the default glibc dynamic loader, iFed reduces an

order of magnitude of TLB miss. We improve the throughput

of a dynamic website by 13.3%, along with a 12.5% reduction

of tail latency without any modifications to the applications.

1 Introduction

Since the 1990s, dynamic linkers and loaders have been one

of the most critical software tools for computer programs and

applications [11, 15, 23]. Opposite to static linking, which

generates a single big application binary, dynamic loading 1

1Dynamic loading is also referred to as run-time loading, a mechanism

that an application opens, loads, and executes a library by explicitly calling

loader interfaces during program execution. As run-time loading shares

almost the same backend technology with dynamic loading, throughout this

paper, we use dynamic loading to refer to the integrated linking and loading

permits complex software to be shipped, delivered, and dis-

tributed as a collection of libraries, modules, or components.

For low-level languages, such as C/C++ and Rust, these com-

ponents are implemented as dynamic libraries, also called

dynamic-link libraries (.dll in Windows) or shared objects

(.so in Linux). Only when a program starts will its dynamic

libraries be integrated to form a runnable application by the

dynamic loader. In this way, each dynamic library can be

distributed and patched individually without modifying the

entire application. As a result, software maintenance cost is

greatly reduced while it gains much more flexibility. A study

shows that more than 99% of binaries are dynamically linked

on Ubuntu [46].

While the dynamic loader’s functional structure has been

mature and stable for more than one decade, we found it can-

not meet the requirements of rapidly developing software

and complicated architectures today. Two primary driving

factors call out a new infrastructure for extensible and mod-

ular transformation on dynamic libraries: (1) the massively

increasing number of dynamic libraries used in an application

and (2) the emerging diversity of manipulation and operations

on dynamic libraries.

Complex commercial software heavily relies on dynamic

libraries to decompose a single huge binary into many loosely-

coupled, fine-grained modules. This is particularly motivated

by two considerations. First, some open source license re-

quires all statically linked code should also be open-sourced.

This is so-called “license contamination”. GPL license [12]

(used by glibc) is one such example. Consequently, produc-

tion software has to use dynamic libraries to avoid “license

contamination”.

Second, modern software needs frequent updates because

of CVE fixes, bug fixes, or adding new features. However, it

is painful for vendors to re-compile or link the whole soft-

ware, and ask customers to reinstall the entire application.

Therefore, vendors always break up software into many fine-

grained dynamic libraries, and each library can be maintained,

phase when programs are launched.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    649



 0

 50

 100

 150

 200

 250

 300

 350

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

N
u

m
b

e
r 

o
f 

D
y
n

a
m

ic
 L

ib
ra

ri
e

s

Year

Figure 1: The number of dynamic libraries included in the CUDA

Toolkit over the past decade.

updated, or replaced independently. For instance, Figure 1

lists the number of dynamic libraries shipped in the CUDA

Toolkit. As it shows, the number has grown rapidly over the

last decade. Based on our observation from the industry, this

trend will continue in the future.

Along with the growing dynamic library count, the dynamic

loader is required to provide more features to make better use

of emerging hardware and software technologies. For exam-

ple, when using recent hardware memory protection (e.g. Intel

MPK [17] and SGX [16]) to achieve in-process isolation, the

dynamic loader has to perform more work. It loads isolated

libraries into different memory regions, setups up memory pro-

tection and permission properties, and optionally verifies the

signature of loaded binaries [7,14,37,38,40]. Load time code

randomization and binary rewriting, provided by the dynamic

loader, are widely adopted for profiling, security hardening,

and architectural adaptation [51, 53, 54]. Library debloating

relies on the dynamic loader to examine and eliminate unused

library code from program memory [33, 35]. Control-Flow

Integrity (CFI) and Sandbox also require miscellaneous mod-

ifications to the dynamic loader, such as analyzing relocation

entries and overwriting the entry point [24, 47, 58].

However, the current dynamic loading infrastructure is

insufficient and inefficient to offer rich functionalities over

a large number of dynamic libraries. This leads to ad-hoc

changes to the dynamic loader to satisfy various requirements

from different productions. Such customized modifications

are incompatible with each other, and cannot be integrated

or reused, causing enormous development and maintenance

costs. Even worse, the fundamental infrastructure of dynamic

loader has been kind of ignored by academia and industry.

Thus neither research nor open source community proposes

systematic solutions to deal with these issues. For instance,

while there are 100+ commits in glibc related to the dy-

namic loader in the last two years, they are almost bug fixes

or cleanup without new features developed.

According to our many years’ industry experience and

realistic production requirements, intrusive and customized

modifications cause unacceptable maintenance cost. On the

one hand, a large number of source code patches are hard

to be accepted by upstream. This also happens to academia

work listed above. On the other hand, production departments

do not have enough source code level knowledge to maintain

patches. Therefore, it is painful for the OS department to

maintain many ad-hoc patches and sometimes it has to release

different OS distributions with different loaders (along with

glibc). As a result, it motivates a new infrastructure which

satisfies following requirements:

• It offers more functionalities than existing loader.

• It can be flexibly configured for different trade-off and

extended to adopt future enhancements.

• Its modifications can be implemented in a modular way

that minimizes the effort to align with upstream and fix

conflicts due to patch maintenance.

In summary, the issue of current loader design is that it has

no interface to allow extensions, thus intrusive modifications

cannot be avoided. The loader is historically designed for a

few simple functionalities and acts as a “translator”. How-

ever, now it has to be redesigned, instead of re-engineer, to

adopt emerging functionalities and allow future updates in a

modular and flexible way, and becomes another platform for

application optimization.

We address these challenges by designing iFed, a new in-

frastructure that achieves extensibility, modularity, and flex-

ibility for dynamic library operations. Our key idea is to

organize the iFed as a pipeline of distinct transformation

passes instead of a monolithic tool. Each pass only imple-

ments some specific manipulation on dynamic libraries to

realize its desired functionality, such as security enhance-

ment, memory isolation, or performance optimization. We

also design a runnable in-memory format (RiMF) to describe

the runtime status and properties of an application and its

dynamic libraries (§3.4). RiMF serves as an intermediate rep-

resentation that every pass operates on, thus different passes

are decoupled. By including complete status and information

of all dynamic libraries, RiMF further enables iFed passes

to do global and aggressive analysis and optimizations. A

pass manager orchestrates the series of passes to be applied

upon program launch (§3.5). Combined, these features pro-

duce the first infrastructure, as far as we know, that satisfies

diverse functional requirements without loss of extensibility,

flexibility, and modularity.

With various transformation passes plugged in, iFed is able

to support much richer features beyond existing dynamic link-

ing and loading. We demonstrate this by implementing two

performance optimization passes. The first pass combines the

same type of sections from different dynamic libraries into

a continuous one, and then leverages hugepages to load the

combined section (§3.6). The second one converts relocation

branches into direct function calls, thus reducing the overhead

of cross-library function calls (§3.7). iFed and its optimiza-

tion passes are implemented to replace the GNU dynamic

loader. We evaluate iFed with a large range of application

650    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



benchmarks on different architectures. The results illustrate

how iFed optimization passes offer better throughput, latency,

and predictability than current dynamic loaders. Without any

modifications to the applications in a dynamic website, iFed

improves the throughput by 13.3% and reduces the average

end-to-end response time by 12.5%.

Our contributions are not only enhancing current loader

with some specific optimizations, but also proposing a new

infrastructure that is capable to host many other loader fea-

tures in production. Concretely, the contributions of this paper

include:

• We introduce iFed, a pass-based infrastructure for exten-

sible, flexible, and modular transformation on dynamic li-

braries during load time.

• We design two performance optimization passes in iFed.

One pass enables efficient utilization of hugepages by re-

arrangement and concatenation of multiple libraries. The

other pass aggressively eliminates the overhead of cross-

library invocations resulting from inefficient relocation.

• We implement iFed infrastructure with the above optimiza-

tion passes as a drop-in replacement of the default dynamic

loader in Linux (ld.so in glibc). iFed is fully compatible

with ld.so and its all interfaces.

• An exhaustive evaluation of iFed on different architectures

with a wide range of applications.

The rest of this paper is organized as follows. §2 provides

background and motivation for the redesigned dynamic load-

ers. §3 introduces iFed and discusses its design, while §4

details the implementation of iFed. In §5, we present the per-

formance evaluation of iFed for a wide range of applications.

§6 discusses the related work, and §7 concludes.

2 Background and Motivation

2.1 Insufficient Functionality

The basic functionalities of dynamic loading include three

parts: (1) library lookup and collection; (2) memory layout

preparation; and (3) symbol resolution and name binding.

The core jobs to implement these functionalities in existing

dynamic loaders are simple. The loader allocates memory

and maps libraries into the address space with the given lay-

out specified in library object files. Then it resolves external

symbols by populating some lookup tables with the actual

memory address. While these steps are just enough to exe-

cute programs with dynamic libraries, they are not able to

further transform libraries to meet diverse isolation, security,

and execution requirements. Thus, many projects have to cus-

tomize the loader to fulfill their system objectives. We list a

few examples here.

• CubicleOS [38] is a library OS that isolates components

in MPK protected memory regions, called cubicles. It im-

plements a new cubicle loader who acts as the dynamic

TLB 99th percentile Execution

miss IPC latency (cycle) time (s)

glibc 1,231,950 1.96 318 6.01

iFed 117,782 2.43 232 4.86

Table 1: Performance comparison between glibc and iFed on x86

machine.

loader. The loader is responsible for cubicle creation and

component loading. It additionally scans binaries to ensure

that there are no any MPK-related operations, and resoles

cross-cubicle calls with special trampolines.

• BlankIt [33] is a dynamic loading framework that predicts

and loads only the set of library functions that will be used

by the application. At load time, BlankIt iterates over all

executable’s dynamic libraries, wipes out unused functions

it predicates, and overwrites these functions with a mis-

predication trampoline.

• Shuffler [53] patches the loader to support continuous code

re-randomization. The modified loader implements con-

structor prioritization in multiple libraries, and employs

binary rewriting to track and update all code pointers.

In summary, while many projects illustrate the necessity

and benefit of loader modification, they have to do some re-

dundant work, yet their own work cannot be easily integrated

by others. Hence, a new infrastructure for extensible and mod-

ular dynamic loading is necessary.

2.2 Inefficient Performance

Even worse, current dynamic loaders fail to effectively utilize

modern hardware capabilities and global system resources,

resulting in sub-optimal performance. A representative case

is ineffective hugepage usage.

The current loader loads each dynamic library individu-

ally, and within each library, maps code and data section ran-

domly. Thus sections are likely loaded into fragmented mem-

ory which only uses small pages (4K) for physical memory.

This leads to more TLB miss, slower library function calls,

and unpredictable execution time. A better loading strategy

is combining the same sections of all libraries into a big one,

and loading it into hugepage memory. We study performance

penalties incurred by the current loader from glibc. On an

Intel machine, we conduct a micro-benchmark that simply

invokes 100 dynamic libraries, and each library contains only

one function accessing memory (full details in §5). Table 1

depicts the micro-architecture impact of (instruction) TLB

miss and instruction per cycle (IPC), as well as benchmark

results of 99th percentile library function call latency and total

execution time. Due to loading libraries with small pages, the

benchmark suffers frequent TLB miss, which further leads

to slow and unpredictable execution. In contrast, dynamic

library concatenation pass in iFed effectively loads libraries

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    651



APPkernel

application 

threads

iFed

pass 

manager

ELF

parser
rmf

meta loader verification 

pass

isolation 

pass

system 

loader
memory 

management

relocation 

pass

library 

lookup

iFed 

binary

iFed 

configuration

pass 

configurations
pass 

binaries*.so

app 

binary

entry

point

Figure 2: iFed architecture and workflow. The pass manager loads and invokes a series of transformation passes, which interact with RiMF.

The workflow of program launch starts from the operating system kernel, which loads both application and iFed binary. After iFed gets the

control, it discovers, parses and transforms dynamic libraries and finally boots up the application.

into hugepages, providing an order of magnitude reduction

on TLB miss and 23.6% improvement on execution time.

Next, we discuss how iFed enables more optimization and

transformation of dynamic libraries in a modular and flexible

way.

3 iFed Design

3.1 Design Principles

iFed integrates the lessons we learned from the experience

of supporting diverse production demands on the dynamic

loader. We below outline the key principles, the guidance

throughout iFed design.

Extensibility and Modularity (P1). Due to different security

or performance considerations, different production always

requires a distinct subset of loader features. Therefore, various

functionality should be organized in a loosely-coupled way

instead of a monolithic implementation. Additionally, iFed

should allow applying new features easily without intrusive

modification to the loader itself.

Flexibility and Customizability (P2). It is desirable that

iFed capabilities can be customized on per-application, cus-

tomer, or even per-run basis. Such flexibility is important for

system managers and end customers to have more control

over running applications, opposite to accepting everything

from the current loader passively.

Compatibility and Transparency (P3). Compatible with

the existing loader interface is critical for iFed to be

production-ready. Changes to the loader should be transparent

to application developers, and require minimal modification

of legacy code. Thus, we aim to design iFed as a drop-in

replacement for the existing loader from the beginning.

3.2 iFed Functionality and Usage

As discussed in §2.1, current dynamic loaders cannot keep up

with application demands on new functionalities. According

to these demands, we summarize the desired features a loader

should provide beyond existing ones.

• Memory management. The loader should be responsible

for memory allocation, library address space layout, and

content initialization. This has a large impact on application

performance or memory consumption. Some examples of

load time memory management are library debloating [33,

35], replaying the profiled hot regions [28], and hugepage

optimization (§3.6).

• Isolation. The loader is the first place to partition and load

different libraries into isolated regions. The customers’

strong demand to isolate untrusted or vulnerable third-party

libraries paired with the emerging MPK and SGX technolo-

gies, motivate the loader to offer more isolation capabili-

ties [7, 14, 40, 50] beyond the traditional read/write/execute

permission restrictions.

• Security enhancement. The loader is convenient to per-

form transparent security hardening regardless of running

applications. For instance, we can enable CFI or sand-

box [5, 24, 47, 58], apply code randomization [26, 51] or

perform binary encryption/decryption or signature verifica-

tion [25, 56].

• Binary rewriting and execution control. In addition to

traditional relocation, the loader is feasible to perform more

advanced binary rewriting and control program execution,

such as Shuffler [53] and Egalito [54]. Furthermore, load

time transformation is also necessary to migrate applica-

tions among heterogeneous environments or offload execu-

tion to smart devices [8, 52]. We will discuss a relocation

elimination pass in iFed in §3.7.

Current usage of dynamic loader is a mass of interplay among

build toolchains, such as compiler and linker. Some configu-

rations and functionalities are scattered in various parts. For

example, to prevent GOT overwrite attack [18], the following

gcc options are widely used: -Wl,-z,relro,-z,now. gcc

passes these options down to the linker, but these options do

not take effect until the dynamic loader marks the correspond-

ing memory region as read-only. However, existing usage is

not appropriate. We argue that the dynamic loader should

be hidden from application developers, but configured and

controlled totally by end users or system administrators. This

is because customers do not trust that developers properly

652    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



build the software to meet their requirements. Thus, iFed con-

solidates all loader-related operations in one place, and gives

the control to end users who actually run the application.

3.3 iFed Architecture

When designing a loader, we should separate functional mod-

ules from low-level infrastructure. Functional modules will

impact the application run-time behavior and the infrastruc-

ture orchestrates these modules. Furthermore, functional mod-

ules can be easily replaced or combined without intrusive

modifications to the infrastructure and other modules.

We choose pass-based architecture for the loader design.

As a result, source code patches are no longer needed, and in-

dependent modules with enough semantics can be developed,

configured and maintained. The overall iFed architecture is

shown in Figure 2. The core component in iFed is a series of

transformation and optimization passes that manipulate and

transform dynamic libraries for various purposes related to

security, isolation, and performance. Each pass is a separate

module which can be enabled or disabled independently. Such

pass-based modular architecture gives great flexibility and ex-

tensibility to users to customize iFed functionality according

to their own demands. All passes are managed and controlled

by a pass manager (§3.5). Users configure the pass manager

to instruct it to construct and execute the pass pipeline. The

pass manager also maintains all libraries’ in-memory status,

and organizes them using RiMF format (§3.4). RiMF is an

intermediate representation that is shared by all passes. In this

way, passes are able to retrieve global information scatted in

many libraries and to perform advanced inter-library transfor-

mations. Same as the existing loader, iFed offers other utility

components as well, such as library discovery and elf parser.

3.4 Runnable In-memory Format

A main goal of iFed is splitting the current monolithic dy-

namic loader into extensible passes. On the one hand, it is

desirable that a pass does not rely on another, thus enabling

different passes to be developed and evolve independently.

On the other hand, when multiple passes run together, they

should be aware of how others transform libraries. Hence, we

need a kind of intermediate representation that captures all

libraries’ status originating from library objects and generated

by iFed passes on the fly. Runnable in-memory format (RiMF)

is intended to coordinate iFed passes by providing a central

place to hold library information at load time.

Passes in iFed do not communicate with each other directly,

instead, the shared RiMF is the only interface for library trans-

formation any pass can use. In this way, RiMF hides iFed

internal complexity and other pass’s implementation details

to pass developers. Currently, whenever modifying the dy-

namic loader to add new features, a developer has to under-

stand most of its codebase, even though much of them are

irrelevant. In contrast, all a developer needs to know to write a

transformation pass in iFed is the format and properties inside

RiMF, and the operations it exposes. iFed maintains a single

RiMF image which includes all dynamic libraries a program

requires, instead of a separate object file for every library as

today. Thus, iFed pass has more opportunities to apply global

analysis and optimization. Our dynamic library concatena-

tion pass demonstrates the power of global RiMF. Different

from ELF object file which is designed for the dense on-disk

format, RiMF rather focuses on load time in-memory repre-

sentation, such as isolation constraints, memory placement

and attributes, and code interposition.

The first-class object in RiMF is the isolation domain, which

composes a subset of libraries within the same protection

boundary. The actual isolation domain implementation de-

pends on the iFed pass. It could be implemented by MPK,

SGX or even device offloading. At the top level, RiMF con-

sists of a list of isolation domains, inter-domain invocations

that need to be resolved specially and a global application

entry point. Inside each isolation domain, similar to an ELF

file, RiMF provides sections, exposed symbols, and relocation

records. These information are organized in a set of tables.

Primary tables provided by RiMF are: (1) memory-mapping ta-

bles which describe library address space layout and memory

attributes; (2) symbol tables dealing with symbol definition,

binding, reference, and so forth; (3) section metadata tables

that associate RiMF sections to original ELF object files. A

RiMF section does not contain the actual binary, but maps to

one or more ELF sections initially. RiMF varies throughout

the iFed transformation pipeline. RiMF exports multiple inter-

faces to query, insert, modify and commit its internal tables.

For example, a pass can update section metadata tables to

combine different ELF sections into a new RiMF section. By

manipulating symbol tables, a pass is able to remove unused

code or override a function call with a customized trampoline.

The commit interface is used to apply table modifications to

the actual binary, such as interposing them in the library code

and loading sections to memory.

3.5 iFed Pass Manager

The iFed pass manager orchestrates transformation passes

to operate on RiMF sequentially. The pass manager takes a

user-provided configuration file and invokes each pass accord-

ingly. In essence, the pass manager is mainly responsible for

two tasks. First, the pass manager maintains the RiMF image

and provides interfaces to various passes to query and mod-

ify RiMF. Second, the pass manager acts as a meta loader,

which loads and executes each transformation pass. Consis-

tent with iFed overall design principle, each transformation

pass is also implemented as a dynamic library, which needs to

be loaded before execution as well. For simplicity, we reuse

the existing glibc loader for this minimal meta loader, so

any transformation trick is not applied to pass libraries.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    653



Current iFed does not contain a sophisticated scheduling

policy for running passes nor supports parallel pass execution.

We leave these as future work. Thus, the user has to explic-

itly deal with pass dependency and pass confliction in the

configuration file.

Pass Dependency. In general, passes are not aware of each

other because they only use RiMF as the communication

medium. However, the order of passes impacts the runtime

overhead a lot in some use cases. For example, a binary ver-

ification pass is preferred to run as early as possible, so fol-

lowing passes will not waste time on bad libraries. It is also

beneficial to place one pass behind another, if it can reuse

the analysis result from the previous pass, avoiding repeated

work.

Some special cases must be handled carefully. vDSO is one

such tricky example. vDSO is a virtual dynamic library (e.g.

linux-vdso.so) inserted into the application by the ker-

nel, but still uses the standard dynamic loading mechanisms.

Popular usage of vDSO is mapping some kernel regions into

the application’s address space, thus some system calls can

directly execute on these regions. As a consequence, vDSO

libraries must be loaded earlier than any pass that will is-

sue vDSO related system calls. Otherwise, iFed pass itself

will fault due to incomplete vDSO even before the applica-

tion starts running. Similarly, if a pass relies on malloc from

libc, it has to make sure that malloc is working properly

ahead of the pass execution.

Pass confliction. With more passes integrated together, they

are possible to introduce conflict transformations on libraries.

Different passes may partition libraries into different isola-

tion domains, or they have opposite optimization objectives.

Currently, iFed relies on users to construct the transforma-

tion pipeline properly. Automatic dependency extraction and

confliction detection will be supported in the future.

Figure 2 demonstrates a potential iFed transformation pass

pipeline. All libraries are verified first using security signa-

tures in the first verification pass. Then an isolation pass

divides libraries into several isolation domains. Libraries in

each domain are loaded into memory, where the memory

management pass allocates and sets up memory permissions

appropriately. The last binary rewriting pass completes sym-

bol resolution, relocation, and other intent manipulations.

3.6 Dynamic Library Concatenation

Hugepages (superpages) can greatly reduce the address trans-

lation overhead, because it eliminates one level page table

hierarchy and occupies fewer TLB entries. However, the cur-

rent loader does not explicitly leverage hugepages. As shown

in Figure 3 (a), the current loader individually maps every

section in each library into the process’s address space. If

these sections use a small amount of memory (i.e. smaller

than the size of a hugepage), the operating system is unlikely

to allocate hugepages for them automatically. As a result,

4K 4K 4K 4K 4K 4K

foo.so bar.so

.data .data.code .code.... .... .data .data.code .code.... ....

2M 2M

foo.so bar.so

bar barfoo foo.... ....

2M 2M

.code .data

.data .data.code .code.... ....

foo.so bar.so

2M 2M 2M 2M 2M 2M

4K pagefunction call data access

(a) (b) 

(c) (d) 

2M page

Figure 3: Different hugepage usage schemes for dynamic libraries.

frequent inter-library function calls will trigger more TLB

misses, causing expensive page table walk, stalling the CPU

instruction pipeline and slowing down applications.

The industry has two approaches to mitigate the impact of

high TLB miss, but neither of them is ideal. Figure 3 (b) de-

picts the first approach, which allocates hugepages to hold all

sections in the same library. While this approach reduces the

number of used TLB entries, it brings many security vulnera-

bilities. Since all sections are in the same hugepage, that page

should have all read/write/execute permissions required by

different sections. For example, .code section becomes write-

able and .data section is executable. Thus, this approach is

only used in some closed environments. This, once again,

indicates that the loader is capable to alter any policies desig-

nated during the development phase, making those policies

unreliable. Therefore, the loader should provide capabilities

to enforce security policies at load time.

The second method is illustrated in Figure 3 (c), such as

the transparent hugepages for file systems proposed in the

Linux kernel [27]. In this case, hugepages are used for large

sections in each library. While it works well for applications

using only a few large libraries, it cannot scale to a larger

number of libraries. However, as we discussed in §1, using

more and more libraries is the trend for production software,

which leads to that such method will be less effective.

In iFed, we design a different approach and implement

using in a iFed pass called dynamic library concatenation.

The basic idea is intuitive as Figure 3 (d) shows. We collect

the same sections, such .code, from all dynamic libraries

and concatenate them one by one to form a big section. This

combined section is large enough to fit in hugepages. More

importantly, all the sections share the same memory permis-

sions, so it is safe to place them in the same hugepage. Thanks

to RiMF holding all libraries’ information, the dynamic library

concatenation pass is able to disassemble and rearrange li-

braries easily.

By combining all libraries .code sections into a big one,

we might reduce the possible address range used by address

space layout randomization (ASLR). To mitigate this security

654    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



concern, we have some options. (1) We can concatenate these

libraries in random order. 2 (2) Hugepages do not have to be

continuous in the virtual address space as long as the original

section does not cross two hugepages. (3) We can leverage

other code randomization techniques at load time [51] or run

time [53], which is easier to employ in iFed.

Another potential negative impact introduced by dynamic

library concatenation is library sharing. Dating back to the

early days of computing, the motivation for using dynamic

libraries is to save limited memory. When multiple running

processes require the same library, they only share a single

in-memory copy of the libraries. Library concatenation makes

the sharing more difficult, as different processes have to use

the same set of libraries. However, from our experience, this

issue is acceptable for the following reasons. (1) The shared

region is mainly the immutable code section. However, the

code size of libraries is negligible compared to today’s mem-

ory capacity. For instance, glibc has around 1.3 million lines

of code and its un-stripped binary is only 17 MB, while a com-

mon server in the data center has 500 GB memory. (2) Thanks

to the customizability of iFed, we can apply library concatena-

tion only to key applications, while other utility or background

processes still use the default memory management policy

to share dynamic libraries. (3) In some cases, such as edge

computing or micro-service, the same process will fork multi-

ple times to serve different customers [36]. Since the forked

process has the same address layout, they can share the con-

catenated library without any problem. (4) In the extreme case

where the library must be shared, we align sections from dif-

ferent libraries at the 4K boundary. Thus, the 4K page in the

middle of a hugepage can still be mapped to other applications

at the cost that others are unable to utilize hugepages.

3.7 Relocation Branch Elimination

An important job accomplished by dynamic loaders is relo-

cation, because the compiler cannot statically resolve cross-

library function calls due to lack of address information. After

the dynamic loader maps all libraries into process address

space, it populates the actual address of unresolved functions

in a lookup table. Then every call to a function in a dynamic

library first retrieves the address from the lookup table and

jumps to that destination. These extra actions result in a tram-

poline code, which is stored in another table.

Figure 4 (a) shows a simplified execution flow of reloca-

tion. The table used to serve address lookup is usually called

global offset table (.got) and the procedure linkage table (.plt)

saves the trampoline code. When functions in foo.so (e.g.

foo1 and foo2) call the function bar in bar.so, they call the

trampoline (bar@plt) instead. The trampoline issues an in-

direct jump instruction, whose destination address is fetched

2 Existing loader (e.g. ld.so) loads libraries in a deterministic way,

which is decided by its internal library discovery algorithm according to the

dependency information from application binaries.

bar@bar.sobar

.text

.plt

.got

.foo1:

.foo2:

bar@plt

bar@pltcall

bar@plt
bar@plt

call

*(bar@got)jump

(a) (b) 

(d) (c) 

.text

.foo1:

.foo2:

bar@bar.socall

bar@bar.socall

function call

data access

foo1

foo1

bar@bar.so

bar@bar.so

bar@got

bar@plt

bar@got

Figure 4: Function call relocation for dynamic libraries. Function

foo1 and foo2 in foo.so call function bar in bar.so. In (a),

function calls are first redirected to .plt, and consult .got entries

to get the destination address, and finally branch to the destination.

(b) depicts that the current relocation method incurs three memory

access and two code branches. As shown in (c), the relocation branch

elimination pass in iFed rewrites the function call sites so that they

directly jump to the destination. As a result, only one memory access

and code branch is needed in (d).

from an entry in .got (bar@got). Thus, the execution fi-

nally branches to the real address of bar (bar@bar.so). 3

The above relocation mechanism is applied to every function

calls across dynamic libraries, thus incurring pervasive per-

formance overhead. Figure 4 (b) depicts the performance cost

in detail.

More executed instructions. Obviously, the single call in-

struction is expanded to multiple trampoline instructions, con-

suming more CPU cycles. Even worse, the additional indirect

jump puts more challenge on the branch predictor. This is

exacerbated by the fact that the trampoline code is not densely

packed and .plt is often sparsely accessed, leading to more

branch misses.

Extra memory access. The existing relocation approach also

introduces more memory access. First, .plt asks for more

memory to store the trampoline. Second, the trampoline needs

to load from the extra .got memory. More memory access

compete for the TLB and cache more frequently. Worse still,

they are likely to be evicted from TLB and cache by other data

access within the applications, especially in data-intensive

scenarios, causing increased function call latency and unpre-

dictability.

3 This simplified execution flow omits some complexities. .got entries

are initially populated with a pointer to a loader’s own resolver function. So

when a library function is invoked at its first time, it branches to the resolver

function, which then updates the .got entry using the actual address. This

also requires additional instructions to be patched into the trampoline.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    655



However, there are no practical solutions to eliminate these

performance penalties. Switching to statically linked libraries

is not always feasible as discussed in §1, and some hardware

methods [1] are not available in production due to architec-

tural modifications. It is also difficult to replace the relocation

mechanism in the current dynamic loader with little effort.

Thanks to iFed, we have a chance to insert an optimization

pass to reduce the relocation cost in an extensible manner. We

design the relocation branch elimination pass for this purpose.

The key idea inside relocation branch elimination is pretty

intuitive. As shown in Figure 4 (c), we can directly rewrite

the call instructions to replace their target address using

the address of library functions, instead of the address of the

trampoline in .plt. The performance gain is obvious. We

eliminate the extra two memory access and one instruction

branch as shown in Figure 4 (d). As a result, we essentially

achieve the performance of static linking on top of dynamic

libraries. Despite its simple idea, we have to deal with in-

struction decoding, relocation sites management, and other

implementation issues carefully. Implementation details are

discussed in §4.

Rewriting instructions causes it more difficult to share li-

braries among applications, since they have to be organized

in the exact same address space layout. Thus, the relocation

branch elimination pass is preferred to be used in environ-

ments with sufficient memory. Another challenge that needs

to be overcome is the distance restriction of a relative branch.

When using relative addressing mode, the CPU has restric-

tions on the distance between the call site and the target

address. 4 Therefore, only rewriting the target address is not

always possible if the library functions are loaded far from

the call sites. This issue can be handled in multiple ways.

(1) When combined with the dynamic library concatenation

pass, it is rare that the distance exceeds the architectural con-

straint. (2) We can change the relative addressing to absolute

addressing mode at the cost of an extra instruction to load

the address into a register. This change can be done by re-

compiling the code or rewriting the instructions by the loader.

For instance, the Linux kernel module loader rewrites the in-

structions when detecting the constraint violation. (3) For the

call sites that are far away from the target function, we can

fall back to the existing relocation method using .plt and

.got.

3.8 Discussion and Summary

The pass-based architecture enables iFed to accommodate

much more load time technologies and functionalities. How-

ever, we do not argue that our architecture is the only or best

way to design a loader. Other methods are possible, such as

“Linux kernel module” or “systemd service unit” approach.

4 This is because only a subset of bits in the branch instruction is available

to encode the address. For example, x86 limits the range as ±2 GB, while

ARM has a limitation of ±128 MB.

This is an open and new research area, and researchers are

welcome to investigate more. iFed also brings side effects to

program launch time and binary size, and we discuss these

trade-offs below.

Loading Time. While iFed infrastructure itself does not in-

troduce additional overhead to program launch, boot time

will increase as more iFed transformation passes are enabled.

End users have to make the judgment on the trade-off be-

tween longer loading time and securer or faster application

in run time. According to our experience so far, the increased

loading time in iFed is acceptable. This is because (1) For

applications that already require a modified loader to provide

new functionalities, they do not suffer more extra launch costs

after switching to iFed; (2) For long-running services, such

as web server and database, the one-time overhead during the

startup is always negligible; and (3) For short-lived tasks in

high churn environments, we can explore process template

and in-memory caching technology [36] to fork processes

from an initialized template, thus all forked processes will

bypass iFed loading phase and its associated overhead. We

study how our dynamic library concatenation and relocation

branch elimination passes impact loading time in §5.

Binary Size. As some iFed transformation passes may need

extra binary information to perform in-depth analysis, it is

likely to bloat the application binaries. For example, the relo-

cation branch elimination optimization requires the linker to

retain all relocations in the executable file, resulting in larger

binaries. While it is possible to scan the binary to re-generate

these information, it is not wise to waste time on these re-

dundant work. So far, the bloated binaries are not a big deal

given the current massive persistent storage, but we argue the

ELF-based binary scheme can be improved in the following

senses. First, developers should keep relevant binary infor-

mation (e.g. data generated by static analysis or bitcode of

LLVM IR) as much as possible to reflect more comprehen-

sive semantics close to the source code, instead of throwing

them away at build-time and hiding them from the users. It is

the user who makes the decision whether these information

should be stripped at deploy- or install-time. Second, while

iFed uses ELF-based objects for compatibility now, it is better

to have a different object file format in iFed to match the pass-

based structure and RiMF image. Particularly, object files can

be disassembled into per-pass pieces, and these pieces can be

fetched, trimmed, or analyzed through per-pass configuration.

These improvements are left as future work.

Summary. We summarize how iFed resolves the issues dis-

cussed in §1 based on our design principles. Organizing iFed

with a collection of transformation passes inherently achieves

modularity (P1). Passes do not directly interact with each

other, but rely on the pass manager to mediate and operate

on RiMF image as the only interface for collaboration. New

passes are easily plugged into iFed, which significantly im-

proves extensibility in iFed (P1). Therefore, vendors do not

need to randomly modify the loader nor maintain multiple

656    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



versions to satisfy customers’ different demands, and in the

meantime, customers are able to enjoy more features for free.

Since users can choose which pass to be used in iFed via

iFed configuration, they can flexibly construct transforma-

tion pipelines to customize the application at load time (P2).

Paired with the iFed’s capability to transform libraries with

a global view, customers are flexible to determine the trade-

off among security, isolation, and performance. iFed is im-

plemented to be compatible with the current loader, so no

application modification is required (P3). More importantly,

iFed enables another level of transparency for system admin-

istrators. For example, managers can insert a default security

enhancement pass to iFed, regardless of if applications are

built with security options.

4 iFed Implementation

Figure 2 depicts the typical workflow of iFed during program

launch. A program’s binary is first loaded by the operating

system, which then loads the dynamic loader’s binary if nec-

essary. Next, the kernel returns to user space and hands over

the control to iFed. After discovering all required libraries,

iFed invokes the pass manager with an initial RiMF image

which simply contains all libraries in a single isolation do-

main. Based on the iFed configuration, the pass manager loads

and executes each pass in sequence. Finally, iFed invokes the

application’s entry point and completes the loading phase.

Compatibility. Current iFed is implemented on top of glibc

2.28. We reuse some utility components, such as library dis-

covery and ELF parser from the glibc. As a result, iFed is

able to load unmodified ELF binaries and supports common

loader extensions, such as LD_PRELOAD. For compatibility,

the existing dynamic loader (i.e. ld.so) is organized as a spe-

cial fake pass in iFed. Linux allows an application to specify

the dynamic loader it will use. Thus, we use this facility to

enable the usage of iFed within applications.

Dynamic Library Concatenation. In this pass, we collect

the same sections from all libraries and pack them into con-

tinuous memory backed by hugepages. To save memory, the

last page is converted to small pages if less than 64 KB mem-

ory is occupied. While the implementation is intuitive, we

must fixup the global variable access. Global variables are

always accessed via offset, which is the difference between

the address of the accessing instruction and the variable it-

self. For example, in Figure 3 (a) and (d), the offset between

the .code and .data section within the foo.so is changed

due to the rearrangement. Thus accessing variables in the

.data section is broken. Our current solution is to instruct

the compiler to emit all the symbol access information (e.g.

using �emit-relocs options in gcc), and to fix the offset

during the pass execution. The book-keeping infomation in-

side iFed is also updated according to the finalized address, so

as to serve run-time loader interfaces, such as dlsym() and

dladdr(). We only rearrange the libraries which are position

independent.

Relocation Branch Elimination. This pass rewrites the

branch instructions so that they do not need indirect jump

based on .plt and got. First, we identify all branch instruc-

tions from the relocation records. Each record saves the po-

sition of the instruction and the remote symbol it references.

The symbol could be either a function or a variable. Then,

we find the actual address of the symbol and modify the in-

struction to use the address instead. Modifying instructions

is architecture-dependent. We further optimize the function

pointer invocations. In case of the function address can be

determined at the loading time, we substitute the function

pointer with the actual function.

5 Evaluation

Our evaluation goals include:

• Illustrate the effectiveness of dynamic library concatena-

tion and relocation branch elimination pass using micro-

architecture statistics.

• Understand the applicability of iFed along with our opti-

mization with a wide range of applications.

• Assess the generality when running iFed on different hard-

ware architectures.

Setup. We evaluate iFed on two architectures. The first one

is two 26-core sockets Intel(R) Xeon(R) CPU @ 2.3GHz,

with hyper-threading enabled, resulting in 104 cores in total.

The other is ARM Kunpeng-920 CPU @ 2.6GHz with four

NUMA nodes, and each node has 24 cores. All experiments

run on openEuler 20.03 [30] based on Linux 4.19 kernel. We

compare iFed with the system default dynamic loader, ld.so

in glibc 2.28.

5.1 Micro-benchmarks

We conduct a set of micro-benchmarks to evaluate the perfor-

mance improvement of library concatenation and relocation

branch elimination passes in iFed. Each test calls functions

provided by a configurable number of dynamic libraries, and

each function accesses a certain amount of memory. Figure 5

and Figure 6 study the impact of different library counts and

working set sizes in the library function, respectively. All tests

are run 500K iterations on the Intel machine. We compare

four different implementations, (1) glibc – the system de-

fault dynamic loader. (2) iFed-hugepage – iFed with only

dynamic library concatenation pass. (3) iFed-relocation –

iFed with only relocation branch elimination pass. (4) iFed–

iFed with both optimization passes.

Micro-architecture Impact. Figure 5 (a) shows the num-

ber of misses in instruction TLB. With more libraries in-

volved, the total iTLB miss grows rapidly. glibc incurs the

most iTLB miss because it uses 4K pages to load libraries

and runs out of the limited number of iTLB entries. iFed-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    657



 1

 10

 100

 1000

 10000

 0  40  80  120  160  200

iT
L
B

 M
is

s
 C

o
u
n
t 

(K
)

Number of Dynamic Libraries

(a) instruction-TLB Miss

glibc
iFed

iFed-hugepage
iFed-relocation

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0  40  80  120  160  200

In
s
tr

u
c
ti

o
n
 P

e
r 

C
y
c
le

Number of Dynamic Libraries

(b) Instruction Per Cycle

iFed
iFed-hugepage
iFed-relocation

glibc

 0

 3

 6

 9

 12

 15

 18

 21

 0  40  80  120  160  200

E
x
e
c
u
ti

o
n
 T

im
e
 (

s
)

Number of Dynamic Libraries

(c) Total Execution Time

glibc
iFed

iFed-hugepage
iFed-relocation

Figure 5: Micro-benchmarks: the working set is fixed at 256 KB.

 3

 9

 27

 81

 243

 0  128  256  384  512  640

iT
L
B

 M
is

s
 C

o
u
n
t 

(1
0
K

)

Library Function Working Set (KB)

(a) instruction-TLB Miss

glibc iFed iFed-hugepage iFed-relocation

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 0  128  256  384  512  640

In
s
tr

u
c
ti

o
n
 P

e
r 

C
y
c
le

Library Function Working Set (KB)

(b) Instruction Per Cycle

 2

 5

 8

 11

 14

 17

 20

 0  128  256  384  512  640

E
x
e
c
u
ti

o
n
 T

im
e
 (

s
)

Library Function Working Set (KB)

(c) Total Execution Time

Figure 6: Micro-benchmarks: the number of dynamic library is 100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  250  300  350  400  450  500

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
li
ty

Library Function Invocation Time (cycle)

iFed-80-128
linux-80-128
iFed-120-128

linux-120-128
iFed-80-256

linux-80-256

Figure 7: Library function invocation latency distribution.

relocation has little difference with glibc as it uses 4K

pages, too. However, iFed-hugepage and iFed perform much

better than glibc (note the log scale of y axis). Thanks to

the usage of hugepage, they reduce the iTLB miss by an or-

der of magnitude when the library count is smaller than 160,

and by 40% with larger library counts. Less TLB miss leads

to higher IPC as shown in Figure 5 (b). In addition to TLB

miss, fewer code branches also decrease IPC. Thus, glibc

has lower IPC than iFed-relocation, and iFed performs the

best after integrating both optimizations. While the purposed

optimizations almost work on .code sections, they also get

benefits with a varied amount of data access as shown in Fig-

ure 6. With more data access, they compete for the cache and

TLB when shared with .code, .plt and .got sections. This

glibc iFed-hugepage iFed-relocation iFed

1.42 ms 5.96 ms 7.02 ms 9.07 ms

Table 2: Loading time overhead comparison. These are the cost to

load a redis server which has 36195 relocation sites.

is illustrated in Figure 6 (a) where iFed-relocation triggers

less TLB miss than glibc. In Figure 6 (b), IPC increases

with the larger working set, as the memory access dominates

the program execution. However, glibc performs worse than

all iFed variants.

Latency Analysis. The improvements on micro-architecture

further lead to the reduction in total execution time as depicted

in Figure 5 (c) and Figure 6 (c). All execution time rise

linearly with the test scale, but iFed runs faster than glibc

in all cases. For instance, with 200 libraries and a 256 KB

working set, iFed is 6% faster than glibc. More importantly,

due to less TLB miss and branch, the predictability of library

function invocation is improved a lot. To better understand

the latency of library function calls, Figure 7 presents a CDF

of function call latencies under different configurations. From

the results, we observe that glibc has higher tail latency

than iFed. For the 99th percentile latencies under the three

configurations, iFed has improvements of 19%, 27%, and 3%,

respectively.

Loading Time Discussion. Since iFed incorporates more

functionalities, it inevitability slows down the time to launch a

658    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0.6

 0.8

 1

 1.2

 1.4

ap
ac
he

bo
ta
n

co
uc
hd
b

da
ph
ne

es
pe
ak git

ipe
rf

kr
ipk

e
lam

e

lev
eld

b

m
ini
on

nc
nn

nu
ttc

p

op
tc
ar
ro
t

po
stg

re
sq
l

po
stm

ar
k

re
dis

ro
ck
sd
b

tjb
en
ch tn

n
x2
64

xs
be
nc
h

zs
td
-co

m
pr
es
s

S
p
e
e
d
u
p

Figure 8: Phoronix test suite on ARM physical machine.

 0.6

 0.8

 1

 1.2

 1.4

ap
ac
he

bo
ta
n

co
uc
hd
b

da
ph
ne

es
pe
ak git

ipe
rf

kr
ipk

e
lam

e

lev
eld

b

m
ini
on

nc
nn

nu
ttc

p

op
tc
ar
ro
t

po
stg

re
sq
l

po
stm

ar
k

re
dis

ro
ck
sd
b

tjb
en
ch tn

n
x2
64

xs
be
nc
h

zs
td
-co

m
pr
es
s

S
p
e
e
d
u
p

Figure 9: Phoronix test suite on x86 virtual machine.

program. Table 2 reports the loading time spent in the interval

from the exec system call to the program’s main function,

when loading a redis server. As discussed in §4, the cur-

rent iFed contains the glibc loader for compatibility, thus

the result differences indicate the overhead of iFed optimiza-

tion passes. Dynamic library concatenation overhead mainly

comes from memory movement. The cost of relocation branch

elimination depends on the number of relocation sites that

has to be rewritten, thus it may incur a larger overhead.

5.2 Application Benchmarks

We evaluate iFed with Phoronix test suite v10.4.0 [42], which

has a wide range of common applications and realistic work-

loads. We selected 23 applications from multiple domains

that stress different components in the system, such as mem-

ory (zstd-compress), processor (botan), disk (postmark)

and network (iperf). These tests also cover different run-

ning forms of multi-process, single- and multi-thread. We run

these tests in two environments, the ARM Kunpeng server

and a 60-core KVM-based virtual machine hosted in the In-

tel machine, because VMs are popularly deployed to hold

applications today. Hardware virtualization is enabled, and

the VM is configured with 128G memory. The guest OS is

also openEuler 20.03 based on Linux 4.19 kernel. We en-

able all optimization passes in iFed, and report the average

performance speedup compared to glibc in Figure 8 and

Figure 9. The data is gathered from the built-in performance

comparison tool in Phoronix. Since better hugepage usage

and eliminated .got/.plt indirection in iFed will improve

many tightly correlated micro architecture factors, we use

perf to measure some typical CPU events for each bench-

mark. Table 3 lists the percentage of TLB miss reduction,

branch miss reduction, and IPC improvement compared to

glibc on both ARM and Intel testbeds.

Whether an application can get benefits from iFed depends

on its bottleneck. For computing intensive applications who

do not suffer from TLB miss or branch mispredictions, iFed

keeps the same performance with glibc. For example, botan

is a C++ crypto library and the benchmark measures the

performance of many cryptographic algorithms. iFed has less

than 1.5% performance difference with glibc in all test cases.

As shown in Table 3, iFed has a negligible impact on IPC.

xsbench tests a key computational kernel of the Monte Carlo

neutronics application OpenMC. iFed does not reduce branch

misses on ARM, thus the performance difference between

iFed and glibc is less than 2%.

When the application is memory bound and its data com-

pete for the shared TLB and cache with the code, iFed is able

to mitigate the interference and improve the performance.

For instance, the zstd-compress benchmark compresses

and decompresses a 1 GB Linux kernel image. iFed reduces

the number of TLB misses by 16.56% and 19.4% on Intel and

ARM machine, respectively. Please note that our dynamic

library concatenation deals with both .code and .data sec-

tion, thus iFed does not only reduce iTLB misses. As a result,

iFed speedups the benchmark by 7.3% on Intel and 25.7% on

ARM.

For complicated applications that have complex function

call patterns across libraries or use many dynamic libraries,

iFed can boost their performance. For example, leveldb

from Google gets 1.1% and 21.2% better performance on

Intel and ARM platform, respectively. On ARM, glibc in-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    659



curs 109 instruction TLB misses, while iFed just incurs 105

iTLB misses! ncnn is a mobile neural network inference

framework developed by Tencent. Its IPC is improved by

3.04% and 6.36% on Intel and ARM platform respectively,

and correspondingly iFed gets 7.7% and 24% overall better

performance. iperf and nuttcp have a large performance

boost because both benchmark server and client are loaded

by iFed.

In some cases, iFed shows large relative improvements

on perf events while has little impacts on the benchmark

performance. That is because the event’s absolute numbers

are so small that slight variations of the event result in large

percentage difference. For example, on the Intel machine,

optcarrot shows 10.45% less TLB misses while its per-

formance is only 2.9% better. After examining the absolute

number of TLB misses, we found there are only 1.8 million

misses with glibc and iFed lowers it to 1.6 million. Those

numbers are several orders of magnitude smaller than those

in other memory intensive benchmarks. Another example

is branch miss reduction in botan benchmark on the ARM

platform. botan experiences around 323K and 311K branch

misses under glibc and iFed respectively. Despite 3.65%

reduction in branch misses, iFed does not have speedup over

glibc.

To further validate our results, we analyse the rocksdb

benchmark on the Intel VM in depth. The benchmark con-

tains 3857 .got entries and 8153 .plt entries, and 94327

relocation sites point to these entries. With glibc, 15.6% of

total cycles are spent on page table walk due to TLB misses,

while this ratio is reduced to 10% after iFed optimization.

Relocation branch elimination pass contributes 6% improve-

ment, and dynamic library concatenation pass continues to

improve 10%, leading to an overall improvement of 18%. We

also tested a statically linked version which performs 9% bet-

ter than the dynamic one with glibc. This improvement is

less than iFed with the hugepage optimization, but is better

than iFed with relocation elimination since static linking has

more chance to apply link-time optimization.

In general, we do not observe the loading time overhead

causing performance degradation even for the benchmarks

which need to frequently boot up and shut down the test

programs. On the Intel virtual machine, compared to glibc,

the average TLB miss is reduced by 8.58%, the average branch

miss is reduced by 3.28%, and the average IPC is improved

by 3.02%. iFed is 3.7% better than glibc on average and

achieves 18% maximum improvement. On the ARM physical

benchmark

name

x86 ARM

tlb miss branch miss instruction per cycle tlb miss branch miss instruction per cycle

apache 12.27% 8% 4.98% 5.44% 1.82% 0%

botan 8.01% 3.13% 0.09% 0.05% 3.65% 0%

couchdb 3.86% 0.79% 4.64% 4.94% 0% 0%

daphne 8.25% 5.56% 2.22% 2.15% 4.25% 4.47%

espeak 12.6% 1.33% 0.26% 32.04% 0.07% 0.37%

git 3.85% 6.71% 2.54% 1.36% 0.46% 3.09%

iperf 7.58% 5.03% 5.73% 27.95% 3.91% 19.44%

kripke 4.56% 10% 4.31% 17.79% 1.12% 5.41%

lame 7.4% 11.52% 1.17% 18.1% 0.7% 1.19%

leveldb 3.15% 1.37% 4% 34% 5.29% 32.43%

minion 13.66% 0.71% 1.63% 1.01% 0.37% 1.54%

ncnn 7.98% 5.03% 3.04% 37.05% 2.87% 6.36%

nuttcp 3.12% 3.03% 5.92% 34.55% 6.95% 56.52%

optcarrot 10.45% 1.39% 3.85% 0.24% 1.65% 1.49%

postgresql 5.93% 2.21% 1.56% 10.33% 2.4% 4.05%

postmark 3.3% 0.7% -0.47% 9.97% 0.63% 0.85%

redis 6.4% 1.01% 1.54% 12.78% 2.12% 2.23%

rocksdb 35.9% 4% 13% 13.52% 2.71% 8.16%

tjbench 14.82% -0.34% 3.59% 2.83% 0.1% 0.61%

tnn 1.4% 1.09% 0.57% 2.69% 1.11% 1.26%

x264 1.99% 0.64% 1.28% 1.88% 0.51% 0.62%

xsbench 4.21% 1.27% 1.78% 9.96% -0.58% 0%

zstd-compress 16.56% 1.32% 2.25% 19.4% 0.48% 18.52%

average 8.58% 3.28% 3.02% 13.04% 1.85% 7.33%

Table 3: Application benchmarks: percentage of TLB miss reduction, branch miss reduction, and IPC improvement..

660    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 10  30  50  70  90  110 130 150

Im
p
ro

v
e
m

e
n
t

Concurrent Users

(a) Normalized Throughput

iFed
glibc

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10  30  50  70  90  110 130 150

R
a
ti

o

Concurrent Users

(b) Normalized Average Response Time

glibc
iFed

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10  30  50  70  90  110 130 150

R
a
ti

o

Concurrent Users

(c) Normalized 99th Percentile Latency

glibc
iFed

Figure 10: Dynamic web serving performance. All data are normalized to the result of 10 concurrent users with glibc. (a) shows the

throughput across all operations, the higher the better; (b) shows the average response time of postwire operation (similar to posting a tweet),

the lower the better; (c) shows the 99th percentile latency of postwire operation, the lower the better.

 0.6

 0.8

 1

 1.2

 1.4

br
ow

se
log

in

po
stw

ire

se
nd
m
sg

ho
m
ep
ag
e

re
gis

te
r

log
ou
t

S
p
e
e
d
u
p

(a) Throughput

 0.6

 0.8

 1

 1.2

 1.4

br
ow

se
log

in

po
stw

ire

se
nd
m
sg

ho
m
ep
ag
e

re
gis

te
r

log
ou
t

S
p
e
e
d
u
p

(b) Average Response Time

 0.6

 0.8

 1

 1.2

 1.4

br
ow

se
log

in

po
stw

ire

se
nd
m
sg

ho
m
ep
ag
e

re
gis

te
r

log
ou
t

S
p
e
e
d
u
p

(c) 99th Percentile Latency

Figure 11: Performance of each operation with concurrent 110 users. All data are the speedup ratio normalized to the glibc, the higher the

better.

machine, iFed reduces 13.04% TLB miss, lowers the branch

miss by 1.85%, and improves the IPC by 7.33%, on average.

The average speedup is 7% and the largest improvement is

33%. In most cases, iFed achieves a larger improvement on

the physical machine than the virtual machine. This is because

VMs have an extra address translation layer. Thus if the host

OS allocates small pages to the guest OS, iFed will get less

benefit by enabling hugepage in the guest OS.

5.3 Web Serving

Finally, we evaluate iFed in a system-wide scenario with a

web serving benchmark from Clousuite [10]. This benchmark

is a dynamic website hosting a production-quality social net-

working engine. Since the current Clousuite is not supported

on ARM architecture, we port it to our ARM machine, and

upgrade its components to newer versions. Particularly, we

use nginx 1.16.1, mysql 8.0.17, PHP 7.2.10, and elgg 3.0.7.

We run the client and server on two ARM machines under the

same ToR switch. The client simulates multiple users who

browse the website and issue different operations, such as reg-

ister, login, and send messages to a friend. These operations

are mixed in a distribution that favors common operations

(e.g. send a message and post a tweet), while containing fewer

login/logout operations. Each test case runs 5 minutes, and

Clousuite collects the throughput and response time.

Figure 10 shows the normalized performance with various

simulated concurrent users. The efficiency is seen in the im-

proved throughput, reduced response time, and tail latency.

The performance keeps increasing with more users until the

system is saturated. For the peak performance, iFed has 13.3%

higher throughput, 14.7% smaller average response, time and

12.5% lower 99th percentile latency. Figure 11 shows the

detailed performance statistics of each operation with 110

concurrent users. iFed is better than glibc in most cases. For

the throughput of register operation, iFed is lower because

the client issues less register operation due to the proba-

bilistic workload distribution. This is also confirmed by the

reduced response time from Figure 11 (b) and (c). To summa-

rize, these results demonstrate that optimizations in iFed are

effective in the realistic multi-application environment.

6 Related Work

Loader modification and improvement. Many projects

have to modify the loader to achieve their specific goals,

even though the loader is not of their research contribu-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    661



tion. However, the current dynamic loading infrastructure

is neither flexible nor extensible to accommodate those mod-

ifications, causing their research to have limited applica-

tions in the industry. When utilizing MPK [14, 38, 50] or

SGX [7,13,32,37,40,44,60] for stronger isolation or security,

most works have to modify the loader to be aware of such iso-

lation facility. Besides hardware-assistant isolation, software

implementation also require to coordinate with loader, such

as sandbox [5,6,24,55] and CFI [22,25,47,58]. It is necessary

to change the loader to support program migration and exe-

cution on remote, heterogeneous, or smart devices [3, 8, 52].

Kard [2] leverages MPK for per-thread memory protection to

implement a dynamic data race detector, which uses a custom

loader to handle global variables. Shuffler [53] continuously

re-randomizes code locations in a separate thread, but requires

a small loader patch for bootstrap. With iFed, these modifica-

tions will be made easily and further reused across different

projects.

Agrawal et al. propose a speculative hardware mechanism

to avoid executing relocation trampolines [1], while we pro-

vide a pure software approach to eliminate relocation over-

head in iFed. Stephen Kell et al. describe the formal semantics

for static linking [19]. As iFed decouples a monolithic dy-

namic loader into smaller pieces, we expect a similar formal

method can be applied to dynamic linking as well.

Load time technologies. There is a large body of research

focusing on load time technology. Paschalis Mpeis et al. in-

troduce a capture and replay mechanism [28] that detect and

profile hot code regions, and optimize them offline. Instead of

the original code from binary, these captured and optimized

hot regions are fed into the loader to replay. Egalito [54] is

a binary transformation framework that supports dynamic

analyses or code-generation at load time. Load time binary

stirring [51] randomly reorders some code sections and re-

pairs code pointers accordingly. ASLR-Guard [26] contains

a dynamic loader, which decouples code sections from data

sections and encrypts some sensitive regions. Library debloat-

ing [33,35] is a type of load time optimization that loads only

the set of library functions that will be used at each library

call site within the application at runtime. iFed provides a plat-

form to explore and integrate broader load time technologies.

Wei Dong et al. propose a holistic dynamic linking and load-

ing mechanism in networked embedded systems to generate

minimal code size [9].

Loader on new system and architecture. Since dynamic

loader is a basic toolkit, it has to be rewritten whenever a

new system or hardware comes. For example, RedLeaf [29]

is a rust-base OS with a new abstraction, called Domains,

for lightweight isolation, and supports dynamically loaded

Domains. CARAT [41] allows programs to run efficiently

in a physical address space and needs a loader to collabo-

rate properly. Different loaders are also implemented within

different system architectures, such as microkernel [20, 49],

unikernel [43] or LibOS [4, 34, 45, 59]. Similarly, the loader

is always needed to be updated to explore new hardware fea-

tures for isolation [39], security [31], communication [48],

container [57], and embedded device [21]. With the help of

iFed’s modular design, we are able to extract the system ag-

nostic or architecture independent parts and reduce the porting

effort.

7 Conclusions

We introduce iFed, an infrastructure for dynamic library trans-

formation. While iFed is compatible with the current dynamic

loader, its function goes beyond the traditional dynamic link-

ing and loading. By a pass-based architecture and RiMF, iFed

can provide much richer functionalities over isolation, secu-

rity, and optimizations in a flexible, extensible, and modular

way. We demonstrate the extensibility of iFed by implement-

ing two optimization passes. One pass reduces TLB miss and

improves IPC because of the effective usage of hugepages.

The other pass rewrites the call sites to eliminate function

relocation overhead. Modularity and extensibility are crucial

to reducing the development, deployment, and maintenance

costs of today’s complicated system software. We believe it is

an open research area to investigate modular design in many

other monolithic system software, not just in the loader.

Our evaluation shows optimizations in iFed improve per-

formance and predictability for a wide range of applications

on multiple architectures and platforms. On an ARM physical

machine, iFed achieves up to 33% speedup, and on an Intel

virtual machine, iFed gets a maximum improvement of 18%.

In a complex dynamic website that requires collaboration

among multiple applications, iFed improves the throughput

by 13.3% and achieves a 12.5% reduction of end-to-end 99th

percentile latency. More importantly, iFed boosts the perfor-

mance transparently with no application changes. Building

on both customers’ demands from industry and load time

technology advances from academia, the dynamic library ma-

nipulation infrastructure is a promising area of research. We

believe that iFed paves the first example of a new generation

of dynamic loaders for integrating research advancement of

load-time transformations and technologies.

Acknowledgments

We sincerely thank our shepherd Andreas Haeberlen for his

insightful feedback. We are grateful to the OSDI anonymous

reviewers for their valuable comments and suggestions. We

thank the EulerOS team at Huawei for their contributions to

this work, including but not limited to, Zixian Liu, Bin Wang,

Sirui Liu, Pan Zhang, Lin Fu, Xiangyang Yu, Yanchao Yang,

Chao Liu, Danni Xia, Jiaqi Yang, Yining Shen, Tianxiong Lu,

Haomin Cai, Wei Du, and Guiping Zhang.

662    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Varun Agrawal, Abhiroop Dabral, Tapti Palit, Yongming

Shen, and Michael Ferdman. Architectural support for

dynamic linking. In Proceedings of the 20th Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS’15),

2015.

[2] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungy-

oung Lee. Kard: Lightweight data race detection with

per-thread memory protection. In Proceedings of the

26th ACM International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS’21), 2021.

[3] Antonio Barbalace, Robert Lyerly, Christopher Jelesni-

anski, Anthony Carno, Ho-Ren Chuang, Vincent Legout,

and Binoy Ravindran. Breaking the boundaries in

heterogeneous-isa datacenters. In Proceedings of the

Twenty-Second International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems (ASPLOS’17), 2017.

[4] Andrew Baumann, Dongyoon Lee, Pedro Fonseca, Lisa

Glendenning, Jacob R. Lorch, Barry Bond, Reuben Olin-

sky, and Galen C. Hunt. Composing os extensions safely

and efficiently with bascule. In Proceedings of the 8th

ACM European Conference on Computer Systems (Eu-

roSys’13), 2013.

[5] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David

Terei, David Mazières, and Christos Kozyrakis. Dune:

Safe user-level access to privileged CPU features. In

10th USENIX Symposium on Operating Systems Design

and Implementatio (OSDI’12), 2012.

[6] Mihai Bucicoiu, Lucas Davi, Razvan Deaconescu, and

Ahmad-Reza Sadeghi. Xios: Extended application sand-

boxing on ios. In Proceedings of the 10th ACM Sympo-

sium on Information, Computer and Communications

Security (Asia CCS’15), 2015.

[7] Chia che Tsai, Donald E. Porter, and Mona Vij.

Graphene-sgx: A practical library OS for unmodified ap-

plications on SGX. In 2017 USENIX Annual Technical

Conference (ATC’17), 2017.

[8] Shenghsun Cho, Han Chen, Sergey Madaminov,

Michael Ferdman, and Peter Milder. Flick: Fast and

lightweight isa-crossing call for heterogeneous-isa en-

vironments. In ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA’20), 2020.

[9] Wei Dong, Chun Chen, Xue Liu, Jiajun Bu, and Yun-

hao Liu. Dynamic linking and loading in networked

embedded systems. In 2009 IEEE 6th International

Conference on Mobile Adhoc and Sensor Systems, pages

554–562, 2009.

[10] Michael Ferdman, Almutaz Adileh, Onur Kocberber,

Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,

Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-

maki, and Babak Falsafi. Clearing the clouds: A study

of emerging scale-out workloads on modern hardware.

In Proceedings of the Seventeenth International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS’12), 2012.

[11] Michael Franz. Dynamic linking of software compo-

nents. Computer, 30(3):74–81, March 1997.

[12] Free Software Foundation (FSF). Gnu lesser general

public license, https://www.gnu.org/licenses/

lgpl-3.0.html.

[13] Lukas Giner, Andreas Kogler, Claudio Canella, Michael

Schwarz, and Daniel Gruss. Repurposing segmentation

as a practical lvi-null mitigation in sgx. In 31st USENIX

Security Symposium (USENIX Security’22)), 2022.

[14] Mohammad Hedayati, Spyridoula Gravani, Ethan John-

son, John Criswell, Michael L. Scott, Kai Shen, and

Mike Marty. Hodor: Intra-process isolation for high-

throughput data plane libraries. In 2019 USENIX Annual

Technical Conference (ATC’19), 2019.

[15] W. Wilson Ho and Ronald A. Olsson. An approach to

genuine dynamic linking. Software-Pratice and Experi-

ence, 21(4):375–390, April 1991.

[16] Intel. Intel(R) Software Guard Extensions,

https://www.intel.com/content/www/

us/en/architecture-and-technology/

software-guard-extensions.html.

[17] Intel. Intel R© 64 and IA-32 Architectures Software De-

veloper’s Manual.

[18] Seunghoon Jeong, Jaejoon Hwang, Hyukjin Kwon, and

Dongkyoo Shin. A cfi countermeasure against got over-

write attacks. IEEE Access, 8:36267–36280, 2020.

[19] Stephen Kell, Dominic P. Mulligan, and Peter Sewell.

The missing link: Explaining elf static linking, semanti-

cally. In Proceedings of the 2016 ACM SIGPLAN Inter-

national Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’16),

2016.

[20] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June

Andronick, David Cock, Philip Derrin, Dhammika Elka-

duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,

Thomas Sewell, Harvey Tuch, and Simon Winwood.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    663



Sel4: Formal verification of an os kernel. In Proceed-

ings of the ACM SIGOPS 22nd Symposium on Operating

Systems Principles (SOSP’09), 2009.

[21] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi,

and Vijay Varadharajan. Trustlite: A security archi-

tecture for tiny embedded devices. In Proceedings of

the Ninth European Conference on Computer Systems

(EuroSys’14), 2014.

[22] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,

George Candea, R. Sekar, and Dawn Song. Code-pointer

integrity. In Proceedings of the 11th USENIX Confer-

ence on Operating Systems Design and Implementation

(OSDI’14), 2014.

[23] John R. Levine. Linkers and Loaders. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1st edi-

tion, 1999.

[24] Yanlin Li, Jonathan McCune, James Newsome, Adrian

Perrig, Brandon Baker, and Will Drewry. Minibox: A

two-way sandbox for x86 native code. In 2014 USENIX

Annual Technical Conference (ATC’14), 2014.

[25] Yan Lin, Xiaoyang Cheng, and Debin Gao. Control-

flow carrying code. In Proceedings of the 2019 ACM

Asia Conference on Computer and Communications

(AsiaCCS’19,), 2019.

[26] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P.

Chung, Taesoo Kim, and Wenke Lee. Aslr-guard: Stop-

ping address space leakage for code reuse attacks. In

Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security (CCS’15),

2015.

[27] LWN.net. Transparent huge pages for filesystems,

https://lwn.net/Articles/789159/.

[28] Paschalis Mpeis, Pavlos Petoumenos, Kim Hazelwood,

and Hugh Leather. Developer and user-transparent com-

piler optimization for interactive applications. In Pro-

ceedings of the 42nd ACM SIGPLAN International Con-

ference on Programming Language Design and Imple-

mentation (PLDI’21), 2021.

[29] Vikram Narayanan, Tianjiao Huang, David Detweiler,

Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton

Burtsev. Redleaf: Isolation and communication in a safe

operating system. In 14th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI’20),

2020.

[30] openEuler. https://openeuler.org.

[31] Meni Orenbach, Andrew Baumann, and Mark Silber-

stein. Autarky: Closing controlled channels with self-

paging enclaves. In Proceedings of the Fifteenth Euro-

pean Conference on Computer Systems (EuroSys’20),

2020.

[32] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and

Sylvia Ratnasamy. Safebricks: Shielding network func-

tions in the cloud. In 15th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI’18),

2018.

[33] Chris Porter, Girish Mururu, Prithayan Barua, and San-

tosh Pande. Blankit library debloating: Getting what you

want instead of cutting what you don’t. In Proceedings

of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’20), 2020.

[34] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell,

Reuben Olinsky, and Galen C. Hunt. Rethinking the

library os from the top down. In Proceedings of the Six-

teenth International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems (ASPLOS’11), 2011.

[35] Anh Quach, Aravind Prakash, and Lok Yan. Debloating

software through piece-wise compilation and loading.

In 27th USENIX Security Symposium (USENIX Secu-

rity’18)), 2018.

[36] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley

Kennedy, Gabriel Parmer, Timothy Wood, and Alain

Tchana. Fine-grained isolation for scalable, dynamic,

multi-tenant edge clouds. In 2020 USENIX Annual

Technical Conference (ATC’20), 2020.

[37] Vasily A. Sartakov, Daniel O’Keeffe, David Eyers, Lluís

Vilanova, and Peter Pietzuch. Spons & shields: Practical

isolation for trusted execution. In Proceedings of the

17th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments (VEE‘21), 2021.

[38] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch.

Cubicleos: A library os with software componentisa-

tion for practical isolation. In Proceedings of the 26th

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS’21), 2021.

[39] David Schrammel, Samuel Weiser, Stefan Steinegger,

Martin Schwarzl, Michael Schwarz, Stefan Mangard,

and Daniel Gruss. Donky: Domain keys – efficient in-

process isolation for risc-v and x86. In 29th USENIX

Security Symposium (USENIX Security’20), 2020.

[40] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,

Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Oc-

clum: Secure and efficient multitasking inside a single

664    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



enclave of intel sgx. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS’20), 2020.

[41] Brian Suchy, Simone Campanoni, Nikos Hardavellas,

and Peter Dinda. Carat: A case for virtual memory

through compiler- and runtime-based address translation.

In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation

(PLDI’20), page 329–345, 2020.

[42] Phoronix Test Suite. https://www.

phoronix-test-suite.com/.

[43] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Bi-

noy Ravindran. Intra-unikernel isolation with intel mem-

ory protection keys. In Proceedings of the 16th ACM

SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments (VEE’20), 2020.

[44] Jörg Thalheim, Harshavardhan Unnibhavi, Christian

Priebe, Pramod Bhatotia, and Peter R. Pietzuch. rkt-io: a

direct I/O stack for shielded execution. In Sixteenth Eu-

ropean Conference on Computer Systems (EuroSys’21),

2021.

[45] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi,

Bhushan Jain, William Jannen, Jitin John, Harry A.

Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Don-

ald E. Porter. Cooperation and security isolation of

library oses for multi-process applications. In Proceed-

ings of the Ninth European Conference on Computer

Systems (EuroSys’14), 2014.

[46] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul,

and Donald E. Porter. A study of modern linux api

usage and compatibility: What to support when you’re

supporting. In Proceedings of the Eleventh European

Conference on Computer Systems (EuroSys’16), 2016.

[47] Victor van der Veen, Dennis Andriesse, Enes Göktaş,

Ben Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos,

and Cristiano Giuffrida. Practical context-sensitive cfi.

In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security (CCS’15),

2015.

[48] Lluís Vilanova, Marc Jordà, Nacho Navarro, Yoav Et-

sion, and Mateo Valero. Direct inter-process communi-

cation (dipc): Repurposing the codoms architecture to

accelerate ipc. In Proceedings of the Twelfth European

Conference on Computer Systems (EuroSys’17), 2017.

[49] Qi Wang, Yuxin Ren, Matt Scaperoth, and Gabriel

Parmer. SPeCK: a kernel for scalable predictability.

In 21st IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS’15), 2015.

[50] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and

Binoy Ravindran. Secure and efficient in-process moni-

tor (and library) protection with intel mpk. In Proceed-

ings of the 13th European Workshop on Systems Security

(EuroSec’20), 2020.

[51] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen,

and Zhiqiang Lin. Binary stirring: Self-randomizing

instruction addresses of legacy x86 binary code. In

Proceedings of the 2012 ACM Conference on Computer

and Communications Security (CCS’12), 2012.

[52] Yaron Weinsberg, Danny Dolev, Tal Anker, Muli Ben-

Yehuda, and Pete Wyckoff. Tapping into the fountain

of cpus: on operating system support for programmable

devices. In Proceedings of the 13th International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS’08, 2008.

[53] David Williams-King, Graham Gobieski, Kent Williams-

King, James P. Blake, Xinhao Yuan, Patrick Colp,

Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang,

and William Aiello. Shuffler: Fast and deployable con-

tinuous code re-randomization. In 12th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI’16), 2016.

[54] David Williams-King, Hidenori Kobayashi, Kent

Williams-King, Graham Patterson, Frank Spano,

Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis.

Egalito: Layout-agnostic binary recompilation. In Pro-

ceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages

and Operating Systems (ASPLOS’20), 2020.

[55] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley

Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,

Neha Narula, and Nicholas Fullagar. Native client: A

sandbox for portable, untrusted x86 native code. In 30th

IEEE Symposium on Security and Privacy (S&P’09),

2009.

[56] Hansen Zhang, Soumyadeep Ghosh, Jordan Fix, Sotiris

Apostolakis, Stephen R. Beard, Nayana P. Nagendra,

Taewook Oh, and David I. August. Architectural sup-

port for containment-based security. In Proceedings

of the Twenty-Fourth International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems (ASPLOS’19), 2019.

[57] Hansen Zhang, Soumyadeep Ghosh, Jordan Fix, Sotiris

Apostolakis, Stephen R. Beard, Nayana P. Nagendra,

Taewook Oh, and David I. August. Architectural sup-

port for containment-based security. In Proceedings

of the Twenty-Fourth International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems (ASPLOS’19), 2019.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    665



[58] Mingwei Zhang and R. Sekar. Control flow integrity for

COTS binaries. In 22nd USENIX Security Symposium

(USENIX Security’13), 2013.

[59] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen

Zhang, Huiba Li, Yaozheng Wang, Kai Yu, Yongqiang

Xiong, and Guihai Chen. Kylinx: A dynamic library

operating system for simplified and efficient cloud vir-

tualization. In USENIX Annual Technical Conference

(ATC’18), 2018.

[60] Wenjia Zhao, Kangjie Lu, Yong Qi, and Saiyu Qi. Mptee:

Bringing flexible and efficient memory protection to

intel sgx. In Proceedings of the Fifteenth European

Conference on Computer Systems (EuroSys’20), 2020.

666    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Application-Informed Kernel Synchronization Primitives

Sujin Park† Diyu Zhou Yuchen Qian Irina Calciu∗ Taesoo Kim† Sanidhya Kashyap

EPFL †Georgia Tech ∗Graft

Abstract

Kernel synchronization primitives are the backbone of
any OS design. Kernel locks, for instance, are crucial for
both application performance and correctness. However, un-
like application locks, kernel locks are far from the reach
of application developers, who have minimal interpolation
of the kernel’s behavior and cannot control or influence the
policies that govern kernel synchronization behavior. This
disconnect between the kernel and applications can lead to
pathological scenarios in which optimizing the kernel syn-
chronization primitives under one context, such as high con-
tention, leads to adversarial effects under a context with no
lock contention. In addition, rapid-evolving heterogeneous
hardware makes kernel lock development too slow for mod-
ern applications with stringent performance requirements
and frequent deployment timelines.
This paper addresses the above issues with application-

informed kernel synchronization primitives. We allow appli-
cation developers to deploy workload-specific and hardware-
aware kernel lock policies to boost application performance,
resolve pathological usage of kernel locks, and even enable
dynamic profiling of locks of interest. To showcase this idea,
we design SynCord, a framework to modify kernel locks
without recompiling or rebooting the kernel. SynCord ab-
stracts key behaviors of kernel locks and exposes them as
APIs for designing user-defined kernel locks. SynCord pro-
vides the mechanisms to customize kernel locks safely and
correctly from the user space. We design five lock policies
specialized for new heterogeneous hardware and specific
software requirements. Our evaluation shows that SynCord
incurs minimal runtime overhead and generates kernel locks
with performance comparable to that of the state-of-the-art
locks.

1 Introduction

With the ending of Moore’s Law and Dennard scaling, the ex-
ponential growth of single-processor performance has come
to a standstill. Hence, application developers now resort to
customization, rather than generalization, to further squeeze

out the performance from the hardware. For instance, differ-
ent applications work best with changing underlying system
mechanisms. Although a generic mechanism often provides
acceptable performance, it rarely matches the performance
of a specialized mechanism, whose performance difference
often is an order of magnitude or more [10, 34, 59, 70].
Such a major improvement stems from the fact that spe-

cialization bridges the semantic gap between applications
and the underlying system [23, 63]: It establishes the con-
text under which an application requests functionality from
the system. Thus, the underlying system can provide the
most suitable implementation or even allow applications to
provide their own implementation. The method of special-
ization is not new. For instance, prior works have targeted
the widely used Linux OS that has become a major perfor-
mance bottleneck for applications [29, 33, 47, 53, 61]. As a
result, kernel customization has been extensively studied in
the context of scheduling [34], networking [49], storage [70],
and accelerators [10]. Although such works mostly focus on
the scheduling aspect of the IO, they do not expose one of
the basic building blocks of today’s software design: concur-
rency control. Hence, this work takes a step in that direction
by enabling the customization of the kernel synchronization
primitives that have never been exposed to applications.

Kernel synchronization primitives, especially locks, are of
paramount importance to ensuring correctness, achieving
good performance, and scalability for applications [8, 9, 35, 37,
52]. Traditionally, kernel developers bake these primitives as
a part of the OS implementation. Since it is difficult to change
these primitives dynamically, the kernel developers favor
supporting common scenarios and make all the decisions
regarding their design and implementation. Thus, all these
primitives are invisible and are out of reach of applications.

Given evolving hardware and changing software require-
ments, this static approach of lock design raises two issues:
missing hardware and software contexts. From the hardware
perspective, applications using kernel components, which
rely on such generic primitives, suffer from regression issues
in pathological cases [8, 37, 52]. In particular, these primitives

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    667



suffer from a high level of contention with increasing core
count [8], which requires further optimization for the under-
lying hardware [11, 21, 51]. In addition, increasing hardware
heterogeneity in modern systems further exacerbates this
issue [4, 5, 16, 41]. Second, from the software perspective,
these baked generic primitives lack application context. As
a result, it can lead to pathological cases, such as missing
readers-writer context [11], priority inversion [35, 38, 52],
scheduler subversion [58], and lock-holder preemption [36].
The current practice of addressing these issues involves

developing synchronization primitives for specific scenar-
ios [12, 21, 26, 39, 42, 45, 46, 51]. However, designing, im-
plementing, and verifying new synchronization primitives
is challenging. In addition, developers need a huge amount
of effort to upstream and maintain them. To satisfy fast-
evolving scenarios and requirements, synchronization primi-
tives should be easily changeable and even on the fly instead
of providing point-solutions as in previous works.

This paper proposes the idea of application-informed ker-
nel synchronization primitives that enables users to develop
custom lock policies to maximize performance or resolve
pathological cases. For example, with an asymmetric mul-
ticore processor machine, in which processors operate at a
different speed [4, 5, 16], application developers may want
to prioritize lock waiters on fast cores to maximize perfor-
mance. To demonstrate this idea, we design and implement
SynCord, a framework built to safely modify kernel locks on
the fly without recompiling or rebooting the kernel. We ab-
stract and modularize the semantics of the locking primitives
and expose them in the form of APIs. A developer uses these
APIs for implementing policies, such as NUMA-awareness,
priority boosting, readers-writer preference [11, 21, 37] etc.
SynCord then verifies these policies and safely patches the
running kernel in the end. It provides the capability to de-
ploy custom code for a wide range of lock instances: from
a single lock instance to a set of locks, or every lock in the
kernel. Besides deploying lock policies, SynCord further al-
lows users to profile locks at fine granularity. Our approach
departs from the conventional tools profiling a fixed set of
statistics for all kernel locks [73]. Instead, a user can now
collect any lock statistic on arbitrary locks.

The ultimate goal of SynCord is to completely realize the
idea of contextual concurrency control [57], which enables
users to modify any synchronization primitives from the
user space in a safe manner. As a first step in kernel lock
customization, our SynCord prototype currently supports
non-blocking locks. In particular, SynCord allows users to
write their own logic for reordering lock waiters, setting pri-
orities between competing threads to acquire a lock. We sup-
port three existing non-blocking primitives: ShflLock [37],
CNA [19], and the stock readers-writer lock in Linux. We
further demonstrate the generality of SynCord by adapting
four different locking algorithms to the kernel and optimiz-
ing them based on our evaluation platform. In addition, we

provide a case study of lock profiling using SynCord and
show how it simplifies the performance analysis of a lock
algorithm. Our evaluation shows that the custom algorithms
developed with SynCord increase the application perfor-
mance by up to three orders of magnitude compared to the
generic locks.

This paper makes the following contributions:
• Application-defined concurrency.We propose the
idea of on-the-fly modification of lock design. To realize
that, we design and implement the SynCord frame-
work.

• APIs for non-blocking locks. We provide a set of
APIs that exposes the key decisions of non-blocking
locks to implement various lock algorithms.

• Lock algorithms. We implement four lock algorithms
and optimize them based on the platform. The optimized
versions outperform generic locks up to three orders of
magnitude.

• Custom fine-granularity profiling. SynCord pro-
vides custom, fine-granularity lock profiling that simpli-
fies locks’ performance analysis with smaller overhead.

2 Background And Motivation

Modifying kernel locking primitives without recompiling
and rebooting the OS spans various domains of concurrent
OS design. We first discuss the evolution of locks, followed
by various mechanisms for kernel customization and the
specific need for dynamic patching for kernel locks.
2.1 Lock evolution

Locks are widely used and heavily influenced by hardware.
For example, queue-based locks minimize cache-line con-
tention [51] among CPUs by forming a queue of waiters who
spin on private cache lines. Hierarchical locks [11, 17, 21]
improve application throughput for non-uniform memory
access (NUMA) architecture, in which local memory is faster
than remote NUMA memory. Such locks exploit the NUMA
characteristic by batching requests from the same NUMA
node at the cost of higher memory use and lower throughput
in non-contended scenarios. CNA [19] and ShflLock [37] ad-
dress these limitations by dynamically reordering the queue.
ShflLock enforces policies given by hardware characteris-
tics and software behaviors through shuffling. Although both
locks allow designing new lock algorithms by abstracting
both hardware and software requirements in the form of pol-
icy, their approach is insufficient for changing kernel locks
on the fly. A developer still needs to recompile and reboot the
kernel to test a new policy. SynCord allows users to develop
custom policies and safely deploy them to a live kernel.
2.2 Kernel customization

With the introduction of fast IO devices, hardware accel-
erators and hundreds of cores, customizing the kernel on
the fly is the new norm for improving application perfor-
mance. However, this idea is not new, as Exokernel [22] is

668    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0

15

30

45

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

1

2

3

4

5

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

O
ps
/µ
se
c

# of threads

(a) 0.1% write

# of threads

spinlock
NUMA-spin

rwlock
per-cpu-rw

(b) 90% write

Figure 1: Impact of locks on throughput with different write
ratios. The workload is a hashtable benchmark in the ker-
nel [69] where a global lock guards the hashtable.

the first kernel design that enables customization by safely
exporting hardware resources to untrusted library OSes and
downloading application code to the kernel. Another promi-
nent one that enables customization is the split-level I/O
scheduling [70], which enables users to deploy custom I/O
scheduling mechanisms across various layers of the storage
stack.

Recently, Linux has been allowing user-level applications
to customize the kernel by handling page faults in user
space [14] or using the eBPF framework [23]. eBPF has seen
wide deployment at various places in the kernel. For example,
EXTFUSE speeds up user-level file systems with eBPF [6].
eXpress Data Path (XDP) [63] introduces a programmable
network data path that allows a user-supplied eBPF pro-
gram to control network packets. Moreover, recent work
proposed delegating kernel operations to user space. For ex-
ample, Syrup [34], ghOSt [28] and Scheduler BPF [15] allow
users to specify scheduling policy and deploy it in the kernel
networking stack and thread schedulers. Snap [49] enables
the development of networking features in user space, while
DPDK [61] and SPDK [29] provide libraries to accelerate
packet processing and develop storage features. Compared
to these works, SynCord takes a step further in customiz-
ing the kernel: it allows users to control the concurrency
mechanisms in the underlying kernel.
2.3 Application-defined locking matters

Figure 1 illustrates the fact that one lock design cannot per-
form the best in all scenarios. For example, when the work-
load is read-dominant, rwlock outperforms spinlock because
spinlock requires mutual exclusion even between read op-
erations. In particular, per-CPU rwlock works better than a
centralized one by avoiding cache traffic caused by a reader
indicator across cores. However,with awrite-dominantwork-
load, the per-CPU rwlock performs the worst. In addition to
the application semantics, underlying hardware also requires
a different lock [17]. The NUMA-aware spinlock performs
better than the MCS spinlock when threads execute across
multiple sockets, but MCS can be a better choice on a single
socket machine for the first few threads.

Onemight solve this problem by designing and implement-
ing a special kernel lock. However, developing and maintain-
ing kernel locks customized for each application and hard-
ware is difficult, time-consuming, and costly. Meanwhile,
SynCord eases the development of new lock algorithms.
First, unlike other subsystems, synchronization primitives
are not well isolated in the kernel. Hence, changes to syn-
chronization primitives require understanding the surround-
ing details that impact a lot of other kernel codes. SynCord
provides modularity for synchronization primitives. Second,
SynCordAPIs serve as an abstraction layer. These APIs hide
the underlying tricky implementation details of lock, such
as concurrency, memory model, and atomic instructions use.
Instead, developers implement policies for scheduling wait-
ers, such as what to do before and after acquiring a lock, and
which type of waiters should be prioritized (§5). Moreover,
locks designed with SynCord require no changes to the ker-
nel’s components and achieve similar speed up with only a
few lines of code (Table 5).
2.4 The need for dynamic lock patching

Apart from the difficulty of designing and implementing new
lock algorithms in the kernel, installing a modified kernel
requires a system reboot. However, there are common sce-
narios where applications or underlying hardware change
during execution, requiring live kernel lock changes. In terms
of application changes, applications whose performance mat-
ters might change over runtime. This case is possible in a
cloud environment, as multiple applications execute in a par-
ticular order. In addition to performance, applications try to
maintain some form of service level agreements in the form
of latency or fairness. Besides this, a scenario of runtime
hardware modification is virtual machine (VM) live migra-
tion [2]. For example, if a cloud provider migrates a VM from
a single socket machine to a multi-socket NUMA machine,
users should modify their kernel locks’ policies to handle the
NUMA behavior. Moreover, with increasing hardware het-
erogeneity, applications require policies incorporating both
hardware and software policies for better performance. One
might argue that the traditional approach of kernel patching
is sufficient. In this case, the conventional static kernel patch-
ing approach cannot efficiently handle such scenarios, moti-
vating the need for the SynCord dynamic approach, which
allows developers to implement specific APIs and patch a
set of locks, while generally ensuring safety properties.

3 The SynCord Framework

SynCord is a framework for customizing kernel locks on
the fly without recompiling or rebooting the kernel. To mod-
ify kernel locks, a user writes custom lock algorithms in
user space, and SynCord safely deploys them in the kernel.
SynCord can patch individual lock instances or every lock
in the kernel. In addition, SynCord enables fine-grained
profiling of kernel locks, helping users better understand
the impact the kernel has on their application. We design

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    669



Type Group API Description

Safe

General

1 void lock_to_acquire(lock) Invoked before acquiring the lock.
2 void lock_acquired(lock) Invoked after acquiring the lock.
3 void lock_to_release(lock) Invoked before releasing the lock.
4 void lock_released(lock) Invoked after releasing the lock.

Fast path 5 void lock_to_enter_slowpath(lock, node) Invoked before entering the slow path.
6 bool lock_enable_fastpath(lock) If true, allow acquiring the lock by the fast path.

Waiter
reordering

7 bool should_reorder(lock, anchor, curr) If true, move thread curr forward in the queue.
8 bool skip_reorder(lock, anchor) If true, skip the current reordering operation.

Unsafe Lock bypass 9 bool lock_bypass_acquire(lock) If true, bypass lock aquisition.
10 bool lock_bypass_release(lock) If true, bypass lock release.

Table 1: A summary of SynCord APIs. General APIs intercept the entry and exit points of the lock acquire and release phase.
Today most of the lock algorithms have at least two paths to enter the critical section: fast path and slow path. Here, the fast
path APIs intercept the fast path access to acquire the lock. Meanwhile, the slow path provides waiter reordering APIs that
control the reordering of waiters for lock acquisition. Lock bypass APIs allow threads to bypass locks. The lock bypass APIs
allow expert developers to design their algorithm, which comes at their own risk.

SynCord to modify kernel locks as a sandbox that adds new
policies on top of existing locks.
Design goals. SynCord has three main design goals:

• Correct lock patching. SynCord must maintain the mu-
tual exclusion of the lock instances being patched and
should not introduce any correctness bugs through the
process of patching.

• Sandboxed user’s code. Users may provide unsafe code
that leads to mutual exclusion violation. SynCord aims
to prevent such code from corrupting the kernel as long
as they use SynCord safe APIs, so that relieves users’
concerns about the correctness of their lock design.

• Usability and expressiveness. SynCord aims to provide
APIs expressive enough to tune kernel locks for various
platforms or requirements.

To strike a balance between expressiveness and sandboxed
impact, we design two sets of APIs. A set of safe APIs ( 1 –
8 in Table 1) guarantees mutual exclusion for general use,
and the other set of unsafe APIs ( 9 , 10 ) grant expert kernel
developers full control of locks at their own risk.
Moreover, we envision that a single organization uses

SynCord to modify kernel locking primitives. In particu-
lar, the sysadmins of that organization, with root privileges,
handle the conflicting policies for various applications con-
tending on the same lock or a set of locking instances. We
follow this model because unlike other subsystems, locking
primitives guard shared resources, which an unprivileged
user should not change. In addition, we assume that such
kernel changes do not occur frequently. Thus, a single policy
optimized for underlying hardware or applications’ usage
patterns may last several minutes.
3.1 SynCord overview

Figure 2 illustrates SynCord’s key components and work-
flow. SynCord exposes a set of APIs (Table 1) to abstract
underlying lock implementation and allows users to write

A user creates custom code with the target point

SynCord

Compile   
user's code

Verify Lock
Patcher

- spin_lock (&inode->i_lock)

+ custom_spin_lock (&inode->i_lock)

...

bool lock_enable_fastpath (qspinlock *lock) {

    - return default_func (lock);

    + return custom_func (lock);

}

Notify the user
on failure

Succeed

Patch 

1

2

3

7

4

5

Notify the user
on patch complete

bool lock_enable_fastpath (qspinlock *lock) {

  return true;

}

&inode->i_lock

Bytecode Verifier

6

Figure 2: Overview of SynCord’s key components and
workflow. (1) A user writes custom lock code and specifies
lock instances to patch; (2) SynCord compiles the user’s
lock code (e.g., eBPF) and (3) verifies basic properties of the
compiled bytecode. (4) SynCord notifies the user if the veri-
fication fails, (5) otherwise loads the program into the kernel
and generates a patch. (6) The lock patching module patches
the kernel to call compiled bytecode on predefined hook
points.

custom kernel locks in the abstracted layer. These APIs are
the pre-defined hooking points that developers use for in-
serting their custom code to control the logic of underlying
locks. To use SynCord, a privileged user first specifies the
lock instance they want to patch and writes the custom lock-
ing code in C with SynCord APIs in a separate file ( 1 ).
SynCord processes this file in a semi-interactive fashion. It
first reads the file and compiles the custom code ( 2 ). It then
passes the compiled program to the verifier that performs
static analysis to validate the safety requirements ( 3 ). The
verification process usually takes a few milliseconds. If the
verification fails, SynCord notifies the user ( 4 ). Otherwise,
it loads the policy into the kernel and gets a unique ID of the
policy ( 5 ). With the ID, SynCord patches the locking func-

670    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 def spin_lock(lock):
2 lock_to_acquire(lock) # 1 Hook the start of lock acquire
3
4 if lock_bypass_acquire(lock): # 9 bypass lock acquire
5 # lock acquisition is bypassed: used by lock experts
6 return
7
8 # If fastpath is enabled, first try to acquire the lock
9 # instead of going into the wait queue
10 if lock_enable_fastpath(lock) and # 6 can steal lock?
11 CAS(&lock.state, UNLOCK, LOCKED):
12 lock_acquired(lock) # 2 lock is acquired
13 return
14
15 node = Node() # A node to join the queue
16 lock_to_enter_slowpath(lock, node) # 5 Hook before enqueuing
17 queued_spin_lock_slowpath(lock, node) # Time to join the queue
18 lock_acquired(lock) # 2 Hook the start of critical section
19
20 def spin_unlock(lock):
21 lock_to_release(lock) # 3 Hook the end of critical section
22
23 if lock_bypass_release(lock): # 10 bypass lock release
24 # lock release is bypassed; used along with 9
25 return
26
27 lock.state = UNLOCK # Lock released; critical section ends
28 lock_released(lock) # 4 Hook right after critical section

Figure 3: Pseudocode of spin_lock and spin_unlock
with SynCord APIs. We place the waiter reorder-
ing APIs in the slow path of the existing qspinlock
(queued_spin_lock_slowpath) function [13].

tions to execute the policy at pre-defined hooking points ( 6 ).
The patching process is time-consuming, as the patching
module (Livepatch) has to find a quiescence period, i.e., no
task is executing the locking functions to patch. This period
can last a few seconds. Finally, SynCord notifies the user
after the patch completes ( 7 ).
3.2 Programming with SynCord

To design a custom kernel lock with SynCord, a developer
first specifies a set of lock instances to patch and implements
a new policy by writing code blocks for each API. At a high
level, there are two main purposes for developers to write
code in the APIs: to enforce user-defined policies on schedul-
ing waiters, and fine-grained profiling. From the scheduling
perspective, a lock algorithm ensures the mutual exclusion
property while scheduling a set of waiters based on user re-
quirements e.g., FIFO. Thus, SynCord exposes various means
to schedule lock waiters, such as queue ordering and backoff
schemes. In addition, both custom lock design and profiling
often record extra information. Thus, we also provide auxil-
iary data structures (refer to §3.2.2) that serve as the extra
storage space for the custom code.

3.2.1 SynCord APIs

Table 1 summarizes the APIs in the current SynCord pro-
totype. The APIs expose several key behaviors of queue-
based non-blocking locks, especially the ordering between
lock waiters. We design SynCord APIs to be general across
many existing lock designs and safe enough to use in user

space. Most locks have well-known interfaces: acquire()
and release(). Hence, the first category of our APIs ( 1 – 4 )
hooks these interfaces. Figure 3 shows the pseudo-code of
spin_lock and spin_unlock with the hooking points for
SynCord APIs. The General APIs allow users to intercept
the entry and exit points of the acquire and release phase.
These APIs are particularly useful for lock profiling as their
hooking points are inspired by Linux’s lockstat to profile
every kernel lock. For example, users can use these APIs to
record the time spent in acquiring the lock or the time spent
in the critical section.

The second set of APIs—the Fast path—hooks the entry
of a slow path ( 5 ) or controls the fast path of the lock ( 6 ).
The fast path uses test-and-set-based lock for low contention
scenarios [13, 19, 37]. For example, in qspinlock, CNA and
ShflLock, a thread first tries to issue a test-and-set instruc-
tion to grab the lock, and only enqueues itself on failure.
The fast path optimizes performance but may impact fair-
ness, which now can be easily controlled with APIs. The
slow path involves queue maintenance when the lock is
in use, which applies to almost all queue-based lock algo-
rithms [13, 44, 54, 55].

To design policies controlling the order to acquire a
lock, we rely on a queue-based lock design that provides
a powerful abstraction to reorder the waiting queue on the
fly without using extra memory. Both CNA and ShflLock
allow arbitrary dynamic queue ordering to achieve user-
defined policies. Thus, we provide twowaiter reordering APIs
( 7 – 8 ). should_reorder() moves a waiter in front of the
queue by comparing the current node with an anchor node.
skip_reorder() skips the reordering procedure. When the
reordering is skipped, the waiting queue goes back to the
first-in-first-out policy to maintain waiting threads. This is
useful to enforce fairness for specific scenarios or purposes.

Although these APIs can implement several queue-based
lock algorithms, they cannot change the basic mechanism
of the underlying kernel locks. However, an experienced
lock developer may want to redesign the kernel lock com-
pletely [17, 20, 21]. Thus, SynCord introduces a set of APIs
that allow the custom code to bypass the lock acquire and
release phase ( 9 – 10 ). These APIs grant users complete con-
trol of the kernel lock and thus allow users to design arbitrary
lock algorithms. Since these APIs bypass underlying locks, it
is the user’s responsibility to correctly maintain the mutual
exclusion property.

A point to note is that most of the APIs only introduce
performance bugs with incorrect usage. Although the re-
ordering API might affect the fairness, SynCord prevents
threads from starvation with runtime checks. Meanwhile,
our APIs are designed not to introduce correctness bugs (e.g.,
infinite loops, mutual exclusion violations) except for the
lock bypass APIs.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    671



3.2.2 Auxiliary data structures

Sometimes, designing new lock algorithms or profiling exist-
ing locks might require extra information. For example, to
implement a NUMA-aware lock scheduling algorithm (§5.1),
each waiter needs to record its socket ID. Hence, we support
auxiliary data structures to save some semantic information.
In particular, we support three such types: per-node data,
per-lock data, and global data. Per-node data is associated
with a thread (node) that waits to acquire the lock. Its lifetime
starts when a thread joins the waiting queue and ends when
the thread acquires the lock. Per-lock data is associated with
a lock instance, and global data plays the identical role as
global variables in the kernel. Both per-lock and global data
structures are created and destroyed explicitly by SynCord
and follow the lifetime of the associated policy in most cases.
The user, while implementing custom code, also defines the
required types of auxiliary data structures, which get com-
piled along with the lock.
3.3 SynCord properties for lock design

Unlike current kernel customization approaches that localize
resources within a process model, exposing dynamic lock
modification requires reasoning about the mutual exclusion
properties, minimizing the impact of starvation and ensuring
that we patch the lock code correctly.
Sandboxed impact. If the user provides buggy code,
SynCord should prevent such code from corrupting the ker-
nel. SynCord guarantees code safety: memory safety (no
access to illegal memory address), termination (no infinite
loop), liveness (no deadlock) and mutual exclusion. The cur-
rent verifier, which relies on the eBPF verifier, uses static
analysis to enforce code safety. In particular, SynCord APIs
pass a lock instance as a read-only argument to prevent
arbitrary changes to the lock state during the lock acquisi-
tion and release phases. For instance, SynCord APIs (except
the bypass ones) do not modify the functioning of the ex-
isting lock algorithm, such as atomic instruction, barriers,
and concurrent executions. Because of this, SynCord does
not introduce any new deadlock situation, meanwhile main-
taining the liveness of the underlying lock even after adding
the user logic. Our APIs only provide suggestions/hints to
existing locks, as we do not change their underlying working.
Hence, it is impossible to incur mutual exclusion violation.
Meanwhile, we advise only lock experts to use the bypass
APIs for complete access to the lock state.

Avoiding starvation. The reordering of waiters by
SynCord introduces starvation that can severely affect the
kernel response. We address this issue with bounded runtime
checks. For example, if a custom lock uses backoff, we ensure
that a waiter only waits for a maximum amount of time. To
ensure this behavior, SynCord disables the custom logic for
the respective APIs if the thread is suffering from starvation.
We currently set the bounded time to 10 ms.

Correct lock patching. If a user provides the correct

code, SynCord must address three issues: 1) only patch the
required code, 2) apply the patch when the system is in a
quiescence state to avoid any inconsistency, and 3) resolve
the lock patch if multiple conflicting policies exist. We ad-
dress these issues by using the mature patching service in
Linux: Livepatch [32], which works as follows. Livepatch
first generates a difference between the changed code. It then
compiles the diff as a kernel module. Now, Livepatch inserts
the module once the system reaches a quiescent state, i.e.,
when a thread leaves the kernel space or CPUs are in idle
mode.
In the case of SynCord, Livepatch can fail to insert the

code if a user patches the same lock instances with multiple
policies. We address this issue as follows: Before applying a
patch,SynCord checks for an existing patch on the lock. If so,
it aborts and reports the conflict to the system administrator.
We also support re-patching the same locking call site by
bypassing the previous check. Thus, SynCord provides the
flexibility to resolve patch conflicts. For example, the user
can completely override the old patch with the new one.
Alternatively, they can develop and apply a new patch by
manually merging those two patches.

4 SynCord Implementation

We now discuss the implementation of SynCord. First we
present a summary of SynCord’s implementation and then
the two existing mature Linux kernel tools SynCord builds
upon: eBPF (§4.1) and Livepatch (§4.2).
The current SynCord prototype targets non-blocking

locks and supports both exclusive locks (e.g., spinlocks)
and readers-writer locks. For spinlocks, we implemented
SynCord with the stock Linux spinlock, CNA [19] and
ShflLock [37]. For readers-writer locks, we implemented
SynCordwith the readers-writer locks in ShflLock and the
Linux kernel. Our current prototype uses Linux v5.4.

SynCord requires a one-time kernel modification to ex-
pose APIs (§3.2.1), extra eBPF helper functions, and run-
time checks. Exposing the current SynCord APIs is rel-
atively straightforward. Except for the waiter reordering
APIs, we exposed all the other APIs by inserting a dummy
function. We expose the waiter reordering for ShflLock
and CNA in the form of a comparison function and also
support the case for skipping the comparison with the
skip_reorder() function. In total, we modify 143 lines of
code in the Linux kernel. Our code is publicly available at
https://github.com/rs3lab/SynCord.
4.1 eBPF for SynCord

eBPF allows applications to run custom code at specific
points in the kernel (called hook points or target points).
To use eBPF, a user first writes a program in C and compiles
it into the eBPF bytecode. The kernel then loads the byte-
code, verifies the memory safety, and then deploys it at the
specified hook points. The eBPF verifier uses static analysis
to check any illegal memory access in the program and also

672    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/rs3lab/SynCord


verifies if the program terminates. To guarantee the termina-
tion of a program, the verifier only allows bounded loops [65]
and rejects unreachable instructions or out-of-bound jumps.
eBPF further tries to ensure safety by only whitelisting a
set of safe functions (called helper functions), so that appli-
cations can obtain system state, such as the current time,
CPU ID, etc. SynCord exploits the eBPF safety guarantees
to enforce several safety requirements (§3.3).

Several lock algorithms require threads to spin until they
satisfy a set of specific conditions. However, the eBPF verifier
does not allow loops since it cannot guarantee termination.
To address this issue, SynCord introduces a new eBPF helper
function: backoff(). With this helper function, a thread ter-
minates its spinning either by meeting the defined condition
or the specified time is over. SynCord further sets an upper
limit on the timeout value (10 ms) to avoid starvation. We
designed backoff() as an eBPF helper function so users can
use these functions in any SynCord APIs.

4.2 Kernel livepatching for SynCord

Kernel livepatch [32, 56, 60, 66] modifies the kernel on the
fly without rebooting the system. While eBPF alone can de-
ploy user-defined code into the kernel (§4.1), the effect is
global and thus affects all the lock instances in the kernel.
To support a finer deployment granularity (§3) and auxiliary
data structures (§3.2.2), SynCord uses Livepatch, specifi-
cally Kpatch [60] to deploy the custom code.

Implementing auxiliary data structures. We expose
three types of auxiliary data structures: per-node data, per-
lock data, and global data. Per-node data stores additional
information when a thread joins a waiting queue in a queue-
based lock design. Currently, the per-node data is 16 bytes
but it is aligned at a cache-line boundary (64 bytes) to avoid
false sharing. Thus, SynCord uses the remaining 48 bytes to
store extra information. Presently, the current spinlock size
is fixed at 4 bytes, and modifying the lock itself increases
the memory footprint of any lock instance. Hence, for per-
lock data, we use shadow variables [40] to allocate extra
memory only for the target lock instances. In particular, we
store the auxiliary data inside an in-kernel key-value store
created by Livepatch. The address of a target lock instance
serves as the key, while the value is per-lock auxiliary data.
In addition to the per-lock data, global data such as per-CPU
data can be also stored in that key-value store. SynCord
frees the extra memory allocated as shadow variables when it
removes the corresponding policy. In other words, SynCord
does not modify the structure of the lock itself, instead it
stores the additional per-lock data separately from the parent
lock object. Hence, our design choice does not increase the
memory footprint of all locks in the kernel. SynCord only
allocates memory for the target locks, thereby having no
additional memory footprint without an installed policy.

Workload Lock: Usage

MWRL [52] rename_lock: Rename files within a directory
lock1 [7] files_struct.file_lock: fcntl and fd allocation
page_fault1 [7] mmap_sem: Anonymous memory page-fault
LevelDB [25] futex contention on futex hash bucket
Metis (wrmem) [48] reader side of mmap_sem on page-fault
SCL-Victim [58] rename_lock: Rename files from/to an empty directory

SCL-Bully [58] rename_lock: Rename files from an empty directory
to a directory with 1M files

Table 2: Lock usage in each benchmark.

1 # per-node auxiliary data structures
2 class node:
3 ...
4 + int socket_id # Store socket ID for the thread
5
6 def lock_enable_fastpath(lock): # Allow lock stealing
7 return True
8
9 def lock_to_enter_slowpath(lock, node):
10 node.socket_id = get_numa_id() # Record socket ID for waiter
11
12 # Return true if anchor and curr are in the same socket
13 # Applicable to both ShflLock and CNA
14 def should_reorder(lock, anchor, curr):
15 return anchor.socket_id == curr.socket_id
16
17 # randomly skip reordering to pass the lock to another socket
18 def skip_reorder(lock, anchor):
19 return random() & 0xffff

Figure 4: Pseudocode of a NUMA-aware lockwith SynCord.

5 Use Cases

We discuss the design and evaluation of various use cases
enabled by SynCord. We first cover lock scheduling algo-
rithms that manipulate the ordering of the lock acquisition.
SynCord provides the means to define a custom lock ac-
quisition order either by reordering the waiting queue or
by blocking specific threads from joining the queue. We
classify the lock scheduling algorithms into two types: (1)
acquisition-aware scheduling, which considers the charac-
teristics of lock waiters to enter the critical section, such
as NUMA-awareness (§5.1) or biased readers-writer (§5.4);
(2) occupancy-aware scheduling, which involves schedul-
ing based on the time a thread spends in the critical section
(§5.2, §5.3). The second use case focuses on customized fine-
grained profiling (§5.5). Finally, we discuss our experience
of using SynCord to implement these use cases (§5.6). Note
that every lock implemented with SynCord is marked with
“∗” in figures. “-static” represents Linux kernel compiled with
a static implementation of the equivalent locking strategy.
Experimental setup. We evaluate SynCord on an 8-socket,
224-core machine equipped with Intel Xeon Platinum 8276L
CPUs. The machine runs Ubuntu 20.04 with Linux kernel
5.4.0 with disabled hyperthreading. Table 2 lists the bench-
marks we use for the evaluation.
5.1 NUMA-aware spinlock

Motivation. Modern servers have non-uniform memory
access (NUMA) architectures, with multiple sockets, multi-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    673



0

0.4

0.8

1.2

1.6

2
1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

2

4

6

8

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

M
O
ps
/s
ec

# of threads

stock

(a) MWRL

M
O
ps
/s
ec

# of threads

static-ShflLock
*ShflLock

(b) lock1

M
O
ps
/s
ec

# of threads

static-CNA
*CNA

LevelDB:readrandom

Figure 5: Comparison between kernel locks (stock, ShflLock, CNA) and their SynCord equivalent for NUMA-aware scenario.

ple cores, locally attached memories, and shared last-level
caches. In such a server, accessing local memory is faster
than accessing remote NUMA memory [21, 62]. NUMA-
aware locks improve application throughput by batching
lock acquisitions from the same socket together [19, 37].
Design. SynCord adopts the dynamic reordering mech-
anism for NUMA-aware locking from ShflLock and CNA,
and batches requests from the same socket. NUMA locks
ensure long-term fairness by periodically passing the lock to
another socket. Figure 4 shows the implementation of this al-
gorithm with SynCord. We add a per-node auxiliary integer:
socket_id to record the socket ID of each waiting thread
(line 4). The pseudocode denotes it inside Class, while the ac-
tual implementation is the struct of C code. We also enabled
the fast path (lines 6–7) for lock stealing. If the fast path fails,
the waiter enters the slow path after recording the socket
ID (lines 9–10). The reordering process occurs in the slow
path, and the underlying lock decides a reordering strategy.
For example, in the case of ShflLock, the shuffler (S) first
checks whether it should skip reordering by invoking the
skip_reorder (lines 18–19) API. If not, S iterates the queue
starting from itself; it invokes should_reorder (lines 14–15)
with itself being the anchor and a waiting thread as curr.
For all the waiting threads that make should_reorder return
true, Smoves that waiter forward,which groups waiters from
the same socket. If skip_reorder returns true, S assigns the
next waiter as the new shuffler, which ensures long-term
fairness. The CNA lock also applies the same approach of
grouping, but with a queue-splitting mechanism.
Evaluation. Figure 5 compares the stock version and two
versions of ShflLock and CNA. The first is a static imple-
mentation requiring kernel re-install and reboot, while the
other is the SynCord-based (marked ∗). Since ShflLock and
CNA have a NUMA-aware policy on default, the evaluation
shows how much overhead is introduced by SynCord’s dy-
namic approach compared to the static implementation of
the identical policy. We evaluate two microbenchmarks that
contend on a single lock, and LevelDB’s readrandom, which
contends on the lock guarding the futex bucket. We find that
the SynCord-based locks enforce a NUMA-aware policy on
the fly without any significant overhead. Their performance

is similar to their static counterparts and outperforms the
stock version present in the Linux kernel, without having to
compile or reboot the kernel. LevelDB’s performance drops
can be attributed to its use of a global database lock, which
is not NUMA-aware.
5.2 Asymmetric multicore lock

Motivation. Asymmetric multicore processors (AMP) [4, 5,
16] consist of heterogeneous cores with different computing
powers: energy-efficient slow cores and power-hungry fast
cores. By combining both fast and slow cores in one proces-
sor, an AMP machine can adjust for dynamic usage patterns,
for example, utilizing all cores to maximize the performance
or using only slow cores for better energy-efficiency. More-
over, an AMP-aware scheduler can place low computation
tasks on slow cores and place compute-intensive tasks on
the fast ones. Unfortunately, current lock designs are unsuit-
able for the AMP architecture, as most lock designs assume
homogeneous cores [41]. In particular, their performance
significantly degrades when running on an AMP machine.
This happens because slow cores execute critical sections up
to 4× slower than faster cores [4], leading to lower through-
put and higher latency [41]. Moreover, no lock design works
efficiently for a multi-socket NUMA server, each has AMP.
Design. Our design is inspired by the LibASL [41], an AMP-
aware user space lock without NUMA-awareness. Taking
a step further, we extend LibASL’s design for future AMP
NUMA machines. LibASL works as follows: During a low
contention scenario, it allows both slow cores and fast cores
to acquire the lock to maximize performance. Meanwhile,
during high contention, it penalizes slow cores so that fast
cores can acquire the lock more aggressively for better per-
formance. We slightly depart from LibASL with regards to
penalty. In particular, we penalize slow core threads by forc-
ing them to wait for a maximum of fixed time (10ms) before
acquiring the lock. Providing appropriate wait time prevents
starvation and ensures acceptable latency for workloads run-
ning on slow cores.

Figure 6 shows our version of the AMP-aware lock imple-
mented using SynCord APIs. We use MAX_WAIT_TIME (line 2)
as the maximumwait time for threads running on slow cores,
and per-node socket ID (line 6) is used for NUMA-awareness.

674    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 class global_aux: # Global auxilary data structure
2 + int MAX_WAIT_TIME = 10ms # Max backoff for the slow core
3
4 class node: # Per-node auxiliary data structures
5 ...
6 + int socket_id # Store socket ID for the thread
7
8 def lock_enable_fastpath(lock): # Allow lock stealing
9 return True
10
11 def is_lock_unlocked(lock):
12 return lock.val == UNLOCK # Check if the lock is unlocked
13
14 def lock_to_enter_slowpath(lock, node):
15 node.socket_id = get_numa_id() # Record socket ID for waiter
16 cpu = get_processor_id() # Get the CPU ID of the thread
17
18 # Fast core thread directly enters; the slow one joins if:
19 # 1. the lock is not held or
20 # 2. it has been waiting for a predefined time
21 if is_slow_core(cpu):
22 backoff(lock, MAX_WAIT_TIME, is_lock_unlocked)
23
24 # Group same socket thread together
25 def should_reorder(lock, anchor, curr):
26 return anchor.socket_id == curr.socket_id
27
28 def skip_reorder(lock, anchor):
29 return rand() & 0xffff # Skip reordering to avoid starvation

Figure 6: AMP algorithm pseudocode with SynCord.

Similar to ShflLock, we allow lock stealing in the fast path
(lines 8–9). On failing the fast path, the waiter assigns itself
a socket ID (line 15) and checks its core type (line 21). If the
waiter runs on a fast core, it immediately enters the slow path
and joins the waiting queue. Otherwise, the waiter needs
to wait before joining the waiting queue using the backoff
function (lines 21-22). The thread on the slow core spins
either until the MAX_WAIT_TIME has elapsed or if the lock has
been released (lines 11–12). After returning from the backoff
function, the waiter finally enters the slow path and joins
the waiting queue. Once a thread enters the slow path, it
follows a similar strategy as that of the NUMA lock for queue
reordering and skipping. Thus, our NUMA-aware AMP lock
prioritizes threads on fast cores before joining the queue,
and further prefers the thread from the same socket after
entering the queue. On the other hand, slow cores do acquire
the lock after spinning for a predefined time (10ms). With
the time-bound spinning, our approach prevents starvation
while boosting application throughput.
Evaluation. Since there is no NUMA-AMP machine, we
emulate the AMP environment by changing the CPU fre-
quency. The fast cores are 4× faster than the slow cores and
each socket has 14 fast and 14 slow cores, respectively. We
use the same workloads as before (§5.1) and compare stock,
ShflLock, and AMP. AMP is implemented statically (static-
AMP) and using SynCord (∗AMP) to compare the overhead
coming from SynCord. Figure 7 shows that AMP outper-
forms both ShflLock and stock by 1.5x and 13.4x each and
maintains the performance with increasing core count. To
dig deeper, we measure the throughput of fast and slow cores

separately. We find that all three locks have similar through-
put under low contention (eight threads) for all workloads.
This happens because all three locks are able to steal locks
during the fast path. However, when the contention becomes
high, both stock and ShflLock allow slow cores to acquire
the lock, leading to lower throughput. On the other hand,
AMP lets fast cores acquire the lock most of the time and
thus achieves higher throughput.
5.3 Scheduler-cooperative lock

Motivation. Patel et al. [58] described the scheduler subver-
sion problem, in which competitive threads hold the same
lock for varying times, leading to a subversion of CPU
scheduling goals. In particular, current CPU schedulers let
each thread have an equal share of the CPU time. Suppose
two threads are spending most of their CPU time executing
in a critical section protected by the same lock; one thread
(the bully thread) holds the lock for a much longer time
(e.g., orders of magnitude longer) than the other (the victim
thread). In this case, the bully thread essentially receives a
much longer CPU time than the victim thread, subverting the
scheduling goal. This can lead to pathological cases of denial
of service attacks, and lower application performance [58].
Design. To address this problem, we implement a new lock
algorithm, that strives to achieve fair hold time across threads:
SCL. SCL utilizes ShflLock as the underlying kernel lock and
uses SynCord APIs. The algorithm assumes that all threads
have the same priority and receive the same CPU time. The
algorithm tracks the time spent in the critical section for each
thread. If one thread holds the lock longer than its share, it
cannot acquire the lock until other threads have received
an equal chance to acquire the lock. On top of SCL, we also
implement a NUMA-aware version: NUMA-SCL.

Figure 8 presents the implementation of SCL. We have not
included the NUMA part for brevity, which is similar to §5.1.
We introduce several auxiliary data structures to implement
this algorithm: a per-thread lock hold time variable (line 3), a
per-thread variable for recording the beginning of the critical
section (line 5), a per-lock integer for counting contending
thread (line 9), and total hold time for each lock (line 10).
The algorithm works as follows: Before a thread (t) joins the
waiting queue, it first computes the lock quota based on the
number of threads and overall lock holding time (line 14).
Based on the time t spent in the critical section (line 15), it
waits until other threads get the equal opportunity (lines 15–
20) by backing off for that approximated time (line 20). We
track the per-lock total lock hold time and per-thread lock
hold time by tracking when the thread enters the critical
section (line 23) and update the overall lock usage in the
release phase (lines 26–31).
Evaluation. We evaluate five locks with a workload pro-
posed by Patel et al. [58]. The workload creates two types of
threads: victim threads and bully threads that contend on the
rename_lock. Table 2 shows the configuration of the work-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    675



0.0M

0.4M

0.8M

1.2M

1.6M

2.0M
1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0.0M

0.4M

0.8M

1.2M

1.6M

2.0M

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0.0M

1.5M

3.0M

4.5M

6.0M

7.5M

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0.0M

1.5M

3.0M

4.5M

6.0M

7.5M

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0.0M
0.2M
0.4M
0.6M
0.8M
1.0M
1.2M

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0.0M
0.2M
0.4M
0.6M
0.8M
1.0M
1.2M

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

O
ps
/s
ec

(a) MWRL

O
ps
/s
ec

# of threads

(b) lock1

# of threads

*AMP
static-AMP
ShflLock

stock

(c) LevelDB:readrandom

# of threads

*AMP-fast
*AMP-slow

static-AMP-fast
static-AMP-slow
ShflLock-fast
ShflLock-slow

stock-fast
stock-slow

Figure 7:Overall throughput (up) and the throughput of fast and slow cores (down) for stock, ShflLock, andAMP implemented
statically (static-AMP) and with SynCord (∗AMP). Throughput of AMP-slow after 28 threads is very low but not zero. Refer
to Table 4 for details.

1 class global_aux: # Global auxiliary data structures
2 # Per-thread variable to record the lock hold time
3 + int lock_hold_time<thread>
4 # Per-thread variable to timestamp the beginning of CS
5 + int cs_beg_ts<thread>
6
7 class lock: # Per-lock auxiliary data structures
8 ...
9 + int num_threads # Threads contending for the lock
10 + int tot_lock_hold_time # Total lock hold time of all threads
11
12 def lock_to_enter_slowpath(lock, node):
13 # Calculate the lock hold quota
14 quota = lock.tot_lock_hold_time / lock.num_threads
15 if lock_hold_time[curr_thread] > quota:
16 # Exceeded local quota. Wait until threads
17 # use same amount of quota
18 wait = (lock_hold_time[curr_thread] * lock.num_threads)
19 wait -= lock.tot_lock_hold_time
20 backoff(lock, wait, None)
21
22 def lock_acquired(lock):
23 cs_beg_ts[curr_thread] = get_time() # get timestamp after acq
24
25 def lock_to_release(lock):
26 # Calculate the length of the critical section
27 cs_len = get_time() - cs_beg_ts[curr_thread]
28
29 # Update the lock usage for this thread and the lock
30 lock_hold_time[curr_thread] += cs_len
31 lock.tot_lock_hold_time += cs_len

Figure 8: Pseudocode of NUMA-SCL with SynCord. We
omit the NUMA-awareness code (refer to Figure 4).

load, in which the bully holds the lock up to three orders of
higher magnitude than the victim. These five locks include
Linux’s stock, ShflLock, static-SCL [58], ∗SCL (SCL without
NUMA) and ∗NUMA-SCL. We implement the last two SCL
locks with SynCord. Figure 9 shows the overall throughput
and Jain’s fairness index [31] of these locks. Jain’s fairness

0
10k
20k
30k
40k
50k
60k

2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

O
ps
/s

# of threads

stock
ShflLock

(a) Throughput

Co
effi

ci
en
t

# of threads

static-SCL
*SCL

*NUMA-SCL

(b) Fairness

Figure 9: Impact of different lock designs on throughput
and fairness. The workload is a rename program contending
on rename lock where bully threads hold lock much longer
than victim threads. Refer to Table 2 for more details.

index ranges from zero to one, where zero and one indicate
completely unfair and fair, respectively. Since the SCL policy
ensures that each thread holds the lock for the same length,
all SCL versions allow the victim threads to hold the lock
much more often than the bully threads. As a result, SCL im-
plementations achieve orders of magnitudes higher through-
put than both stock and ShflLock. Moreover, ∗NUMA-SCL
outperforms the non-NUMA version (∗SCL) by minimizing
cache-line bouncing, thereby having the best overall through-
put. The static implementation of SCL performs worse than
SynCord versions, as it requires periodic scanning of the
thread lists to remove inactive waiters. Such an approach is
not required for SCL locks with SynCord because the user
can dynamically decide the timeframe to enforce the lock
hold time fairness.

We further confirm the aggregated lock hold time of bullies
and victims. Figure 10 shows that a bully thread holds the lock

676    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0
10
20
30
40
50
60
70
80

2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

Lo
ck

ho
ld

tim
e
(s)

# of threads

stock-bully
stock-victim

*NUMA-SCL-bully
*NUMA-SCL-victim

Figure 10: Total lock hold time of bully (B) and victim (V)
threads.

for more than 99.9% in the stock version while ∗NUMA-SCL
ensures a better share between bully and victim.
5.4 Biased per-cpu readers-writer lock

This section shows the use of SynCord lock bypass APIs.
Motivation. Readers-writer lock (rwlock) is one of the most
widely used primitives in Linux [37]. This primitive allows
either multiple readers or one writer to acquire a lock. Most
rwlock designs track active readers with a centralized readers
indicator. However, the centralized readers indicator has poor
scalability (Figure 1) because frequent atomic instructions for
readers result in cache-line invalidation and coherence traffic.
Prior work addressed this issue using distributed counters,
but with the cost of high memory usage and longer writer
latency. Thus, it is a good candidate only for read-intensive
workloads [18, 42].
Design. We design a distributed readers-writer lock us-
ing the SynCord bypass APIs. Our design is inspired by the
BRAVO design [18]. With SynCord’s dynamic approach, users
can enable the distributed rwlock only when needed and dis-
able it to avoid unnecessary overhead, such as memory foot-
print and writer latency. Note that SynCord cannot ensure
the mutual exclusion property for the unsafe APIs, and it is
up to the lock developers to ensure the correctness. More-
over, we also use another unsafe function (backoff_unsafe)
that waits indefinitely until the condition is met. We forbid
the user from using this unsafe function with our safe APIs,
as we throw an error on detecting it.
Figure 11 shows the per-CPU rwlock implementation in

SynCord. We add two more fields per lock: rbias to track
the read bias mode, and visible_readers table with cache-
line aligned entries. Before a reader (R) acquires a lock, it
first checks the read-biased mode. If the read-biased mode is
set, R marks itself as an active reader (lines 7–9) and checks
the rbias again due to a possible race from the writer’s side
(line 33). If rbias is still set, R bypasses the underlying lock,
else it falls back to the underlying implementation (lines
11–13). At the time of release, R checks whether it acquired
the lock in the read-biased mode (lines 16–20), and bypasses
the underlying lock release if so. R is also responsible for
setting rbias once it acquires the underlying lock without

1 class lock: # Per-lock auxiliary data structures
2 ...
3 + int rbias # When set, the lock is on readers-biased mode
4 + int visible_readers[max_cpu] # Distributed read indicator
5 # === Reader ===
6 def lock_bypass_acquire(lock):
7 if lock.aux.rbias: # If in read biased
8 lock.aux.visible_readers[cpu] = 1 # Mark the reader
9 if lock.aux.rbias: # No writer is waiting
10 return True
11 else: # Writer is present
12 lock.aux.visible_readers[cpu] = 0
13 return False
14
15 def lock_bypass_release(lock):
16 # Bypass the lock if reader acquired in rbias mode
17 if lock.aux.visible_readers[cpu] == 1:
18 lock.aux.visible_readers[cpu] = 0
19 return True
20 return False
21
22 def lock_acquired(lock):
23 # Enter the read-biased mode
24 if not lock.aux.rbias:
25 lock.aux.rbias = True
26
27 # === Writer ===
28 def wait_for_reader(lock, cpu):
29 return lock.aux.visible_readers[cpu] == 0
30
31 def lock_acquired(lock):
32 if lock.aux.rbias:
33 lock.aux.rbias = False # Revoke bias
34 for i in range(0, NUM_CPU): # Wait for readers to leave
35 backoff_unsafe(lock, wait_for_reader(i))

Figure 11: Pseudocode of the BRAVO algorithm. We omit the
code to get CPU ID for brevity.

bypassing it (lines 24-25) so that other readers can directly
acquire the read lock by setting their respective indicators.
In the case of writer acquisition, a writer (W) first acquires
the underlying writer lock. Wwill only acquire the lock when
there are no active readers that hold the underlying lock.
After that, W further checks for the read-biased mode (line
32). If it is active, W first disables it and waits for all readers
to exit the critical section that used the per-CPU indicator
(lines 34–35).
Evaluation. Figure 12 compares the stock rwlock with
our version using SynCord (∗per-CPU rwlock). We evalu-
ate these locks with a page_fault1 microbenchmark from
will-it-scale [7] and Metis [48], a MapReduce framework,
contending on the reader side of mmap_sem. Figure 12 shows
that ∗per-CPU rwlock outperforms stock by 2.2x and main-
tains the performance with increasing core count.
5.5 Dynamic lock profiling

Motivation. Several works [8, 19, 35, 37, 52] have shown
that kernel locks mostly determine the scalability of applica-
tions. Hence, lock profiling tools are critical to understanding
a lock’s performance. Unfortunately, only few tools exist for
kernel lock profiling, and even those have limited analysis
capability. For example, developers often use Linux perf [1]
to measure the aggregated CPU cycles in each code region.
While this is useful to find lock contention, it does not pro-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    677



0

0.5

1

1.5

2

2.5

3
1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

0

0.5

1

1.5

2

2.5

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

M
O
ps
/s
ec

# of threads

stock (rwlock)

page_fault1

# of threads

*per-CPU rwlock

Metis

Figure 12: Comparison between Linux rwlock and our dis-
tributed per-CPU rwlock with SynCord. Refer to Table 2 for
workload details.

policy acquisitions x-socket avg-batch violation

SCL+ReorderBully 4042 277 14.59 1659
SCL+BackoffBully 918765 8678 105.87 538

Table 3: Statistics collected by SynCord to analyze our two
different implementations of NUMA-SCL: SCL+ReorderBully
and SCL+BackoffBully. We collect this result from the same
benchmark used in §5.3 with 224 threads.

vide any lock-specific performance stats, such as the time
spent in the critical section. As a result, Linux perf is not al-
ways the right tool for understanding lock performance. On
the other hand, Linux provides another tool: lockstat [73]
which exposes various statistics of kernel locks. However,
it profiles all the kernel locks together and only shows the
system-wide statistics. Moreover, a user can neither choose
the lock instance nor specific lock data to profile. To make
matter worse, lockstat requires a kernel to be compiled
with a specific configuration, which significantly increases
the size of every lock data structure and introduce perfor-
mance overhead. For example, a kernel with lockstat uses
423MB of extra memory over the stock version even from
the booting.
Design. SynCord can patch locks at various granularities,
from an individual lock instance to a set of locks. In addition,
SynCord provides the ability to profile any lock instance
with arbitrary lock-specific performance stats. In particu-
lar, a user can now customize which set of lock instances to
profile with specific statistics (even the algorithm-specific
ones). For example, a user can profile only the rename lock
and count the number of lock acquisitions across socket in-
stead of collecting a set of statistics for all the locks in the
kernel. We reproduce the statistics provided by lockstat us-
ing SynCord. Since the hooking points of SynCord General
APIs (Table 1) have the same context as those of lockstat, the
implementation is straightforward with simple updates of
the counters and timestamp in each API.
Evaluation. We compare the overhead of lock profiling
between lockstat and SynCord. lockstat keeps track of
10 counters for each lock. We implement two versions of
SynCord-based lockstat having identical 10 counters and

0%

20%

40%

60%

80%

100%

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

Sl
ow

do
w
n

# of threads

lockstat (10 counters)
*SynCord-lockstat (10 counters)
*SynCord-lockstat (1 counter)

Figure 13: Performance overhead of lock profiling in
MWRL for both lockstat and our custom implementation
of lockstat with SynCord. The overhead increases with
increasing counters.

policy # threads acqst-fast acqst-slow

AMP+ReorderFast 8 20,340,943 8,192,987
AMP+BackoffSlow 8 24,825,644 5,267,531

AMP+ReorderFast 224 571,712 571,354
AMP+BackoffSlow 224 37,937,529 54,941

Table 4: Statistics collected by SynCord to analyze our
two different implementations ofAMP: AMP+ReorderFast and
AMP+BackoffSlow. We collect the result for MWRL with the
same environment as in §5.2.

one counter. Figure 13 shows that lockstat constantly incurs
a 60% application slowdown. We observe that the overhead
of SynCord profiling increases with an increased number
of counters. With 10 counters, SynCord profiler incurs a
similar overhead as that of conventional lockstat, while it
is only 24% for one counter. Furthermore, unlike lockstat,
SynCord opens the door for lock profiling even on produc-
tion servers, as SynCord can dynamically turn on the pro-
filing feature and does not introduce overhead when the
profiling is uninstalled.
Simplifying performance analysis. We now illustrate
an example of how SynCord’s custom profiling can signifi-
cantly simplify the performance analysis. Our initial imple-
mentation of the AMP (§5.2) and SCL (§5.3) algorithms only
utilized the reordering mechanism of CNA and ShflLock
(§5.1). In particular, we only used the should_reorder API to
enforce both NUMA-awareness to handle hardware charac-
teristics and SCL and AMP algorithms for software require-
ments. However, the reordering API alone has limitations in
strictly enforcing the policy, thus it is difficult to have desired
performance as the number of threads increases.
To understand the NUMA-SCL algorithm, we collect

the following statistics for the reordering-based algorithm
(SCL+ReorderBully), and the current algorithm-based on bully
backoff with NUMA-aware reordering (SCL+BackoffBully): the
total number of lock acquisitions, the number of lock ac-
quisitions across socket, the average times of lock passing
within a socket, and the number of policy violations (a bully

678    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



thread acquires the lock when it shouldn’t). Table 3 shows
that SCL+ReorderBully fails to enforce the policy, leading to
a high violation count. This happens because the reorder-
ing approach guarantees that a waiter will acquire the lock
once it is part of the waiting queue. Thus, a bully can still
grab the lock even though it is penalized, if a victim has
not yet joined the waiting queue. Instead, the backoff-based
approach (SCL+BackoffBully) avoids this problem by prevent-
ing the bully thread from joining the wait queue, thereby
effectively enforcing the policy.
Table 4 shows the collected statistics for AMP locks us-

ing two variations: AMP+ReorderFast which uses reordering
only to enforce both fast-core preference and same-socket
preferences, and AMP+BackoffSlow shown in §5.2. We collect
the number of lock acquisitions separately on the fast and
slow cores. Under low contention (eight threads), both algo-
rithms have similar throughput. However, under a highly
contended scenario (224 threads), the reordering approach
cannot correctly enforce the fast-core preference anymore,
leading to a performance drop. The same reasoning from
SCL holds true here too.
5.6 Experience with SynCord

Policy LoC Time

NUMA-aware spinlocks (§5.1) 6 3 hours
Scheduler-cooperative locks (§5.3) 30 18 hours
Asymmetric multicore-aware locks (§5.2) 15 8 hours
Scalable reader-writer locks (§5.4) 36 5 hours
Lock profiling (§5.5) 36 1 hour

Table 5: Development effort of the use cases.

We now discuss the efforts and lessons we have learned
in developing the use cases with SynCord.
Lock development effort. Table 5 summarizes the develop-
ment effort of all use cases. We spentmost of the development
time understanding, debugging, and testing the lock algo-
rithm. Implementing the algorithms in SynCord involves
only tens of lines of code and is relatively straightforward.
In addition, SynCord allows users to modify the lock with-
out kernel installation and rebooting, which dramatically
reduces the overall development effort.
Hardware is (still) the key factor of performance. We
include the NUMA grouping policy even for SCL and AMP
algorithms to make them perform well on a NUMA machine.
Initially we did not plan to include the NUMA grouping al-
gorithm since we thought the performance gain achieved by
task-specific scheduling should dominate. For example, due
to the big performance gap between fast and slow cores in
AMP machines, scheduling fast cores should achieve good
enough performance without NUMA grouping. However,
this has proven to not be the case. LibASL performs even
worse than ShflLock on our emulated AMP NUMA ma-
chine due to the cache-line bouncing among sockets. Hence,

we believe that a lock developer still needs to consider and
prioritize the underlying hardware when designing a lock.
Avoid overloading APIs. As discussed in §5.5, our initial
implementation of the SCL and AMP algorithms only used
reordering mechanisms to enforce both customized policy
and the NUMA-grouping algorithm. However, the profiling
results show that complex policy in the reordering API does
not work at a high thread count. The root cause of this is-
sue is that the node reordering mechanism in ShflLock and
CNA cannot strictly prevent certain nodes from acquiring a
lock once they join the queue. Specifically, the reordering
mechanism makes the scheduling decision as soon as it en-
counters the first suitable candidate, without considering
whether a better candidate exists in the entire waiting queue.
With the current lock implementation, we believe the best
way to address this issue is to avoid overloading APIs. Specif-
ically, a lock developer should not specify too complicated
policies in one API and, if possible, divide the policies into
small pieces and enforce each one of them with the suitable
APIs. For example, in our AMP implementation, we enforced
the NUMA grouping policy through reordering and the fast
core scheduling policy when cores enter the wait queue.

6 Discussion

6.1 Generality of SynCord

SynCord’s current implementation focuses on non-blocking
locks, but the fundamental concept can be applied to other
synchronization primitives, such as blocking locks (mu-
tex) [55], RCU [50], seqlocks [27], and wait events [68].
SynCord can similarly modularize key decisions and be-
haviors of these synchronization primitives and expose them
as APIs. For example, SynCord may expose the condition to
wake up or park a thread as APIs for a blocking lock. More-
over, with lock bypass APIs, which grant privileged users
complete control of the kernel lock, the implementation of
kernel locks can even be moved to user space.
6.2 Support for multi-tenancy

The current SynCord prototype targets an environment
where one user or a set of users trust each other to share
the machine. In this scenario, SynCord can resolve patch
conflicts (i.e., a lock instance is patched by multiple patches)
by allowing a privileged user to provide a final patch (§3.3).
However, this approach no longer works in a multi-tenancy
cloud environment.
To extend SynCord to a multi-tenancy environment, we

plan to apply the widely used cgroup and namespace concepts
to kernel synchronization primitives. For example, a synchro-
nization cgroup controls the set of kernel synchronization
primitives that an application can change. A synchronization
namespace virtualizes the underlying synchronization prim-
itives. For example, for a shared kernel lock, a corresponding
virtual lock is created in every synchronization namespace.
The kernel implements an arbitration mechanism, such as

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    679



time-sharing, to decide which virtual lock can hold the phys-
ical lock. Hence, the synchronization namespace enables
applications to modify synchronization primitives while still
enforcing performance isolation. With this change, we can
drop privilege for SynCord to each namespace instead of
limiting it to system administrators.
6.3 Easier programming of lock policy

In the current SynCord prototype, a user needs to provide
the entire code for each policy. For example, both AMP (§5.2)
and SCL (§5.3) policies include NUMA grouping code to
achieve better scalability. We can extend SynCord to com-
pose multiple policies into one (i.e., merge NUMA-grouping
and AMP to get NUMA-aware AMP) unless there is a dupli-
cate use of the API between policies.

SynCord currently only supports C to write customized
lock code, but it can be further extended to support more
languages. With several toolchains [24, 30, 64] that allow
writing eBPF programs in languages other than C, SynCord
can support more expressive and memory-safe languages
such as Python or Rust with better libraries and ecosystems.
6.4 Patching time

With our environment, the patching time is typically 10-
40ms, and at a maximum of 5 seconds in an extreme case:
patching every spinlock in the kernel. Livepatch applies the
patch by checking each thread’s stack whether the thread
has invoked any patched functions. If so, Livepatch waits
until all threads exit the patched function. One of the reasons
for long patching time derives from a few tasks blocking the
completion of a patching operation. The five-second patching
time looks unreasonably long to us and further reducing the
patching time is possible by sending a fake signal to the
remaining blocking tasks.

7 Related Work

In section §2.2, we covered several works that customize
kernel from user space. While SynCord is the first work to
expose the concurrency control to user space, the need for
different locking designs depending on hardware or software
requirements has been also discussed in previous works.

Dice and Kogan [18] presented the BRAVO lock which can
dynamically switch between a centralized reader-writer lock
and a lock using distributed reader indicators. When the
BRAVO algorithm detects a read-biased workload pattern, it
improves scalability between readers by using distributed
reader indicators, but at a cost of a potential slow down
when released from the read-biased mode. This clear trade-
off shows that the logic to turn on the read-biased mode is
critical to performance, but BRAVO relies on heuristic param-
eters because it was impossible to change lock algorithms
on the fly. Once ported to SynCord, when to turn on the
read-biased mode can be an open problem for users.

Recently, Chehab et al. [17] proposed CLoF, which gener-
ates hundreds of possible combinations of spinlocks to create

NUMA-aware hierarchy locks. CLoF first generates a set of
locks and then selects the best performing lock for the target
environment. The work emphasizes the need for different
lock designs depending on the underlying hardware, which
strengthens our motivation. Constructing and finding the
best performing lock is an orthogonal topic to our work.
Lock profiling. Synchronization primitives play a signifi-
cant role in application scalability, thus sophisticated lock
profiling tools can help users understand the performance
bottleneck. In addition to the perf [1] and lockstat [73]
introduced in §5.5, there are several more works to improve
lock profiling.

SyncPerf [3] hooks pthread related functions and provide
a synchronization analysis tool with low overhead. Tallent et
al. [67] used a sampling approach to quantify lock contention
and SyncProf [71] collects profiling data through repetitive
execution of an application to find the source of contention.
Although these studies contributed to a better understanding
of lock contention, all three works profile locks used in the
user space, not the kernel locks.
LockDoc [43] traced the usage of kernel locks and auto-

matically generates documentation describing the order in
which each lock should be used. The work mainly focused
on inferring locking rules instead of the performance aspect
of each lock. wPerf [72] analyzes waiting events to find the
source of a performance bottleneck, but does not provide
lock-specific statistics.

8 Conclusion

Kernel synchronization primitives greatly impact application
performance and scalability. However, the current kernel de-
sign prevents application developers from controlling the
kernel synchronizations. This paper proposes application-
informed kernel synchronization primitives which allow users
to customize the kernel locks on the fly. To showcase the idea,
we implemented SynCord, a framework for user-defined cus-
tom lock code. SynCord allows a privileged user to deploy
custom code into the kernel lock safely and efficiently with-
out recompiling or rebooting the kernel. We show that appli-
cations can leverage SynCord to achieve significant perfor-
mance gains by developing hardware- or workload-specific
lock algorithms. Furthermore, SynCord enables users to
perform custom, fine-granularity lock profiling, which can
greatly simplify the performance analysis of lock algorithms.

9 Acknowledgment

We sincerely thank our shepherd Adam Belay and the anony-
mous reviewers for their insightful feedback. This work is
supported by Huawei.

680    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] perf: Linux profiling with performance counters , 2014. https:
//perf.wiki.kernel.org/index.php/MainPage.

[2] J. Ahn, C. Kim, J. Han, Y. ri Choi, and J. Huh. Dynamic virtual machine
scheduling in clouds for architectural shared resources. In 4th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 12), Boston,
MA, 2012. USENIX Association.

[3] M. M. u. Alam, T. Liu, G. Zeng, and A. Muzahid. Syncperf: Categoriz-
ing, detecting, and diagnosing synchronization performance bugs. In
Proceedings of the Twelfth European Conference on Computer Systems,
EuroSys ’17, page 298–313, 2017.

[4] Apple. Small chip. Giant leap., 2020. https://www.apple.com/mac/
m1/.

[5] ARM. Processing Architecture for Power Efficiency and Perfor-
mance, 2021. https://www.arm.com/why-arm/technologies/
big-little.

[6] A. Bijlani and U. Ramachandran. Extension Framework for File Sys-
tems in User space. In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), pages 121–134, Renton, WA, July 2019.

[7] A. Blanchard. will-it-scale, 2013. https://github.com/
antonblanchard/will-it-scale.

[8] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich. An Analysis of Linux Scalability to Many
Cores. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 1–16, Vancouver,
Canada, Oct. 2010.

[9] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-
scalable locks are dangerous. In Proceedings of the Linux Symposium,
Ottawa, Canada, July 2012.

[10] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano,
G. Bianchi, A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco.
hXDP: Efficient Software Packet Processing on FPGA NICs. In Pro-
ceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 973–990, Virtual, Nov. 2020.

[11] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
NUMA-aware Reader-writer Locks. In Proceedings of the 18th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP),
pages 157–166, Shenzhen, China, Feb. 2013.

[12] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance
Locks for Multi-level NUMA Systems. In Proceedings of the 20th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP),
San Francisco, CA, Feb. 2015.

[13] J. Corbet. MCS locks and qspinlocks, 2014. https://lwn.net/
Articles/590243/.

[14] J. Corbet. User-space page fault handling, 2015. https://lwn.net/
Articles/636226/.

[15] J. Corbet. Controlling the CPU scheduler with BPF, 2021. https:
//lwn.net/Articles/873244/.

[16] I. Cutress. Intel Alder Lake: Confirmed x86 Hybrid with Golden
Cove and Gracemont for 2021, 2020. https://www.anandtech.com/
show/15979/intel-alder-lake-confirmed-x86-hybrid-
with-golden-cove-and-gracemont-for-2021.

[17] R. L. de Lima Chehab, A. Paolillo, D. Behrens, M. Fu, H. Härtig, and
H. Chen. Clof: A compositional lock framework for multi-level numa
systems. In Proceedings of the 28th ACM Symposium on Operating
Systems Principles (SOSP), Virtual, Oct. 2021.

[18] D. Dice and A. Kogan. BRAVO: Biased Locking for Reader-Writer
Locks. In Proceedings of the 2019 USENIX Annual Technical Conference
(ATC), pages 315–328, Renton, WA, July 2019. USENIX Association.
ISBN 978-1-939133-03-8.

[19] D. Dice and A. Kogan. Compact NUMA-aware Locks. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 12:1–12:15,

New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6281-8.
[20] D. Dice and A. Kogan. Hemlock: Compact and scalable mutual ex-

clusion. In Proceedings of the 33rd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’21, page 173–183, 2021.

[21] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General
Technique for Designing NUMA Locks. In Proceedings of the 17th
ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 247–256, New Orleans, LA, Feb. 2012.

[22] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exokernel: An Operat-
ing System Architecture for Application-Level Resource Management.
In Proceedings of the 15th ACM Symposium on Operating Systems Prin-
ciples (SOSP), Copper Mountain, CO, Dec. 1995.

[23] M. Fleming. A thorough introduction to eBPF, 2017. https://
lwn.net/Articles/740157/.

[24] foniod. RedBPF, 2021. https://github.com/foniod/redbpf.
[25] S. Ghemawat and J. Dean. LevelDB, 2019. URL https://github.com/

google/leveldb.
[26] H. Guiroux, R. Lachaize, and V. Quéma. Multicore Locks: The Case is

Not Closed Yet. In Proceedings of the 2016 USENIX Annual Technical
Conference (ATC), pages 649–662, Denver, CO, June 2016.

[27] G. Haskins. seqlock: serialize against writers, 2008. https://
lwn.net/Articles/296209/.

[28] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden, J. Don,
L. Rizzo, O. Rombakh, P. Turner, and C. Kozyrakis. Ghost: Fast & flexi-
ble user-space delegation of linux scheduling. In Proceedings of the
28th ACM Symposium on Operating Systems Principles (SOSP), Virtual,
Oct. 2021.

[29] Intel. Introduction to the Storage Performance Development Kit
(SPDK), 2016. https://software.intel.com/content/www/
us/en/develop/articles/introduction-to-the-storage-
performance-development-kit-spdk.html.

[30] iovisor. BPF Compiler Collection (BCC), 2021. https://github.com/
iovisor/bcc.

[31] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer sys-
tems. CoRR, cs.NI/9809099, 1998. URL https://arxiv.org/abs/
cs/9809099.

[32] S. Jennings. Kernel live patching, 2014. https://lwn.net/
Articles/619390/.

[33] R. Kadekodi, S. K. Lee, S. Kashyap,T. Kim,A. Kolli, andV. Chidambaram.
SplitFS: Reducing Software Overhead in File Systems for Persistent
Memory. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), Ontario, Canada, Oct. 2019.

[34] K. Kaffes, J. T. Humphries, D. Mazières, and C. Kozyrakis. Syrup: User-
Defined Scheduling Across the Stack. In Proceedings of the 28th ACM
Symposium on Operating Systems Principles (SOSP), Virtual, Oct. 2021.

[35] S. Kashyap, C. Min, and T. Kim. Scalable NUMA-aware Blocking Syn-
chronization Primitives. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC), Santa Clara, CA, July 2017.

[36] S. Kashyap, C. Min, and T. Kim. Scaling Guest OS Critical Sections with
eCS. In Proceedings of the 2018 USENIX Annual Technical Conference
(ATC), Boston, MA, July 2018.

[37] S. Kashyap, I. Calciu, X. Cheng, C. Min, and T. Kim. Scalable and Practi-
cal LockingWith Shuffling. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP), Ontario, Canada, Oct. 2019.

[38] S. Kim, H. Kim, J. Lee, and J. Jeong. Enlightening the I/O Path: A Holis-
tic Approach for Application Performance. In 15th USENIX Conference
on File and Storage Technologies (FAST), pages 345–358, Santa Clara,
CA, Feb. 2017.

[39] A. Kogan. [PATCH 0/3] Add NUMA-awareness to qspinlock, 2019.
URL https://lkml.org/lkml/2019/1/30/1191.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    681

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.apple.com/mac/m1/
https://www.apple.com/mac/m1/
https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little
https://github.com/antonblanchard/will-it-scale
https://github.com/antonblanchard/will-it-scale
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/636226/
https://lwn.net/Articles/636226/
https://lwn.net/Articles/873244/
https://lwn.net/Articles/873244/
https://www.anandtech.com/show/15979/intel-alder-lake-confirmed-x86-hybrid-with-golden-cove-and-gracemont-for-2021
https://www.anandtech.com/show/15979/intel-alder-lake-confirmed-x86-hybrid-with-golden-cove-and-gracemont-for-2021
https://www.anandtech.com/show/15979/intel-alder-lake-confirmed-x86-hybrid-with-golden-cove-and-gracemont-for-2021
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://github.com/foniod/redbpf
https://github.com/google/leveldb
https://github.com/google/leveldb
https://lwn.net/Articles/296209/
https://lwn.net/Articles/296209/
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-the-storage-performance-development-kit-spdk.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-the-storage-performance-development-kit-spdk.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-the-storage-performance-development-kit-spdk.html
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://arxiv.org/abs/cs/9809099
https://arxiv.org/abs/cs/9809099
https://lwn.net/Articles/619390/
https://lwn.net/Articles/619390/
https://lkml.org/lkml/2019/1/30/1191


[40] Linux. Shadow Variables, 2018. https://www.kernel.org/doc/
Documentation/livepatch/shadow-vars.txt.

[41] N. Liu, J. Gu, D. Tang, K. Li, B. Zang, and H. Chen. Asymmetry-
aware Scalable Locking. CoRR, abs/2108.03355, 2021. URL https:
//arxiv.org/abs/2108.03355.

[42] R. Liu, H. Zhang, and H. Chen. Scalable Read-mostly Synchronization
Using Passive Reader-writer Locks. In Proceedings of the 2014 USENIX
Annual Technical Conference (ATC), pages 219–230, Philadelphia, PA,
June 2014.

[43] A. Lochmann, H. Schirmeier, H. Borghorst, and O. Spinczyk. Lockdoc:
Trace-based analysis of locking in the linux kernel. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19, 2019.

[44] W. Long. qrwlock: Introducing a queue read/write lock implementa-
tion, 2014. URL https://lwn.net/Articles/579729/.

[45] W. Long. qspinlock: Introducing a 4-byte queue spinlock, 2014.
https://lwn.net/Articles/582897/.

[46] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Fast and
Portable Locking for Multicore Architectures. ACM Trans. Comput.
Syst., 33(4):13:1–13:62, Jan. 2016.

[47] Madhavapeddy, Anil and Scott, David J. Unikernels: The Rise of the
Virtual Library Operating System. Commun. ACM, page 61–69, Jan.
2014. ISSN 0001-0782.

[48] Y. Mao, R. Morris, and F. M. Kaashoek. Optimizing MapReduce for
Multicore Architectures. In MIT CSAIL, Technical Report, 2010.

[49] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli,
M. Dalton, N. Dukkipati, W. C. Evans, S. Gribble, N. Kidd, R. Kononov,
G. Kumar, C. Mauer, E. Musick, L. Olson, M. Ryan, E. Rubow, K. Spring-
born, P. Turner,V. Valancius,X.Wang, andA. Vahdat. Snap: a microker-
nel approach to host networking. In In ACM SIGOPS 27th Symposium
on Operating Systems Principles, New York, NY, USA, 2019.

[50] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell, D. Sarma,
and M. Soni. Read-Copy Update. In Ottawa Linux Symposium, OLS,
2002.

[51] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Syn-
chronization on Shared-memoryMultiprocessors. ACMTrans. Comput.
Syst., 9(1):21–65, Feb. 1991.

[52] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim. Understanding
Manycore Scalability of File Systems. In Proceedings of the 2016 USENIX
Annual Technical Conference (ATC), Denver, CO, June 2016.

[53] C. Min, W.-H. Kang, M. Kumar, S. Kashyap, S. Maass, H. Jo, and T. Kim.
SOLROS: A Data-Centric Operating System Architecture for Hetero-
geneous Computing. In Proceedings of the 13th European Conference
on Computer Systems (EuroSys), Porto, Portugal, Apr. 2018.

[54] I. Molnar. Linux rwsem, 2006. http://www.makelinux.net/ldd3/
chp-5-sect-3.

[55] I. Molnar and D. Bueso. Generic Mutex Subsystem, 2016.
https://www.kernel.org/doc/Documentation/locking/
mutex-design.txt.

[56] ORACLE. Ksplice, 2018. https://ksplice.oracle.com.
[57] S. Park, I. Calciu, T. Kim, and S. Kashyap. Contextual Concurrency

Control. In 18th USENIX Workshop on Hot Topics in Operating Systems

(HotOS) (HotOS XVIII), Virtual, May 2021.
[58] Y. Patel, L. Yang, L. Arulraj, A. C. Arpaci-Dusseau, R. H. Arpaci-

Dusseau, and M. M. Swift. Avoiding Scheduler Subversion Using
Scheduler-Cooperative Locks. In Proceedings of the 15th European
Conference on Computer Systems (EuroSys), Virtual, Apr. 2020.

[59] S. Peter, J. Li, I. Zhang, D. R. Ports, A. Krishnamurthy, T. Anderson,
and T. Roscoe. Arrakis: The Operating System is the Control Plane.
In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[60] J. Poimboeuf. kpatch: dynamic kernel patching, 2014. https:
//lwn.net/Articles/597123/.

[61] T. L. F. Projects. DPDK, 2021. https://www.dpdk.org/.
[62] Z. Radovic and E. Hagersten. Hierarchical Backoff Locks for Nonuni-

form Communication Architectures. In Proceedings of the 9th Interna-
tional Symposium on High-Performance Computer Architecture, HPCA
’03, pages 241–252, Washington, DC, USA, 2003. IEEE Computer Soci-
ety. ISBN 0-7695-1871-0.

[63] RedHat. Achieving high-performance, low-latency networking with
xdp, 2021. https://developers.redhat.com/blog/2018/12/06/
achieving-high-performance-low-latency-networking-
with-xdp-part-1/.

[64] rust bpf. Rust-bcc, 2021. https://github.com/rust-bpf/rust-
bcc.

[65] M. Rybczyńska. Bounded loops in bpf for the 5.3 kernel, 2019.
https://lwn.net/Articles/794934/.

[66] J. Slaby. kGraft, 2014. https://lwn.net/Articles/603185/.
[67] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield. Analyzing

lock contention in multithreaded applications. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, page 269–280, jan 2010.

[68] L. Torvalds. Linux Wait Queues, 2005. http://www.tldp.org/LDP/
tlk/kernel/kernel.html.

[69] J. Triplett, P. E. McKenney, and J. Walpole. Resizable, Scalable, Con-
current Hash Tables via Relativistic Programming. In Proceedings
of the 2011 USENIX Annual Technical Conference (ATC), pages 11–11,
Portland, OR, June 2011.

[70] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krishnamurthy,
S. Al-Kiswany, R. T. Kaushik, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Split-Level I/O Scheduling. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[71] T. Yu and M. Pradel. Syncprof: Detecting, localizing, and optimizing
synchronization bottlenecks. In Proceedings of the 25th International
Symposium on Software Testing andAnalysis, ISSTA 2016, page 389–400,
2016.

[72] F. Zhou, Y. Gan, S. Ma, and Y. Wang. wPerf: Generic Off-CPU analysis
to identify bottleneck waiting events. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages
527–543, Carlsbad, CA, Oct. 2018.

[73] P. Zijlstra. lockstat: documentation, 2003. https://lwn.net/
Articles/252835/.

682    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/Documentation/livepatch/shadow-vars.txt
https://www.kernel.org/doc/Documentation/livepatch/shadow-vars.txt
https://arxiv.org/abs/2108.03355
https://arxiv.org/abs/2108.03355
https://lwn.net/Articles/579729/
https://lwn.net/Articles/582897/
http://www.makelinux.net/ldd3/chp-5-sect-3
http://www.makelinux.net/ldd3/chp-5-sect-3
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
https://ksplice.oracle.com
https://lwn.net/Articles/597123/
https://lwn.net/Articles/597123/
https://www.dpdk.org/
https://developers.redhat.com/blog/2018/12/06/achieving-high-performance-low-latency-networking-with-xdp-part-1/
https://developers.redhat.com/blog/2018/12/06/achieving-high-performance-low-latency-networking-with-xdp-part-1/
https://developers.redhat.com/blog/2018/12/06/achieving-high-performance-low-latency-networking-with-xdp-part-1/
https://github.com/rust-bpf/rust-bcc
https://github.com/rust-bpf/rust-bcc
https://lwn.net/Articles/794934/
https://lwn.net/Articles/603185/
http://www.tldp.org/LDP/tlk/kernel/kernel.html
http://www.tldp.org/LDP/tlk/kernel/kernel.html
https://lwn.net/Articles/252835/
https://lwn.net/Articles/252835/


BlackBox: A Container Security Monitor for
Protecting Containers on Untrusted Operating Systems

Alexander Van’t Hof
Columbia University

Jason Nieh
Columbia University

Abstract

Containers are widely deployed to package, isolate, and
multiplex applications on shared computing infrastructure,
but rely on the operating system to enforce their security
guarantees. This poses a significant security risk as large
operating system codebases contain many vulnerabilities.
We have created BlackBox, a new container architecture
that provides fine-grain protection of application data
confidentiality and integrity without trusting the operating
system. BlackBox introduces a container security monitor, a
small trusted computing base that creates protected physical
address spaces (PPASes) for each container such that there is
no direct information flow from container to operating system
or other container PPASes. Indirect information flow can only
happen through the monitor, which only copies data between
container PPASes and the operating system as system call
arguments, encrypting data as needed to protect interprocess
communication through the operating system. Containerized
applications do not need to be modified, can still make use of
operating system services via system calls, yet their CPU and
memory state are isolated and protected from other containers
and the operating system. We have implemented BlackBox
by leveraging Arm hardware virtualization support, using
nested paging to enforce PPASes. The trusted computing base
is a few thousand lines of code, many orders of magnitude
less than Linux, yet supports widely-used Linux containers
with only modest modifications to the Linux kernel. We show
that BlackBox provides superior security guarantees over
traditional hypervisor and container architectures with only
modest performance overhead on real application workloads.

1 Introduction

Containers are widely deployed to package, isolate, and
multiplex applications on shared computing infrastructure.
They are increasingly used in lieu of hypervisor-based virtual
machines (VMs) because of their faster startup time, lower
resource footprint, and better I/O performance [6, 15, 26, 47].

Popular container mechanisms such as Linux containers
rely on a commodity operating system (OS) to enforce their
security guarantees. However, commodity OSes such as
Linux are huge, complex, and imperfect pieces of software.
Attackers that successfully exploit OS vulnerabilities may
gain unfettered access to container data, compromising the
confidentiality and integrity of containers—an undesirable
outcome for both computing service providers and their users.

Modern systems incorporate hardware security mecha-
nisms to protect applications from an untrusted OS, such
as Intel Software Guard Extensions (SGX) [30] and Arm
TrustZone [2], but they require rewriting applications and may
impose high overhead to use OS services. Some approaches
have built on these mechanisms to protect unmodified
applications [7] or containers [3]. Unfortunately, they suffer
from high overhead, incomplete and limited functionality,
and massively increase the trusted computing base (TCB)
through a library OS or runtime system, potentially trading
one large vulnerable TCB for another.

As an alternative, hypervisors have been augmented with
additional mechanisms to protect applications from an un-
trusted OS [11, 12, 27, 35, 67]. This incurs the performance
overhead of hypervisor-based virtualization, which containers
were designed to avoid. The TCB of these systems is signif-
icant, in some cases including an additional commodity host
OS, providing additional vulnerabilities to exploit to com-
promise applications. Theoretically, these approaches could
be applied to microhypervisors [10, 61] with smaller TCBs.
Unfortunately, microhypervisors still inherit the complex-
ity of hypervisor-based virtualization, including virtualizing
and managing hardware resources. The reduction in TCB is
achieved through a much reduced feature set and limited hard-
ware support, making their deployment difficult in practice.

To address this problem, we have created BlackBox, a new
container architecture that provides fine-grain protection of
application data confidentiality and integrity without the need
to trust the OS. BlackBox introduces a container security mon-
itor (CSM), a new mechanism that leverages existing hardware
features to enforce container security guarantees in a small

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    683



trusted computing base (TCB) in lieu of the OS. The monitor
creates protected physical address spaces (PPASes) for each
container to enforce physical memory access controls, but pro-
vides no virtualization of hardware resources. Physical mem-
ory mapped to a container’s PPAS is not accessible outside the
PPAS, providing physical memory isolation among containers
and the OS. Since container private data in physical memory
only resides on pages in its own PPAS, its confidentiality and
integrity is protected from the OS and other containers.

The CSM repurposes existing hardware virtualization
support to run at a higher privilege level and create PPASes,
but is itself not a hypervisor and does not virtualize hardware.
Instead, the OS continues to access devices directly and
remains responsible for allocating resources. This enables
the CSM to be minimalistic and simple while remaining
performant. By supporting containers directly without
virtualization, no additional guest OS or complex runtime
needs to run within the secured execution environment,
minimizing the TCB within the container itself.

Applications running in BlackBox containers do not need
to be modified and can make use of OS services via system
calls, with the added benefit of their data being protected from
the OS. The monitor interposes on all transitions between
containers and the OS, clearing container private data in CPU
registers and switching PPASes as needed. The only time in
which any container data in memory is made available to the
OS is as system call arguments, which only the monitor itself
can provide by copying the arguments between container
PPASes and the OS. The monitor is aware of system call
semantics and encrypts system call arguments as needed
before passing them to the OS, such as for interprocess
communication between processes, protecting container
private data in system call arguments from the OS. Given the
growing use of end-to-end encryption for I/O security [55],
in part due to the Snowden leaks [36], the monitor relies
on applications to encrypt their own I/O data to simplify its
design. Once a system call completes and before allowing
a process to return to its container, the monitor checks the
CPU state to authenticate the process before switching the
CPU back to using the container’s PPAS.

In addition to ensuring a container’s CPU and memory
state is not accessible outside the container, BlackBox protects
against malicious code running inside containers. Only trusted
binaries, which are signed and encrypted, can run in BlackBox
containers. The monitor is required to decrypt the binaries, so
they can only run within BlackBox containers with monitor
supervision. The monitor authenticates the binaries before
they can run, so untrusted binaries cannot run in BlackBox
containers. It also guards against memory-related Iago attacks,
attacks that maliciously manipulate virtual and physical mem-
ory mappings, that could induce arbitrary code execution in
a process in a container by preventing virtual or physical
memory allocations that could overwrite a process’s stack.

We have implemented BlackBox on Arm hardware, given

Arm’s growing use in personal computers and cloud comput-
ing infrastructure along with its dominance on mobile and
embedded systems. We leverage Arm hardware virtualization
support by repurposing Arm’s EL2 privilege level and nested
paging, originally designed for running hypervisors, to en-
force separation of PPASes. Unlike x86 root operation for run-
ning hypervisors, Arm EL2 has its own hardware system state.
This minimizes the cost of trapping to the monitor running
in EL2 when calling and returning from system calls because
system state does not have to be saved and restored on each
trap. We show that BlackBox can support widely-used Linux
containers with only modest modifications to the Linux kernel,
and inherits support for a broad range of Arm hardware from
the OS. The implementation has a TCB of less than 5K lines
of code plus a verified crypto library, orders of magnitude less
than commodity OSes and hypervisors. With such a reduced
size, the CSM is significantly easier for developers to maintain
and ensure the correctness of than even just the core virtualiza-
tion functionality of a hypervisor. We show that BlackBox can
provide finer granularity and stronger security guarantees than
traditional hypervisor and container architectures with only
modest performance overhead for real application workloads.

2 Threat Model and Assumptions

Our threat model is primarily concerned with OS vulnerabil-
ities that may be exploited to compromise the confidentiality
or integrity of a container’s private data. Attacks in scope
include compromising the OS or any other software to read or
modify private container memory or register state, including
by controlling DMA-capable devices, or via memory remap-
ping and aliasing attacks. We assume a container does not
voluntarily reveal its own private data whether on purpose or
by accident, but attacks from other compromised containers,
including confidentiality and integrity attacks, are in scope.
Availability attacks by a compromised OS are out of scope.
Physical or side-channel attacks [5, 32, 43, 52, 68, 69] are
beyond the scope of the paper. Opportunities for side-channel
attacks are greater in BlackBox than in systems that isolate
at a lower level, e.g. VMs. The trust boundary of BlackBox
is that of the OS’s system call API, enabling adversaries to
see some details of OS interactions such as sizes and offsets.

We assume secure key storage is available, such as
provided by a Trusted Platform Module (TPM) [31]. We
assume the hardware is bug-free and the system is initially
benign, allowing signatures and keys to be securely stored
before the system is compromised. We assume containers
use end-to-end encrypted channels to protect their I/O
data [21, 37, 55]. We assume the CSM does not have any
vulnerabilities and can thus be trusted; formally verifying
its codebase is future work. We assume it is computationally
infeasible to perform brute-force attacks on any encrypted
container data, and any encrypted communication protocols
are assumed to be designed to defend against replay attacks.

684    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



CSM
Crypto 
Library

CPU 
Protection

Memory 
Protection

Boot
Protection

OS

Scheduler
Memory 
Allocator

Drivers
Interrupt 
Handlers

Ctx Switch
Interposer

Container 
Runtime

Hardware Secure Storage

ContainerContainer

Exception Vector Table

EL2

EL1

EL0

Figure 1: BlackBox Architecture

3 Design

BlackBox enclaves traditional Linux containers to protect the
confidentiality and integrity of container data. We refer to
a container as being enclaved if BlackBox protects it from
the OS. From an application’s perspective, using enclaved
containers is little different from using traditional containers.
Applications do not need to be modified to use enclaved con-
tainers and can make use of OS services via system calls. Con-
tainer management solutions [48,49] such as Docker [20] can
be used to manage enclaved containers. BlackBox is designed
to support commodity OSes, though minor OS modifications
are needed to use its enclave mechanism, in much the same
way that OS modifications are typically required to take ad-
vantage of new hardware features. However, BlackBox does
not trust the OS and a compromised OS running enclaved con-
tainers cannot violate their data confidentiality and integrity.

BlackBox introduces a container security monitor (CSM),
as depicted in Figure 1, which serves as its TCB. The CSM’s
only purpose is to protect the confidentiality and integrity of
container data in use. It achieves this by performing two main
functions, access control and validating OS operations. Its
narrow purpose and functionality makes it possible to keep
the CSM small and simple, avoiding the complexity of many
other trusted system software components. For example,
unlike a hypervisor, the CSM does not virtualize or manage
hardware resources. It does not maintain virtual hardware
such as virtual CPUs or devices, avoiding the need to emulate
CPU instructions, interrupts, or devices. Instead, interrupts are
delivered directly to the OS and devices are directly managed
by the OS’s existing drivers. It also does not do CPU schedul-
ing or memory allocation, making no availability guarantees.
The CSM can be kept small because it presumes the OS is
CSM-aware and relies on the OS for complex functionality
such as bootstrapping, CPU scheduling, memory manage-
ment, file systems, and interrupt and device management.

To enclave containers, the CSM introduces the notion of
a protected physical address space (PPAS), an isolated set of
physical memory pages accessible only to the assigned owner
of the PPAS and the CSM. Each page of physical memory is
mapped to at most one PPAS. The CSM uses this mechanism
to provide memory access control by assigning a separate

PPAS to each enclaved container, thereby isolating the phys-
ical memory of each container from the OS and any other
container. The OS determines what memory is allocated to
each PPAS, but cannot access the memory contents of a PPAS.
Similarly, a container cannot access a PPAS that it does not
own. Memory not assigned to a PPAS, or the CSM, is as-
signed to and accessible to the OS. The CSM itself can access
any memory, including memory assigned to a PPAS. Within
a PPAS, addresses for accessing memory are the same as the
physical addresses on the machine; physical memory cannot
be remapped to a different address in a PPAS. For example, if
page number 5 of physical memory is assigned to a PPAS, it
will be accessed as page number 5 from within the PPAS. Con-
tainer private data in memory only resides on pages mapped to
its own PPAS, therefore its confidentiality and integrity is pro-
tected from the OS and other containers. Section 4 describes
how BlackBox uses nested page tables to enforce PPASes.

The CSM interposes on all transitions between containers
and the OS, namely system calls, interrupts, and exceptions,
so that it can ensure that processes and threads, which we
collectively refer to as tasks, can only access the PPAS of
the container to which they belong when executing within
context of the container. The CSM ensures that when a task
traps to the OS and switches to running OS kernel code, the
task no longer has access to the container’s PPAS. Otherwise,
the OS could cause the task to access the container’s private
data, compromising its confidentiality or integrity. The CSM
maintains an enclaved task array, an array with information
for all tasks running in enclaved containers. When entering
the OS, the CSM checks if the calling task is in an enclaved
container, in which case it saves to the enclaved task array
the CPU registers and the cause of the trap, switches out
of the container’s PPAS, and clears any CPU registers not
needed by the OS. When exiting the OS, the CSM checks the
enclaved task array if the running task belongs to an enclaved
container, in which case it validates the current CPU context,
namely the stack pointer and page table base register, match
what was saved in the enclaved task array for the respective
task. If they match, the CSM switches to the respective
container’s PPAS so the task can access its enclaved CPU
and memory state. As a result, container private data in CPU
registers or memory is not accessible to the OS.

To support OS functionality that traditionally requires
access to a task’s CPU state and memory, the CSM provides
an application binary interface (ABI) for the OS to request
services from the CSM. The CSM ABI is shown in Table 1.
For example, create_enclave and destroy_enclave are
called by the OS in response to requests from a container run-
time, such as runC [29], to enclave and unenclave containers,
respectively. For CSM calls that require dynamically allo-
cated memory, the OS must allocate and pass in the physical
address of a large enough region of contiguous memory to
perform the respective operation. Otherwise, the call will fail
and return the amount of memory required so that the OS can

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    685



CSM Call Description
create_enclave Create new enclave for a container.
destroy_enclave Destroy enclave of a container.
protect_vectors Validate OS exception vectors.
alloc_iopgtable Allocate I/O device page table.
free_iopgtable Free I/O device page table.
set_iopt Update entry in I/O device page table.
get_ioaddr Get physical address for I/O virtual address.
enter_os Context switch CPU to OS.
exit_os Context switch CPU from OS.
set_vma Update virtual memory areas of a process/thread.
set_pt Update page table entry of a process/thread.
copy_page Copy contents of a page to a container.
task_clone Run new process/thread in a container.
task_exec Run in new address space in a container.
task_exit Exit a process or thread in a container.
futex_read Read the value of a futex in a container.

Table 1: BlackBox Container Security Monitor ABI

make the call again with the required allocation. For example,
create_enclave requires the OS to allocate memory to be
used for metadata for the enclaved container. Upon success,
the allocated memory is assigned to the CSM and no longer
accessible to the OS until destroy_enclave is called, at
which point the memory is assigned back to the OS again.

3.1 System Boot and Initialization

BlackBox boots the CSM by relying on Unified Extensible
Firmware Interface (UEFI) firmware and its signing infras-
tructure with a hardware root of trust. The CSM and OS
kernel are linked as a single binary which is cryptographically
signed, typically by a cloud provider running BlackBox
containers; this is similar to how OS binaries are signed by
vendors like Red Hat or Microsoft. The binary is first verified
using keys already stored in secure storage, ensuring that only
the signed binary can be loaded. To keep the CSM as simple
as possible, BlackBox does not implement bootstrapping
within the CSM itself, which can require thousands of lines of
code to support many systems. Instead, it relies on the OS’s
bootstrapping code to install the CSM securely at boot time
since the OS is initially benign. By relying on commodity
OSes such as Linux that already boot on a wide range of
systems, this makes it easier for the CSM to support many
systems without the burden of manually maintaining and
porting its own bootstrapping code for many systems.

At boot time, the OS initially has full control of the system
to initialize hardware, and installs the CSM. CSM installation
occurs before local storage, network and serial input services
are available, so remote attackers cannot compromise its in-
stallation. Once installed, the CSM runs at a higher privilege
level than the OS and subsequently enables PPASes as needed.
A small amount of physical memory is statically assigned to
the CSM, and the rest is assigned to the OS. Any attempt to ac-
cess the CSM’s memory except by the CSM itself will trap to

the CSM and be rejected. Although the OS’s memory is sep-
arate from the CSM’s, the CSM can access the OS’s memory
and can restrict its from modifying its own memory if needed.

The CSM expects the hardware to include an IOMMU
to protect against DMA attacks by devices managed by
the OS [62]. The CSM retains control of the IOMMU and
requires the OS to make CSM calls to update IOMMU page
table mappings, which are typically configured by the OS
during boot. This ensures that I/O devices can only access
memory mapped into the IOMMU page tables managed
by the CSM. The OS calls alloc_iopgtable during boot
to allocate an IOMMU translation unit and its associated
page table for a device, and set_iopt and to assign physical
memory to the device to use for DMA. The CSM ensures
that the OS can only assign its own physical memory to the
IOMMU page tables, ensuring that DMA attacks cannot be
used to compromise CSM or container memory.

3.2 Enclaved Container Initialization

To securely initialize an enclaved container, an image that
is to be used for such a container must first be processed into
a BlackBox container image, using a process similar to how
Amazon enclaves are created using Docker images [1]. Black-
Box provides a command line tool build_bb_image, which
can be used by a cloud customer, that takes a Docker image,
finds all executable binary files contained within the image,
and encrypts the sections containing the code and data used
by the code using the public key paired with a trusted private
key stored in the secure storage of the host and accessible only
by the CSM. These encrypted sections are then hashed and
their hash values recorded along with the binaries they belong
to. These values are then signed with the private key of the
container image’s creator whose paired public key is accessi-
ble in the secure storage of the host to ensure authenticity and
bundled with the container image for later reference during
process creation, as described in Section 3.3. This ensures the
binaries cannot be modified without being detected, or run
unless decrypted by the CSM. Other than additional hashes
and using encrypted binaries, the BlackBox container image
contains nothing different from a traditional Docker image.

To start a container using a BlackBox container image,
the container runtime is modified to execute a simple shim
process in place of the container’s specified init process.
The container runtime passes the shim the path of the init
process used by the container along with any arguments and
its environment. The shim is also given the signed binary
hash information bundled with the container image. The shim
process runs a tiny statically linked program that initiates
a request to the OS to call the create_enclave CSM call
before executing the original init process, passing the signed
hash information to the CSM as part of the call. Other than
the shim process, which exits upon executing the init process,
there is no additional code that runs in a BlackBox container

686    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



beyond vanilla Linux containers. There are no additional
libraries and no need for a library OS, avoiding the risks of
bloating the TCB of the container itself.
create_enclave creates a new enclave using the Black-

Box container image and returns with the calling process
running in the enclaved container, the return value of the
call being the new enclave’s identifier. create_enclave per-
forms the following steps. First, it creates a new PPAS for
the container. Second, it freezes the userspace memory of the
calling process so it, and its associated page tables, cannot
be directly changed by the OS, then moves all of its pages of
physical memory into the container’s PPAS so that they are
no longer accessible by the OS. Finally, it checks the contents
of the loaded shim binary in memory against a known hash to
validate the calling process is the expected shim process.

After returning from create_enclave, the shim executes
the container’s init process from within the container. Since
the container’s init process obtains its executable from
the BlackBox container image whose code and data are
encrypted, the OS may load it, but cannot actually execute
it without the CSM using its private key to decrypt it. Further
details on exec with encrypted binaries are described in
Section 3.6. In this way, the OS is incapable of running a
BlackBox container image without the CSM. Therefore, if
it is running, the CSM must be involved and protecting it.
Because the CSM itself is securely booted and enclave code is
encrypted and only runnable by the CSM, an unbroken chain
of trust is established enabling remote attestation similar to
that of other security systems, such as Samsung Knox [56].

The container runtime calls destroy_enclave to remove
the enclave of a container, which terminates all running
processes and threads within the container to ensure that any
container CPU state and memory is cleared and no longer
accessible to the OS or any other container before removing
the enclave. The container is effectively returned to the same
state it was in before create_enclave was called.

3.3 Enclaved Task Execution

BlackBox supports the full lifecycle of tasks executing in
enclaved containers, including their dynamic creation and
termination via standard system calls such as fork, clone,
exec, and exit. This includes tracking which tasks are
allowed to execute in which containers. This is achieved by
requiring the OS to call a set of CSM calls, task_clone on
task creation via fork and clone, task_exec when loading
a new address space via exec, and task_exit when a task
exits via exit. These calls request the CSM to perform
various functions related to task execution that the OS is not
able to do because it does not have access to task CPU state
and memory. If the OS does not make the respective CSM
call, the created task and executed binary will simply not run
in its enclave and therefore will not have access to its data.
These calls update the enclaved task array, the index of which

is used as the enclaved task identifier. Each entry in the array
includes the enclave identifier of the container in which the
task executes, as well as the address of the page table used
by the task as discussed earlier.

When a task running in an enclaved container creates a
child task via a system call, the OS calls task_clone with the
enclaved task identifier of the calling task and a flag indicating
whether the new task will share the same address space as the
caller, as when creating a thread, or have its own copy of the
address space of the caller, as when creating a process. In the
latter case, new page tables will be allocated for the child task
and the CSM will ensure that they match those of the caller’s
and cannot be directly modified by the OS. The CSM will also
confirm that the calling task issued the task creation system
call. If all checks pass, the CSM will create a new entry in
the enclaved task array with the same enclave identifier as the
calling process, and return the array index of the new entry
as the identifier for the task. The entry will also contain the
address of the task’s page table, which will be the same as the
caller’s entry if it shares the same address space as the caller.

When the OS runs the child and the task returns from the
OS, the OS provides the CSM with the enclaved task’s identi-
fier. The CSM then looks up the task in its enclaved task array
using this identifier and confirms that the address of the page
table stored in the entry matches the address stored in the page
table base register of the CPU. If the checks pass, it will then
restore CPU state and switch the CPU to the container’s PPAS,
thereby allowing the task to resume execution in the container.
If the OS does not call task_clone, then upon exiting the OS,
the task’s PPAS would not be installed and it would fail to run.

On exec, the calling task will replace its existing address
space with a new one. The OS calls task_exec, which, like
task_clone for fork, creates a new enclaved task entry
with a new address space. The difference is that the new
address space is validated by ensuring that the new process’
stack is set up as expected and the executable binary is
signed and in the BlackBox container image, as described
in Section 3.6. After creating the new enclaved task entry,
the original address space is disassociated from the container,
scrubbing any memory pages to be returned to the OS and
removing them from the container’s PPAS.

On exit, the OS will call task_exit so the CSM can
remove the enclaved task entry from the enclaved task array.
If an address space has no more tasks in the container, the
CSM disassociates it in a similar manner to the exec case.

3.4 Memory

BlackBox prevents the OS from directly accessing a
container’s memory, but relies on the OS for memory manage-
ment, including allocating memory to tasks in the container.
This avoids introducing complex memory management code
into BlackBox, keeping it small and simple, but means that
BlackBox also needs to protect against memory-based Iago

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    687



CSM

OS

Container

NPT Base 
Register

Container
PPAS

OS 
Memory

Fault Handler

1

2

7

9

Task
Page 
Table3 4

set_pt

Task Mappings

5

6

8

10

0x000000 0x12345678

0x12345678

Figure 2: BlackBox Page Fault Workflow

attacks [9] by the untrusted OS through manipulation of
system call return values. For example, if a process calls mmap,
it expects to receive an address mapping that does not overlap
with any of its existing mappings. If the OS were to return a
value overlapping the process’s stack, it could manipulate the
process into overwriting a return address on its stack through
a subsequent read with an attacker controlled address,
opening the door for return-oriented-programming [53] and
return-into-libc [58] attacks. Furthermore, the OS may return
an innocuous looking non-overlapping virtual address from
mmap, but still maliciously map the returned address to the
physical page the stack is on.

To rely on the OS for memory management while
preventing memory-based Iago attacks, BlackBox protects
the container’s memory at the application level by preventing
the OS from directly updating per process page tables. It
instead requires the OS to make requests to the CSM to
update process page tables, allowing the CSM to reject
updates if the OS behaves incorrectly. Figure 2 depicts how
a container’s page table is updated during a page fault. When
a process in a container faults on a page, an exception causes
control to transfer to the OS by way of the CSM (steps 1-3).
The OS then allocates a page for the process, but instead of
updating the process page table directly, it performs a set_pt
CSM call (step 4). Upon receiving the set_pt call, the CSM
verifies if the allocation is acceptable (step 5). To do so, the
CSM maintains a list of valid mappings for each process. This
list is maintained by interposing on system calls that adjust
memory mappings. In Linux these calls include mmap and brk.
Prior to writing the page table entry, the CSM first verifies
that the virtual address specified belongs to a valid mapping.
If it does not, the update is rejected. Second, the CSM checks
if the physical page assigned is already in the container’s
PPAS and therefore already in use. This can commonly occur
innocuously when, e.g., two processes in a container have the
same file mapped in their address spaces. However, to prevent
the risk of a malicious OS coercing an enclave to overwrite
existing memory via a malicious memory allocation, the CSM
marks any physical page mapped more than once read only in
the container’s PPAS, unless it was inherited from a parent as

part of process creation in which case it can be trusted. While
this is effective at preventing these attacks, the downside is
that writes to such memory will trap and need to be handled
by BlackBox; for simplicity, BlackBox disallows writable
memory-mapped file I/O as it is uncommonly used. Finally,
if the virtual address is valid and not mapped to an existing
physical page in a container’s PPAS, the CSM unmaps the
assigned physical page from the OS and maps it into the
container’s PPAS. The CSM then updates the page table entry
on the OS’s behalf (step 6). Control is then returned back to
the OS (step 7). When returning control back to the process
that faulted, the process’s container PPAS will be switched to
(steps 8-10). Section 4 describes further details about this pro-
cess. The CSM also invalidates TLB entries as needed when
it performs page table updates, ensuring that a malicious OS
cannot violate a container’s PPAS through stale TLB entries.

BlackBox provides support for copy-on-write (CoW) mem-
ory, a key optimization commonly used in OSes. The OS
traditionally expects to be able to share a page in memory
among multiple processes and when a write is attempted,
break the CoW by copying the contents of the page to a new
page assigned to the process. With BlackBox, the OS does not
have the ability to copy container memory though, so the OS
instead makes a copy_page CSM call to have the CSM per-
form the CoW break on its behalf. The CSM will check that
the source page belongs to the container’s PPAS and the desti-
nation page is in the OS’s memory. If so, it will move the des-
tination page into the container’s PPAS and perform the copy.

BlackBox supports the dynamic release of memory back
to the OS as tasks adjust their heap, unmap memory regions,
and exit, while preserving the privacy and integrity of a
container’s memory. As with memory allocation, system
calls that can allow for returning of an application’s memory,
like munmap and _exit are tracked to maintain an accurate
view of a container’s memory mappings. During these calls,
the OS may attempt to free pages allocated to the process. In
doing so, as with memory allocation, it must make use of the
set_pt CSM call since it cannot update page tables directly.
The CSM will then check if the application has made a call
to release the specified memory and reject the update if it has
not. If the update is valid, the CSM will perform the page
table update, and if no longer needed, scrub the page and
remove it from the container’s PPAS.

While BlackBox ensures that container memory is not
accessible to the OS, many OS interactions via system calls
expect to use memory buffers that are part of an application’s
memory to send data to, or receive data from, the OS.
BlackBox treats the use of such memory buffers in system
calls as implicit directives to declassify the buffers so they
can be shared with the OS. To support this declassification
while ensuring that a container’s PPAS is not accessible
to the OS, BlackBox provides a syscall buffer for each
task running in an enclaved container that is outside of the
container’s PPAS and accessible to the OS. When interposing

688    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



on a system call exception, the CSM replaces references
to memory buffers passed in as system call arguments with
those to the task’s syscall buffer. For buffers that are used to
send data to the OS, the data in those buffers is copied to the
syscall buffer as well. When returning to the container, the
references to the syscall buffer are replaced with those to the
original memory buffers. For buffers that are used to receive
data from the OS, the data in the syscall buffer is copied to
the original memory buffers as well.

Most system calls are interposed on by a single generic
wrapper function in the CSM that uses a table of system
call metadata to determine which arguments must be altered.
System calls with more complex arguments, like those
involving iovec structures are interposed on with more
specific wrapper functions. On Linux, this interposing and
altering of arguments works for most system calls with a few
notable exceptions as discussed in Section 3.5.

As part of the copying of data from the OS to an enclaved
container, BlackBox also does simple checks on system
call return values to ensure they fall within predefined
correct ranges. This has been shown to protect against many
Iago attacks [14]. However, to keep its TCB simple and
small, BlackBox only guarantees the correctness of system
call semantics for memory management and inter-process
communication (IPC), the latter discussed in Section 3.5. As
a result, BlackBox protects against Iago attacks related to
memory management and IPC, but is susceptible to some
other Iago attacks. Augmenting BlackBox with a user-level
runtime library in an enclaved container that guarantees the
correctness of system call semantics could improve Iago
attack protection, but at the cost of a larger TCB and potential
additional limitations on system call functionality.

3.5 Inter-process Communucation

While BlackBox declassifies data to the OS passed in as sys-
tem call arguments, it protects inter-process communication
(IPC) among tasks running in the same enclaved container
by encrypting the data passed into IPC-related system calls.
This protects applications using IPC, which is transferred
through and accessible to the OS. System calls that can create
IPC-related file descriptors, such as pipe, and Unix Domain
Sockets are interposed on and their returned file descriptors
(FDs) recorded in per-process arrays marking them as related
to IPC. When the CSM interposes on system calls that pass
data through FDs, like write and sendmsg, it checks if the
given FD is one related to IPC for that process. If it is, the
CSM first uses authenticated encryption with a randomly gen-
erated symmetric key created during container initialization
to encrypt the data before moving it into the task’s syscall
buffer. A record counter, incremented on each transaction,
is included as additional authenticated data to prevent the
host from replaying previous transactions. Similarly, data
is decrypted and authenticated when interposing on system

calls like read and recvmsg before copying it to the calling
process’s PPAS. With this mechanism, IPC communication
is transparently encrypted and protected from the OS.

As mentioned in Section 3.4, to avoid trusting the OS’s
memory allocations, memory pages that are used by more
than one process in a container are marked read-only in the
container’s PPAS unless the pages are known to belong to
a shared memory mapping and are inherited during process
creation. Shared memory regions created by a parent process
through mmap with MAP_SHARED and faulted in prior to
forking can be written to by both parent and child processes
since the child’s address space is validated after fork, as
discussed in Section 3.3. However, for simplicity, BlackBox
does not allow for writable IPC shared memory via XSI IPC
methods such as shmget and shm_open, which are no longer
widely-used. Modern applications instead favor thread-based
approaches for performance or shared mappings between
child worker processes via mmap compatible with BlackBox.

Futexes are used among threads and processes to syn-
chronize access to shared regions of memory. As part of the
design of futex, the OS is required to read the futex value,
which is in the process’s address space and included in the
respective container’s memory. This direct access to container
memory is incompatible with BlackBox’s memory isolation.
To support futex, the OS makes a futex_read CSM call
to obtain the value of a futex for container processes, rather
than try and access the memory directly. The CSM ensures
that only the futex address passed to futex can be read, and
only if a futex call has been made.

Signals, used to notify processes of various events, present
two issues for BlackBox. First, when delivering a signal to a
process, a temporary stack for the signal handler is set up in
the process’s memory. With enclaved containers, this memory
is not accessible to the OS. To remedy this, the OS is modi-
fied to setup this stack in a region of memory outside of the
container’s PPAS, which is then moved to the PPAS when the
signal handler is executed and returned to the OS when the sig-
nal handler returns via rt_sigreturn. Second, the OS has to
adjust the control flow of the process to execute the signal han-
dler instead of returning to where it was previously executing.
BlackBox cannot allow the OS to adjust the control flow of an
enclaved process without validating it is doing so properly. To
achieve this, as part of the CSM interposing on system calls, it
tracks signal handler installation via system calls such as rt_
sigaction. Upon handling a signal, the CSM ensures that
the process will be correctly returning to a registered handler.

3.6 Container File System

Files within a container can only be accessed through an OS’s
I/O facilities making access to a container’s files inherently
untrustworthy without additional protection. A userspace
encrypted file system could potentially be used to provide
transparent protection of file I/O, but this would likely signif-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    689



icantly increase the container’s TCB. BlackBox relies on ap-
plications to use encryption to fully protect sensitive data files
within a container, and provides a simple mechanism to allow
the OS to load encrypted executable binaries for execution.

As discussed in Section 3.2, container images for BlackBox
are pre-processed. For example, ELF binaries, widely-used
on Linux, have .text, .data, and .rodata sections that
contain the executable code and data used by the code. These
sections are combined into various segments when loaded
into memory. In a BlackBox container image, the ELF head-
ers are left unencrypted, but the .text, .data, and .rodata
sections are encrypted then hashed, and their hash values are
recorded along with the binaries. This enables BlackBox to
validate the integrity and authenticity of executable binaries.

An ELF binary is executed by the OS as a result of a
process calling exec, upon which the OS loads the binary by
mapping its ELF headers into memory, reading the ELF head-
ers to determine how to process the rest of the binary, then
mapping the segments of the binary to memory. As discussed
in Section 3.3, the OS is required to call task_exec, which
passes the virtual addresses of the binary’s loaded segments
containing the .text, .data, and .rodata sections to the
CSM. During this call, the CSM moves the process’s pages,
corresponding to the loaded binary, into the container’s PPAS,
validates that the hashes of the encrypted .text, .data, and
.rodata sections match the hashes for the given binary from
the BlackBox container image to confirm the authenticity and
integrity of the loaded segments, then decrypts the sections
in memory. The virtual to physical address mappings of these
binary segments are recorded for later use. Upon returning
from task_exec, the OS will begin running the task whose
binary is now decrypted within protected container memory.
If checking the hashes or decryption fails, the CSM will
refuse to run the binary within an enclaved container,
ensuring only trusted binaries can run within.

For dynamically linked binaries, in addition to the binary
segments the OS maps during exec, the OS also maps the
segments of the loader in the process’s address space. These
segments are verified in the same manner as the binary’s
segments. Dynamically linked binaries load and execute
external libraries that BlackBox must validate are as expected
and trusted. During the container image creation process, as
with executable binaries, library binaries are also encrypted
preventing their use without the CSM. These libraries are
loaded and linked at runtime in userspace by a loader that
is part of the trusted container image. To do this, the loader,
running as part of a process’s address space, mmaps library
segments into memory. The CSM intercepts these mmaps
by interposing on FD-related system calls, such as open. If
an FD is created for one of the libraries within a container,
as recorded during container image creation, the CSM marks
that FD as associated with the given library. If this FD is then
used with mmap, the CSM intercepts it. Based on the size of
the mmap request and the protection flags used, the CSM can

infer which segment the loader is mapping. If it is a segment
containing one of the encrypted sections, the CSM performs
the same hashing, decryption, and memory map recording
as it does with executable binaries.

4 Implementation

We have implemented a BlackBox prototype by repurposing
existing hardware virtualization support available on modern
architectures, including a higher privilege level, usually
reserved for hypervisors, and nested page tables (NPTs).
NPTs, also known as Arm’s Stage 2 page tables and
Intel’s Extended Page Tables (EPT), is a hardware-assisted
virtualization technology that introduces an additional level
of virtual address translation [8]. When NPTs are used by
hypervisors, the guest OS in a VM manages its own page
table to translate a virtual address to what the VM perceives
as its physical address, known as a guest physical address, but
then the hypervisor manages an NPT to translate the guest
physical address to an actual physical address on the host.
Hypervisors can thereby use NPTs to control what physical
memory is available to each VM.

BlackBox uses hardware virtualization support to run the
CSM in lieu of a hypervisor to support PPASes. The CSM
runs at the higher hypervisor privilege level, so that it is
strictly more privileged than the OS and is able to control
NPTs. The CSM introduces an NPT for each container and
the OS, such that a container’s PPAS is only mapped to its
own NPT, isolating the physical memory of each container
from the OS and each other. The CSM switches a CPU
from one PPAS to another by simply updating its NPT base
register to point to the respective container’s NPT. Similarly,
the CSM uses NPTs to protect its own memory from the OS
and containers by simply not mapping its own memory into
the NPTs. The memory for the NPTs is part of the CSM’s
protected memory and is itself not mapped into any NPTs so
that only the CSM can update the NPTs. When the CSM runs,
NPTs are disabled, so it has full access to physical memory.

Specifically, BlackBox uses Arm hardware virtualization
extensions (VE) [16–19]. The CSM runs in Arm’s hypervisor
(EL2) mode, which is strictly more privileged than user (EL0)
and kernel (EL1) modes. EL2 has its own execution context
defined by register and control state, and switching the
execution context of EL0 and EL1 are done in software. The
CSM configures Stage 2 page tables in EL2, and the System
Memory Management Unit (SMMU), Arm’s IOMMU. The
Linux kernel runs in EL1 and has no access to EL2 registers,
so it cannot compromise the CSM. CSM calls are made using
Arm’s hvc instruction from EL1.

Before and after every transition to the OS, BlackBox traps
to the CSM, which in turn switches between container and OS
NPTs. One might think that imposing two context switches
to the CSM to swap NPTs for every one call to the OS
would be prohibitively expensive, but we show in Section 5

690    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



that this can be done on Arm without much overhead. The
flexibility that Arm EL2 provides of allowing software
to determine how execution context is switched between
hypervisor and other modes turns out to be particularly
advantageous for implementing the CSM because it does
not lock its implementation into using heavyweight hardware
virtualization mechanisms to save and restore hypervisor
execution context that are not required for the CSM.

Trapping to the CSM before and after every transition to the
OS requires that the CSM interpose on all system calls, inter-
rupts, and exceptions. Hypervisors traditionally accomplish
similar functionality by trapping interrupts and exceptions to
itself, then injecting virtual interrupts and exceptions to a VM.
BlackBox avoids the additional complexity of virtualizing
interrupts and exceptions by taking a different approach. The
CSM configures hardware so system calls, interrupts, and ex-
ceptions trap to the OS and modifies the OS’s exception vector
table for handling these events so that enter_os and exit_
os CSM calls are always made before and after the actual OS
event handler. To guarantee these handlers are installed and
not modified by the OS at a later time, BlackBox requires the
OS to make a protect_vectors CSM call with the address
of the text section of the vector table during system initializa-
tion, before any container may be enclaved. The CSM then
prevents the OS from tampering with the modified vector ta-
ble by marking its backing physical memory read only in the
OS’s NPT. Similarly, the vDSO region of memory is marked
read only to prevent malicious tampering of the region.

Figure 3 depicts the steps involved in interposing on transi-
tions between the containers and OS when repurposing virtu-
alization hardware. While running in a container, an exception
occurs transferring control to the protected OS exception
vector table (step 1). All entry points in the exception vector
table invoke the enter_os CSM call (step 2). During this, the
CSM switches to the OS’s NPT (step 3). The OS will there-
fore not be able to access private physical memory mapped
into container NPTs. For system call exceptions, system call
arguments are copied to an OS accessible syscall buffer (step
4). Control is transferred back to the OS (step 5) to perform
the required exception handling. When the OS has finished
handling the exception, the exit_os CSM call is made as
part of the return path of the exception vectors when returning
to userspace (step 6). For system call exceptions, OS updated
arguments are copied back to the original buffer (step 7). On
exit_os, the CSM verifies the exception return address to
ensure the call is from the trusted exception vectors, which the
OS cannot change, rejecting any that are not. The CSM then
checks if the running task belongs to an enclaved container,
in which case the CSM switches to the respective container’s
NPT so the task can access its PPAS memory state (step 8).
Control is restored to the container by returning from exit_
os (step 9) and back to userspace (step 10). If exit_os is not
called, the CSM will not switch the CPU to use the container’s
PPAS, so its state will remain inaccessible on that CPU.

CSM

OS

Container

Exception Vector Table

NPT Base 
Register

Container
NPT

OS NPT

Syscall Handler

1

2

3

Container PPAS Syscall Buffer

OS Syscall Buffer

4

5 6

7

8

9

10

Figure 3: System Call from Enclaved Container

BlackBox protects a container’s memory by using separate
NPTs for the OS and each container, but still relies on the OS
to perform all complex memory management functions, such
as allocation and reclamation, to minimize the complexity
and size of the CSM. This is straightforward because unlike
hypervisors which virtualize physical memory using NPTs,
the CSM merely uses NPTs for access control so that the
identity mapping is used for all NPTs including the OS’s
NPT. The OS’s view of memory is effectively the same
as the actual physical memory for any physical memory
mapped into the OS’s NPT. Except for the CSM’s physical
memory, all physical memory is initially assigned to the
OS and mapped to its NPT. When the OS allocates physical
memory to processes in containers, the CSM can just unmap
the physical memory from the OS’s NPT and map it to the
respective container’s NPT at the same address. The CSM
does not need its own complex allocation functionality. The
CSM checks the OS’s NPT to make sure that the OS has
the right to allocate a given page of memory. For example,
should the OS attempt to allocate a physical page belonging
to the CSM, the CSM will reject the allocation and not update
the OS’s or container’s NPT. The CSM also checks that any
page allocation proposed by the OS for a container is not
mapped into the IOMMU page tables and will therefore not
be subject to DMA attacks, as discussed in Section 3.1.

Note that the OS is oblivious to the fact that its allocation
decisions for process page tables, Arm’s Stage 1 page tables,
are also used for Stage 2 page tables. Furthermore, since
Arm hardware first checks Stage 1 page tables before Stage
2 page tables, page faults due to the need to allocate physical
memory to a process all appear as Stage 1 page faults, which
are handled in the normal way by the OS’s page fault handler.
Since the CSM maps the physical memory to the respective
Stage 1 and Stage 2 page table entries at the same time, there
are no Stage 2 page faults for memory allocation.

As discussed in Section 3.4, BlackBox requires that pro-
cess page tables cannot be directly modified by the OS. At the
same time, commodity OSes like Linux perform many oper-
ations that involve walking and accessing process page tables.
To minimize OS modifications required to use enclaved con-
tainers, BlackBox makes the process page tables readable but
not writable by the OS by marking the corresponding entries
in the OS’s NPT read only. All existing OS code that walks

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    691



and reads process page tables can continue to function with-
out modification, and only limited changes are required to the
OS to use CSM calls for any updates to process page tables.
A process’s page tables are also mapped to its respective con-
tainer’s NPT, so they can be accessed by MMU hardware for
virtual address translation while executing the process. Black-
Box also maps tasks’ syscall buffers, used for passing system
call arguments to and from the OS, to their Stage 1 page tables.
This allows OS functions designed to copy data to and from
buffers in the calling process’s address space to function cor-
rectly without modification. The tasks’ syscall buffers them-
selves are only mapped to the OS’s NPT, not the container’s
NPT, as they are shared directly only by the CSM and OS.

To optimize TLB usage, physically contiguous memory can
be mapped to an NPT in blocks larger than the default 4 KB
page size. The BlackBox implementation supports transparent
2 MB stage 2 block mappings by first fully populating the last-
level stage 2 page table with 4 KB mappings, then folding all
512 entries into a single entry. BlackBox checks that all 512
entries are contiguous in physical memory and that the first
entry is aligned to a 2 MB boundary. BlackBox will unfold a
block mapping if one of the original 512 entries is unmapped,
such that all 512 entries are no longer contiguous in physical
memory. Similarly, BlackBox will unfold a block mapping if
there is a need to change the attributes of one of the original
512 entries, such as marking it read only while other entries
remain writable. This approach is advantageous over just sup-
porting huge pages allocated by the OS because it improves
TLB usage even when the OS does not use huge pages.

Although BlackBox is designed to work using existing
hardware virtualization support, the upcoming Armv9 archi-
tecture with its inclusion of the Arm Confidential Compute
Architecture (CCA) [41] offers alternative mechanisms that
may be used for implementing BlackBox. CCA introduces
secure execution environments called Realms. The memory
and execution state of these Realms are inaccessible to
existing privileged software like OSes and hypervisors
guaranteeing their confidentiality and integrity from them.
Realms are supported by a separate Realm World and
managed by a Realm Management Monitor (RMM) running
in EL2 within the Realm World giving it full access to Realm
memory and CPU state as well as control over their execution.
Although Realms are currently only designed to support VMs,
it may be possible to use them to support enclaved containers
by integrating the functionality of the CSM with the RMM
and extending its ABI to encompass the CSM’s ABI.

BlackBox’s implementation is relatively small. The
implementation is less than 10K lines of code (LOC), most
of which is the 5K LOC for the implementation of Ed25519,
ChaCha20, and Poly1305 from the verified HACL* crypto
library [70]. Other than HACL*, BlackBox consisted of 4.9K
LOC, all in C except for 0.4K LOC in Arm assembly. Table 2
shows a breakdown by feature. 0.3K LOC was for verifying
the CSM was correctly booted and initialized. 1K LOC was

Feature BlackBox Linux KVM
Bootstrapping 0 8.5K 8.5K
Device Support 0 425K 425K
Filesystem Support 0 163K 163K
Process Management 0 110K 110K
Memory Management 0 60.7K 60.7K
CPU Scheduling 0 29.3K 29.3K
Networking 0 190K 0
Sound 0 89.3K 0
Process Security 0 64.7K 0
Device Virtualization 0 0 30.1K
CPU Virtualization 0 0 3.5K
VM Switch 0 0 1.2K
Cryptography 5K 19K 19K
Boot Verification 0.3K 0 0
Enclave Management 1K 0 0
Enclave Switch 0.1K 0 0
CPU Protection 0.2K 0 0
Syscall Interposition 1K 0 0
NPT Management 1K 0 2.8K
Memory Mapping Protection 0.5K 0 0
DMA Protection 0.8K 0 9K
Total 9.9K 1.2M 862K

Table 2: LOC for BlackBox, Linux, and KVM

for enclave management, including enclave creation and
handling enclave metadata 0.1K LOC was for switching
between enclaves and the OS. 0.2K LOC was for protecting
data in CPU registers. 1K was for system call interposition,
including marshaling of arguments. The table used for
determining how to marshal system calls and check return
values is dynamically generated as a single line of C code at
compile time. 2.3K LOC was for memory protection, includ-
ing NPT management of PPASes, Iago and DMA protection,
and handling and validating page table update requests.
BlackBox’s CSM TCB implementation complexity is similar
to other recently verified concurrent systems [39–41, 63],
suggesting that it is small enough that it can be formally
verified. Beyond the CSM itself, only 0.5K LOC were
modified or added to the Linux kernel to support BlackBox.

Table 2 also compares the code complexity of BlackBox
versus the Linux kernel and KVM hypervisor. This is a
conservative comparison as the LOC for Linux and KVM
only include code compiled into the actual binaries for one
specific Arm server used for the evaluation in Section 5.
Even with this conservative comparison, BlackBox is orders
of magnitude less code, in part because its functionality is
largely orthogonal to both OSes and hypervisors, which have
much more complex functionality requirements.

5 Experimental Results

We quantify the performance of BlackBox compared to
widely-used Linux containers, and demonstrate BlackBox’s
ability to protect container confidentiality and integrity. Ex-

692    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Name Description
Lmbench lmbench v3.0-a9 [46] latency microbenchmarks.
Hackbench hackbench [54] using Unix domain sockets and 100

process groups running in 500 loops.
Apache Apache v2.4.46 server handling 100 concurrent

requests from remote ApacheBench [64] v2.3 client,
serving the 12 KB default Debian index.html.

HAProxy HAProxy v1.8.19 server proxying 100 concurrent
requests from remote ApacheBench [64] v2.3 client
to remote Apache v2.4.29, serving the 82 KB
index.html of the GCC 13.0.0 manual.

Kernbench Compilation of the Linux 5.4 kernel using
allnoconfig for Arm with GCC 8.3.0.

Memcached memcached v1.6.9 using the memtier [51] benchmark
v1.3.0 with default parameters.

MySQL MariaDB v10.3.27, a MySQL fork, handling requests
from remote YCSB [13] v0.17.0 client running workload
A with 200 parallel transactions, recordcount=500K,
and opcount=100K.

Netperf netperf v2.6.0 [33] running netserver on the server
and the client with default parameters in three modes:
TCP_STREAM (receive throughput), TCP_MAERTS
(send throughput), and TCP_RR (latency).

Nginx Nginx v1.18.0 server handling 100 concurrent requests
from remote ApacheBench [64] v2.3 client, serving the
12 KB default Debian index.html.

Table 3: Microbenchmarks and Application Workloads

periments were run using both Arm multiprocessor embedded
system and server hardware with VE support, specifically (1)
a Raspberry Pi 4 Model B with a 4-core Cortex-A72 64-bit
1.5 GHz Broadcom BCM2711 SoC, 8 GB RAM, a 250 GB
Samsung 860 EVO SSD connected via USB3.0, and Gigabit
Ethernet, running Raspberry Pi OS Buster (2020-08-20 De-
bian), and (2) an AMD Seattle Rev.B0 server with an 8-core
Cortex-A57 64-bit ARMv8-A 2 GHz AMD Opteron A1100
SoC, 16 GB of RAM, a 512 GB SATA3 HDD, and an AMD
XGBE 10 GbE NIC, running Ubuntu 16.04. For client-server
experiments, the clients ran on a Lenovo ThinkPad P52 with a
quad-core Intel i7-8750H 64-bit 4.1 GHz CPU, 32 GB RAM,
and a 1 TB PCIe SSD, running Linux Mint 20, connected
to the Arm hardware via Gigabit Ethernet through an ASUS
RT-N16. All machines used Linux kernel 5.4 LTS and for
running in containers, the Docker 20.10.6 container runtime.

We ran the microbenchmarks and application workloads
listed in Table 3 using the following five system config-
urations: (1) natively on the host without containers to
provide a baseline measure of performance, (2) Docker
with unmodified Linux containers (Docker), (3) BlackBox
running Docker with traditional Linux containers, without
the security guarantees of being enclaved (BlackBox NS, for
Non-Secure), (4) BlackBox running Docker with enclaved
Linux containers without encrypted IPC (BlackBox NE,
for no encryption), and (5) BlackBox running Docker with
enclaved Linux containers (BlackBox Enclaved). Three

BlackBox configurations were used to quantify the cost of
different protection mechanisms. BlackBox NS provides
the same security as Docker, the only difference being that
BlackBox NS runs the containers on BlackBox with the
OS’s NPT enabled, to quantify NPT overhead. BlackBox
NE provides stronger security by enclaving the container but
without enabling IPC encryption, thereby quantifying Black-
Box overhead without IPC encryption. BlackBox Enclaved is
the same as BlackBox NE but with IPC encryption enabled.
When using BlackBox, its DMA protection is not available
on the Raspberry Pi 4 because it has no SMMU. Docker’s
default seccomp policy is enabled for all configurations.
Versions of libseccomp prior to v2.5 had a significant
performance issue on policies like Docker’s default [65]. The
Docker version we use incorporates this performance fix.

5.1 Performance Measurements

Figure 4 shows performance measurements for each
microbenchmark and application workload for each container
configuration normalized to native execution; lower numbers
are better. Solid bars indicate results run on the Raspberry
Pi and the overlaid outlined bars indicate results run on the
AMD Seattle Arm server. BlackBox has the highest overhead
relative to native execution on the null system call measure-
ment, but most of the overhead is from Docker, due to its use
of seccomp to configure and limit the system calls available
in a container to reduce the available attack surface area.
Although seccomp is used for all system calls, its overhead
is most apparent for the null system call as its base cost is the
lowest since it does no work. In contrast, the overhead due
to BlackBox, from the two CSM calls that BlackBox makes
on every system call, is small relative to seccomp. Although
CSM calls require switching to and from Arm’s EL2 mode, it
requires no more than EL2’s system register state to execute,
eliminating the need to save and restore system registers
when switching between EL1 and EL2; only general-purpose
registers need to be saved and restored. Taking advantage
of Arm’s architectural features makes CSM calls relatively
inexpensive, enabling fine-grained container protection
without significant overhead from system call interposition.
The key aspect of Arm’s design that is crucial for the CSM
is that software determines what state needs to be saved and
restored. Running the CSM in the equivalent x86 hypervisor
root mode would be much more expensive as it provides a
hardware instruction that must be used to context switch to
root mode that requires saving and restoring the entire CPU
system state [17]. The x86 mechanism works well for hyper-
visors since they already require this operation, but poorly
for the CSM which makes minimal use of CPU system state,
and therefore does not need the expensive save and restore.

For the read, write, stat, open/close, and select
system call measurements, BlackBox Enclaved is less
than two times the cost of Docker. The overhead for the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    693



0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
Docker BlackBox NS BlackBox Enclaved NE Blackbox Enclaved

5.85.8

Figure 4: Container Performance for Microbenchmarks and Application Workloads.

enclaved configurations is due to the need to copy system call
arguments back and forth between the container PPAS and
OS, since enclaved container memory is not accessible to the
OS. open additionally incurs overhead as part of checking
the path being opened to identify FDs associated with shared
libraries as part of BlackBox’s binary decryption mechanism.
For all system calls, the overhead on the AMD server, as indi-
cated by the outlined bars, exceeds that of the Raspberry Pi’s.
In most cases, this is due to the server hardware performing
the CPU bound system call operations more quickly than
the Raspberry Pi while their memory performance remains
similar, resulting in the similar costs for BlackBox’s system
call argument copying having relatively higher overhead.

fork and exec measurements show the highest overhead
for BlackBox Enclaved versus Docker, less than three times
the cost of Docker. This is due to validating that the new
process’s address space matches its parent’s on fork, and
additionally validating the address space against the new
binary’s mappings on exec. Although the binary must be de-
crypted for exec measurements, it is only decrypted once and
all subsequent iterations just confirm the mappings match the
first’s, thereby amortizing the cost of the initial decryption.

Page fault measurements show the one microbenchmark
for which there is noticeable overhead for BlackBox NS
versus Docker. This is due to the added cost of using NPTs
for the BlackBox NS configuration. This overhead then
increases for enclaved containers due to needing to verify the
fault resides within a known address mapping to protect the
container from potential Iago attacks from the OS. Although
a page fault results in several context switches to the CSM,
the context switches themselves are not a significant cost
because they are relatively inexpensive on Arm.

Protecting container IPC communication through encryp-
tion imposes little cost for most workloads, but this overhead
is noticeable for pipe, UNIX domain sockets (AF_UNIX),
and hackbench measurements. These benchmarks represent
worst-case overheads for IPC encryption because they all use
IPC to read and write a single byte to signal other processes.
When encrypting, this single byte is padded and written along
with authentication data, significantly increasing the relative
write size and affecting read/write latency measurements.
In contrast, the context switch microbenchmark, in which a

parent process spawns two child processes that communicate
between each other with pipes, has almost no overhead. In
this case, 4 byte reads and writes are used so the extra data
that encryption adds, and therefore the time to complete
the calls, is relatively less, and context switching and
rescheduling dominates IPC encryption costs. The signaling
microbenchmarks do not involve any encryption. BlackBox
Enclaved overhead for signal installation is due to copying
the sigaction struct in and out, and for signal delivery is
due to verifying the control flow.

Apache, HAProxy, Kernbench, memcached, MySQL, and
Nginx measurements show that BlackBox overhead is much
less on realistic application workloads than microbenchmarks.
In most cases, BlackBox Enclaved overhead versus native
execution is less than 15% on both the Raspberry Pi and
AMD server, demonstrating modest overhead across both
Arm embedded and server hardware. As indicated by the
BlackBox NS measurements, NPT usage is a source of
overhead, though more so on the Raspberry Pi than the AMD
server. Apache, HAProxy, and Nginx workloads measure
latency in addition to throughput. In terms of latency, the
overhead for these workloads for BlackBox Enclaved versus
native execution is less than 15% on both the Raspberry
Pi and AMD server. Furthermore, Netperf measurements
show that BlackBox provides fast networking performance
as it involves no I/O virtualization, in contrast to using
VMs. Applications are able to make full use of the host’s
networking capabilities. Although applications are expected
to encrypt their network I/O to protect their data, we did not
encrypt network connections for these measurements to avoid
encryption costs obscuring BlackBox’s overhead.

Figure 5 quantifies the CPU utilization when running the
application workloads, as a measure of computational over-
head. Solid bars indicate results run on the Raspberry Pi and
the overlaid outlined bars indicate results run on the AMD
server. CPU utilization is generally lower on the AMD server
than the Raspberry Pi, since the AMD server is more powerful
with more CPUs. On the Raspberry Pi, the difference in CPU
utilization between BlackBox Enclaved and native execution
is less than 15% across all workloads, and less than 5% for
all workloads except Apache and Memcached. On the AMD
server, the difference in CPU utilization between BlackBox

694    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0

10

20

30

40

50

60

70

80

90

100
Native Docker BlackBox Enclaved

Figure 5: CPU Utilization for Application Workloads

Enclaved and native execution is less than 15% across all
workloads, except Apache. Apache CPU utilization for Black-
Box Enclaved is high because at higher throughput rates, the
cost of extra copying to use syscall buffers, as discussed in
Section 3.4, becomes dominant. The buffers are used to send
data from a container’s PPAS to the OS to perform network
I/O. Other than Apache, the difference in CPU utilization
between BlackBox Enclaved and native execution is quite
modest across both Arm embedded and server hardware.

5.2 System Call Coverage
We evaluated the completeness of Linux system call support
in the current BlackBox prototype implementation by running
the Linux Test Project (LTP) [44] version 20210524 system
call test suite. LTP consists of 1344 test cases designed to
test for correct functionality across the entire Linux system
call interface. We compared system call support results for
running LTP in an enclaved container on BlackBox versus
running it natively, in both cases using the Raspberry Pi.
When running LTP natively, 1149 test cases pass and 195
fail. These failures are expected and are a combination of
missing dependencies and unsupported features of the kernel
and architecture used. For example, test cases for the 16-bit
version of fchown are not supported on the platform. When
running LTP using BlackBox, 1012 test cases pass and 332
fail, demonstrating support for almost 90% of test cases that
passed when run natively. The additional 137 failed tests are
due to the current prototype not yet supporting lesser used
system calls like process_vm_readv.

5.3 Evaluation of Practical Attacks
We evaluated BlackBox’s effectiveness against a com-
promised OS by analyzing CVEs related to the Linux
kernel and various Linux container engines such as Docker.
We considered 23 CVEs which could result in privilege
escalation, code execution, and memory corruption in Linux
capable of compromising the integrity and confidentiality of
container data; we did not consider denial of service attacks,
as BlackBox does not guarantee availability. Specifically,

Bug (CVE-*) Description
2009-3234 Kernel buffer overflow enabling return-to-user attack.
2010-2959 Function pointer overwrite due to integer overflow.
2010-4258 Kernel memory overwrite due to improper handling

of get_fs value.
2013-6441 Improper permissions when mounting /sbin/init.
2014-6407 Symbolic and hardlink issues during docker pull.
2014-9357 Mishandling untrusted archive extraction.
2015-1335 Directory traversal flaw in lxc-start.
2015-3627 Unchecked file descriptor opened prior to chroot.
2015-3629 Unchecked symlink when respawning container.
2015-3630 Weak permissions on /proc filesystem.
2016-1576 Improperly restricted mount namespace.
2016-5195 Race condition in handling CoW breakage.
2016-7117 Use after free in __sys_recvmmsg.
2016-9962 Improperly flushed file descriptors.
2017-7308 Improper validation of data size in packet_set_ring().
2017-1000112 Exploitable memory corruption due to UFO to

non-UFO path switch.
2018-15664 TOCTOU vulnerability in symbolic link checking.
2018-18955 Mishandled nested user namespaces in map_write().
2019-5736 /proc/self/exe file descriptor mishandling
2019-10144 Container processes not isolated during ‘rkt enter’.
2019-11247 Improper access to cluster-scoped custom resource.
2019-14271 Container contents loaded while privileged during

container copy.
2020-14386 Kernel memory corruption due to arithmetic issue

in tpacket_rcv().

Table 4: CVEs Used for Evaluation of Practical Attacks

privilege escalation occurs if the exploit enables the attacker
to gain root access or kernel privilege level, and code
execution occurs if the exploit enables executing arbitrary
code at the same privilege as the software with the bug.

Table 4 lists the CVEs considered. We considered both
malicious containers and unprivileged host users who exploit
bugs in the kernel and container engines to elevate privileges
and compromise container data. In general, these CVEs
exploit flaws in container runtime systems and the kernel that
enable an attacker to obtain kernel-level or root-level access.
Ordinarily, this level of access compromises all container data
and integrity on the system. Linux and the relevant container
engine do not fully protect against any of these compromises.
In contrast, BlackBox protects against all of them.

6 Related Work

Various approaches have been explored to securing applica-
tions from untrusted OSes. Hardware-based trusted execution
environments (TEEs) such as ARM TrustZone [2] and
Intel Software Guard Extensions (SGX) [30] can protect
application memory from higher privileged software, but
require applications to be written or rewritten specifically for
this purpose and may impose other functionality restrictions.

Some systems have built on TEEs. Haven [7] aims to en-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    695



clave Windows applications by porting a Windows library OS
to run inside SGX, avoiding Iago attacks by trusting the library
OS at the cost of a significant TCB. Other systems also pro-
pose running library OSes enclaved by SGX [50,59,66]. Cubi-
cleOS [57] is a library OS designed to be runnable within con-
tainers that makes use of Intel MPK hardware extensions to
isolate apps. Scone [3] uses SGX to enclave Linux containers,
requiring its own custom threading model and a modified C li-
brary within SGX to provide system call support and shielded
I/O interfaces for interacting with the OS. TZ-Container [28]
leverages a shield layer and a container manager inside Trust-
Zone to protect containers, but relies on the OS not modifying
the memory mappings used to protect containers by scanning
the OS image to ensure it does not contain instructions capa-
ble of updating page tables. TrustShadow [24] introduces a
runtime system within TrustZone so that a limited number of
security-critical legacy apps operate on TrustZone memory
isolated from the OS. Unlike these approaches, BlackBox
does not rely on TrustZone or SGX and does not rely on a
library OS or other significant runtime system running inside
an enclaved execution environment, avoiding increasing TCB
complexity. Unlike Haven, its small TCB comes with poten-
tially greater susceptibility to Iago attacks by allowing appli-
cations to use the system call interface of the untrusted OS.

Commodity hypervisors have been modified to secure
applications from an untrusted OS by restricting a guest
OS in a VM to an encrypted view of application mem-
ory [4,10,11,27,35,45,67]. For example, InkTag [27] uses two
NPTs as part of its isolation mechanism, one for the OS and
the other for all applications, separating the plaintext memory
of isolated applications from encrypted memory, but relying
on paravirtualized page table updates to isolate applications
from each other. Appshield [12] uses virtualization techniques
to protect and isolate critical applications against OS-level
malware attacks. Appshield’s memory protection model
requirements are not compatible with Linux’s copy-on-write
semantics and its limited system call interface is insufficient
to support significant workloads. In contrast, BlackBox does
not rely on a hypervisor or traditional memory virtualization,
but instead introduces a new concept of protected physical
address spaces implemented as part of a container security
monitor, enabling it to have a much smaller TCB.

Various approaches reduce the hypervisor’s TCB. Microhy-
pervisors [25,34,61] build new hypervisors from scratch with
smaller TCBs, but at the cost of a significantly reduced feature
set. BlackBox’s approach allows for a small TCB while still
maintaining a significant feature set and the full hardware
support available in a commodity OS. SeKVM [38–40, 63]
retrofits KVM with a small verified TCB to provide VM data
confidentiality and integrity. In contrast, BlackBox provides
container-level isolation and does not require a hypervisor,
introducing a new concept, the CSM, that avoids the cost and
complexity of hypervisor-based virtualization.

X-Containers [60] targets securely isolating containers in

the cloud. Its containers include an entire library OS based
on Linux and run on top of a Xen hypervisor, providing a
model more akin to nested virtualization. Unlike BlackBox,
X-Containers have a large TCB from requiring both large
library OSes and a commodity hypervisor.

Other approaches have looked at ways to harden traditional
containers. gVisor [23] runs a limited userspace kernel within
a container and beneath applications. System calls are inter-
cepted to further isolate applications from the host OS through
reduced interactions and potential attack surfaces. gVisor’s in-
creased isolation comes at the cost of a increased TCB size in
the container. Distroless images [22] aim to limit the contents
of a container to precisely what is necessary for the target app
to run, reducing what must be trusted and maintained within
a container. Linux Container Hardening [42] aims to improve
the security of Linux containers through improving the kernel
subsystems and primitives used by containers to be more se-
cure. These approaches are complementary to BlackBox, and
although they improve container security, unlike BlackBox,
they all must still trust the OS and its large codebase.

7 Conclusions

BlackBox is a new container architecture providing fine-
grain protection of application data confidentiality and
integrity without trusting the OS. BlackBox achieves this
by introducing a container security monitor, a new software
component that creates protected physical address spaces
for containers. The monitor enforces protected address
spaces to isolate container memory and CPU state from
the OS and other containers. It facilitates the use of OS
facilities via system calls by passing required data between
protected address spaces and the OS, implicitly declassifying
such data. This narrow purpose keeps it small and simple.
Unlike a hypervisor, the monitor performs no virtualization
or resource management. Instead, it relies on the OS to
provide complex functionality required to manage hardware
resources, including CPU scheduling, memory management,
file systems, and device management. We have implemented
BlackBox by repurposing Arm hardware virtualization sup-
port. Our results demonstrate that BlackBox supports existing
unmodified containerized application workloads with modest
overhead while maintaining a trusted computing base orders
of magnitude less than an OS or commodity hypervisor.

8 Acknowledgments

Shih-Wei Li and Xuheng Li helped with system implementa-
tion. Andrew Baumann, Christoffer Dall, Peter Pietzuch, and
Nicolas Viennot provided helpful comments on earlier drafts.
This work was supported in part by OPPO, a Guggenheim
Fellowship, DARPA contract N66001-21-C-4018, and NSF
grants CCF-1918400, CNS-2052947, and CCF-2124080.

696    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Amazon Web Services, Inc. AWS Nitro Enclaves User
Guide. https://docs.aws.amazon.com/enclaves/
latest/user/building-eif.html, May 2022.

[2] ARM Ltd. ARM Security Technology - Building a
Secure System using TrustZone Technology. http:
//infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf, April 2009.

[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Linda,
Divya Muthukumaran, Dan O’Keeffe, Mark L. Stillwell,
David Goltzsche, David Eyers, Rüdiger Kapitza, Peter
Pietzuch, and Christof Fetzer. SCONE: Secure Linux
Containers with Intel SGX. In Proceedings of the 12th
USENIX Conference on Operating Systems Design
and Implementation (OSDI 2016), pages 689–703,
Savannah, GA, November 2016.

[4] Ahmed M. Azab, Peng Ning, and Xiaolan Zhang.
SICE: A Hardware-Level Strongly Isolated Computing
Environment for X86 Multi-Core Platforms. In
Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS 2011), pages
375–388, Chicago, IL, October 2011.

[5] Michael Backes, Goran Doychev, and Boris Kopf.
Preventing Side-Channel Leaks in Web Traffic: A
Formal Approach. In Proceedinsgs of the 20th ISOC
Network and Distributed System Security Symposium
(NDSS 2013), San Diego, CA, February 2013.

[6] Ricardo Baratto, Shaya Potter, Gong Su, and Jason Nieh.
MobiDesk: Mobile Virtual Desktop Computing. In Pro-
ceedings of the 10th Annual ACM International Confer-
ence on Mobile Computing and Networking (MobiCom
2004), pages 1–15, Philadelphia, PA, September 2004.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding Applications from an Untrusted Cloud with
Haven. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation (OSDI
2014), pages 267–283, Broomfield, CO, October 2014.

[8] Edouard Bugnion, Jason Nieh, and Dan Tsafrir.
Hardware and Software Support for Virtualization.
Synthesis Lectures on Computer Architecture. Morgan
and Claypool Publishers, February 2017.

[9] Stephen Checkoway and Hovav Shacham. Iago Attacks:
Why the System Call API is a Bad Untrusted RPC
Interface. In Proceedings of the 18th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2013),
pages 253–264, Houston, TX, March 2013.

[10] Haibo Chen, Fengzhe Zhang, Cheng Chen, Ziye
Yang, Rong Chen, Binyu Zang, Pen chung Yew, and
Wenbo Mao. Tamper-Resistant Execution in an
Untrusted Operating System Using A Virtual Machine
Monitor. Technical Report PPITR-2007-08001, Parallel
Processing Institute, Fudan University, August 2007.

[11] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R.K. Ports.
Overshadow: A Virtualization-based Approach to
Retrofitting Protection in Commodity Operating
Systems. In Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2008),
pages 2–13, Seattle, WA, March 2008.

[12] Yueqiang Cheng, Xuhua Ding, and Robert H. Deng.
Efficient Virtualization-Based Application Protection
Against Untrusted Operating System. In Proceedings
of the 10th ACM Symposium on Information, Computer
and Communications Security (ASIACCS 2015), pages
345–356, Singapore, Republic of Singapore, April 2015.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC 2010),
pages 143–154, Indianapolis, IN, 2010.

[14] Rongzhen Cui, Lianying Zhao, and David Lie. Emilia:
Catching Iago in Legacy Code. In Proceedings of the
2021 ISOC Network and Distributed Systems Security
Symposium (NDSS 2021), Virtual Event, February 2021.

[15] Christoffer Dall, Jeremy Andrus, Alex Van’t Hof, Oren
Laadan, and Jason Nieh. The Design, Implementation,
and Evaluation of Cells: A Virtual Mobile Smartphone
Architecture. ACM Transactions on Computer Systems
(TOCS), 30(3):9:1–31, August 2012.

[16] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, and
Jason Nieh. ARM Virtualization: Performance and
Architectural Implications. ACM SIGOPS Operating
Systems Review, 52(1):45–56, July 2018.

[17] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason
Nieh, and Georgios Koloventzos. ARM Virtualization:
Performance and Architectural Implications. In
Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA 2016), pages 304–316,
Seoul, South Korea, June 2016.

[18] Christoffer Dall, Shih-Wei Li, and Jason Nieh. Opti-
mizing the Design and Implementation of the Linux
ARM Hypervisor. In Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC 2017),
pages 221–234, Santa Clara, CA, July 2017.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    697

https://docs.aws.amazon.com/enclaves/latest/user/building-eif.html
https://docs.aws.amazon.com/enclaves/latest/user/building-eif.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf


[19] Christoffer Dall and Jason Nieh. KVM/ARM: The
Design and Implementation of the Linux ARM
Hypervisor. In Proceedings of the 19th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2014),
pages 333–347, Salt Lake City, UT, March 2014.

[20] Docker, Inc. Empowering App Development for De-
velopers - Docker. https://www.docker.com, 2021.

[21] Google. HTTPS Encryption on the Web – Google Trans-
parency Report. https://transparencyreport.
google.com/https/overview, April 2018.

[22] Google, Inc. "Distroless" Container Images. https://
github.com/GoogleContainerTools/distroless,
February 2022.

[23] Google, Inc. gVisor: Application Kernel for Containers.
https://github.com/google/gvisor, May 2022.

[24] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi
Zhang, Meng Yu, and Trent Jaeger. TrustShadow:
Secure Execution of Unmodified Applications with
ARM TrustZone. In Proceedings of the 15th ACM In-
ternational Conference on Mobile Systems, Applications,
and Services (MobiSys 2017), pages 488–501, Niagara
Falls, NY, June 2017.

[25] Gernot Heiser and Ben Leslie. The OKL4 Microvisor:
Convergence Point of Microkernels and Hypervisors.
In Proceedings of the 1st ACM Asia-Pacific Workshop on
Systems (APSys 2010), pages 19–24, New Delhi, India,
August 2010.

[26] Alexander Van’t Hof and Jason Nieh. AnDrone: Virtual
Drone Computing in the Cloud. In Proceedings of
the 11th European Conference on Computer Systems
(EuroSys 2019), pages 6:1–16, Dresden, Germany,
March 2019.

[27] Owen S. Hofmann, Sangman Kim, Alan M. Dunn,
Michael Z. Lee, and Emmett Witchel. InkTag: Secure
Applications on an Untrusted Operating System. In
Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2013), pages 265–278,
Houston, TX, March 2013.

[28] Zhichao Hua, Yang Yu, Jinyu Gu, Yubin Xia, Haibo
Chen, and Binyu Zang. TZ-Container: Protecting
Container From Untrusted OS with ARM TrustZone.
Science China Information Sciences, 64:1869–1919,
August 2021.

[29] Solomon Hykes. Introducing runC: A
lightweight Universal Container Runtime.
https://www.docker.com/blog/runc/, June 2015.

[30] Intel Corporation. Intel Software Guard Ex-
tensions Programming Reference. https:
//software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf, October 2014.

[31] International Organization for Standardization and
International Electrotechnical Commission. ISO/IEC
11889-1:2015 - Information technology – Trusted
Platform Module Library. https://www.iso.org/
standard/66510.html, September 2016.

[32] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A Shared Cache Attack That Works Across Cores
and Defies VM Sandboxing – and Its Application to
AES. In Proceedings of the 2015 IEEE Symposium on
Security and Privacy (IEEE S&P 2015), pages 591–604,
San Jose, CA, May 2015.

[33] Rick Jones. Netperf. https://github.com/
HewlettPackard/netperf, June 2018.

[34] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. SeL4: Formal Verification of an OS Kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (SOSP 2019), pages
207–220, Big Sky, MT, October 2009.

[35] Youngjin Kwon, Alan M. Dunn, Michael Z. Lee,
Owen S. Hofmann, Yuanzhong Xu, and Emmett Witchel.
Sego: Pervasive Trusted Metadata for Efficiently Ver-
ified Untrusted System Services. In Proceedings of the
21st International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 2016), pages 277–290, Atlanta, GA, 2016.

[36] Susan Landau. Making Sense from Snowden: What’s
Significant in the NSA Surveillance Revelations. IEEE
Security and Privacy, 11(4):54–63, July 2013.

[37] Let’s Encrypt. Let’s Encrypt Stats - Let’s Encrypt.
https://letsencrypt.org/stats/, April 2018.

[38] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting
Cloud Virtual Machines from Commodity Hypervisor
and Host Operating System Exploits. In Proceedings of
the 28th USENIX Security Symposium (USENIX Security
2019), pages 1357–1374, Santa Clara, CA, August 2019.

[39] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A Secure and Formally Verified
Linux KVM Hypervisor. In Proceedings of the 2021
IEEE Symposium on Security and Privacy (IEEE S&P
2021), pages 1782–1799, San Francisco, CA, May 2021.

698    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.docker.com
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://github.com/google/gvisor
https://www.docker.com/blog/runc/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.iso.org/standard/66510.html
https://www.iso.org/standard/66510.html
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://letsencrypt.org/stats/


[40] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh,
and John Zhuang Hui. Formally Verified Memory
Protection for a Commodity Multiprocessor Hypervisor.
In Proceedings of the 30th USENIX Security Symposium
(USENIX Security 2021), pages 3953–3970, Vancouver,
BC Canada, August 2021.

[41] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui
Gu, Jason Nieh, Yousuf Sait, and Gareth Stockwell.
Design and Verification of the Arm Confidential
Compute Architecture. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2022), Carlsbad, CA, July 2022.

[42] Linux Container Hardening Project. Linux Container
Hardening. https://containerhardening.org/,
2021.

[43] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B. Lee. Last-Level Cache Side-Channel
Attacks Are Practical. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy (IEEE S&P 2015),
pages 605–622, San Jose, CA, May 2015.

[44] LTP developers. LTP - Linux Test Project.
https://linux-test-project.github.io/, 2021.

[45] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei
Zhou, Anupam Datta, Virgil Gligor, and Adrian Perrig.
TrustVisor: Efficient TCB Reduction and Attestation.
In Proceedings of the 2010 IEEE Symposium on Security
and Privacy (IEEE S&P 2010), pages 143–158, May
2010.

[46] Larry McVoy and Carl Staelin. lmbench: Portable tools
for performance analysis. In Proceedings of the 1996
USENIX Annual Technical Conference (USENIX ATC
1996), pages 279–294, San Diego, CA, January 1996.

[47] Steven Osman, Dinesh Subhraveti, Gong Su, and
Jason Nieh. The Design and Implementation of Zap:
A System for Migrating Computing Environments.
In Proceedings of the 5th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
2002), pages 361–376, Boston, MA, December 2002.

[48] Shaya Potter and Jason Nieh. Apiary: Easy-to-Use
Desktop Application Fault Containment on Commodity
Operating Systems. In Proceedings of the 2010 USENIX
Annual Technical Conference (USENIX ATC 2010),
pages 103–116, Boston, MA, June 2010.

[49] Shaya Potter and Jason Nieh. Improving Virtual
Appliance Management through Virtual Layered File
Systems. In Proceedings of the 25th Large Installation
System Administration Conference (LISA 2011), pages
25–38, Boston, MA, December 2011.

[50] Christian Priebe, Divya Muthukumaran, Joshua Lind,
Huanzhou Zhu, Shujie Cui, Vasily A. Sartakov, and
Peter R. Pietzuch. SGX-LKL: Securing the Host OS
Interface for Trusted Execution. ArXiv, abs/1908.11143,
January 2020.

[51] Redis Labs. memtier_benchmark. https://github.
com/RedisLabs/memtier_benchmark, April 2015.

[52] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, You, Get off of My Cloud:
Exploring Information Leakage in Third-party Compute
Clouds. In Proceedings of the 16th ACM Conference
on Computer and Communications Security (CCS 2009),
pages 199–212, Chicago, IL, November 2009.

[53] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Ste-
fan Savage. Return-oriented programming: Systems, lan-
guages, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC)), 15(1), March 2012.

[54] Rusty Russell. Hackbench. http://people.redhat.
com/mingo/cfs-scheduler/tools/hackbench.c,
January 2008.

[55] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Ar-
guments in System Design. ACM Transactions on Com-
puter Systems (TOCS), 2(4):277–288, November 1984.

[56] Samsung Electronics Co., Ltd. Samsung Knox - White
Paper. https://docs.samsungknox.com/admin/
whitepaper/kpe/samsung-knox.htm, 2021.

[57] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch.
CubicleOS: A Library OS with Software Componenti-
sation for Practical Isolation. In Proceedings of the 26th
International Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS 2021), pages 546–558, Virtual Event, April 2021.

[58] Hovav Shacham. The Geometry of Innocent Flesh on
the Bone: Return-into-Libc without Function Calls (on
the X86). In Proceedings of the 14th ACM Conference
on Computer and Communications Security (CCS 2007),
pages 552–561, Alexandria, VA, October 2007.

[59] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Oc-
clum: Secure and Efficient Multitasking Inside a Single
Enclave of Intel SGX. In Proceedings of the 25th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 2020),
pages 955–970, Lausanne, Switzerland, March 2020.

[60] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert Van Renesse,
and Hakim Weatherspoon. X-Containers: Breaking
Down Barriers to Improve Performance and Isolation

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    699

https://containerhardening.org/
https://linux-test-project.github.io/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://docs.samsungknox.com/admin/whitepaper/kpe/samsung-knox.htm
https://docs.samsungknox.com/admin/whitepaper/kpe/samsung-knox.htm


of Cloud-Native Containers. In Proceedings of the 24th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS 2019), pages 121–135, Providence, RI, April 2019.

[61] Udo Steinberg and Bernhard Kauer. NOVA: A
Microhypervisor-based Secure Virtualization Architec-
ture. In Proceedings of the 5th European Conference
on Computer Systems (EuroSys 2010), pages 209–222,
Paris, France, April 2010.

[62] Patrick Stewin and Iurii Bystrov. Understanding DMA
Malware. In Proceedings of the 9th International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 2012), pages 21–41,
Heraklion, Crete, Greece, July 2013.

[63] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li,
Jason Nieh, and Ronghui Gu. Formal Verification of
a Multiprocessor Hypervisor on Arm Relaxed Memory
Hardware. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP 2021), pages
866–881, Virtual Event, Germany, October 2021.

[64] The Apache Software Foundation. ab - Apache HTTP
Server Benchmarking Tool. http://httpd.apache.
org/docs/2.4/programs/ab.html, April 2015.

[65] Tom Hromatka. RFE: Use a cBPF Binary Tree
for Large Seccomp Filters. https://github.com/
seccomp/libseccomp/issues/116, 2018.

[66] Chia-Che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A Practical Library OS for Unmodified
Applications on SGX. In Proceedings of the 2017
USENIX Annual Technical Conference (USENIX ATC
2017), pages 645–658, Santa Clara, CA, July 2017.

[67] Jisoo Yang and Kang G. Shin. Using Hypervisor
to Provide Data Secrecy for User Applications on
a Per-Page Basis. In Proceedings of the 4th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2008), pages 71–80,
Seattle, WA, March 2008.

[68] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-VM Side Channels and Their
Use to Extract Private Keys. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security (CCS 2012), pages 305–316, Raleigh, NC,
October 2012.

[69] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-Tenant Side-Channel Attacks
in Paas Clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security (CCS 2014), pages 990–1003, Scottsdale, AZ,
November 2014.

[70] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A Verified Modern Cryptographic Library. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017),
pages 1789–1806, Dallas, TX, October 2017.

700    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/seccomp/libseccomp/issues/116
https://github.com/seccomp/libseccomp/issues/116


Blockaid: Data Access Policy Enforcement for Web Applications

Wen Zhang1 Eric Sheng2,* Michael Chang1 Aurojit Panda3 Mooly Sagiv4 Scott Shenker1,5

1UC Berkeley 2Yugabyte 3NYU 4Tel Aviv University 5ICSI

Abstract
Modern web applications serve large amounts of sensitive user
data, access to which is typically governed by data-access poli-
cies. Enforcing such policies is crucial to preventing improper
data access, and prior work has proposed many enforcement
mechanisms. However, these prior methods either alter applica-
tion semantics or require adopting a new programming model;
the former can result in unexpected application behavior,
while the latter cannot be used with existing web frameworks.

Blockaid is an access-policy enforcement system that pre-
serves application semantics and is compatible with existing
web frameworks. It intercepts database queries from the appli-
cation, attempts to verify that each query is policy-compliant,
and blocks queries that are not. It verifies policy compliance
using SMT solvers and generalizes and caches previous compli-
ance decisions for better performance. We show that Blockaid
supports existing web applications while requiring minimal
code changes and adding only modest overheads.

1 Introduction
Many modern web applications use relational databases to
store sensitive user data, access to which is governed by orga-
nizational or regulatory data-access policies. To enforce these
policies, today’s web developers wrap each database query
within access checks that determine whether a user has access
to the queried data. As an application can query the database
at many call sites, getting access checks right at every call site
is challenging, and erroneous or missing checks have exposed
sensitive data in many production systems [4,30,37,38,47,64].

Prior work has suggested a variety of languages, frame-
works, and tools that simplify the enforcement of data-access
policies. As we detail in §2, these approaches either (1) require
applications be written using specialized web frameworks, hin-
dering their adoption; or (2) transparently remove from query
results any data that cannot be revealed, possibly resulting in
unexpected application behavior (e.g., the user has no idea that
there are missing results and reaches the wrong conclusion).

*Work done while at UC Berkeley.

This paper proposes an alternative approach to enforcing
data-access policies that meets four goals:
1. Backwards compatibility: Applies to applications built

using common existing web frameworks.
2. Semantic transparency: Fully answers queries that com-

ply with the policy and blocks queries that do not (rather
than providing partial, and potentially misleading, results).

3. Policy expressiveness: Supports a wide range of policies.
4. Low overhead: Has limited impact on page load time.

We implement this approach in Blockaid, a system that en-
forces a data-access policy at runtime by intercepting SQL
queries issued by the application, verifying that they comply
with the policy, and blocking those that do not. We assume non-
compliant queries are rare in production (having been mostly
eliminated in testing), and focus on efficiently checking com-
pliant queries. Blockaid expects the developer to insert access
checks as usual; it merely ensures that the checks are adequate.

A Blockaid policy consists of SQL view definitions that
specify what information can be accessed by a given user,
although the application still issues queries against the base ta-
bles as usual (rather than against the views). Under this setting,
a query is compliant if it never reveals—for any underlying
dataset—more information than the views do, a well-studied
property in databases called query determinacy [51].

While determinacy characterizes the compliance of one
query in isolation, it is too restrictive in the context of web
applications, which typically issue multiple queries when
serving a request. In this setting, what queries can be allowed
often depends on the result of previous queries in the same
web request. Thus, we extend determinacy to take a trace of
previous queries and their responses, a novel extension we call
trace determinacy, and use that as the criterion for compliance.

To verify compliance, Blockaid frames trace determinacy as
an SMT formula and checks it using SMT solvers. As we later
explain, a solver returns an unsatisfiability proof when a query
is compliant, and a test demonstrating a violation otherwise.

This basic method, while correct, is impractically slow as
it invokes solvers on every query. Thus, we use a decision
cache to record compliant queries (with traces) so that future

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    701



occurrences need not be rechecked. But caching exact queries
and traces would be ineffective: a query is usually specific to the
user and page visited, and so is unlikely to occur many times.

Thus, to increase cache hit rate, we implement a novel gen-
eralization mechanism which, given a compliant query-trace
pair, extracts a small set of assumptions on the query and trace
that alone would guarantee compliance. These assumptions
are cached in the form of a decision template, which will apply
to all future query-trace pairs that meet those assumptions.
Blockaid generates decision templates by progressively
relaxing a query and trace while maintaining compliance, with
the help of solver-generated unsat cores [8, § 11.8]. It does not
cache noncompliance results, which we expect to be rare in
production as they typically indicate application/policy bugs.

We applied Blockaid to three existing applications—
diaspora* [25], Spree [63], and Autolab [5]—and found that
it imposes an overhead of 2 % to 12 % to the median page
load time when compliance decisions are cached.

Blockaid has some important limitations. It assumes that the
application obtains all of its information through SQL queries
visible to Blockaid or from a caching layer or file system
mediated by Blockaid. It also supports only a subset of SQL
and is at the mercy of solver performance and unsat-core size.

Blockaid is open source at https://github.com/blo
ckaid-project, and further theoretical discussions can be
found in the appendices of our extended technical report [73].

2 Related Work
The subject of data-access control has been studied by many.
We compare our approach to prior ones along our goals (§1).
Static verification. Several systems have been proposed to
statically verify that application code can only issue compliant
queries; examples include Swift [17], SELINKS [22], Ur-
Flow [15], and STORM [42]. These systems incur no run-time
overhead and can be more precise than Blockaid as they
analyze source code. However, they typically require using a
specialized language or framework like Jif [50] or Ur/Web [16],
sacrificing compatibility with common web frameworks.
Query modification. A popular run-time approach is query
modification [65]: replacing secret values returned by a query
with placeholders (or dropping any rows containing secrets).
This is implemented in commercial databases [13, 49] and aca-
demic works like Hippocratic databases [3], Jacqueline [72],
Qapla [48], and multiverse databases [46]. While this approach
allows programmers to issue queries without regard to policies,
it lacks semantic transparency as it can alter query semantics
in unexpected ways and return misleading results [32, 58, 69].

Furthermore, many of the query modification mechanisms
use row- and cell-level policies (e.g., SQL Server RLS and
DDM, Oracle VPD). As we discuss in §9, this row/cell-level
format is less expressive than Blockaid’s view-based scheme.
View-based access control. Many databases allow creating
views and granting access to views and tables. Although
identical in expressiveness to Blockaid, this mechanism

Web app DatabaseBlockaid

Decision
cache

SMT
solvers

Trace

<latexit sha1_base64="TCxyYp3sQmp7dVg6cbDTQZ6ZIaE=">AAAB/3icbVDLSgMxFM34rONrVHDjJliEFqRMiqjLght3tmAf0BmGTJppQzOZIckIpXbhr7hxoYhbf8Odf2PazkJbDwTOPede7s0JU86Udt1va2V1bX1js7Blb+/s7u07B4ctlWSS0CZJeCI7IVaUM0GbmmlOO6mkOA45bYfDm6nffqBSsUTc61FK/Rj3BYsYwdpIgXNcagTo/C5AZeh5timqpqiWA6foVtwZ4DJBOSmCHPXA+fJ6CcliKjThWKkuclPtj7HUjHA6sb1M0RSTIe7TrqECx1T549n9E3hmlB6MEmme0HCm/p4Y41ipURyazhjrgVr0puJ/XjfT0bU/ZiLNNBVkvijKONQJnIYBe0xSovnIEEwkM7dCMsASE20is00IaPHLy6RVraDLCmpcFGswj6MATsApKAEErkAN3II6aAICHsEzeAVv1pP1Yr1bH/PWFSufOQJ/YH3+AAUSksk=</latexit>

(Q1, O1)

(Q2, O2)

Miss

Hit
❌Error ✔️

<latexit sha1_base64="vBvQhBad85f7+Icv8bMXDj4luV8=">AAAB6nicdVDLSgMxFM34rPVVdekmWARXQ9KX467gxmWL9gHtUDJp2oZmMkOSEcrQT3DjQhG3fpE7/8ZMW0FFD1w4nHMv994TxIJrg9CHs7a+sbm1ndvJ7+7tHxwWjo7bOkoUZS0aiUh1A6KZ4JK1DDeCdWPFSBgI1gmm15nfuWdK80jemVnM/JCMJR9xSoyVbpuD8qBQRC7yyp53BZFbQaiMM4KruFqqQeyiBYpghcag8N4fRjQJmTRUEK17GMXGT4kynAo2z/cTzWJCp2TMepZKEjLtp4tT5/DcKkM4ipQtaeBC/T6RklDrWRjYzpCYif7tZeJfXi8xI89PuYwTwyRdLholApoIZn/DIVeMGjGzhFDF7a2QTogi1Nh08jaEr0/h/6RdcnHNxc1KsQ5XceTAKTgDFwCDS1AHN6ABWoCCMXgAT+DZEc6j8+K8LlvXnNXMCfgB5+0TNRCNqA==</latexit>

Q3

<latexit sha1_base64="4bm5anW5sbML6axEBXb6Rnj+4pE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPBi8cW7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Kj3y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14a2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVL3rqte4qtRIHkcRTuAUzsGDG6jBPdShCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDK/Y1f</latexit>

Q3

At the start
of request

Data-access
policy

Compliant?

Request
context

Figure 1: An overview of Blockaid (for a single web request).

requires queries to explicitly use view names instead of table
names (like Users). This marks a significant deviation from
regular web programming, as programmers must now sort
out which views to use for each query. In contrast, Blockaid
allows queries to be issued against the base tables directly.

While some prior work has studied view-based compliance
of queries issued against base tables [10, 11], they only check
single queries, while Blockaid checks a query in the context
of a trace, a crucial feature for supporting web applications.

3 System Design
3.1 Application Assumptions and Threat Model

Blockaid targets web applications that store data in a SQL
database. We assume that a user is logged in and that the current
user’s identifier is stored in a request context. The application
can access the database and the request context when serving
a request; each request is handled independently from others.
We assume that the application authenticates the user correctly,
and that the correct request context is passed to Blockaid (§3.2).

A data-access policy dictates, for a given request context,
what information in the database is accessible and what is
inaccessible. We treat the database schema and the policy
itself as public knowledge and assume that the user cannot use
side channels to circumvent policies. We enforce policies on
database reads only, as done in prior work [2, 10–12, 33, 41,
46, 58, 61, 65, 69]. Ensuring the integrity of updates, while
important, is orthogonal to our goal and is left to future work.

3.2 System Overview

Blockaid is a SQL proxy that sits between the application and
the database (Figure 1). It takes as input (1) a database schema
(including constraints), and (2) a data-access policy specified as
database views (§4),and checks query compliance for each web
request separately. For each web request, it maintains a trace of
queries issued so far and their results; the trace is cleared when
the request ends. Blockaid assumes that the results returned
by queries in the trace are not altered till the end of the request.

When a web request starts, the application sends its request
context to Blockaid. Then, every SQL query from the applica-
tion traverses Blockaid, which attempts to verify that the query

702    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/blockaid-project
https://github.com/blockaid-project


is compliant—i.e., it can be answered using accessible informa-
tion only. To do so, Blockaid checks the decision cache for any
similar query has been determined compliant previously. If not,
it encodes noncompliance as an SMT formula (§5) and checks
its satisfiability using several SMT solvers in parallel (§7).

If a query is compliant, Blockaid forwards it to the database
unmodified. In case of a cache miss, Blockaid also extracts
and caches a decision template (§6). Finally, it appends the
query and its result to the trace. If verification fails, Blockaid
blocks the query by raising an error to the application.

Although our core design assumes that all sensitive informa-
tion is stored in the relational database, Blockaid supports lim-
ited compliance checking for two other common data sources:
1. If the application stores database-derived data in a caching

layer (e.g., Redis), the programmer can annotate a cache
key pattern with SQL queries from which the value can be
derived. Blockaid can then intercept each cache read and
verify the compliance of the queries associated with the key.

2. If the application stores sensitive data in the file system, it
can generate hard-to-guess names for these files and store
the file names in a database column protected by the policy.
Blockaid’s basic requirement is soundness: preventing the

revelation of inaccessible information (formalized in §4.3).
However, it may reject certain behaviors that do not violate
the policy (§9), although such false rejections never arose in
our evaluation (§8).

We end by emphasizing two aspects of Blockaid’s operation:
1. Blockaid has no visibility into or control over the applica-

tion (except by blocking queries). So it must assume that
any data fetched by the application will be shown to the user.

2. Blockaid has no access to the database except by observing
query results—it cannot issue additional queries of its own.

3.3 Application Requirements

For use with Blockaid, an application must:
1. Send the request context to Blockaid at the start of a request

and signal Blockaid to clear the trace at the end;
2. Handle rejected queries cleanly (although a web server’s

default behavior of returning HTTP 500 often suffices); and,
3. Not query data that it does not plan on revealing to the user.

Existing applications often violate the third requirement. For
example, when a user views an order on a Spree e-commerce
site, the order is fetched from the database, and only then does
Spree check, in application code, that the user is allowed to view
it. To avoid spurious errors from Blockaid, such applications
must be modified to fetch only data known to be accessible.

4 View-based Policy and Compliance
Throughout the paper, we will use as a running example a
calendar application with the following database schema:

Users(UId,Name)

Events(EId,Title,Duration)

Attendances(UId,EId,ConfirmedAt)

Listing 1: Example policy view definitions V1 to V4 for the calendar
application. ?MyUId refers to the current user ID.

1. SELECT * FROM Users
Each user can view the information on all users.

2. SELECT * FROM Attendances
WHERE UId = ?MyUId
Each user can view their own attendance information.

3. SELECT * FROM Events
WHERE EId IN (SELECT EId

FROM Attendances
WHERE UId = ?MyUId)

Each user can view the information on events they attend.

4. SELECT * FROM Attendances
WHERE EId IN (SELECT EId

FROM Attendances
WHERE UId = ?MyUId)

Each user can view all attendees of the events they attend.

where primary keys are underlined. The request context con-
sists of a parameter MyUId denoting the UId of the current user.

4.1 Specifying Policies as Views

A policy is a collection of SQL queries that, together, define
what information a user is allowed to access. Each query is
called a view definition and can refer to parameters from the
request context. As an example, Listing 1 shows four view def-
initions, V1–V4; we denote this policy as V = {V1,V2,V3,V4}.

Notationally, for a viewV and a request context ctx, we write
V ctx to denote V with its parameters replaced with values in ctx.
We often drop the superscript when the context is apparent.

4.2 Compliance to View-based Policy

Under a policy consisting of view definitions, Blockaid can
allow an application query to go through only if it is certain
that the query’s result is uniquely determined by the views. In
other words, an allowable query must be answerable using ac-
cessible information alone. If a query’s output might depend on
information outside the views, Blockaid must block the query.

Example 4.1. Let MyUId = 2. The following query selects
the names of everyone whom the user attends an event with:

SELECT DISTINCT u.Name
FROM Users u

JOIN Attendances a_other
ON a_other.UId = u.UId

JOIN Attendances a_me
ON a_me.EId = a_other.EId

WHERE a_me.UId = 2

Looking at Listing 1, this query can always be answered by
combining V4, which reveals the UId of everyone whom the
user attends an event with, with V1, which supplies the names
associated with these UId’s. Hence, Blockaid allows it through.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    703



This query above is allowed unconditionally because it is
answerable using the views on any database instance. More
commonly, queries are allowed conditionally based on what
Blockaid has learned about the current database state, given
the trace of prior queries and results in the same web request.

Example 4.2. Again, let MyUId = 2. Consider the following
sequence of queries issued while handling one web request:

1. SELECT * FROM Attendances
WHERE UId = 2 AND EId = 5
↪→ (UId=2, EId=5, ConfirmedAt="05/04 1pm")

2. SELECT Title FROM Events WHERE EId = 5

The application first queries the user’s attendance record for
Event #5—an unconditionally allowed query—and receives
one row, indicating the user is an attendee. It then queries the
title of said event. This is allowed because V3 reveals the infor-
mation on all events attended by the user. More precisely, the
trace limits our scope to only databases where the user attends
Event #5. Because the second query is answerable using V3 on
all such databases, it is conditionally allowed given the trace.

Context is important here: the second query cannot be safely
allowed if it were issued in isolation.

Example 4.3. Suppose instead that the application issues the
following query by itself:

SELECT Title FROM Events WHERE EId = 5

Blockaid must block this query because it is not answerable
using V on a database where the user does not attend Event #5.
Whether or not the user actually is an attendee of the event is
irrelevant: The application, not having queried the user’s atten-
dance records, cannot be certain that the query is answerable
using accessible information alone. This differs from alter-
native security definitions [32, 39, 74] where a policy enforcer
can allow a query after inspecting additional information in
the database that has not been fetched by the application.

Definition 4.4. A trace T is a sequence (Q1,O1), . . . ,(Qn,On)
where each Qi is a query and each Oi is a collection of tuples.

Such a trace denotes that the application has issued queries
Q1, . . . ,Qn and received results O1, . . . ,On from the database.

We now motivate the formal definition of query compliance
given a trace (using colors to show correspondence between
text and equations). Consider any two databases that are:
• Equivalent in terms of accessible data (i.e., they differ only

in information outside the views), and
• Consistent with the observed trace (i.e., we consider only

databases that could be the one the application is querying).
Blockaid must ensure that such two databases are indistinguish-
able to the user—by allowing only queries that produce the
same result on both databases.

Definition 4.5. Let ctx be a request context, V be a set of views,
and T = {(Qi,Oi)}n

i=1 be a trace. A query Q is ctx-compliant

to V given T if for every pair of databases D1,D2 that conform
to the database schema and constraints,1 and satisfy:

V ctx(D1) =V ctx(D2), (∀V ∈ V ) (1)
Qi(D1) = Oi, (∀1 ≤ i ≤ n) (2)
Qi(D2) = Oi, (∀1 ≤ i ≤ n) (3)

we have Q(D1) = Q(D2). We will simply say compliant if the
context is clear.

We call Definition 4.5 trace determinacy because it extends
the classic notion of query determinacy [51, 60] with the trace.
Query determinacy is undecidable even for conjunctive views
and queries [27, 28]; trace determinacy must also be undecid-
able in the same scenario. Although several decidable cases
have been discovered for query determinacy [1,51,53], they are
not expressive enough for our use case. A promising direction
is to identify classes of views and queries that capture common
web use cases and for which trace determinacy is decidable.

4.3 From Query Compliance to Noninterference

Blockaid’s end goal is to ensure that an application’s output
depends only on information accessible to the user. In relation
to this goal, query compliance (Definition 4.5) satisfies two
properties, making it the right criterion for Blockaid to enforce:
1. Sufficiency: As long as only compliant queries from the ap-

plication are let through, there is no way for an execution’s
outcome to be influenced by inaccessible information.

2. Necessity: Any enforcement system that makes per-query
decisions based solely on the query and its preceding trace
cannot safely allow any non-compliant query without the
risk of the application revealing inaccessible information.

Before stating and proving these properties formally, let us first
model our target applications, enforcement systems, and goals.

We model a web request handler as a program P (ctx,req,D)
that maps a request context ctx, an HTTP request req, and a
database D to an HTTP response.2 A program that abides by
a policy V satisfies a noninterference property [21, 29] stating
that its output depends only on the inputs that the user has ac-
cess to—namely, ctx, req, andV ctx(D) for eachV ∈ V . The for-
mal definition follows from a similar intuition as Definition 4.5.

Definition 4.6. A program P satisfies noninterference under
policy V if the following condition holds:

NIV (P ) := ∀ctx,req,D1,D2.[
∀V ∈ V .V ctx(D1) =V ctx(D2)

]
=⇒ P (ctx,req,D1) = P (ctx,req,D2).

An enforcement system must ensure that any program
running under it satisfies noninterference. We now model such
a system that operates under Blockaid’s assumptions.

1We will henceforth use “schema” to mean both schema and constraints,
and rely on the database and/or the web framework to enforce the constraints.

2For simplicity, we assume P is a pure function—deterministic, termi-
nating, and side-effect free—although this assumption can be relaxed through
standard means from information-flow control [34, § 2].

704    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Definition 4.7. An enforcement predicate is a mapping from a
request context, a query, and a trace to an allow/block decision:

E(ctx,Q,T )→{✓,✗}.

Definition 4.8. Let P (ctx,req,D) be a program and E be
an enforcement predicate. We define the program P under
enforcement using E as a new program P E(ctx,req,D) that
simulates every step taken by the original program P , except
that it maintains a trace T and blocks any query Q issued by P
where E(ctx,Q,T ) = ✗ by immediately returning an error.

Note that P E evaluates E only on traces in which every
query has been previously allowed by E given its trace prefix.

Definition 4.9. Given a request context ctx, we say that a trace
T = {(Qi,Oi)}n

i=1 is prefix E-allowed if for all 1 ≤ i ≤ n,

E(ctx,Qi,T [1..i−1]) = ✓.

Definition 4.10. A predicate E correctly enforces policy V if:

∀P . NIV (P E).

We are ready to state the sufficiency-and-necessity theorem,
whose proof is left to our extended paper [73, § B]. Like
before, we use colors to link a statement to its explanation.

Theorem 4.11. Let V be a set of views and E be a predicate.
1. Suppose E(ctx,Q,T ) = ✓ only when Q is ctx-compliant

to V given T . Then E correctly enforces V .
2. Suppose E correctly enforces V . Then for any request

context ctx, query Q, and prefix E-allowed trace T such
that E(ctx,Q,T ) = ✓, Q is ctx-compliant to V given T .

To unpack,Theorem 4.11 says: (1) as long as an enforcement
predicate ensures query compliance, it correctly enforces the
policy on applications (i.e., sufficiency); and (2) for a predicate
to correctly enforce the policy, it must ensure query compliance
(i.e., necessity). Thus, query compliance can be regarded as the
“projection” of application noninterference onto Blockaid’s
lens, making it the ideal criterion to enforce.

5 Compliance Checking with SMT
Having defined view-based policy and compliance, we now in-
troduce how Blockaid verifies compliance using SMT solvers.

5.1 Translating Noncompliance to SMT

Blockaid verifies query compliance by framing noncompli-
ance (i.e, the negation of Definition 4.5) as an SMT formula
and checking its satisfiability—a query is compliant if and
only if the formula is unsatisfiable. We use a straightforward
translation based on Codd’s theorem [20], which states, infor-
mally, that relational algebra under set semantics is equivalent
in expressiveness to first-order logic (FOL). Relational algebra
has five operators—projection, selection, cross product, union,
and difference—and tables are interpreted as sets of rows (i.e.,
no duplicates). Under this equivalence, tables are translated to
predicates in FOL, and operators are implemented using exis-
tential quantifiers, conjunctions, disjunctions, and negations.

Example 5.1. Let us translate into FOL the following query Q
executed on a database D:

SELECT e.EId, e.Title
FROM Events e, Attendances a
WHERE e.EId = a.EId AND a.UId = 2

Let ED(·, ·, ·) and AD(·, ·, ·) be FOL predicates representing
the Events and Attendances table in the database D in:

QD(xe,xt) := ∃xd ,xu,x′e,xc.ED(xe,xt ,xd)∧AD(xu,x′e,xc)

∧xe = x′e ∧ xu = 2.

QD(xe,xt) encodes the statement (xe,xt) ∈ Q(D), i.e., that the
row (xe,xt) is returned by Q on database D. Note thatQD is not
a logical symbol, but merely a shorthand for the right-hand side.

Example 5.2. We now present the noncompliance formula for
a single query Q with respect to V from §4.1. Let VDi

1 , . . . ,VDi
4

and QDi encode the views and query on database Di (i = 1,2)
in FOL. The desired formula would then be the conjunction of:

∀x.VD1
1 (x)↔ VD2

1 (x), (V1(D1) =V1(D2))

...

∀x.VD1
4 (x)↔ VD2

4 (x), (V4(D1) =V4(D2))

∃x.QD1(x) ̸↔ QD2(x), (Q(D1) ̸= Q(D2))

where x denotes a sequence of fresh variables. Database con-
straints and consistency with a trace can be encoded similarly.

5.2 Handling Practical SQL Queries

The encoding of relational algebra into logic, while straightfor-
ward, fails to cover real-world SQL due to two semantic gaps:
1. While the encoding assumes that relational algebra is eval-

uated under set semantics, in practice databases use a mix
of set, bag, and other semantics when evaluating queries.3

2. SQL operations like aggregation and sorting have no
corresponding operators in relational algebra.
For Blockaid to bridge these gaps, it must first assume that

database tables contain no duplicate rows. This is generally the
case for web applications as object-relational mapping libraries
like Active Record [59] and Django [26] add a primary key for
every table. Given this assumption, Blockaid rewrites complex
SQL into basic queries that map directly to relational algebra.

5.2.1 Basic SQL Queries

Definition 5.3. A basic query is either a SELECT-FROM-WHERE
query that never returns duplicate rows, or a UNION of SELECT-
FROM-WHERE clauses (the UNION always removes duplicates).4

A basic query on duplicate-free tables maps to relational
algebra under set semantics, and so can be directly translated
to FOL. To ensure a SELECT query is basic, we check it against
these sufficient conditions for returning no duplicate rows:

3For example, a SQL SELECT clause can return duplicate rows, but the
UNION operator removes duplicates.

4The MINUS operator is not used in our applications and is omitted.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    705



• It contains the DISTINCT keyword or ends in LIMIT 1; or
• It projects unique key column(s) from every table in FROM,

e.g., SELECT UId, Name FROM Users; or
• It is constrained by uniqueness in its WHERE clause—e.g.:

SELECT e.EId
FROM Events e, Attendances a
WHERE e.EId = a.EId AND a.UId = 2

For this query to return multiple copies of x, the database
must contain multiple rows of the form Attendances(2,x,?);
this is ruled out by the uniqueness constraint on (UId,EId).
In our experience, policy views can typically be written as

basic queries directly—e.g., for Listing 1 we can frame V3 and
V4 as equivalent basic queries by replacing subqueries with
joins and using the inner join transformation from §5.2.2.

5.2.2 Rewriting Into Basic Queries

When the application issues a query Q, Blockaid attempts
to rewrite it into a basic query Q′ and verify its compliance
instead. Ideally, Q′ would be equivalent to Q, but when this is
not possible, Blockaid produces an approximate Q′ that reveals
at least as much information as Q does.5 Such approximation
preserves soundness but may sacrifice completeness, although
it caused no false rejections in our evaluation. We now explain
how to rewrite several types of queries encountered in practice.
Inner joins. A query of the form:

SELECT ... FROM R1
INNER JOIN R2 ON C1 WHERE C2

is equivalently rewritten as the basic query:

SELECT ... FROM R1, R2 WHERE C1 AND C2

Left joins on a foreign key. Consider a query of the form:

SELECT ... FROM R1
LEFT JOIN R2 ON R1.A = R2.B WHERE ...

If R1.A is a foreign key into R2.B, then every row in R1
matches at least one row in R2. In this case, the left join can be
equivalently written as an inner join, which is handled as above.
Order-by and limit. Blockaid adds any ORDER BY column
as an output column and then discards the ORDER BY clause.
It also discards any LIMIT clause but, when adding the query
to the trace, uses a modified condition Oi ⊆ D(Qi) (instead
of “=”) to indicate that it may have observed a partial result.
Aggregations. Blockaid turns SELECT SUM(A) FROM R
into SELECT PK, A FROM R, where PK is table R’s primary
key. By projecting the primary key in addition toA, the rewritten
query reveals the multiplicity of the values in A—necessary for
computing SUM(A)—without returning duplicate rows.
Left joins that project one table. Left joins of the form:

SELECT DISTINCT A.* FROM A
LEFT JOIN B ON C1 WHERE C2

5It suffices to guarantee that Q can be computed from the result of Q′.

can be equivalently rewritten to the basic query:

(SELECT A.* FROM A
INNER JOIN B ON C1 WHERE C2)
UNION
(SELECT * FROM A WHERE C3)

where C3 is obtained by replacing each occurrence of B.? with
NULL in C2 and simplifying the resulting predicate.6 The first
subquery covers the rows in A with at least one match in B, and
the second subquery covers those with no matches.
Feature not supported. The SQL features not supported
include GROUP BY, ANY, EXISTS, etc., although they can also
be formulated / approximated using basic queries. In the future
we plan to leverage other formalisms [14, 18, 19, 66–68, 70]
to model complex SQL semantics more precisely.

5.3 Optimizations and SMT Encoding

We end this section with several optimizations for compliance
checking and some notes on the SMT encoding.
Strong compliance. We define a stronger notion of compli-
ance, which we found SMT solvers can verify more efficiently.

Definition 5.4. A query Q is strongly ctx-compliant to
policy V given trace {(Qi,Oi)}n

i=1 if for each pair of databases
D1,D2 that conform to the schema and satisfy:

V ctx(D1)⊆V ctx(D2), (∀V ∈ V ) (4)
Qi(D1)⊇ Oi, (∀1 ≤ i ≤ n) (5)

we have Q(D1)⊆ Q(D2).

Theorem 5.5. If Q is strongly compliant to V given trace T ,
then Q is also compliant to V given T .

Proof. Let Q be strongly compliant to V given T . To show that
Q is also compliant, let D1,D2 be databases that satisfy Equa-
tions (1) to (3) from the compliance definition. These imply the
strong compliance assumptions (Equations (4) and (5)), and so
we have Q(D1)⊆Q(D2). By symmetry,we also have Q(D2)⊆
Q(D1). Putting the two together, we conclude Q(D1) =Q(D2),
showing Q to be compliant to V given T .

For faster checking, Blockaid verifies strong compliance
rather than compliance; by Theorem 5.5, soundness is pre-
served. However, there are scenarios where a query is com-
pliant but not strongly compliant (see our extended paper [73,
§ C]); such queries will be falsely rejected by Blockaid. This
did not pose a problem in practice as we found the two notions
to coincide for every query encountered in our evaluation.
Fast accept. Given a viewSELECT C1, ..., Ck FROM R,
any query that references only columns R.C1, . . . , R.Ck must
be compliant and is accepted without SMT solving.

6As long as C2 contains no negations, it is safe to treat a NULL literal as
FALSE when propagating through or short-circuiting AND and OR operators.

706    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Trace pruning. Queries that returns many rows can inflate
the trace and slow down the solvers. Fortunately, often times
only few of the rows matter to a later query’s compliance. We
thus adopt a trace-pruning heuristic: when checking a query
Q, look for any previous query has returned over ten rows,
and keep only those rows that contain the first occurrence of a
primary-key value (e.g., user ID) appearing in Q. This heuristic
is sound, but may need to be adapted for any application where
our premise for pruning does not hold.
SQL types and predicates. To model SQL types, we use
SMT’s uninterpreted sorts, which we found to yield better
performance than theories of integers, strings, etc. We support
logical operators AND andOR, comparison operators <,<=,>,>=,
and operators IN, NOT IN,7 IS NULL, and IS NOT NULL. We
model < as an uninterpreted relation with a transitivity axiom.
NULLs. We model NULL using a two-valued semantics of
SQL [31, § 6] by (1) designating a constant in each sort as
NULL, and (2) taking NULL into account when implementing
SQL operators. For example, the SQL predicate x=y translates
into the following SMT formula: x = y∧ x ̸= null∧ y ̸= null.

6 Decision Generalization and Caching
While SMT solvers can check a wide range of queries, doing so
often takes 100s of milliseconds per query. As a page load can
depend on tens of queries, this overhead can add up to seconds.

To alleviate this overhead, Blockaid aims to reduce solver
calls by caching compliance decisions. Naively, once query Q
is deemed compliant given trace T , we could record (Q,T )
and allow future occurrences without re-invoking the solvers.

However, this proposal is unlikely to be effective because
the number of distinct (Q,T ) pairs can be unbounded. For
example, an application can issue as many queries of the
form SELECT * FROM Users WHERE UId = ? as there are
users in the system. Therefore, requiring an exact query-trace
match for a cache hit would result in a low cache hit rate.

Fortunately, while an application can issue an unbounded
number of distinct queries, it only exhibits a finite number of
truly different behaviors. For example, the query sequences
generated by requests for two different calendar events are
likely identical in structure while differing only in parameters
(e.g., event ID). If one sequence is compliant,we can generalize
this knowledge to conclude that the other is also compliant.

This generalization problem is the central challenge we
tackle in this section: Given a query’s compliance with respect
to a trace, how to abstract this knowledge into a decision
template such that (1) any query (and its trace) that matches this
template is compliant, and (2) the template is general enough
to produce matches on similar requests. Such a template, once
cached, will apply to an entire class of traces and queries.

Decision templates are designed to cache compliant queries
only. Our techniques do not extend to non-compliant queries,
which are expected to be rare in production as they typically

7We only support IN and NOT IN with a list of values, not with a subquery.

indicate bugs in the application or the policy.
Let us start with an example of a decision template.

6.1 Example

Suppose a user with UId= 1 requests Event #42 in the calendar
application, resulting in the application issuing a sequence of
SQL queries. Consider the third query, shown in Listing 2a. As
we explained in Example 4.2, Query #3 is compliant because
Query #2 has established that the user attends the event.

Blockaid aims to abstract this query (with trace) into a de-
cision template that applies to another user viewing a different
event. Listing 2b shows such a template; the notation says: If
each query-output pair above the line has a match in a trace T ,
then any query of the form below the line is compliant given T .
This particular template states: after it is determined that user x
attends event y, user x can view event y for any x and y.

Compared with the concrete query and trace, this template
(1) omits Query #1, which is immaterial to the compliance
decision; and (2) replaces the concrete values with parameters.
Occurrences of ?0 here constrain the event ID fetched by the
query to equal the previously checked event ID. We use * to
denote a fresh parameter, i.e., any arbitrary value is allowed.

We now dive into how Blockaid extracts such a decision
template from a concrete query and trace. But before we do so,
let us first define what a decision template is, what it means for
a template to have a match, and what makes a “good” template.

6.2 Definitions and Goals

For convenience, from now on we will denote a trace as a set
of query-tuple pairs {(Qi, ti)}n

i=1, where each ti is one of the
rows returned by Qi. A query that returns multiple rows is
represented as multiple such pairs. This change of notation is
permissible because under strong compliance (Definition 5.4),
we no longer take into account the absence of a returned row.

Definition 6.1. We say a trace T = {(Qi, ti)}n
i=1 is feasible if

there exists a database D such that ti ∈ Qi(D) for all 1 ≤ i ≤ n.

Definition 6.2. A decision template D[x,c], where c denotes
variables from the request context and x a sequence of
variables disjoint from c, is a triple (QD ,TD ,ΦD) where:
• QD is the parameterized query, whose definition can refer

to variables from x∪ c;
• TD is the parameterized trace, whose queries and tuples can

refer to variables from x∪ c; and
• ΦD , the condition, is a predicate over x∪ c.
We will often denote a template simply by D if the variables
are either unimportant or clear from the context.

As we later explain, ΦD represents any extra constraints
that a template imposes on its variables (e.g., ?0 < ?1 ).

Definition 6.3. A valuation ν over a collection of variables y
is a mapping from y to constants (including NULL), extended
to objects that contain variables in y. For example, given a
parameterized query Q, ν(Q) denotes Q with each occurrence
of variable y ∈ y substituted with ν(y).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    707



Listing 2: An example query with trace from the calendar application and a decision template generated from it.

(a) Example query with trace (UId = 1).

1. SELECT * FROM Users WHERE UId = 1
↪→ (UId=1, Name="John Doe")

2. SELECT * FROM Attendances
WHERE UId = 1 AND EId = 42
↪→ (UId=1, EId=42, ConfirmedAt="05/04 1pm")

3. SELECT * FROM Events WHERE EId = 42

(b) The decision template generated by Blockaid.

1. SELECT * FROM Attendances
WHERE UId = ?MyUId AND EId = ?0

↪→ (UId = ?MyUId , EId = ?0 , ConfirmedAt = * )

SELECT * FROM Events WHERE EId = ?0

Definition 6.4. Let D[x,c] = (QD ,TD ,ΦD) be a decision
template, ctx be a request context, T be a trace, and Q be a
query. We say that D matches (Q,T ) under ctx if there exists
a valuation ν over x∪ c such that:
• ν(c) = ctx,
• ν(QD) = Q,
• (ν(Q j),ν(t j)) ∈ T for all (Q j, t j) ∈ TD , and
• ν(ΦD) holds.

Example 6.5. Listing 2b can be seen as a stylized rendition of a
decision template D[x,c]where x = (x0,x1)—x0 denoting ?0
and x1 denoting the occurrence of * —and c = (MyUId); QD
and TD are as shown below and above the line; and ΦD is the
constant ⊤, meaning the template imposes no additional con-
straints on the variables.8 Under the request context MyUId =
1, this template matches the query and trace in Listing 2a via
the valuation {x0 7→ 42,x1 7→ "05/04 1pm",MyUId 7→ 1}.

We are interested only in templates that imply compliance.

Definition 6.6. A decision template D is sound with respect to
a policy V if for every request context ctx,whenever D matches
(Q,T ) under ctx, Q is strongly ctx-compliant to V given T .

Blockaid can verify that a template is sound via the following
theorem derived from strong compliance (Definition 5.4):

Theorem 6.7. A decision template D[x,c] = (QD ,TD ,ΦD)
is sound with respect to a policy V if and only if:

∀x,c,D1,D2.

ΦD

∀V ∈ V .V (D1)⊆V (D2)

∀(Qi, ti) ∈ TD . ti ∈ Qi(D1)

 =⇒ QD(D1)⊆ QD(D2).

For a compliant query Q (with trace T ) that misses the cache,
there often exist many sound templates that match (Q,T ). But
all such templates are not equal—we prefer the more general
ones, those that match a wider range of other queries and traces.

Definition 6.8. A template D1 is at least as general as a
template D2 if for every query Q and feasible trace T , if D2
matches (Q,T ), D1 also matches (Q,T ).

8Technically, this template requires MyUId ̸= NULL ∧ x0 ̸= NULL. We
omitted this condition in Listing 2b because we assume the user ID parameter
and the Attendances table’s EId column are both non-NULL.

Thus, Blockaid aims to generate a decision template that
(1) is sound, (2) matches (Q,T ), and (3) is general enough for
practical purposes. We now explain how this is achieved.

6.3 Generating Decision Templates

Blockaid starts from the trivial template D0 = (Q,T ,⊤),
which is sound but not general, and generalizes it in two steps:
1. Minimize the trace T to retain only those (Qi, ti) pairs that

are required for Q’s compliance (§6.3.1).
2. Replace each constant in the trace and query with a fresh

variable, and then generate a weak condition Φ over the
variables that guarantees compliance (§6.3.3).

6.3.1 Step One: Trace Minimization

Blockaid begins by finding a minimal sub-trace of T that pre-
serves compliance. It removes each (Qi, ti) ∈ T and, if Q is no
longer compliant, adds the element back. For example, for List-
ing 2a this step removes Query #1. Denote the resulting mini-
mal trace by Tmin and let decision template D1 = (Q,Tmin,⊤).

Proposition 6.9. D1 is sound, matches (Q,T ), and is at least
as general as D0.

As an optimization, Blockaid starts the minimization from
the sub-trace that the solver has actually used to prove compli-
ance. It extracts this information from a solver-generated unsat
core [8, § 11.8]—a subset of clauses in the formula that remains
unsatisfiable even with all other clauses removed. If we attach
labels to the clauses we care about, a solver will identify all la-
bels in the unsat core when it proves the formula unsatisfiable.

To get an unsat core, Blockaid uses the following formula:

V ctx(D1)⊆V ctx(D2), (∀V ∈ V )

[LQi] ti ∈ Qi(D1), (∀(Qi, ti) ∈ T )

Q(D1) ̸⊆ Q(D2),

where the clause asserting the ith trace entry is labeled LQi. If
Q is compliant, the solver returns as the unsat core a set S of
labels. Blockaid ignores any (Qi, ti) ∈ T for which LQi ̸∈ S.

6.3.2 Interlude: Model Finding for Satisfiable Formulas

A common operation in template generation is to remove parts
of a formula and re-check satisfiability. A complication arises

708    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



when the formula turns satisfiable—while solvers are adept at
proving unsatisfiability, they often fail on satisfiable formulas.9

To solve these formulas faster, we observe that they are typi-
cally satisfied by databases with small tables. We thus construct
SMT formulas to directly seek such “small models” by repre-
senting each table not as an uninterpreted relation, but as a con-
ditional table [35] whose size is bounded by a small constant.

A conditional table generalizes a regular table by (1) allow-
ing variables in its entries, and (2) associating with each row
with a condition, i.e., a Boolean predicate for whether the row
exists. For example, a Users table with a bound of 2 appears as:

UId Name Exists?

xu,1 xn,1 b1
xu,2 xn,2 b2

where each entry and condition is a fresh variable, signifying
that the table is not constrained in any way other than its size.

Queries on condition tables are evaluated via an extension of
the relational algebra operators [35, § 7]. This allows queries
to be encoded into SMT without using quantifiers or using
relation symbols for tables.10 For example, the query SELECT
Name FROM Users WHERE UId = 5 can be written as:

Q(xn) :=
2∨

i=1

(xu,i = 5∧ xn,i = xn ∧bi) .

We found that such formulas could be solved quickly by Z3.
After Blockaid generates an unsat core as described in

§6.3.1, it switches to using bounded formulas (i.e., ones that
use conditional tables instead of uninterpreted relations) for
the remainder of template generation. Blockaid sets a table’s
bound to one plus the number of rows required to produce the
sub-trace induced by the unsat core;11 it relies on the solvers to
produce small unsat cores to keep formula sizes manageable.

Care must be taken because using bounded formulas breaks
soundness—a query compliant on small tables might not be on
larger ones. Therefore, after a decision template is produced
Blockaid verifies its soundness on the unbounded formula,
and if this fails, increments the table bounds and retry.

6.3.3 Step Two: Find Value Constraints

Taking the template D1 = (Q,Tmin,⊤) from Step 1, Blockaid
generalizes it further by abstracting away the constants. To
do so, Blockaid parameterizes Tmin and Q by replacing each
occurrence of a constant with a fresh variable. We use a super-
script “p” to denote the parameterized version of a query, tuple,
or trace. Listing 3a shows T p

min and Qp from our example. As
an optimization, Blockaid assigns the same variable (e.g., x0)
to locations that are guaranteed by SQL semantics to be equal.

9For example, finite model finders in CVC4 [57] and Vampire [56] often
time out or run out of memory on tables with only tens of columns.

10To avoid using quantifiers in these formulas, we drop the transitivity
axiom for the uninterpreted less-than relation (§5.3).

11If the bounds are too small for a database to produce the trace, the
resulting formula will be unsatisfiable regardless of compliance.

Listing 3: Parameterization and candidate atoms for Listing 2a.

(a) Parameterized trace T p
min and query qp.

2. SELECT * FROM Attendances
WHERE UId = x0 AND EId = x1
↪→ (UId = x0 , EId = x1 , ConfirmedAt = x2 )

3. SELECT * FROM Events WHERE EId = x3

(b) Candidate atoms (with symmetric duplicates removed).

Form x = v:
• MyUId = 1
• x0 = 1
• x1 = 42
• x2 = "05/04 1pm"
• x3 = 42

Form x = x’:
• MyUId = x0
• x1 = x3

Form x < x’:
• MyUId < x1
• MyUId < x3
• x0 < x1
• x0 < x3

Blockaid must now generate a condition Φ such that the
resulting template D2 = (Qp,T p

min,Φ)meets our goals. It picks
as Φ a conjunction of atoms from a set of candidate atoms. Let x
denote all variables generated from parameterization, and let ν

map x to the replaced constants and c to the current context ctx.

Definition 6.10. The set of candidate atoms is defined as:

C =
⋃


{x = v | x ∈ x∪ c,v = ν(x) ̸= NULL}
{x IS NULL | x ∈ x∪ c,ν(x) = NULL}
{x = x’ | x,x′ ∈ x∪ c,ν(x) = ν(x′) ̸= NULL}
{x < x’ | x,x′ ∈ x∪ c,ν(x)< ν(x′)}

.

(We write atoms in monospace font to distinguish them from
mathematical expressions. Following SQL, the “=” in an atom
implies that both sides are non-NULL.)

Note that all candidate atoms hold on Q and Tmin. Blockaid
now selects a subset that not only guarantees compliance, but
also imposes relatively few restrictions on the variables.

Definition 6.11. With respect to Qp and T p
min, a subset of atoms

C0 ⊆ C is sound if the decision template (Qp,T p
min,

∧
C0) is

sound. (
∧

C0 denotes the conjunction of atoms in C0.)

Definition 6.12. Let C1,C2 ⊆C. We say that C2 is at least as
weak as C1 (denoted C1 ⪯C2) if

∧
C1 =⇒

∧
C2, and that C2

is weaker than C1 if C1 ⪯C2 but C2 ̸⪯C1.

Example 6.13. Listing 3b shows all the candidate atoms
from Listing 3a (after omitting symmetric ones in the x = x’
group). Consider the following two subsets of atoms:

C1 =
{
MyUId = x0, x1 = 42, x3 = 42

}
,

C2 =
{
MyUId = x0, x1 = x3

}
.

While both are sound,C2 is preferred overC1 as it is weaker and
thus applies in more scenarios. In fact, C2 is maximally weak:
there exists no subset that is both sound and weaker than C2.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    709



Ideally, Blockaid would produce a maximally weak sound
subset of C to use as the template condition, but finding one
can be expensive. It thus settles for finding a subset that is weak
enough for practical generalization. It does so in three steps.

First, as a starting point, Blockaid generates a minimal
unsat core of the formula:

V ctx(D1)⊆V ctx(D2), (∀V ∈ V )

tp
i ∈ Qp

i (D1), (∀(tp
i ,Q

p
i ) ∈ T p

min)

[LCi] ci, (∀ci ∈C)

Qp(D1) ̸⊆ Qp(D2).

LetCcore denote the atoms whose label appears in the unsat core.
For example, Ccore = {MyUId = x0,x1 = 42,x3 = 42}.

Second, it augments Ccore with other atoms that are implied
by it: Caug = { c ∈C |

∧
Ccore =⇒ c}. In our example,

Caug =Ccore ∪{x1 = x3}
=
{
MyUId = x0, x1 = 42, x3 = 42, x1 = x3

}
.

Caug enjoys a closure property: if C0 ⊆Caug and C0 ⪯C1, then
C1 ⊆Caug. In particular,Caug contains a maximally weak sound
subset of C. Thus, Blockaid focuses its search within Caug.

Finally, as a proxy for weakness, Blockaid finds a smallest
sound subset of Caug, denoted Csmall, breaking ties arbitrarily.
It does so using the MARCO algorithm [43, 44, 55] for
minimal unsatisfiable subset enumeration, modified to
enumerate from small to large and to stop after finding the
first sound subset. In our example, the algorithm returns
Csmall = {MyUId=x0,x1=x3} of cardinality two, which is also
a maximally weak subset (even though this might not be the
case in general).12 Nevertheless, searching for a smallest sound
subset has produced templates that generalize well in practice.

At the end, Blockaid produces the decision template:

D2[x,c] =
(

Qp,T p
min,

∧
Csmall

)
.

Proposition 6.14. D2 is sound, matches (Q,T ), and is at
least as general as D1.

As an optimization, whenever
∧

Csmall =⇒ x = y for x,y ∈
x∪ c, Blockaid replaces x with y in the template. This is how,
e.g., in Listing 2b ?0 appears in both the trace and the query.

6.3.4 Optimizations

We implement two optimizations that improve the performance
of template generation and the generality of templates.
Omit irrelevant tables. Given trace T and query Q, we
call a table relevant if (1) it appears in T or Q, or (2) the table
appears on the right-hand side of a database constraint of
the form Q1 ⊆ Q2, given that a relevant table appears on the

12For example, {x < y,x < z} is strictly weaker than {x < y,y < z}
even though the two sets have the same cardinality.

left.13 Blockaid sets the size bounds of irrelevant tables to
zero, reducing formula size while preserving compliance.
Split IN. A query Q that contains “c IN (x1,x2, . . . ,xn)”
often produces a template with a long trace. If Q is a basic
query that does not contain the NOT operator, it can be split into
q1, . . . ,qn where qi denotes Q with the IN-construct substituted
with c = xi, such that Q ≡ q1 ∪ . . .∪ qn. If q1, . . . ,qn are all
compliant then so is Q, and so Blockaid checks the subqueries
instead. This is usually fast because q2, . . . ,qn typically match
the decision template generated from q1. If any qi is not
compliant, Blockaid reverts to checking Q as a whole.

This optimization also improves generalization. Suppose
Q′ has structure identical to Q but a different number of
IN operands. It would not match a template generated from Q,
but its split subqueries q′i could match the template from q1.

6.4 Decision Cache and Template Matching

Blockaid stores decision templates in its decision cache, in-
dexing them by their parameterized query using a hash map.
When checking a query Q, Blockaid lists all templates whose
parameterized query matches Q; for each such template, it uses
recursive backtracking (with pruning optimizations) to search
for a valuation that results in a match. This simple method
proves efficient in practice as the templates tend to be small.

7 Implementation
We implemented Blockaid as a Java Database Connectiv-
ity (JDBC) driver that interposes on an underlying connection.
It thus supports only applications on the JVM and runs
within the web server, although our design allows it to reside
elsewhere (e.g., in the database). The JDBC driver accepts
custom commands that (1) set the request context, (2) clear the
context and the trace, and (3) check an application cache read.

Blockaid parses SQL using Apache Calcite [9] and caches
parser outputs. To check compliance, it uses Z3’s Java
binding [23] to generate formulas in SMT-LIB 2 format [7]
and invokes an ensemble of solvers in parallel. Our ensemble
consists of Z3 [24] (v4.8.12) and CVC5 [6] (v0.3) using default
configurations, and Vampire [40] (v4.6.1) using six configura-
tions from its CASC portfolio.14 The ensemble is killed as soon
as any solver finishes. If a query is not compliant, or all solvers
time out after 5 s, Blockaid throws a Java SQLException.

To generate decision templates, Blockaid uses the same en-
semble to produce the initial unsat core (§6.3.1), but kills the
ensemble only when a solver returns a small core of up to 3 la-
bels (subject to timeout). It uses only Z3 on bounded formulas.

Our prototype does not verify that queries return no duplicate
rows and does not look at any ORDER BY columns. We manu-
ally ensured that queries in our evaluation return no duplicates
and do not reveal inaccessible information through ORDER BY.

13Every constraint encountered in our evaluation can be written in the form
Q1 ⊆ Q2, including primary-key, foreign-key, and integrity constraints.

14https://github.com/vprover/vampire/blob/master/CASC/Sc
hedules.cpp.

710    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/vprover/vampire/blob/master/CASC/Schedules.cpp
https://github.com/vprover/vampire/blob/master/CASC/Schedules.cpp


Table 1: Summary of schemas, policies, and code changes.

diaspora* Spree Autolab

Schema & Policy
# Tables modeled 35 / 52 46 / 93 17 / 28
# Constraints 108 122 51
# Policy views 108 84 57
# Cache key patterns 0 11 3

Code Changes (LoC)
Boilerplate 12 17 12
Fetch less data 6 26 38
SQL feature 1 3 5
Parameterize queries 0 18 32
File system checking 0 0 9
Total 19 64 96

8 Evaluation
We use Blockaid to enforce data-access policies on three ex-
isting open-source web applications written in Ruby on Rails:
• diaspora* [25]: a social network with 850 k users.
• Spree [63]: an e-commerce app used by 50+ businesses.
• Autolab [5]: a course management app used at 20 schools.
For each application, we devised a data-access policy, modified
its code to work with Blockaid, and measured its performance.

In summary: Blockaid imposes overheads of 2 %–12 % to
median page load time when compliance decisions are cached;
the decision templates produced by Blockaid generalize to
other entities (users, etc.); and no query was falsely rejected in
our benchmark. Instructions for reproducing our experiments
can be found in Appendix A.

8.1 Constraints, Policies, and Annotations

Table 1 summarizes the constraints and policies for database
tables queried in our benchmark, including any necessary
application-level constraints (e.g., a reshared post is always
public in diaspora*). Spree and Autolab use the Rails cache,
and we annotate their cache key patterns with queries (§3.2).

Once a policy is given, transcribing it into views was straight-
forward. The more arduous task lied in divining the intended
policy for an application, by studying its source code and inter-
acting with it on sample data. This effort was complicated by
edge cases in policies—e.g., a Spree item at an inactive location
is inaccessible except when filtering for backorderable variants.
Such edge cases had to be covered using additional views.

To give a sense of the porting effort, writing the Spree policy
took one of us roughly a month. However, this process would
be easier for the developer of a new application, who has a
good sense of what policies are suitable and can create policies
while building the application, amortizing the effort over time.

When writing the Autolab policy, we uncovered two access-
check bugs in the application: (1) a persistent announcement
(one shown on all pages of a course) is displayed regardless of
whether it is active on the current date, and (2) an unreleased
handout is hidden on its course page but can be downloaded

from its assignment page. This experience corroborates the
difficulty of making every access check airtight, especially
for code bases that enjoy fewer maintenance resources.

8.2 Code Modifications

Our changes to application code fall into five categories:
1. Boilerplate: We add code that sends the request context to

Blockaid at request start and clears the trace at request end.
2. Fetch less data: We modify code to not fetch potentially

sensitive data unless it will be revealed to the user; some
of these changes use the lazy_column gem [45].

3. SQL features: We modify some queries to avoid SQL
features not supported by Blockaid (e.g., general left joins)
without altering application behavior.

4. Parameterize queries: We make some queries parame-
terized so that Blockaid can effectively cache their parsing
results. Most changes are mechanical rewrites of queries
with comparisons, as idiomatic ways of writing compar-
isons [54] cause query parameters to be filled within Rails.

5. File system checking: Autolab uses files to store submis-
sions; the file name are always accessible but the content
is inaccessible during an exam. We modify it to store the
submission content under a randomly generated file name
and restrict access to the file name in the database (§3.2).
The code changes are summarized also in Table 1, which

omits configuration changes, adaptations for JRuby, and ex-
periment code. The changes range from 19 to 96 lines of code.

8.3 Experiment Setup and Benchmark

We deploy each application on an Amazon EC2 c4.8xlarge
instance running Ubuntu 18.04. Because our prototype only
supports JVM applications (§7), we run the applications using
JRuby [36] (v9.3.0.0), a Ruby implementation atop the JVM
(we use OpenJDK 17). In Rails’s database configuration, we
turn on prepared_statements so that Rails issues param-
eterized queries in the common case.15 The applications run
atop the Puma web server over HTTPS behind NGINX (which
serves static files directly), and stores data in MySQL (and, if
applicable, Redis) on the same instance. To reduce variability,
all measurements are taken from a client on the same instance.

For each application, we picked five page loads that exercise
various behaviors (Table 2). Each page load can fetch multiple
URLs, some common among many pages (e.g., D9, which is
the notifications URL). All queries issued are compliant, and
all experiments are performed with the Rails cache populated.

8.4 Page Load Times

We start by measuring page load times (PLTs) using a head-
less Chrome browser (v96) driven by Selenium [62]. PLTs are
reported as the time elapsed between navigationStart and
loadEventEnd as defined by the PerformanceTiming inter-
face [71]. The one exception is the Autolab “Submission” page,

15In case a Rails query is not fully parameterized (e.g., due to the use of
raw SQL), it gets parameterized by Blockaid as described in §6.3.3.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    711



Table 2: Application benchmark. For a page we list the page URL followed by other URLs fetched (URLs for assets are excluded). When
compliance decisions are cached, Blockaid incurs up to 12 % overhead to the median PLT over the modified applications.

Page Load Time (median / P95; default unit: ms)

URLs Description Original Modified Cached No cache

diaspora*
Simple post D1, D2, D9 View a simple post shared with the user. 169 / 173 169 / 175 174 / 179 2.5 s / 2.6 s
Complex post D3, D4, D9 View a public post with 30 votes and comments. 171 / 178 171 / 178 176 / 183 2.6 s / 2.7 s
Prohibited post D5 Attempt to view an unauthorized post. 32 / 34 32 / 34 33 / 35 262 / 285
Conversation D6, D9 View a conversation (5 messages). 253 / 258 255 / 262 260 / 267 2.1 s / 2.2 s
Profile D7, D8, D9 View someone’s profile (basic info and 3 posts). 142 / 148 145 / 152 150 / 156 1.3 s / 1.4 s

Spree
Account S1, S6–S8 View the user’s account information. 74 / 80 76 / 83 78 / 84 588 / 611
Available item S2, S6–S8 View a product for sale. 122 / 133 115 / 167 122 / 173 4.4 s / 4.4 s
Unavailable item S3 Attempt to view a product no longer for sale. 20 / 22 21 / 23 22 / 24 350 / 371
Cart S4, S6–S8 View the current shopping cart (3 items). 116 / 131 118 / 132 124 / 137 7.6 s / 7.7 s
Order S5, S6–S8 View a summary and status of a previous order. 160 / 170 164 / 174 173 / 182 39 s / 39 s

Autolab
Homepage A1 View a summary of 3 courses enrolled. 56 / 61 59 / 64 65 / 70 1.4 s / 1.6 s
Course A2, A3 View summary of one course (15 assignments). 84 / 96 87 / 101 97 / 116 3.9 s / 4.1 s
Assignment A4 View a quiz (incl. 3 submissions and grades). 97 / 110 103 / 118 115 / 138 3.5 s / 3.6 s
Submission A5 Download a previous homework submission. 22 / 26 26 / 31 27 / 33 1.1 s / 1.2 s
Gradesheet A6 Instructor views grades for 51 enrollees. 456 / 474 474 / 493 504 / 530 72 s / 73 s

a file download, for which we report Chrome’s download time
instead. Since the client is on the same VM as the server, these
experiments reflect the best-case PLT, as clients outside the
instance / cloud are likely to experience higher network latency.

We report PLTs under four settings: original (unmodified ap-
plication), modified (modified à la §8.2), cached (modified ap-
plication under Blockaid with every query hitting the decision
cache), and no cache (decision caching disabled). For the first
three, we perform 3000 warmup loads before measuring the
PLT of another 3000 loads. For no cache, where each run takes
longer, we use 100 warmup loads and 100 measurement loads.

Table 2 shows that when compliance decisions are cached,
Blockaid incurs up to 12 % overhead to median PLT over the
modified application (and up to 17 % overhead to P95). With
caching disabled, Blockaid incurs up to 236× higher median
PLT. Compared with the original applications, the modified ver-
sions result in up to 6 % overhead to median PLT for all pages
but Autolab’s “Submissions”, which suffers a 19 % overhead.
(The P95 overhead is up to 7 % for all but two pages with up to
26 % overhead.) We will comment on these overheads in the
next subsection, where we break down the pages into URLs.

8.5 Fetch Latency

To better understand page load performance, we separate out
the individual URLs fetched by each page (Table 2), omitting
URLs for assets, and measure the latency of fetching each
URL (not including rendering time). The median latencies are
shown in Figure 2. In addition to the four settings from §8.4, it
includes performance under a “cold cache”, where the decision
cache is enabled but cleared at the start of each load (100

warmup runs followed by 100 measurements). When all com-
pliance decisions are cached, Blockaid incurs up to 10 % of
overhead (median 7 %) over “modified”. In contrast, it incurs
7×–422× overhead on a cold decision cache, and 7×–310×
overhead if the decision cache is disabled altogether.

For most URLs, “cold cache” is slower than “no cache” due
to the extra template-generation step. Two exceptions are D4
and A6, where many structurally identical queries are issued,
and so the performance gain from cache hits within each URL
offsets the performance hit from template generation.

Compared to the original, the modified diaspora* and Spree
are up to 5 % slower (median 2 %), but Autolab is up to 21 %
slower (median 8 %). Autolab routinely reveals partial data on
objects that are not fully accessible. For example, a user can
distinguish among the cases where (1) a course doesn’t exist,
(2) a course exists but the user is not enrolled, and (3) the user is
enrolled but the course is disabled. The original Autolab fetches
the course in one SQL query but we had to split it into multiple—
checking whether the course exists,whether it is disabled,etc.—
and return an error immediately if one of these checks fails.

In one instance (S2), the modified version is 11 % faster than
the original because we were able to remove queries for poten-
tially inaccessible data that is never used in rendering the URL.

8.6 Solver Comparison

When a query arrives, Blockaid invokes an ensemble of solvers
to check compliance when decision caching is disabled, and to
generate a decision template on a cache miss when caching is
enabled. The winner, in the no-cache case, is the first solver to
return a decision; and in the cache-miss case, the first to return a

712    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



diaspora* Spree Autolab

D1 D2 D3 D4 D5 D6 D7 D8 D9 S1 S2 S3 S4 S5 S6 S7 S8 A1 A2 A3 A4 A5 A6
10 ms

100 ms

1 s

10 s

100 s

URL

M
ed

ia
n

fe
tc

h
tim

e
(l

og
sc

al
e)

Original Modified Blockaid (cached) Blockaid (cold cache) Blockaid (no cache)

Figure 2: URL fetch latency (median). With all compliance decisions cached, Blockaid incurs up to 10 % overhead over “modified”.

Listing 4: Two (abridged) decision templates generated for the same parameterized query from Spree. Token is a Spree request context
parameter identifying the current (possibly guest) user, and NOW is a built-in parameter storing the current time.

(a) This template doesn’t fully generalize.

SELECT * FROM products WHERE id IN (*, *, *)
↪→ (id = ?1 , available_on < ?NOW ,

discontinue_on IS NULL, deleted_at IS NULL, *)

SELECT * FROM variants WHERE id IN (*, *, *)
↪→ (id = ?2 , deleted_at IS NULL,

discontinue_on IS NULL, product_id = ?1 , *)

SELECT a.* FROM assets a
JOIN variants mv ON a.viewable_id = mv.id
JOIN variants ov ON mv.product_id = ov.product_id
WHERE mv.is_master AND mv.deleted_at IS NULL
AND a.viewable_type = 'Variant' AND ov.id = ?2

(b) This template does fully generalize.

SELECT * FROM orders WHERE ...
↪→ (id = ?0 , token = ?Token , *)

SELECT * FROM line_items WHERE order_id = ?0
↪→ (variant_id = ?1 , *)

SELECT a.* FROM assets a
JOIN variants mv ON a.viewable_id = mv.id
JOIN variants ov ON mv.product_id = ov.product_id
WHERE mv.is_master AND mv.deleted_at IS NULL
AND a.viewable_type = 'Variant' AND ov.id = ?1

No cache
(compliance checking only)

Cache miss
(template generation)

diaspora* Spree Autolab diaspora* Spree Autolab

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
w

in
s

Solver

CVC5

Vampire

Z3

Figure 3: Fraction of wins by each solver. “Vampire” covers a
portfolio of six configurations (§7).

small enough unsat core (§7), assuming the query is compliant.
Figure 3 shows, in the fetch latency experiments (§8.5),

the fraction of wins by each solver in the two cases. In the
no-cache case, the wins are dominated by Z3 followed by
CVC5, with none for Vampire. In the cache-miss case, however,
Vampire wins a significant portion of the time. This is because
Z3 and CVC5 often finish quickly but with large unsat cores,

causing Blockaid to wait till Vampire produces a smaller core.

8.7 Template Generalization

We found that the generated decision templates typically gener-
alize to similar requests. The rest generalize in more restricted
scenarios, and none is tied to a particular user ID, post ID, etc.

To illustrate how Blockaid might produce a template that
fails to generalize fully, consider a query from Spree’s cache
key annotations (Listing 4). This query fetches assets for
product variants in the user’s order. (Here, the asset of a variant
belongs to its product’s “master variant”.) Listing 4a shows
a template that fails to generalize fully, for three reasons.

First, due to the queries with the IN operator in its premise
(above the horizontal line), this template applies only when an
order has exactly three variants. The IN-splitting optimization
from §6.3.4 only applies to the query being checked, and we
plan to handle such queries in the premise in future work.

Second, this template constrains the variant to be “not dis-
continued”, which is defined as discontinue_on IS NULL
or discontinue_on >= NOW. But because disjunctions are
not supported in decision templates, Blockaid picked only the
condition that matches the current variant (IS NULL).

Third, in this example there are multiple justifications for

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    713



this query’s compliance, and Blockaid happened to pick one
that does not always hold in a similar request. The policy states
that a variant’s asset can be viewed if it is not discontinued, or
if it is part of the user’s order.16 This particular variant in the
user’s order happens to not be discontinued, and the template
captures the former justification for viewing the asset. How-
ever, it does not apply to variants in the order that are discontin-
ued; indeed, for such variants, Blockaid produces the template
in Listing 4b, which generalizes fully. We could address this
issue by finding multiple decision templates for every query.

Incidentally, inspecting decision templates has helped us
expose overly permissive policies. When writing the Autolab
policy, we missed a join condition in a view, a mistake that
became apparent when Blockaid generated a template stating
that an instructor for one course can view assignments for
all courses. Although manual inspection of templates is not
required for using Blockaid, doing so can help debug overly
broad policies, whose undesirable consequences are often ex-
posed by the general decision templates produced by Blockaid.

9 Additional Issues
Comparison to row- and cell-level policy. Several commer-
cial databases (such as SQL Server [49] and Oracle [52]) imple-
ment row- and/or cell-level data-access policies, which specify
accessible information at the granularity of rows or cells.

Such policies are less expressive than the view-based ones
supported by Blockaid. For example, suppose we wish to allow
each user to view everyone’s timetables (i.e., the start and end
times of the events they attend). Querying someone’s timetable
requires joining the Events and Attendances tables on the EId
column,which must then be treated as visible by a cell-level pol-
icy. But this inevitably reveals meeting attendee information
as well. Instead, we can implement this policy using a view:

SELECT UId, StartTime , EndTime
FROM Events e
JOIN Attendances a ON e.EId = a.EId

which lists the times of events attended without revealing EId.
False rejections. Even though false rejections of compliant
queries never occurred in our evaluation, they remain a possi-
bility for several reasons, including: (1) approximate rewriting
into basic queries, which is incomplete; (2) our use of strong
compliance; and (3) solver timeouts. Developers can reduce the
chance of false rejections by running an application’s end-to-
end test suite under Blockaid before deployment, and manually
examining any rejected query to determine whether it is due
to a false positive, a bug in the code, or a misspecified policy.
Off-path deployment. If an operator is especially worried
about false rejections affecting a website’s availability, we can
modify Blockaid to log potential violations instead of blocking
any queries. We can even move Blockaid off-path by having
the application stream its queries to Blockaid to be checked
asynchronously, further reducing its performance impact.

16This is to allow users to view past purchases that are since discontinued.

What if Blockaid could issue its own queries? Suppose
Blockaid can issue extra queries—but only ones answerable
using the views, lest the decision itself reveal sensitive data—
when checking compliance. Blockaid can now safely allow
more queries from the application. For example, faced with
the formerly non-compliant single query from Example 4.3:

SELECT Title FROM Events WHERE EId = 5

Blockaid can now ask whether the user attends Event #5 and if
so, allow the query. In fact, under this setup the “necessary-and-
sufficient” condition for application noninterference (in the
sense of §4.3) becomes instance-based determinacy [39,58,74],
a criterion less stringent than trace determinacy.

We decided against this design alternative for two reasons.
First, it seems nontrivial to check instance-based determinacy
efficiently: Blockaid must either figure out a small set of queries
to ask, a difficult problem, or fetch all accessible information,
an expensive task. Second, Blockaid is designed for conven-
tional applications that do not rely on an enforcer for data-
access compliance. These applications should not be issuing
queries that fail trace determinacy but pass instance-based de-
terminacy: Such queries can, in Blockaid’s absence, reveal
inaccessible information on another database and typically
indicate application bugs. Thus, Blockaid is right to flag them.
Theoretically optimal templates. While decision templates
produced by Blockaid are general enough in practice, they
might not be maximally general among all sound templates that
match the query and trace being checked. For one thing, the
template condition might not be maximally weak (§6.3.3). For
another, a maximally general template can have a longer trace
than the concrete one, a possibility Blockaid never explores.

Fundamentally, our template generation algorithm is limited
by its black-box access to the policy: It interacts with the policy
solely by checking template soundness using a solver. Produc-
ing maximally general templates might require opening up
this black box and having the policy guide template generation
more directly, a path we plan to explore in future work.

10 Conclusion
Blockaid enforces view-based data-access policies on web
applications in a semantically transparent and backwards
compatible manner. It verifies policy compliance using SMT
solvers and achieves low overhead using a novel caching and
generalization technique. We hope that Blockaid’s approach
will help rule out data-access bugs in real-world applications.

Acknowledgments
We are grateful to Alin Deutsch and Victor Vianu for the many
discussions about query determinacy, and to Nikolaj Bjørner,
Alvin Cheung, Vivian Fang, and members of the Berkeley Net-
Sys Lab for their help with the project. We also thank the anony-
mous reviewers and our shepherd Malte Schwarzkopf for their
helpful comments. This research was funded in part by NSF
grants 1817116 and 2145471, and gifts from Intel and VMware.

714    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References
[1] Foto N. Afrati. Determinacy and query rewriting for

conjunctive queries and views. Theor. Comput. Sci.,
412(11):1005–1021, 2011.

[2] Rakesh Agrawal, Paul Bird, Tyrone Grandison, Jerry
Kiernan, Scott Logan, and Walid Rjaibi. Extending
relational database systems to automatically enforce
privacy policies. In ICDE, pages 1013–1022. IEEE
Computer Society, 2005.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant,
and Yirong Xu. Hippocratic databases. In VLDB, pages
143–154. Morgan Kaufmann, 2002.

[4] Warwick Ashford. Facebook photo leak flaw raises
security concerns, March 2015. https://www.comp
uterweekly.com/news/2240242708/Facebook-ph
oto-leak-flaw-raises-security-concerns.

[5] Autolab Project. https://autolabproject.com/.

[6] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon
Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman
Mohamed, Mudathir Mohamed, Aina Niemetz, An-
dres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.
cvc5: A versatile and industrial-strength SMT solver. In
TACAS, 2022.

[7] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The
SMT-LIB Standard: Version 2.6. Technical report,
Department of Computer Science, The University of
Iowa, 2017.

[8] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo
theories. In Edmund M. Clarke, Thomas A. Henzinger,
Helmut Veith, and Roderick Bloem, editors, Handbook
of Model Checking, pages 305–343. Springer, 2018.

[9] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde,
Michael J. Mior, and Daniel Lemire. Apache calcite: A
foundational framework for optimized query processing
over heterogeneous data sources. In SIGMOD, pages
221–230. ACM, 2018.

[10] Gabriel Bender, Lucja Kot, and Johannes Gehrke.
Explainable security for relational databases. In
SIGMOD, pages 1411–1422. ACM, 2014.

[11] Gabriel Bender, Lucja Kot, Johannes Gehrke, and
Christoph Koch. Fine-grained disclosure control for app
ecosystems. In SIGMOD, pages 869–880. ACM, 2013.

[12] Alexander Brodsky, Csilla Farkas, and Sushil Jajodia.
Secure databases: Constraints, inference channels, and
monitoring disclosures. IEEE Trans. Knowl. Data Eng.,
12(6):900–919, 2000.

[13] Kristy Browder and Mary Ann Davidson. The virtual
private database in Oracle9iR2. Oracle Technical White
Paper, 2002.

[14] Alvin Cheung, Armando Solar-Lezama, and Samuel
Madden. Optimizing database-backed applications with
query synthesis. In PLDI, pages 3–14. ACM, 2013.

[15] Adam Chlipala. Static checking of dynamically-varying
security policies in database-backed applications. In
OSDI, pages 105–118. USENIX Association, 2010.

[16] Adam Chlipala. Ur: statically-typed metaprogramming
with type-level record computation. In PLDI, pages
122–133. ACM, 2010.

[17] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi,
K. Vikram, Lantian Zheng, and Xin Zheng. Secure web
applications via automatic partitioning. In SOSP, page
31–44. ACM, 2007.

[18] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin
Cheung, and Dan Suciu. Axiomatic foundations and
algorithms for deciding semantic equivalences of SQL
queries. Proc. VLDB Endow., 11(11):1482–1495, 2018.

[19] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan
Suciu. HoTTSQL: proving query rewrites with univalent
SQL semantics. In PLDI, pages 510–524. ACM, 2017.

[20] E. F. Codd. Relational completeness of data base sub-
languages. In Database Systems. Prentice-Hall, 1972.

[21] Ellis S. Cohen. Information transmission in computa-
tional systems. In SOSP, pages 133–139. ACM, 1977.

[22] Brian J. Corcoran, Nikhil Swamy, and Michael W. Hicks.
Cross-tier, label-based security enforcement for web
applications. In SIGMOD, pages 269–282. ACM, 2009.

[23] Leonardo de Moura. Z3 for Java. h t t p s :
//leodemoura.github.io/blog/2012/12/10
/z3-for-java.html.

[24] Leonardo Mendonça de Moura and Nikolaj Bjørner.
Z3: an efficient SMT solver. In TACAS, volume 4963
of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[25] Diaspora Foundation. The diaspora* project.
https://diasporafoundation.org/.

[26] Django Software Foundation. Models | Django
documentation | Django. https://docs.djangopro
ject.com/en/3.2/topics/db/models/.

[27] Tomasz Gogacz and Jerzy Marcinkowski. The hunt for
a red spider: Conjunctive query determinacy is undecid-
able. In 30th Annual ACM/IEEE Symposium on Logic in

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    715

https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://autolabproject.com/
https://leodemoura.github.io/blog/2012/12/10/z3-for-java.html
https://leodemoura.github.io/blog/2012/12/10/z3-for-java.html
https://leodemoura.github.io/blog/2012/12/10/z3-for-java.html
https://diasporafoundation.org/
https://docs.djangoproject.com/en/3.2/topics/db/models/
https://docs.djangoproject.com/en/3.2/topics/db/models/


Computer Science, LICS 2015, Kyoto, Japan, July 6-10,
2015, pages 281–292. IEEE Computer Society, 2015.

[28] Tomasz Gogacz and Jerzy Marcinkowski. Red spider
meets a rainworm: Conjunctive query finite determinacy
is undecidable. In PODS, pages 121–134. ACM, 2016.

[29] Joseph A. Goguen and José Meseguer. Security policies
and security models. In 1982 IEEE Symposium on
Security and Privacy, Oakland, CA, USA, April 26-28,
1982, pages 11–20. IEEE Computer Society, 1982.

[30] Matthew Green. Twitter post: Piazza offers anonymous
posting, but does not hide each user’s total number of
posts, October 2017. https://twitter.com/matthe
w_d_green/status/925053953330634753.

[31] Paolo Guagliardo and Leonid Libkin. A formal seman-
tics of SQL queries, its validation, and applications.
Proc. VLDB Endow., 11(1):27–39, 2017.

[32] Marco Guarnieri and David A. Basin. Optimal
security-aware query processing. Proc. VLDB Endow.,
7(12):1307–1318, 2014.

[33] Raju Halder and Agostino Cortesi. Fine grained access
control for relational databases by abstract interpretation.
In ICSOFT, volume 170, pages 235–249. Springer, 2010.

[34] Daniel Hedin and Andrei Sabelfeld. A perspective
on information-flow control. In Tobias Nipkow, Orna
Grumberg, and Benedikt Hauptmann, editors, Software
Safety and Security - Tools for Analysis and Verification,
volume 33 of NATO Science for Peace and Security
Series - D: Information and Communication Security,
pages 319–347. IOS Press, 2012.

[35] Tomasz Imielinski and Witold Lipski Jr. Incom-
plete information in relational databases. J. ACM,
31(4):761–791, 1984.

[36] JRuby – the Ruby programming language on the JVM.
https://www.jruby.org.

[37] Eddie Kohler. Hide review rounds from paper authors
• kohler/hotcrp@5d53abc, March 2013. https:
//github.com/kohler/hotcrp/commit/5d53ab.

[38] Eddie Kohler. Download PC review assignments obeys
paper administrators • kohler/hotcrp@80ff966, March
2015. https://github.com/kohler/hotcrp/commi
t/80ff96.

[39] Paraschos Koutris, Prasang Upadhyaya, Magdalena
Balazinska, Bill Howe, and Dan Suciu. Query-based
data pricing. In PODS, pages 167–178. ACM, 2012.

[40] Laura Kovács and Andrei Voronkov. First-order theorem
proving and Vampire. In CAV, volume 8044 of Lecture
Notes in Computer Science, pages 1–35. Springer, 2013.

[41] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac,
Raghu Ramakrishnan, Yirong Xu, and David J. DeWitt.
Limiting disclosure in hippocratic databases. In VLDB,
pages 108–119. Morgan Kaufmann, 2004.

[42] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean
Yang, Niki Vazou, Nadia Polikarpova, Deian Stefan,
and Ranjit Jhala. STORM: refinement types for secure
web applications. In OSDI, pages 441–459. USENIX
Association, 2021.

[43] Mark H. Liffiton and Ammar Malik. Enumerating
infeasibility: Finding multiple MUSes quickly. In
CPAIOR, volume 7874 of Lecture Notes in Computer
Science, pages 160–175. Springer, 2013.

[44] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and
João Marques-Silva. Fast, flexible MUS enumeration.
Constraints An Int. J., 21(2):223–250, 2016.

[45] Jorge Manrubia. jorgemanrubia/lazy_columns:
Rails plugin that adds support for lazy-loading
columns in active record models, 2015. https:
//github.com/jorgemanrubia/lazy_columns.

[46] Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf,
Samyukta Yagati, Eddie Kohler, Robert Morris, M. Frans
Kaashoek, and Sam Madden. Towards multiverse
databases. In HotOS, 2019.

[47] Mark Maunder. Vulnerability in WordPress Core:
Bypass any password protected post. CVSS score: 7.5
(High), June 2016. https://www.wordfence.com/bl
og/2016/06/wordpress-core-vulnerability-by
pass-password-protected-posts/.

[48] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak
Garg, and Peter Druschel. Qapla: Policy compliance for
database-backed systems. In USENIX Security, pages
1463–1479. USENIX Association, 2017.

[49] Microsoft. Row-level security - SQL Server, 2021. ht
tps://docs.microsoft.com/en-us/sql/relatio
nal-databases/security/row-level-security.

[50] Andrew C. Myers. JFlow: Practical mostly-static
information flow control. In POPL, pages 228–241.
ACM, 1999.

[51] Alan Nash, Luc Segoufin, and Victor Vianu. Views
and queries: Determinacy and rewriting. ACM Trans.
Database Syst., 35(3):21:1–21:41, 2010.

716    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://twitter.com/matthew_d_green/status/925053953330634753
https://twitter.com/matthew_d_green/status/925053953330634753
https://www.jruby.org
https://github.com/kohler/hotcrp/commit/5d53ab
https://github.com/kohler/hotcrp/commit/5d53ab
https://github.com/kohler/hotcrp/commit/80ff96
https://github.com/kohler/hotcrp/commit/80ff96
https://github.com/jorgemanrubia/lazy_columns
https://github.com/jorgemanrubia/lazy_columns
https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security


[52] Oracle. Using Oracle Virtual Private Database to control
data access. https://docs.oracle.com/database
/121/DBSEG/vpd.htm.

[53] Daniel Pasaila. Conjunctive queries determinacy and
rewriting. In ICDT, pages 220–231. ACM, 2011.

[54] Alex Piechowski. Rails: How to use greater than/-
less than in Active Record where statements, 2019.
https://piechowski.io/post/how-to-use-grea
ter-than-less-than-active-record/.

[55] Alessandro Previti and João Marques-Silva. Partial
MUS enumeration. In AAAI. AAAI Press, 2013.

[56] Giles Reger, Martin Suda, and Andrei Voronkov. Finding
finite models in multi-sorted first-order logic. In SAT,
volume 9710 of Lecture Notes in Computer Science,
pages 323–341. Springer, 2016.

[57] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava
Krstic, Morgan Deters, and Clark W. Barrett. Quantifier
instantiation techniques for finite model finding in SMT.
In CADE, volume 7898 of Lecture Notes in Computer
Science, pages 377–391. Springer, 2013.

[58] Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and
Prasan Roy. Extending query rewriting techniques for
fine-grained access control. In SIGMOD, pages 551–562.
ACM, 2004.

[59] Ruby on Rails Guides. Active Record basics.
https://edgeguides.rubyonrails.org/active_r
ecord_basics.html.

[60] Luc Segoufin and Victor Vianu. Views and queries:
determinacy and rewriting. In PODS, pages 49–60.
ACM, 2005.

[61] Jie Shi, Hong Zhu, Ge Fu, and Tao Jiang. On the
soundness property for SQL queries of fine-grained
access control in DBMSs. In ICIS, pages 469–474. IEEE
Computer Society, 2009.

[62] Software Freedom Conservancy. SeleniumHQ: Browser
automation, 2021. https://www.selenium.dev/.

[63] Spree Commerce - a headless open-source ecommerce
platform. https://spreecommerce.org/.

[64] Ben Stock. Search leaks hidden tags • Is-
sue #135 • kohler/hotcrp, June 2018. h t t p s :
//github.com/kohler/hotcrp/issues/135.

[65] Michael Stonebraker and Eugene Wong. Access control
in a relational data base management system by query
modification. In ACM Annual Conference, pages
180–186. ACM, 1974.

[66] Margus Veanes, Pavel Grigorenko, Peli de Halleux,
and Nikolai Tillmann. Symbolic query exploration. In
ICFEM, volume 5885 of Lecture Notes in Computer
Science, pages 49–68. Springer, 2009.

[67] Margus Veanes, Nikolai Tillmann, and Jonathan
de Halleux. Qex: Symbolic SQL query explorer. In
LPAR-16, volume 6355 of Lecture Notes in Computer
Science, pages 425–446. Springer, 2010.

[68] Chenglong Wang, Alvin Cheung, and Rastislav Bodík.
Synthesizing highly expressive SQL queries from input-
output examples. In PLDI, pages 452–466. ACM, 2017.

[69] Qihua Wang, Ting Yu, Ninghui Li, Jorge Lobo, Elisa
Bertino, Keith Irwin, and Ji-Won Byun. On the correct-
ness criteria of fine-grained access control in relational
databases. In VLDB, pages 555–566. ACM, 2007.

[70] Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and
William R. Cook. Verifying equivalence of database-
driven applications. Proc. ACM Program. Lang.,
2(POPL):56:1–56:29, 2018.

[71] Zhiheng Wang. Navigation timing. W3C recommen-
dation, W3C, December 2012. https://www.w3.org
/TR/2012/REC-navigation-timing-20121217.

[72] Jean Yang, Travis Hance, Thomas H. Austin, Armando
Solar-Lezama, Cormac Flanagan, and Stephen Chong.
Precise, dynamic information flow for database-backed
applications. In PLDI, pages 631–647. ACM, 2016.

[73] Wen Zhang, Eric Sheng, Michael Chang, Aurojit Panda,
Mooly Sagiv, and Scott Shenker. Blockaid: Data
access policy enforcement for web applications, 2022.
https://arxiv.org/abs/2205.06911.

[74] Zheng Zhang and Alberto O. Mendelzon. Authorization
views and conditional query containment. In ICDT,
volume 3363 of Lecture Notes in Computer Science,
pages 259–273. Springer, 2005.

A Artifact Appendix

Abstract

Our artifact includes our Blockaid implementation, which is
compatible with applications that can run atop the JVM and
connect to a database via JDBC (§7). We also provide the three
applications we used for our evaluation—modified according
to §8.2—as well as the data-access policy we wrote for each.
Finally, we provide a setup for reproducing the evaluation
results from §8.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    717

https://docs.oracle.com/database/121/DBSEG/vpd.htm
https://docs.oracle.com/database/121/DBSEG/vpd.htm
https://piechowski.io/post/how-to-use-greater-than-less-than-active-record/
https://piechowski.io/post/how-to-use-greater-than-less-than-active-record/
https://edgeguides.rubyonrails.org/active_record_basics.html
https://edgeguides.rubyonrails.org/active_record_basics.html
https://www.selenium.dev/
https://spreecommerce.org/
https://github.com/kohler/hotcrp/issues/135
https://github.com/kohler/hotcrp/issues/135
https://www.w3.org/TR/2012/REC-navigation-timing-20121217
https://www.w3.org/TR/2012/REC-navigation-timing-20121217
https://arxiv.org/abs/2205.06911


Table 3: Where artifact contents are hosted.

Content Location Branch / tag / release

Artifact README https://github.com/blockaid-project/artifact-eval main branch
Blockaid source https://github.com/blockaid-project/blockaid main branch (latest version)

osdi22ae branch (AE version)a

Experiment launcher https://hub.docker.com/repository/docker/blockaid/ae latest tag
Launcher source https://github.com/blockaid-project/ae-launcher main branch

VM image https://github.com/blockaid-project/ae-vm-image osdi22ae release
Experiment scripts https://github.com/blockaid-project/experiments osdi22ae branch

Applications
diaspora* https://github.com/blockaid-project/diaspora blockaid branchb

Spree https://github.com/blockaid-project/spree bv4.3.0-orig branch (original)c

bv4.3.0 branch (modified)d

Autolab https://github.com/blockaid-project/Autolab bv2.7.0-orig branch (original)c

bv2.7.0 branch (modified)d

Policies for applications https://github.com/blockaid-project/app-policies main branch

a The “AE version” is the version of Blockaid used in artifact evaluation.
b The same diaspora* branch is used for both baseline and Blockaid measurements. The code added for Blockaid is gated behind

conditionals that check whether Blockaid is in use.
c “(original)” denotes the original application modified only to run on top of JRuby.
d “(modified)” denotes the “(original)” code additionally modified to work with Blockaid (§8.2).

Scope

This artifact can be used to run the main experiments from this
paper: the page load time (PLT) measurements (§8.4) and the
fetch latency measurements (§8.5 and §8.6) on the three ap-
plications. From these experiments, it generates Table 2 (with
URLs and descriptions omitted), Figure 2, and Figure 3. Be-
cause the full experiment can be time- and resource-consuming
(taking roughly 15 hours on six Amazon EC2 c4.8xlarge
instances), the experiment launcher can be configured to take
fewer measurement rounds at the expense of accuracy.

Our Blockaid implementation can also be used to enforce
data-access policies on new applications, as long as they have
been modified to satisfy our requirements (§3.3), run atop the
JVM, and connect to the database using JDBC (§7).

Contents

This artifact consists of our Blockaid implementation, the three
applications used in our evaluation (with modifications de-
scribed in §8.2), the data-access policy we wrote for each, and
scripts and virtual machine image for running the experiments.

Hosting

See Table 3.

Requirements

The experiment launcher, which relies on Docker, launches
experiments on Amazon EC2 and so requires an AWS account.
By default, it uses six c4.8xlarge instances—to run the PLT
and fetch latency experiments for the three applications
simultaneously. However, it can be configured to launch fewer

instances at a time (e.g., to run the experiments serially, using
one instance at a time).

718    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/blockaid-project/artifact-eval
https://github.com/blockaid-project/blockaid
https://hub.docker.com/repository/docker/blockaid/ae
https://github.com/blockaid-project/ae-launcher
https://github.com/blockaid-project/ae-vm-image
https://github.com/blockaid-project/experiments
https://github.com/blockaid-project/diaspora
https://github.com/blockaid-project/spree
https://github.com/blockaid-project/Autolab
https://github.com/blockaid-project/app-policies


SHORTSTACK: Distributed, Fault-tolerant, Oblivious Data Access

Midhul Vuppalapati∗

Cornell University
Kushal Babel∗

Cornell University
Anurag Khandelwal

Yale University
Rachit Agarwal

Cornell University

Abstract
Many applications that benefit from data offload to cloud
services operate on private data. A now-long line of work has
shown that, even when data is offloaded in an encrypted form,
an adversary can learn sensitive information by analyzing
data access patterns. Existing techniques for oblivious data
access—that protect against access pattern attacks—require
a centralized and stateful trusted proxy to orchestrate data
accesses from applications to cloud services. We show that,
in failure-prone deployments, such a centralized and stateful
proxy results in violation of oblivious data access security
guarantees and/or in system unavailability. We thus initiate
the study of distributed, fault-tolerant, oblivious data access.

We present SHORTSTACK, a distributed proxy architec-
ture for oblivious data access in failure-prone deployments.
SHORTSTACK achieves the classical obliviousness guarantee—
access patterns observed by the adversary being independent
of the input—even under a powerful passive persistent adver-
sary that can force failure of arbitrary (bounded-sized) subset
of proxy servers at arbitrary times. We also introduce a secu-
rity model that enables studying oblivious data access with
distributed, failure-prone, servers. We provide a formal proof
that SHORTSTACK enables oblivious data access under this
model, and show empirically that SHORTSTACK performance
scales near-linearly with number of distributed proxy servers.

1 Introduction
Cloud services offer applications scalable, fault-tolerant, and
easy-to-manage systems for storing and querying data. Many
applications that benefit from offloading data to these cloud
services operate on private data that can reveal sensitive in-
formation even when stored in an encrypted form [1–6]. An
example is that of medical practices offloading patient health
data to the cloud [7–9]—charts accessed by oncologists can
reveal not only whether a patient has cancer, but also de-
pending on the frequency of accesses (e.g., the frequency
of chemotherapy appointments), indicate the cancer’s type
and severity. Several such applications are subject to severe
security concerns.
∗Equal contributions.

There is a large and active body of research on building
systems for oblivious data access, that is, hiding not only the
content of the data, but also data access patterns (e.g., access
frequency across data objects). These systems use one of
the two techniques—Oblivious RAM [10–17] that enables
oblivious data access against active adversaries but has band-
width overheads that are logarithmic in the number of data
objects, or Pancake [6, 18, 19] that enables oblivious data
access against passive persistent adversaries with a small con-
stant bandwidth overhead. Both of these techniques provide
a powerful oblivious data access guarantee: an adversary ob-
serving all queries to and all responses from the cloud storage
service observes uniform random accesses over the encrypted
data objects. The challenge, however, is that both of these
techniques require a centralized, stateful, proxy to orchestrate
data access from applications to cloud services. Such a cen-
tralized and stateful proxy means that existing systems for
oblivious data access suffer from two core issues (§3.1):

• Security violation, or long periods of system unavailability
during proxy failures: The proxy being stateful means that,
upon a failure, the proxy may lose state. We show in §3.1
that, if the proxy state is lost, naïvely restarting a new proxy
and executing queries without restoring the state would lead
to violation of oblivious data access security guarantees. To
avoid such a security violation, upon restarting a new proxy,
the state must be restored before executing any queries,
e.g., by downloading the entire data and metadata from the
cloud, decrypting all the data, reconstructing the (ORAM
or Pancake) data structure, re-encrypting all the data, and
uploading all the data back to the storage service; this would
lead to long periods of system unavailability.

• Bandwidth and/or compute scalability bottlenecks: Since
the proxy receives multiple responses for each client query,
it has bandwidth overheads (Ω(logn) in ORAM [20–25]
and 3× in Pancake [6]); and, since the proxy is responsible
for both data encryption/decryption and processing for each
individual query and response, it has non-trivial compute
overheads. Thus, the centralized proxy can become band-
width or compute bottlenecked, limiting system throughput.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    719



We present SHORTSTACK, a distributed, fault-tolerant, system
for oblivious data access. SHORTSTACK achieves three desir-
able goals: (1) formal oblivious data access guarantee against
passive persistent adversaries, even under failures; (2) system
availability even when an arbitrary, bounded-sized, subset of
distributed proxy servers may fail; and (3) near-linear through-
put scalability with number of distributed proxy servers. In
designing SHORTSTACK, we make three core contributions.

Our first contribution is to fundamentally establish security
goals for oblivious data access in failure-prone deployments.
Indeed, existing security models [6, 10–17, 26] do not cap-
ture failures. We introduce a formal security model and a
security definition to study distributed, fault-tolerant, systems
for oblivious data access under passive persistent adversaries.
The model requires the classical oblivious data access guaran-
tee [6, 10]—access patterns observed by the adversary must
be independent of the input; in addition, to capture failures,
the model requires this guarantee to hold under a powerful
adversary that can fail an arbitrary (bounded-sized) subset of
distributed proxy servers at arbitrary times. Informally, under
our security definition, a scheme is considered secure if the
access distribution over encrypted data objects is independent
of the input distribution, even with adversarial choice and
time of proxy server failures.

Our second contribution is design of a distributed, fault-
tolerant, proxy architecture—SHORTSTACK—that enables
oblivious data access against passive persistent adversaries,
system availability (under a bounded number of failures),
and near-linear throughput scalability with number of proxy
servers. Simultaneously guaranteeing these three properties,
especially when proxy servers can fail, turns out to be chal-
lenging: to avoid bandwidth and compute bottlenecks, mul-
tiple proxy servers must simultaneously process and send
queries to the storage server; this makes it non-trivial, if not
impossible, to ensure uniform random access over encrypted
objects at all times (e.g., right after one of the proxy server
fails) without giving up on availability. The key insight in
SHORTSTACK design is that obliviousness only necessitates
that access patterns observed by the adversary are indepen-
dent of the input; the requirement of uniform random access
over all encrypted objects as in prior designs is one, but not
the only, way to achieve such independence. SHORTSTACK
design achieves such independence as follows. The security
of oblivious data access techniques stems from “flattening”
the access distribution over unencrypted (plaintext) objects
to a uniform random one over encrypted (ciphertext) objects
(Figure 1 (a)). As illustrated visually in Figure 1 (b), any
uniform random distribution over ciphertext objects can be
decomposed into multiple sub-distributions in a manner that
(1) each sub-distribution is uniform random over its support;
and (2) the set of objects in any sub-distribution is equal in
size, disjoint, and random. Thus, if each proxy server that
forwards queries to the storage server is responsible for one
of the sub-distributions, even with failure of a subset of these

Ciphertext keyspace

Underlying distribution Fake Queries

Ciphertext keyspace
k1 - k5 k6 - k10 k10 - k15 k1 - k5 k6 - k10 k10 - k15

(a) Oblivious data access approaches (b) Distributing oblivious data access approaches

Figure 1: The flattened distribution over all ciphertext keys in oblivi-
ous data access schemes can be expressed as a sum of distributions
over disjoint subsets of ciphertext keys.

proxy servers, the adversary observes nothing but a uniform
distribution (using (1)) over a random subset (using (2)) of
objects. Achieving independence, and not necessarily a uni-
form random access pattern, at all times is at the core of
the SHORTSTACK design. In §4, we present a novel lay-
ered SHORTSTACK architecture that, using k physical proxy
servers, maintains system availability with up to (k−1) proxy
server failures and achieves throughput a factor ∼k higher
than a single proxy, all while enabling oblivious data access.

Our third contribution is a formal proof that SHORTSTACK
enables oblivious data access under the above security model,
and empirical evidence that SHORTSTACK can achieve near-
perfect scalability with number of proxy servers (assuming
storage server is not the bottleneck). We also show that
SHORTSTACK gracefully handles failures: in the worst-case,
SHORTSTACK throughput reduces linearly with number of
proxy server failures (as one would expect). For the current
SHORTSTACK implementation, the cost of achieving oblivious
data access, availability and scalability is a ∼7ms increase in
latency, a tiny fraction of the usual wide-area network latency.
An end-to-end implementation of SHORTSTACK is available
at https://github.com/pancake-security/shortstack.

2 SHORTSTACK Background
We describe our system, failure, and threat models, followed
by a brief primer on oblivious data access approaches.

2.1 System, Threat and Failure Models

System model. We consider settings where applications of-
fload data to the cloud to benefit from the many properties
enabled by cloud services, e.g., strong data durability and
persistence, geo-replication, lower cost than provisioning ded-
icated and replicated storage servers, transparent handling
of devices wearing out, and others. Examples of such appli-
cations include cloud-based healthcare services [9, 27–29]
as well as classical applications from access pattern attack
literature [6,11]. The cloud-based storage service implements
a key-value (KV) store that stores a collection of KV pairs,
and support the following single-key operations: get, put, and
delete. SHORTSTACK design can be applied to any data store
that supports single-key read/write/delete operations.

SHORTSTACK employs the standard encryption proxy
model, commonly used in encrypted data stores [6, 15, 16,

720    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/pancake-security/shortstack


30–35]: a trusted proxy orchestrates query execution from
one or more client applications; the only difference compared
to previous designs is that, in SHORTSTACK architecture, the
proxy is logically-centralized but physically-distributed—that
is, client queries may now be routed though multiple physical
proxy servers within the same trusted domain.

All network channels are encrypted using TLS. Each key
k in the KV store is encrypted using a pseudorandom func-
tion (PRF), denoted by F(k); each value v is symmetrically
encrypted, denoted by E(v). The logically-centralized proxy
stores secret cryptographic keys needed for F and E, and
performs encryption. Since F is deterministic, the proxy can
execute all queries related to key k by sending F(k) to the
cloud service. Similar to many existing commercial deploy-
ments [31–35], keys and values are padded to a fixed size to
avoid any length-based leakage.

Threat model. SHORTSTACK builds upon the widely-used
trusted proxy threat model [11–13, 15], where one or more
mutually-trusting clients execute operations on an untrusted
cloud storage service via a trusted proxy; as mentioned ear-
lier, the only difference in SHORTSTACK is that the proxy
is logically-centralized but comprises physically-distributed
servers. As in many prior works [6, 11, 30], we consider sce-
narios where the clients and the proxy servers all belong to
a trusted domain. The storage service is controlled by an
honest-but-curious (or, a passive persistent) adversary that
observes all encrypted accesses but does not actively perform
its own accesses. Since network channels are encrypted using
TLS, the adversary cannot observe communications within
the trusted domain, that is, the adversary cannot observe traffic
between the clients and proxy servers.

We model queries to the KV store using the Pancake
model [6]: queries are generated as a sequence of accesses
sampled from a (time-varying) distribution π over n KV pairs.
While the encryption mechanism has an estimate of the dis-
tribution π̂, the adversary knows both the distribution π and
the transcript of encrypted queries and responses. We define
a formal security model and definition in §5, but informally,
the system is secure if the transcript is independent of the
underlying distribution π, i.e., the adversary cannot identify
an association between the two.

Failure model. We assume the cloud service provides data
durability. However, proxy servers can fail. We consider the
fail-stop model [36] for proxy server failures.

2.2 Oblivious Data Access Approaches
There are two approaches to oblivious data access today—the
classical ORAM [10–17], and the more recent approach of
frequency smoothing as in Pancake [6, 18, 19]. ORAMs are
designed to prevent a broad range of attacks (e.g., active adver-
saries); accordingly, they also suffer from high overheads, e.g.,
recent results [20–25] have established strong lower bounds
on ORAM overheads—for a data store with n KV pairs, any

Client

Client

Client

Proxy

Proxy

Proxy

Trusted Untrusted

Key-value 
Store

Figure 2: SHORTSTACK System and Threat model

ORAM design must incur bandwidth overheads of Ω(logn)
(for proxy storage sublinear in KV store size). For KV stores
that store millions or billions of KV pairs, these overheads
may amount to orders-of-magnitude of throughput loss [6,37],
making ORAMs impractical. Pancake enables oblivious data
access against passive persistent adversaries, and incurs a
small, constant, bandwidth overhead of 3×, independent of
the number of objects in the KV store. Thus, we focus on
building a distributed, fault-tolerant, proxy architecture within
the Pancake context. To keep the paper self-contained, we
summarize the Pancake mechanisms necessary to understand
the SHORTSTACK architecture.

A brief primer to oblivious data access using Pancake. The
Pancake approach combines the knowledge of the distribution
estimate π̂ with several techniques (selective replication, fake
accesses, batching, etc.) to transform a sequence of queries
into uniform accesses over encrypted KV pairs. Selective
replication creates “replicas” of KV pairs that have high ac-
cess probability relative to other KV pairs, which serves to
partially smooth the distribution over (replicated) KV pairs,
while also ensuring that the total number of keys to be stored
in the KV store is exactly 2n (if needed, dummy replicas
are added so that the number of replicas does not reveal any
distribution-sensitive information). To hide the association
between the original keys and their replicas, each replica (k, i)
of an unencrypted key k is protected by applying the pseudo-
random function F , discussed in §2.1, to the replica identifier
to generate an encrypted label F(k, i) for the replica. In the
rest of the paper, we refer to the original unencrypted key as
the plaintext key, and the encrypted label for each replica as
the ciphertext key. To remove the remaining non-uniformity,
“fake” queries are added: these queries are sampled from a
carefully crafted fake access distribution π f to boost the like-
lihood of accessing replicated KV pairs, until the resulting
distribution is uniform.

Security requires ensuring that fake and real queries be
indistinguishable; to achieve this, encrypted queries are issued
in small batches of size B, where each query is either real
or fake with equal probability. Since the adversary cannot
observe traffic between the clients and the proxy server, it
has no way to distinguish real and fake queries within any
batch. To prevent an adversary from distinguishing between
reads and writes, every access is performed as a read followed
by write of a freshly encrypted value. Writes to keys with
multiple replicas could reveal which replicas belong to the
same key; thus, only one replica is updated at the time of
the write query, and the write value is cached at the proxy in

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    721



a data structure called the UpdateCache, and the remaining
replicas are opportunistically updated during subsequent fake
or real queries to the replicas.

Dynamic adaptation to changes in the underlying access
distribution is achieved by adjusting the fake-distribution (π f ),
and by reassigning the number of replicas across keys. This
can be done securely by exploiting the observation that the
total number of replicas is exactly 2n, regardless of the under-
lying distribution. As such, when the distribution changes, for
every key that must lose a replica, another must gain a replica
to ensure the distribution remains smooth. Thus, replicas can
be reassigned opportunistically for all such key-pairs using a
replica-swapping protocol.

In summary, to enable oblivious data access for the general
case of read/write workloads and for time-varying distribu-
tions, Pancake uses a centralized, stateful, proxy that stores (1)
the UpdateCache to buffer writes until they are opportunis-
tically propagated to all the replicas; (2) distribution-related
state; and (3) replica-related state, to execute the replica swap-
ping process during distribution changes. Using this state, Pan-
cake enables oblivious data access by performing three tasks
at the proxy in failure-free scenarios: (1) generating “fake”
queries for each real client query; (2) updating UpdateCache
upon each query; and (3) issuing a batch of queries com-
prising real and fake queries to the server, and relaying the
response for the real query back to the client.

3 Limitations of Strawman approaches
In this section, we describe subtle security vulnerabilities with
strawman approaches to designing distributed, fault-tolerant,
systems for oblivious data access.

3.1 Centralized proxy: Insecure and/or long
periods of unavailability

The stateful nature of the centralized proxy makes it chal-
lenging to simultaneously achieve oblivious data access se-
curity guarantees, availability and scalability upon a failure.
If achieving scalability were the only goal, the proxy server
could be overprovisioned with large bandwidth and/or com-
pute resources; however, achieving security and availability
upon a failure is hard due to the proxy being stateful: the naïve
solution of replacing the failed proxy server with a new one
and having clients reissue failed queries results in violating
security and correctness guarantees:

• Consider the (simplest) case of a read-only workload with
a static access distribution. Replacing a failed proxy server
with a new one, and having clients reissue the failed queries,
results in the following subtle security issue. Consider a
real query on key k; and consider the scenario where the
proxy fails in the middle of sending out queries (both real
and fake) in the batch to the KV store, that is, some of the
queries in the batch have been sent out while others are
lost. Since the proxy has failed, the client would receive no
response for k; thus, upon restarting the proxy, the client

will retry a real query on k. The retried queries will result
in the same real accesses, but potentially new fake accesses.
An adversary can thus exploit the transcript of queries at
the server to identify real queries with high confidence by
isolating repeated accesses right before and right after a
failure, hence gaining sensitive information.

• Write queries make the problem significantly more chal-
lenging. Consider a write query to a key with two replicas;
suppose the proxy fails when the write value has propa-
gated to only one of the replicas (and thus, is buffered in the
UpdateCache waiting to be propagated to the other replica).
We now replace the failed proxy with a new one. Since the
UpdateCache state is lost, when a read query for this key
is received, the new proxy could end up reading the value
from one of the stale replicas, violating the data correct-
ness/consistency guarantee. Alternatively, if the new proxy
reads all replicas of the key to determine which one has the
latest value (e.g., using timestamps), oblivious data access
guarantees would be violated since an adversary can iden-
tify replica correlations (replicas being accessed belong to
the same key) by analyzing queries right after a failure.

For a centralized stateful proxy design and for the general
case of read/write workloads over time-varying distributions,
to avoid the above security and correctness violations upon
a failure, the proxy state must be reconstructed—e.g., by
downloading all the data from the cloud service, decrypting
the data, reinitializing the data structures, re-encrypting the
new data structures, and writing all the new data back to the
server—before issuing new queries. Even for moderate-sized
KV stores, this would incur extremely large bandwidth and
compute overheads, as well as long unavailability periods.

In summary, replacing the centralized proxy server with a
new one (upon a failure) and having clients reissue the queries
either fails to ensure critical system properties (security and/or
correctness), or results in large unavailability periods. This
motivates the need for a distributed proxy architecture.

3.2 Challenges in Distributing Proxy Logic
We now describe security and correctness vulnerabilities with
naïvely distributing the proxy state and logic across multiple
physical servers.

Naïvely partitioning both the proxy state and the query
execution responsibility leads to security violations. A
straightforward approach to designing a distributed proxy
for oblivious data access is to partition both the proxy state
and the query execution responsibility across multiple physi-
cal servers—each proxy server stores the UpdateCache and
access distribution for a subset of the plaintext keys (e.g., us-
ing hash partitioning over the plaintext keys); clients forward
their (real) query on key k to the proxy server responsible for
k; and, upon receiving a real query, the proxy server generates
fake queries based on distribution corresponding to its own
partition, and executes these queries on the storage service.

722    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



(b) Distribution over ciphertext keys (a) Distribution
over plaintext keys

Original distribution Fake Queries

2

4

6

8

a b c d e f

2

4

6

8

a1 a2 b1 c1 D1 D2 d1 e1 e2 f1 D1’D2’

P1 P2

Figure 3: Security violation in one-layer approach.

P1 P2 KV Store

Ti
m

e

Get(a1)

Get(a1)

Put(a1, E(1))

Put(a1, E(0))

E(0)

ACK

E(0)

ACK

a1 → E(0)

a1 → E(0)

a1 → E(1)

a1 → E(0)

Fake Query Real Query

Figure 4: Correctness violation
in one-layer approach.

(b) Distribution over ciphertext keys (a) Distribution
over plaintext keys

Original distribution Fake Queries

2
4
6
8

a b c d e f

2
4
6
8

a1 a2 c1 d1 d2 e1 e2 f1 D1 D2 D3 D4

P1 P2

Figure 5: Security violation in two-layer approach.

While this approach scales linearly with number of phys-
ical proxy servers, it suffers from security vulnerability. In
particular, it does not guarantee that the resulting distribution
observed by the adversary is independent of the input distri-
bution. Consider the scenario shown in Figure 3 (a). Here,
plaintext keys are partitioned across two proxy servers—P1
is responsible for keys {a, b, c}, and P2 is responsible for
keys {d, e, f }. Since, each proxy server operates only on its
local plaintext key partition, P1 selectively replicates key a
into 2 replicas a1, a2, and introduces two dummy key repli-
cas D1, D2, leading to a total of 6 ciphertext keys; it then
adds fake queries to make the access distribution across these
ciphertext keys uniform. Similarly, P2 selectively replicates
key e into 2 replicas e1, e2, and introduces two dummy key
replicas D′1, D′2, again leading to a total of 6 ciphertext keys;
P2 then adds fake queries to make the access distribution
across these ciphertext keys uniform. Figure 3 (b) shows the
final output access distribution over ciphertext keys. Since
P1 and P2 smooth the distribution over their sets of plaintext
keys independently, and since the key set assigned to P2 has
a higher average access frequency than the key set assigned
to P1, the frequency of accesses over ciphertext keys for P2
is higher than the frequency of accesses over ciphertext keys
for P1. In particular, the overall access distribution over all
ciphertext keys is dependent on the input distribution over the
two subset of keys, thus leaking sensitive information.

Replicating proxy state across all physical servers but
naïvely partitioning query execution responsibility leads
to security violations. To avoid the security vulnerability in
the previous scenario, one possible approach is to replicate
the entire proxy state (UpdateCache and access distribution)
across all physical servers in the distributed proxy. We will
need to keep the state consistent across all physical servers—
various mechanisms exist for this; for instance, clients can
broadcast each query to each physical server to keep the ac-
cess distribution consistent, and servers could use a distributed
protocol (e.g., state machine replication) to keep the Update-
Cache consistent. Let us ignore the scalability issues with
maintaining such consistent state for a moment.

To avoid bandwidth and compute bottleneck, we still want
each query to be executed at one (or a small number) of
the physical proxy servers. Thus, each physical server will
now be responsible for receiving real queries from the clients
for a subset of the keys (again, e.g., using hash partitioning

over the plaintext keys), and generating fake queries for each
real query (now on the entire distribution). One question
remains: which physical server should send the (real and fake)
queries to the storage service on the cloud? Unfortunately,
both the obvious solutions—the server generating the batch
executes all queries in the batch, and the server responsible for
plaintext key k executes all (real and fake) queries for the key
k (independent of which server generated the fake query)—
suffer from security and/or correctness vulnerabilities.

To see the issue with the first solution, consider the example
in Figure 4 with two proxy servers P1 and P2: to serve a
client query to write value 1 to key a, P2 sends a get(F(a,1))
followed by put(F(a,1), E(1)) query to the KV store, where
(a,1) is one of the ciphertext key, or replica, corresponding to
a. At the same time, P1, unaware of P2 ongoing write query,
sends a fake put query to the same ciphertext key (a,1) in
response to another client query. Based on the timeline of
operations shown in Figure 4, the fake put from P1 overwrites
the real put from P2, resulting in incorrect system behavior.
Note that the incorrectness occurs since two different proxy
servers issue queries for the same ciphertext key.

Unfortunately, the second solution also suffers from secu-
rity vulnerabilities—partitioning the query execution across
physical servers reveals not only which plaintext keys are
managed by each server, but also their relative access frequen-
cies. Figure 5 shows an example; the scenario is the same as
Figure 3, but with selective replication and fake query gen-
eration done over the entire distribution across all plaintext
keys—thus, as shown in Figure 5 (b), in addition to selective
replication of keys d and e, 4 dummy key (D) replicas (D1,
D2, D3, D4) were added, and the access distribution across
ciphertext keys is uniform. We use the same partitioning of
plaintext keys across P1 and P2 as in the example of Figure 3—
P1 handles all real and fake queries for the three less popular
plaintext keys, while P2 handles all queries for the three more
popular plaintext keys and the dummy key. The challenge,
however, is that although each server handles roughly equal
number of plaintext keys, the number of ciphertext keys han-
dled by P1 (= 3) and P2 (= 9) are very different. This leaks
the subset of keys handled by each server and, by extension,
their relative popularities to the adversary. Even if the volume
of traffic issued by individual proxy servers is hidden (e.g.,
via a trusted gateway/NAT so that all proxy servers have the
same publicly visible IP address), failures of one of the physi-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    723



cal proxy servers would reveal the same information. Even
if clients were to retry their queries upon a failure, in-flight
queries to the KV store from a failed server would be repeated,
again revealing the same information.

Summary. The above discussion leads to three different de-
sign principles for distributed, fault-tolerant, oblivious data
access systems. From the partitioning-based approach, we
learn that, to achieve oblivious data access, each physical
server in the distributed proxy should perform selective repli-
cation and (fake) query generation over the entire distribution
across all plaintext keys (thus, each physical server should
know the access distribution across the entire set of plaintext
keys). The replication-based approach leads to two additional
principles. First, even if proxy state can be replicated in a con-
sistent and scalable manner, maintaining correctness requires
that no two physical proxy servers should send the queries
for the same ciphertext key; in other words, query execution
should be partitioned by ciphertext keys across different phys-
ical servers. Second, to avoid security vulnerability, no single
proxy server should be deterministically responsible for ex-
ecuting queries for all ciphertext keys corresponding to the
same plaintext key; that is, query execution should be par-
titioned by ciphertext keys—randomly, and independent of
plaintext keys—across physical proxy servers.

4 SHORTSTACK Design
We now present the SHORTSTACK distributed, fault-tolerant,
proxy architecture.

4.1 Design Overview
SHORTSTACK uses a novel layered architecture, with three
logical layers*, as shown in Figure 6. Each layer has multi-
ple logical proxy servers for fault tolerance and/or scalability
purposes, and embodies one of the three design principles
outlined at the end of the previous subsection. In the first
layer (L1), proxy servers are responsible for a random subset
of client queries—upon receiving a real client query on a
plaintext key, the server generates real and fake queries (over
ciphertext keys); importantly, fake queries are generated us-
ing the entire access distribution across all plaintext keys. In
the second layer, L2, proxy servers are responsible for main-
taining a partition of the UpdateCache state; importantly, the
UpdateCache is partitioned by plaintext keys across the L2
servers. Finally, in the third layer, L3, each proxy server is
responsible to execute real and fake queries on the KV store
for a random, distinct, subset of ciphertext keys.

We outline the lifetime of a query with the layered SHORT-
STACK architecture in a failure-free scenario. The client sends
the query to a randomly selected L1 proxy server; the L1
server generates the batch comprising real and fake queries
(recall, these generated queries are on ciphertext keys). The L1
server then forwards each individual query within the batch to

*On a lighter note, our work seems to formally establish the widely-
agreed belief that three is the right number for a SHORTSTACK [38]!

Proxy

Proxy

Proxy

Proxy

Proxy

ProxyProxy

Proxy

Proxy

To
 K

V
 S

to
reClient

Client

L1 Proxy Servers L2 Proxy Servers

Client

L3 Proxy Servers

R
ou

te
d 

by
 

ci
ph

er
te

xt
 k

ey

R
ou

te
d 

by
 

pl
ai

nt
ex

t k
ey

R
ou

te
d 

ra
nd

om
ly

Query 
generation 
over entire 
distribution

UpdateCache 
partitioned by 
plaintext key

Query 
Execution

Figure 6: An overview of three-layer SHORTSTACK architecture

one of the L2 servers—the one that maintains UpdateCache
state for the corresponding plaintext key in the query. Upon
receiving a query, an L2 server updates its local partition of
the UpdateCache, and forwards the query to one of the L3
servers—the one that is responsible for executing queries
for that ciphertext key. The L3 server ultimately forwards the
query to the KV store; upon receiving a response from the KV
store, the L3 server sends a response for the real query back
to the client, as well as an acknowledgement in the reverse
direction of the original path taken by the query (from L3 to
L2 to L1) to clear any buffered state associated with the query.
We provide more details on the three-layer SHORTSTACK
architecture and query execution in §4.2.

For fault-tolerance against f failures, each of the L1 and
L2 proxy servers use f +1 replication along with the chain
replication protocol [39]. Replicating L1 servers prevents the
security vulnerabilities discussed in §3.1 that are caused by
clients retrying queries upon failures. Specifically, as we dis-
cuss in §4.3, SHORTSTACK uses chain replication to guarantee
that a batch of queries is never partially executed—either all
the queries in a batch are (eventually) forwarded to the KV
store or none of them are—thus preventing access pattern
leakage even when failures happen. Replicating L2 servers
prevents UpdateCache state from being lost due to failures.
As we will show, L3 server failures do not have the same
security vulnerability as L1 and L2 server failures. Thus, L3
layer is not chain replicated; however, it needs at least f +1
servers to maintain availability during failures—if one of the
L3 server fails, the remaining L3 servers take over its load.
Upon an L3 server failure, in-flight queries at the server will
be dropped and L2 servers will reissue the dropped queries.
While this results in duplicate queries being forwarded to the
KV store, we will show that these duplicate queries do not
reveal any sensitive information—the adversary would only
observe duplication of queries to a random subset of labels
independent of the input distribution. We provide more details
on SHORTSTACK mechanisms for handling failures in §4.3.

SHORTSTACK design allows independently setting de-
sired fault tolerance f and scalability factor k. Specifically,
to achieve a factor k scalability—that is, achieving system
throughput a factor of k higher than a centralized proxy—
along with fault tolerance against f failures, SHORTSTACK
creates k independent L1 and L2 chains that operate in parallel.
The case of L3 is again different; if f +1 > k, SHORTSTACK
will already have at least k L3 proxy servers to ensure fault
tolerance (as described earlier). For f +1≤ k, SHORTSTACK

724    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



L1A
Head

L1B
Head

L1C
Head

L1A
Mid

L1B
Mid

L1C
Mid

L1A
Tail

L1B
Tail

L1C
Tail

L2A
Head

L2B
Head

L2C
Head

L2A
Mid

L2B
Mid

L2C
Mid

L2A
Tail

L2B
Head

L2C
Tail

L3A

L3B

L3C

Physical Server 1 Physical Server 2 Physical Server 3

Figure 7: An instantiation of SHORTSTACK’s three-layer architecture
that guarantees system security and availability with f = 2 failures,
and achieves k = 3× scalability (as defined in §4.1). Multiple logical
layers in SHORTSTACK are colocated on the same physical server.
The arrows depict the lifetime of a single query.

uses a total of k L3 proxy servers, thus guaranteeing both fault
tolerance against f failures and a factor k scalability. Figure 7
shows an example for f = 2 and k = 3.

Colocating SHORTSTACK logical layers and their repli-
cas on a small number of physical servers. Consider an
instantiation of SHORTSTACK with fault-tolerance against up
to f = 2 failures and k = 3 scalability. Then, given the above
design, SHORTSTACK will require 3 L1 and 3 L2 chains, each
having 3 logical replicas within the chain replication protocol.
In addition, SHORTSTACK will require 3 logical servers in the
L3 layer. Overall, for f = 2 and k = 3, SHORTSTACK requires
21 “logical” units. However, as shown in Figure 7, all these 21
logical units can be packed on 3 physical servers without com-
promising security, fault tolerance, availability and scalability.
In particular, the replicas of each logical server in each layer
are staggered across the physical servers such that no two
replicas of the same logical server within the same layer are
co-located on the same physical server. Hence, even upon fail-
ure of any two physical servers, one replica from each of the
L1 servers, one replica from each of the L2 servers, and one
L3 server will still be alive, ensuring security, availability and
f = 2 fault tolerance. In general, using a technique from [40],
SHORTSTACK achieves a factor k scalability and fault toler-
ance against f ≤ k−1 failures, using only k physical servers.
Since any system that tolerates f failures and achieves a fac-
tor k scalability must require at least max( f +1,k) physical
servers, SHORTSTACK uses minimum resources to provide
these properties.

We provide more details on design of each layer in the
SHORTSTACK layered architecture, the mechanisms for fault
tolerance, and the mechanisms for handling dynamic distribu-
tions in §4.2, §4.3 and §4.4, respectively.

4.2 SHORTSTACK Design Details
In this subsection, we describe SHORTSTACK’s three-layer
architecture in detail, for the case of no failures and static ac-
cess distribution. We will extend this design to handle failures
and dynamic distributions in §4.3 and §4.4, respectively.

In a failure-free scenario, the key challenge that SHORT-
STACK addresses relative to a single proxy architecture is
scalability. To achieve k-factor scalability in the failure-free
scenario, SHORTSTACK uses k (logical) proxy servers in each

layer. For example, in Figure 7, each layer would consist of
three nodes, e.g., L1A, L1B and L1C for the L1 layer, L2A,
L2B and L2C for the L2 layer, and L3A, L3B and L3C for
the L3 layer.

Details of three-layer operation. Figure 8 details the pre-
cise initialization and L1/L2/L3 server logic in SHORTSTACK.
SHORTSTACK employs the following functionalities from
PANCAKE (P) [6] as a black-box:
• an Init function, which takes as input an estimate of the

access distribution π̂ and the unencrypted KV store KV of
size n plaintext keys, and generates an encrypted KV store
KV′ of size 2n ciphertext keys, along with a fake distribution
π f over KV′;

• a Batch function, which takes a query on a plaintext key k
in KV as input, and generates (using π̂ and π f ) a batch of B
(B = 3 by default) ciphertext queries to KV′; and,

• an UpdateCache function that internally updates per-
plaintext key state, and returns an encrypted (possibly up-
dated) value to be written to the KV store.

We now outline how SHORTSTACK distributes the execution
of PANCAKE across its three-layer design:

Initialization (Init() in Figure 8): SHORTSTACK first performs
PANCAKE initialization (using P.Init), transforming the unen-
crypted KV store KV with n plaintext keys to the encrypted
KV store KV′ using 2n ciphertext keys, using an estimate of
the underlying access distribution π̂. During the process, the
adversary just observes insert operations of 2n ciphertext keys,
which does not reveal any information. SHORTSTACK then
initializes and configures k logical proxy servers in each of
the three layers on top of k physical servers. Finally, SHORT-
STACK computes a weight vector δ, containing weights as-
signed to each L2 server (proportional to the volume of cipher-
text traffic generated by it). As will be discussed, L3 servers
use these weights to process L2 queries such that the queries
issued by L3 servers appear uniform random (recall, this sub-
section focuses on failure-free scenario, where SHORTSTACK
achieves uniform random distribution over ciphertext keys).

Query processing logic (sL1.ProcessQuery(), sL2.Process()
and sL3.Process() in Figure 8): Clients forward each query to
a randomly chosen L1 proxy server. Upon receiving a query,
the L1 server generates a batch of B queries (using P.Batch)
that comprises both real and fake queries to KV′. The L1
server then enqueues each query in the batch across different
L2 servers based on the hash of the query’s plaintext key.

Upon receiving a query, an L2 server calls P.UpdateCache
which leads to two sequential actions. First, the per-plaintext
key state stored at the L2 server is updated; and second, if this
query can be used to propagate outstanding write requests
into the plaintext key replicas, the value to be written to the
KV store is updated. It then forwards the query to the corre-
sponding L3 server based on the hash of the query’s ciphertext
key (denoted as “Enqueue” in Figure 8).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    725



Init(π̂,KV,S, f ):

KV′,π f ← P.Init(KV, π̂)

SL1,SL2,SL3← Configure(S)
δ←Weights(SL2,KV′)
return KV′,(SL1,SL2,SL3),δ

sL1.ProcessQuery(k,v):

ℓ← P.Batch(k)
For ((k, j),v) ∈ ℓ:

sL2← SL2[H(k)]
sL2.Enqueue((k, j,v))

sL2.Process():

k, j,v← Dequeue()
v← P.UpdateCache(k, j,v)
sL3← SL3[H(F(k, j))]
sL3.Enqueue(sL2, (F(k, j),v))

sL3.Process(δ):

sL2←δ SL2
k′,v← Dequeue(sL2)
v← ReadThenWrite(KV′, k′, v)
return k′,v

Figure 8: SHORTSTACK initialization and processing logic at L1, L2 and L3 servers. SL1,SL2,SL3 are the sets of proxy servers in each layer,
and S is the set of physical servers upon which they are initialized. (k, v) corresponds to the plaintext key-value pair, while j is the replica
identifier for a given replica of the key. F is a secretly keyed pseudorandom function and H is a consistent hash function.

(a) Round robin scheduling of queires at L3 
queues results in non-uniform distribution

(b) Weighted scheduling at L3 
queues ensures uniform distribution

P1 P2 P3
a1

a2

a3

b1

b2
c1

a1 a2 a3 b1 b2 c1

Pr
ob

. o
f S

ch
ed

ul
in

g

Pr
ob

. o
f A

cc
es

s

P1 P2 P3

a1 b1

b2

c1

a1 a2 a3 b1 b2 c1

Pr
ob

. o
f S

ch
ed

ul
in

g

Pr
ob

. o
f A

cc
es

s

a2

a3

Figure 9: Query-scheduling at L3 layer should ensure uniform distri-
bution over ciphertext keys for security. In each figure, (left) shows
the probability of scheduling queries from each of the L2 servers,
while (right) shows the resulting distribution across ciphertext keys.

Finally, each L3 server maintains a separate queue for each
L2 server it receives queries from, and dequeues queries from
the queues following a biased distribution determined by the
weight vector δ. To hide whether the query is a read or a write,
SHORTSTACK employs the standard approach from prior
oblivious data access schemes of performing each queries
as a read followed by a write to the KV store. Specifically,
in Figure 8’s ReadThenWrite() method, the L3 server first
reads and decrypts the value associated with the query from
the key-value store. If the value needs to be updated (i.e.,
write query), then the plaintext value is updated accordingly.
Finally, the L3 server writes the (re)encrypted value for the
query back to the KV store.

Query scheduling at L3 layer for security. The way in which
queries from different L2 servers are scheduled at each L3
server has security implications. As a concrete example, con-
sider a scenario where three plaintext keys a, b and c with 6, 4
and 2 replicas (or, ciphertext keys), respectively, are mapped
to three different L2 servers P1, P2 and P3. Suppose we have
two L3 servers, and one of these handles half of the ciphertext
keys for each plaintext key (Figure 9 illustrates the example,
focusing only on one of the L3 servers and the ciphertext
keys mapped to this server). If the L3 server processes queries
from each server with equal likelihood (e.g., using round-
robin scheduling), then the distribution across ciphertext keys
would no longer be uniform, since queries from the first server
would be under-sampled while those from the third server
would be over-sampled (Figure 9 (a)). To ensure L3 servers
still issue queries that are uniform random, they maintain
a separate query queue for each L2 server, and process the
queues in proportion to the volume of traffic the correspond-
ing L2 servers generate. In the above example, the L3 server
would schedule queries from each of the L2 servers with prob-

abilities 3/6, 2/6 and 1/6, respectively, leading to a uniform
distribution across ciphertext keys (Figure 9 (b)).

Accurately estimating the access distribution. SHORT-
STACK employs a lightweight mechanism through which a
single L1 proxy server can observe all client queries, enabling
distribution estimation as accurately as a centralized proxy
system [6]. One of the L1 proxy servers, designated as the
leader, monitors the access distribution (handling failures
will be discussed in the next subsection). Upon receiving a
query, an L1 proxy server asynchronously forwards the cor-
responding plaintext key—and not the entire query—to the
L1 leader, ensuring that the leader has a complete view of
the access distribution. Sending the plaintext key and not the
entire query to the leader is an useful optimization for both
read and write queries—it reduces the additional network load
(for write queries, values are not forwarded; for read queries,
the responses are not forwarded) since the plaintext key is
typically much smaller than the value itself (e.g., 8B keys for
1KB value in [41]). As such, this has negligible impact on
SHORTSTACK scalability and performance.

4.3 Handling Failures
We now describe how SHORTSTACK ensures fault-tolerance
while preserving security and correctness under failures. We
assume the standard fail-stop failure model [36, 39]. SHORT-
STACK employs a separate centralized coordinator node
which keeps track of the health of the proxy servers using
heartbeats, detects failures, and notifies other proxy servers as
needed to designate a fail-over node. The coordinator node is
also replicated using ZooKeeper [42] for strong consistency.
As such, a (2r+1)-replicated coordinator can tolerate up to r
failures without any security or performance consequences.

Handling L1 and L2 failures. Failure of a single L1 server
does not impact the availability of SHORTSTACK, as future
client queries could potentially be load balanced across the
remaining L1 servers. Such a failure, however, has security
implications—consider the case where an L1 proxy server
fails in the middle of forwarding a batch of queries, i.e., some
of the queries in the batch have been forwarded, but others
are lost due to the failure. Any real queries that are lost would
need to be retried by clients. The retried queries would now
result in the same real accesses, but with new fake accesses
generated. This permits an adversary to identify real queries
with high confidence by simply isolating the repeated ac-
cesses due to failures. To protect against such a vulnerability,

726    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



SHORTSTACK ensures the following invariant:

Invariant 1 (Batch atomicity). Either all of the queries in a
batch are forwarded to the KV store, or none of them are.

SHORTSTACK achieves this by replicating the state of the L1
proxy servers across multiple replicas ( f +1 replicas to toler-
ate up to f failures) using chain replication protocol [39]. As
shown in Figure 7, SHORTSTACK maintains staggered chains
across a fixed pool of physical servers, such that each physical
server hosts the head node of a single chain. Chain replica-
tion ensures that all L1 replicas in the chain buffer a batch of
queries, before the queries are forwarded to L2 servers—the
buffered batches are only cleared when all corresponding ac-
knowledgements are received from the L2 servers. As such,
as long as any L1 replica in the chain is online, the set of
buffered batches is available and can be used to retry queries
as required, ensuring Invariant 1.

Since L2 servers store UpdateCache partitions, ensuring
fault-tolerance for them is crucial for availability, correct-
ness and security. As such, SHORTSTACK replicates the
UpdateCache state for any key across multiple L2 proxy repli-
cas using chain replication, similar to L1 servers.

Within each chain of L1 and L2 servers, failures of replicas
are handled as per the standard chain replication protocol [39].
Since the L1 server chains interact with the L2 server chains,
additional failure handling is necessary in certain cases. Con-
sider the interaction between an L1 tail and an L2 head: if
the L1 tail fails, its predecessor in the chain becomes the
new tail, and resends the queries in the buffered (unacknowl-
edged) batches to the corresponding L2 head replicas. The
L2 servers, on the other hand, discard the queries that they
have already seen and forward the remaining down the chain.
SHORTSTACK facilitates the detection of duplicate queries
by assigning unique sequence numbers to each query. If an
L2 head fails, on the other hand, its successor become the
new head. All L1 tails then examine their buffered batches to
resend queries that were destined to the failed L2 head. As
before, the new L2 head simply discards any queries that it
has already seen, forwarding the remaining down the chain.

Handling L3 failures. Unlike L1 and L2 servers, L3 servers
are not replicated, and hence entail different failure handling.
Since L3 servers are stateless, if an L3 server fails, the remain-
ing L3 servers can assume the responsibility of the ciphertext
labels that the failed server was handling. Since the system
remains available as long as at least one of the L3 servers is
online, we need at least f +1 L3 servers to tolerate f failures.
However, there are two subtle issues that can arise due to
L3 failures—we describe these next, along with how SHORT-
STACK addresses them.

On an L3 server failure, queries that were in-flight at the
failed L3 server would be lost, which can then be retried by the
L2 servers. Note that such retries can cause duplicate queries
being sent to the KV store. Since the duplicate queries are
to uniformly accessed ciphertext keys, it may seem like they

do not reveal any distribution-sensitive information. However,
repeating the queries in exactly the same order (or a correlated
order) introduces a subtle security vulnerability. Specifically,
when an L3 server fails, L2 tail servers repeat buffered queries
(which are uniform random) and redistribute them to differ-
ent L3 servers. If the order of these queries is exactly the
same as before, an adversary can identify the sequences of
repeated queries and correlate them to the L2 server that gen-
erated those queries. Moreover, the adversary can also map
the specific ciphertext keys corresponding to the plaintext
keys managed by a particular L2 server, revealing distribution
sensitive information. To prevent this leakage, SHORTSTACK
randomly shuffles buffered queries before repeating them—
we formally prove in [43] how this ensures security under L3
server failures.

Recall that the L3 server performs a read followed by a
write for all queries. For read queries (fake or real), the write
simply writes back the value read from the KV store, i.e., a
fake write. This can lead to consistency issues during failure
of L3 servers—fake in-flight write queries sent by a failed L3
server prior to failure could be delayed by the network and
overwrite a real write query sent by the new L3 proxy server
responsible for the same ciphertext key. To address this issue,
after an L3 failure, the L2 servers delay repeating buffered
queries for a fixed amount of time to allow potential in-flight
queries from the failed L3 server to get delivered to the KV
store. We select the wait time at L2 servers long enough to
ensure all in-flight queries are propagated to the KV store.

4.4 Handling Dynamic Distributions
Designing distributed, fault-tolerant, oblivious data access sys-
tems is challenging when underlying distribution can change
over time. We outline two reasons. First, the centralized proxy
design (§2.2) relies on having a complete view of the underly-
ing distribution to detect and to react to distribution changes.
Detecting the change when queries are spread across multi-
ple proxy servers, and informing other proxy servers about
the same, introduces the first challenge. Second, if different
proxy servers independently initiate and terminate the replica
swapping phase at different times, the resulting distribution
may not appear uniform random to an adversary. As such, the
adversary may be able to leverage this information to identify
the keys that may have changed in popularity. We next discuss
how SHORTSTACK resolves these challenges.

To detect distribution changes, SHORTSTACK leverages the
L1 leader, which has visibility of all client queries (§4.2). The
L1 leader is responsible for monitoring the access distribution
and employs standard statistical tests to check if there is a
change in distribution (i.e., from π̂ to π̂′) similar to PANCAKE.
Upon detecting a change in distribution, the L1 leader initiates
the distribution change process. To ensure security and cor-
rectness during distribution change, the L1 leader employs a
specialized protocol inspired by two-phase commit (2PC) [44]
to facilitate an atomic transition from π̂ to π̂′ across all servers

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    727



in its three-layer design, both during the initiation and termi-
nation of the replica-swapping phase employed by PANCAKE.
Our 2PC-based approach guarantees:

Invariant 2 (Distribution change atomicity). Once any L3
proxy server issues a query according to π̂′, all subsequent
queries issued by any L3 server must be according to π̂′.

In other words, there is an instant of time tc in the protocol’s
execution, such that: (1) before tc, all queries are processed
according to the distribution π̂, and (2) after tc, all queries
are processed using π̂′. This allows us to ensure security for
SHORTSTACK even under dynamic distributions, as we detail
in §5. The invariant also ensures consistency during distribu-
tion change. In particular, since the change of distribution can
result in a change in number of replicas for various plaintext
keys, the invariant ensures queries from old and new distri-
butions are not mixed together; this guarantees consistency
by ensuring stale replicas from the old distribution are not
updated incorrectly due to the new distribution by different
L2 proxy servers. We show that our protocol guarantees the
above invariant, with a precise specification in [43]. Failures
during the above protocol are handled transparently by chain
replication as L1, L2 servers are chain replicated. This ensures
that even with failures during protocol execution, Invariant 2
is still preserved. As demonstrated in §6, SHORTSTACK can
recover from such failures quickly enough so as to ensure that
their effects are not perceptible to an adversary.

5 Security Analysis
This section presents a security model for access pattern
attacks on a system with distributed, fault-tolerant proxy
servers, and a proof that SHORTSTACK achieves security un-
der this model.

5.1 Need for New Security Definitions
State-of-the-art ROR (real-or-random indistinguishability)
based security definitions for access pattern attacks [6] are
unable to capture the security implications of our distributed
proxy setting due to two main reasons. First, ROR-based def-
initions focus on indistinguishability between a real and a
uniform random distribution (over the entire support). How-
ever, as discussed in §3.2, we do not yet know whether it is
possible to guarantee uniform random distribution over the
entire support during failures for any distributed proxy archi-
tecture. Our IND-based security model and definitions capture
the powerful intuition that uniform random distribution is not
even necessary: even though the distribution is non-uniform
under failures, the adversary does not gain any usable advan-
tage as long as the final distribution is independent of the real
distribution. More precisely, our IND-based security focuses
on demonstrating indistinguishability between two arbitrary
input distributions. As we will show, under our model, the
only information revealed to the adversary is that a failure
occurred, information the adversary already possess; it cannot,

IND-CDFAA
b,q,S, f ,π0 ,π̂0 ,π1 ,π̂1

:

KV,T,stA←$A1( f ,S)
(KV′,C,δ)←$ Init(π̂b,KV,S, f )
For i in 1 to q:

w←$ πb
W ←W ∪{w}

τ1,τ2, ...← Process(W,C,T,KV′,δ)
b′←$A3(stA,KV

′,τ1,τ2, ...)
return b′

Figure 10: IND-CDFA security game.

however, use this information in inferring any information
about the underlying distribution itself. While it is not un-
common for IND security to reduce to ROR security in many
settings, this is clearly not the case in our setting if (and, as
we note later, only if) there are failures.

The second reason for needing new security model and defi-
nitions is that ROR-based definitions fail to capture the impact
of query reordering on the transcripts observed by an adver-
sary due to (i) distributed query processing, and (ii) worst-
case timings of proxy failures. Specifically, a key challenge
in demonstrating security lies in precisely capturing the effect
of the distributed and failure-prone execution of any scheme
in a sequential game-based proof, which the ROR-based ap-
proach omits. We thus have to develop accurate simulators
that transform distributed query processing to an equivalent
sequential one. Our model and definitions are not specific
to SHORTSTACK, and can be used as templates for any dis-
tributed, fault-tolerant, proxy design.

When there are no failures, our security definition captures
the same security guarantees as prior work [6] — our ex-
tensions to the model are required to capture the effect of
failures in the distributed proxy setting. In incorporating these
extensions, we have only strengthened the adversary.

5.2 Security Definitions and Proof of Security
We call our security definition Indistinguishability under Cho-
sen Distribution and Failure Attack, or IND-CDFA (Figure 10).
The game IND-CDFA is parameterized by bit b (to pick one
out of the two given distributions), number of queries q, the
set of proxy servers S on which the distributed oblivious data
access protocol runs, the maximum number of server failures
f allowed (similar to classical distributed systems literature
that provides fault tolerance up to a fixed number of failures),
and two distributions (and their estimates) that the adversary
tries to distinguish between.

The adversary first outputs KV pairs KV and a queue T of
at most f failure events. Each failure event e is characterized
by the tuple (n, t,γ,r), where n is the server in S that fails, t is
the time at which the last query is issued by n before failure,
t− γ is the time at which the last query was acknowledged
at n before failure, and r is the failure recovery time. Next,
the distributed proxy scheme’s Init function generates trans-
formed KV pairs KV′, a set of (potentially replicated) servers
C, and internal state δ specific to the scheme. For instance,
in SHORTSTACK, C consists of two sets of replicated server

728    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



chains (with replication factor f +1) corresponding to L1 and
L2 layers, and a set of > f unreplicated servers for the L3
layer. The state δ corresponds to weights for L3 servers used
in query scheduling, as outlined in §4.2.

After initialization, q queries are drawn from the distribu-
tion πb and populated into the vector W . The proxy scheme’s
Process function takes W , C, T, KV′ and δ as input, and gen-
erates the output transcripts τ, which is fed to the adversary to
try and guess the underlying distribution (i.e., the bit b). The
adversary “wins” if it guesses b correctly. Intuitively, the se-
curity goal captured by the definition rules out access pattern
attacks since the probability of accessing an encrypted label
in KV′ is independent of the underlying distribution itself,
and an adversary cannot determine which distribution was
used to generate accesses to KV′.

Note that, IND-CDFA definition is independent of SHORT-
STACK’s design. Specifically, our definitions only assume the
presence of multiple failure-prone proxy servers which are
initialized using an Init function and process queries using
a Process function, neither of which are specific to SHORT-
STACK. Thus, our security model and definitions can be used
to study oblivious data access properties of any distributed
system that can factor its initialization and query processing
logic along these two functions.

The following theorem establishes the security of SHORT-
STACK under IND-CDDFA:

Theorem 1 (IND-CDFA Security). Let q ≥ 0 and Q = q ·B.
Let π0, π̂0,π1, π̂1 be query distributions. For any q-query
IND-CDFA adversary A against SHORTSTACK there exist
adversaries B, C, D1, D2 such that

Advind-cdfa
SHORTSTACK[(A)]≤ Advprf

F [(B)]+Advror
E [(C)]

+Advdist
Q,π0,π̂0

[(D1)]+Advdist
Q,π1,π̂1

[(D2)]

where F, E are PRF, AE schemes used by SHORTSTACK. Ad-
versaries B,C,D1,D2 run in same time as A with Q queries.

Our security proof stems from three key components:

• Security of E as a randomized authentication scheme ap-
plied over values and F as a pseudorandom function applied
over keys; this is rigorously analyzed in prior work [45,46].

• Our estimate π̂ of the underlying distribution π is suffi-
ciently accurate. While this estimate may not be perfect,
our security model only requires that π̂ and π be indistin-
guishable for a limited number of samples, which holds
for estimators used in prior work [6] on real-world work-
loads [41]. Since our design employs a single leader L1
server to estimate the underlying distribution using the keys
for all client queries (§4.2) and employs the same estimators
as prior work, its estimation is just as accurate.

• Accesses issued to the KV store reveal nothing about the
underlying distribution π.

To prove the third component, we introduce simulators to se-
quentialize the distributed execution of SHORTSTACK’s query
processing to make it compatible with our game-based defini-
tion (Figure 10). Specifically, we simulate Process function
for SHORTSTACK by first generating the intermediate tran-
script, β, assuming no failures. We do so by (i) going layer
by layer and executing processing logic at appropriate servers
in SHORTSTACK, and (ii) incorporating the impact of net-
work reordering across queries between layers. We then use
a Transform simulator to capture the effect of failures and
generate the final transcripts τ from β. We do so by recur-
sively applying the effect of L3 server failure events in T on
the intermediate transcripts β in the order that they occur.

Finally, we show that the final transcripts τ are indepen-
dent of intermediate transcripts β, and then show that β are
independent of the underlying distribution π. The first part
holds since SHORTSTACK randomly shuffles buffered queries
before replaying them post failure (§4.3) and failure recovery
time in SHORTSTACK is short enough to not be visible to
an external observer given our failure model (§4.3) and as
shown empirically in (§6.2). The second part holds, since
the underlying oblivious data access scheme [6] in SHORT-
STACK generates uniform random queries (§4.2) and network
reorderings between layers are independent of π.

Finally, to model dynamic distributions, we generalize the
above definition to Indistinguishability under Chosen Dy-
namic Distribution and Failure Attack or IND-CDDFA. This
definition, along with the proof of SHORTSTACK’s security
under it, formal descriptions of our simulators, and the proof
for independence of τ and π are presented in [43].

6 Evaluation
SHORTSTACK is implemented in ∼ 6k lines of C++, using
Thrift as the RPC library, AES-CBC-256 for encrypting val-
ues, HMAC-SHA-256 as our PRF, and Redis as the KV store.

Compared systems. We compare SHORTSTACK performance
against two baselines. The first baseline is distributed, but
encryption-only, that is, it encrypts data and client queries, but
does not guarantee oblivious data access; here, client queries
are randomly load balanced across stateless proxy servers
that perform encryption/decryption and forward queries to
the KV store. This baseline serves as an upper bound on the
performance that can be achieved by any oblivious data ac-
cess system (including SHORTSTACK). The second baseline
is a centralized PANCAKE [6] proxy server. While this suf-
fers from security and availability problems in the face of
failures (§3.1), its performance serves as a reference point for
understanding SHORTSTACK’s scalability.

Experimental setup. We run our experiments on Ama-
zon EC2. By default, we host the proxy instances across
c5.4xlarge VMs with 16 vCPUs (8 cores with 2 threads per
core), 32 GB RAM and 10Gbps network links. In order to
emulate a cloud KV store with practically infinite bandwidth,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    729



Network-bound

Pancake (Insecure/unavailable during failures) Shortstack

/
Encryption-only (Always insecure)

Compute-bound Network-bound / Compute-bound Network-bound / Compute-bound

 0

 1

 2

 3

 4

 5

 1  2  3  4N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Number of Physical Proxy Servers

YCSB-A Scaling

 0

 1

 2

 3

 4

 5

 1  2  3  4N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Number of Physical Proxy Servers

YCSB-C Scaling

 0

 200

 400

 600

 800

YCSB-A YCSB-C YCSB-A YCSB-C

Network-bound Compute-bound

T
h
ro

u
g
h
p
u
t 
(K

o
p
s
)

Normalization Factors

Figure 11: Scalability properties of different systems when network bandwidth and compute are the bottleneck. (left, middle) show
system throughput normalized by throughput for a single physical proxy server, while (right) shows system throughput with a single physical
proxy server. The Encryption-only lines for the network-bound and compute-bound cases overlap, since its throughput scales linearly in both
cases. Since Pancake is centralized, it only has a single data point at X = 1 for each of the cases, and these points overlap. See §6.1 for details.

we use a single powerful VM, c5d.metal (96 vCPUs, 128
GB RAM) with large network bandwidth (25 Gbps). Similar
to prior work [6], we emulate WAN access link bandwidth
by throttling the bandwidth from each proxy server to the
KV store server to 1Gbps. The clients run on lightweight
t3.2xlarge VMs (8 vCPUs, 32GB RAM) in the same LAN.
Both PANCAKE and SHORTSTACK use a batch size of B = 3.

Dataset and Workloads. We use the standard YCSB bench-
mark [41] to generate our dataset and workloads. The dataset
comprises 1 million KV pairs, with 8B keys and 1KB val-
ues. We use workloads A (50% reads, 50% writes) and C
(100% reads) for our experiments. YCSB workloads perform
accesses distributed according to the Zipfian distribution [41];
unless otherwise stated, the skewness parameter for the Zip-
fian distribution in our experiments is set to the YCSB default
of 0.99 (that is, heavily skewed), which is representative of
many real world workloads. We also perform sensitivity anal-
ysis against distribution skew.

6.1 Scalability Analysis
We now analyze SHORTSTACK’s scalability with varying num-
ber of physical proxy servers under different workloads.

Throughput scaling under bandwidth bottleneck. We
study throughput scaling for SHORTSTACK by varying the
number of physical proxy servers and comparing its perfor-
mance against the baselines. For SHORTSTACK, k physical
proxy servers constitute k chain-replicated L1 instances with
min(k,3) replicas each, k chain-replicated L2 instances with
min(k,3) replicas each, and k unreplicated L3 instances (i.e.,
the system can tolerate up to min(k,3)−1 failures). For the
encryption-only baseline, a separate proxy instance is run
on each physical proxy server, and the PANCAKE baseline
always uses only one physical proxy server.

Figure 11 shows the scalability results for two cases: one
where the physical proxy servers are network-bound (solid
lines), and another where they are compute-bound (broken
lines). We begin with the former case; we see that SHORT-
STACK throughput scales linearly with the number of physical
proxy servers. Note that we normalize each system’s through-
put by its throughput with a single physical proxy server —

Figure 11 (right) shows normalization factors for each sys-
tem, i.e., throughput with single physical proxy server. The
red cross shows the throughput of the PANCAKE baseline
(38 KOps): SHORTSTACK’s distributed design enables lin-
ear throughput gains relative to PANCAKE via scaling. The
insecure baseline also scales linearly due to random load-
balancing across its proxy instances. Since all proxy servers
are network bound, SHORTSTACK incurs only a constant
overhead (corresponding to the relative bandwidth increase
due to the oblivious data access protocol) compared to the
encryption-only baseline for all configurations as we scale
the number of physical proxy servers. For the YCSB-C work-
load, the gap between SHORTSTACK and Encryption-only
baseline throughput stems from the 3× overhead imposed
by the PANCAKE protocol for a batch size of B = 3. For the
YCSB-A workload, however, the encryption-only baseline
throughput is 6× higher than SHORTSTACK since it can ex-
ploit the bidirectional bandwidth to the KV store for 50%
reads and 50% writes. SHORTSTACK, however, already issues
a read followed by a write for every query, so it is unable to
similarly exploit the bidirectional bandwidth. Since YCSB-A
has equal proportion of read and write queries, this situation
corresponds to the worst-case bandwidth increase (6×) for
SHORTSTACK relative to the encryption-only baseline.

Throughput scaling under compute bottleneck. We now an-
alyze throughput scaling when the physical proxy servers are
compute-bound: we re-run the same experiments as above, but
using c5.metal EC2 VMs (96 vCPUs, 192GB RAM, 25Gbps
network bandwidth) for all systems without throttling the ac-
cess link bandwidth to the KV store server. As the broken lines
corresponding to the compute-bound case in Figure 11 show,
with a single physical proxy server SHORTSTACK achieves
slightly lower throughput than PANCAKE for both workloads.
This is because, under a compute bottleneck, SHORTSTACK
incurs additional RPC processing overheads for communica-
tion between its layers. SHORTSTACK’s throughput increases
significantly with more physical proxy servers, achieving
3.4−3.6× higher throughput with 4 physical proxy servers.
The increase in throughput is not perfectly linear, since work-
load skew results in load imbalance at the L2 layer. This effect

730    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0

 30

 60

 90

 120

 150

 180

 1  2  3  4

T
h
ro

u
g
h
p
u
t 
(K

o
p
s
)

Number of L1 Instances

YCSB-C

YCSB-A

L1 Layer Scaling

 0

 30

 60

 90

 120

 150

 180

 1  2  3  4

T
h
ro

u
g
h
p
u
t 
(K

o
p
s
)

Number of L2 Instances

YCSB-C

YCSB-A

L2 Layer Scaling

 0

 30

 60

 90

 120

 150

 180

 1  2  3  4

T
h
ro

u
g
h
p
u
t 
(K

o
p
s
)

Number of L3 Instances

YCSB-C

YCSB-A

L3 Layer Scaling

Figure 12: SHORTSTACK layer-wise scaling for YCSB workloads A and C. See §6.1 for details.

 0

 40

 80

 120

 160

 1  2  3  4

T
h
ro

u
g
h
p
u
t 
(K

o
p
s
)

Number of Physical Proxy Servers

Skew 0.99
Skew 0.8
Skew 0.4
Skew 0.2

YCSB-A

(a) SHORTSTACK throughput is
unaffected by access skew.

 0

 20

 40

 60

 80

 100

 1  2  3  4

L
a
te

n
c
y
 (

m
s
)

Number of Physical Proxy Servers

Encryption-only
Pancake

Shortstack

YCSB-A

(b) Query latency vs. number of
physical proxy servers.

Figure 13: SHORTSTACK throughput scaling with varying skew
(a) and SHORTSTACK latency overheads (b). See §6.1 for details.

is not observed for the network-bound case, since the network
bandwidth between L3 instances and the KV store is bottle-
necked before workload skew causes compute at the L2 layer
to become bottlenecked. For the reminder of our evaluation,
we use the network-bound setting as our default configuration.

Understanding per-layer scalability bottlenecks. Our ex-
periments in Figure 11 scale up all layers of SHORTSTACK in
equal proportions as the number of physical proxy servers are
increased. To better understand SHORTSTACK’s bottlenecks,
we now study scalability on a per-layer basis. Since each
layer performs a different component of PANCAKE logic (§4),
varying the scale of each layer independently while keeping
the scale of the other two layers fixed allows us to under-
stand which step becomes a throughput bottleneck before the
others. For this, we use a setup similar to Figure 11. To un-
derstand L1 layer scalability, we fix the number of physical
proxy servers to 4, the number of replicated L2 instances and
unreplicated L3 instances to the default (4), and vary the num-
ber of replicated L1 instances from 1−4. We perform similar
experiments for the L2 and L3 layers as well. Figure 12 shows
the corresponding results for the YCSB-A and YCSB-C work-
loads. For the L1 layer, throughput increases slightly from
X = 1 to 2, beyond which it saturates, since L1 is no longer
the bottleneck. For the L2 layer, from X = 1 to 3 through-
put increases, albeit non-linearly due to plaintext key-based
partitioning — while the number of plaintext keys handled
by each L2 server is roughly equal, the number of replicas
handled by them is skewed due to the skew in the YCSB
workload. At X = 4, the L2 layer is no longer the bottleneck.
For the L3 layer, throughput scales linearly from X = 1 to
X = 4 due to ciphertext key-based partitioning, with each L3
proxy handling roughly the same number of ciphertext keys.

As expected, the bottlenecks are different at different
SHORTSTACK layers. When all layers are sufficiently pro-

visioned, SHORTSTACK is able to saturate the access link
bandwidth between the L3 layer and the KV store. Reduc-
ing the number of L1 and L2 proxy instances, however, leads
to compute becoming the bottleneck at the respective layers.
One of the key contributors of compute overheads are serial-
ization/deserialization for network queries. Finally, layer-wise
scaling characteristics are similar for YCSB-C and YCSB-A
workloads, as UpdateCache processing in YCSB-A due to
writes does not account for much of the compute overheads.

Throughput scaling with skew. We evaluate SHORTSTACK
scaling for workloads with different skew for a setup simi-
lar to Figure 11. We vary the skew parameter for YCSB’s
Zipf distribution from 0.2 (close to uniform) to 0.99 (heavy
skew) to consider both extremes. We only show our results
for YCSB-A in Figure 13(a), since results for YCSB-C were
similar. SHORTSTACK system throughput scales linearly re-
gardless of skew, because the bottleneck in the end-to-end
query execution is the access link bandwidth between the L3
layer and the KV store for all scales. Since the skew only
affects processing at L2 layer (which is not the bottleneck),
our throughput is independent of skew. While SHORTSTACK
throughput scales linearly even for heavily skewed workloads,
there could indeed be rare extreme-case scenarios where such
would not be the case, e.g., if all popular plaintext keys get
consistently hashed to a single L2 instance, resulting in a
compute bottleneck at that instance.

SHORTSTACK Latency overheads. To quantify SHORT-
STACK’s latency overheads, we evaluate end-to-end query
latency for varying number of physical proxy servers for com-
pared systems using a setup similar to Figure 11 with one
change: we separate the KV store and physical proxy servers
by the WAN. Figure 13(b) shows the results; again, we only
show YCSB-A workload results, as YCSB-C results are simi-
lar. Independent of the scale, SHORTSTACK increases query
latency by a modest 8% (additional 6.8ms) compared to PAN-
CAKE. This increase in latency is due to additional processing
and network hops introduced by SHORTSTACK’s multiple
layers and chain replication within the L1 and L2 layers. Nev-
ertheless, these overheads are masked by the significantly
larger WAN access latency.

6.2 Failure Recovery
We now evaluate SHORTSTACK’s ability to recover from fail-
ures and also validate our assumptions in proving SHORT-
STACK security. We fix the number of physical proxy servers

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    731



 0
 30
 60
 90

 120
 150
 180

 0  500  1000  1500  2000

T
h
ro

u
g
h
p
u
t 
(K

o
p
s
)

Time (ms)

 0
 30
 60
 90

 120
 150
 180

 0  500  1000  1500  2000

T
h
ro

u
g
h
p
u
t 
(K

o
p
s
)

Time (ms)

 0
 30
 60
 90

 120
 150
 180

 0  500  1000  1500  2000

T
h
ro

u
g
h
p
u
t 
(K

o
p
s
)

Time (ms)

Figure 14: SHORTSTACK failure recovery for (left) L1, (middle) L2, and (right) L3 failures. See §6.2 for details.

to 4, the number of 3×-replicated L1, 3×-replicated L2, and
unreplicated L3 instances to 4 each, and use the YCSB-A
workload. To understand the impact of failures on each layer
independently, we fail one proxy instance in a particular layer
by killing its associated process; for L1 and L2, we kill an
arbitrary replica from one of the instances. We measure the
instantaneous throughput of our system during each exper-
iment at 10ms granularity; when measured at finer-grained
timescales, we found that the instantaneous throughput num-
bers were too noisy to discern any meaningful trends.

Figure 14 shows the effect of failure at each layer on
SHORTSTACK throughput. We find that failures in L1 and L2
proxy chains do not cause any noticeable dip in the through-
put, since SHORTSTACK can quickly recover from failures
within 3–4 ms — much faster than the average query latency
over WAN (∼ 90ms), and smaller than the typical variance in
query latencies. Hence, an adversary cannot reliably distin-
guish between a failure event and variations in instantaneous
throughput due to noise caused by network delays, indepen-
dent of the timescale at which measurements are done. This
validates our assumption for SHORTSTACK security under
failures discussed in §5 — specifically, L1 and L2 failures
have an imperceptible impact on an adversary’s observed
access pattern to the KV store. Upon an L3 proxy failure,
the throughput reduces by 25% – commensurate with the re-
duction in the bandwidth to the KV store server; however,
since L3 layer partitions queries by ciphertext keys, it does
not reveal any information about the client access patterns.

7 Related Work
We now discuss the works most closely related to SHORT-
STACK’s goals of distributed, fault-tolerant, oblivious data
access. ORAM [10] approaches have been adapted to real
world cloud storage [12–17, 26], with recent efforts en-
abling concurrency and asynchrony. Oblivious Parallel RAM
(OPRAM) [12, 14, 47–50] permits multiple concurrent clients
to query the storage, but requires cross-client coordination
per-query (e.g., using oblivious aggregation [12]) to ensure no
two clients concurrently issue a query for the same data. This
severely limits throughput scaling under high query traffic
due to compute bottlenecks.

CURIOUS [16] and TaoStore [15] employ a centralized
proxy model, but permit client parallelism via asynchrony.
Since each operation requires updates to per-plaintext key
proxy state for multiple random KV pairs, extending their de-
sign to a distributed and secure one is challenging. The latest

in this line of work, ConcurORAM [17] and Snoopy [26], per-
mit multiple parallel clients to query a cloud-hosted ORAM
without inter-client or proxy based coordination. ConcurO-
RAM achieves this by offloading much of the synchronization
to the cloud, which not only requires non-trivial changes to
cloud storage, but also limits system throughput under high
load. Concurrent to our work, Snoopy builds a distributed
oblivious data access system (for ORAM-based designs);
however, Snoopy does not prove security for scenarios where
servers can fail. In any case, SHORTSTACK and Snoopy offer
the same trade-offs as discussed in [6]—Snoopy can handle
active adversaries, but also incurs significantly higher over-
heads relative to SHORTSTACK. Prior work [6] has empiri-
cally shown that state-of-the-art single proxy ORAM schemes
achieve 220× lower throughput than PANCAKE for the same
workloads as in our evaluation. Since SHORTSTACK can scale
PANCAKE’s throughput linearly (§6) with number of proxy
servers, even if one could design a distributed ORAM sys-
tem that scales near-perfectly with number of proxy servers,
the maximum achievable throughput would still be orders of
magnitude lower than SHORTSTACK.

8 Conclusion
Existing systems for oblivious data access rely on a central-
ized, stateful, proxy to coordinate queries between applica-
tions and the storage server. We have demonstrated that, in
failure-prone deployment, such systems can suffer from secu-
rity violations, long periods of unavailability and/or scalability
limits. Our core contribution is SHORTSTACK, a distributed,
fault-tolerant and scalable system for oblivious data access.
Using a novel layered architecture, SHORTSTACK achieves
the classical obliviousness guarantee—access patterns ob-
served by the adversary being independent of the input—even
under a powerful passive persistent adversary that can force
failure of arbitrary (bounded-sized) subset of proxy servers at
arbitrary times. We also introduce a security model to study
oblivious data access with distributed, failure-prone, servers.

Acknowledgements
We would like to thank our shepherd, Alex C. Snoeren, and the
anonymous OSDI reviewers for their insightful feedback. We
would also like to thank Thomas Ristenpart for many useful
discussions during this work. This research was supported in
part by NSF awards 2054957, 2047220, 2118851, 1704742,
Faculty Research Awards from Google and NetApp, and an
IC3 fellowship thanks to IC3 industry partners.

732    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References
[1] Mohammad Saiful Islam, Mehmet Kuzu, and Murat

Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In
NDSS, 2012.

[2] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In CCS, 2015.

[3] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’Neill. Generic attacks on secure outsourced
databases. In CCS, 2016.

[4] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and
Kenneth G Paterson. Learning to reconstruct: Statistical
learning theory and encrypted database attacks. In IEEE
S&P, 2019.

[5] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.
The state of the uniform: Attacks on encrypted databases
beyond the uniform query distribution. In IEEE S&P,
2020.

[6] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lachar-
ité, Lloyd Brown, Lucy Li, Rachit Agarwal, and Thomas
Ristenpart. Pancake: Frequency smoothing for en-
crypted data stores. In USENIX Security, 2020.

[7] Care Cloud. 5 advantages of a cloud-based EHR. https:
//www.carecloud.com/continuum/5-advantages-of-

a-cloud-based-ehr-for-small-practices/.

[8] Alex Mu-Hsing Kuo. Opportunities and challenges of
cloud computing to improve health care services. JMIR,
2011.

[9] Microsoft. Healthcare-europe. https :

//www.microsoft.com/en-ie/lcc_cloud/healthcare-

europe.

[10] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. JACM, 1996.

[11] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In OSDI,
2018.

[12] Peter Williams, Radu Sion, and Alin Tomescu. Pri-
vateFS: A parallel oblivious file system. In CCS, 2012.

[13] Emil Stefanov and Elaine Shi. ObliviStore: High perfor-
mance oblivious cloud storage. In IEEE S&P, 2013.

[14] Jacob R. Lorch, Bryan Parno, James Mickens, Mariana
Raykova, and Joshua Schiffman. Shroud: Ensuring pri-
vate access to large-scale data in the data center. In
FAST, 2013.

[15] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia
Lin, and Stefano Tessaro. Taostore: Overcoming asyn-
chronicity in oblivious data storage. In IEEE S&P,
2016.

[16] Vincent Bindschaedler, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, and Yan Huang. Practicing obliv-
ious access on cloud storage: The gap, the fallacy, and
the new way forward. In CCS, 2015.

[17] Anrin Chakraborti and Radu Sion. ConcurORAM: High-
throughput stateless parallel multi-client ORAM. In
NDSS, 2019.

[18] Charalampos Mavroforakis, Nathan Chenette, Adam
O’Neill, George Kollios, and Ran Canetti. Modular
order-preserving encryption, revisited. In SIGMOD,
2015.

[19] Marie-Sarah Lacharite and Kenneth G. Paterson.
Frequency-smoothing encryption: preventing snapshot
attacks on deterministically encrypted data. IACR Trans-
actions on Symmetric Cryptology, 2018.

[20] Elette Boyle and Moni Naor. Is there an oblivious RAM
lower bound? In ITCS, 2016.

[21] Kasper Green Larsen and Jesper Buus Nielsen. Yes,
there is an oblivious ram lower bound! In CRYPTO,
2018.

[22] Giuseppe Persiano and Kevin Yeo. Lower bounds for
differentially private rams. In EUROCRYPT, 2019.

[23] Mor Weiss and Daniel Wichs. Is there an oblivious
RAM lower bound for online reads? In TCC, 2018.

[24] Kasper Green Larsen, Mark Simkin, and Kevin Yeo.
Lower bounds for multi-server oblivious rams. In TCC,
2020.

[25] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. What
storage access privacy is achievable with small over-
head? In PODS, 2019.

[26] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Nat-
acha Crooks, and Raluca Ada Popa. Snoopy: Surpassing
the scalability bottleneck of oblivious storage. In SOSP,
2021.

[27] Securing cloud services for health. https : / /

www.enisa.europa.eu / news / enisa - news / securing -

cloud-services-for-health.

[28] French decision to have microsoft host health data hub
still attracts criticism. https://www.euractiv.com/

section/health-consumers/news/french-decision-

to-have-microsoft-host-health-data-hub-still-

attracts-criticism/.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    733

https://www.carecloud.com/continuum/5-advantages-of-a-cloud-based-ehr-for-small-practices/
https://www.carecloud.com/continuum/5-advantages-of-a-cloud-based-ehr-for-small-practices/
https://www.carecloud.com/continuum/5-advantages-of-a-cloud-based-ehr-for-small-practices/
https://www.microsoft.com/en-ie/lcc_cloud/healthcare-europe
https://www.microsoft.com/en-ie/lcc_cloud/healthcare-europe
https://www.microsoft.com/en-ie/lcc_cloud/healthcare-europe
https://www.enisa.europa.eu/news/enisa-news/securing-cloud-services-for-health
https://www.enisa.europa.eu/news/enisa-news/securing-cloud-services-for-health
https://www.enisa.europa.eu/news/enisa-news/securing-cloud-services-for-health
https://www.euractiv.com/section/health-consumers/news/french-decision-to-have-microsoft-host-health-data-hub-still-attracts-criticism/
https://www.euractiv.com/section/health-consumers/news/french-decision-to-have-microsoft-host-health-data-hub-still-attracts-criticism/
https://www.euractiv.com/section/health-consumers/news/french-decision-to-have-microsoft-host-health-data-hub-still-attracts-criticism/
https://www.euractiv.com/section/health-consumers/news/french-decision-to-have-microsoft-host-health-data-hub-still-attracts-criticism/


[29] Microsoft cloud services will store and process eu
data within the eu. https://www.privacy-ticker.com/
microsoft - cloud - services - will - store - and -

process-eu-data-within-the-eu/.

[30] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. Cryptdb: Protect-
ing confidentiality with encrypted query processing. In
SOSP, 2011.

[31] Baffle. https://baffle.io.

[32] Ciphercloud. http://www.ciphercloud.com/.

[33] Navajo Systems. http://tinyurl.com/y85obds6.

[34] Perspecsys: A Blue Coat Company. http : / /

perspecsys.com.

[35] Skyhigh Networks. http://www.skyhighnetworks.com.

[36] Richard D Schlichting and Fred B Schneider. Fail-stop
processors: an approach to designing fault-tolerant com-
puting systems. TOCS, 1983.

[37] Zhao Chang, Dong Xie, and Feifei Li. Oblivious ram: A
dissection and experimental evaluation. In VLDB, 2016.

[38] Original buttermilk pancakes - (short stack).
https : / / www.ihop.com / en / menu / world - famous -

buttermilk - pancakes - and - crepes / original -

buttermilk-pancakes-short-stack.

[39] Robbert Van Renesse and Fred B. Schneider. Chain
replication for supporting high throughput and availabil-
ity. In OSDI, 2004.

[40] Scott Lystig Fritchie. Chain replication in theory and in
practice. In Erlang, 2010.

[41] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In SoCC, 2010.

[42] Apache zookeeper. https://zookeeper.apache.org/.

[43] Midhul Vuppalapati, Kushal Babel, Anurag Khandel-
wal, and Rachit Agarwal. Shortstack: Distributed,
fault-tolerant, oblivious data access. Cryptology ePrint
Archive, 2022. https://eprint.iacr.org/2022/662.

[44] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. 1987.

[45] Oded Goldreich, Shaffi Goldwasser, and Silvio Micali.
How to construct random functions. JACM, 1986.

[46] Phillip Rogaway and Thomas Shrimpton. A provable-
security treatment of the key-wrap problem. In EURO-
CRYPT, 2006.

[47] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivi-
ous parallel ram and applications. In TCC, 2016.

[48] T-H Hubert Chan, Kartik Nayak, and Elaine Shi. Per-
fectly secure oblivious parallel ram. In TCC, 2018.

[49] T-H Hubert Chan and Elaine Shi. Circuit opram: Unify-
ing statistically and computationally secure orams and
oprams. In TCC, 2017.

[50] Gareth T Davies, Christian Janson, and Daniel P Martin.
Client-oblivious opram. In ICICS, 2020.

734    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.privacy-ticker.com/microsoft-cloud-services-will-store-and-process-eu-data-within-the-eu/
https://www.privacy-ticker.com/microsoft-cloud-services-will-store-and-process-eu-data-within-the-eu/
https://www.privacy-ticker.com/microsoft-cloud-services-will-store-and-process-eu-data-within-the-eu/
https://baffle.io
http://www.ciphercloud.com/
http://tinyurl.com/y85obds6
http://perspecsys.com
http://perspecsys.com
http://www.skyhighnetworks.com
https://www.ihop.com/en/menu/world-famous-buttermilk-pancakes-and-crepes/original-buttermilk-pancakes-short-stack
https://www.ihop.com/en/menu/world-famous-buttermilk-pancakes-and-crepes/original-buttermilk-pancakes-short-stack
https://www.ihop.com/en/menu/world-famous-buttermilk-pancakes-and-crepes/original-buttermilk-pancakes-short-stack
https://zookeeper.apache.org/
https://eprint.iacr.org/2022/662


Groove: Flexible Metadata-Private Messaging

Ludovic Barman
EPFL

Moshe Kol
Hebrew University of Jerusalem

David Lazar
EPFL

Yossi Gilad
Hebrew University of Jerusalem

Nickolai Zeldovich
MIT CSAIL

Abstract
Metadata-private messaging designs that scale to support
millions of users are rigid: they limit users to a single device
that is online all the time and transmits on short regular
intervals, and require users to choose precisely when each of
their buddies can message them. These requirements induce
high network and energy costs for the clients, restricting users
to communicate via one powerful device, like their desktop.

Groove is the first scalable metadata-private messaging
system that gives users flexibility: it supports users with
multiple devices, allows them to message buddies at any
time, even when those buddies are offline, and conserves the
user’s device bandwidth and energy. Groove offers flexibility
by introducing oblivious delegation, where users designate an
untrusted service provider to participate in rigid mechanisms
of metadata-private communication. It provides differential
privacy guarantees on par with rigid systems like Stadium
and Karaoke.

An evaluation of a Groove prototype on AWS with 100
servers, distributed across four data centers on two continents,
demonstrates that it can achieve 32 s of latency for 1 million
users with 50 buddies in their contact lists. Experiments
with a client running on a Pixel 4 smartphone show that
it uses about 100 MB/month of bandwidth and increases
battery consumption by 50mW (+16%) compared to an idle
smartphone. These measurements show that Groove makes it
realistic to hide messaging metadata on a mobile device.

1 Introduction
There has been significant recent progress in scalable
metadata-private messaging systems. These systems hide
who communicates with whom and can support more users
by deploying proportionally more servers (supporting a large
user base is crucial for privacy [9]). However, systems that
are scalable and provide strong privacy guarantees impose
rigid requirements on users [16, 19, 20, 26, 27], like needing
users to synchronize messaging into rounds and coordinate
precisely in which rounds they will communicate with their
buddy. If two buddies are not simultaneously online, they
cannot communicate. Naively storing a message for a buddy
to fetch later exposes the age of the message, which can be
used to correlate the sender. Instead, this line of work has
relied on expensive dialing protocols [21, 27] to coordinate
conversations, which are impractical for mobile devices.

Rigidity in private messaging systems is inherently
costly for clients. Since communicating users must be
simultaneously online, an attacker monitoring the network
can correlate buddies over time. To combat such attacks,
clients submit and poll for messages at every round, leading
to high bandwidth and energy overhead. This makes running
a client on a phone prohibitively expensive and effectively
requires the users to have an always-on desktop computer
(e.g., at home). However, many users do not have such a
computer, e.g., if they use a laptop that they carry with them.
Finally, using metadata-private messengers from multiple
devices poses a risk if the devices become partitioned and
accidentally send multiple message to the same buddy in the
same round (which reveals the sender). These limitations
stand out compared to traditional messaging systems (without
metadata privacy) and hinder adoption.

We present Groove, the first flexible messaging system
that provides metadata privacy and scales well to support a
large user base. Groove’s users can send messages to any
of their buddies from any device, and can go offline and
retrieve messages sent to them later. Groove provides similar
messaging latency to recent metadata-private communication
systems under the same global active adversary model [15,16,
19, 20, 26]. Groove builds on mixnets, where servers shuffle
messages in batches, to unlink senders from their messages.
However, mixnets are inherently rigid: they require all users
to submit a message in every round to mix all conversations
together, and for all users to receive messages from the mixnet
at the same rate to avoid correlated traffic patterns between
buddies. To handle this rigidity, Groove introduces oblivious
delegation to an untrusted service provider. Groove clients
interact with a service provider who participates in the rigid
mixnet protocol on their behalf and synchronizes multiple
devices. Oblivious delegation ensures that an adversary can
not learn anything about users’ communication metadata
by compromising their service providers, even if the users’
devices go offline or get partitioned. Achieving oblivious
delegation involves three mechanisms, as follows.

Non-interactive setup (Figure 1a). Establishing a message
channel between buddies requires them to submit just one
setup message through the mixnet, without waiting for their
peer’s response. A non-interactive setup protocol is crucial
since buddies might not be simultaneously online to run the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    735



3

1
2

epochs:

1

1'1'

Mixnet
(goes offline)

Users Service Provider

(a) Non-interactive Setup. Groove’s async
setup protocol enables metadata-private
messaging between buddies, even if they
are not simultaneously online. The service
provider buffers setup messages and submits
them to the mixnet at the right time.

1
1

1'
1'

dedup

MixnetAlice's Clients

epochs:

Service Provider

(b) Uncoordinated Replacement. Groove
allows multiple clients (on different devices)
of the same user to interact with the system
safely, even if they cannot coordinate. Clients
can replace old messages buffered at the
service provider to support new buddies.

(1) headers 

(2) eph key,
indices 

(3) eph key,
messages 

(4) shuffled messages (5) messages of interest 

MixnetService ProviderClient

(c) Oblivious Fetch. Groove’s clients avoid
retrieving cover traffic messages stored at
the service provider, without revealing which
messages they fetch. The servers only
process a user’s messages once per client,
regardless of the number of messages stored.

Figure 1: The three mechanisms that allow oblivious delegation in Groove.

protocol. Groove hides communication metadata even if
only one buddy attempts this setup (or their peer’s provider
discards the other setup message). Message channels persist
for long epochs, and this protocol allows Alice to prepare
setup messages at her service provider well in advance and
for many epochs. Service providers, if they’re honest, submit
setup messages to the mixnet at the right time, allowing
Alice’s buddies to send her messages even she goes offline.
If the service provider misbehaves, messages might be
(noticeably) lost but privacy is preserved, and Alice can switch
to a different provider.

Uncoordinated replacement (Figure 1b). The adversary
may partition a user’s devices and prevent them from deciding
which device communicates at a given round. If several
devices of the same user accidentally submit messages to
the same buddy in the same round, they can expose the
recipient, who receives extra messages. Groove solves the
issue with a new message replacement technique: each
device can independently refresh the messages queued at
the service provider without coordinating with other devices.
Crucially, the protocol ensures that no metadata is revealed
to the adversary, even if the provider is rogue and submits all
messages (old and new) to the mixnet. This is achieved
through path selection and message-tagging mechanisms,
which ensure that each buddy receives at most one message
from all of the user’s devices. The replacement protocol
allows clients to update setup messages, and hence to add
buddies after preparing message channels for future epochs.
It also allows users to switch between their devices, like
traditional messaging applications.

Efficient messaging with many buddies (Figure 1c).
Groove avoids expensive dialing (as in [21, 27]) by keeping
a message channel open for each of a user’s buddies. To
minimize client costs when having many message channels,
Groove’s clients use a submission protocol that avoids sending
a cover message for each idle channel, and a fetch protocol
that avoids retrieving cover messages from idle channels.
Crucially, both protocols are oblivious and do not reveal

sensitive information to the service provider (e.g., which
channels were active and carried real messages from buddies).
Finally, Groove minimizes the cost that each message channel
induces on the mixnet, with the most crucial improvement
over prior work being the memory footprint. Groove supports
75M parallel message exchanges with 100 servers (prior work
supports 1M–10M parallel message exchanges in the same
deployment [16, 19, 20, 26]).

We analyze Groove’s design and show that it achieves
differential privacy against an attacker who has complete
control over the network and has the power to compromise
many servers that make up the system (including all service
providers). Through this analysis, we choose the system’s
parameters that would provide a strong degree of privacy.

To demonstrate that Groove can support a large user
base, we built a prototype and evaluated its performance
on AWS servers distributed across four data centers. We
also implemented a mobile client, deployed it on a Pixel 4
phone, and measured Groove in terms of battery and network
usage. We show that Groove scales well with the number
of servers and using 100 servers, it supports 1–3 million
users sending and receiving messages from 50 buddies every
32–80 seconds. The client uses 54MB–106MB of network
bandwidth per month and its battery consumption increases
by 16% compared to the idle phone (when using cellular
data). We recognize that Groove’s latency is high compared
to traditional messaging apps; nonetheless, it removes the
rigid client requirements of previous designs and enables
large-scale metadata-private messaging for mobile users.

In summary, our contributions are the following:

• oblivious delegation, an approach for offloading rigid
mixnet requirements to an untrusted service provider, which
enables client flexibility;

• Groove, a scalable metadata-private messaging system, and
an analysis proving Groove’s privacy guarantee;

• an implementation of Groove and an experimental
evaluation of its performance, showing that it can support
mobile clients and scale well to handle a large user base.

736    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



2 Related Work

Differential privacy. Groove’s approach of providing
differentially-private communication using a mixnet is based
on prior work [19, 26, 27]. However, these earlier designs
impose rigid requirements on users. First, users must be
simultaneously online, and their clients must send and receive
messages at every round to communicate. Second, users can
only run a client on a single device, which also sidesteps the
problem of device partitions. When a user’s devices cannot
coordinate, a conversation (which normally has one message
per round) might end up with multiple messages per round,
revealing the recipient. Groove addresses these problems
through oblivious delegation.

Private Information Retrieval (PIR). PIR protocols
support storing and retrieving information asynchronously
from a database, without revealing anything about which
message is retrieved [7, 23]. These protocols could provide
a good degree of flexibility to clients: they have low client
bandwidth requirements and allow the recipient to read a
message at any time after the sender deposits it in a database.
However, as users’ messages accumulate in the database,
processing each client’s PIR query requires more work
from the database server, limiting scalability. For example,
Pung [2, 4] supports up to 20k–60k fetches per minute with
1M messages in its database. Express [11] optimizes PIR
retrievals at the cost of making writes more expensive, but
still the system only supports sending tens of messages per
second across all clients. In contrast, Groove clients induce
the same amount of work independent of how many messages
accumulate in the system, enabling millions of users to send
and receive messages every minute.

Communicating with many buddies. Metadata-private
messaging systems minimize the load on the servers and
overhead for the client by limiting users to receive messages
from one buddy at a time [2, 4, 16, 19, 26, 27]. They require
buddies to run a hefty dialing protocol to agree on when to
communicate. For PIR systems, such as Pung and Addra [1,4],
relying on dialing is even more essential; since reading is
expensive for the servers, clients cannot retrieve messages
from each buddy all the time. Many systems [1, 2, 16, 19, 26]
propose using Alpenhorn’s differentially private dialing [21],
which takes about 5 minutes to coordinate between buddies
and requires 62 GB of client bandwidth per month [21, §8.2].
Groove mitigates the clients’ costs through its oblivious
message fetching protocol and minimizes the load each
message channel induces on the system, so users can keep
channels with many buddies (e.g., 50 buddies per user
in our implementation). Dialing may also be seen as a
limited form of asynchronous messaging between users.
The Vuvuzela [27] and Alpenhorn [21] dialing protocols
use at least 3000× more bandwidth on clients than Groove,

when configured to provide 1-minute messaging latency like
Groove.

Metadata-private communication over persistent
channels. Groove’s users communicate over persistent
message channels, similar to Tor’s circuits. However, Tor
does not protect users from a strong adversary model. An
adversary monitoring the network can infer the path of users’
messages across relays by correlating incoming and outgoing
packets. Hydra [25] uses circuits to connect two endpoints,
like Tor’s hidden services [5], but does not hide the number
of active conversations to the adversary [25, §4.6¶1], which
allows for intersection attacks. Yodel [20] uses a mixnet with
persistent circuits but requires two communicating users to
be online at the same time to coordinate their circuits. Both
Hydra and Yodel support only one device per user and have
clients send and receive messages every round, two rigid
shortcomings that Groove addresses.

Flexible clients through trusted servers. Loopix [24] hides
metadata by relaying messages through a mixnet. It addresses
the client flexibility problem by storing messages for users at
trusted service providers. The service providers sees when
a user receives a message, and can thus perform intersection
attacks with other users who were online in time to send
this message. Thus, users must make a tricky decision
about which service providers they trust. Furthermore, the
service provider is a singular target for learning about the
relationships of its users. Pond [17] requires users to run
a trusted server themselves. This leads to a simpler design
than Groove (e.g., partitioned devices are not a concern) but
limits the system to savvy users who can securely operate
their own servers.1 This is problematic for metadata-private
communication, which benefits from a large user base [9]. In
Groove, users maintain privacy even if their service providers
fall under the attacker’s control, so they do not need to operate
servers themselves.

3 Overview
Groove allows buddies that share a secret to secretly exchange
short text messages (e.g., 100B). Each buddy can run clients
on multiple devices and seamlessly switch between them.
Service providers bridge between the rigid mixnet protocol
and the flexible clients, that can send and receive messages
asynchronously. Each user designates a service provider and
runs Groove’s oblivious protocols for setting up message
channels (Figure 1a), replacing messages (Figure 1b), and
fetching messages (Figure 1c). The service provider submits
messages to the mixnet on the user’s behalf and stores
messages that the user receives from the mixnet. It also helps
the user synchronize their clients across all devices. Users

1Running a personal server in the cloud undermines security against a
strong adversary that may be able to compel the cloud operator to disclose
data or exploit side channels by deploying a VM on the same machine, and
operating a physical server requires significant effort and expertise.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    737



need not trust their service provider for privacy. To anonymize
messages, Groove uses a parallel mixnet [12]. Parallel
mixnets scale well with the number of servers by offering
many parallel routes for processing messages. Groove extends
the servers’ message processing logic to enable oblivious
delegation, and it is otherwise agnostic to the mixnet’s internal
design choices, such as the server topology or verification
protocol (that ensures servers process messages correctly).

3.1 Threat model
Groove aims to hide its users’ communication metadata from
a global active attacker that controls all network links. In
particular, this attacker observes when clients (dis)connect
from the network and may partition users’ devices. The
attacker may also control all service providers, and each
mixnet server with some probability f , which is provided
as an assumption in the system’s configuration. A smaller f
yields better performance at the expense of a stronger trust
assumption. The attacker can also run arbitrarily many clients.
Still, an attacker could learn about a user’s communication
by directly compromising their device or the devices of their
buddies [3], although forward secrecy prevents them from
learning about the user’s communication in the past. Finally,
Groove assumes that the attacker is computationally bounded,
so standard cryptographic primitives, such as hash functions
and encryption schemes, are secure.

3.2 Goals
Privacy. Groove achieves differential privacy [10]. Consider
an attacker and their view of the system through all network
links and service providers, and the mixnet servers and clients
that they operate. Groove ensures that the attacker’s view
is likely to be the same whether two users, call them Alice
and Bob, are buddies or not. More formally, consider the
attacker’s observations O and the following two scenarios.
In one scenario, Alice and Bob are buddies and can chat
(denoted by A ↔ B), and in the other, they are not buddies
and cannot chat (denoted by A ̸↔ B). Groove ensures the
following inequalities for small ε,δ ≥ 0:

Pr[O|A ↔ B]≤ eε Pr[O|A ̸↔ B]+δ , (1)
Pr[O|A ̸↔ B]≤ eε Pr[O|A ↔ B]+δ

That is, the probability for any observations the attacker could
make is close under both scenarios (up to small constants
ε,δ ). Informally, Alice being buddies with Bob appears to
the adversary almost as likely as them not being buddies.
Thus, Alice could plausibly deny being buddies with Bob or
claim to be buddies with anyone else. This privacy guarantee
holds even if Alice or Bob is the sole honest user of a rogue
service provider, the attacker partitions their devices, and
observes the system for a long time.

Client flexibility. Groove should not impose strong timing
or resource requirements on clients. It should allow Bob to
retrieve Alice’s message at any time after it reaches Bob’s

service provider and accommodate clients with network and
battery constraints (that need to minimize communication or
that might go offline). In particular, Groove should support
clients running on mobile devices. At the same time, Groove
should allow other clients to connect more often and achieve
lower message latency. Finally, Groove should enable users
to run clients on multiple devices and switch between them.

Performance. Groove aims to support millions of users with
dozens of buddies. Once Alice sends a message, Bob can
retrieve it with a latency on the order of a minute. The system
should scale, i.e., provide the same performance to a larger
user base by deploying proportionally more servers.

Availability. Groove’s availability guarantees in the face
of failing servers should primarily come from the mixnet
and not degrade by its oblivious delegation approach. An
overloaded or downed service provider can prevent service
to its users, but the system’s availability for users of
other service providers should not be affected. Since the
service provider is untrusted, it can use replication for better
availability guarantees without security implications for its
users. Moreover, having untrusted service providers also
allows users to change to another provider if they suspect
their provider is preventing service without risking exposing
sensitive information to more parties (the current and new
provider). We describe how users can detect and combat such
providers in Groove’s design (§5).

4 Background
Groove’s users send and receive messages over message
channels called circuits. A circuit is a fixed route of servers
in the mixnet that persists for an epoch, which consists of
many communication rounds (e.g., an hour to a day’s worth).
Each circuit connects a user’s service provider to a dead drop,
an ephemeral address where users exchange messages. Two
buddies coordinate pseudorandom dead drops using a shared
secret. The mixnet ensures that an adversary cannot correlate
which service provider connects to what dead drop using
noise messages. Groove borrows this communication model
from previous systems [5, 19, 20, 25] (see §2), but changes
the way circuits establish to support oblivious delegation. We
summarize below the existing techniques that Groove uses to
simplify the exposition of its new mechanisms in §5.

Like other mixnets [15, 26, 27], Groove’s mixnet servers
have unique public keys per epoch. Clients know the
servers’ public keys, e.g., through a transparent public key
infrastructure [18, 22]. The way rounds are kicked-off
depends on the mixnet, which Groove abstracts; e.g., many
designs use an untrusted coordinator that announces to all
mix servers when to start new rounds [15, 16, 19, 20, 26, 27].

Messaging over circuits and dead drops. The circuit setup
message is onion encrypted with the public keys of the
servers on the route. Each onion layer includes the next

738    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



server’s ID, an ephemeral Diffie-Hellman public key, and
an authentication code that ensures no earlier server has
modified the onion. Each server completes the Diffie-Hellman
handshake to derive a shared symmetric key with the client,
and uses this key to verify the authentication code. After
receiving messages from all servers in the previous hop, the
server deduplicates and shuffles messages, and forwards them
to the next hop. Servers store their shuffle’s permutation and
the symmetric keys; later, they use these records to process
messages over the circuit.

During a communication round, mixnet servers process one
message on each circuit. Each message is onion encrypted
with the symmetric keys registered at circuit setup. The
mixnet’s servers shuffle and decrypt messages they receive
using the permutation and symmetric keys they stored earlier.
Servers deduplicate messages on the same circuit. If a
server does not receive a message on a circuit, it fills in a
cover message to ensure all circuits have one message. The
symmetric encryption ensures that any random message that
a server fills in is indistinguishable from a real message to
other servers along the route. When two circuits connect to
the same dead drop, the server hosting its address swaps the
messages on these circuits and sends them back through the
circuits, which is how buddies exchange messages.

Noise. Previous work shows how mixnet servers can add
noise messages to protect metadata [19, 27]. We apply this
technique in the context of Groove’s circuits. For each inter-
server mixnet link, each server decides on the number of noise
circuits to route over that link by drawing from the Poisson
distribution. Servers generate two kinds of noise: “doubles”
which is a pair of circuits bound to the same dead drop to
obscure the number of buddy-relationships, and “singles”
which is a circuit terminating at a dead drop without a pair,
to obscure the case where one of the buddies does not create
their circuit to the shared dead drop. Like Karaoke [19],
Groove uses Bloom filters to ensure that malicious servers do
not drop the noise circuits.

5 Design
Figure 1 illustrates the parties in Groove: users, clients
running on different types of devices, service providers, and
the mixnet. When Alice and Bob become buddies, they add
each other to their address books, and their clients establish
a fresh shared secret. This secret allows Alice and Bob’s
clients to authenticate and encrypt messages (end-to-end) and
coordinate dead drops for exchanging messages. The clients
might create this secret out-of-band (e.g., by scanning QR
codes if users meet in person) or via a metadata-private “add-
friend” protocol (like in Alpenhorn’s protocol suite [21]2).

Users designate a service provider that stores their
messages and participates in the rigid mixnet protocol on their

2Alpenhorn’s add-friend protocol differs from its dialing protocol, which
precedes every conversation—a cost that Groove avoids.

while true {
// Block, waiting for the next wakeup event.
<-client.Schedule // §5.1

if oncePerDay {
client.RefreshCircuits() // §5.2, §5.3 and Fig. 4
client.ForwardSecrecy() // §5.5

}

buddy, msg := client.OutgoingMessageQueue.Pop()
// If the user has nothing to say, send cover traffic.
if buddy == nil {

msg = random.Bytes(MessageSize)
}
client.SendMessage(buddy, msg) // §5.4 and Fig. 5
client.CheckForMessages() // §5.4 and Fig. 6

}

Figure 2: The client’s main loop. The client refreshes circuits once
per day, at that time it also evolves the multidevice and buddy keys
for forward secrecy. It sends and receives messages according to
the schedule, which can be configured to balance battery life with
communication rate.

behalf. The mixnet operates in rounds, where messages are
exchanged over circuits. We envision rounds being relatively
frequent, e.g., starting every 30 seconds to a minute. Every
round, service providers submit messages to the mixnet. The
mix servers shuffle messages and ensure each circuit carries
precisely one message per round (by deduplicating messages
on the same circuit and filling in a cover message when one is
missing, as §4 describes). Messages are exchanged between
circuits at the end of the mixnet and then sent back through
the mixnet towards the service providers, where users can
fetch their messages.

In the remainder of this section, we introduce the concept of
client schedules, present the protocols for oblivious delegation
from Figure 1, and the mechanism for forward secrecy. Our
descriptions follow the client’s operation, outlined in Figure 2,
and its interactions with the service provider via the API
depicted in Figure 3.

5.1 Client schedules
To achieve Groove’s privacy goal, the network traffic pattern
between a user’s client and their service provider must not
reveal information about the user’s communication with
their buddies. In particular, this pattern includes when the
client initiates requests to the service provider, which we
call the client’s schedule. The adversary can potentially
infer any information that goes into deciding the client’s
schedule, and hence it should be independent of the user’s
buddy-relationships, which Groove aims to hide. Groove
gives flexibility for clients to operate on their own schedule,
independent from other clients. In this manner, it can
accommodate clients on low-power devices with lightweight
schedules without impacting other clients. A simple and
safe schedule is to communicate with the service provider
at regular intervals. Clients can use different intervals to
trade network and power consumption for communication
latency. They can also piggyback on other device wake-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    739



var B = MaxBuddies
type Onion = [MessageSize + SymmetricOnionOverhead]byte

rpc BeginTransaction() *Txn
rpc (t *Txn) Commit() error

rpc (t *Txn) GetAddressBook() ([]byte, int)
rpc (t *Txn) SetAddressBook(data []byte, round int)

// RPC to set the circuit setup onions for an epoch.
// Each buddy corresponds to 2 circuits.
rpc (t *Txn) SetEpochOutgoing(epoch int, onions [B][2][]byte)

// RPC to fetch messages from our buddies.
rpc (t *Txn) GetHeaders(epoch int, round int) [B][2]byte
rpc (t *Txn) ShuffleInbox(ShuffleParams) [][]byte
rpc (t *Txn) FetchInbox(DHkey []byte, indices []int) [][]byte

// RPCs to queue a message for a buddy.
rpc (t *Txn) GetRoundOutgoing(epoch int, round int) RoundData
rpc (t *Txn) SetRoundOutgoing(epoch int,round int,rd RoundData)

type RoundData struct {
// Messages are split into two, one for each buddy circuit.
Onion [2]Onion
// Previously sent message for this round.
OutboundMsg []byte

}

Figure 3: Service provider API. Clients use these RPCs
asynchronously to setup circuits to their buddies and send/receive
messages through them.

ups (like checking for software updates) to interact with the
service provider at a relatively low cost.

Clients can change their communication patterns if this
change is independent of the user’s buddies. For instance,
it is safe for Alice’s client to skip transmissions due to a
network outage or because Alice boards a flight and her
phone disconnects from the internet. It is also safe for users
to have correlated schedules, as long as the correlation is
not caused by their relationship status (being buddies or not).
For example, users in the same time zone may prefer their
devices to be more conservative during the day when on
battery, but less at night when near a power outlet. Such
correlations do not leak new information to the attacker
(who can already observe their IP addresses and deduce
their geographic locations). However, changes in the client’s
network patterns that depend on a user’s buddies are unsafe;
e.g., if Bob’s client stops sending messages whenever Alice’s
device goes offline, an adversary might infer that Bob is
connected with Alice.

5.2 Non-interactive circuit setup
Groove splits time into epochs, which correspond to the
circuits’ lifetimes. Periodically, e.g., once a day, clients
call RefreshCircuits to generate circuit setup messages
and upload them to their service provider (see the client’s
main loop in Figure 2). The service provider queues these
messages and sends them to the mixnet at the appropriate
time (sending circuit setup messages for the next epoch when
the preceding epoch nears its end), even if all of the user’s
clients go offline. Users exchange messages over circuits,

func (c *Client) RefreshCircuits() error {
epochs := c.serviceProvider.UpcomingEpochs()
txn := c.serviceProvider.BeginTransaction()

// Get address book and epoch of last update.
addressBook, epochUpdated := txn.GetAddressBook()
addressBookKey := c.MultiDeviceKey[epochUpdated]

// Merge address books (buddy lists) across devices.
prevBuddies := Decrypt(addressBookKey, addressBook)
c.buddies = MergeAddressBooks(prevBuddies, c.buddies)

// Pad the buddy list so its size doesn't reveal anything
// to the provider and so we generate noise onions below.
if len(c.buddies) < MaxBuddies {

c.buddies = append(c.buddies, GenerateFakeBuddies())
}
newBook:= Encrypt(c.MultiDeviceKey[c.currentEpoch],c.buddies)
txn.SetAddressBook(newBook, c.currentEpoch)

for epoch := range epochs {
var onions [MaxBuddies][2][]byte

for i, buddy := range c.buddies {
// Devices use the same PRNG to choose circuit
// routes & tags, enabling deduping setup messages.
randRouteTag := PRNG(i, epoch, c.MultiDeviceKey[epoch])
onions[i][0] = GenCircuitSetupMsg(randRouteTag,buddy,0)
onions[i][1] = GenCircuitSetupMsg(randRouteTag,buddy,1)

}
txn.SetEpochOutgoing(epoch, onions)

}
return txn.Commit()

}

Figure 4: Pseudocode for updating a client’s address book and
corresponding circuit setup onions for upcoming epochs, which are
stored on the service provider. It is safe for multiple devices to run
this function concurrently.

so adding or removing buddies only takes effect on epoch
boundaries, when circuits are established. The more epochs
a client prepares for in advance (by uploading circuit setup
messages for future epochs in RefreshCircuits), the longer
the user can go offline and keep receiving messages from
their buddies. If all of a user’s clients remain offline beyond
this number of epochs, Groove will eventually not be able
to establish circuits with the user’s buddies, preventing them
from communicating. Differential privacy is still maintained,
however, due to mixnet noise during circuit setup. The
epoch’s duration is a knob that allows Groove to trade less
client communication for higher latency in setting up circuits
with new buddies.

Figure 4 gives the pseudocode for RefreshCircuits.
First, the client synchronizes the user’s contacts through the
service provider, since the user might have added or removed
a buddy through another device. The service provider’s
BeginTransaction and Commit APIs allow each of the
user’s clients to retrieve and upload data atomically with
respect to the user’s other clients, which may simultaneously
call RefreshCircuits. Rogue providers can break the
transactional semantics or deliver different address books
to different clients, leading clients to set up circuits for stale
address books; Groove protects against such providers, as we
prove in §6. The client retrieves the address book from the

740    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



service provider, appends new buddies to the first available
slots, and pushes the new address book to the service provider.
Clients pad the address book to MaxBuddies slots and encrypt
it under the multidevice key, which hides when users add or
remove buddies.

Next, the client prepares two circuit setup messages for
each buddy and many upcoming epochs (e.g., for the next
month) and uploads these messages to the service provider.
The reason for creating two circuits per buddy, rather than
one circuit, is to allow clients to fake connections to buddies
when the user has less than MaxBuddies friends, hiding their
number of friends. In this case, the client creates two “cover
circuits” to one dead drop, so there are precisely two circuit
setup messages to all dead drops a client uses (regardless of
the number of buddies the user has). The client learns the
epoch number from the service provider and relies on it to
submit circuit setup messages at the right epoch; however, the
provider can cheat. Thus, the client writes the epoch number
in each onion layer, so the mixnet servers can discard circuit
setup messages the provider sends at the wrong time. As one
epoch nears the end, the mixnet runs circuit setup for the next
epoch, so circuits are ready at all times to route messages
between buddies. The mixnet’s servers then process the setup
messages as in previous works (§4).

One issue is that Groove must ensure privacy when one
user establishes a circuit and their buddy does not. Groove
handles this challenge by noising the circuit setup step with
cover circuits generated by the mix servers. The cover
circuits ensure that, regardless of whether Alice and Bob
are buddies, the attacker observes the same traffic pattern (on
the network and to dead drops). Groove applies Karaoke’s
noising technique [19], of creating “single” and “double” dead
drop accesses, to circuit setup messages (summarized in §4).

Circuit setup messages in Groove are acknowledged to the
clients, which then learn whether anyone dropped their circuit
or the circuit from their buddy. This allows users to detect
active attacks and, as in previous systems [19,20], provision a
tighter privacy budget when choosing the system parameters
(and thus, achieving better performance) compared to systems
that do not detect active attacks (like [26, 27]). To achieve
this in Groove, the content of circuit setup messages is a
pseudorandom ID that each user derives from the secret they
share with their buddy (or the multidevice key if the circuit
is cover). When the circuit setup message reaches the dead
drop, the server hosting that dead drop swaps the content of
messages (see §4) and returns it through the mixnet to the
user’s service provider. The next time the client connects
to the provider and learns the current epoch, it downloads
the returned IDs of the circuits from previous epochs and
checks they are correct by deriving the IDs the buddies would
use. Correct IDs acknowledge to clients that the circuit setup
message from them and their buddy had propagated to the
dead drop, so all servers in the route shuffled these messages
with the other setup messages.

5.3 Oblivious replacement
Preparing circuits for future epochs allows users to go offline
for a long time. However, users might add buddies after
submitting circuit setup messages. Groove clients can update
the circuit setup messages stored at the service provider, so
users can communicate with new buddies soon after adding
them to their address books. Each client performs this
replacement periodically, according to its schedule (Figure 2);
if there are no changes in the address book, the client uploads
fresh circuit setup messages pointing to the same dead drops.
The key challenge in performing this replacement is that,
without coordination across the user’s devices, several of their
clients might establish circuits to the same dead drop. This
will create a distinct access pattern (i.e., not the single- or
double- dead drop access patterns covered by the noise). An
attacker controlling the dead drop’s hosting server can then
associate that dead drop with the user.

Groove introduces circuit tagging, which enables safe
replacement of old setup messages without relying on
communication between a user’s devices, as illustrated
in Figure 1b. When choosing the circuit’s path,
RefreshCircuits seeds a pseudorandom number generator
(randRouteTag in Figure 4) for each epoch with the
multidevice key and the buddy’s slot number in the user’s
address book. This pseudorandom number generator is the
same across all of the user’s devices. The clients then use it
to choose the route for each address book slot and include
a pseudorandom tag derived from this generator in each
layer of the circuit’s setup message. Honest servers on the
route deduplicate circuit setup messages according to this
tag. Although the routes are the same, each client submits
different-looking messages to the service provider since the
onion encryption scheme is randomized.

This route and tag selection procedure ensures that Alice
submits circuit setup messages with the same route and tags
across all her devices for each buddy in her address book.
If all of Alice’s devices upload circuit setup messages and a
malicious service provider submits all of them, the first honest
server along each the (identical) routes of duplicate messages
observes the duplicate tags and discards the redundant
messages. This ensures the user’s circuits do not access a
dead drop an unusual number of times.

5.4 Efficient messaging
Groove uses oblivious protocols for efficiently submitting and
fetching messages over many concurrent circuits.

Sending messages. During an epoch, there are 2 ×
MaxBuddies circuits available to the client for messaging.
Uploading a message to every circuit every time the client’s
schedule is triggered (Figure 2) incurs unnecessary bandwidth
costs, especially since users do not typically talk to all of
their buddies at once. Instead, the Groove client submits just
one message (split into two parts, leveraging two circuits

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    741



func (c *Client) SendMessage(buddy, msg string) error {
epoch := c.currentEpoch
round := c.nextRound

txn := c.serviceProvider.BeginTransaction()
rd := txn.GetRoundOutgoing(epoch, round)

prevMsg, prevBuddy :=
Decrypt(c.MultiDeviceKey[epoch], rd.OutMsg)

if IsRealMessage(prevMsg) {
err = "refusing to overwrite user-typed message"
// Re-encrypts previous content.
msg, buddy := prevMsg, prevBuddy

} else {
msg = MsgHeader(epoch, round, buddy.key[epoch]) ++ msg

}

msg1, msg2 := SplitMessage(msg)
ix := GetBuddyIndex(buddy)
onion1:= EncryptSymOnion(epoch.circuits[ix][0].keys,msg1)
onion2:= EncryptSymOnion(epoch.circuits[ix][1].keys,msg2)

txn.SetRoundOutgoing(epoch, round, RoundData{
Onion: {onion1, onion2},
OutMsg: Encrypt(c.MultiDeviceKey[epoch], {buddy, msg}),

})

return txn.Commit(), err
}

Figure 5: Client pseudocode for sending messages.

per buddy) and does not reveal the designated circuits to the
service provider. The service provider then broadcasts the
message on all of the user’s circuits (i.e., the first half of
the message on even circuits, and the second half on odd
circuits). Messages are encrypted end-to-end, so only the
intended recipient can decrypt them. If a rogue provider
does not broadcast a message, the first honest mix server on
each path will fill in a cover message, ensuring buddies keep
receiving messages at the same rate (§4). Figure 5 gives the
client’s pseudocode for sending messages.

Fetching messages. The recipient’s service provider receives
messages from the mixnet (one message per circuit per round)
and stores them for the clients to fetch later. Clients should
avoid fetching cover messages to minimize their bandwidth
and energy costs (e.g., messages that mixnet servers fill in or
that are intended for another buddy), and at the same time,
hide which circuits carry real messages to hide when someone
messages the user. We could use PIR to fetch messages,
but this comes at high cost and complexity clients and the
service provider, especially as messages accumulate. Instead,
Groove’s fetch protocol relies on mixing messages, where a
set of servers processes the messages from the provider just
once regardless of the number of messages a client retrieves.
We describe it following the illustration in Figure 1c and the
pseudocode in Figure 6.

When Bob’s client calls CheckForMessages from its main
loop (Figure 2), it first retrieves from the service provider
a short header for each stored message (e.g., two bytes per
buddy). The header acts as a pseudorandom flag, shared
between the two buddies: when Alice sends a message to

func (c *Client) CheckForMessages(epoch int) ([]int,[][]byte){
round := c.GetNextRound()
mixers := RandomMixnetPath(11) // Path of length 11

hdrs := c.serviceProvider.GetHeaders(epoch, round)

// Identify the indices of real messages from buddies
indxs = []
for i, buddy := range c.buddies {

if hdrs[i] == MsgHeader(epoch, round, buddy.key[epoch]){
indxs = append(indxs, i)

}
}

// Shuffle user's inbox with a fresh key
pk, sk := GenerateDHKeypair()
nonces := c.serviceProvider.ShuffleInbox(ShuffleParams{

Epoch: epoch,
Round: round,
PublicKey: pk,
Mixers: mixers,

})

// Predict the indices after mixing step in ShuffleInbox
shuffledIxs := PredictPositions(sk, mixers, nonces, indxs)

// Ensure we fetch a constant number of messages
PadWithFakeRequests(shuffledIxs)

// Fetch messages at the (shuffled) indices
onions := c.serviceProvider.FetchInbox(shuffledIxs)

// Remove onion encryption from ShuffleInbox's mixing step
msgs := DecryptOnions(onions, sk, mixers, nonces)

// Map the messages back to the correct buddy
Unshuffle(msgs, sk, mixers, nonces)

return indxs, msgs
}

Figure 6: Client pseudocode for oblivious fetch. Clients first fetch
headers from the service provider and identify indices of interest.
Finally, they request the shuffled indexes corresponding to the result
of the mixing step of the oblivious fetch.

Bob, her client derives the header’s value from the current
round and the key that Alice and Bob share, and sends it along
with the content (inside the onion). Bob’s client derives the
same header and compares it against the header from Alice’s
circuit (users only need to check one of the circuits in the
pair). If the header values match, his client knows to fetch the
corresponding message next. To avoid revealing messaging
rates between buddies, the service provider must not learn
from which circuits Bob fetches messages. Groove hides this
by mixing Bob’s messages again, as follows.

CheckForMessages instructs the service provider to
submit all messages pending for Bob to a “fetch mixchain,”
which is a sequence of mixnet servers chosen by the client.
The client also supplies a new Diffie-Hellman public key,
which the service provider relays to the first server in the
sequence. The first server uses its secret key to complete the
Diffie-Hellman handshake and derives a shared secret with
the client; it then chooses a fresh nonce and hashes it with
this shared secret to derive an ephemeral symmetric key. The
server derives the shuffle permutation from this ephemeral

742    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



key and encrypts the messages. The server passes its nonce,
the client’s public key, and the list of the remaining servers
to the next mixchain server, which continues in the same
fashion. The nonces ensure that a mixchain server’s output
looks freshly random, even if a rogue service provider replays
an old request. The last server passes the shuffled messages
and the nonces to the recipient’s service provider, who in turn
forwards the nonces to the client. The client then derives the
symmetric key for each server and computes the (shuffled)
position of the messages it should fetch. Finally, it fetches
messages at the shuffled indices directly from the service
provider. The freshness of the client’s Diffie-Hellman key
ensures that it accesses random-looking locations each time
it runs the protocol.

Clients download a small fixed number of messages in
every round. For example, a client could always download
six messages per round to support up to three buddies
simultaneously messaging the user. This way, the number
of messages clients retrieve does not reveal information
about messaging rates to the attacker. The oblivious fetch
mechanism also lets clients retrieve a different number of
messages to quickly catch up after being offline for an
extended time. Similarly, if there’s a burst of real messages in
some round (beyond the fixed fetch rate), the client can run a
large daily fetch procedure (e.g., for 100 messages) to catch
any missed messages at relatively low cost.

5.5 Forward secrecy
Groove achieves forward secrecy for both the message
contents as well as metadata, meaning that an adversary that
compromises a user’s device cannot retroactively decrypt
messages, determine who the user communicated with, or
who was in the user’s address book. Note, however, that an
adversary that compromises a user’s device does get to see
the device’s current address book and messages.

The challenge in achieving forward secrecy in Groove
is that user devices may be partitioned from one another,
and thus cannot refresh their keys by coordinating over the
network. To achieve forward secrecy in this setting, Groove
deterministically evolves secret keys based on the epoch: for
each passing epoch, clients hash the keys (as described below)
and erase the pre-image. Clients evolve the multidevice key,
ensuring that an adversary compromising a device cannot
track old circuit routes from the user to a dead drop, and
cannot decrypt old copies of the user’s address book. Clients
also evolve shared secrets across buddies to ensure that the
adversary cannot decrypt old messages.

Deterministically evolving keys could allow an adversary
that obtains old keys (e.g., by compromising a user’s
old powered-off phone) to derive all future keys, thereby
compromising data and metadata privacy for all epochs
since the stale compromised key, a form of post-compromise
insecurity [8]. To avoid this vulnerability, Groove involves
the servers in computing the hash function for evolving keys,

and honest servers refuse to compute this hash function for
epochs in the past or that are more than T epochs in the
future. This limits the vulnerability window by ensuring that
an adversary with access to older keys cannot evolve them
forward to decrypt newer user data or metadata.

Realizing this approach is challenging because it requires
combining secrets from two parties, without either party
learning the other’s secret. The client wants to hash a
key without giving it to the server, and the server must
not reveal its secret that would allow hashing arbitrary
values in the future. We address this by using an oblivious
pseudorandom function (OPRF), specifically, the verifiable
DH-OPRF construction from [13]. Groove’s clients run the
verifiable DH-OPRF protocol with each server (evolving their
keys with each server in turn). This ensures that the keys are
evolved with at least one honest server’s secret key. Clients
verify the DH-OPRF result against the server’s public key for
that epoch (§4). Verifying this result is critical here, since it
ensures that an adversary cannot cause two of a user’s devices
to diverge in their multidevice key, which would cause them
to create different circuit paths and thus leak metadata.

The client evolves keys every day (see Figure 2), deleting
keys older than T epochs from the newest key. The client
keeps keys for T epochs in the future, which allows circuit
setup messages to be prepared in advance. If the device is off
for longer than T , the client’s newest key becomes stale, and
the servers will refuse to roll it forward with their old keys.
Thus, the duration T is a tradeoff between security and user
convenience: after T epochs offline, a device must be set up
again manually (e.g., by copying keys from another device).
If the provider lies about committing the address book, then
the evolved key on the device is also useless since it cannot
decrypt the address book.

5.6 Provider availability and switching providers
Groove’s service providers are not trusted for privacy (as
we prove in §6), but a service provider can still block
communication for its users. To address this, Groove clients
can periodically send messages to themselves (on empty
buddy circuits) and detect provider malfunction in case these
messages often do not route back intact (the provider cannot
tell which message is for a buddy and which would route
back to the user). In this case, the client notifies the user
to switch providers. Such self-addressed messages were
proposed in prior work to detect attacks [24]. Keeping
providers untrusted for privacy, however, simplifies dealing
with such availability attacks compared to prior work since
users can switch providers without risking exposing their
communication metadata to more parties. Moreover, this
property also protects against attacks that steer users towards
corrupt providers and contrasted against systems with trusted
providers (§2).

Users can also submit copies of messages to multiple
providers to ensure availability when all but one provider

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    743



fail. This is safe since Groove ensures privacy even if rogue
providers duplicate messages (by deduplicating messages in
the mixnet, §5.3). One detail when using multiple providers
is that Groove delivers only one message copy (to defend
against malicious providers submitting multiple messages).
Malicious providers can thus actively try to prevent service by
submitting corrupt messages, hoping their copies will prevail.
Users can detect this intervention and switch providers (as
discussed above).

6 Privacy analysis
Clients send and receive messages through the user’s service
provider. They communicate according to a schedule that
is independent of their buddy relationships (§5.1); thus, the
clients’ network pattern does not leak sensitive information
about the user.

Since it places the users’ trust in the mixnet’s servers as
a collective rather than their service provider, our analysis
focuses on reducing the security of Groove to the security
of the mixnet (§6.1). We analyze each oblivious protocol
and show that a more restricted attacker, who controls the
network and the same mixnet servers but not the service
provider, can obtain the same information. Groove’s design
uses a parallel mixnet as a black box that hides the sender of
messages. The dead drop-based message exchange provides
differential privacy for every epoch (since users can change
their communication patterns by setting up circuits on epoch
boundaries), similar to prior work [19, 26, 27]. The advanced
composition theorem [10, 3.20] allows to compute Groove’s
privacy guarantee after multiple epochs, as we do in §7.

6.1 Oblivious delegation
We now prove that the security of Groove reduces to the
mixnet; controlling the service providers does not enable an
attacker that already controls the network and some mixnet
servers to learn new information. In particular, this implies
that it is safe to be the sole user of a rogue service provider.

Theorem 1. Consider Groove’s attacker, who controls the
users’ service providers, the network, and a portion of
the mixnet servers, and his observations about the users’
communication. A restricted attacker, who only controls
the network and the same mixnet servers (but not the service
providers), can obtain the same observations.

Proof. We consider all the ways a user’s clients interact with
their service provider. These interactions take part in three
oblivious protocols (non-interactive circuit setup, oblivious
replacement, and efficient messaging). We analyze each
protocol in §6.1.1 – §6.1.3 and show that Groove’s attacker
cannot learn any information that the restricted attacker could
not obtain (e.g., by dropping network packets).

6.1.1 Non-interactive setup
The user’s clients synchronize address books through one
service provider. Clients always update the user’s address
book before preparing circuit setup messages (§5.2). On
each update, the client uploads the address book under fresh
encryption, padded to a fixed length (MaxBuddies), so the
service provider cannot tell whether it has changed. The
service provider may give stale address books to clients; this
is our focus in §6.1.2.

Clients also retrieve the current epoch number from their
service provider before preparing circuit setup messages. A
malicious service provider can lie about the epoch number
or submit the circuit setup messages to the mixnet at the
wrong epoch. The client writes the epoch number in every
onion layer of the setup message, and honest mix servers
discard onions with the wrong epoch number. Thus, if an
honest server exists en route, this service provider’s attack is
equivalent to a network attacker simply dropping the user’s
circuit setup messages. If there is no honest server on the
route, then even the restricted attacker can learn everything
about the circuit by observing the setup message going from
one malicious mix server to the next. (Groove mitigates this
risk by using sufficiently long mixnet routes, §7.1.)

6.1.2 Oblivious replacement & device partitions
A rogue service provider may interfere when clients replace
circuit setup messages, or collect and submit setup messages
from multiple devices. Since the attacker controls the
network, it might partition devices and prevent them from
communicating. The risk with partitioned devices is that a
rogue service provider submits circuits from different devices
and creates distinct dead drop access patterns (i.e., a dead drop
getting more than two accesses, which is not obscured by the
“single” and “double” noise). Groove solves this problem with
its mechanism for choosing circuit routes and tagging circuit
setup messages (§5.3), as we prove next.

Consider the user Alice with two partitioned devices, d
and d′, and a circuit they establish for the buddy at slot i ∈
[1,MaxBuddies] in their respective address books for the same
epoch. Both devices submit setup messages for circuits with
the same route and tag: they derive them from the buddy’s
slot number i, the multidevice key, and the epoch number,
which are all the same for both devices, even if their address
book differs and have different buddies for the same slot (see
Figure 4). (The multidevice key is identical on all devices
for the same epoch. If two devices use different epochs, the
mixnet will discard the circuit setup message from the device
using the wrong epoch, as described above.) If there is no
honest server on this route, then the attacker can trace Alice’s
messages through the malicious mixnet servers to the dead
drop, regardless of controlling her provider.

Otherwise, an honest mix server exists on the circuits’
route. It will de-duplicate the two circuit setup messages
and ensure that only one circuit will be established. There

744    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



are two cases regarding the dead drops at the end of these
circuits. First, the circuits from d,d′ reach the same dead
drop. In this case, since the honest server drops one message,
the attacker’s observations will be precisely the same as if the
devices could coordinate and only one device submitted setup
messages. The second case is that device d submits a circuit
setup message to a different dead drop than device d′. A
device-partitioning attacker can cause this, e.g., by giving one
device an old address book where a now-occupied slot was
free. In this case, one of the circuits’ dead drops receives one
less circuit, i.e., becomes a “single”-access dead drop, which
is covered by Groove’s noise. The attacker could obtain the
same view by dropping one circuit setup message from Alice
on the network (even if Alice had just one device).

6.1.3 Efficient messaging
The sender’s client submits one fixed-length, onion-encrypted
message to the service provider. However, it does not contain
any information about the intended recipient and, therefore,
cannot teach the provider about the user’s communication
(the service provider broadcasts it on all circuits, §5.4).

The service provider serves messages to the recipient’s
client by routing them through the fetch mixchain, which the
client chooses when calling CheckForMessages (see §5.4).
The choice of mixchain servers is independent of the
user’s buddy-relationships, so it leaks nothing about them.
Since mixchain servers choose fresh nonces when shuffling
messages, they uses different ephemeral keys for processing
every fetch. Thus, the messages output from the fetch
mixchain always appear random to the recipient’s service
provider. Furthermore, the client chooses a new ephemeral
key each time it calls CheckForMessages, so it always
fetches messages from random-looking locations (even if the
service provider replays old headers). Therefore, having one
honest server on the fetch mixchain ensures that the client’s
pattern of retrieving messages appears random every time.

7 Implementation
We implemented a prototype of Groove in Go on top of
Yodel’s mixnet framework [20] in 20k lines of code. The
mixnet has a full-mesh server topology [19,20], which allows
Groove to scale with the number of servers. The prototype
uses ChaCha20 for symmetric onion encryption, the NaCl box
primitive to generate circuit setup onions, and the Blake2b
hash function. To implement forward secrecy with DH-OPRF,
we use BLS12-381 in the CIRCL library [6].

Communications between clients, service providers and
mixnet servers all use gRPC over TLS 1.3 for transport
security. The service provider uses BadgerDB to implement
atomic transactions and manage user state.

Our implementation includes two types of clients, for
desktop and mobile devices. The desktop client is a command-
line program, and the mobile client is built for Android using
the gomobile tool.

Memory usage. A prominent challenge in implementing
Groove has been minimizing the circuits’ memory footprint
to allow users receive messages from any of their buddies
in parallel. With 3M users, 100 circuits per user, 100 mix
servers, and 14 mixnet hops, each server needs to keep track
of at least 42 million pieces of cryptographic state per epoch:

100 circuits×3000000 users× 1
100 servers

×14 hops= 42M.

Initially, we used AES-GCM to implement Groove’s circuits,
but its state is 512B, resulting in at least 20GB of memory
usage per mixnet server. To reduce memory, we replaced
AES-GCM with ChaCha20, which requires only 32B per
state, reducing this memory usage to 1.3GB per server, but
increasing CPU usage due to lack of hardware acceleration.

7.1 Parameter selection
We set Groove to resist f = 20% malicious mixnet servers,
and the mixnet path length to be 14 hops (similar to prior
work with the same mixnet topology [19, 20]). As shown
in prior work, this topology requires two honest servers on
a circuit’s route, and the probability that this holds for all
four circuits that two buddies use to communicate in Groove
is ≥ 1− 4 · 10−8, assuming f = 20%. The fetch mixchain
requires only one honest server on its path, so we set its length
to 11, which fails with even smaller probability. Users send
128-byte messages, split over the two circuits they create per
buddy. Out of the 128 bytes, 2 bytes are reserved for the
pseudorandom header indicating whether the message is real
or cover traffic (§5.4), 12 bytes are reserved for the end-to-end
authentication code, and 12 bytes are reserved for a nonce.
Thus, recipients get a 102 byte encrypted text message per
buddy per mixnet round.

Noise in practice. We configure Groove to tolerate 245
epochs of active attacks and 9600 epochs of passive
observations. These parameters are comparable to the
suggested configuration in Karaoke [19], which resists the
same number of active attacks, and sustains passive attacks
for a year (if epochs are at least 1 hour long, then 9600 epochs
are over a year’s worth).

Specifically, with 100 mixnet servers, each honest server
creates 88 000 noise circuits on average in every epoch to
provide (ε = ln2,δ = 10−4)-differential privacy (the same
ε,δ as Vuvuzela’s implementation, and better than Karaoke’s
ε = ln4,δ = 10−4 and Stadium’s ε = ln10,δ = 10−4 [19,26,
27]). The more servers there are, the less noise each server
contributes (e.g., a mixnet with 50 servers requires each of
them to create 125k noise circuits for the same privacy level).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    745



Figure 7: Latency of circuit setup and messaging rounds with
respect to the number of circuits. The figure also compares with
Karaoke’s messaging round as a baseline (1 user relationship in
Karaoke equals 2 Groove circuits) [19]. The mixnet has 100 servers.

8 Evaluation
We use the prototype to evaluate Groove’s performance and
costs. Our experiments answer the following questions:
1. What throughput and latency can Groove achieve?

2. How does Groove scale with the number of servers?

3. What are Groove’s deployment costs?

4. What are the costs for a mobile client in terms of battery
consumption and network usage?

5. What is the cost for a client catching up to old messages
after having been offline?

6. How does Groove’s performance compare to prior work?
First, we focus on the Groove’s servers, i.e., the service
providers and mixnet, and then on the mobile client.

8.1 Server performance and costs
Setup. We test Groove with 25–150 mixnet servers that
we deploy evenly split across 3 EC2 regions across the US
and one in Europe: us-east-1, us-east-2, us-west-2,
eu-west-1. Each server is an r5.8xlarge VM with an
Intel Platinum 8000 3.1 GHz CPU with 32 cores, 256 GB
of memory, and a 10 Gbit/s network link. We evaluate with a
single service provider on us-east-1: since service providers
only buffer and relay messages, but do not participate in
processing messages through the mixnet, the performance of
Groove’s mixnet does not depend on the number of service
providers. Only clients connected through an overloaded
service provider will experience performance issues.

We simulate hundreds of millions of circuits by having
mix servers create extra circuits. Assuming each user has up
to 50 buddies, and hence requires 100 circuits, the system
load corresponds to relationships between millions of users.
Although clients do not use these circuits, they correspond to
real conversation load on the servers. We set Groove’s system
parameters as described in §7.

Throughput and latency. We measure messaging latency
for a given circuit load in deployment of 100 mixnet servers.
To measure the latency, we measure the time from when the
service provider submits a message until the mixnet completes

Figure 8: Scalability of the mix servers. The mixnet server load is
constant (1 million circuits per server). This experiment shows that
by having more mix servers, Groove can support more clients with
the same communication latency.

the round and returns the result to the service provider, plus
the time needed for the fetch protocol (§5.4). Users will
experience additional latency depending on their schedules
and the network RTT to their service provider. Groove is
not tied to one configuration of buddies per user, so we use
the number of circuits to quantify Groove’s load (each buddy
requires two circuits). Since Groove ensures there is one
message delivered on every circuit in every round §4, the
number of circuits sets the load on its servers.

In Figure 7, we observe that the Groove’s messaging round
latency is 32.4 s, 55.9 s and 79.83 s for 100M, 200M and
300M circuits, respectively. The measured latencies have
two components: The first, larger, component is mixing the
users’ messages and routing them from the source to the
destination service provider; this represents the majority of
the duration of Groove’s messaging round (28.7 s, 50.8 s and
71.3 s for 100M, 200M and 300M circuits). The second,
smaller, component (≈ 11% of the total duration) is the time
spent on running Groove’s fetch protocol (§5.4). For this
second part, we model an average load of clients running the
fetch protocol: we simulate fetches at the end of each round,
and we wait for all messages of a round to be fetched before
moving on to the next round. Thus, assuming the average user
sets up 100 circuits (to communicate with up to 50 buddies),
Groove could support 1M–3M users with these latencies.

The duration for setting up the circuits in Groove is 13.3
minutes for 300 million circuits (Figure 7). Since circuit
setup is relatively infrequent (e.g., once a day), it can run
in the background and stretch up to an epoch’s duration.
Groove’s circuit setup is similar to a messaging round in
Karaoke [19], which also offers differential privacy, though
there is a difference in the payload size (Groove’s payload is
about 200 bytes smaller than Karaoke). For the same setup,
where the system processes 300M messages per round, a
communication round in Karaoke takes 14 minutes (Figure 7).

Scalability. We test how Groove scales with the number of
users by measuring the latency for varying deployment sizes
of 25–150 mixnet servers and keeping the number of circuits
per server constant at 1M (so the load on the system increases
proportionally to the number of servers). Figure 8 shows that

746    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Groove scales well: it can support additional users at almost
the same latency by proportionally increasing the number of
servers. We attribute the slight latency increase to the fact
that shuffling messages together requires each server, in every
hop along the mixnet route, to wait for inputs from all other
servers that processed messages at the previous hop.

Deployment costs. With 300 million circuits, each of the
100 mixnet servers sends at about 2 Gbps at peak usage, for
a network usage of 13.4 GB per messaging round. In this
deployment, setting up circuits for one epoch uses 47.5 GB
of network data per mixnet server.

Service providers buffer messages for their users. For a
user who generates circuit setup messages for the next 30
epochs (i.e., the next month if epochs last a day), the storage
requirement for circuit setup is 2.1MB. Further, if messaging
rounds happen every minute, then storing a month’s worth of
received messages amounts to 264MB per user.

Forward secrecy. On the server, computing OPRF incurs
low overheads. A single server can answer 12k DH-OPRF
requests per second, or 109 per day. A client evolves keys with
all their buddies and the multidevice key every epoch (§5.5),
creating 51 requests/day with day-long epochs. Servers can
run the OPRF computations in the background and load-
balance client requests throughout the day, allowing servers
to easily support 1–3M users as in the earlier experiments. On
the client-side, it takes 2.03 s to run ForwardSecrecy with
100 servers (primarily due to the network latency, then to
the two pairing operations used in the verification), and the
bandwidth usage is 150 kB/day.

8.2 Mobile clients
We evaluate Groove’s mobile client, which represents an
important class of clients enabled by its flexibility. We
focus on two metrics: the impact on battery life and network
usage. We run the mixnet with 32s messaging round time,
which correspond to the latency with 100M circuits and 100
servers (Figure 7). We evaluate the mobile client on a Pixel 4
cellphone running the stock Android 10 OS. Our tests include
cellular (3G with HSDPA) and WiFi networks.

Battery usage. We explore the impact of different schedules
on battery life. To evaluate battery consumption, we
connected the mobile device to a USB power meter (UM25C)
and collected energy consumption roughly every 1 second.

We force-enable doze mode to reduce noise from apps
running in the background; this is the battery-saving
optimization that typically runs when the device’s USB port
is unplugged. Yet, running Groove’s app in this mode implies
that the client’s transmissions may change without adhering
to the schedule. Therefore, we excluded our app from doze
mode (Android’s AlarmManager provides APIs to avoid it).

First, we measure the baseline energy consumption when
the phone is fully charged, idle, the screen is turned off, and
Groove’s client is not installed. We observe that after an hour,

0 10 20 30 40 50 60
Duration (min)

0
25
50
75

100
125
150

Ex
tra

 E
ne

rg
y 

Sp
en

t (
m

W
h)

30s (cellular)
1m (cellular)
5m (cellular)
30s (wifi)
1m (wifi)
5m (wifi)

0

10

20

30

40

50

Ex
tra

 E
ne

rg
y 

Sp
en

t (
%

)

Figure 9: Client’s energy consumption on a Pixel 4 phone for
different schedules and network types. The graph shows how much
more energy is spent running a schedule compared to leaving the
phone idle. The bumps in some of the lines correspond to wake-ups
to service other running apps (as we verified by reading device logs).

the idle phone consumes about 310 mWh of energy, both
when the phone uses WiFi and cellular networks. Then, we
run Groove’s client with different schedules. At the beginning
of the experiment, the client uploads circuit setup messages
for the next 30 epochs. Then, the client sends a message
and downloads pending messages according to its schedule
(following Figure 2).

Figure 9 shows the energy consumption over an hour for
different schedules compared to the baseline. It is apparent
from the figure that as the schedule becomes more frequent,
the energy consumption increases, especially when using
cellular networks. A mobile client following the mixnet’s
≈ 30s round-schedule would have increased battery usage
by 47% over the idle phone, but flexibility allows the mobile
client to use lighter schedules. On a 1-minute schedule, the
client on the cellular network uses an extra 50 mWh compared
to the baseline, a 16% increase. Moreover, the energy cost
from running the client is substantially reduced further when
the client runs on a 5-minute schedule (about 6% over idle).
We hypothesize that this allows the phone to hibernate and
save power. The energy consumption is more modest when
using WiFi, which is more energy-efficient [14].

Network usage. We monitored the link between the client
and service provider to quantify the client’s network usage.
It uploads one message to the service provider every time
the schedule triggers and downloads a message per round
(see Figure 2). Consequently, different schedules affect the
message upload volume, which ranges from 33kB/h with a
5-minute send schedule to 77kB/h with a 1-minute schedule.
The download volume is 39kB/h on the 5-minute schedule
and 69kB/h on the 1-minute schedule. In addition, the client
sends about 110kB for the circuit setup per epoch; for a
month’s worth of prepared circuits, this phase costs 3.2MB.
These measurements show that Groove’s client uses a total of
54MB to 106MB of bandwidth per month, depending on the
schedule. We believe that Groove’s moderate network usage
is compatible with mobile data packages.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    747



Catch-up. Groove’s oblivious fetch protocol filters cover
messages, allowing clients to quickly catch up on messages
that buddies send their users after being offline for an
extended time (§5.4). Consider a client that catches up on
a month by downloading 500 messages per offline day (15k
total); we evaluate it requires 11MB of bandwidth.

8.3 Comparison with prior work
Groove provides asynchronous messaging with many buddies,
whereas recent mixnet-based work, like Karaoke, Stadium,
and Yodel [19, 20, 26], provide synchronous communication
with one buddy. PIR-based approaches, like Pung [4],
could allow asynchronous messaging but with a significant
performance cost compared to [19, 20, 26] (owing to stronger
privacy guarantees and weaker trust assumptions); see
discussion in §2.

Thus, these prior systems rely on a hefty dialing protocol
(Alpenhorn [21]) to synchronize between buddies before
they can communicate. Groove outperforms prior designs
when users talk with multiple buddies since dialing through
Alpenhorn adds about 5 minutes of latency when users switch
between buddies. On the other hand, if users communicate
with just one buddy who is simultaneously online, they can
avoid frequent dialing, and in this case, Yodel and Karaoke
outperform Groove.

In more detail, Stadium, Karaoke, Yodel, Pung, and Groove
were evaluated on a similar 100 server configuration, which
we use to compare. We assume that users in Stadium,
Karaoke, Yodel, and Pung only chat with one buddy that
is simultaneously online. Karaoke supports 1M users with
7 s of latency (Figure 6 in the Karaoke paper [19]), while
1M Groove users can communicate with 50 buddies with a
latency of 32 s. The increase in latency is only 4× that of
Karaoke, despite Groove supporting all 50 buddies to message
the user at the same time, since Groove establishes circuits
through the mixnet (allowing for more efficient symmetric
onion encryption rather than the public-key onion encryption
used in Karaoke). Stadium induces latency on the order of
minutes (see Figure 9 in the Stadium paper [26]) largely
because of its use of zero-knowledge proofs to ensure that
mixnet servers process messages correctly. Pung’s latency
increases quadratically with the number of users [2, 4]; with
millions of users, latency is over 30 minutes (as we interpolate
from Figure 8 in the Pung paper [2] assuming that a 100-
server Pung cluster performs 100× better than one server).
This performance gap grows with the size of the user base.
Yodel builds on its interactive circuit establishment protocol
to directly connect (not through the mixnet) each user to its
buddy’s dead drop. Groove avoids this direct connection
to protect the user’s communication metadata-privacy if the
buddy is offline (hiding the user was trying to connect with
an offline buddy). For 1M users, Yodel’s latency is 750 ms
(Figure 10 from the Yodel paper [20]), 42× better than
1M Groove users that can communicate with 50 buddies

simultaneously (corresponding to the 100M circuits data-
point in Figure 8). If we limit Groove to allow one buddy per
user, then it needs to support only 2M circuits per 1M users
(as in Yodel), and Groove’s latency shrinks to about 4× that
of Yodel. This remaining performance gap is primarily due
to Groove connecting both buddies to dead drops through the
mixnet (above) and Groove’s fetch protocol that conserves
client bandwidth at the expense of routing the messages
buffered at the recipient’s service provider again through
the mixnet.

Another significant difference is the client bandwidth.
Dialing through Alpenhorn requires clients to receive
62GB per month (§2), on top of the overlying system’s
bandwidth requirements (such as Karaoke, Stadium, etc.).
In contrast, Groove’s oblivious messaging protocols allow
communication with many buddies while reducing clients’
bandwidth costs by orders of magnitude (see §8.2).

9 Conclusion
Groove removes the rigid requirements that prior metadata-
private messaging systems imposed on clients. Groove allows
users to have asynchronous text message chats with multiple
buddies, while seamlessly switching between resource-
constrained mobile devices. It does so with similar scalability
and privacy guarantees as prior rigid differentially-private
messaging systems. Groove achieves this advancement by
introducing protocols for oblivious delegation that allow users
to have an untrusted service provider participate in the rigid
messaging protocol on their behalf. Our evaluation of a
prototype of Groove shows that it can support a large user
base with latency on the order of a minute. Our experiments
with a Pixel 4 smartphone demonstrate that Groove can
accommodate the network and power constraints of a mobile
device, unlike previous rigid systems. Groove’s techniques
narrow the gap between metadata-private messaging and
standard messaging apps, allowing for broader adoption.

Acknowledgments
The authors thank Gil Segev and Bryan Ford for helpful
discussions, and our shepherd, Natacha Crooks. This work
was supported, in part, by the Alon fellowship, the Hebrew
University cybersecurity research center, and gifts from
Microsoft and Google.

748    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References
[1] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,

Amr El Abbadi, and Trinabh Gupta. Addra:
Metadata-private voice communication over fully
untrusted infrastructure. In Proceedings of the 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Virtual conference, July 2021.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
T. V. Setty. PIR with compressed queries and amortized
query processing. In Proceedings of the 39th IEEE
Symposium on Security and Privacy, pages 962–979,
San Francisco, CA, May 2018.

[3] Sebastian Angel, David Lazar, and Ioanna Tzialla.
What’s a little leakage between friends? In Proceedings
of the 2018 ACM Workshop on Privacy in the Electronic
Society, pages 104–108, Toronto, Canada, October
2018.

[4] Sebastian Angel and Srinath Setty. Unobservable
communication over fully untrusted infrastructure.
In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 551–569, Savannah, GA, November 2016.

[5] Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-
Philipp Weinmann. Content and popularity analysis of
Tor hidden services. In Proceedings of the 34th IEEE
International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 188–193, Madrid,
Spain, June–July 2014.

[6] Circl - bls12-381, 2021. github.com/cloudflare/
circl/ecc/bls12381.

[7] Benny Chor, Niv Gilboa, and Moni Naor. Private
information retrieval by keywords. Cryptology ePrint
Archive, Report 1998/003, February 1998.

[8] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt.
On post-compromise security. In Proceedings
of the 29th IEEE Computer Security Foundations
Symposium (CSF), pages 164–178, Lisbon, Portugal,
June–July 2016.

[9] Roger Dingledine and Nick Mathewson. Anonymity
loves company: Usability and the network effect. In
Proceedings of the 5th Workshop on the Economics
of Information Security (WEIS), Cambridge, United
Kingdom, June 2006.

[10] Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–
407, 2014.

[11] Saba Eskandarian, Henry Corrigan-Gibbs, Matei
Zaharia, and Dan Boneh. Express: Lowering the cost
of metadata-hiding communication with cryptographic
privacy. In Proceedings of the 30th USENIX Security
Symposium, Vancouver, Canada, August 2021.

[12] Philippe Golle and Ari Juels. Parallel mixing. In
Proceedings of the 11th ACM Conference on Computer
and Communications Security (CCS), pages 220–226,
Washington, DC, October 2004.

[13] Stanislaw Jarecki, Aggelos Kiayias, and Hugo
Krawczyk. Round-optimal password-protected secret
sharing and T-PAKE in the password-only model.
In Proceedings of the 20th Annual International
Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT),
pages 233–253, Kaohsiung, Taiwan, December 2014.

[14] Goran Kalic, Iva Bojic, and Mario Kusek. Energy
consumption in Android phones when using wireless
communication technologies. In Proceedings of
the 35th International Convention on Information
and Communication Technology, Electronics and
Microelectronics (MIPRO), pages 754–759, May 2012.

[15] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP), pages 406–
422, Shanghai, China, October 2017.

[16] Albert Kwon, David Lu, and Srinivas Devadas. XRD:
Scalable messaging system with cryptographic privacy.
In Proceedings of the 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
Santa Clara, CA, February 2020.

[17] Adam Langley. Pond, 2016. https://github.com/
agl/pond.

[18] Ben Laurie, Adam Langley, and Emilia Kasper.
Certificate transparency. RFC 6962, RFC Editor, June
2013.

[19] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to
passive traffic analysis. In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 711–726, Carlsbad, CA,
October 2018.

[20] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Yodel: Strong metadata security for voice calls. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), pages 211–224, Huntsville,
Ontario, Canada, October 2019.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    749

github.com/cloudflare/circl/ecc/bls12381
github.com/cloudflare/circl/ecc/bls12381
https://github.com/agl/pond
https://github.com/agl/pond


[21] David Lazar and Nickolai Zeldovich. Alpenhorn:
Bootstrapping secure communication without leaking
metadata. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 571–586, Savannah, GA,
November 2016.

[22] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau,
Edward W. Felten, and Michael J. Freedman. CONIKS:
Bringing key transparency to end users. In Proceedings
of the 24th USENIX Security Symposium, pages 383–
398, Washington, DC, August 2015.

[23] Femi Olumofin and Ian Goldberg. Privacy-preserving
queries over relational databases. In Proceedings of
the 10th Privacy Enhancing Technologies Symposium,
Berlin, Germany, July 2010.

[24] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi,
Sebastian Meiser, and George Danezis. The Loopix
anonymity system. In Proceedings of the 26th USENIX
Security Symposium, pages 1199–1216, Vancouver,
Canada, August 2017.

[25] David Schatz, Michael Rossberg, and Guenter Schaefer.
Hydra: Practical metadata security for contact discovery,
messaging, and dialing. In Proceedings of the
7th International Conference on Information Systems
Security and Privacy (ICISSP), February 2021.

[26] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia,
and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings
of the 26th ACM Symposium on Operating Systems
Principles (SOSP), pages 423–440, Shanghai, China,
October 2017.

[27] Jelle van den Hooff, David Lazar, Matei Zaharia,
and Nickolai Zeldovich. Vuvuzela: Scalable private
messaging resistant to traffic analysis. In Proceedings
of the 25th ACM Symposium on Operating Systems
Principles (SOSP), pages 137–152, Monterey, CA,
October 2015.

750    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



UPGRADVISOR: Early Adopting Dependency Updates
Using Hybrid Program Analysis and Hardware Tracing

Yaniv David1, Xudong Sun∗2, Raphael J Sofaer1,
Aditya Senthilnathan3, Junfeng Yang1, Zhiqiang Zuo∗2, Guoqing Harry Xu4, Jason Nieh1 and Ronghui Gu†1

1Columbia University, 2Nanjing University, 3IIT, Delhi, 4UCLA

Abstract
Applications often have fast-paced release schedules,

but adoption of software dependency updates can lag by
years, leaving applications susceptible to security risks and
unexpected breakage. To address this problem, we present
UPGRADVISOR, a system that reduces developer effort in
evaluating dependency updates and can, in many cases, auto-
matically determine which updates are backward-compatible
versus API-breaking. UPGRADVISOR introduces a novel
co-designed static analysis and dynamic tracing mechanism
to gauge the scope and effect of dependency updates on an
application. Static analysis prunes changes irrelevant to an
application and clusters relevant ones into targets. Dynamic
tracing needs to focus only on whether targets affect an
application, making it fast and accurate. UPGRADVISOR
handles dynamic interpreted languages and introduces call
graph over-approximation to account for their lack of type
information and selective hardware tracing to capture program
execution while ignoring interpreter machinery.

We have implemented UPGRADVISOR for Python and eval-
uated it on 172 dependency updates previously blocked from
being adopted in widely-used open-source software, including
Django, aws-cli, tfx, and Celery. UPGRADVISOR automati-
cally determined that 56% of dependencies were safe to update
and reduced by more than an order of magnitude the number of
code changes that needed to be considered by dynamic tracing.
Evaluating UPGRADVISOR’s tracer in a production-like
environment incurred only 3% overhead on average, making
it fast enough to deploy in practice. We submitted safe updates
that were previously blocked as pull requests for nine projects,
and their developers have already merged most of them.

1 Introduction

Powered by agile development methodologies and supported
by continuous integration and testing infrastructure, modern

∗Also with State Key Laboratory for Novel Software Technology.
†Also Founder of CertiK with an equity interest.

software companies achieve blazing fast release cycles, quickly
pushing bug fixes and new features to production servers or
client devices. For instance, Google’s Chrome ships a new
major version to the stable channel every four weeks [3], while
Facebook publishes updates to their front-end three times a day
and releases a new version for iOS and Android every week [7].

A key enabler to this fast development cycle is the large col-
lection of preexisting frameworks and libraries to build on. One
open source software (OSS) discovery service tracking popu-
lar libraries in leading package managers lists almost 5 million
open-source libraries [40]. We surveyed OSS projects devel-
oped with prominent interpreted languages1 (§2) and found
that an application, on average, depends on tens to hundreds
of frameworks and libraries; these are known as dependencies.

Unfortunately, our survey shows that despite the fast pace
of application updates, the adoption of dependency updates
is delayed by years, and this delay is getting worse (see Fig. 1
in §2). We believe a key reason behind this dichotomy is the
knowledge gap between application and dependency devel-
opers. Although dependency developers invest significant
effort in creating robust and often backward-compatible
updates, they typically have no direct access to the dependent
applications, hindering their ability to gauge potential update
risks. Application developers want the security fixes and
performance enhancements in dependency updates, but lack
knowledge of the dependency internals and therefore fear that
dependency updates may cause the application to malfunction.

The effect of dependency update delays aggregates across
projects and even whole software ecosystems. For a given
installation composed of an ensemble of software components,
even if only one component requires an older version of
a dependency, the entire installation is forced to use the
same older version. This older version might accumulate
unpatched vulnerabilities over time or break unexpectedly
due to deprecation. Moreover, when many older dependency
versions are involved, attempts to update subsets of the
dependency graph become impossible due to dependency

1We surveyed Python, JavaScript, and Ruby projects from GitHub.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    751



conflicts (a.k.a "dependency hell" [30]).
Ideally, an application’s test suite should discover any

malfunctions due to interactions with dependencies, but this is
sadly not the reality. Application and dependency developers
strive to make their unit, integration, and system tests have
high coverage of their projects. However, state of the art tools
for coverage metrics do not examine the difficult-to-measure
interfaces between applications and their dependencies. Thus,
it is dangerous to rely on application test suites to detect
dependency update incompatibilities. The problem is worse
for dynamic interpreted languages, as without compilation,
API breaking changes not discovered during testing become
runtime errors on production servers.

We present UPGRADVISOR, a system for maximizing the
safety of and reducing developer efforts invested in depen-
dency updates. UPGRADVISOR is based on the observation
that changed dependency code that does not run cannot affect
application semantics. UPGRADVISOR works by combining
sound static analysis with efficient dynamic tracing to aid
developers in the timely adoption of dependency updates.
Given a dependency update that developers want to adopt,
UPGRADVISOR computes the code difference between its old
and new versions and then employs static analysis to discard
semantically irrelevant differences and cluster potentially
meaningful ones into tracing targets.

To enable this process for modern applications written in
widely-used interpreted languages, UPGRADVISOR first builds
an over-approximating call graph that accurately accounts
for the lack of type information in variables and function
arguments in these languages as well as handling implicit
language-specific call-site creation features. It then creates a
fused abstract syntax tree (AST) representing both the old and
new versions of the dependency and tags all changes on a per
statement basis. The change tags are propagated up the AST
to the call graph, clustering code differences into call targets
(Python functions or methods) for later tracing. UPGRADVI-
SOR can then statically discard unreachable or semantically
irrelevant code changes, such as backward-compatible changes
to API signatures and changes in imports location (see §7).
If there are no call targets tagged with change tags, the depen-
dency update is safe because it has no changes that can possible
affect application execution. Unlike test suites, the static analy-
sis provides complete code coverage, allowing UPGRADVISOR
to accurately determine if a dependency update is safe.

While static analysis may be sufficient in many cases to
determine the safety of a dependency update, it is conservative,
identifying calls not actually used in practice. UPGRADVISOR
therefore performs dynamic tracing to determine if call targets
with change tags remaining after static analysis actually
influence application execution. Dynamic tracing is performed
without applying the dependency update and is designed to
incur little overhead. Both of these features allow it to be used
in a production environment, giving a complete trace of a
production server over a substantial amount of time to serve

as the ground truth of application-dependency interactions.
Running UPGRADVISOR on production servers allows
mitigating the inherent unsoundness of dynamic analysis.

UPGRADVISOR achieves low-overhead tracing using two
key mechanisms. First, UPGRADVISOR can select which parts
of application execution to trace, tracing only the call targets
with change tags identified through static analysis. Second, UP-
GRADVISOR leverages the hardware tracing module in modern
CPUs using a novel coarse-grained tracing technique to collect
data only for chosen bytecodes while ignoring unnecessary
low-level interpreter instructions. In particular, using our
technique, each bytecode branch executes exactly one native
branch. Tracing only one branch creates one trace record,
reducing tracing data size and runtime overhead. Combining
the two allows lowering overhead while retaining precision:
we only collect the minimal information required to fully
capture control flow in the updated parts of the dependency.

We have built an UPGRADVISOR prototype that supports
dependency updates for Python programs. It contains an
analysis framework and a tracer implanted into our fork of the
Python 3.7 interpreter. We evaluated UPGRADVISOR on 172
potential dependency updates that were previously blocked
from being adopted by applications in top-starred OSS repos-
itories on GitHub. The dependency updates include popular
frameworks such as Django, aws-cli, tfx and Celery. Our
results show that UPGRADVISOR is effective. UPGRADVISOR
determines through static analysis that 98 (56%) dependencies
can be automatically updated, meaning the majority of
blocked dependency updates can be adopted without manual
inspection. When static analysis cannot completely determine
if an update is safe, the analysis reduces the code differences
that must still be reviewed by an order of magnitude compared
to the overall changes between old and new dependency
versions. UPGRADVISOR determines through dynamic tracing
that various dependencies not automatically deemed safe
through static analysis can still be updated. (see §7.1)

We randomly sampled several dependency updates deemed
safe: although we were not developers of either the applica-
tions or the dependencies, we were able to quickly submit pull
request (PR)s, most of which were subsequently merged by the
corresponding developers. The PRs that were merged included
dependency updates deemed safe by just static analysis as well
as by combining static and dynamic analysis, demonstrating
that dynamic tracing can indeed provide additional upgrade
opportunities beyond static analysis.

Finally, we performed an extensive performance evaluation,
including running a production Django workload published by
Instagram and Intel [8]. Our measurements show that our tracer
incurs an average overhead of 3%, much lower than other tools.

UPGRADVISOR’s code, evaluation datasets, and other re-
sources are available at http://upgradvisor.github.io.

752    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://upgradvisor.github.io


(a) Python (b) JavaScript (c) Ruby

Figure 1: The average delay days for all the projects surveyed for each month between August 2019 and November 2021.

2 Survey of Dependency Usage in OSS

Modern applications declare their dependency require-
ments in metadata files as a list of (package name, version

specifier) tuples. These direct dependencies also have
their own dependencies, creating a graph of transitive
dependencies for the application. The version specifier follows
a common version structure, “MAJOR.MINOR.PATCH”,
where MAJOR increments signal API breakage, MINOR
increments signal backwards-compatible feature additions,
and PATCH increments signal backwards-compatible bug
fixes. For example, if the old API is foo(int a, int b) and
the new one is foo(int a, int b, int c) the API was broken.
A version specifier in a metadata file can be expressed as
conditions, which can directly point to a specific version, also
called pinning, or use a combination of lower/upper-bounding
terms to define a range of possible versions. Out of a range
of allowed versions, the latest one is selected. A given
dependency may be specified by the application and by any
number of dependencies. All these specifiers must overlap to
have a viable dependency set. Using range-defining conditions
allow developers to block a version update if they deem it not
compatible with their code, e.g., <=2.5.1.

Dependencies

Language Projects
Direct Transitive

max avg std max avg std
Python 389 118 7.1 11.5 480 15.9 41.3
JS 462 130 17.1 23.3 >1000
Ruby 501 91 12.3 17.3 548 28.1 103.9

Table 1: Dependency usage in OSS projects on GitHub.

To better understand dependency usage patterns in the
leading dynamic interpreted languages, Python, Ruby, and
JavaScript (JS), we performed a survey of OSS projects
using them. We randomly sampled top starred (>1k) project
repositories on GitHub, for which Python, Ruby, or JS, was the
primary programming language. Starting from 1,382 Python,
913 Ruby, and 1,144 JS projects, we examined the dependency
requirement conditions of the latest version of each project and

filtered those with no direct dependents as of November 2021.2

Table 1 summarizes the results for projects with dependencies,
showing the maximum, average, and standard deviation in the
number of dependencies per project. Each project is considered
an application. For example, Python applications averaged
seven direct dependencies and 16 transitive ones for an average
of 23 total dependencies per application, but the standard
deviations (STDs) show significant differences among appli-
cations. The number of direct and transitive dependencies for
a Python application was as high as 118 and 480, respectively.

For the 389 Python applications, we examined the depen-
dency requirement conditions for not just the latest version
of the application, but also earlier versions published from
August 2019 to October 2021. 2% have no restrictions
(latest), 29% are lower-bound only, 38% are double-bound
(both lower- and upper-bound), and 31% are pinned version
specifiers. In other words, more than two-thirds of the version
specifiers, double-bound and pinned, may block available
updates. A developer whose application may have dozens
of dependencies, including transitive dependencies, cannot
update dependency X unless every other dependency which
depends on X also includes the new version in the specifier.

We measured the historical delay for Python, Ruby, and JS
applications in updating their dependencies by examining all
versions of the applications published from August 2019 to
November 2021. For each released application version, we
examine direct dependency requirements. Considering only
the dependency versions which existed on the application
version’s release date, we check if the dependency offered an
updated version. If an updated version exists, we consider the
application to be delaying updates and measure the number
of delay days. Delay days are counted from the dependency’s
new version release date up to the application’s release date. If
an application has multiple delayed dependencies, we consider
only the most severely delayed dependency.

Fig. 1 shows the delay days for all applications as measured
each month from August 2019 to November 2021. We show
both the average delay days as well as the standard deviation.
For example, Fig. 1a shows that Python applications start from

2Unlike JS and Ruby, Python projects declare dependencies implicitly
in their setup scripts. We discarded projects when we could not extract
dependency constraints.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    753



def main_worker_helper(...):
if os.name != ' nt':
signal(SIGHUP, hdlr_shutdown)

signal(SIGHUP, hdlr_shutdown)
signal(SIGINT, hdlr_shutdown)

(a)

def run(self, ...):
# earlier code is unchanged
with tqdm(disable=not prog_bar)

as pbar:
while n_queued < N:

(b)

def serial_evaluate(self, ...):
for trial in self.trials._dynamic_trials:

if trial['state'] == STATE_NEW:
trial['state'] = STATE_RUNNING
# Above, `==` changed into `=`

(c)

Figure 2: Three code change snippets from hyperopt’s update from version 0.1.1 to version 0.1.2.

an average of roughly 20 delays days for August 2019 and bal-
loon to reach roughly 200 delay days by August 2021, an order
of magnitude increase in delay over two years. Fig. 1 shows that
this pattern of increasing delay in adopting dependency updates
persists across applications in all languages, indicating that the
problem of timely adoption of dependency updates worsens
over time. Digging into the data shows that while some projects
invest consistently in dependency upkeep, other projects strug-
gle. This difference leads to the significant variations as ex-
pressed by the standard deviation bars in Fig. 1. The standard
deviation in delay days is so large for Ruby applications that
they exceed the visible range in Fig. 1c for most months; the
visible maximum was capped at 1,200 delay days to provide a
consistent visual comparison across languages while keeping
the graphs readable. Because dependency requirements cater to
the lowest-common-denominator, having even one such strug-
gling project as a dependency forces the use of an old version.

We designed UPGRADVISOR to address this problem.

3 UPGRADVISOR Overview

We use Qlib, a popular Python AI-oriented quantitative
investment platform developed by Microsoft, as a motivating
example of the dependency update problem and show how
UPGRADVISOR solves it. Qlib version 0.7.1, released on
15-Sep-2021, relies on 30 direct dependencies. One of them is
hyperopt 0.1.1, released on 27-Aug-2018, a distributed asyn-
chronous hyper-parameter optimization library for Python.

3.1 An Example Dependency Update Problem
hyperopt’s developers changed 828 line of code (LOC) span-
ning 14 files to go from version 0.1.1 to 0.1.2. Because Qlib

uses a pinned version specifier “hyperopt==0.1.1”, it did not
adopt version 0.1.2. Counting the days between hyperopt’s
version 0.1.2 release on 21-Feb-2019 to Qlib’s 0.7.1 release
on 15-Sep-2021, the number of delay days for Qlib due to not
updating hyperopt is 937.

To update Qlib to use hyperopt version 0.1.2, Qlib’s
developers need to ensure the update is safe. It should not
cause Qlib to crash, experience other silent failures, or
change Qlib’s API. A change in hyperopt’s output content
or structure could propagate to Qlib’s output. An update
solving a bug in hyperopt might benefit Qlib, yet still requires
Qlib’s developers to check for unexpected side effects. Ideally,

Qlib’s developers can use the opportunity of updating to a new
hyperopt version to incorporate improvements in hyperopt’s
functionality they already use or explore its new features.

This process offers the developers a tradeoff between short-
term safety by not updating versus investing efforts towards
gaining long-term safety and quality. We aim to maximize
the safety of the update and its benefits while reducing the
developer’s efforts required to examine the dependency update.

The easiest way to evaluate the updated dependency is to
run Qlib’s test suite with hyperopt’s new version. It turns out
that all of Qlib’s tests pass. Sadly, this result is ambiguous as it
can not differentiate between the tests not covering hyperopt

and the update being safe. In fact, measuring the coverage of
hyperopt when running Qlib’s test suites shows that no line
in hyperopt’s code is covered.

Instead of using its test suite, Qlib’s developers can examine
all code changes made to hyperopt to assess the safety of
the update. Fig. 2 shows a few changed code snippets from
hyperopt’s update. Fig. 2a shows a change in the way worker
helpers initialize signal handlers. After the update, when the
code runs in a Windows environment, the SIGHUP handler
is no longer set. Fig. 2b shows a change in the run method
in charge of running the trial’s computations, adding an
optional progress bar (controlled by the disable flag). Fig. 2c
shows a change to the serial_evaluation method, turning
the condition on trial[’state’], which was never assigned
(effectively redundant code), into an assignment.

Fig. 2a and Fig. 2c are bug fixes, which might benefit Qlib,
but Fig. 2b constitutes a change to Qlib’s CLI, which might
break other systems using the CLI output.

The changes in these procedures3 require human review.
Doing this for a few changes may be manageable, but is
too difficult for all changes on each update; manual code
examination is not scalable.

3.2 Using UPGRADVISOR to Update Qlib

UPGRADVISOR is based on the observation that changed
dependency code that does not run cannot affect application
semantics. If we can show such code is unreachable, we can
ignore it. Fig. 3 shows UPGRADVISOR’s process for analyzing
the dependency update (steps 1-3), employing the tracer (steps
4-6), and gathering and summarising results towards update
advice (steps 7-8).

3For brevity, we use procedure in place of “method or function”.

754    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 3: UPGRADVISOR’s process of analyzing, tracing and
providing update advice for our motivating example.

Analyzing the dependency update. Our analysis goal is to
determine statically if the update is safe, or if not possible,
reduce the number of changed procedures that need to be
tracked by the tracer or examined by a developer. Static
analysis involves the following steps.

Step 1: Build call graphs for Qlib (the application) and
hyperopt’s old version (the dependency). Call graph nodes rep-
resent procedures, and directed edges represent call relations.

Step 2: Compare hyperopt versions to create a fused
abstract syntax tree (AST) containing a set of fine-grain
change tags. Change tags label the affected AST subtree with
the type of change made and the change position in the source
code. As we see later, specific change types and location
combinations will be handled differently. A change can be a
statement modification (e.g., Fig. 2c), an addition of several
statements to an existing procedure (e.g., Fig. 2a), or the
deletion of a method from a class, possibly breaking any code
calling it. We group all change tags in the same procedure
because UPGRADVISOR traces at procedural level.

All non-semantic changes, adding a space or changing
comment text, are ignored by using an AST representation.
Change tags are discarded by employing a language-specific
analysis using the AST-subtrees content. For example, for
Python, any changes involving type annotations and order
changes between unrelated import statements are discarded.

Step 3: Merge the application and dependency graphs,
connecting all interfaces between Qlib and hyperopt in the
graph, and infuse the grouped changes into the relevant graph
nodes. We discard hyperopt nodes that are not reachable from
any of Qlib’s nodes, along with any change tags connected
to these nodes. For example, the changes depicted in Fig. 2a
are discarded as no graph path from Qlib into hyperopt leads
to the main_worker_helper function.

Starting from 72 changed procedures in hyperopt, per-
forming steps 1-3 leaves only four nodes with change tags
in the merged graph. Fig. 4 shows part of the merged call
graph containing these four nodes, which represent changed
procedures. Qlib’s only procedure calling into a changed
procedure in hyperopt is contrib.tuner.(...) (in green),
calling fmin, a part of hyperopt’s API (in orange). The changed
procedures, e.g., FMinIter.init are marked as red stars, while
other non-changed hyperopt procedures connecting them,

Change

No Change

Dep: hyperopt

App: Qlib

Figure 4: The graph of hyperopt’s code changes reduced to
only show changes affecting Qlib.

e.g., (...).exhaust, are shown as well (in red).

Employing the tracer. UPGRADVISOR traces the existing
dependency code, ideally running on a production server.
These traces can then be used to simulate the dependency
update, which can catch breaking changes and discard changes
to unreached parts of the dependency.

Step 4: After statically determining the four changed
hyperopt procedures which might be reachable from Qlib’s
code, their names are sent on the fly to the tracer already
running on the production server.

Step 5: The tracer then starts tracking them by logging
every control-flow decision in the procedure, including
conditional branches and exceptions. Qlib’s test suite did
not cover any of hyperopt’s code and specifically did not
exercise contrib.tuner.(...) which calls the changed part
of hyperopt from Qlib. However, if a production environment
is not available to trace, the static analysis provides insight on
what kind of test cases should be created to provide better cov-
erage. For this example, we manually created a production-like
workload which covered calls to hyperopt and ran them on
the traced system. Specifically, we made Qlib use hyperopt’s
asynchronous computation mode. Tracing relevant methods
in hyperopt incurs only ~5% runtime overhead on the system.

Step 6: The tracer’s output is decoded offline to reconstruct
execution traces for tracked procedures.

Gathering and summarizing results. Step 7: The graph
created in step 3 is augmented with the collected traces. Any
change tag is excluded if its code location is not present in the
traces. If all tags in a group are excluded, the whole procedure
is discarded. The changed statement in serial_evaluate,
shown in Fig. 2c, does not exist in the traces, so it is discarded.

At this stage, only three changed procedures, including
run shown in Fig. 2c, require manual examination. Taking
a closer look at the changes in these three methods shows

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    755



that all changes relate to the addition of the progress
bar in run. fmin.fmin’s signatures adds a new variable:
def fmin(... , prog_bar=True): .... Its value is then prop-
agated to the fmin.FminIter class, which then uses it when
calling tqdm(disable=prog_bar).

Adding arguments to a function declaration might be a
source for API breakage, as a change to required positional
arguments might cause a runtime error. In this example,
because the new argument has a default value (“True”), a
runtime error will not occur. UPGRADVISOR still marks this
update as a “possible API break” due to the change in Qlib’s
output caused by the progress bar. Specifically, this can be
avoided by changing Qlib’s code to assign “False” to prog_bar

when calling fmin.fmin. Following this, developers can move
forward with the updating hyperopt to version v0.1.2.

We submitted a PR to the Qlib project, recommending the
changes described above. This PR was adopted quickly by
the maintainers and merged into the Qlib’s main code branch
within five hours, even though hyperopt’s version 0.1.2 had
been available almost three years (released 21-Feb-2019) at
the time of the PR.

4 Static Analysis of Dependency Updates

As shown in steps 1-3 from Fig. 3, UPGRADVISOR uses static
analysis to determine if a dependency update is safe, or identify
what procedures may be affected by the update so they can
be further considered by dynamic tracing. The inputs are the
application code, A, and dependency code D in two versions
before and after the update, DBe f ore and DA f ter, respectively.

Throughout this section, we use Python terminology for
methods and functions, where a method is a block of code
associated with a class and a function is a block of code that
can be called but is not associated with a class.

4.1 Application and Dependency Call Graphs

UPGRADVISOR first builds call graphs for A and DBefore,
which are merged into one graph G. Building an accurate call
graph requires: (1) mapping call sites and (2) detecting callees
(call targets). However, dynamic interpreted languages such
as Python typically do not require specifying types, causing
callee uncertainty. Consider the following Python snippet:

def foo(a):
return a.get_size()

The function foo has an untyped argument a, and it calls
a’s method get_size. a can be any class that has a method
get_size, and there is no type information to help narrow
down the potential callees. We refer to get_size as a named
method with an unknown class because the method name
called is known but the class to which it belongs to is unknown.
Alternatively, consider the following Python code snippet:

def foo(a):
return a()

The function foo has an untyped argument a, and it calls
a. a can resolve to any function in the code, and there is no
type information to help narrow down the potential callees.
We refer to a as an anonymous function. There are ways to
explicitly specify types in Python using type annotations [36],
as in the following code snippet:

def foo(a:arg_type) -> ret_type:
return a.get_size()

However, this is optional in Python, so call graph construction
must account for the absence of types.

We use call graphs to decide if an update is safe or identify
tracing targets, so their soundness is crucial. While false edges
can be tolerated (false positives), there cannot be missing edges
(false negatives). We achieve this by over-approximating
calls in the graph. The basic idea is to use type information
when available to build a context-sensitive [15] call graph
to pinpoint the exact method called, but then combine this
with context-insensitive analysis for missing targets. We
split missing targets into two types: (1) named methods with
unknown class and (2) anonymous functions. To express the
first type of missing targets in our call graph, we create an
edge with a “magic” prefix followed by the callee name, e.g.,
UNK.get_size. To express the second type in the graph, we
create a magic edge from the node to ANON.

Using the process described above, we construct call
graphs for A and DBefore, and merge them into one graph
G = (V,E) with V nodes and E edges. We split V into two
groups depicting M methods or F functions, respectively:
V = M ∪ F . To make G over-approximate for missing call
targets we apply the following edge adding rules:

1. (n,UNK.x)∈E,∃y.x∈M⇒E=E∪{(n,y.x)}

2. (n,ANON)∈E,x∈F ⇒E=E∪{(n,x)}.

The first rule adds edges from the respective node to all
methods with the same name as the named method with
unknown class. The second rule adds edges from the respective
node to all functions. These rules add all possible call targets
for named and anonymous missing targets. Exploring the
Python projects discussed in §2, we find a limited amount of
named method missing targets exist in almost every project,
while anonymous function missing targets were scarce.

Due to their scripting-oriented roots, most dynamic
languages allow placing statements in the source-code
file outside of procedures or classes. Running this file
as a script or importing it from another file will execute
these statements. For example, given a file named "h.py"
including print("Hello World"), putting the import statement
from h import * in another file will result in “Hello World”
printed on the screen. To represent these statements in the
call graph, we place them into a special module_ctor pseudo-
procedure node and add an edge to relevant importing files.

756    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A graph will contain an edge from a procedure to module_ctor

if the procedure contains the relevant import statement.
Similarly, we place class fields and their optional initializa-

tion in a special pseudo-class-initializer X_cinit node, adding
edges to and from it between every call site to any class con-
structor. For example, a statement creating a new class instance,
ClassA(), placed inside a procedure named foo will create the
following call path: foo→ ClassA_cinit→ ClassA_ctor.

We treat other language-specific container for representing
code, such as Python’s decorators (see §6), similarly.

4.2 Grouping Changes

UPGRADVISOR introduces a novel static approach for creating
grouped fine-grain changes. We introduce change tags, used
for tagging individual statements that have changed between
DBEFORE and DAFTER as additions, deletions, or modifications.
These fine-grain per statement tags are then grouped together
by the lowest-level procedure that contains the respective tags.

UPGRADVISOR fuses the code in DBEFORE and DAFTER into
one AST and marks changes with change tags. For example,
for Python, we create one AST per Python module. Each
module is contained in a file and has procedures, classes, and
other statements. The fused AST contains all deleted and
added statements, while modified statements contain the code
from DBEFORE. For modified code, the code in DBEFORE’s
copy is stored in the AST because UPGRADVISOR will
later need to identify DBEFORE code when combining it with
collected traces generated by running DBEFORE, as discussed
in §5. Each change tag represents a change in a statement and
contains a pointer and a type, the type being either addition,
deletion, or modification. The pointer points to the affected
statement, i.e., the lowest statement-tree-node containing
the change. For example, in Fig. 2c, the modification tag is
applied to AST node representing trial['state'] = ..., while
in Fig. 2b an addition tag is applied to the node representing
with tqdm(...), and no tag is applied to the node representing
while n_queued. Changes to procedure declarations, such as
adding an argument or default value for one, are represented as
a tag on the procedure’s declaration node in the AST. If a file
was deleted or added, we create an AST with all statements
and procedure declarations containing deletion or addition
tags to represent it. Change tags are then grouped by the lowest
procedure, class, or module containing them by following
each AST pointer and moving up the tree.

4.3 Clustering Changes Into Call Targets

UPGRADVISOR attaches the grouped changes to nodes in
the call graph G, discussed in §4.1. As grouped changes
are associated with the lowest procedure, class, or module
containing them, it is straightforward to attach them to nodes in
the call graph. Any node with at least one change tag attached

to it is considered a changed node. Note that changed nodes
exclusively appear in the part of G constructed from DBEFORE.

UPGRADVISOR then performs the following two steps.
First, it discards change tags that, in G’s context, do not affect
the semantics of the code. Examples include (1) called APIs
adding unused default values, and (2) changes in import
location or procedures moving between files. If all change tags
in a specific group were discarded, the node associated with
this group is no longer considered a changed node. Second,
UPGRADVISOR discards any changed node not reachable
from an application node. Any changed nodes remaining
after this two-step process are marked as call targets, and their
corresponding procedures will then be sent to the tracer. These
call targets represent changes that can potentially affect the
application. If there are no call targets, static analysis alone was
successful in automatically determining that the update is safe.

Propagating the indirect effects of direct updates to data
is currently out of scope for UPGRADVISOR. These include
direct updates to external data used by the code, such as HTML
templates, or changes to data in the code itself, such as data
used for initialization. UPGRADVISOR can be configured
to report on changes to external data. As changes to data in
the code are necessarily a changes to the code, these will be
detected statically through the call graph if it is reachable from
the application, ensuring the correctness of the static analysis.
However, any effects due to changed data on other non-
changed parts of the code will not be propogated. For example,
if a dependency’s internal state, such as a global variable, is
updated and an unchanged method reads this global variable,
UPGRADVISOR will not identify the unchanged method as
a call target. UPGRADVISOR can be expanded to propagate
the effect of the changed state and mark these methods for
tracing or report more methods for developer inspection, and
we intend to explore this in future work. As discussed in §7,
we find such transitive state changes in the code to be rare.

5 Dynamic Hardware Tracing

UPGRADVISOR uses dynamic tracing to determine what an
application actually does in practice. By tracing application
execution in a production environment, we can obtain the
ground truth of application-dependency interactions and
see which call targets are actually used. To allow dynamic
tracing in production environments, it is crucial that tracing
have minimal impact in production, including avoiding
application changes and incurring minimal overhead. For the
former, UPGRADVISOR traces the existing application without
applying any dependency updates, so no application changes
are required. For the latter, UPGRADVISOR introduces two key
mechanisms, target-focused tracing and hardware-assisted
coarse-grained tracing for interpreted languages.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    757



// given a code block with a sequence of bytecode  

for (each opcode in code block){    
switch (opcode) {      

case opcode_1:   
subroutine_1(); //interpretation logic for opcode_1

break;      
case opcode_2:   

subroutine_2(); //interpretation logic for opcode_2

break;  
…
case opcode_i:     

subroutine_i(); //interpretation logic for opcode_i

break;    
…

}  
}

Figure 5: Original interpretation loop inside an interpreter.

5.1 Target-focused Tracing

UPGRADVISOR does not need to trace the entire application
execution, but needs only to trace call targets generated from
the static analysis discussed in §4.3. This small handful
of methods is not known in advance, and may change for
different updates. For languages such as Python, a compiler
compiles the program written in the interpreted language to
a sequence of bytecode instructions, and the interpreter runs a
loop that interprets bytecodes one by one at runtime, as shown
in Figure 5. UPGRADVISOR enables on-the-fly selection of
which methods are traced by interposing on the interpretation
loop used to interpret the intermediate bytecode for dynamic
interpreted languages. This logic is illustrated in Listing 1.

1 // given a code block with a sequence of bytecodes
2 maintain set of methods to be traced;
3 if(signature of code block is in the set)
4 { goto traced loop; }
5 else{ goto original loop; }
6 original loop:
7 loop code shown as Figure 5;
8 traced loop:
9 loop code shown as Figure 6;

Listing 1: UPGRADVISOR’s target-focused tracing check logic.

We modify the interpreter to allow running a traced version
of the loop on demand. UPGRADVISOR maintains a set,
updatable during runtime, of signatures for all methods marked
for tracing. Before running any method, the interpreted checks
if it is part of this set, directing the execution to the traced
or original version (where no tracing is enabled) of the loop
accordingly. The traced loop is shown in Figure 6, which only
differs from the original loop by adding a jump instruction
before each call to a subroutine in the interpreter loop, which
enables tracing as discussed further in §5.2.

// given a code block with a sequence of bytecode  

for (each opcode in code block){    
switch (opcode) {      

case opcode_1:   
jump_to_trace(opcode_1);     
subroutine_1(); 
break;      

case opcode_2:   
jump_to_trace(opcode_2);
subroutine_2();        
break;  

…
case opcode_i:     

jump_to_trace(opcode_i);
subroutine_i();
break;    

…
}  

}

jump back to 
subroutine_1

jump back to 
subroutine_2

…

jump back to 
subroutine_i

…

Figure 6: Traced interpretation loop inside an interpreter.

5.2 Coarse-grained Hardware Tracing
To further reduce tracing overhead, UPGRADVISOR leverages
hardware tracing mechanisms widely available in modern
CPUs, specifically Intel Processor Trace (PT) [21]. Intel PT
records dynamic control-flow information such as branch
targets and branch taken indications, encoding them as trace
packets. With the trace packets collected and the program’s
native code as input, a software decoder [20] can then be in-
voked to reconstruct the control flow of the program executed.
Although hardware tracing has advantages in terms of low
overhead and the absence of intrusiveness, a key challenge is
how to leverage it to meaningfully trace interpreted languages
since it can only profile native instructions directly running on
physical CPUs [43]. For a native program, native instructions
can be readily mapped back to the source code with the aid
of compilation metadata. This is not the case for programs
written in interpreted languages. For interpreted languages
such as Python running in a virtual machine, the intermediate
bytecode corresponds to the source code, but the native
instructions executed by the CPU are those of the interpreter.

To leverage the efficiency of hardware tracing, we need
to develop tracing support that can bridge the gap by relating
hardware traces generated by CPU to bytecode instructions
of interpreted languages that developers can understand. A
naive way to obtain the execution trace at the bytecode level
is to trace the execution of the entire interpreter code and then
reconstruct the execution flow of high-level bytecode based
on the mapping between bytecode types and their respective
interpreter subroutines. For example, Intel PT generates trace
packets with instruction pointers (IPs) to identify the address
range for each instruction. In Figure 5, interpreter subroutines
such as subrountine_1 and subrountine_2 have static address
ranges for their instructions. Knowing that the executed
instructions are within the address range of a particular
function suggests which bytecode opcode is being interpreted.

Unfortunately, this approach may suffer from data loss as it
can record a huge amount of unnecessary low-level trace data.

758    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Intel PT uses a memory buffer to store trace data. Data loss
occurs when there is more trace data generated than can be
written into the buffer. It is extremely challenging to determine
after the fact what data is lost and how to recover it [43]. How-
ever, what we are interested in is only the sequence of bytecode
instructions executed, not the low-level control flow of the
interpreter subroutines. What is needed is a coarse-grained
tracing mechanism that focuses on the collection of the
high-level bytecode sequences without capturing extraneous
details of the subroutine implementations.

To this end, we developed a novel coarse-grained tracing
mechanism that avoids capturing low-level interpretation
instructions. We leverage a feature of Intel PT that allows trace
packets to be filtered based on their IPs. An address range
can be specified such that packets whose IPs are not in the
range will be filtered out by the CPU. We create a trampoline
(i.e., jump table) and use it as a special memory region that
allows us to quickly filter out irrelevant instructions while
retaining those that correspond to the bytecode. As shown in
Figure 6, the jump table consists of a sequence of contiguously
allocated tablets, each corresponding to a particular opcode.
A tablet contains only one single jump instruction that jumps
back to the call to the subroutine for the opcode. The traced
interpretation loop has a jump instruction before each call
to a subroutine in the interpreter. This instruction takes the
control to its corresponding tablet; executing the instruction
in the tablet takes the control back to the interpreter code.
Essentially, the interpreter takes a “detour” to visit a specific (a
priori known) address range defined by the jump table. We use
this address range to allow Intel PT to filter out all instructions
whose IPs are not in the range. As a result, the trace that
PT ends up generating contains only the executed jump
instructions in the tablets, and these instructions immediately
reveal the bytecode opcodes due to their one-to-one mapping.

5.3 Gather Trace Results

Once hardware traces are collected, we decode them offline
to reconstruct the dynamic control-flow of the program
execution and deduce the code executed at runtime. The
decoder decompresses the hardware trace data as a sequence of
executed jump instructions, each corresponding to one tablet
in the jump table. Using the one-to-one mapping between
tablets and bytecodes, we reconstruct a partial sequence of
bytecodes interpreted at runtime. Using the static control-flow
graph for each traced method and partial bytecode sequence
we project the sequence of bytecodes onto the graph so as
to reconstruct the dynamic control flow executed. Once the
concrete dynamic control-flow is determined at the bytecode
level, we then leverage the available compilation metadata to
obtain the exact lines of source code executed.

We then return to the call graph discussed in §4.3 and
discard additional changed nodes based on the trace results.
Specifically, UPGRADVISOR discards any change tag not

associated with a statement present in the traces. Any
remaining changed nodes are used to create a reduced diff
file, containing differences between DBEFORE and DAFTER
where only reachable changes appear. This reduced diff file
is then made available to the developer for further examination
to determine if the update is safe for adoption. If there are no
changed nodes remaining, the update is considered safe.

The current version of UPGRADVISOR lacks support
for exceptions. Once an exception is raised, the exception
mechanism’s unusual execution flow affects the control-flow
reconstruction mentioned earlier. In future work, we would
like to support exception handling. In brief, an exception
redirects execution to a dedicated block inside the interpreter.
This block is responsible for directing the execution flow back
to the corresponding exception handling bytecode determined
by the point where the exception occurs. Supporting hardware
tracing of exceptions requires tracing that redirection block
to bridge the exception control flow gap.

Apart from interpretation, certain language runtimes also
enable just-in-time (JIT) compilation mode for the sake of
performance. Our design focuses on interpreted mode. Adding
a similar design to the one we proposed by [43] will allow for
hardware tracing JITed code.

6 Implementation

We have implemented an UPGRADVISOR prototype for
Python 3 applications. We built the static analyzer on top
of Pyre-check [9], a type-checker for Python 3. Pyre infers
missing types and generates a set of calling targets for each call
site it soundly resolves. For non-resolved targets, we inserted
the magic edges explained in §4.1. To perform an AST-based
code comparison, we used GumTreeDiff [10], a state-of-the-art
code differencing tool employing its JSON-edit scripts
creation function to help generate fused and tagged AST.

UPGRADVISOR handles Python decorators [35] by defining
them as procedures so they are represented as nodes in the
call graph. For example, given a function bar decorated with
@dec, a function foo calling bar will result in the following
graph path: foo → dec → bar. We leave for future work a
more subtle analysis allowing separation of the different parts
of the decorator logic (i.e., set up, wrapper and cleanup) and
subsequent graph edge creation. Any change (add, modify or
delete) to a procedure’s decorator or its arguments is handled
similarly to a procedure declaration change.

We built the hardware tracer on top of CPython [12], the de-
fault and most widely used interpreter of Python. In CPython,
the interpretation functionality is directly written as a loop in
C code and Python code is compiled into executables once
the interpretation starts. We modified the interpretation loop
as explained in §5. Instead of allocating a buffer, we statically
inserted a trampoline block (equivalent to a jump table) into
the interpreter’s codebase. As CPython does not feature any
JIT-related optimizations, we only need to monitor bytecodes

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    759



Updatable: 172

Minor: 127

Major: 45

Static-Safe: 98

Tracing Required: 74

Safe for Update: 103

Production-Like Tracing: 5

Active: 60

Non-Active: 42

PRs Welcome: 23

PRs Submitted: 9
Merged: 7

Figure 7: UPGRADVISOR’s effectiveness on 172 dependency updates. Its hybrid static and dynamic analysis identified 102 updates
as safe. A sample of safe updates were submitted as PRs, almost all of which have been merged.

resulting in control-flow divergence. Five kinds of Python
bytecode are taken into account: POP_JUMP_IF_FALSE,
POP_JUMP_IF_TRUE, JUMP_IF_FALSE_OR_POP,
JUMP_IF_TRUE_OR_POP, and FOR_ITER. Each of them
has two potential branches, true or false. Thus, the trampoline
block has ten tablets.

The current prototype supports only applications written
entirely in Python. Performance-minded Python projects may
convert computation-heavy code into C. A prominent example
is numpy, a scientific computing package. We leave extending
UPGRADVISOR’s approach to mixed language projects for
future work, and currently UPGRADVISOR will alert and
stop processing when C code is detected in the project. The
prototype supports tracing only on bare-metal machines. To
extend it to run in a virtualized environment (e.g., VMs or
containers) will require OS support and further changes in
memory mappings for tracing. We note that Intel already added
initial support to KVM [19], and leave the rest for future work.

7 Evaluation

We evaluated the effectiveness of UPGRADVISOR in adopting
blocked dependency updates and its performance overhead.
We first used UPGRADVISOR to examine possible Python
dependency updates from our survey discussed in §2.
Although the vast majority of the 389 Python applications
blocked dependency updates, we only considered those
written entirely in Python 3. Altogether, we examined 50
applications with 172 possible dependency updates. We
further tested UPGRADVISOR’s ability to detect API breakage
using known API changing updates. We then measured the
performance overhead of UPGRADVISOR’s tracer using a
subset of the 50 applications with available performance test
suites. Finally, we also measured UPGRADVISOR’s tracer
performance using Instagram’s django-workload [8], based
on a real-world large-scale production workload.

Static analysis was done on a machine with an AMD

Opteron 6168 CPU (48 cores) and 62GB of RAM. Dynamic
tracing was done on a machine with an Intel i7-10700 CPU
(8 cores) with 16 GB of RAM. All machines ran Ubuntu 16.4.

7.1 Facilitating Dependency Updates

We evaluated UPGRADVISOR’s ability to adopt 172 previously
blocked dependency updates for 50 GitHub projects, including
Django, aws-cli, tfx and Celery. Some of these projects
were also dependencies for other projects. When the latest
version of a project blocked a dependency update, by pinning
or double-bounding dependency requirement conditions, we
explored the possibility of removing the block and updating
it to the next version of the dependency. For example, in our
motivating example presented in §3, Qlib v0.7.1 pinned the
dependency hyperopt to version v0.1.1, while version v0.1.2
exists. Out of these 172 possible updates, 45 were major
version updates, and the other 127 were minor. Fig. 7 depicts
the high-level view of this process.

UPGRADVISOR’s static analysis was able to determine that
the majority of dependency updates, 76 minor and 22 major,
were safe and could be automatically updated without further
dynamic tracing. These 98 updates are marked as “Static-Safe”
in Fig. 7. Referring back to our survey for update delays
in Python, Fig. 1a, performing all of these updates to the
next available dependency version would save an aggregate
of 11,310 delay days, averaging 115 delay days saved per
dependency. We further confirmed the "Static-Safe" results by
sampling roughly 10% of them, 11 to be exact, and manually
validated that the code changes were safe.

We measured the reduction in code differences that still re-
mained to be considered after static analysis versus the entire
code differences of the updates. The total number of diff lines
in all 172 updated versions we considered for this experiment
was 667,604, with the average update constituting 3,881 diff
lines (STD 9,078). While not a perfect metric, we use diff size
as a proxy for manual developer effort required to study a de-

760    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Project (Dependency)
Diff

(LOC)
% Discarded

Static Dynamic Total
AutoML (distributed) 850 95 5 100
Electrum (qdarkstyle) 641 88 8 96
Flair (gdown) 1500 71 29 100
Qlib (Hyperopt) 828 90 9 99
Scylla (requests) 449 90 8 98

Table 2: Diff reduction for dependency updates, showing diff
size in LOC and the percentage of lines discarded statically,
using dynamic tracing, and in total.

pendency update. UPGRADVISOR’s static analysis was able to
reduce the diff sizes by an average of 91%. The reductions are
consistently large across updates, with a standard deviation of
17.58%. These reductions also count cases in which UPGRAD-
VISOR finds the update safe, eliminating the whole diff file.

We also quantified the prevalence of direct changes to data
such as global variables that could potentially be used by
unchanged methods. We found that only 10 out of the 172
updates contained such transitive state changes, indicating
that they are infrequent. Furthermore, UPGRADVISOR was
able to statically determine 5 of the 10 as safe, so only the
remaining 5 still requiring dynamic tracing could be impacted
by the current limitation of UPGRADVISOR not identifying
unchanged methods using changed data.

Among the remaining 74 dependency updates that could
not be resolved statically, denoted “Tracing required” in Fig. 7,
we selected a representative sample to evaluate further using
dynamic tracing. The specific projects and dependencies
evaluated are listed in Table 2.

Unfortunately, we did not have access to actual production
environments for these applications, so we used the results of
the static analysis to help construct production-like workloads
to cover application-dependency interactions for these applica-
tions. For AutoML, an automated machine learning framework,
we ran selected sk-learn tutorials. For Electrum, a GUI-based
Electrum Bitcoin wallet, we manually interacted with the GUI
to try and trigger the relevant parts of the dependency code.
For Flair, a framework for state-of-the-art (SOTA) Natural
Language Processing (NLP), we used publicly available
datasets for multiple supported languages (used for training),
employed trained models, and ran tutorial examples. For Qlib,
we set up a MongoDB instance to allow hyperopt to conduct
asynchronous hyper-parameter optimization, and generated
testing inputs for various optimization calculations, as
discussed in §3.2. For Scylla, a proxy search and connection
tool, we scanned for available proxies and used them to
crawl major news sites. When applicable, to further increase
coverage for possible program behaviors, we used inputs
included by the project or created in our environment to drive
the atheris fuzzer for Python [14].

Table 2 shows the results of running UPGRADVISOR end-
to-end process on the project’s production-like environments.

Figure 8: Using UPGRADVISOR on 75 application-dependency
pairs with eight or more blocked updates.

On average, using the tracer further reduced diff sizes by 12%.
Furthermore, the tracer allowed for classifying more updates
as safe. For other updates, e.g., Qlib, additional manual
inspection was required as not all code changes could be
discarded from dynamic tracing, but only ~2% of the original
code changes required manual inspection, significantly
reducing developer effort in adopting the dependency update.

7.2 Analyzing Multiple Blocked Updates

When applications fail to perform their dependency’s first up-
date, subsequent updates are blocked as well. Among the 172
blocked dependency updates, the number of blocked updates
per dependency is 12.5 on average, the median being 5, with a
standard deviation of 43.67. For example, by pinning hyperopt

to version 0.1.1,Qlib blocked eight updates, from 0.1.2 to 0.2.6.
More generally, among the 172 blocked dependency updates,
there are 75 dependencies with eight or more blocked updates.

Fig. 8 shows the result of using UPGRADVISOR on each
of the eight or more blocked updates for the 75 dependencies.
The blocked update index indicates how many versions after
the adopted dependency is the update being considered. For
example, the first bar shows the next version of the dependency,
which is the subset of results from the study in §7.1 limited
to just these 75 dependencies. For each blocked update index,
we show the percentage of updates UPGRADVISOR requires
tracing for as opposed to deeming safe statically. Starting from
34%, this percentage steadily increases to 44% in the eighth
update, constituting a ~30% increase. If we count blocked
updates as retaining their previous status (static-safe or tracing
required) when no further updates are available, this trend
continues as the blocked update index increases from 9 to 20.

To test UPGRADVISOR’s hybrid approach contribution to the
analysis of multiple blocked dependency updates, we employ
our production-like testing environment to Qlib’s hyperopt

dependency for all available updates. Fig. 9 shows diff sizes
and UPGRADVISOR’s ability to statically and dynamically

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    761



Figure 9: Diff sizes and static and dynamic discards for
hyperopt’s eight updates.

discard changed code across hyperopt’s eight updates. Note
that the first bar represents the same Qlib data as in Table 2.

7.3 Contributing to the OSS Community
To further validate our results, we selected a sample of de-
pendency updates that UPGRADVISOR considered safe and
submitted them to the respective project via a PR. Except Qlib,
which was the first PR we submitted, all other dependencies
were updated to their latest version. As submitting a PR re-
quires manual effort, we focused on active projects welcoming
PRs. We deem projects active if their latest commit was made
in or after 2021, and PR-welcoming if they accepted a PR
from an external developer in the last month and have less than
100 open PRs. Each PR clearly explained UPGRADVISOR’s
goals and affiliation, provided UPGRADVISOR outputs (e.g.,
graphs such as the one shown in Fig. 4), and any other rele-
vant information (e.g., dependency change log) allowing the
developers to examine the updates and validate our results. In
some cases, our PR prompted discussions with the develop-
ers providing us with ideas for improving UPGRADVISOR’s
outputs. Out of nine PRs submitted, seven were merged and
two received no response. Furthermore, five of the merged PRs
were for dependencies listed in Table 2, validating the results
of UPGRADVISOR’s dynamic tracing.

7.4 Detecting API Breakage
We noticed that in OSS projects, API breakage is discovered
by dependency users in a few days/weeks. The relevant
version will quickly be “yanked” from the repositories, so
that the API breaking version ends up not being visible in
our experiments in §7.1. As a result, none of the dependency
updates considered in §7.1 caused API breakage. While this
shows the advantages of OSS, for the individual entities, this
discovery might have been made at the price of production
failures or even data corruption, and UPGRADVISOR’s goal
is to detect these before they happen.

To evaluate UPGRADVISOR’s ability to detect API
breakage, we conducted a small controlled experiment with
two applications, django-oscar and label-studio, which

were examined by UPGRADVISOR in §7.1. These applications
have a dependency on Django, which has a well-documented
deprecation timeline [4] allowing us to study API breakage.
We consider the recent 7-Dec-2021 release of Django 4.0,
which contains 28 API breaking changes including arguments
losing default value, removed APIs, etc. Both django-oscar

and label-studio are stuck on much earlier 3.x versions of
Django. Instead of considering an update to the next available
3.x version of Django, we used UPGRADVISOR to statically
analyze the difference between version 4.0 and the 3.x version
specified by the application. In these cases, UPGRADVISOR
correctly identified all API breaking changes with no false pos-
itives or negatives, which we manually confirmed by studying
UPGRADVISOR’s output and comparing it to the deprecation
information. This experiment also showcases UPGRADVISOR
ability to direct developers to the relevant portions of their
code which will break and provide context for the fix.

7.5 Tracing Overhead

We evaluated UPGRADVISOR’s tracer overhead using appli-
cations from our previous experiments in §7.1 with test suites
that we could set up and execute without errors. Ironically,
some test suites failed to run due to broken or conflicting
dependencies. We selected a subset of qualifying projects
to represent the Python open-source eco-system, including
ML (Qlib and Flair), data-science (Faust), blockchain
(Electrum and Vyper), administration tools (aws-cli), and
website-building (Django). Django allowed us to experiment
with multi-process code and control the number of processes
used. We ran Django’s test suite using 1, 8, and 16 logical
CPUs. Each project had some dependency update among
the 172 possible updates considered in §7.1. Specifically,
the dependency updates for Qlib, Flair, Faust, Electrum,
Vyper, aws-cli, and Django were hyperopt, gdown, Croniter,
qdarkstyle, asttokens, colorama, and pytz, respectively.

We compared the performance of UPGRADVISOR to several
other tools, including cProfile, Coverage.py, and JPortal4Py.
cProfile is a de-facto standard tool for cPython that profiles
executions at the method-level. Coverage.py is a de-facto stan-
dard tool for cPython that tracks statement-level test coverage.
Neither of them provide the same functionality of UPGRAD-
VISOR’s tracer, but provide useful performance comparisons.
JPortal4Py is a Python-compatible implementation of a
hardware tracer that traces the whole interpreter [43]. We also
compared against UPGRADVISOR-SW, an implementation
of UPGRADVISOR’s tracer that uses software tracing in lieu of
Intel PT to trace all procedures. In evaluating UPGRADVISOR,
we compared two configurations, UPGRADVISOR-ALL to
trace all procedures, and UPGRADVISOR-Targeted to trace
only procedures marked by UPGRADVISOR’s static analysis.
We ran each application on each tool five times and report the
average and standard deviation of the overhead measurements.

Fig. 10 shows the performance overhead measurements

762    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 10: Comparing the performance of UPGRADVISOR’s two modes, ALL and Targeted, with cProfile, Coverage.py,
JPortal4Py, and UPGRADVISOR-SW, a software-only tracer.

normalized to native execution of the application without
any tracing. UPGRADVISOR in targeted mode has the least
overhead in all cases, averaging 3%, with a standard deviation
of 2.15%. It is an order of magnitude faster than all other
tools for some applications, except for UPGRADVISOR-ALL.
Django’s multiprocess test-suite measurements showcase
the advantages of using hardware features for tracing, as all
software-based approaches suffer from significant overhead
trying to record all control operations made by the interpreter
across several processes. Nevertheless hardware tracing is
not a panacea as the JPortal4Py hardware tracer performs
much worse than UPGRADVISOR-SW on most of the single
process measurements. This is because JPortal4Py traces the
whole interpreter as well, flooding the memory buffer with
trace packets and causing significant disk I/O.

While tracing all methods, UPGRADVISOR-ALL manages
to only incurs an average of 6.4%, over 60% worse than UP-
GRADVISOR-Targeted but still much better than all other tools.
However, because it traces many more methods and fills up
the memory buffer quickly, it suffers data loss, which can lead
to misdiagnosing unsafe updates as safe. Data loss measures
lost tracing events, those overwritten before they could be read
from memory by the CPU and written to disk, as a percentage
of all tracing events. We calculated data loss rates by compar-
ing UPGRADVISOR-ALL versus UPGRADVISOR-SW, which
also traces all methods but does not suffer the data loss of
hardware tracing. UPGRADVISOR-ALL’s data loss rates across
the different applications rose as high as 16% for single process
workloads and over 20% for Django running with 16 logical
CPUs. In our experiments, we set a memory buffer size limit

of 128MB per logical CPU. Increasing this limit or using faster
disks/memory might help convert some data loss into overhead.
In contrast, UPGRADVISOR-Targeted does not suffer from any
data loss due to the reduced amount of trace records generated.

To further stress UPGRADVISOR’s tracer, we used In-
stagram’s django-workload [8]. This testing environment
includes a Cassandra database [2], memcached [27] in-memory
key-value instance, a Django installation and the Siege
load generator [13]. We set up Django according to its
recommended configuration for production systems [6]
using the WSGI interface. Django depends on pytz, a
frequently updated package dealing with time-zone related
date manipulations, and supports thousands of plugins and
sub-packages [5], including django-cassandra-engine used
by django-workload. We measured the performance of
UPGRADVISOR’s tracer using django-workload when eval-
uating updates to both pytz and django-cassandra-engine.
Running this workload using both UPGRADVISOR-ALL and
UPGRADVISOR-Targeted, we found that UPGRADVISOR
incurs an average overhead of only 7% and 3%, respectively.
These results are consistent with those in Fig. 10, and indicate
that our measurements of UPGRADVISOR’s tracer overhead
provide a good indication of its expected performance when
running real-world production workloads.

8 Related Work

Dependency upgrade surveys. Other surveys also show
that many projects suffer from dependency update de-
lays [23, 38, 41]. For example, a survey of 7.3K Java projects

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    763



reports that 81.5% of projects display dependency update
lag [23], and a survey of 610K JS projects in the NPM package
repository between 09-11-2010 and 02-11-2017 reports a
similar number of delay days as ours [41]. Our survey focuses
on three modern dynamic languages and investigates historical
dependency upgrade patterns.

AST differencing algorithms. AST differencing algo-
rithms [10, 11, 16, 29] compute an edit script between two
versions of an AST. GumTree [10] first finds isomorphic
subtrees through a greedy top-down algorithm then executes
a bottom-up algorithm to match sub-trees which share
a large number of matching nodes. As discussed in §6,
UPGRADVISOR uses GumTree’s AST-diffing and builds upon
its generated edit-script to generate a fused AST representing
the dependency before and after the update.

Changeset and impact analysis. Given a set of code changes
and test suite runs, change impact analysis tools generate a
list of tests affected by the change and re-test them to verify
if they pass after the change is adopted. Approaches can be
classified based on the techniques used, the granularity of
changes considered, and whether static or dynamic analysis
is used [24]; only one approach explored statically studying
changes at the code-snippet scope (below the method/class
level) [32]. Chianti [33] introduced a change impact analysis
tool for Java programs, incorporated in the Eclipse IDE. Prior
techniques all rely on application test suites and do not scale
to allow usage in production servers. UPGRADVISOR expands
on these works, representing changes at the statement level
and statically discarding them before using a dynamic tracer
to validate them on production servers.

Call graph construction. PyCG [34] builds call graphs for
Python code using assignment graphs. It prioritizes analysis
speed and completeness and thus exhibits unsoundness in its
evaluation. UPGRADVISOR prioritizes soundness, achieved by
over-approximating call targets. Various approaches dynam-
ically generate call graphs for JS code [17]. NodeProf [39]
instruments the code under test and gather information in
the face of code generation and other JS-born challenges.
UPGRADVISOR records similar information via tracking
jumps and calls online and then decoding this information
offline to avoid high overhead. We plan to leverage these
works to add JS support for UPGRADVISOR.

Hardware tracing. Modern CPUs provide hardware features
for tracing, including Intel PT [21] and ARM embedded trace
macrocell (ETM) [26, 37]). These have generally only been
applicable to native programs. Our previous work, JPortal [43],
showed how to enable hardware tracing for Java bytecode, but
it suffers from high overhead and data loss from needing to
trace the whole virtual machine. UPGRADVISOR improves
on JPortal via novel coarse-grained and selective tracing
mechanisms which achieve low overhead without data loss.

Statistical debugging. Statistical debugging [25, 42] reduces
tracing overhead through randomized sampling and dispersing

data collection among different users. UPGRADVISOR
achieves low overhead through selective hardware tracing,
which maintains completeness.

Multi variant execution (MVE). MVE methods [18, 28]
split test suite execution at the point of change, then run
the two versions (before and after upgrade) and merge
them back to show compliance. MVE concepts have also
been applied towards detecting exploitation attempts and
test generation [22, 31]. To overcome lacking coverage in
test-suites, UPGRADVISOR traces production servers focusing
only on parts relevant to the dependency update.

Patch analysis in continuous integration. SubmitQueue [1] is
a system for examining simultaneous application code updates.
It combines a build dependency graph with a continuously
trained statistical model to optimize the order of application
code updates to maximize parallelism for integration tests.
In contrast, UPGRADVISOR provides decision support for
evaluating dependency updates using production traces.

9 Conclusions and Future Work

We have shown that many projects suffer from prolonged
delays in adopting dependency updates. We have designed and
built UPGRADVISOR, a system for reducing developer effort
and error risk in adopting dependency updates. UPGRADVISOR
features the co-design of a sound static analysis constructed to
pinpoint a carefully selected target set of methods to trace and a
low-overhead production-ready tracer to observe dependency
usage. Using this hybrid analysis together with hardware trac-
ing, UPGRADVISOR has analyzed 172 upgrade opportunities,
determining that ~60% of them can be updated safely. For
the rest, UPGRADVISOR benefits developers by reducing the
manual effort of going over the changes in the dependency.

We plan to extend UPGRADVISOR to benefit more dynamic
languages. Moreover, we wish to build upon UPGRADVISOR’s
analysis to alert about malicious updates and generate
application tests for increasing dependency update coverage.
We believe UPGRADVISOR’s low-overhead tracing technique
can become useful in other domains and intend to explore its
use in debugging and fault isolation.

Acknowledgments

Landon Cox provided helpful comments on earlier drafts.
Andrew Magid helped with system implementation. This work
was supported in part by DARPA contract N66001-21-C-4018;
ONR grants N00014-17-1-2788 and N00014-18-1-2037;
NSF grants CNS-1564055, CNS-1703598, CNS-1763172,
CNS-1907352, CCF-1918400, CNS-2052947, CNS-2007737,
CNS-2006437, CNS-2128653, CNS-2106838, and CCF-
2124080; Faculty Research Awards from Facebook, JP Mor-
gan, DiDi, Cisco, and Accenture; and a Columbia CAIT Award.
(Corresponding authors: Junfeng Yang and Zhiqiang Zuo)

764    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Sundaram Ananthanarayanan, Masoud Saeida Ardekani,
Denis Haenikel, Balaji Varadarajan, Simon Soriano,
Dhaval Patel, and Ali-Reza Adl-Tabatabai. Keeping
master green at scale. In Proceedings of the 14th
European Conference on Computer Systems (EuroSys
’19), March 2019.

[2] Apache. Cassandra - open source nosql database.
https://cassandra.apache.org/_/index.html.
Accessed: 2022-05-24.

[3] Google Chrome. Chrome release cycle. https://ch
romium.googlesource.com/chromium/src/+/ref
s/heads/main/docs/process/release_cycle.md.
Accessed: 2022-05-24.

[4] Django. Django deprecation timeline. https:
//docs.djangoproject.com/en/dev/internals/
deprecation/. Accessed: 2022-05-24.

[5] Django. Django Packages is a directory of reusable apps,
sites, tools, and more for your Django projects. https:
//djangopackages.org. Accessed: 2022-05-24.

[6] Django. How to deploy Django. https://docs.d
jangoproject.com/en/4.0/howto/deployment/.
Accessed: 2022-05-24.

[7] Facebook Engineering. Rapid release at massive scale.
https://engineering.fb.com/2017/08/31/web/
rapid-release-at-massive-scale/. Accessed:
2022-05-24.

[8] Facebook. Django workload by Instagram and Intel,
v1.0 RC. https://github.com/facebookarchive
/django-workload. Accessed: 2022-05-24.

[9] Facebook. Pyre: A performant type-checking for Python
3. https://pyre-check.org. Accessed: 2022-05-24.

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc,
Matias Martinez, and Martin Monperrus. Fine-grained
and accurate source code differencing. In Proceedings
of the 29th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’14), pages
313–324, September 2014.

[11] Beat Fluri, Michael Wursch, Martin PInzger, and
Harald Gall. Change distilling: Tree differencing for
fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):725–743,
October 2007.

[12] Python Software Foundation. Cpython. https://gi
thub.com/python/cpython. Accessed: 2022-05-24.

[13] Jeffrey Fulmer. Siege 4.1.1 - an http load tester and
benchmarking utility. https://github.com/JoeDo
g/siege. Accessed: 2022-05-24.

[14] Google. Atheris: A coverage-guided, native python
fuzzer. https://github.com/google/atheris.
Accessed: 2022-05-24.

[15] David Grove, Greg DeFouw, Jeffrey Dean, and Craig
Chambers. Call graph construction in object-oriented
languages. SIGPLAN Notices, 32(10):108–124, October
1997.

[16] Masatomo Hashimoto and Akira Mori. Diff/ts: A tool for
fine-grained structural change analysis. In Proceedings
of the 15th Working Conference on Reverse Engineering
(WCRE ’08), pages 279–288, October 2008.

[17] Zoltán Herczeg and Gábor Lóki. Evaluation and com-
parison of dynamic call graph generators for JavaScript.
In Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering
(ENASE ’19), pages 472–479, May 2019.

[18] Petr Hosek and Cristian Cadar. Safe software updates
via multi-version execution. In Proceedings of the
35th International Conference on Software Engineering
(ICSE ’13), pages 612–621, May 2013.

[19] Intel. Intel Processor Trace virtualization enabling.
https://lwn.net/Articles/737839/. Accessed:
2022-05-24.

[20] Intel. libipt: an Intel Processor Trace decoder library.
https://github.com/intel/libipt. Accessed:
2020-10-31.

[21] Intel. Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 3 (3A, 3B, 3C & 3D):
System Programming Guide, chapter 35: Intel Processor
Trace. June 2019.

[22] Koen Koning, Herbert Bos, and Cristiano Giuffrida.
Secure and efficient multi-variant execution using
hardware-assisted process virtualization. In Proceedings
of the 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’16), pages
431–442, June 2016.

[23] Raula Gaikovina Kula, Daniel M. German, Ali Ouni,
Takashi Ishio, and Katsuro Inoue. Do developers
update their library dependencies? Empirical Software
Engineering, 23(1):384–417, February 2018.

[24] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang.
A survey of code-based change impact analysis tech-
niques. Software Testing, Verification and Reliability,
23(8):613–646, December 2013.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    765

https://cassandra.apache.org/_/index.html
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/process/release_cycle.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/process/release_cycle.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/process/release_cycle.md
https://docs.djangoproject.com/en/dev/internals/deprecation/
https://docs.djangoproject.com/en/dev/internals/deprecation/
https://docs.djangoproject.com/en/dev/internals/deprecation/
https://djangopackages.org
https://djangopackages.org
https://docs.djangoproject.com/en/4.0/howto/deployment/
https://docs.djangoproject.com/en/4.0/howto/deployment/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://github.com/facebookarchive/django-workload
https://github.com/facebookarchive/django-workload
https://pyre-check.org
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/JoeDog/siege
https://github.com/JoeDog/siege
https://github.com/google/atheris
https://lwn.net/Articles/737839/
https://github.com/intel/libipt


[25] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I.
Jordan. Bug isolation via remote program sampling.
SIGPLAN Notices, 38(5):141–154, May 2003.

[26] Arm Limited. Arm® Embedded Trace Macrocell
Architecture Specification ETMv4.0 to ETMv4.5,
December 2019.

[27] memcached. memcached - a distributed memory object
caching system. https://memcached.org. Accessed:
2022-05-24.

[28] Hung Viet Nguyen, Christian Kästner, and Tien N.
Nguyen. Exploring variability-aware execution for
testing plugin-based web applications. In Proceedings
of the 36th International Conference on Software
Engineering (ICSE ’14), pages 907–918, May 2014.

[29] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham,
and Tien N. Nguyen. Operation-based, fine-grained
version control model for tree-based representation. In
Proceedings of the 13th Conference on Fundamental
Approaches to Software Engineering (FASE ’10), pages
74–90, March 2010.

[30] npm. How npm works: Dependency hell.
https://npm.github.io/how-npm-works-docs
/theory-and-design/dependency-hell.html.
Accessed: 2022-05-24.

[31] Hristina Palikareva, Tomasz Kuchta, and Cristian
Cadar. Shadow of a doubt: Testing for divergences
between software versions. In Proceedings of the 38th
International Conference on Software Engineering
(ICSE ’16), pages 1181–1192, May 2016.

[32] Maksym Petrenko and Václav Rajlich. Variable gran-
ularity for improving precision of impact analysis. In
Proceedings of the IEEE 17th International Conference
on Program Comprehension (ICPC ’09), pages 10–19,
May 2009.

[33] Xiaoxia Ren, B.G. Ryder, M. Stoerzer, and F. Tip. Chi-
anti: a change impact analysis tool for Java programs. In
Proceedings of the 27th International Conference on Soft-
ware Engineering (ICSE ’05), pages 664–665, May 2005.

[34] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas,
Diomidis Spinellis, and Dimitris Mitropoulos. PyCG:
Practical call graph generation in Python. In Proceedings
of the 43rd International Conference on Software
Engineering (ICSE ’21), pages 1646–1657, May 2021.

[35] Python steering council. Pep 318 – decorators for
functions and methods. https://peps.python.org/
pep-0318/. Accessed: 2022-05-24.

[36] Python steering council. Pep 484 – type hints.
https://peps.python.org/pep-0484/. Accessed:
2022-05-24.

[37] Neal Stollon. ARM ETM, pages 213–218. Springer US,
Boston, MA, October 2010.

[38] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens
Dietrich. Technical lag of dependencies in major pack-
age managers. In Proceedings of the 27th Asia-Pacific
Software Engineering Conference (APSEC ’20), pages
228–237, July 2020.

[39] Haiyang Sun, Daniele Bonetta, Christian Humer, and
Walter Binder. Efficient dynamic analysis for node.js.
In Proceedings of the 27th International Conference
on Compiler Construction (CC ’18), pages 196–206,
February 2018.

[40] TIDELIFT. libraries.io - the open source discovery ser-
vice. https://libraries.io. Accessed: 2022-05-24.

[41] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Grego-
rio Robles, and Jesús González-Barahona. An empirical
analysis of technical lag in npm package dependencies.
In Proceedings of the 17th International Conference for
Software Reuse (ICSR ’18), pages 95–110, May 2018.

[42] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur
Naik, and Alex Aiken. Statistical debugging: Simulta-
neous identification of multiple bugs. In Proceedings of
the 23rd International Conference on Machine Learning
(ICML ’06), pages 1105–1112, June 2006.

[43] Zhiqiang Zuo, Kai Ji, Yifei Wang, Wei Tao, Linzhang
Wang, Xuandong Li, and Guoqing Harry Xu. JPortal:
Precise and efficient control-flow tracing for JVM
programs with Intel Processor Trace. In Proceedings
of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation
(PLDI ’21), pages 1080–1094, June 2021.

766    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://memcached.org
https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html
https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html
https://peps.python.org/pep-0318/
https://peps.python.org/pep-0318/
https://peps.python.org/pep-0484/
https://libraries.io


A Artifact Appendix

Abstract
The version of UPGRADVISOR used to perform the exper-
iments described in the paper may be downloaded from
figshare.com. The artifact contains the code for the package sur-
vey, the static analyzer, and the hardware tracer. It also contains
scripts to compile the tracer, run the experiments described in
the paper, and produce most of the figures. For the most up to
date version of UPGRADVISOR and other resources please refer
to may be accessed on Github at http://upgradvisor.github.io.

Requirements
We provide the analyzer pre-installed in a docker container.
The tracer requires a bare-metal machine. It directly employs
a tracing capability found in Intel 5th generation CPUs
(Broadwell) and above. Installing the tracer software requires
root access to the OS.

This artifact will run on a i7-10700 CPU workstation
with 16GB RAM. A slower machine may result in reduced
performance. We set up the docker container on the tracer
machine and encourage you to do the same.

Scope
The artifact may be used to reproduce the experiments
described in the paper, including Fig. 1, Fig. 4, Fig. 8, Fig. 9,
Fig. 10, Table 1, and Table 2.

Contents
• AnalyzerDocker.tar.gz: A docker container for running

the survey and static analysis portions of Upgradvisor.
• Cache[2].tar.gz: Cached intermediate results of Upgrad-

visor to serve as examples and troubleshooting aids.
• UpgradvisorArtifact-main.tar.gz: The code of the

Upgradvisor analyzer and tracer.
• README.md: Instructions for setting up and running

the Upgradvisor experiments.
We recommend following the README’s instructions for
running the survey, and static analysis, as well as for checking
compatibility with, compiling, and running the hardware tracer.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    767

https://figshare.com/articles/software/UPGRADVISOR_Early_Adopting_Dependency_Updates_Using_Production_Traces/19593457
 http://upgradvisor.github.io
https://figshare.com/articles/software/UPGRADVISOR_Early_Adopting_Dependency_Updates_Using_Production_Traces/19593457?file=34826392




Practically Correct, Just-in-Time Shell Script Parallelization

Konstantinos Kallas
University of Pennsylvania

Tammam Mustafa
MIT CSAIL

Jan Bielak
XIV Staszic High School

Dimitris Karnikis
Aarno Labs

Thurston H.Y. Dang∗

MIT CSAIL
Michael Greenberg

Stevens Institute of Technology
Nikos Vasilakis

MIT CSAIL

Abstract
Recent shell-script parallelization systems enjoy mostly auto-
mated speedups by parallelizing scripts ahead-of-time. Unfor-
tunately, such static parallelization is hampered by dynamic
behavior pervasive in shell scripts—e.g., variable expansion
and command substitution—which often requires reasoning
about the current state of the shell and filesystem.

We present a just-in-time (JIT) shell-script compiler, PASH-
JIT, that intermixes evaluation and parallelization during a
script’s run-time execution. JIT parallelization collects run-
time information about the system’s state, but must not alter
the behavior of the original script and must maintain minimal
overhead. PASH-JIT addresses these challenges by (1) using
a dynamic interposition framework, guided by a static prepro-
cessing pass, (2) developing runtime support for transparently
pausing and resuming shell execution; and (3) operating as
a stateful server, communicating with the current shell by
passing messages—all without requiring modifications to the
system’s underlying shell interpreter.

When run on a wide variety of benchmarks, including the
POSIX shell test suite, PASH-JIT (1) does not break scripts,
even in cases that are likely to break shells in widespread use;
and (2) offers significant speedups, whenever parallelization
is possible. These results show that PASH-JIT can be used
as a drop-in replacement for any non-interactive shell use,
providing significant speedups without any risk of breakage.

1 Introduction

The UNIX shell is an environment for composing programs
from components written in a variety of programming lan-
guages. Coupled with UNIX’s toolbox philosophy [41], this
language agnosticism makes the shell a popular choice
for succinctly expressing tasks that involve data process-
ing, system orchestration, and other automation. Recent sys-
tems [52, 55, 63] accelerate such tasks by exploiting data

∗The author is now at Google but the work was done while he was at MIT.

parallelism: using ahead-of-time (AOT) analysis and trans-
formation, these systems parse, analyze, and transform shell
scripts into new scripts that execute in parallel.

Unfortunately, AOT parallelization quickly becomes in-
tractable due to the dynamic nature of the shell: dynamic
features such as variable expansion and command substitu-
tion, pervasive in shell scripts, generate and consume values at
run-time while depending on and interacting with the broader
environment—i.e., the filesystem, the environment variables,
and the shell interpreter itself. Additionally, modern shells
offer several different configurations and execution modes,
leading to complex behaviors described in hundreds of pages
of POSIX standardese [2]. The complexity of these interac-
tions and their side-effects lead existing parallelization tools
to an unavoidable trade-off between (1) being conservative,
aborting on scripts that use dynamic features, or (2) being
unsound, possibly breaking scripts during parallelization. Re-
cent systems [52, 55, 63] tend to be conservative—operating
only on fully expanded shell pipelines and having a hard time
even on simple uses of variables (see §2).

This paper presents PASH-JIT, a production-grade just-in-
time (JIT) shell-script compiler aimed at non-interactive paral-
lelization: PASH-JIT focuses on three practical (but conflict-
ing) goals: (G1) run-time-informed parallelization: PASH-JIT
leverages run-time information to parallelize script fragments
that depend on state that is statically indeterminable; (G2)
full behavioral equivalence: PASH-JIT is aware of the full set
of dynamic behaviors present in POSIX shells, producing re-
sults that are indistinguishable from the sequential execution
on the system’s shell interpreter; (G3) loose shell coupling:
PASH-JIT avoids modifications to the system’s underlying
shell interpreter, eschewing practical problems (e.g., main-
taining two Bash implementations). PASH-JIT behaves as a
drop-in shell shim enhancing any non-interactive shell use,
providing significant speedups without any risk of breakage.

PASH-JIT’s key insight is to parallelize scripts just-in-time:
by intermixing evaluation and parallelization during a script’s
execution, PASH-JIT collects and uses the latest possible
run-time information about the state of an expression’s vari-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    769



ables, the shell, and the filesystem. PASH-JIT parallelizes
script fragments when it is safe to do so, resolving indetermi-
nacies in the broader environment on the fly. Unfortunately,
low-overhead run-time-informed parallelization (G1) is par-
ticularly challenging to implement in view of full behavioral
equivalence (G2) and loose shell coupling (G3). PASH-JIT
addresses this conundrum using: (1) a dynamic interposition
framework, guided by an instrumentation preprocessing pass;
(2) support for reentrance, transparently pausing and resuming
the execution of the underlying shell interpreter at run-time;
and (3) a stateful, long-lived compilation server that com-
municates with the current shell by exchanging messages. A
9K-LOC implementation and several run-time optimizations—
e.g., dynamic independence discovery, commutative-aware
parallelization—complete the picture.

We apply PASH-JIT to a variety of benchmarks, ranging
from scripts collected from the wild to the POSIX test suite.
PASH-JIT behaves identically to Bash 4.4.20(1) on 406 out
of 408 applicable POSIX tests; matching Bash is a signifi-
cant achievement even for a non-parallelizing shell—shells in
widespread use differ on much larger subsets of tests. PASH-
JIT offers speedups up to 33.7× over Bash on a 64-core
machine (improving the state of the art [63] by 2× on av-
erage), notably parallelizing scripts that prior work failed to
parallelize due to dynamic behaviors.

The paper begins by exemplifying dynamic shell features
and the application of PASH-JIT’s techniques (§2). Sec-
tions 3–6 describe PASH-JIT’s main contributions:

• A dynamic interposition framework for the shell: A just-in-
time analysis and optimization subsystem enables safe and
effective parallelization during the execution of a script,
dealing with the challenges of dynamic shell-script behav-
ior. A first pass determines where to insert calls to a par-
allelizing optimizer in a given input script (§3), which is
then invoked on-the-fly while the script is executing (§4).

• A stateful, parallelizing compilation server: PASH-JIT
queries a long-lived parallelization server at run-time to
compile script fragments. This model improves run-time
efficiency by avoiding startup costs on every JIT invocation,
and enables additional run-time optimizations for (1) exe-
cuting independent regions in parallel, and (2) pipelining
compilation and execution. The core of the server has been
modelled and formally verified using SPIN [29] (§5).

• Commutativity-aware optimization: Additional compila-
tion optimizations target commands that are commutative
with respect to their input, along with parallelizing transfor-
mations and run-time primitives that improve the run-time
performance of scripts that contain such commands (§6).

The paper then presents PASH-JIT’s evaluation (§7) and re-
lated work (§8), before concluding (§9). PASH-JIT is MIT-
licensed open-source software supported by the Linux Foun-
dation at https://github.com/binpash/.

2 Example & Overview

Below is a shell program that downloads a compressed archive
of text files (books from Project Gutenberg), extracts them in
a directory, and then performs an analysis to find the frequen-
cies of all words of a specific form.

IN=${IN:-$TOP/pg}
mkdir "$IN"
cd "$IN"
echo "Download will take some time, be patient..."
wget "$SOURCE/data/pg.tar.xz"
if [ $? -ne 0 ]; then

echo "Download failed!"
exit 1

fi
cat pg.tar.xz | tar -xJ

cd "$TOP"
OUT=${OUT:-$TOP/output}
mkdir -p "$OUT"
for input in $(ls "$IN"); do

cat "$IN/$input" | tr -sc '[A-Z][a-z]' '[\012*]' |
grep '^....$' | sort | uniq -c > "$OUT/$input.out"

done

The program makes pervasive use of the shell’s dynamic fea-
tures. For example, it uses environment variables such as $TOP,
variable expansion like ${OUT:-$TOP/output} to assign de-
fault values, command substitution $(...) as part of the loop
condition, and state reflection on the file system by running
ls on $IN (itself resolved dynamically).

None of the values of these variables can be known ahead
of time just by analyzing the program’s source code. They
become known only at run-time, when the shell interpreter
reaches these points in the program’s execution. A sound
AOT compiler such as PASH-AOT [63] or POSH [52] would
fail to parallelize—foregoing all the performance benefits of
data-parallel execution spread across many files in $IN.

PASH-JIT instead takes a JIT approach that interjects par-
allelization opportunities during and throughout the script’s
execution (Fig. 1).

Dynamic interposition (§3): PASH-JIT first uses a prepro-
cessing step to instrument all potentially optimizable pro-
gram regions with calls to the JIT engine. PASH-JIT chooses
regions to maximize the potential benefits of parallelizing
them: intuitively, commands and pipelines can yield signifi-
cant benefits, whereas word expansion, control flow, and vari-
able assignments are operations that do not perform heavy
computation and can therefore be left as they are. PASH-JIT’s
preprocesor and compiler both make extensive use of pars-
ing/unparsing of shell source code, implemented as a new
parsing library. After PASH-JIT has inserted calls to the JIT
engine, it invokes the user’s shell interpreter to execute this
transformed script. During this execution, the JIT engine calls
the parallelizing compiler at run-time—right before the execu-
tion of each fragment, when the state of the shell and the file
system have already been resolved. The transformed program

770    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/binpash/


script PASH-JIT
Preprocessor (§3.2)

PASH-JIT
Parsing Library (§3.3)

instrumented
script

State (vars, set, files)

...

source jit.sh

...

PASH-JIT
JIT Engine (§4)

PASH-JIT
Compilation Server (§5) 

User Shell

Fig. 1: PASH-JIT overview. PASH-JIT instruments scripts with calls to the JIT engine, which passes program fragments to the compilation server at run-time.

maps original commands to regions—for example, region8
corresponds to the cd call and region10 corresponds to the
pipeline in the for loop.

source jit.sh "$region8" # cd $TOP
OUT=${OUT:-$TOP/output}
source jit.sh "$region9" # mkdir -p "$OUT"
for input in $(ls "$IN"); do
source jit.sh "$region10" # cat "$IN/$input" | ...

done

The command source jit.sh "$regionN" invokes the JIT
engine passing as argument the corresponding fragment. The
source built-in retains the same shell environment, reflecting
any effects directly into the current environment.

JIT engine (§4): Internally, the JIT engine first saves the
state of the shell at that point in the script’s execution to iso-
late it from compilation—protecting the shell from the JIT
engine and protecting the JIT engine from obscure shell con-
figurations. PASH-JIT then invokes the compiler to attempt to
parallelize the fragment. If the compiler succeeds, PASH-JIT
runs the resulting parallel fragment; if not, it runs the original,
unmodified region. In both cases, PASH-JIT will first restore
the state of the shell before executing the fragment. Whether
the compiler succeeds or not depends on the properties of
the fragment’s code—e.g., PASH-JIT will reject region8 due
to the side-effectful cd command, but will accept region10
compiling grep and sort into the parallel fragment below:

c_split /tmp/fifo8 /tmp/fifo9 /tmp/fifo10 &
c_wrap 'grep "^....$"' </tmp/fifo9 >/tmp/fifo11 &
c_wrap 'grep "^....$"' </tmp/fifo10 >/tmp/fifo12 &
c_strip </tmp/fifo11 >/tmp/fifo13 &
c_strip </tmp/fifo12 >/tmp/fifo14 &
sort </tmp/fifo13 >/tmp/fifo15 &
sort </tmp/fifo14 >/tmp/fifo16 &
eager.sh </tmp/fifo15 >/tmp/fifo17 &
eager.sh </tmp/fifo16 >/tmp/fifo18 &
sort -m /tmp/fifo17 /tmp/fifo18 >/tmp/fifo19 &

The resulting compiled fragment executes in a data-parallel
fashion: data is split by PASH-JIT primitives, then fed to
multiple instances of grep and sort runnning in parallel, and
finally merged at the end of the parallel execution.

Dependency untangling (§5): While the JIT engine oper-
ates as if invoked on every region, PASH-JIT is engineered
to spawn a long-running stateful compilation server just once,
feeding it compilation requests until the execution of the
script completes. This design has two benefits: (1) it reduces
run-time overhead by avoiding reinitializing the compiler for

each compilation request; and (2) it allows maintaining and
querying past compilation results when compiling a new frag-
ment. The latter allows PASH-JIT to untangle dependencies
across regions, finding and exploiting opportunities for cross-
region parallel execution. For example, the server’s first invo-
cation on region10 (the body of the loop) determines that all
prior successfully compiled regions have finished executing.
PASH-JIT can thus simply run the loop in the background and
continue with the second iteration in a task-parallel fashion,
without waiting for the first iteration to complete executing.
During the second invocation on region10, PASH-JIT will
use the dependency state to determine that while the previ-
ously compiled fragment is still running, the input and output
files of the two regions are completely independent and can
thus be executed in parallel: our loop is now pipelined! PASH-
JIT goes beyond intra-region data parallelism: the JIT enables
inter-region task parallelism by resolving dependencies and
confirming they are independent.

Commutativity analysis & compilation (§6): The first
goal when compiling fragments such as region10 is to iden-
tify command sequencies that are parallelizable using a divide-
and-conquer strategy. Due to the shell’s order-aware na-
ture [28], naive divide-and-conquer would need to (1) read
the entire input before splitting it, to determine the exact size
of each batch, leading to stalled pipeline parallelism; and (2)
wait until all of its predecessors have consumed their batch,
storing data after split on disk, to ensure that all parallel nodes
will not wait for their input.

While these overheads are unavoidable in the general case,
and are indeed incurred by prior systems [55, 63], they can
fortunately be alleviated for subsets of parallelizable com-
mands. Two such subsets include (1) stateless commands
such as grep -c '^....$' that operate in a line-oriented
fashion, meaning that data-parallel copies of these commands
can combine their partial output using a reordering operation,
and (2) commutative commands such as sort -u that produce
equivalent output regardless of the order of the input lines.
PASH-JIT leverages this insight to achieve more effective par-
allelization by splitting into streaming micro-batches (using
c_split) in a round-robin fashion—avoiding the overheads
of reading all the input before splitting and of unnecessary
storage to disk. It also wraps stateless commands to strip and
re-add the microbatch headers (using c_wrap) and removes
these headers completely before commutative commands (us-
ing c_strip).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    771



Zooming back out: Fundamentally, PASH-JIT is neither
a shell nor requires modifications to a user’s shell. Rather,
it is an interposition shim located between a user and their
shell, deciding whether to optimize parts of the user script
on the fly, using information about the execution state of the
shell interpreter. PASH-JIT combines several techniques that
allow harnessing speedups not attainable by ahead-of-time
parallelization on both dataflow-only scripts and larger scripts
with dynamic components and complex control flow; all of
this, without modifying the behavior of the original script.

3 Interfacing With the Shell

PASH-JIT works by interposing on the shell, effectively
rewriting invocations to external commands. Challenges arise
due to the shell’s complex semantics and its intricate internal
state, both of which complicate side-effect-free interposition.
The shell uses a string-based, bi-modal semantics: commands
undergo expansion, a string rewriting phase where variables,
tildes, and globs are processed before the commands undergo
evaluation. Both modes have complex semantics heavily in-
volved with the shell’s state [24]; any rewriting must be care-
ful to leave the shell’s state unaltered.

3.1 Dynamic Interposition
To understand PASH-JIT’s interposition, we must first un-
derstand the simpler structure of ahead-of-time (AOT) paral-
lelization. While preserving a script’s original behavior, AOT
parallelization rewrites calls to external commands to exploit
parallelism. External commands consume substantially more
time and resources than shell language features (like expan-
sion or loops) during the execution of typical shell scripts.

AOT parallelization centers around the identification of
parallelizable regions—script fragments that may be safely
parallelized to yield performance gains. Semantically, par-
allelizable regions only contain a set of command invoca-
tions that satisfy the following conditions: (1) they have no
file dependencies (interference-free), i.e., all commands can
execute concurrently without affecting each other, (2) they
communicate with each other using explicit UNIX channels
(fifos/pipes); (3) they are pure, only affecting the environ-
ment by reading and writing to files, i.e., they do not modify
environment variables; and, (4) they are fully expanded. An
AOT compiler parses and transforms these regions to an in-
termediate representation such as directed-acyclic [52] or
dataflow [63] graphs, abstracted as functions that take a set
of input files and produce a set of output files [28]. It then ap-
plies transformations on these graphs to perform the original
computation in parallel.

PASH-JIT works similarly, but applies these steps at a
much finer granularity and in a dynamic, online fashion.
PASH-JIT’s dynamic interposition mechanism pauses ex-
ecution right before each parallelizable region, compiling it

to an efficient and equivalent parallel script fragment, and
executing that instead. Working dynamically means PASH-
JIT has up-to-date information and can achieve increased
parallelism.

3.2 Preprocessor
Dynamic script interposition without any shell-interpreter
modifications is hard. To achieve this, PASH-JIT opts for
a light-weight script instrumentation pre-processing step: it
marks possible parallelizable regions with code that dynami-
cally determines whether or not to invoke the compiler.

The intuition behind PASH-JIT’s preprocessor is that a syn-
tactic analysis of a shell script is enough to suggest potential
parallelizable regions. This analysis is imprecise: there is no
way to determine whether a command invocation will be pure
ahead of time. Its goal however, is not to find parallelizable
regions exactly, but rather to find potential compilation sites—
PASH-JIT sorts out the details at run-time, using up-to-date
information about the system’s state.

There is a trade-off when choosing the right size for these
regions: the larger the region, the more opportunities ex-
ist for analysis and optimization but the less likely it is for
the entire region to be parallelizable. PASH-JIT targets a
middle-ground: maximal syntactic schedule-free regions—
i.e., command sequences composed using shell primitives
that do not impose scheduling restrictions. By focusing on
maximal schedule-free regions, PASH-JIT minimizes the
number of compiler invocations and maximizes the cross-
command parallelization opportunities for the compiler. Note
that schedule-free regions underapproximate interference-free
regions (§3.1), e.g., two commands composed in sequence ;

that write to different files do not interfere but are not syntac-
tically schedule-free.

The preprocessor finds these maximal regions by search-
ing the AST bottom-up, combining schedule-free subtrees
when they are composed using constructs that do not intro-
duce scheduling constraints (e.g., &, |). When a region cannot
outgrow a certain subtree, it is replaced with a call to the JIT
engine. If successfully compiled, a region is transformed to a
dataflow graph—a convenient and well-studied computation
model amenable to transformation-based optimizations [28].
The instrumented AST resulting from the compilation is fi-
nally translated (unparsed) back to shell code and sent over
to the underlying shell for execution.

3.3 Parsing Library
Parsing and unparsing are key operations in PASH-JIT and
must address several challenges.

PASH-JIT parses lines of shell script as they come in, and
unparses lines in order to execute them in the user’s shell;
it also uses parsing and unparsing during compilation, when
the compilation server emits an optimized string or passes

772    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



strings to the shell for expansion. PASH-JIT initially used
libdash—an OCaml library built using the dash parser and
part of Smoosh [23, 24]—that caused two main issues. First,
libdash’s unparsing introduced several bugs, as at the time
it was used by the libdash project primiarly for testing and
diagnostics—had much of its was functionality untested. Sec-
ond, libdash parsing introduced significant run-time over-
head due to (1) the cost of forking and executing the OCaml
binary, (2) overheads due to serialization and deserialization
during communication, and (3) suboptimal implementation.
Run-time overheads were a significant concern due to PASH-
JIT’s online JIT parallelization, which intermixes calls to the
compiler during the program’s execution—bringing parsing
and unparsing into the critical path of program execution.

To address these issues, PASH-JIT reimplements its own
version of libdash in Python called Pylibdash. The Pylibdash
implementation develops Python bindings for the dash parser
and completely reimplements unparsing—adding 0.9k LOC
of Python over libdash, structured as a separate library usable
by other projects. The Pylibdash implementation contains
several optimizations such as caching, inlining, and careful
array appending to avoid some accidentally quadratic costs in
the original implementation. As a side benefit, using a custom
implementation reduces the number of dependencies required
by PASH-JIT’s installation.

4 The JIT Engine

The PASH-JIT preprocessor identifies possible parallelizable
regions and instruments the shell script to dynamically de-
termine whether they can be optimized by invoking the JIT
engine. The JIT engine faces two key challenges: it must not
change the original script behavior, and it must run with low
overhead as it is invoked multiple times per script.

The JIT engine is a reflective shell script: by inspecting
the state of the shell and that of the broader system, it can
transparently work with the compiler to determine whether or
not to parallelize a script (Fig. 2). When running scripts with
PASH-JIT, it is helpful to think of the shell as having two
modes: (1) conventional shell mode, where scripts execute
in the original shell context, and (2) PASH-JIT mode, where
the runtime reflects on shell state and invokes a compiler to
determine whether to execute the original or an optimized
version of the target region. To switch from shell mode to
PASH-JIT mode, the JIT engine must carefully save the state
of the user’s shell; to switch back, it must carefully put things
back just the way they were. A shell’s state is quite complex:
beyond saving and restoring variables, the runtime must ac-
count for various shell flags along with other internal shell
state (e.g., the previous exit status, working directory).

shell mode PASH-JIT mode

S

C

R

E

…

S

D

R
…

S Save shell state and 
set PASH-JIT state

C Query parallelizing 
compiler server

R Restore shell state

E Execute (optimized or 
original) fragment

D Gather execution and 
debug information

debug
mode

Fig. 2: Overview of JIT engine stages.

4.1 JIT Stages

When running normally, the JIT engine transitions into and
out of PASH-JIT mode once per possible parallelizable re-
gion (Fig. 2): the JIT engine saves the shell state and switches
into PASH-JIT mode (S); then it tries to compile the current
fragment (C); whether successful or not, the JIT engine re-
stores the state and switches back to shell mode (R); and,
finally, either the original fragment or the optimized paral-
lel version is executed (E). With debugging enabled, the JIT
engine switches back into PASH-JIT mode (S) to collect
debugging information (D), restoring again afterwards (R).

Saving (S): When entering a possible parallelizable region,
the first step is to save the shell state—recording the previous
command’s exit status, the values of environment variables,
and the configuration of the shell—essentially, a continuation
that can later be restored to execute the target fragment. Once
the state is saved, PASH-JIT mode reconfigures the user’s
shell to avoid changing script behavior. For example, if the
user’s shell has the -e “exit on error” flag set, the shell should
exit immediately when a command (or a pipeline) returns a
non-zero exit status, unless that command is in a checked po-
sition (e.g., after !, or in the condition of an if or while) [2].
However, failing commands should not stop the JIT itself, so
-e is unset (and will be restored later in (R)).

Compilation (C): With the state saved and shell reconfig-
ured, PASH-JIT tries to compile the script fragment: the JIT
engine queries the compilation server (§5) with the script
fragment (already parsed during preprocessing) along with
the saved shell state, so that the compilation server can try to
expand all of the words in the fragment. The server responds
to indicate whether it managed to optimize the fragment.

Restoring (R): Whether or not compilation was successful,
the JIT engine exits PASH-JIT mode, restoring the contin-
uation saved earlier (S) to prepare to execute the fragment.
One particular challenge in this mode is to restore state while

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    773



accommodating different shell modes. Suppose PASH-JIT is
in -e mode, trying to run some possible parallelizable region,
and the command before this region exited with status 47
in a checked position, i.e., without forcing the shell to exit.
The JIT engine saves the exit status so as to not overwrite it.
The fragment may depend on the exit status, so PASH-JIT
needs to restore it before running the fragment. But it must be
careful—simply running (exit 47) would force the shell to
exit. Thus PASH-JIT runs the subshell in a checked position:

if (exit "$pash_previous_exit_code"); then
source "$fragment"; ...

else
source "$fragment"; ...

fi

This odd code ensures that the fragment (in identical branches)
has access to the previous exit status (in the checked, condi-
tional position of the if) without exiting when -e is set.

Execution (E): Back in shell mode, the JIT engine executes
the fragment. If the compiler was successful, then the JIT
engine selects the optimized script fragment. If the compiler
failed, the JIT engine falls back to the original fragment. Ei-
ther way, control flows back to the original shell.

Debug mode (S) (D) (R): When PASH-JIT is in debugging
mode, the JIT engine will re-enter PASH-JIT mode after
execution (E) in order to log information about the script,
such as execution time and exit status. Standard execution
skips this extra save/restore cycle.

5 Parallelizing Compilation Server

For each possible parallelizable region, the JIT engine queries
the compiler: can this region actually be optimized? To an-
swer this question, PASH-JIT builds on ideas from the PASH-
AOT [63] dataflow compiler (§5.1). As ever, it focuses on
preserving behavior and minimizing overhead.

To preserve correct behavior in the face of the shell’s dy-
namism, PASH-JIT expands each script region prior to com-
pilation (§5.2). To minimize overhead due to fixed startup
costs—e.g., initialization, dependency loading, logging setup,
and output file arrangement—PASH-JIT packages the new
compiler as a stateful compilation server communicating via
UNIX domain sockets.1

The compilation server is also augmented to support a
larger set of optimization opportunities, by storing and using
information from one compilation to help another. PASH-
JIT’s long-lived compilation server achieves these additional
optimizations by allowing parallelizable regions that work on
independent inputs and outputs to be run in parallel (§5.3)
and by learning to improve its parallelism configuration from
past compilations (§5.4).

1We experimented with both socket and FIFO-based communication, but
we saw no significant performance differences.

5.1 Command Annotations

PASH-JIT uses the command annotation and specification
framework introduced by PASH-AOT [28, 63], extended to
also indicate whether a command invocation is commuta-
tive (§6.1). This framework provides information about a
command invocation’s parallelizability class, inputs, and out-
puts. A command annotation can be used to extract high-level
information about a specific command invocation, i.e., a pre-
cise instantiation of its flags, options, and arguments. For
example, annotations determine whether a given command
invocation is pure and what its inputs and outputs are.

PASH-JIT uses this annotation framework to extract
information for commands that are not shell builtins—
that is, commands like sort and grep. Annotations en-
able analyses and transformations over command invo-
cations by lifting them to pure dataflow nodes in a
dataflow intermediate representation (IR) [28]. For example,
grep -f dict.txt src.txt > out.txt is a dataflow node
with two input files (dict.txt and src.txt) and one output
file (out.txt), which are all extracted from the annotation of
the grep command. Annotations also describe parallelization
opportunities, e.g., grep "pattern" src.txt processes each
line of src.txt independently, and so it can be parallelized.

5.2 Early, Pure Expansion

PASH-AOT can only attempt to compile script fragments
where all words are completely expanded. Running dynam-
ically, PASH-JIT goes beyond PASH-AOT by expanding
words according to the current state of the system (shell, file
system, etc.).

One way to achieve expansion would be for PASH-JIT to
maintain a “mirror” Bash process when initializing, which it
could then query with any word to expand using echo. Every
time PASH-JIT would query the compilation server with a
fragment, it would also provide the latest state of the shell,
which would in turn be passed to the mirror process to ensure
it reflects the latest state. This expansion method would be
correct, as it would leverage the underlying shell. It would,
however, be expensive, since each fragment contains many
unexpanded words and each unexpanded word would have
to be expanded using its own echo command—leading to
unnecessary run-time costs.

PASH-JIT avoids the overhead of a mirror shell by per-
forming its own expansion, relying on the optimistic nature
of the JIT engine (§4): if most common forms can be ex-
panded in the compiler itself, the compiler will succeed often
without incurring interprocess communication overheads; if
expansion fails, PASH-JIT will just run the original fragment.
Armed with this insight, PASH-JIT implements a subset of
expansion in the compilation server itself. PASH-JIT’s cus-
tom expansion is purely functional, in that it does not affect
shell state by setting variables or running command substi-

774    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



tutions. The expansion routine is implemented in less than
300 LOC of Python, and reduces the compilation overhead
significantly (§7). Expansion takes the host shell’s config-
uration and expands common, safe expansions in as many
positions as possible—in simple commands, pipelines, and
other parallelizable regions.

PASH-JIT’s expansion routine implements most parameter
formats, plain tildes, and appropriate quoting. Currently, it
does not cover impure expansion (e.g., parameter formats that
have side-effects like ${x=foo}, which will set x to foo if
x is unset), since impurity violates the parallelizable region
requirements. It also does not implement a few expansion
cases—e.g., arithmetic expansions of the form $((x + 1))—
that were not seen in the corpus of parallelizable scripts used
to evaluate PASH-JIT (§7). Adding support for unimple-
mented forms would require engineering effort, but not a
fundamental change to PASH-JIT’s expansion. If the ex-
pansion encounters a term it cannot expand—because it is
unimplemented or because it would be impure—the compila-
tion process aborts and PASH-JIT runs the original fragment.

5.3 Dependency Untangling

PASH-JIT’s compilation server makes it easy to detect when
parallelizable regions are independent—including, for exam-
ple, independent program fragments that are sequentially com-
posed with ; or different iterations of a for loop. A key
insight here is the semantics of PASH-JIT’s successful compi-
lation: if the PASH-JIT compiler succeeds on a given region,
that region’s original script fragment must only affect its input
and output streams (files). That is, successful fragment com-
pilation means that the fragment is pure, reading from and
writing to a well-defined set of streams without modifying
any other global system state such as non-temporary streams
or environment variables.

The PASH-JIT compiler thus tracks each parallelizable re-
gion in terms of its read and write sets, which suffice to detect
read-write and write-write dependencies between fragments.
If two fragments (a) compile successfully and (b) have no
dependencies, they can be executed in parallel. This optimiza-
tion improves performance not only because of the parallel
speedup, but also because it overlaps (i.e., pipelines) compila-
tion and execution, reducing net run-time overhead.

To discover independent fragments, the compilation server
(Fig. 3) and JIT engine (Fig. 4) are extended to communicate
about successfully compiled fragments. Coordinating using
exit requests, the compilation server maintains a map of
running fragments. When it receives a compilation request
that succeeds, the server waits for all prior fragments with
dependencies to finish executing; only then does it send the
compiled fragment to the JIT engine for execution in the
background. While the compiled fragment executes in the
background, the JIT engine can exit PASH-JIT mode, and
execution proceeds with the rest of the input script. When

# State contains a map from ids to
# inputs and outputs.
while True:

req = receive_request()
if reached_script_end(req):
wait_all()
exit()

else if is_exit_request(req):
state.remove_id(req.id)

else if is_compile_request(req):
compile_res = compile(region)
if not compile_res.success:
wait_all()
respond(compile_res)

else if compile_res.success:
# Wait until all ids with dependencies
# finish executing.
wait_for_dependencies(compile_res.inputs,

compile_res.outputs)
request_id = fresh_id()
state.add_request(request_id, compile_res)
respond(compile_res, request_id)

Fig. 3: Compilation server algorithm (pseudocode) extended for dependency
untangling (Cf.§5.3).

# Blocking query
res = query_server(compile_request(region))

if res.success:
# Run the compiled code in parallel
fork({
run(compiled)
send_exit(res.id)

})
else:

run(original)
...

Fig. 4: JIT engine algorithm (pseudocode) extended for dependency untan-
gling (Cf.§5.3).

execution reaches another fragment and the JIT engine re-
turns to PASH-JIT mode, the JIT engine will block again
until the compilation server responds. Even if the compilation
server encounters a fragment that fails to compile, the server
blocks on dependencies: the uncompilable fragment might
have arbitrary side-effects.

To ensure that our algorithm is correct, we modeled it using
the SPIN Model Checker [29] and we verified (i) that it does
not lead to deadlocks, (ii) that no failed compiled region is
running simultaneously with any other region, and (iii) that
two regions with dependencies never run at the same time.

5.4 Profile-driven Compiler Configuration

The long-lived PASH-JIT compilation server can additionally
use dynamic information to improve compilation. One par-
ticularly effective optimization is to dynamically determine
maximum parallelism degree. As scripts might already fea-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    775



ture task-based parallelism, spawning too many data-parallel
processes can overload the system—leading to higher over-
heads that cut into the speedup or even result in a slowdown.
These slowdowns tend to occur when there are many compu-
tationally light commands with small inputs, i.e., when the
overhead of managing parallelism is higher relative to the
actual work to be done. The PASH-JIT compiler can reflect
on prior fragments to determine an appropriate parallelism
degree.

The compilation server is often queried to compile the same
fragment many times—e.g., in each iteration of a loop. At
run-time, the compiler collects and maintains execution-time
information. As program fragments are recompiled, PASH-
JIT tries progressively narrower parallelization degrees in an
attempt to minimize overall execution time.

6 Commutativity Awareness

Commutative commands can improve parallelization gains by
allowing PASH-JIT to split and process data-parallel partial
inputs in small and order-independent batches. Splitting input
into many small batches improves expected CPU utilization
and allows for additional pipeline parallelism. CPU utiliza-
tion is improved due to an increase in partial input batches:
the more work items, the more uniform the work each par-
allel copy does. Additional pipeline parallelism is achieved
by overlapping input splitting and processing: rather than
reading the entire input before deciding how to split it into
batches, input can be split via small incremental steps that
are immediately handed off to data-parallel commands for
processing.

The PASH-JIT compiler uses these insights to produce
more efficient parallel implementations of scripts that contain
commutative commands. It introduces a few auxiliary nodes
in its intermediate representation (IR) that orchestrate paral-
lel execution for stateless and commutative commands, and
compiler transformations that insert these nodes in a dataflow
graph. It also provides efficient primitives implementing these
nodes when instantiating in the parallel target script.

6.1 Compilation: Dataflow Model

The PASH-JIT compiler operates on a dataflow IR that builds
on PASH-AOT, where commands correspond to nodes and
communication channels correspond to edges between nodes.
To enable commutativity-aware transformations, PASH-JIT
extends PASH-AOT’s annotation framework (§5.1) to in-
dicate whether a command invocation is commutative (in
addition to its parallelizability characteristics).

Command nodes: PASH-JIT introduces the following four
dataflow nodes, which correspond to PASH-JIT-provided
binary commands available in the PATH: c_split, c_wrap,
c_strip, and c_merge. The c_split node takes a single in-

c_split c_merge

c_merge stateless

c_wrap stateless

c_wrap stateless c_merge

...

c_merge commut.

...

commut.

commut. aggregator

batch mode

batch mode

batch mode

batch mode

batch mode

c_strip

c_strip

Fig. 5: Overview of commutativity-aware transformations.

put stream and N output streams. It splits its input into small
batches, prepends a header on each batch identifying its se-
quence number, and then forwards it to one of the N outputs
depending on a load-balancing strategy. Currently, PASH-JIT
implements a round-robin strategy. The c_merge node per-
forms the inverse operation: it merges N input streams into
one and removes any headers. The c_wrap command is used
to wrap stateless commands. It removes the header, forwards
the input to the command, and then adds the header back to
the command output. Finally, c_strip is a single-input-single-
output header-removal node that often precedes commutative
commands.

Transformations: To expose commutativity-aware paral-
lelism, PASH-JIT transforms the dataflow graph; see §2 for an
example. The transformations are visualized in Figure 5. The
first transformation introduces a pair of c_split and c_merge

before any commutative (e.g., sort) or stateless (e.g., grep)
command. Another transformation then tries to eliminate
unnecessary splits and merges, delaying c_merge as late as
possible (i.e., enclosing the biggest possible part of the graph).
If a stateless command follows a c_merge, the command is
wrapped with c_wrap and the c_merge is commuted after it. If
a commutative command follows a c_merge, the command is
parallelized and c_merge is transformed to a set of c_strip
commands. Finally, if a c_split follows a c_merge, then the
two are fused together to the identity function, connecting the
inputs of c_merge with the outputs of c_split.

An important execution invariant is that c_split and
c_merge (or c_strip) satisfy the requirements of well-formed
parentheses, i.e., a c_split must always be followed by a
c_merge or a set of c_strip commands. PASH-JIT’s dataflow
graphs are essentially bimodal, since subgraphs that are be-
tween a c_split and a c_merge will execute with batches,
requiring all commands in them to be wrapped with c_wrap,
while the rest of the dataflow graph executes like the original.

776    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Tab. 1: Benchmark summary. Summary of all the benchmarks used to evaluate PASH-JIT and their characteristics.

Benchmark Set Short Label Sections Scripts LOC Input Source

1 POSIX Test Suite PosixTests §7.1 7 29k — [26]
2 Common & Classic One-liners Classics §7.1–7.3 10 123 14G [6, 7, 33, 41, 59]
3 Bell Labs Unix50 Unix50 §7.1–7.3 36 142 21G [8, 37]
4 COVID-19 Transit Analytics COVID-mts §7.1–7.3 4 79 3.4G [62]
5 Natural-Language Processing NLP §7.1–7.3 21 306 1060 books [15]
6 NOAA Weather Analysis AvgTemp §7.1–7.3 1 31 36.2G [65]
7 Wikipedia Web Indexing WebIndex §7.1–7.3 1 116 1000 files [63]
8 Video/Audio Processing MediaConv §7.1–7.3 2 35 2.2+2.2G [52, 56]
9 Program Inference ProgInf §7.1–7.3 1 18 2330 libraries [64]
10 Traffic/PCAP Log Analysis LogAnalysis §7.1–7.3 2 63 10–20G [52, 56]
11 Genomics Computation Genomics §7.1–7.3 1 34 100G [11, 51]
12 AUR Package Compilation AurPkg §7.1–7.3 1 27 150 packages [13]
13 Encryption/Compression FileEnc §7.1–7.3 2 44 20G [43]
14 Microbenchmarks MicroBench §7.3 1 6 — custom (ours)

6.2 Runtime: Commutativity Implementation
The runtime splits the source in small batches (that contain
complete lines) in a round-robin fashion.

Protocol: To reconstruct the order of different outputs while
merging, PASH-JIT needs to keep track of ordering as input
batches are sent to different command copies for processing
and, more generally, as input-output batches flow throughout
the parallelized script. To achieve this, PASH-JIT wraps all
input batches with a header that contains the three following
fields: block_id, for ordering blocks; block_size, the size of
the block in bytes; and is_last, a boolean value true only for
the last block with a given block_id.

Utilization and deadlocks: PASH-JIT must avoid dead-
locks during write operations between the wrapper commands
and the commands they wrap—i.e., the two should never be
blocked trying to write at the same time. Additionally, the
wrappers must maximize utilization of the command they
wrap, i.e., they should never wait on input unnecessarily. To
avoid deadlocks, PASH-JIT wrappers use non-blocking read
and write; and to increase utilization and reduce waiting time,
they write in small chunks of 32KB.

Handling inputs with long lines: An input may contain
lines that are longer than the c_split block size. Such an
event leads to non-uniform block sizes and high memory con-
sumption, because each block must be read and sized com-
pletely before splitting and adding to the header. PASH-JIT
addresses this issue by introducing the is_last header field
in c_split: if a block exceeds the specified size (due to con-
taining large lines) the block is split into multiple blocks; all
blocks share the same block_id but only the last sets is_last
to true. Sub-blocks with the same block_id are sent down-
stream in-order, and therefore downstream commands can
use the is_last information to correctly reconstruct the out-
put and know when a block ends. Block splitting reduces
memory requirements and improves performance, as it allows
for higher utilization regardless of the frequency of newlines.
And blocks maintain a constant size throughout the flow, de-

spite the presence of commands with high output-to-input
ratio such as curl.

Handling small inputs: Inputs that are smaller than
c_split’s block size lead to a single block and thus se-
quential execution. PASH-JIT’s c_split addresses this is-
sue by first attempting to read an input size s equal to
downstream_count * block_size bytes before forwarding
any blocks. If the total input is larger than s, this buffering
ensures that all parallel instances will get at least one block;
if the total input is smaller than s, then the input read is re-
split into blocks fairly and forwarded downstream. The size
s is configurable and defaults to 1MB, which we empirically
determined avoids both high overhead and low utilization.

7 Evaluation

The PASH-JIT implementation comprises 6784 lines of
Python (preprocessor, compilation server, expansion, com-
piler, and parser), 1011 lines of shell code (JIT engine and
various utilities), and 1174 lines of C (commutativity primi-
tives, and other runtime components). All line counts are of
semantically meaningful lines only.

To evaluate PASH-JIT, we use three experiments on bench-
marks (Tab. 1). The first experiment focuses on PASH-JIT’s
compatibility and uses the entire POSIX test suite as well
as additional scripts (§7.1). The second experiment focuses
on the performance gains achieved by PASH-JIT’s paral-
lelization, evaluated using a variety of benchmarks and work-
loads (§7.2). The last experiment zooms into PASH-JIT-
internal overheads and associated optimizations (§7.3).

Hardware & software setup: PASH-JIT was run on 64
physical × 2.1GHz Intel Xeon E5-2683 cores with 512GB of
RAM, Debian 4.9.144-3.1, GNU Coreutils 8.30-3, GNU Bash
4.4.20(1), and Python 3.7.3. There is no special configuration
in hardware or software. We use Dash v.0.5.8-2.10 and Ksh
v.93u+ 2012-08-01. All scripts were executed completely un-
modified, using environment variables, loops, and other shell

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    777



Tab. 2: Correctness results. Running the POSIX test suite on Bash and
PASH-JIT. Tests are grouped in rows by theme. Columns contain the group
name, total tests, non-applicable tests, and passing tests for PASH-JIT and
Bash.

Test Suite Tests Untested PASH-JIT Bash

1 Parsing 38 5 33/33 33/33
2 Expansion 83 8 71/75 71/75
3 Errors 38 3 26/35 27/35
4 Commands and redirects 99 2 96/97 96/97
5 Subshells and pipelines 56 7 46/49 46/49
6 Builtins 113 40 60/73 61/73
7 Special cases 67 21 42/46 42/46

constructs. To minimize statistical non-determinism, we host
our experimental infrastructure on our own premises, avoid
sharing with other research groups, and repeat the experiments
several times noting imperceptible variance.

7.1 Correctness
We evaluate the correctness of PASH-JIT across all bench-
marks from Tab. 1 by checking that PASH-JIT’s stdout and
exit status are equivalent to the ones produced from Bash.
The output is over 650 million lines (18GB), taken from 82
scripts, in all of which PASH-JIT’s output and exit status are
correct. To increase our confidence on correctness, we use the
POSIX shell test suite with both Bash and PASH-JIT.

Benchmarks: The POSIX test suite is a thorough evaluation
of shell behavior, comprising 1007 ‘assertions’ evaluated us-
ing 494 distinct, assertion-numbered test cases over 29k LOC
of shell scripts (plus library support). We exclude (a) 78 test
cases because they test the platform (e.g., locales) rather than
the shell, and (b) 8 cases because they test interactivity, which
is out of scope for PASH-JIT (§1). These leave a total of 408
runnable test cases. The test cases use a mix of shell language
features (e.g., redirection, pipes), builtin commands (e.g., set,
echo), and standard UNIX utilities (e.g., printf, grep). The
POSIX suite tests many corner cases of shell behavior—e.g.,
that aliases ending in space continue alias expansion (Asser-
tion no. 284), that pipelines take precedence over redirections
in their constituent commands (no. 454), or that return in
a trap action restores the previous command’s exit status
(no. 651)—totaling several thousand behaviors. The exact
number of ‘tests’ is hard to quantify: some test cases check
a single behavior (e.g., expanding an unset variable under
set -u); others check hundreds (e.g., many different charac-
ters escape properly; many different arithmetic expressions
evaluate correctly).

Results: PASH-JIT overwhelmingly agrees with Bash
(Tab. 2). PASH-JIT passes 374 and fails 34 POSIX tests,
while Bash passes 376 and fails 32 POSIX tests. PASH-JIT
diverges from Bash on the test cases for a mere 2 tests (no.
430 and 691) where Bash passes but PASH-JIT fails. These
two failures concern the ranges of non-zero exit status and

are in fact due to an unusual inconsistency in Bash itself (see
“Discussion”, below).

When running the test suite, PASH-JIT invokes the com-
piler a total of 3304 times, each for a different potentially
optimizable fragment; 713 (20%) of those invocations suc-
cessfully compile, i.e., PASH-JIT generates and runs parallel
code. Successful compilation does not necessarily translate to
a speedup on individual tests, though: the POSIX suite tends
to test with small scripts, so the compiled fragments contain
very little computation—not much for PASH-JIT to optimize.

Discussion: PASH-JIT diverges from Bash in two cases
only in the exit status returned. Both PASH-JIT and Bash exit
with an error: Bash returns 1, and PASH-JIT returns 127. For
the two failing cases, POSIX mandates (since 2008) that the
exit status be between 1–125, making PASH-JIT’s behavior
incorrect. Why does PASH-JIT produce a different status?

Bash is inconsistent when called with the -c flag. Con-
trary to most other shells (i.e., dash, ksh, mksh, posh, sash,
Smoosh, yash, zsh), Bash is the only shell that, when fail-
ing during -c invocations, exits with 127—i.e., outside the
POSIX-mandated range. When PASH-JIT invokes the un-
derlying Bash interpreter using -c in order to set $0, it re-
ceives and propagates an exit status that does not comply
with POSIX. The rest of the Bash failing tests are caused
by various subtleties; it is not clear which failures are ‘true
bugs’ and which are considered desirable divergences from
the spec. Greenberg and Blatt [24] discuss how implementa-
tions diverge from the POSIX spec. PASH-JIT mirrors the
behavior of Bash in all those cases.

To put the number of diverging tests of PASH-JIT and Bash
into perspective, we note that other production shells fail in
significantly greater numbers: dash passes 3 tests that Bash
fails and fails 20 that Bash passes; ksh passes 2 tests that Bash
fails and fails 20 that Bash passes; and zsh cannot run the
test suite at all. These results combined show that, in practice,
PASH-JIT is virtually indistinguishable from its underlying
shell interpreter on POSIX features.

7.2 Performance

We evaluate PASH-JIT’s performance on 12 sets of real-world
shell scripts taken from a variety of sources (Tab. 1, rows 2–
13), totalling 82 shell scripts and 1015 LOC.

Benchmarks: Classics and Unix50 contain classic and re-
cent (c. 2019) scripts making heavy use of UNIX and Linux
built-in commands. COVID-mts contains four scripts used to
analyze real telemetry data from mass-transit schedules dur-
ing a large metropolitan area’s COVID-19 response. NLP con-
tains several scripts from UNIX-for-poets, a tutorial for devel-
oping programs for natural-language processing out of UNIX
and Linux utilities. AvgTemp contains a large script download-
ing and processing multi-year temperature data across the US.
WebIndex is a large multi-stage script for web crawling and

778    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0

10

20

30

C
la

ss
ic

s

U
ni

x5
0

C
O
V

ID
−m

ts
N

LP

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

W
eb

In
de

x

M
ed

ia
C
on

v1

M
ed

ia
C
on

v2

Pro
gI

nf

Log
A

na
ly

si
s1

Log
A

na
ly

si
s2

G
en

om
ic

s

A
ur

Pkg

File
Enc

1

File
Enc

2

PaSh−JIT

PaSh−AOT

Fig. 6: PASH-JIT Performance. PASH-JIT speedup (vs. PASH-AOT whenever possible) over Bash for Tab. 1 rows 2–5 (left, box) and 6–13 (right, bar) (Cf.§7.2).

indexing, using a variety of third-party and built-in utilities.
MediaConv contains two scripts that process, transform, and
compress video and audio files. ProgInf contains a script that
downloads JavaScript packages from the npm registry and ap-
plies a security-oriented static program analysis. LogAnalysis
contains two scripts that apply typical system-administration
and network-traffic analyses over log files. Genomics con-
tains a script that processes next-generation sequencing data
for the purposes of diagnostic virology. AurPkg contains the
main script that compiles, builds, and packages software for
the AUR Linux distribution. Finally, FileEnc contains long
aliases that encrypt and compress files.

Results: PASH-JIT surpasses PASH-AOT’s speedups (vs.
Bash) on existing benchmarks and extends speedups to new
ones (Fig. 6). Box-plots show results for multi-benchmark
suites (Tab. 1, rows 2–5) and bars for individual scripts (Tab. 1,
rows 5–13). PASH-JIT can run several more scripts than
PASH-AOT (for which performance bars are set to 0). Across
all benchmarks, PASH-JIT achieves an average speedup of
5.86× (vs. 2.9× for PASH-AOT) and a maximum speedup
of 33.7× (vs. 15.38× for PASH-AOT).

A few scripts exhibit slowdowns when compiler startup,
runtime, and parallelization overheads (splitting, merging)
start dominating. PASH-JIT decelerates 14 scripts; PASH-
AOT decelerates 20 scripts—and cannot run 30 additional
scripts that PASH-JIT parallelizes. The scripts that PASH-JIT
decelerates either have short sequential running times (8ms–
10s) or have very short-running fragments in tight loops (e.g.,
1K iterations, 14ms per iteration). For example, PASH-JIT
decelerates Unix50’s 20.sh (Bash: 8ms; PASH-JIT: 1.3s) and
NLP’s no-vowel.sh (Bash: 14s; PASH-JIT: 0.24×), on which
PASH-AOT cannot operate.

Discussion: PASH-JIT is faster than PASH-AOT on all
suites 2–5 (w.r.t. average) and on all individual benchmarks
5–13, often by a significant margin (3.1×).

PASH-JIT speeds up many scripts PASH-AOT cannot, as
PASH-AOT’s ahead-of-time parallelization cannot reason
about the shell’s dynamic features. PASH-AOT offers no
speedup on the NLP suite, nor on any individual scripts except

PaSh−JIT    PaSh−JIT no_prof    PaSh−JIT no_prof no_du

0

10

20

30

N
LP

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

M
ed

ia
C
on

v1

M
ed

ia
C
on

v2

Pro
gI

nf

Log
A

na
ly

si
s1

Log
A

na
ly

si
s2

G
en

om
ic

s

A
ur

Pkg

File
Enc

1

File
Enc

2

Fig. 7: PASH-JIT Dynamic Optimizations. PASH-JIT speedup over Bash
when toggling profile-driven compiler configuration and dependency untan-
gling for Tab. 1 row 5 (left, box) and 6, 8–13 (right, bar) (Cf.§7.3).

for AvgTemp and WebIndex.
Compared to Bash, PASH-JIT is faster (or at least as good)

in all cases, except when the given script is very short-running
(e.g., unix50-20.sh), or with a tight loop with a very short-
running body (e.g., nlp-no-vowel.sh).

7.3 Further Microbenchmarks

This section zooms into the benefits of PASH-JIT’s optimiza-
tions targeting dependency untangling, profile-driven com-
piler configuration, commutativity analysis, and JIT engine
overheads.

Dynamic optimizations: To better understand the benefits
of dependency untangling and profile-driven compiler con-
figuration (CC), we use benchmarks that have sequences of
statements—e.g., some form of sequential composition or
for-loops: rows 5, 6, 8–13 from Tab. 1. One-line scripts such
as Unix50 and WebIndex feature single pipelines and thus
cannot benefit from any inter-region optimizations.

Across all scripts and compared to Bash, PASH-JIT
achieves a speedup of 8.17×. PASH-JIT without profile-
driven CC achieves 7.58×, and additionally without depen-
dency untangling 0.55× (Fig. 7). The 0.55× slowdown is due
to limited intra-region parallelization in these benchmarks.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    779



PaSh−JIT    PaSh−JIT no_comm

0

5

10

15

C
la

ss
ic

s

U
ni

x5
0

C
O
V

ID
−m

ts

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

W
eb

In
de

x

Fig. 8: PASH-JIT Commutativity Awareness. PASH-JIT speedup over
Bash when toggling commutativity awareness for Tab. 1 rows 2–4 (left, box)
and 6, 7 (right, bar) (Cf.§7.3).

Profile-driven CC may slightly reduce speedup in highly par-
allelizable scripts, because it explores lower parallelization
degrees.

Commutativity awareness: To evaluate the benefits of
commutativity-related optimizations, we focus on all scripts
with intra-region parallelization potential: Classics, Unix50,
COVID-mts, AvgTemp, and WebIndex; the performance of
the rest is affected negligibly by changes to single-region
transformations. We disable all dynamic optimizations to
isolate the benefits of commutativity, and compare with the
sequential Bash baseline.

Commutativity-aware PASH-JIT achieves an average
speedup of 4.52× and a maximum of 14.68× (Fig. 8). With-
out commutativity-related optimizations, PASH-JIT achieves
an average speedup of 3.72× and a maximum of 15.38×.
Commutativity improves the average case but not cases that
already see high speedups, as these (1) have negligible over-
heads coming from input reading—most overheads come due
to line processing—and (2) commutativity extensions add
some overhead due to the c_wrap primitive.

Config. Time (s)

Bash 0.008
PASH-JIT -esd 59.334
PASH-JIT -sd 15.376
PASH-JIT -d 6.124
PASH-JIT 4.708

JIT engine overhead: To evaluate
the benefits of PASH-JIT’s runtime
optimizations, we design a worst-case
parallelization benchmark: a script
that contains a for loop that performs
100 iterations of echo hi. A tight loop
with a minimal-overhead body empha-
sizes the JIT engine overheads by allowing no paralleliza-
tion gains. The table on the right shows the run-time perfor-
mance of four PASH-JIT configurations compared to Bash:
(1) PASH-JIT without custom expansion, compilation server,
and dynamic optimizations, (2) PASH-JIT without compila-
tion server, and dynamic optimizations, (3) PASH-JIT without
the dynamic optimizations, and (4) the complete PASH-JIT.
PASH-JIT’s runtime optimizations (custom expansion, com-
pilation server, and dependence untangling) improve perfor-
mance by 12× (over the -esd configuration without them).
As echo hi writes to stdout, dependence untangling does not
manage to run it in parallel, and thus its benefit is only due

to pipelining. Even then, PASH-JIT’s JIT engine overhead is
not negligible (about 47ms per JIT invocation), as it needs to
save the state and invoke the compiler for every iteration of
the loop body.

8 Related Work

Parallel shell scripting: Recent work addresses signifi-
cant challenges related to automatic shell script paralleliza-
tion. POSH [52] and PASH-AOT [63] are mostly-automated
ahead-of-time shell-script parallelization systems; as de-
scribed earlier, these systems focus on fully expanded shell
pipelines that do not make use of dynamic features. Recent
work explored an order-aware dataflow model as a foundation
for modeling the transformations these systems perform and
proving them correct [28]. To enable divide-and-conquer par-
allelism, KumQuat [55] proposes a program-synthesis tech-
nique for generating aggregators for black-box commands.

PASH-JIT builds on all this prior work, addressing fun-
damental limitations in static, ahead-of-time parallelization:
AOT approaches apply to a very small subset of real shell
scripts. By opting for just-in-time parallelization, PASH-JIT
achieves parallel script behavior that is practically indistin-
guishable from the sequential execution—and ample opportu-
nities for additional acceleration.

Other work on shell script parallelization either requires
manual effort or is applicable to a smaller subset of scripts
than our work. Such work includes: utilities like qsub [19],
SLURM [66], and parallel [58]; shells with non-linear pipe
topologies [17, 40, 56]; and using the shell itself as a DSL for
concurrency [22].

Unix-related parallelization: There has been a significant
body of work on parallel (and distributed) UNIX and UNIX-
like environments [4, 44, 47], including shell-oriented efforts
such as Plan9’s rc [49]. Contrary to PASH-JIT, these systems
did not (aim to) offer full compatibility with the sequential
UNIX shell. They also focused on systems-level and program-
runtime support, rather than automated program analyses and
transformations.

Just-in-time compilation: Just-in-time compilation has
been studied for long time [3], mainly in two contexts: (1)
as a compilation technique for interpreted languages such as
JavaScript [20], where critical type information is unavail-
able prior to execution; and (2) as a performance optimiza-
tion over ahead-of-time compilation, allowing for specializa-
tion [30, 60], loop unrolling and function inlining [9, 50], and
other profile-guided optimizations [34, 46]. PASH-JIT draws
inspiration from work in both contexts—resolving unavailable
dynamic information at run-time and performing additional
optimizations. It also leverages the optimistic compilation
technique employed commonly by just-in-time compilers:
when it fails to compile (parallelize), it simply runs the origi-
nal fragment using the shell interpreter as a fallback option.

780    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



PASH-JIT differs from most JITs, dealing with different chal-
lenges: it operates at a higher level of abstraction, in a unique
programming environment with no single unified runtime.

PASH-JIT also draws inspiration from staged compila-
tion [14] and partial evaluation [32]. These techniques per-
form some compilation ahead-of-time, waiting for the runtime
to specialize and further optimize when there is more infor-
mation about the environment of the target program and how
it is used.

Parallelization in other contexts: More general paralleliza-
tion support can be grouped into two categories: languages
and tools. One approach to parallelization support is to use
tools that requires writing in a new higher-level programming
language [18, 21, 36] or a dataflow-based model embedded in
an existing language [5,12,16,45,57,67]. These tools usually
offer automation, but require re-expressing existing compu-
tations in domain-specific programming models; PASH-JIT
operates on completely unmodified POSIX shell scripts that
use unusual features and obscure corner cases.

Another approach to parallelization support uses tools that
provide automatic parallelization for standard sequential code,
requiring no program modifications but often posing limita-
tions with respect to the granularity of the parallelism that they
can extract. The general approach started with explicit DOALL
and DOACROSS annotations [10, 38], continuing with analysis-
based compilers [27, 48, 54], and more recent work using
profiling-guided speculation [1, 31, 35, 42, 61]. PASH-JIT
draws inspiration from this line of work: it does not require
manual modification to user code, and it leverages run-time
information to optimize and parallelize user scripts. Exist-
ing tools work on imperative code with memory accesses,
but PASH-JIT works at a higher level of abstraction: com-
mands that affect the file system and the broader executing
environment.

Shell correctness and POSIX compliance: Smoosh [24]
offers a formalized, executable reference semantics for the
POSIX shell, aiming to address subtleties in the standard [2].
PASH-JIT leverages Smoosh to identify and resolve issues
in its JIT engine (§4) and to guide its early expansion rou-
tine (§5.2). It also builds on Smoosh’s analysis to leverage
the POSIX test suite for characterizing shell behavior.

PASH-JIT reimplements Smoosh’s libdash [23], which
presents dash’s parser as a library (§3.3). We chose
libdash over Morbig [53] because (1) libdash reuses dash’s
production-grade parser, and (2) libdash supports line-
oriented input, but Morbig is strictly ahead-of-time.

Resurgence of shell research: Recent shell research [24,25,
39,43,52,55,56,63] highlights renewed interest in shell script-
ing both as a vehicle for impactful research and as a target
worthy of scientific attention. We see PASH-JIT as a natural
continuation of the insights and research behind recent shell-
script parallelization systems [25, 28, 52, 63], allowing other
researchers to leverage PASH-JIT’s POSIX-compliant high-

performance just-in-time compilation in their future work.

9 Discussion & Conclusion

The shell provides a dynamic programming language with
complex evaluation-and-expansion semantics and ubiquitous
side-effects—effects that interact with the entire UNIX system
similar to how a conventional programming language interacts
with its runtime environment. The benefits of just-in-time
compilation for dynamic languages are clear, and PASH-JIT
is the first JIT compiler that targets challenges unique in the
UNIX shell ecosystem. PASH-JIT forms a promising drop-in
shebang replacement: its POSIX compliance rivals shells in
widespread use; and its performance benefits go well beyond
the state of the art.

Interactivity: PASH-JIT’s design goals (§1) do not include
interactivity; an interactive shell switches between consuming
its input (shell commands) and redirecting it to its execut-
ing commands—challenging for PASH-JIT’s loose coupling.
Furthermore, avoiding shell modifications leads to additional
runtime overhead (since the state of the shell has to be re-
flected upon and is not accessible with a single dereference).
Adding robust support for interactivity and improving runtime
overhead would likely require a more intrusive design, e.g., al-
tering Bash’s source and interposing directly. However, such a
design would make PASH-JIT Bash-specific, requiring users
to install a new shell, and would significantly complicate the
engineering and maintenance effort involved.

Expansion: Some of PASH-JIT’s expansion behaves in a
way not exactly as specified by POSIX, although we conjec-
ture (and our evaluation confirms, §7) it is safe. For example,
pipelines are supposed to expand each component in its own
subshell (though the last component may run in the outer shell,
depending on a shell’s implementation choices). PASH-JIT’s
expansion operates on each component of the pipeline early;
each component uses its own copy of the shell environment,
to simulate the subshells. We haven not proved these early
expansions sound, and it would be interesting future work to
pursue that, e.g., by using Smoosh’s semantics.

Command annotations: PASH-JIT’s performance bene-
fits depend on the existence of command parallelizability
annotations. The annotations used by PASH-JIT depend on
the PASH-AOT annotation library [63], which includes many
commands in the POSIX and GNU Coreutils sets. Apart
from commands in these sets, a script may contain other
commands—for which PASH-JIT will lack annotations and
thus will not attempt to parallelize to maintain soundness (§1).
To better harness PASH-JIT parallelization in their scripts,
users can: (1) opt for more restricted, rather than more general,
utilities with more constrained and thus parallelizable behav-
iors (e.g., use cut rather than awk when projecting columns,
as awk programs are not parallelizable in general); or (2) add

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    781



their own annotations for custom commands to inform PASH-
JIT on how to parallelize them.

Enabling other analyses: Even though PASH-JIT is
mainly focused on parallelization, its just-in-time structure
is not limited to it. By slightly modifying the preprocessor
and by replacing the compilation server logic, PASH-JIT can
be made to perform different types of analyses and transfor-
mations, while maintaining its benefits—compliance with the
underlying shell, loose coupling, and low runtime overheads.
This enables exciting avenues of future tooling and support for
the shell, like incremental execution, automatic distribution,
and safety monitoring.

Conclusion: Fundamentally, PASH-JIT shows that it is pos-
sible to build a just-in-time shell-script parallelization infras-
tructure that is substantially faster and more applicable than
prior work, is loosely coupled, and addresses critical chal-
lenges associated with the shell ecosystem’s polyglot runtime
environment. But also, PASH-JIT is not a toy: it enables other
researchers to use a production-grade POSIX-compliant shell
compiler for impactful future work.

Acknowledgements: We would like to thank Achilles Bene-
topoulos, Ben Karel, Caleb Stanford, the OSDI 2022 review-
ers, and our shepherd, Robert Soulé, for discussions and feed-
back that helped improve the presentation of the paper; the
OSDI 2022 AE reviewers for feedback that improved this
paper’s artifact; the participants of UCSC’s LSD seminar for
early discussions on dependency untangling; and the open-
source developers who have contributed to PASH. This ma-
terial is based upon work supported by DARPA contract no.
HR00112020013 and no. HR001120C0191, and NSF awards
CCF 1763514 and 2008096.

References

[1] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone
Campanoni, and David I August. Perspective: A sen-
sible approach to speculative automatic parallelization.
In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 351–367, 2020.

[2] The Austin Group. POSIX.1 2017: The Open Group
Base Specifications Issue 7 (IEEE Std 1003.1-2008),
2018.

[3] John Aycock. A brief history of just-in-time. ACM
Computing Surveys (CSUR), 35(2):97–113, 2003.

[4] Amnon Barak and Oren La’adan. The MOSIX multi-
computer operating system for high performance clus-
ter computing. Future Generation Computer Systems,
13(4):361–372, 1998.

[5] Jonathan C Beard, Peng Li, and Roger D Chamberlain.
Raftlib: a C++ template library for high performance

stream parallel processing. The International Journal of
High Performance Computing Applications, 31(5):391–
404, 2017.

[6] Jon Bentley. Programming pearls: A spelling checker.
Commun. ACM, 28(5):456–462, May 1985.

[7] Jon Bentley, Don Knuth, and Doug McIlroy. Pro-
gramming pearls: A literate program. Commun. ACM,
29(6):471–483, June 1986.

[8] Pawan Bhandari. Solutions to unixgame.io, 2020. Ac-
cessed: 2020-04-14.

[9] Carl Friedrich Bolz. Meta-tracing just-in-time compila-
tion for RPython. PhD thesis, Universitäts-und Landes-
bibliothek der Heinrich-Heine-Universität Düsseldorf,
2014.

[10] Michael Burke and Ron Cytron. Interprocedural depen-
dence analysis and parallelization. In Proceedings of the
1986 SIGPLAN Symposium on Compiler Construction,
SIGPLAN ’86, pages 162–175, New York, NY, USA,
1986. ACM.

[11] Enrico Cappellini, Frido Welker, Luca Pandolfi, Jazmín
Ramos-Madrigal, Diana Samodova, Patrick L Rüther,
Anna K Fotakis, David Lyon, J Víctor Moreno-Mayar,
Maia Bukhsianidze, et al. Early pleistocene enamel pro-
teome from dmanisi resolves stephanorhinus phylogeny.
Nature, 574(7776):103–107, 2019.

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
IEEE Data Eng. Bull., 38:28–38, 2015.

[13] Armando Cerna. Pacaur building script.

[14] Craig Chambers. Staged compilation. ACM SIGPLAN
Notices, 37(3):1–8, 2002.

[15] Kenneth Ward Church. Unix™for poets. Notes of a
course from the European Summer School on Language
and Speech Communication, Corpus Based Methods,
1994.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. Commun. ACM,
51(1):107–113, January 2008.

[17] Tom Duff. Rc—a shell for plan 9 and unix systems.
AUUGN, 12(1):75, 1990.

[18] Matteo Frigo, Charles E Leiserson, and Keith H Ran-
dall. The implementation of the cilk-5 multithreaded
language. ACM Sigplan Notices, 33(5):212–223, 1998.

782    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[19] Wolfgang Gentzsch. Sun grid engine: Towards creating
a compute power grid. In Proceedings First IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pages 35–36. IEEE, 2001.

[20] Google. V8 javascript engine. https://developers.
google.com/v8/.

[21] Michael I Gordon, William Thies, Michal Karczmarek,
Jasper Lin, Ali S Meli, Andrew A Lamb, Chris Leger,
Jeremy Wong, Henry Hoffmann, David Maze, et al. A
stream compiler for communication-exposed architec-
tures. In ACM SIGOPS Operating Systems Review,
volume 36, pages 291–303. ACM, 2002.

[22] Michael Greenberg. The posix shell is an interac-
tive dsl for concurrency. https://cs.pomona.edu/
~michael/papers/dsldi2018.pdf, 2018.

[23] Michael Greenberg. libdash. https://github.com/
mgree/libdash, 2019. [Online; accessed December 6,
2021].

[24] Michael Greenberg and Austin J. Blatt. Executable for-
mal semantics for the POSIX shell: Smoosh: the sym-
bolic, mechanized, observable, operational shell. Proc.
ACM Program. Lang., 4(POPL):43:1–43:30, January
2020.

[25] Michael Greenberg, Konstantinos Kallas, and Nikos
Vasilakis. Unix shell programming: The next 50 years.
In Proceedings of the Workshop on Hot Topics in Op-
erating Systems, HotOS ’21, page 104–111, New York,
NY, USA, 2021. Association for Computing Machinery.

[26] The Open Group. Posix. https://pubs.opengroup.
org/onlinepubs/9699919799/, 2018. [Online; ac-
cessed November 22, 2019].

[27] Mary W Hall, Jennifer M Anderson, Saman P. Ama-
rasinghe, Brian R Murphy, Shih-Wei Liao, Edouard
Bugnion, and Monica S Lam. Maximizing multipro-
cessor performance with the suif compiler. Computer,
29(12):84–89, 1996.

[28] Shivam Handa, Konstantinos Kallas, Nikos Vasilakis,
and Martin C. Rinard. An order-aware dataflow model
for parallel unix pipelines. Proc. ACM Program. Lang.,
5(ICFP), aug 2021.

[29] Gerard J. Holzmann. The model checker spin. IEEE
Transactions on software engineering, 23(5):279–295,
1997.

[30] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue,
Hideaki Komatsu, and Toshio Nakatani. A study of de-
virtualization techniques for a java just-in-time compiler.
In Proceedings of the 15th ACM SIGPLAN conference

on Object-oriented programming, systems, languages,
and applications, pages 294–310, 2000.

[31] Nick P Johnson, Hanjun Kim, Prakash Prabhu, Ayal
Zaks, and David I August. Speculative separation for
privatization and reductions. ACM SIGPLAN Notices,
47(6):359–370, 2012.

[32] Neil D Jones. An introduction to partial evaluation.
ACM Computing Surveys (CSUR), 28(3):480–503, 1996.

[33] Dan Jurafsky. Unix for poets, 2017.

[34] Konstantinos Kallas and Konstantinos Sagonas. Hiperjit:
A profile-driven just-in-time compiler for erlang. In
Proceedings of the 30th Symposium on Implementation
and Application of Functional Languages, pages 25–36,
2018.

[35] Hanjun Kim, Nick P Johnson, Jae W Lee, Scott A
Mahlke, and David I August. Automatic speculative
doall for clusters. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimiza-
tion, pages 94–103, 2012.

[36] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh
Ramanarayanan, Kavita Bala, and L Paul Chew. Opti-
mistic parallelism requires abstractions. ACM SIGPLAN
Notices, 42(6):211–222, 2007.

[37] Nokia Bell Labs. The unix game—solve puzzles using
unix pipes, 2019. Accessed: 2020-03-05.

[38] Amy W. Lim and Monica S. Lam. Maximizing par-
allelism and minimizing synchronization with affine
transforms. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’97, pages 201–214, New York, NY, USA,
1997. ACM.

[39] Aurèle Mahéo, Pierre Sutra, and Tristan Tarrant. The
serverless shell. In Proceedings of the 22nd Interna-
tional Middleware Conference: Industrial Track, pages
9–15, 2021.

[40] Chris McDonald and Trevor I Dix. Support for graphs of
processes in a command interpreter. Software: Practice
and Experience, 18(10):1011–1016, 1988.

[41] Malcolm D McIlroy, Elliot N Pinson, and Berkley A
Tague. Unix time-sharing system: Foreword. Bell Sys-
tem Technical Journal, 57(6):1899–1904, 1978.

[42] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott
Mahlke. Parallelizing sequential applications on com-
modity hardware using a low-cost software transactional
memory. ACM Sigplan Notices, 44(6):166–176, 2009.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    783

https://developers.google.com/v8/
https://developers.google.com/v8/
https://cs.pomona.edu/~michael/papers/dsldi2018.pdf
https://cs.pomona.edu/~michael/papers/dsldi2018.pdf
https://github.com/mgree/libdash
https://github.com/mgree/libdash
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/


[43] Jürgen Cito Michael Schröder. An empirical investi-
gation of command-line customization. arXiv preprint
arXiv:2012.10206, 2020.

[44] Sape J Mullender, Guido Van Rossum, AS Tanenbaum,
Robbert Van Renesse, and Hans Van Staveren. Amoeba:
A distributed operating system for the 1990s. Computer,
23(5):44–53, 1990.

[45] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. ACM.

[46] Guilherme Ottoni. Hhvm jit: A profile-guided, region-
based compiler for php and hack. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 151–165,
2018.

[47] John K Ousterhout, Andrew R. Cherenson, Fred Douglis,
Michael N. Nelson, and Brent B. Welch. The sprite net-
work operating system. Computer, 21(2):23–36, 1988.

[48] David A Padua, Rudolf Eigenmann, Jay Hoeflinger, Paul
Petersen, Peng Tu, Stephen Weatherford, and Keith Fai-
gin. Polaris: A new-generation parallelizing compiler
for mpps. In In CSRD Rept. No. 1306. Univ. of Illinois
at Urbana-Champaign, 1993.

[49] Rob Pike, Dave Presotto, Ken Thompson, Howard
Trickey, et al. Plan 9 from Bell Labs. In Proceedings
of the summer 1990 UKUUG Conference, pages 1–9,
1990.

[50] Ian Piumarta and Fabio Riccardi. Optimizing direct
threaded code by selective inlining. In Proceedings of
the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pages 291–300,
1998.

[51] Jon Puritz. Bio594: Using genomic techniques to ex-
amine the evolution of populations, 2019. Accessed:
2020-10-05.

[52] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and
Matei Zaharia. POSH: A data-aware shell. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 617–631, 2020.

[53] Yann Régis-Gianas, Nicolas Jeannerod, and Ralf
Treinen. Morbig: A Static Parser for POSIX Shell. In
Software Language Engineering (SLE), Boston, United
States, November 2018.

[54] Martin C Rinard and Pedro C Diniz. Commutativity
analysis: A new analysis technique for parallelizing com-
pilers. ACM Transactions on Programming Languages
and Systems (TOPLAS), 19(6):942–991, 1997.

[55] Jiasi Shen, Martin Rinard, and Nikos Vasilakis. Auto-
matic synthesis of parallel unix commands and pipelines
with kumquat. corr abs/2012.15443 (2021). arXiv
preprint arXiv:2012.15443, 2021.

[56] Diomidis Spinellis and Marios Fragkoulis. Extending
unix pipelines to dags. IEEE Transactions on Comput-
ers, 66(9):1547–1561, 2017.

[57] Justin Talbot, Richard M. Yoo, and Christos Kozyrakis.
Phoenix++: Modular mapreduce for shared-memory sys-
tems. In Proceedings of the Second International Work-
shop on MapReduce and Its Applications, MapReduce
’11, page 9–16, New York, NY, USA, 2011. Association
for Computing Machinery.

[58] Ole Tange. Gnu parallel—the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47, Feb 2011.

[59] Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for
Linux, Mac OS X, and Unix Systems. No Starch Press,
2004.

[60] Scott Thibault, Charles Consel, Julia L Lawall, Renaud
Marlet, and Gilles Muller. Static and dynamic program
compilation by interpreter specialization. Higher-Order
and Symbolic Computation, 13(3):161–178, 2000.

[61] Chen Tian, Min Feng, and Rajiv Gupta. Supporting
speculative parallelization in the presence of dynamic
data structures. In Proceedings of the 31st ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 62–73, 2010.

[62] Eleftheria Tsaliki and Diomidis Spinellis. The real statis-
tics of buses in Athens. https://bit.ly/3s112R5,
2021.

[63] Nikos Vasilakis, Konstantinos Kallas, Konstantinos
Mamouras, Achilles Benetopoulos, and Lazar Cvetković.
Pash: Light-touch data-parallel shell processing. In Pro-
ceedings of the Sixteenth European Conference on Com-
puter Systems, EuroSys ’21, page 49–66, New York, NY,
USA, 2021. Association for Computing Machinery.

[64] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris
Ntousakis, Konstantinos Kallas, Ben Karel, André De-
Hon, and Michael Pradel. Preventing dynamic library
compromise on node.js via RWX-based privilege re-
duction. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’21, page 1821–1838, New York, NY, USA, 2021.
Association for Computing Machinery.

784    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://bit.ly/3s112R5


[65] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 4th edition, 2015.

[66] Andy B Yoo, Morris A Jette, and Mark Grondona.
Slurm: Simple linux utility for resource management.
In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 44–60. Springer, 2003.

[67] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

A Artifact Appendix

The structure of this section mirrors the artifact evaluation
process. It is a shorter version of the README available in
the frozen osdi22-ae branch of PASH’s GitHub repository.
At a glance:

• Artifact available: Relevant links pointing to online re-
sources.

• Artifact functional: Documentation, completeness with re-
spect to the claims in paper, and exercisability.

• Results reproducible: Instructions for reproducing cor-
rectness (§7.1), performance (§7.2), and microbench-
mark (§7.3) results.

A.1 Artifact available
The implementation described in this paper has been incor-
porated into PASH, an MIT-licensed open-source software
available by the Linux Foundation. Below are some relevant
links:

• PASH is permanently hosted on the GitHub binpash orga-
nization.

• The PASH website is available at binpa.sh and
https://binpash.github.io/web/.

• PASH has joined the Linux Foundation and is available via
Dockerhub.

• PASH developers hang out on the pash-discuss mailing list
and discord.

PASH is developed actively, forms the foundation of further
research on the shell, and has received open-source contribu-
tions from developers outside the core development team.

A.2 Artifact functional
Fig. 1 gives an overview of the interaction between different
components and the correspondence of system components

to sections. Below we provide links to the source code imple-
menting them. Note that at the time of writing the terminology
in the code is somewhat different from the one presented in
the paper; we hope to align the code with the paper soon.

• Preprocessor (§3.1 and 3.2): The preprocessor uses the
parser (below) to instrument the script AST with calls to
the JIT Engine.

• Parsing library (§3.3): The parsing library contains Python
bindings for the dash parser and a complete unparser im-
plementation.

• JIT engine (§4): The JIT engine transitions between shell
and PaSh mode and interacts with the parallelizing compi-
lation server (below).

• Parallelizing compilation server (§5): The parallelizing
compilation server handles compilation requests for par-
allelizing regions of the script. The server contains the
following subcomponents: (i) the early expansion com-
ponent (§5.2); (ii) the dependency untangling component
(§5.3), enabled with --parallel_pipelines; and (iii) the
profile-driven configuration component (§5.4), enabled
with --profile-driven.

• Commutativity awareness (§6): It consists of (i) annotations
indicating whether a command is commutative (e.g., sort)
and (ii) dataflow nodes for orchestrating commutativity-
aware parallelization—e.g., c-split, c-wrap, c-strip, and
c-merge.

• The paper also claims that the core of the server has been
modeled and verified using SPIN. The modeling of the
dependency untangling algorithm in Promela (SPIN’s lan-
guage) can be found in algorithm.pml. The model captures
compilation requests of regions with non-deterministic
read/write dependencies, and ensures that no two regions
with dependencies are running together, while also ensuring
that both the server and the engine eventually terminate.

A.3 Results reproducible
The paper contains three classes of experiments, focusing on:

• correctness/compatibility, using the entire POSIX test suite
as well as additional scripts (§7.1).

• performance gains achieved by PASH-JIT’s paralleliza-
tion, evaluated using a variety of benchmarks and work-
loads (§7.2).

• PASH-JIT-internal overheads and associated optimiza-
tions (§7.3).

Links to these can be found in the relevant section of the
artifact README. The POSIX test suite is from the Open
Standards Group and thus cannot be shared outside the Docker
container on the machine shared with the AEC reviewers.
These tests run via CI on every commit on the PASH project.
Instructions to verify the dependency untangling algorithm
can be found here.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    785

https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#artifact-available
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#artifact-functional
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#results-reproducible
https://github.com/binpash
https://binpa.sh/
https://binpash.github.io/web/
https://www.linuxfoundation.org/press-release/linux-foundation-to-host-the-pash-project-accelerating-shell-scripting-with-automated-parallelization-for-industrial-use-cases/
https://hub.docker.com/r/binpash/pash
https://groups.google.com/g/pash-discuss
https://discord.com/channels/947328962739187753
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime.sh
https://github.com/binpash/pash/blob/osdi22-ae/compiler/parser/ceda/
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime.sh
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/expand.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/expand.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py#L172
https://github.com/binpash/pash/blob/osdi22-ae/annotations/sort.json#L18
https://github.com/binpash/pash/blob/osdi22-ae/runtime/r_split.c
https://github.com/binpash/pash/blob/osdi22-ae/runtime/r_wrap.c
https://github.com/binpash/pash/blob/osdi22-ae/runtime/r_unwrap.c
https://github.com/binpash/pash/blob/osdi22-ae/runtime/r_merge.c
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval/algorithm.pml
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#results-reproducible
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#additional-artifact-evaluation-spin-verification-of-dependency-untangling




Hubble: Performance Debugging with
In-Production, Just-In-Time Method Tracing on Android

Yu Luo
University of Toronto

Kirk Rodrigues
University of Toronto

Cuiqin Li
Huawei Technologies Co., Ltd.

Feng Zhang
Huawei Technologies Co., Ltd.

Lijin Jiang
Huawei Technologies Co., Ltd.

Bing Xia
Huawei Technologies Co., Ltd.

David Lion
University of Toronto

Ding Yuan
University of Toronto

Abstract
Hubble is a method-tracing system shipped on all supported
and upcoming Android devices manufactured by Huawei, in
order to aid in debugging performance problems. Hubble in-
struments every non-inlined bytecode method’s entry and exit
to record the method’s name and a timestamp. Instead of per-
sisting all data, trace points are recorded into an in-memory
ring buffer where older data is constantly overwritten. This
data is only persisted when a performance problem is detected,
giving engineers access to invaluable, detailed runtime data
Just-In-Time before the detected anomaly. Hubble is highly
efficient, with its tracing inducing negligible overhead in real-
world usage and each trace point taking less than one nanosec-
ond in our microbenchmark. Hubble significantly eases the
debugging of user-experienced performance problems and
has enabled engineers to quickly resolve many bug tickets
that were open for months before Hubble was available.

1 Introduction

Today, Android devices are pervasive and tightly integrated
into people’s daily lives, yet users still experience perfor-
mance problems when using these devices. Unlike Apple’s
iOS and iPhone, the Android platform is far from a tightly-
coupled monolithic ecosystem—the hardware (manufactured
by OEMs), infrastructure system software (maintained by
Google and customized by OEMs), and applications are pro-
vided by different parties, and all layers are released in a rapid
yet uncoordinated development cycle. This open platform
makes testing enough combinations of hardware, systems soft-
ware, and applications particularly challenging. Thus, many of
the performance bugs that escape current testing practices are
intermittent, manifesting across multiple components main-
tained by different entities.

When end users experience an issue, it is often systems
vendors that shoulder the blame, before the root cause is ex-
posed [49]. This is particularly true for Android given its huge
user base, many of whom are not tech-savvy. When such users

experience an intermittent performance problem, they quickly
assume that their device is at fault, simply because they could
not immediately reproduce the issue on another device. How-
ever, the root cause could be in the application itself, only
triggered under specific conditions or inputs. To combat these
assumptions, device vendors are forced to devote ample engi-
neering and support resources to these issues.

Yet, diagnosing performance problems that occur on a
user’s device is extremely challenging, owing to a lack of suf-
ficient runtime information. While approaches like Windows
Error Reporting (WER) [21] are widely adopted, they can
only record runtime information after a problem is detected.
Oftentimes this is too late, as it misses crucial information
just before and during the problem. This is exacerbated for
performance problems, especially intermittent ones, because
the issue may vanish after being detected, before recording
starts. Indeed, the primary use of WER is not to record enough
information to debug an issue, but to collect error statistics
that are then used to prioritize debugging effort.

Recording debugging information before the problem oc-
curs is challenging. We cannot accurately predict when a
problem will occur, so the only option is to continuously
trace the system during normal execution. However, over-
head is a concern. Unlike servers, mobile devices are heavily
resource-constrained and their workloads are overwhelmingly
interactive. Sampling-based profiling tools are available, but
their trade-off between informativeness and performance is
poor. Non-sampling-based profiling tools, on the other hand,
are too heavyweight for continuous tracing. For example,
existing profiling tools on Android like Systrace [25] and
Android Studio’s CPU Profiler [24] can trace every method
call of an application. However, enabling this type of tracing
noticeably slows down an application, sometimes by more
than 10×, which is unsuitable for continuous use in produc-
tion. Individual applications may implement their own in-app
tracing [18,23,46], but such traces are typically only available
to those applications themselves.

As a result, problems reported to Android device vendors
typically only include system logs, sampled statistical metrics,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    787



Design Unnoti- No Main- big.
ceable src. tain LITTLE

Instrumentation via JIT 3 3

Ring-buffer & encoding 3

Hand-optimized asm 3 3 3

Lock-free control 3

Table 1: Hubble’s designs and the requirements they satisfy. The
headings for the requirements are truncated as follows: “Unnotice-
able” refers to having unnoticeable overhead. “No src.” refers to
not requiring source code. “Maintain” refers to being maintainable.
“big.LITTLE” refers to supporting both big and little cores.

sparse Systrace traces, and details recorded after a problem
has occurred, like the device model, application name, and
symptom. Most times, this is not enough to be useful in de-
bugging intermittent performance problems, and engineers
are left “debugging in the dark.” Consequently, many bug tick-
ets are left open for months without any hope of resolution.
Worse yet, many bugs cannot even be properly triaged, and
after rounds of finger-pointing, it is often the low-level system
engineers that bite the bullet.

1.1 Challenges and Opportunities

Therefore, a production tracing system that can provide fine-
grained observability is desperately needed. However, con-
tinuous tracing in production is challenging; it needs to sat-
isfy a number of stringent requirements. First, the worst-case
overhead must be unnoticeable (it cannot exceed 3% or in-
crease the number of performance regressions throughout
the deployment cycle), regardless of whether the application
is running on the powerful (big) or weaker (little) cores in
ARM’s big.LITTLE architecture. In addition, the tool should
trace applications without access to their source. Finally, it
needs to be easy to maintain, and easy to merge with every
new (and often feature-breaking) Android release.

These goals and constraints are stricter than what is of-
fered by existing solutions. For instance, while record and
replay (R&R) can faithfully replay the entire execution, we
are not aware of any R&R system that can achieve worst-case
overhead below 3%. In fact, most literature [30,33,35,57] em-
phasizes the average overhead; for production tracing tools
on Android devices, engineers are primarily concerned with
the worst-case instead of the average. In addition, R&R tech-
niques typically require deep integration with the Android
runtime which means that they cannot be easily maintained.

Another challenge offered by the Android runtime environ-
ment is the semantic gap between an application written in
a high-level language (Java) and its native execution, which
renders a rich set of system profiling tools such as gprof [27]
ineffective without the runtime’s support. When applied to
runtime workloads, these profilers only profile the runtime’s
execution instead of the applications running on top of it. For

example, applying gprof to a runtime workload only provides
the call graph of the runtime itself (including the interpreter,
GC, and JIT-compiled code), instead of the call graph of the
Java application.

Android [26] and other runtimes [7] can output symbol
information during execution so that system profiling tools
can be applied to profile language-level executions. This ap-
proach does not completely close the semantic gap for a few
reasons. First, each profiling tool must support using these
symbols; currently only the sampling-based perf [39] tool
supports using the symbols, and only for JIT-compiled code.
Android extended and integrated perf such that it can also pro-
file the interpreter’s execution at the language-level [26]. In
addition, perf expects every symbol to have a unique memory
address, which is not always true; for instance, the runtime
may update JIT-compiled code with application hot-patching
or recompilation based on new profiling information, thus
unloading old mapped code and reusing the page [26].

Yet, the runtime environment also presents a unique op-
portunity: trace points can be embedded and removed trans-
parently by the runtime without modifying the application’s
source. This opportunity remains under-exploited despite the
popularity of managed languages (the five most popular lan-
guages on GitHub in 2021 were runtime languages). To the
best of our knowledge, none of the existing language runtimes
offer detailed tracing tools that can be used continuously in
production. For example, the OpenJDK JVM provides a pow-
erful JVMTI debugging interface that can embed breakpoints
in applications. However, this means that execution has to be
deoptimized and run in the interpreter (rather than JIT com-
piled). Therefore, it is mostly suitable for use in development
environments. Many runtimes also provide sampling-based
profiling features that show “hot” code paths, but none provide
continuous method-level tracing suitable for production.

1.2 Contributions

This paper presents the design and implementation of Hubble
that satisfies the aforementioned goals. Hubble can capture
most method entry and exit points of any application’s threads,
just-in-time before a failure. We designed Hubble by combin-
ing several well-known techniques in a novel way that takes
advantage of the Android platform. Table 1 shows Hubble’s
major designs and the requirements they satisfy.

First, Android applications are typically downloaded as
bytecode and then either compiled or interpreted on the de-
vice; Hubble leverages this runtime environment to automat-
ically embed its tracing logic into the compiled binary or
interpreted logic. This enables efficient tracing, as the trac-
ing logic can be inlined into the application, avoiding more
expensive trampolines (i.e., jumps in control flow) that are
common in other tracing tools. In addition, this means that
Hubble is a purely black-box approach that does not depend
on the application’s source code.

788    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



In addition, Hubble writes trace points to an in-memory
ring buffer that is only flushed when a problem is detected.
This allows it to run continuously and capture information
just-in-time leading up to a failure. By designing a concise,
variable-length encoding, such that most trace points occupy
eight bytes, a small (32MB) ring buffer is enough to capture
sufficient debugging information.

Third, Hubble’s performance-sensitive instrumentation
logic is written in assembly. This ensures that performance
is optimal even on a device’s low-power (little) cores, which
cannot perform out-of-order execution or have small instruc-
tion reordering buffers. In addition, this decouples Hubble
from the Android compiler’s compilation flow, so it avoids
having the compiler affect the correctness of the tracing logic,
and eases maintainability.

Finally, Hubble avoids using expensive synchronization
primitives [14] in two ways: threads write trace points to
thread-local buffers, avoiding inter-thread synchronization;
and, Hubble communicates with these threads by using a
purpose-built lock-free synchronization protocol.

The end result is a highly efficient method-tracing system
sufficient for debugging intermittent performance bugs. In
our microbenchmarks, each trace point costs less than one
nanosecond for nearly empty methods, and tracing overheads
are quickly amortized when methods perform meaningful
operations. Hubble’s tracing overhead is also unnoticeable in
Huawei’s continuous-integration performance testing infras-
tructure, which includes a variety of workloads and devices.
Hubble’s memory overhead is approximately 64 MB by de-
fault, accounting for two 32 MB ring buffers. As of 2021,
Huawei’s lower-end smartphones have at least 4 GB of RAM,
while higher-end ones can have up to 12 GB. Therefore, Hub-
ble’s memory overhead is less than 2%.

Hubble also strives to protect user privacy. Similar to ex-
isting error reporting systems such as WER [21], MacOS [2]
and Mozilla [34] crash reports, Hubble’s traces are only col-
lected with user consent. However, these other systems collect
a minidump of the memory image, whereas Hubble’s traces
are far less sensitive: they only consist of method names and
timestamps and do not contain any variable values.

Hubble has been integrated into Huawei’s core Android
OS codebase, deployed across a wide range of smartphone
and tablet product lines, since August, 2020. Older devices
may receive Hubble’s functionalities via an over-the-air OS
update. Since deployment, Hubble has significantly eased
the debugging of intermittent performance problems. In fact,
engineers were able to quickly resolve many performance
problems that remained unresolved for months.

This paper makes the following contributions:

• The design and implementation of Hubble, a highly efficient
method tracing subsystem for Android, that satisfies a set
of unique, practical constraints, some of which are rarely
mentioned by existing literature.

• Integration of Hubble’s traces with existing debugging
tools, like Perfetto [40] which can show call charts. This
significantly improved the trace’s utility, where developers
can cross-examine Hubble traces with other runtime data.

• Case studies on how Hubble diagnoses real-world perfor-
mance bugs which cannot be resolved without it.

Hubble also has the following limitations. First, it can
only embed tracing logic into executions that go through
the Android compiler or interpreter (from bytecode); Hub-
ble cannot trace native libraries like those invoked through
the Java Native Interface (JNI). In addition, Hubble’s trace
buffer could pollute the CPU cache and slow down cache-
optimized workloads (e.g., loop tiling [8]). However, while
cache-optimization is commonplace in server workloads, it
is uncommon on smartphones, especially in the interactive
UI-thread. Nonetheless, we evaluate this effect in §8.

2 Related Work

Record and replay (R&R) tools [10,15,16,29,30,35,36,38,50,
57] work by recording a user’s input and all non-deterministic
events (e.g., scheduling), so that the execution can be faith-
fully replayed. R&R tools do not meet our requirements for
a few fundamental reasons. The first is overhead. Among
all R&R tools, Reverb [35] reported the best performance,
yet its overhead is still 5.5% on average (the worst-case is
not reported). It works only on JavaScript web applications,
where threads communicate using a message-passing inter-
face. When threads share memory, R&R incurs even higher
overhead. For instance, DoublePlay [57] reported a worst-case
overhead of 11% for network-bound workloads (Apache web-
server), 19% for disk-bound workloads (MySQL), and 278%
for CPU-bound workloads (SPLASH-2 ocean). To achieve
low overhead, some tools [33, 38, 45] do not record all non-
determinism which prevents accurate replay. Second, since
intermittent performance bugs may take days to occur, R&R
traces will grow untenably large. While checkpointing could
allow replay from a partial trace, the checkpointing operation
itself is expensive [50]. Compared to a call chart, an R&R
trace also imposes much larger privacy concerns. Finally,
R&R tools require deep integration with the Android runtime
and compiler. For instance, applying DoublePlay’s approach
to Android would require the runtime to run a parallel execu-
tion of the application, checkpoint and compare state between
the two processes, and so on. Hence, R&R tools would be
difficult to maintain within Android.

An attractive alternative is to use hardware-support, like In-
tel PT or ARM ETM, to record branch-level traces [12,28,60].
These tools have a worst-case runtime overhead of 1–2%.
However, there are two challenges on ARM devices. First,
the semantic gap on Android’s runtime complicates the de-
coding of the branch-level trace, as it only provides the traces
of the runtime’s execution instead of the application. Second,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    789



hardware support for tracing is restricted to development plat-
forms (most ARM processors on production Android devices
do not support the feature) [4].

Only a limited set of bytecode method tracing tools are
available on the Android platform. Android Studio’s CPU
Profiler can trace every method call, but its overhead is incred-
ibly high (a worst-case of 921× in our evaluation), because
instead of embedding the tracing logic into the compiled bi-
nary, it jumps into the Android runtime after every method
call. Internal tracing utilities within Android mostly leverage
Java Agent, JVMTI, or equivalent ART instrumentation in-
terfaces to perform method tracing. These mechanisms are
also expensive as they force applications to be interpreted
only. Aspect-oriented frameworks such as Tai Chi [53] and
Logan [55] are also available to intercept method calls at run-
time to execute arbitrary tracing code. However, they either
require modifications to the application’s source code or root
access. The fastest available method tracing utility that we are
aware of, Nanoscope [54], primarily targets method tracing
inside an x86 Android emulator, costing up to 10× higher
memory usage and performance overhead, so it is mostly
useful in an application development environment.

Some tools are able to perform in-application tracing with
low overhead in production. For instance, Firebase perfor-
mance monitoring [23] collects various metrics (e.g., startup
time) and allows developers to insert additional trace points.
AppInsight [41] instruments Windows Phone application bi-
naries to log whenever the runtime calls into and returns from
application methods. The instrumentation has sufficient de-
tail to allow a server to reconstruct how a user request was
processed across different application threads and what the
critical path is. These tools typically trace the entire run of an
application, but at a low enough granularity that the trace does
not grow untenably large. As a result, they are useful for ap-
plication developers to locate bottlenecks in their application;
but the coarseness of the trace may necessitate additional de-
bugging information to locate the exact root cause, especially
if the bug is in the underlying systems which are not traced.
Timecard [42] goes beyond tracing by using AppInsight’s
traces to adjust the server’s computation quality (in real-time)
to meet an end-to-end response deadline.

There are also a few high-performance logging solu-
tions like NanoLog [58] and Log20 [59] that can provide
nanosecond-level logging. Both write data to thread-local
ring buffers and NanoLog uses a specialized encoding to save
space. NanoLog uses only the existing log statements in the
application while Log20 can be used to determine where best
to place log statements based on profiling the application’s
usage pattern.1 In any case, the generated trace is only as
detailed as the developers’ instrumentation.

Outside of the Android platform, there are many call pro-
filing tools like gprof [27], Fay [17], ftrace [51], perf [39],

1In fact, the initial goal of this project was to integrate Log20 into
Huawei’s Android platforms.

DTrace [9], and SystemTap [52]. These tools support various
degrees of tracing from periodically sampling the call stack
to calling user-defined methods using dynamic instrumenta-
tion. However, to capture traces that are detailed enough to
diagnose intermittent bugs, these tools incur overhead that
prevents them from tracing continuously in production sys-
tems. These tools typically require calling a method in their
instrumentation, whereas Hubble directly inlines the tracing
code into each method.

There are a large number of tools designed to trace each
request in a distributed system. Examples include Project5 [1],
MagPie [5], X-Trace [20], Dapper [47], ÜberTrace [11], and
Pivot Tracing [31], as well as commercial tools like Data-
dog [13] and New Relic [44]. These tools typically embed
trace points in critical system or network events, such as RPCs,
and record an ID that is unique to each request.

3 Case Studies

We present two case studies to showcase how Hubble helped
in diagnosing real-world intermittent performance problems.
The first issue was within AppX, a third-party multipurpose
messaging, social media, and mobile payment application
with over a billion monthly active users. Occasionally, AppX
users experienced intermittent UI freezes (janks) of up to two
seconds. Engineers detected this problem by monitoring the
traces that Systrace continuously collects—namely, perfor-
mance alerts, sparse trace points, and metrics sampled at low
frequencies. Figure 1 (A) shows the available trace points ren-
dered as a method call chart in the Perfetto trace-visualization
tool. For the UI thread, this consists of only a few high-level
methods within the Android framework. The only conclusion
engineers can infer from this data is that the UI thread was
blocked for about two seconds during which it was supposed
to prepare the layout and content for rendering.

In contrast, the call chart based on Hubble’s trace, shown
in Figure 1 (B), accurately captures every method call in both
the application and the Android runtime. From the canonical
method names displayed in the chart, engineers were able
to quickly reconstruct the events that occurred before, dur-
ing, and after the UI jank. First, the user swiped back on the
device’s screen within AppX ( 1 ). Then, AppX initialized

a software keyboard to respond to the user’s action ( 2 ).
However, to display the keyboard, the scrollable chat compo-
nent must be resized ( 3 ), and this became the bottleneck.
Drilling down further, we can observe the series of method
calls responsible for generating the list of on-screen content
( 4 ). Specifically, we can see that the UI thread is primarily
blocked by various long-running methods belonging to AppX.
Now with concrete evidence, our engineers concluded that
the root cause was within AppX, and initiated a meaningful
collaboration with AppX’s developers.

The second issue was a longstanding performance bug

790    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



i android.view.V... a android.view.View android.w... andr...
i android.view.V... a android.view.View android.w... andr...
i android.view.V... a android.view.View com.AppX... andr...

void android.widget.HwAbsListView.onLayout(boolean, int, int, int, int)
void com.AppX.ui.base.MMPullDownView.onLayout(boolean, int, int, int, int)

void com.AppX.pluginsdk.ui.chat.ChattingContent.onLayout(boolean, int, int,...
void com.AppX.pluginsdk.ui.chat.ChattingScrollLayout.onLayout(boolean, int, ...

void com.AppX.ui.widget.DrawnCallBackLinearLayout.onLayout(boolean, int, int...
void com.AppX.ui.KeyboardLinearLayout.onLayout(boolean, int, int, int, int)

void com.AppX.ui.LayoutListenerView.onLayout(boolean, int, int, int, int)
void com.AppX.ui.widget.SwipeBackLayout.onLayout(boolean, int, int, int, int)

void com.AppX.ui.widget.DrawnCallBackLinearLayout.onLayout(boolean, int, int,...

co... jav... v java.lang... void com.AppX... j v

Choreographer#doFrame
traversal

layout
obtainViews o setupListItem obtai...obtainView

m

t
b

bo...
bo...
bo...
vo...
in...
in...
in...

b j v
v

void com.AppX...
a
a
c
c
v
v
v
v

bo...
bo...
bo...
vo...
in...
in...

b i
i

b
b

b v
a
a
j
v

vvo...v v
vv

v v

v
v

v
v

bb

v

+631.9 ms +1.1 s +1.6 s +2.1 s +2.6 s +3.1 s +3.6 s +4.1 s

Method:
java.lang.CharSequence
com.AppX.pluginsdk.i.i.c(
  android.content.Context,
  long, Boolean)

Duration: 358ms 973us

UI jank greater than 2 seconds

1

2

3

4

A

B

Figure 1: Screenshot of method call charts in Perfetto for the UI thread, which performs all UI and Android framework operations. (A) Traces
generated by Systrace, (B) Traces with Hubble. Circled in red are 3rd-party application methods with long execution time. (A) includes all of
Systrace’s trace points recorded during this time period, whereas (B) is filtered to render only approximately 10% of all available methods.

within an internal business teleconferencing application. Af-
ter the end of a teleconference, the application occasionally
froze for up to a second on a small number of user devices.
This annoyed users but it was not until months later that a
particularly vocal employee reported the issue to manage-
ment, who then opened a support ticket requesting that the
issue be resolved. Our device support engineers attempted to
reproduce the problem on their own, but all attempts were
unsuccessful. The only method call captured by Systrace was
binder_transaction(), which does not explain why the issue
occurred. Further efforts to collaborate with the disgruntled
users were also ineffective as most users were either too busy
or otherwise unable to provide more detailed reproduction in-
structions. A few users were even invited to collaborate with
an engineer to reproduce the problem, but the intermittent
issue could not be reproduced after multiple attempts.

Several months later, Hubble, in pre-beta at the time, was
available for internal use. The disgruntled employees hap-

pily consented to deploying Hubble onto their mobile device
via an over-the-air Android OS update. Within a few days,
performance anomalies were detected and their associated
trace data was automatically collected. After a quick glance
at Hubble’s call chart, the support engineers identified that the
teleconferencing software was calling Thread.sleep() from
the UI thread after sending an Android Binder (IPC) system
service call. Closer inspection revealed that immediately after
a conference call ended, a series of method calls related to the
Audio Manager were performed, prior to the Thread.sleep().
This behavior was unexpected and if not for the complete
method call trace, which contained both the application and
Android framework layers, we would still be stuck with many
of our initial theories; e.g., the application could be collecting
and sending meeting summary data back to the teleconference
service or an unexplained scheduling issue.

With this new information, we brought in a developer with
expertise in the Android audio stack. After examining Hub-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    791



ble’s call chart, the developer immediately identified the root
cause. The problem can only be reproduced under very spe-
cific conditions where users must be connected to Bluetooth
headsets using a special mode prior to ending the meeting.
After the meeting ended, the application immediately rerouted
audio to Bluetooth devices connected over the A2DP stream-
ing protocol. This rerouting process requires re-initialization
of Bluetooth’s SCO (synchronous connection-oriented) link
where the Thread.sleep() was invoked to wait for the link
to be established. We were unfamiliar with these details, but
with the help of a developer with the necessary domain knowl-
edge, the issue was promptly fixed by moving the connection
and rerouting logic into an asynchronous event handler.

4 Background and Overview

This section first discusses Hubble’s design goals and the
role it plays in the failure diagnosis process, which helps to
understand Hubble’s design. We then provide an overview of
Hubble, leaving the details to the subsequent sections.

4.1 Goals and Requirements

Hubble’s performance overhead and resource usage must be
undetectable in all real-world usage scenarios. In practice,
this translates to two requirements: Hubble’s worst-case over-
head in real-world scenarios, in terms of both latency and
memory usage, should be less than 3%. This target was set
by our quality assurance team since they cannot reliably mea-
sure overhead below 2–3% on mobile platforms, even under
ideal conditions. Nonetheless, this is similar to the target set
by other practitioners; Google, for example, reported a 2%
overhead budget to deploy tracing tools in production server
workloads [32, 48]. The second requirement is that the over-
head budget should be respected regardless of whether Hubble
is tracing workloads on big or little cores. Besides not being
as fast as big cores, little cores also tend to lack advanced fea-
tures like out-of-order execution. Thus, they enforce stricter
restrictions on the tolerable overhead for Hubble. In any case,
satisfying the target overhead only allows a tool to pass the
deployment planning review. To be deployed in production,
the tool needs to go through a systematic procedure consisting
of three phases:

1. Internal testing. We simulate users using our devices
by sending a stream of pseudo-random inputs to a large
fleet of physical devices. Each device collects various met-
rics like application startup times, the number of dropped
frames, and so on. Each metric forms a statistical distribu-
tion over a large number of trials. We compare the distri-
bution before Hubble was added with the one after. If the
differences are statistically insignificant, Hubble has not
caused a noticeable change, and we move to phase 2.

2. Internal beta release. We push engineering builds to a
small group of internal beta testers on their daily-use de-
vices. We ask these users to report any performance re-
gressions they notice and any new performance issues will
need to be resolved before moving to the next phase.

3. Public beta release. A build is pushed to all beta users
(tens of thousands of users), and we monitor all new per-
formance anomaly reports. We only consider Hubble’s
overhead as undetectable when the beta build does not
show a statistically significant increase in reports. Only
then can the tool be further released to the entire public.

Android applications are typically distributed as bytecode
compiled from high-level languages like Java. Once down-
loaded, this bytecode is either ahead-of-time (AOT) com-
piled, or executed within the Android runtime (similar to the
Java Virtual Machine). The Android runtime compiles fre-
quently executed code Just-in-Time (JIT), using the same
AOT compiler. An already-compiled application could also
be re-compiled, if runtime profiling reveals new optimization
opportunities. Applications could also contain native libraries,
i.e., code that was already compiled into native instructions.
Thus, Hubble must be able to operate with only access to the
downloaded or generated bytecode or native instructions.

Easy maintainability across Android versions is required.
Android is typically updated every six to twelve months, with
each new release potentially breaking features or making
large-scale changes internally. Thus, Hubble should be modu-
larized and decoupled from the upstream source.

Finally, as the case studies highlight, Hubble needs to be
able to trace both the executions of the application and the An-
droid framework to be useful. Ideally, device vendors would
only be responsible for analyzing and debugging bugs within
Android, and application developers would only be respon-
sible for bugs within the application. The reality, however,
is that bugs in the Android framework may manifest them-
selves in the application and vice versa. Furthermore, system
traces are not available to application developers (in order to
maintain users’ security) and in-application traces may not
be available to or easily understandable by device vendors.
Exacerbating the issue, application developers and even in-
ternal developers at Huawei are reluctant to investigate bug
reports without clear evidence that the bug is in their code.
Whole-system method traces allow engineers to infer roughly
what the application and framework are doing, together, so
that the problem scope can be narrowed down to specific
call chains and system services. Essentially, Hubble needs to
bridge the gap between system and application developers,
which in turn, will significantly ease triaging and debugging
for both parties.

Overall, these requirements highlight the practical chal-
lenges of designing and deploying tracing tools onto a com-
plex user-device platform such as Android.

792    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



4.2 The Failure Diagnosis Process
To understand Hubble’s utility, we first need to overview the
failure diagnosis process. Android devices ship with a set
of anomaly detectors to detect common issues like lags in
the UI. When an anomaly detector fires, the system saves
several pieces of data such as logs, metrics, and traces. At an
appropriate time, these data will be uploaded to the device
vendor for analysis.

4.2.1 Anomaly Detection

Since Hubble’s utility depends on an anomaly detector firing,
we first provide background on the detectors available in
the Android Open Source Project (AOSP) and our version
of Android. There are two branches of anomaly detection
mechanisms that device vendors can use in the production
environment: Those implemented by Android itself and those
implemented by in-house engineering teams. Both branches
use information gathered either from the Android runtime
layer or from the Linux kernel. In addition, both branches are
generally tuned to be conservative to reduce the number of
false positives. However, if a severe performance issue occurs,
a signal will most likely be raised.

The anomaly detectors implemented in the AOSP have
been continuously developed for over a decade. For exam-
ple, the most frequently used anomaly detector is the UI jank
(lag) detector, which has an extremely close correlation to
user-observable performance issues. It will alert if a number
of consecutive display frames are delayed longer than a pre-
defined threshold. Android officially groups all its tracing,
profiling, and anomaly detectors under one umbrella term
known as systrace. In production environments, most of these
anomaly detection signals and alerts are continuously cap-
tured and analyzed in real time.

Internally, we utilize a number of additional black-box
anomaly detectors which monitor for a number of kernel level
indicators and hardware events. For example, we implemented
a system-level, HCI-based detector: Studies show users start
to perceive a delay after 400-600ms. So by instrumenting the
runtime where (1) a touch is detected by the screen, (2) when
the signal is delivered to the application, and (3) the appli-
cation generates a response, we can accurately measure the
delay between (1) and (3) and fire an alert when the delay is
longer than 400ms. Furthermore, we can attribute the delay to
either signal delivery in the runtime or within the application.

Other black-box anomaly detectors could be as simple as
monitoring whether the device has entered the thermal throt-
tling mode. Most detectors, however, don’t rely on a single
metric. Instead, they correlate multiple metrics. For example,
if a detector detects that the current GPU memory bandwidth
utilization is high, it then checks other metrics such as the ren-
dering queue backlog length; only if multiple of them suggest
an anomaly does the detector fire a warning. Experimental
anomaly detectors may further leverage real-time machine-

learning monitoring Android runtime metrics like the number
of locks held, memory allocation and garbage collection fre-
quency, and so on.

4.2.2 The Utility of Hubble

When Hubble’s traces are collected, they are integrated into
systrace and Perfetto when presented to engineers with other
runtime data. Perfetto and systrace are powerful debugging
tools that can visualize a variety of runtime data, including
visualizing the method trace as a call chart or flame graph.
The tools also have search and analytics (e.g., using SQL)
capabilities that allow developers to correlate data from dif-
ferent sources. For instance, developers can cross-examine
traces with logs and hardware metrics. Developers can also
alert based on traces. For example, one use case of Hubble
is to search for the call stack that matches a specific method
invocation order, get an average runtime, and alert when it
exceeds a threshold. As a result, Hubble is not a standalone
tool, nor the only debugging tool. Instead, developers usually
start debugging by first examining the data from existing logs
and metrics, and some bugs can be resolved with these alone.
However, the remaining bugs—typically hard-to-diagnose,
intermittent issues—require more insight, which is where
Hubble excels.2

Key to Hubble’s success is the visibility it provides into
application and framework-level behaviour, without which en-
gineers cannot triage issues. Hubble’s detailed method traces
also allow developers to better understand how a bug can
be reproduced; with a reproduction, developers can repeat-
edly reproduce the bug in a development environment (with
heavyweight tracing) until the issue is understood.

Nonetheless, there are some limitations to Hubble’s utility.
We have found Hubble’s traces are not as useful in the follow-
ing cases: (1) if the bug is in the system’s native code (which
is not traced), (2) if the method-level trace is not fine-grained
enough (e.g., an infinite loop without making any function
calls), or (3) if a bug is caused by incorrect data-flow (i.e.,
an incorrect variable value) that does not affect the call path
(otherwise it could be inferred by Hubble’s trace). However,
Hubble’s traces can still help developers to significantly nar-
row down the problem scope (e.g., they can locate the method
that contains the infinite loop). In theory, if the distance be-
tween the root cause and the symptom is too long, Hubble
could miss the cause due to the ring buffer size. However, we
have not yet encountered such a case in practice.

2We do not have an exact number of issues exclusively resolved by Hub-
ble, because Hubble’s traces are integrated into existing debugging tools
with other traces. However, we noticed the number of bug tickets containing
intermittent and difficult to reproduce bugs quickly dropped after Hubble
was first made available.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    793



4.3 Overview of Hubble

Hubble modifies the compiler and interpreter to instrument
tracing logic at the entry and exit of every non-inlined byte-
code method, whether it is interpreted, ahead-of-time com-
piled, JIT compiled, or recompiled. Portions of the Android
framework itself and factory installed apps, i.e., the apps that
are packaged by the OEM vendor, could be already in com-
piled form instead of bytecode; for these cases, the trace points
are embedded at the vendor’s site. Hubble can also trace calls
made using the JNI (when applications calls into the native li-
braries and the returns). However, function calls made within
native libraries cannot be traced by Hubble.

Hubble adds one system thread, the trace control thread,
to each application’s process that can turn tracing on or off
for any thread in the same process. Although Hubble instru-
ments all bytecode methods, by default, the control thread
only turns on tracing for the UI thread, which performs all
UI and Android framework operations. At every method en-
try and exit, Hubble’s tracing code writes an entry to a fixed
size in-memory ring buffer. When the buffer is full, the buffer
pointer will wrap around so the oldest data will be overwritten.

When a performance anomaly detector detects a perfor-
mance problem, the control thread will be notified. It then
notifies the UI thread to stop tracing, preventing useful de-
bugging data prior to the problem from being overwritten.
Once tracing has stopped, the control thread flushes the ring
buffer to disk, before restarting tracing. The saved trace file
could be sent back to Huawei to aid postmortem debugging,
or post-processed and analyzed on the device, off the critical
path, if a summary needs to be sent.

Each traced thread writes to a private ring buffer local to
itself. Hubble keeps at most N buffers in the system, from the
N threads that most recently executed in the foreground. Older
buffers will be reclaimed by the system. N is configurable and
the method trace logic can be programmatically enabled and
disabled for individual threads, either via the runtime or by
the user application itself. This means that any background
threads from almost any process, even short lived ones, can
be traced. However, if there are too many concurrent threads
being traced, Hubble will run into memory usage issues. To
solve this, we could have a ring buffer per core rather than per
thread; to differentiate trace points from different threads, we
could record the thread’s ID (available from a register in the
runtime) in each trace point. By default, N is set to 2. This
is sufficient to capture both the current foreground and most
recent background application’s UI threads.

5 In-memory Tracing

This section describes the design and implementation of Hub-
ble’s tracing logic. We first explain the information recorded
in each trace point and its encoding. We then discuss how we
integrated the tracing code into Android’s optimizing com-

ts      ptr

 ts     0x1
Entry

Exit

ptr
ts      ptr

 ts     0x0

64-bit mode 32-bit mode

(A)

(B)

 ts     0x0

Figure 2: Format and encoding of trace points at method entry
and exit, and in 64-bit and 32-bit execution modes. “ts” and “ptr”
are timestamp (generic timer count) and method pointer. A solid
bordered box represents a 64-bit slot. Underscores represent lossy
encodings of timestamps.

piler so that compiler optimizations do not affect our instru-
mentation.

5.1 Data Format and Encoding
Figure 2 shows the format of each trace point. As shown,
method entry points have a varying encoding depending on
the CPU’s execution mode and other factors explained later.
The CPU will change mode when executing a 32-bit or 64-bit
application. Method entry trace points contain a timestamp
and a method pointer, while exit points contain a timestamp
and the constant 0x0.

For timestamps, Hubble uses the Generic Timer [3] count
instead of the standard system clock. A Generic Timer is
a high resolution clock (nanosecond precision) and its tick
value can be directly read from a register on modern ARM
SoCs. It ticks at a constant frequency regardless of the CPU
operation speed and the counter value starts at 0 when reset.
When the trace is persisted, Hubble records the current time,
which can be used to reconstruct the absolute timestamp of
each trace point from the Generic Timer count.

The method pointer is the memory address of a metadata
object, ArtMethod, that describes each loaded class-method
and can be used to decode a method’s canonical name. As
part of the ClassLoader initialization process in Android’s run-
time (ART), an array of ArtMethods is allocated in a memory
region outside the managed heap (ignored by garbage collec-
tion). ArtMethods can only be added to this array and never
be modified nor removed. ART ensures that immediately af-
ter entering a method, the address of its ArtMethod is stored
in register r0. Since the lifecycle of the main ClassLoader,
which is responsible for loading all of the executed bytecode
methods, spans the entire duration of the application, we can
safely store the ArtMethod pointer in the trace buffer and
reconstruct the method name after the trace data is persisted,
so long as this happens before the application exits. Note that
applications could use additional custom ClassLoaders with
shorter lifecycles. If we persist the trace data after the custom
ClassLoader exits, we could dereference pointers that are no
longer valid. To avoid this, we install a cleanup hook for cus-
tom ClassLoaders to invalidate the trace buffer (or optionally
persist the trace data).

794    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0x8888888800000003

0x8888888800000001

0x88888887FFFFFFFF

0x8888888800000002

tr

Overflow

Detected

t3

t2

t1

STOP

Figure 3: Iteratively Recover Truncated Timestamps.

For each thread that is traced, the control thread allocates
storage for the trace in the traced thread’s local storage (Java
ThreadLocal [37]). This includes a ring buffer and metadata
such as where content in the buffer begins and ends. The ring
buffer is carved into an array of 64-bit wide integers in both
64-bit and 32-bit mode.

For the timestamp in each trace point, Hubble only stores
the lower 32 bits of the Generic Timer counter, regardless of
execution mode. (Even in 32-bit mode, the Generic Timer
counter is 64 bits wide because the value is fetched from a
co-processor that is not subject to the mode change.) Thus,
the recorded timestamp may wrap around, which we handle
during decoding.

Figure 3 shows how Hubble reconstructs the accurate times-
tamp from truncated ones. The last timestamp is a reference
timestamp (tr), which is the complete 64-bit Generic Timer
counter value recorded when the trace is persisted. Using tr,
we can iteratively reconstruct the upper 32 bits of the previous
three timestamps: if a previous timestamp has a lower value
than the current one (e.g., t3 versus tr), we assume it has the
same upper 32 bits; if it has a higher value (e.g., t1 versus
t2), we assume a wrap around occurred and the upper 32 bits
should be decremented by one.

Theoretically, this could lead to an error: if between two
consecutive trace points more than 232 ticks occur, the re-
constructed timestamp will be inaccurate. However, this is
unlikely to happen in reality. It takes 223.7 seconds on a Qual-
comm ARM SoC and a little over 37 minutes on a Huawei-
designed SoC for the lower 32-bit Generic Timer counter to
tick 232 times. So only if a method executes for more than
223.7 seconds, without calling another method or returning,
will an inaccuracy occur.

5.1.1 Format under 64-bit Mode

Hubble uses a variable-width encoding for the ArtMethod
pointer when executing in 64-bit mode. In this mode, the
pointer is 64 bits; but for real-world applications, the vast
majority of the pointers’ upper 32 bits have the value 0x0.
We exploited this observation to increase encoding efficiency.
When the upper 32 bits are 0x0, Hubble only records the lower
32 bits of the pointer (Figure 2 (A)). Together with the lower
32 bits of the timer count, a method entry trace point occupies
a single 64-bit buffer slot. If the upper 32 bits of the method

pointer are not 0x0, a method entry trace point occupies two
buffer slots (Figure 2 (B)). The first 64-bit slot is used to save
the complete 64-bit method pointer; in the second slot, the
upper 32 bits store the timer count and the lower 32 bits store
the constant 0x1.

The method exit trace point occupies a single 64-bit slot.
The upper 32 bits store the timer count, and the lower 32-bit
stores 0x0, indicating it is a method exit trace point.

Traces in this format can always be unambiguously de-
coded in reverse. To decode each trace point, Hubble first
checks the lower 32 bits of the previous slot. Depending on
whether its value is 0x0, 0x1, or another value, Hubble knows
that this trace point is either a method exit, a method entry that
is two slots wide (Figure 2 (B)), or a method entry that is one
slot wide (Figure 2 (A)). 0x0 and 0x1 cannot be method point-
ers since they are invalid method pointer memory addresses. A
method exit point is matched with the corresponding method
entry point in a LIFO manner (implemented using a stack).
Note that the decoding occurs server-side, after the persisted
trace has been sent back.

5.1.2 Format under 32-bit Mode

In 32-bit mode, both method entry and exit trace points use
a single buffer slot. The upper 32 bits are always the lower
32 bits of the timer count, like in 64-bit mode. For method
entry points, the lower 32 bits store the method pointer, and
for method exit points, the lower 32 bits store 0x0.

5.1.3 Efficient Recording

The tracing logic can be efficiently implemented by a few
assembly instructions. For example, Hubble uses only two
assembly instructions to store the method entry trace point
under 32-bit execution mode:

1 MRRC(al, scratch1 , scratch0 , 0b0001 , 0b1111 , 0b1110);
2 STRD(r0, scratch1 , MemOperand(buffer , 8, PostIndex ));

The first MRRC instruction is used to fetch the 64-bit Generic
Timer counter value into two 32-bit CPU registers: scratch1
and scratch0 (readers can ignore the other operands). Then
a STRD instruction is used to (1) store scratch1, which con-
tains the lower 32-bits of the Generic Timer counter, and r0,
which contains the ArtMethod pointer, to the memory address
stored in buffer register, and (2) increment buffer by 8 bytes
after the memory operation completes. So after this store
instruction, buffer will point to the next buffer slot.

Hubble’s tracing assembly is directly inlined in the basic
block at each method entry and exit. Comparatively, in other
profilers that use compiler instrumentations, the instrumented
code will call a special tracing function. For example, gcc -pg

instruments a call to the special function mcount(), which is
required for tools like gprof. While easier to maintain and
more portable, the added function call introduces overhead.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    795



When tracing is stopped, the valid portion of the ring buffer
is flushed to disk using an fwrite call. Three metadata files
are generated. First, a complete 64-bit Generic Timer counter
value (i.e., the reference timestamp) and the absolute system
timestamp are collected at the same time; this facilitates the
reconstruction of the actual, non-relative timestamp of each
trace point if needed. Then the current buffer position and size
are recorded. Finally, Hubble computes a symbol table, map-
ping each unique ArtMethod pointer value to the method’s
canonical name.

5.1.4 Alignment

Each trace point is always eight-byte (a word on 64-bit de-
vices) aligned. Eight-byte aligned memory accesses are cru-
cial to achieving the highest performance in both 32-bit and
64-bit mode on modern ARM SoCs. Unaligned accesses take
at least one more cycle than a properly aligned memory ac-
cess. In the worst case, a single unaligned access can cross a
cache-line boundary and generate two cache misses or even
two consecutive page faults. Worse yet, unaligned memory
accesses are an unsupported operation on low-power or older
ARM processors, so additional memory accesses and mas-
saging logic are required. Accordingly, we use 32 bits to
represent the constants 0x0 and 0x1, since the performance
gains of aligned accesses outweigh encoding inefficiency.

5.2 Hand-optimized Assembly

There are a few reasons to write the tracing logic in assem-
bly. First, it decouples Hubble from the Android compiler’s
compilation flow. If written in C++, the compiler could move,
reorder, or even remove the tracing logic (e.g., the tracing
logic accesses global variables without a memory barrier (§6),
which is an undefined behavior). By writing the logic in as-
sembly, we can insert it after the compilation stage, bypassing
any optimizations that are at odds with the tracing. To do
so, early in the compilation stage, instead of generating the
actual tracing code, we simply insert a special placeholder
instruction at every method entry and exit (including exits
due to exceptions); we then configure the Android compiler
to exempt this instruction from its later optimization stages.
After all the optimizations are performed, we replace this
placeholder instruction with the actual tracing instructions.
This also makes Hubble easy to maintain, as it is decoupled
from any compiler changes that are not backward compatible.

Using assembly also allows us to optimize for both big and
little cores. The Android compiler’s optimization is heavily bi-
ased toward the big core. For example, the compiler skips the
architecture-specific optimizations when they are unnecessary
on big cores that support out-of-order execution. However,
the little cores do not support out-of-order execution, so run-
ning the compiled code will result in poor performance. For
instance, each trace point needs to check if we are at the end

Trace point:
 7  if (start)

 8    trace...

 9    if (stop) {

10      stop=buffer;

11      start=0x0;

12    }

// Initialization

start=0x0;  stop=0x0;

    T1:L1

Control thread:
1  start=buffer;

2  wait(signal);

3  stop = 0x1;

4  while(stop==0x1)

5    sleep(..);

6  persist(..);

T2

T3:L3

T4

T5 T6:L1

T7
Traced thread

Control thread

Figure 4: Lock-free Synchronization Protocol.

of the ring buffer (and if so, we need to wrap around). This
check requires fetching the value of the ring buffer pointer
from memory. If we manually prefetch this pointer (in assem-
bly), it results in an approximate speedup of 35% on the little
core. The compiler, however, did not perform this prefetching,
because it expects the big core will perform the prefetching
automatically.

Finally, because we have domain knowledge of the tracing
logic and processor microarchitecture, we can perform better
optimizations than the compiler, regardless of whether it is
on the big or little core.

6 Tracing Control

Recall a system thread is responsible for notifying the traced
thread to turn tracing on or off. The traced thread (e.g., the UI
thread) is only responsible for (1) checking whether tracing
is turned on, and if so, (2) writing the trace points into the
trace buffer, and (3) turning tracing off if necessary. The rest
of this section describes how the two threads communicate
efficiently without synchronization primitives.

Figure 4 shows the communication between the control
thread and the traced thread. Lines 1–6 are the control thread’s
logic, whereas lines 7–12 are executed at every trace point
in the traced thread. Hubble uses two eventually-consistent,
shared variables, start and stop. start is unidirectional, i.e.,
it is set by the control thread and read by the traced thread,
and stop is bidirectional, as it can be set and read by both
threads. Initially, both variables are set to 0x0. To start tracing,
the control thread sets start to the address of the next buffer
slot (line 1 in Figure 4), and waits for a signal to stop tracing.
Therefore, the value of start indicates two things: whether
tracing is on or off, or the buffer position. At each trace point,
the traced thread first checks if start is 0x0, and only proceeds
with tracing if it is not (line 7).

To turn tracing off, the control thread sets stop to 0x1

(line 3 in Figure 4), and then enters a polling loop until stop
is changed to a value greater than 0x1 (lines 4–5). In the
meantime, the traced thread performs tracing and evaluates

796    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



the value of stop at the end of every trace point (line 9). Once
the traced thread detects that stop was changed to a non-zero
value, it enters the logic to stop tracing. The traced thread first
sets stop to the address of the current buffer pointer, i.e., the
end position of the buffer, at line 10. So stop also serves dual
purposes: whether tracing should stop (with value 0 or 1),
or the buffer end position. (Note that 0x0 and 0x1 are invalid
buffer memory addresses, so after line 10, stop will be greater
than 0x1.) Then the traced thread sets start to 0x0 at line 11,
to guarantee that tracing will be disabled immediately. Finally,
the control thread detects that the traced thread has stopped
tracing, so it can persist the trace or clean up the ring buffer.

Figure 4 also shows an example trace control-flow. Each
circle represents a trace point, with filled and blank shading
indicating whether trace data is written or not. At the begin-
ning, tracing is off. At T1, the control thread turns tracing
on at line 1 (L1) by setting start to a non-zero value. This
new value is propagated to the traced thread at time T2, as the
result of eventual consistency in the memory cache coherence
protocol. Then, the following three trace points are written to
buffer. At T3, the control thread turns tracing off by setting
stop to 0x1, which is propagated to the traced thread at T4.
The traced thread then executes lines 10–11, and at T5, the
control thread detects that stop was changed to a value greater
than 0x1; so it breaks out of the polling loop and persists the
trace. After the trace is persisted, the control thread restarts
tracing at time T6 (line 1).

This design is highly efficient. Each trace point needs to
check the values of start and stop only if the trace has been
started. start and stop are regular shared variables that are
almost always cached. In comparison, any alternative design
that uses synchronization primitives or atomic variables would
introduce much higher overhead in each trace point, which is
on the critical path.

Since tracing is stopped and the current ring buffer location
is written to the stop variable by the traced thread itself, no
additional trace point will be written to the buffer afterwards
and the buffer metadata will be consistent. For example, if
the last trace point is a 64-bit method entry occupying two
slots, it is guaranteed that both slots are written with the buffer
pointer correctly incremented before tracing is stopped.

If the traced thread is executing native code, either through
the JNI or a custom ClassLoader, it cannot respond to the
control thread’s stop tracing request, because the logic to stop
tracing is only instrumented in bytecode methods. Therefore,
the control thread further checks whether the traced thread
is in native execution when it attempts to stop tracing. If so,
the control thread will first obtain ART’s state transition lock
that prevents the traced thread’s execution from changing
state, i.e., from native execution back to the bytecode world
(either the interpreter or compiled code). Then the control
thread forcibly copies the buffer position to stop, and sets
start to 0x0, followed by a memory fence. Finally, the control
thread can release the state transition lock. A subtle data

race could occur during state transition where just before
the lock is obtained, the traced thread transitions back to the
bytecode world. Debugging this unfortunately took weeks,
but we fixed it by rechecking the traced thread’s execution
state after obtaining the lock.

7 Privacy and Security

Security and privacy are some of our top priorities. Hubble
does not collect personally identifying information, such as
phone numbers or user IDs. Hubble’s traces only contain
method names and timestamps, there are no actual data values,
not even parameter values. Widely-adopted error reporting
systems like Windows Error Reporting (WER) [21], MacOS’
crash report [2], or the Mozilla Crash Reporter [34], record
a subset of the memory state or often collect system logs. In
comparison, Hubble’s traces are far less sensitive. Similar
to WER and other widely-adopted error reporting systems,
Hubble uses an informed consent policy.

Even when user consent is given, Hubble further strives
to minimize the amount of data that leaves the device. Hub-
ble has the capability to perform the same analyses that are
performed server-side, locally on a user’s device, with only a
summary being sent back to the vendor. For example, Hubble
can quickly scan the trace files and compute the top methods
with the longest “self-execution-time”, or it can automatically
isolate and extract the longest method call chains from when
a performance anomaly occurred. Performance bug models
could be distributed to client devices, containing “signatures”
of problematic method names or method call chains, and if
there is a match, statistics could be sent back instead of the
complete trace.

Hubble also exploits many built-in data security features in
Android and the Linux kernel to protect trace data. The traces
are stored inside an application-private storage area that is
protected by the kernel-level application sandbox. Only the
application itself with matching its UID, device vendors, and
application developers—when they configure their mobile
device in debug mode—have access to the trace files.

8 Evaluation

Hubble has been repeatedly tested on Huawei’s performance
testing framework, which included the top 100 popular ap-
plications, with workloads including startup, stress testing
(simulated random screen touches at a high rate), and normal
usage simulations, on all supported devices. Overall, we have
found Hubble’s overhead is statistically insignificant in real-
world use-cases. Hubble tracing is now enabled by default in
all Huawei testing frameworks.

We have designed a few experiments to stress test and
study Hubble’s runtime characteristics, aiming to answer four
questions: (1) What is the runtime cost of Hubble’s tracing?

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    797



(2) What is Hubble’s effect on cache behavior and memory
bandwidth? (3) What is Hubble’s overhead in the most de-
manding real-world scenarios? (4) How long of an execution
trace can be stored in the ring buffer? We did not evaluate
power consumption. Despite best-effort attempts, we could
not reliably observe battery overhead in any experiments.
Huawei’s devices are shipped with aggressively tuned power-
saving profiles and thus far, we have not observed an increase
in reports of battery drain.

Unless otherwise specified, experiments were performed
on a Google Pixel 1 phone that is well-supported by the
open-source version of Android (AOSP). The phone con-
tains a Qualcomm Snapdragon 821 processor with two high-
performance cores each with a 64 KB L1 (divided equally
for instructions and data) and 1.5 MB L2 cache, and two
low-power cores each with a 64 KB L1 and 512 KB L2 cache.

We compared three execution modes: (1) baseline – the
phone running unmodified Android; (2) tracing off – Hubble
is enabled and applications are instrumented, but tracing is
turned off; and (3) tracing on. Baseline experiments were
performed on AOSP’s android-10.0.0_r2 [56] branch. We
recompiled the same branch with Hubble enabled.

Hubble’s overhead could only be measured reliably in CPU-
intensive and unrealistic microbenchmarks. Repeatedly run-
ning the two microbenchmarks in §8.1 and §8.2 causes the
CPU to quickly reduce its clock speed due to severe thermal
throttling. To improve the validity and reproducibility of the
experiments, we placed the phone on bags of ice water.

8.1 Trace Point Overhead

Hubble’s tracing overhead is amortized by the amount of work
performed by the traced method. Since Hubble’s tracing logic
does not impose any dependencies on the traced method, nor
does it use synchronization primitives on the critical path,
the amortization effect will be enlarged by the deeper CPU
pipeline. We evaluated both the cost of an individual trace
point as well as the overall runtime overhead as the method
performs more work. For comparison, we also evaluated An-
droid’s built-in method tracing utility, typically invoked via
Android Studio’s CPU profiler, henceforth referred to ASMT.

Listing 1 shows the method used. The amount of work done
can be controlled through the work parameter. To prevent the
method from being inlined by the JIT compiler, we added
tail-recursion on line 5. In addition, we executed the method
with a depth of 10 since the compiler still performs inlining
at lower depths. sum is carried across calls to ensure that the
loop is not optimized away by dead code elimination.

We ran the method with work values of 0, 1, 10, 100, and
1,000. We measured the runtime of two billion iterations. The
cost of a trace point is calculated as the overhead of the 0-work
experiment divided by two, since each method call contains
a method-entry and method-exit trace point. To ensure the
method is compiled by the JIT compiler before evaluation, we

Average
Cost (ns)

Standard
Deviation (ns)

Performance
Overhead (%)

ASMT
Tracing ON

32-bit 3,911.575 59.2450 920,587%
64-bit 3,366.050 57.8026 748,510%

Hubble Method
Tracing ON

32-bit 0.725 0.0551 171%
64-bit 0.650 0.0023 145%

Hubble Method
Tracing OFF

32-bit 0.001 0.0030 0%
64-bit 0.008 0.0027 2%

Table 2: Cost of a Single Trace Point

104

105

106 Android Studio Method Tracing
32-bit Trace On
64-bit Trace On

0 1 10 100 1000
Number of Work Iterations

0

50

100

150

   
   

   
   

   
   

   
Pe

rfo
rm

an
ce

 O
ve

rh
ea

d 
(%

)

Hubble Method Tracing
32-bit Trace On
32-bit Trace Off
64-bit Trace On
64-bit Trace Off

Figure 5: Performance Overhead Over Work Iterations

ran the experiment until its runtime stabilized to a maximum
variance of five percent. The method is then executed ten
times for each experiment.

1 public long Test(int depth , int work , long sum) {
2 for (int i = 0; i < work; i++) {
3 sum *= i - 1; sum /= i + 2;
4 }
5 if (depth > 1) return Test(depth - 1, work , sum);
6 return sum;
7 }

Listing 1: Program used for measurement.

Table 2 shows the results of the 0-work experiment, with
the other work values in Figure 5. The 0-work experiment
shows that on average, each Hubble trace point costs less
than one nanosecond when tracing is on, and less than 10
picoseconds when tracing is off. This is far less than ASMT’s
overhead which is on the order of microseconds. Figure 5
shows the amortization effect: as the amount of work done by
the method is increased, Hubble’s tracing overhead percentage
decreases quickly. Note that in reality, small methods like this
would likely be inlined, excluding them from being traced.

8.2 Cache Effects Microbenchmark
We used matrix-multiplication (MM) to measure Hubble’s
effects on the cache. MM is a classic workload that can either
benefit heavily from caching or suffer ample cache misses [8].
When multiplying large matrices, a naïve implementation

798    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



16x16

32x32

64x64

128x128

256x256

512x512

1024x1024

2048x2048

Loop Tiling Size

0

50

100

150

200

250

300

T
im

e
 P

e
r 

E
le

m
e
n
t 

(μ
s
)

Trace On Mean

Baseline Mean

Trace Off Mean

Figure 6: Cache and Memory Effects

causes many unnecessary cache misses. However, the major-
ity of these cache misses can be avoided using loop-tiling, i.e.,
partition each matrix into many small tiles, where each fits in
the cache, and perform all accesses on one tile before moving
on to the next. We examined Hubble’s effect on each level of
the cache by gradually increasing the tile size.

We evaluated Hubble’s effect on MM with eight differ-
ent tile sizes: 16×16, .., 2048×2048. The input matrices are
2048×2048, and each element is a four-byte integer. This
means tile sizes 64×64 and below fit within the L1 cache; tile
sizes 256×256 and below fit within L2; and all remaining tile
sizes exceed both cache levels. To evaluate the highest amount
of interleaved memory-contention that Hubble may have with
MM, we performed each multiply and add operation inside
a method such that two trace points are produced for each
step of MM. We also inserted a dummy tail recursion call so
that the JIT compiler does not inline the method. For each tile
size, we ran the experiment five times. We did not compare
with ASMT because it was too slow.

Figure 6 shows the results. With Hubble’s tracing turned off,
we could not reliably observe any overhead. With Hubble’s
tracing turned on, for the smallest tile size that fits within the
L1 cache, Hubble has a min / max / mean overhead of 41% /
70% / 54%. When the tile size still fits within the L2 cache
at 128×128, the overhead increased slightly to a min / max
/ mean of 64% / 83% / 70%. Finally, when the tile size is
much larger than the L2 cache, caching is no longer effective.
In this region, the increased execution time when tracing is
turned on did not deviate significantly from smaller tile sizes,
but the amortized overhead decreased.

Thus, in the absolute worst case scenarios, Hubble indeed
affects programs heavily optimized for caching and, to some
extent, memory-bound programs. However, in practice, simi-
lar small methods invoked in a tight loop would be inlined and
excluded from tracing, not to mention that such loop-tiling is
unlikely to be used in an application’s UI thread.

8.3 Startup Overhead Macrobenchmark
We measured Hubble’s overhead on application startup, one of
the most demanding but realistic workloads for a method trac-
ing tool since it comprises hundreds of thousands of method

No Tracing

Realworld Baseline

200 200

400 400

600 600

800 800

1000 1000

1200 1200

1400 1400

S
ta

rt
u
p
 T

im
e
 (

m
s
)

O
ff

O
n

O
ff

O
n

O
ff

O
n

Hubble Tracing

-4%

-2%

0%

2%

4%

6%

8%

Tr
a
c
in

g
 O

v
e
rh

e
a
d

Figure 7: Application Startup Time

calls in a short period of time. These methods perform data
loading and processing to prepare the application’s UI and are
often optimized to ensure the application loads quickly [22].

Since the performance of the application startup process
varies significantly in practice, we took additional measures
to minimize variation across benchmark runs. Specifically,
we ran all experiments while disconnected from the network,
eliminating variance introduced by network connections. We
launched the target application repeatedly until its startup
time stabilized to within a maximum variance of 5% (without
these measures, the normal variance can be as much as 100%
as shown on the left hand side of Figure 7). Each applica-
tion was launched programmatically, avoiding any extraneous
touch input that would occur with manual interactions. The
startup time was obtained from a syslog message that indi-
cates the duration from when the application process launched
to the time after the application’s UI has been drawn on the
screen. To force cold starts (where the application starts com-
pletely unloaded), we manually killed each application before
starting it again. Furthermore, we performed tests in quick
succession to encourage the scheduler to place the application
process on the performance-oriented CPU core operating at
the maximum clock speed.

We ran the benchmark on the three applications that had the
most downloads in 2020 [6]: TikTok, WhatsApp, and Face-
book. The results are presented as a box and whisker chart
on the right hand size in Figure 7. As the figure shows, the
measured startup times vary considerably. To determine if
Hubble causes a statistically significant difference in appli-
cation startup time in our tightly controlled test environment,
we performed two single-tailed dependent (paired sample)
t-tests with a significance level of 5%. The t-test on the results
of tracing turned off produced a p-value of 14.25% and the
t-test of tracing turned on produced a p-value of 33.18%, both
of which exceed the 5% threshold. Thus, we cannot conclude
that Hubble causes a statistically significant difference in
application startup time. In contrast, ASMT increased the av-
erage startup time of the three applications by approximately
10 times.

Although application startup overhead fluctuates signifi-
cantly under real world scenarios, the number of methods
executed remains nearly constant. When disconnected from

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    799



the network, TikTok, WhatsApp, and Facebook filled 6.0 MB,
3.8 MB, 6.4 MB of Hubble’s ring buffer respectively; this cor-
responds to roughly 400,000, 250,000, and 420,000 methods
invocations. When connected to the internet, the ring buffer
content increased to 14 MB, 5.1 MB, and 11 MB because
the applications loaded the user’s content. In all three ap-
plications, the 32 MB of ring buffer proved to be more than
sufficient to capture the entire application startup sequence. In
Huawei’s Hubble deployment, the 32 MB trace buffer is able
to store the duration of almost all application startup and in-
termittent performance anomalies that our support engineers
have encountered.

The results of the macrobenchmark were also in-line with
results from our automated performance-regression testing,
as well as feedback from support engineers and application
developers. Recall that in part one of Huawei’s three-phase
deployment process (§4.1), we ran automated tests across a
large fleet of devices and any significant statistical deviation
in the results will prevent a new build from being deployed.
In the automated performance-regression tests, we measured
the application startup-time (both cold and warm startup) of
the 100 most-downloaded third-party applications in addition
to all our own applications. We categorized startup times into
increments of 500 ms and count the number of applications
that fall in each increment. After Hubble’s deployment, we
have not recorded any statistically-significant changes in the
number of applications in each bucket for both cold and warm
startup times.

The choice of 500 ms may seem high; however, Farrer et al.
showed that users do not feel any loss of control (i.e., that an
application is not responding to their action) until the response
times reach approximately 350 ms [19], and users feel like
they have completely lost control when response times exceed
approximately 750 ms. Thus, our QA teams (and others [43])
have found that 500 ms increments are a good categorization
to qualitatively evaluate loading speed—response times below
500 ms are considered excellent, 500–1000 ms is considered
good, and above one second is considered slow.

9 Experiences

Hubble was shipped in the production branch of Huawei’s An-
droid system in August, 2020. An early prototype was merged
into the main development branch in 2019, and engineers have
been using it since. Huawei also runs a beta program where
users can receive new features before public release. There
are currently tens of thousands of beta users, and Hubble is en-
abled on their daily-use devices. For other end users, Hubble
can only be enabled with their express consent.

The trace collection frequencies and retention policies vary
depending on the type of users, the level of consent granted,
operating region and local regulations, and device model. In-
ternal beta users may not have any data upload restrictions.
However, there are often additional restrictions on public

users (including those beta users that are outside of Huawei).
A common policy is that each user device can upload at most
three traces per week. Which three traces to upload is config-
urable. For instance, sometimes there is a targeted campaign
to improve specific applications, so in that case, only traces of
anomalies for those applications are uploaded; other times we
collect traces for anomalies whose symptoms are extremely
severe; or, in the default case, we collect the first three anoma-
lies detected. Although three traces is a low threshold, with
a large user base, we are usually able to collect one or a few
traces for each important issue.

Besides debugging production issues, Hubble is equally
useful for debugging problems discovered during automated
testing. Before Hubble, developers used ASMT to debug per-
formance regressions, but due to its overhead it could only
be enabled when debugging. This is cumbersome, and many
problems simply could not be reproduced while debugging or
worse, new issues would appear with ASMT enabled. Now,
whenever a performance regression is detected, Hubble’s
traces are automatically collected, helping developers quickly
narrow down the root cause without reproducing the issue.

A happy accident of implementing the tracing in assembly
was that we discovered a bug in ARM’s reference design on
an older CPU model. While optimizing and testing the tracing
assembly on a large number of devices, we found that when a
specific permutation of 32-bit assembly instructions is used
together with the Generic Timer counter, a segmentation fault
could occur on the out-of-order performance cores. The bug
was confirmed by the chip design team and fixed in later CPU
models. On the buggy CPU model, we work around the issue
by using an ISB instruction to flush the CPU pipeline after
fetching the Generic Timer counter.

10 Concluding Remarks

Call profilers are known to be useful in debugging, however,
their use has been limited to the development environment as
a result of their overhead. Hubble shows that by leveraging
Android’s on-device compilation process, a just-in-time flush-
ing strategy, and together with careful system-level design
and engineering, we can achieve a highly efficient tool that
can collect fine-grained call traces even in production envi-
ronments. Hubble has proved its usefulness by significantly
easing engineers’ postmortem debugging processes.

Acknowledgements

We thank our shepherd Jonathan Mace and the anonymous
reviewers for their insightful comments. Adrian Chiu pro-
vided help for us to understand the internals of a language
runtime and its JIT compiler. This research was supported by
a contract between Huawei and University of Toronto.

800    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener,
Patrick Reynolds, and Athicha Muthitacharoen. Per-
formance Debugging for Distributed Systems of Black
Boxes. In Proceedings of the 19th Symposium on Oper-
ating Systems Principles, SOSP ’03, pages 74–89. ACM,
October 2003.

[2] Apple Inc. Diagnosing Issues Using Crash Reports and
Device Logs, May 2021. https://developer.apple.
com/documentation/xcode/diagnosing-issues-
using-crash-reports-and-device-logs.

[3] Arm Limited. AArch64 Programmer’s
Guides: Generic Timer, August 2019. https:
//documentation-service.arm.com/static/
600eb3264ccc190e5e68023a.

[4] Arm Limited. Arm® Architecture Reference Manual,
July 2021. https://documentation-service.arm.
com/static/611fa684674a052ae36c7c91.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using Magpie for Request Extrac-
tion and Workload Modelling. In Proceedings of the
6th Symposium on Operating Systems Design and Im-
plementation, OSDI ’04, pages 259–272. USENIX As-
sociation, December 2004.

[6] Adam Blacker. Worldwide & US Download Leaders
2020. January 2021. https://blog.apptopia.com/
worldwide-us-download-leaders-2020.

[7] Brendan Gregg. Linux perf Examples: 4.3 JIT
Symbols (Java, Node.js), July 2020. https://www.
brendangregg.com/perf.html#JIT_Symbols.

[8] Randal E. Bryant and David R. O’Hallaron. Computer
Systems: A Programmer’s Perspective. chapter 6, pages
615–629. Pearson, 2nd edition, 2011.

[9] Bryan M. Cantrill, Michael W. Shapiro, and Adam H.
Leventhal. Dynamic Instrumentation of Production
Systems. In Proceedings of the 10th USENIX Annual
Technical Conference, USENIX ATC ’04, pages 15–28.
USENIX Association, June 2004.

[10] Jong-Deok Choi and Harini Srinivasan. Deterministic
Replay of Java Multithreaded Applications. In Pro-
ceedings of the SIGMETRICS Symposium on Parallel
and Distributed Tools, SPDT ’98, pages 48–59. ACM,
August 1998.

[11] Michael Chow, David Meisner, Jason Flinn, Daniel Peek,
and Thomas F. Wenisch. The Mystery Machine: End-
to-end Performance Analysis of Large-scale Internet

Services. In Proceedings of the 11th Symposium on Op-
erating Systems Design and Implementation, OSDI ’14,
pages 217–231. USENIX Association, October 2014.

[12] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upa-
manyu Sharma, Ruoyu Wang, and Insu Yun. REPT:
Reverse Debugging of Failures in Deployed Software.
In Proceedings of the 13th Symposium on Operating
Systems Design and Implementation, OSDI ’18, pages
17–32. USENIX Association, October 2018.

[13] Datadog. Cloud Monitoring as a Service. https://
www.datadoghq.com/.

[14] Tudor David, Rachid Guerraoui, and Vasileios Trigo-
nakis. Everything You Always Wanted to Know about
Synchronization but Were Afraid to Ask. In Proceedings
of the 24th Symposium on Operating Systems Principles,
SOSP ’13, pages 33–48. ACM, November 2013.

[15] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza A. Basrai, and Peter M. Chen. ReVirt: Enabling In-
trusion Analysis through Virtual-Machine Logging and
Replay. In Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementation, OSDI ’02,
pages 211–224. USENIX Association, December 2002.

[16] George W. Dunlap, Dominic G. Lucchetti, Michael A.
Fetterman, and Peter M. Chen. Execution Replay of
Multiprocessor Virtual Machines. In Proceedings of
the 4th International Conference on Virtual Execution
Environments, VEE ’08, pages 121–130. ACM, March
2008.

[17] Úlfar Erlingsson, Marcus Peinado, Simon Peter, and Mi-
hai Budiu. Fay: Extensible Distributed Tracing from
Kernels to Clusters. In Proceedings of the 23rd Sympo-
sium on Operating Systems Principles, SOSP ’11, pages
311–326. ACM, October 2011.

[18] Facebook, Inc. Profilo - An Android Performance
Library. https://facebookincubator.github.io/
profilo/.

[19] Chlöé Farrer, G Valentin, and Jean-Michel Hupé. The
Time Windows of the Sense of Agency. Consciousness
and Cognition, 22(4):1431–1441, December 2013.

[20] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica. X-trace: A Pervasive Network
Tracing Framework. In Proceedings of the 4th Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’07, pages 271–284. USENIX Association, April
2007.

[21] Kirk Glerum, Kinshuman Kinshumann, Steve Green-
berg, Gabriel Aul, Vince Orgovan, Greg Nichols, David
Grant, Gretchen Loihle, and Galen Hunt. Debugging

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    801

https://developer.apple.com/documentation/xcode/diagnosing-issues-using-crash-reports-and-device-logs
https://developer.apple.com/documentation/xcode/diagnosing-issues-using-crash-reports-and-device-logs
https://developer.apple.com/documentation/xcode/diagnosing-issues-using-crash-reports-and-device-logs
https://documentation-service.arm.com/static/600eb3264ccc190e5e68023a
https://documentation-service.arm.com/static/600eb3264ccc190e5e68023a
https://documentation-service.arm.com/static/600eb3264ccc190e5e68023a
https://documentation-service.arm.com/static/611fa684674a052ae36c7c91
https://documentation-service.arm.com/static/611fa684674a052ae36c7c91
https://blog.apptopia.com/worldwide-us-download-leaders-2020
https://blog.apptopia.com/worldwide-us-download-leaders-2020
https://www.brendangregg.com/perf.html#JIT_Symbols
https://www.brendangregg.com/perf.html#JIT_Symbols
https://www.datadoghq.com/
https://www.datadoghq.com/
https://facebookincubator.github.io/profilo/
https://facebookincubator.github.io/profilo/


in the (Very) Large: Ten Years of Implementation and
Experience. In Proceedings of the 22nd Symposium on
Operating Systems Principles, SOSP ’09, pages 103–
116. ACM, October 2009.

[22] Google LLC. App Startup Time, April 2021.
https://developer.android.com/topic/
performance/vitals/launch-time.

[23] Google LLC. Firebase Performance Monitoring, April
2021. https://firebase.google.com/docs/perf-
mon.

[24] Google LLC. Inspect CPU activity with CPU Pro-
filer, May 2021. https://developer.android.com/
studio/profile/cpu-profiler.

[25] Google LLC. Overview of System Tracing, May
2021. https://developer.android.com/topic/
performance/tracing.

[26] Google LLC. Simpleperf Profiling Tool: JIT
Symbols, September 2021. https://android.
googlesource.com/platform/system/extras/+/
ec8d549d4c4300dcfb4e12353eccbeba17bf7725/
simpleperf/doc/jit_symbols.md.

[27] Susan L. Graham, Peter B. Kessler, and Marshall K.
Mckusick. Gprof: A Call Graph Execution Profiler. In
Proceedings of the SIGPLAN Symposium on Compiler
Construction, SIGPLAN ’82, pages 120–126. ACM,
June 1982.

[28] Baris Kasikci, Benjamin Schubert, Cristiano Pereira,
Gilles Pokam, and George Candea. Failure Sketching:
A Technique for Automated Root Cause Diagnosis of
In-production Failures. In Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP ’15,
pages 344–360. ACM, October 2015.

[29] Dongyoon Lee, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Chimera: Hybrid Program Analysis for
Determinism. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 463–474. ACM,
June 2012.

[30] Dongyoon Lee, Benjamin Wester, Kaushik Veeraragha-
van, Satish Narayanasamy, Peter M. Chen, and Jason
Flinn. Respec: Efficient Online Multiprocessor Re-
playvia Speculation and External Determinism. In Pro-
ceedings of the 15th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS XV, pages 77–90. ACM,
March 2010.

[31] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot Tracing: Dynamic Causal Monitoring for Dis-
tributed Systems. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, pages 378–
393. ACM, October 2015.

[32] Gabriel Marin, Alexey Alexandrov, and Tipp Moseley.
Break Dancing: Low Overhead, Architecture Neutral
Software Branch Tracing. In Proceedings of the 22nd
Conference on Languages, Compilers, and Tools for
Embedded Systems, LCTES ’21, pages 122–133. ACM,
June 2021.

[33] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David
Mazieres, and Mendel Rosenblum. Towards Practical
Default-On Multi-Core Record/Replay. In Proceedings
of the 22nd International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’17, pages 693–708. ACM, April
2017.

[34] Mozilla. Mozilla Crash Reporter, May
2021. https://support.mozilla.org/en-
US/kb/mozillacrashreporter.

[35] Ravi Netravali and James Mickens. Reverb: Speculative
Debugging for Web Applications. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’19,
pages 428–440. ACM, November 2019.

[36] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. Engineering
Record and Replay for Deployability. In Proceed-
ings of the 2017 USENIX Annual Technical Conference,
USENIX ATC ’17, pages 377–389. USENIX Associa-
tion, July 2017.

[37] Oracle Corporation. ThreadLocal (Java
Platform SE 7), December 2020. https:
//docs.oracle.com/javase/7/docs/api/java/
lang/ThreadLocal.html.

[38] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning
Yin, Rini Kaushik, Kyu H. Lee, and Shan Lu. PRES:
Probabilistic Replay with Execution Sketching on Mul-
tiprocessors. In Proceedings of the 22nd Symposium
on Operating Systems Principles, SOSP ’09, pages 177–
192. ACM, October 2009.

[39] Perf Wiki, June 2020. https://perf.wiki.kernel.
org/index.php/Main_Page.

[40] Perfetto - System profiling, App Tracing and Trace Anal-
ysis. https://perfetto.dev/.

[41] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal,
Ratul Mahajan, Ian Obermiller, and Shahin Shayandeh.
AppInsight: Mobile App Performance Monitoring in the

802    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://firebase.google.com/docs/perf-mon
https://firebase.google.com/docs/perf-mon
https://developer.android.com/studio/profile/cpu-profiler
https://developer.android.com/studio/profile/cpu-profiler
https://developer.android.com/topic/performance/tracing
https://developer.android.com/topic/performance/tracing
https://android.googlesource.com/platform/system/extras/+/ec8d549d4c4300dcfb4e12353eccbeba17bf7725/simpleperf/doc/jit_symbols.md
https://android.googlesource.com/platform/system/extras/+/ec8d549d4c4300dcfb4e12353eccbeba17bf7725/simpleperf/doc/jit_symbols.md
https://android.googlesource.com/platform/system/extras/+/ec8d549d4c4300dcfb4e12353eccbeba17bf7725/simpleperf/doc/jit_symbols.md
https://android.googlesource.com/platform/system/extras/+/ec8d549d4c4300dcfb4e12353eccbeba17bf7725/simpleperf/doc/jit_symbols.md
https://support.mozilla.org/en-US/kb/mozillacrashreporter
https://support.mozilla.org/en-US/kb/mozillacrashreporter
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perfetto.dev/


Wild. In Proceedings of the 10th Symposium on Oper-
ating Systems Design and Implementation, OSDI ’12,
pages 107–120. USENIX Association, October 2012.

[42] Lenin Ravindranath, Jitendra Padhye, Ratul Mahajan,
and Hari Balakrishnan. Timecard: Controlling User-
Perceived Delays in Server-Based Mobile Applications.
In Proceedings of the 24th Symposium on Operating
Systems Principles, SOSP ’13, pages 85–100. ACM,
November 2013.

[43] Raygun. Real User Monitoring Performance Metrics,
May 2022. https://raygun.com/documentation/
product-guides/real-user-monitoring/for-
web/performance-metrics/.

[44] New Relic. New Relic®. https://newrelic.com/.

[45] Michiel Ronsse and Koen De Bosschere. RecPlay:
A Fully Integrated Practical Record/Replay System.
ACM Transactions on Computer Systems, 17(2):133–
152, May 1999.

[46] Kedar Sadekar. Netflix Engineering Blog:
Scalable Logging and Tracking. June 2012.
https://netflixtechblog.com/scalable-
logging-and-tracking-882bde0ddca2.

[47] Benjamin H. Sigelman, Luiz André Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-
Scale Distributed Systems Tracing Infrastructure. Tech-
nical report, Google, Inc., April 2010.

[48] Richard L. Sites. Datacenter Computers - Modern
Challenges in CPU Design. Video, February 2015.
https://vimeo.com/121396406.

[49] Joel Spolsky. How Microsoft Lost the API War. June
2004. https://www.joelonsoftware.com/2004/06/
13/how-microsoft-lost-the-api-war/.

[50] Sudarshan M. Srinivasan, Srikanth Kandula, Christo-
pher R. Andrews, and Yuanyuan Zhou. Flashback: A
Lightweight Extension for Rollback and Deterministic
Replay for Software Debugging. In Proceedings of the
10th USENIX Annual Technical Conference, USENIX
ATC ’04, pages 29–44. USENIX Association, June
2004.

[51] Steven Rostedt. ftrace - Function Tracer, July 2017.
https://www.kernel.org/doc/Documentation/
trace/ftrace.txt.

[52] SystemTap. https://sourceware.org/systemtap/.

[53] Tai Chi, May 2020. https://taichi.cool/doc/.

[54] Leland Takamine and Brian Attwell. Introducing
Nanoscope: An Extremely Accurate Method Tracing
Tool for Android. April 2018. https://eng.uber.
com/nanoscope/.

[55] Jiang Tenglicheng. Logan: Meituan Open Source
Mobile Terminal Basic Log Library. October
2018. https://tech.meituan.com/2018/10/11/
logan-open-source.html.

[56] The Android Open Source Project. Android 10.0.0
Release 2, 2019. https://android.googlesource.
com/platform/build/+/refs/tags/android-
10.0.0_r2.

[57] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin
Wester, Jessica Ouyang, Peter M. Chen, Jason Flinn,
and Satish Narayanasamy. DoublePlay: Parallelizing
Sequential Logging and Replay. In Proceedings of the
16th International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS XVI, pages 15–26. ACM, March 2011.

[58] Stephen Yang, Seo Jin Park, and John Ousterhout.
NanoLog: A Nanosecond Scale Logging System. In
2018 USENIX Annual Technical Conference, USENIX
ATC ’18, pages 335–350. USENIX Association, July
2018.

[59] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm,
Ding Yuan, and Yuanyuan Zhou. Log20: Fully Au-
tomated Optimal Placement of Log Printing Statements
under Specified Overhead Threshold. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 565–581. ACM, October 2017.

[60] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhato-
tia, Pedro Fonseca, and Baris Kasikci. Execution Recon-
struction: Harnessing Failure Reoccurrences for Fail-
ure Reproduction. In Proceedings of the 42nd ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2021, pages 1155–1170.
ACM, June 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    803

https://raygun.com/documentation/product-guides/real-user-monitoring/for-web/performance-metrics/
https://raygun.com/documentation/product-guides/real-user-monitoring/for-web/performance-metrics/
https://raygun.com/documentation/product-guides/real-user-monitoring/for-web/performance-metrics/
https://newrelic.com/
https://netflixtechblog.com/scalable-logging-and-tracking-882bde0ddca2
https://netflixtechblog.com/scalable-logging-and-tracking-882bde0ddca2
https://vimeo.com/121396406
https://www.joelonsoftware.com/2004/06/13/how-microsoft-lost-the-api-war/
https://www.joelonsoftware.com/2004/06/13/how-microsoft-lost-the-api-war/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://sourceware.org/systemtap/
https://taichi.cool/doc/
https://eng.uber.com/nanoscope/
https://eng.uber.com/nanoscope/
https://tech.meituan.com/2018/10/11/logan-open-source.html
https://tech.meituan.com/2018/10/11/logan-open-source.html
https://android.googlesource.com/platform/build/+/refs/tags/android-10.0.0_r2
https://android.googlesource.com/platform/build/+/refs/tags/android-10.0.0_r2
https://android.googlesource.com/platform/build/+/refs/tags/android-10.0.0_r2




Jawa: Web Archival in the Era of JavaScript

Ayush Goel1, Jingyuan Zhu1, Ravi Netravali2, Harsha V. Madhyastha1

1University of Michigan, 2Princeton University

Abstract—By repeatedly crawling and saving web pages over

time, web archives (such as the Internet Archive) enable users

to visit historical versions of any page. In this paper, we point

out that existing web archives are not well designed to cope

with the widespread presence of JavaScript on the web. Some

archives store petabytes of JavaScript code, and yet many pages

render incorrectly when users load them. Other archives which

store the end-state of page loads (e.g., screen captures) break

post-load interactions implemented in JavaScript.

To address these problems, we present Jawa, a new design for

web archives which significantly reduces the storage necessary

to save modern web pages while also improving the fidelity with

which archived pages are served. Key to enabling Jawa’s use at

scale are our observations on a) the forms of non-determinism

which impair the execution of JavaScript on archived pages,

and b) the ways in which JavaScript’s execution fundamentally

differs between live web pages and their archived copies. On a

corpus of 1 million archived pages, Jawa reduces overall storage

needs by 41%, when compared to the techniques currently used

by the Internet Archive.

1 INTRODUCTION

URLs are brittle pointers to information on the web. Over

time, a page may cease to exist at the URL where it was

originally available [44, 62] or the content available at that

URL might change due to the page being modified [58, 36].

Therefore, web archives play a key role in the web

ecosystem, enabling users to lookup the content that ex-

isted at any particular URL at various times in the past.

Web archives are used for a wide variety of use cases,

such as web-data analytics, genealogical analysis, and even

as legal evidence [40]. To support these uses, a number

of organizations—cultural heritage institutions, national li-

braries, and public museums—operate web archives to en-

sure long-term preservation of content on the web. A re-

cent survey estimates that there are 119 web archives in the

United States alone [35].

The largest and most popular of these archives, Internet

Archive (IA), has archived over 600 billion web pages to

date, storing data in excess of 100 petabytes [13]. It repeat-

edly crawls web pages over time and saves many snapshots

of every page. For every page snapshot, IA first downloads

all resources (e.g., HTMLs, CSS stylesheets, JavaScripts,

images) on the page). It stores these resources after rewrit-

ing all URL references to point to the copy hosted by the

archive. When a user wants to later view any stored snapshot

of a page, the user’s browser loads the snapshot from IA in

the same manner as it would load any page on the live web.

In this paper, we argue that this modus operandi no longer

suffices due to the preponderance of JavaScript on modern

web pages [18, 38, 53]. Specifically, the widespread use of

JavaScript hinders web archives from satisfying two of their

primary objectives: 1) to capture and save as much of the

web as feasible, and 2) to ensure that archived page snap-

shots faithfully mimic the original page.

• Higher operational costs: First, the total number of bytes

on the median web page has more than tripled over the

last decade [10]. A significant contributor to this increase

has been the increased usage of JavaScript. For example,

across Internet Archive’s copies of the home pages of 300

randomly sampled sites, we see that JavaScript accounts

for 44% of the bytes on the median page in 2020, as com-

pared to 20% in 2000 (§2). Since web archives are typ-

ically run by non-profit institutions with limited budgets,

needing to store more bytes per page reduces the number

of pages they can crawl and archive.

• Poor page fidelity: The archived copies of many

JavaScript-heavy pages render with missing images and

improperly laid out content (§2.1). This occurs due to

the non-deterministic execution of JavaScript; when a user

loads an archived copy of a page, the resource URLs re-

quested by the user’s browser can differ from those saved

by the archive when it crawled the page. Consequently,

the web archive returns errors for some of the requested

resources. Due to the complex dependencies between the

resources on a page [65, 34, 54], one failed resource fetch

often has a cascading effect on the rest of the page load.

The challenge in holistically addressing both problems is

that trying to reduce storage overheads by not saving some of

the JavaScript found on crawled pages risks further degrad-

ing fidelity. A web archive could statically or symbolically

analyze the JavaScript code on every page to identify what

subset is necessary to preserve correctness in all potential

loads of the page. However, the computational overheads of

such methods [42, 48] render them impractical at the scale

of a web archive, e.g., the Internet Archive crawls roughly

5000 pages per second [64]. To jointly address JavaScript’s

adverse impacts on storage and fidelity using computation-

ally lightweight methods, we observe and leverage three fun-

damental ways in which JavaScript’s execution on archived

pages differs from that on the live web.

First, a significant fraction of JavaScript is dedicated to

either sending user data to a page’s origin servers or process-

ing dynamically constructed server responses, e.g., to enable

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    805



users to post comments or to push notifications. Any such

functionality cannot work on archived pages, and therefore,

the associated code need not be stored by web archives. For-

tunately, the JavaScript code on any page is typically parti-

tioned into several files, and we find that most of the code

that will be non-functional in the context of a web archive

is cleanly compartmentalized into a subset of these files that

exhibit identifiable patterns in their URLs. Consequently,

we show that web archives can efficiently, and safely, prune

unnecessary JavaScripts by relying on URL-based filters to

identify and discard JavaScript source files.

Second, many lines of JavaScript code are executed only

in certain control flows, e.g., when a page is loaded on a

smartphone, and not on a desktop. But, among the vari-

ous sources of non-determinism that dictate whether or not

a specific line might get executed, some sources are ab-

sent in loads of archived page snapshots; clients maintain

no state across loads and server responses for the same re-

quest URL do not vary. Moreover, a web archive should

actively eliminate those sources of non-determinism which

can cause clients to request different resource URLs than

those crawled. Thanks to the resulting reduction in non-

determinism, we find that much of the JavaScript code on

an archived page will never be exercised in any load of that

page, making it moot for a web archive to store such code.

Lastly, a critical use of JavaScript is to enable users to in-

teract with a page after the page’s load has completed. On

live pages, identifying all the code used to support such in-

teractions is generally challenging because the code that is

exercised varies based on how users interact with the page.

For example, the input given to a search bar determines the

server’s response; based on the number of search results,

JavaScript for paginating the results may or may not get exe-

cuted. In contrast, we find that the subset of interactions that

do work on archived pages (e.g., navigational menus and im-

age carousels) distinctly differ from those that do not with

respect to the properties of the page state they access. This

greatly simplifies the task of identifying the code necessary

to preserve post-load interactions.

Based on our three observations, we design and implement

Jawa (JavaScript-aware web archive), a system for crawl-

ing and saving web pages. Jawa enables web archives to

save many more pages than they could today for the same

cost, e.g., it reduces the total amount of storage necessary

to store a corpus of 1 million web pages by 41%. Impor-

tantly, Jawa enables this reduction both while increasing the

rate at which pages can be crawled by 39% and significantly

improving the fidelity of archived pages: for the vast ma-

jority of archived pages, Jawa ensures that the page is ren-

dered in a manner identical to how it was when the page was

crawled, and all page functionality that can possibly work

on an archived page does work. Source code for Jawa, in-

cluding scripts to reproduce the key results in the paper, are

available at https://github.com/goelayu/Jawa.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
 (JavaScript bytes)/(Total bytes on page) 

C
D

F
 a

c
ro

s
s
 p

a
g
e
s

2000
2010
2020

Figure 1: Across the landing pages of 300 sites, distribution of

fraction of bytes on the page accounted for by JavaScript.

2 BACKGROUND AND MOTIVATION

As mentioned earlier, the Internet Archive (IA) is the largest

and most popular web archive in the world today. For every

page that it crawls, IA stores all the individual resources on

that page (such as HTMLs, CSS stylesheets, JavaScript files,

and images) in the Web ARChival format (also known as

the WARC format [22]). Client browsers can load archived

pages from IA’s Wayback Machine [24] in a manner identical

to how they do on the live web. When the Wayback Machine

receives a request for any resource, it looks up an internal

index to locate the WARC record for this resource and then

responds along with relevant HTTP headers. IA rewrites all

resource files so that all statically embedded URLs point to

IA’s web servers. For URLs which are dynamically gener-

ated via JavaScript, IA rewrites them on the fly using client-

side API shims.

This architecture sufficed when IA began operating two

decades ago. However, the web today is very different.

In particular, JavaScript (JS) has become significantly more

common. For example, Figure 1 shows that JS accounts for

44% of the bytes on the median page today; up from 20% in

2000. In this section, we show that this increase in JS hinders

the ability of web archives to meet their two primary objec-

tives: 1) to crawl and capture as much of the web as possible,

and 2) to preserve page fidelity, i.e., when an archived page

is loaded by a user, it should ideally match the page as it was

crawled, both in visual (how the page looks) and functional

(user interactions supported on the page) aspects.

To support our claims, in this section (and in the rest

of the paper), we consider pages from 300 sites, compris-

ing 100 randomly chosen sites from each of three ranges

from Alexa’s site rankings: [1, 1000], [1000, 100K], and

[100K, 1M]. Using these 300 sites, we construct two cor-

puses. Corpus3K contains one of IA’s copies from September

2021 for 1 landing and 9 internal pages per site. Corpus1M

contains 3500 page snapshots for each site out of all of IA’s

page snapshots from September 2020. Note that both cor-

puses contain a mix of old and new pages. Though both

corpuses contain page snapshots which were archived in the

last couple of years, many of these pages were created be-

fore then. This is because IA recrawls pages over time to

track changes to page content.

806    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/goelayu/Jawa


USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    807

https://www.nytimes.com/interactive/2021/world/india-covid-cases.html


india-covid-cases.html. Event handlers are also used to

enable users to navigate to other pages on the same site,

e.g., the menu under the “Explore” button on https://www.

coursera.org. Prior studies have shown that it is important

to preserve such informational and navigational interactions

even on archived pages [40].

We analyze the pages in Corpus3K to determine how many

contain interactions that should work on archived copies.

Specifically, we load every page after instrumenting all

scripts so that we can track all event handler registrations.

We identify all event handlers which are associated with page

elements whose attributes contain keywords such as menu,

navbar, slider, carousel, dropdown, etc.; we consider 13 such

keywords commonly associated with informational and nav-

igational interactions. We find that 91% of the pages con-

tained at least one such event handler.

Overhead of capturing JavaScript heap. Alternatively,

client-local interactions enabled by event handlers could be

preserved by storing a) every page’s final rendered HTML, b)

all resources referenced from this HTML (such as CSS and

images), and c) the JavaScript heap, which stores custom,

page-defined JavaScript state as well as native JavaScript ob-

jects [55]. However, modern browsers do not expose the en-

tire JavaScript heap [43]; only the global scope of the heap

is accessible using the “window” object. The closure scope,

which is a non-global scope that is defined by any function

and is accessible only by the nested functions that execute in

that function’s enclosed scope [51], is not accessible. This

is a key roadblock because event handlers often access clo-

sure state; 47% of the pages in Corpus3K contain at least one

such handler (we describe how we perform the state tracking

necessary to obtain this result in §4).

To access closure state, a web archive’s crawler could stat-

ically analyze and rewrite the scripts on every page prior to

executing them. However, we find that the combined over-

head of performing the static analysis necessary to identify

different scopes and running instrumented scripts inflates the

time to crawl the median page in Corpus3K by 2x; this over-

head increases to 6x at the 99th percentile. Such compu-

tational overhead will significantly increase costs for a web

archive crawling thousands of pages every second [64].

3 OVERVIEW

To overcome the adverse impacts of JavaScript on web

archival, our high-level insights stem from two key differ-

ences between the loads of live and archived pages. In this

section, we describe these differences and outline the chal-

lenges entailed in leveraging these differences.

3.1 Distinguishing properties of archived pages

No back-end origin server. Modern web pages include a

range of functionalities which require communication with

the page’s origin servers, e.g., enabling users to post com-

ments and having servers push updates to users while they

are on a page. However, when a user loads an archived page

snapshot, only that functionality on the page will work which

can be served using the resources crawled when this snapshot

was captured.

Limited sources of non-determinism. To deliver a dy-

namic user experience, many pages on the web adapt how

they are rendered based on 1 server-side state, 2 client-

side state (e.g., cookies, local storage), 3 client character-

istics (e.g., user-agent, screen dimensions), and 4 “Date”,

“Random”, and “Performance” APIs (we refer to these as

DRP APIs for the sake of brevity). For example, after a

script on a page fetches a JSON from the origin server, its

subsequent control flow might depend on the contents of that

JSON, which itself might be influenced by the contents of

a client-side cookie. In loads of archived pages, the first

two sources of non-determinism are absent: in response to

the request for a particular resource in a specific page snap-

shot, a web archive will always serve the copy it fetched

when crawling that snapshot; whereas, client browsers do

not maintain any state across loads of archived pages.

3.2 Challenges

In order to leverage the above-mentioned differences to both

improve page fidelity and reduce storage overhead in web

archives, we need to answer several questions.

What are the causes of poor page fidelity? While

some sources of non-determinism are absent in the loads of

archived pages, the remaining sources – client characteris-

tics, DRP APIs, and asynchronous execution of timer han-

dlers and script fetches – still result in non-deterministic JS

execution. Determining which of these factors is responsi-

ble for clients requesting different resource URLs than those

crawled is key to eliminating failed resource fetches and the

resultant runtime errors.

How to efficiently prune non-functional and unreachable

code? In any page that it crawls, a web archive need not

save any JS code that either relies on interactions with the

page’s origin servers or would never be executed in any load

of the page (due to the absence of certain sources of non-

determinism). One could potentially use methods like sym-

bolic or concolic execution to perform reachability analysis

and identify both unreachable code and non-functional code;

the latter comprises code that is reachable from RPCs to ori-

gin servers. However, as reported in prior work [42, 49, 48],

these methods for analyzing JS code are computationally ex-

pensive, requiring tens of minutes per page. Increasing the

compute overheads of crawling to such a large extent would

nullify any storage savings.

How to ensure code pruning does not hamper fidelity?

While eliminating non-functional code reduces storage cost,

doing so comes at the risk of inadvertently hurting fidelity.

In particular, the code that is retained must function as it

would if no code were discarded. Checking that any method

identified for code elimination does preserve this property is

808    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.nytimes.com/interactive/2021/world/india-covid-cases.html
https://www.coursera.org
https://www.coursera.org


Goal Observations Section

Improve fidelity APIs for client characteristics are the key cause for failed resource fetches §4.1

Differences in URLs due to DRP APIs can be resolved using server-side URL matching algorithms

Prune non-

functional code

Most of JS code which will not function on archived pages is in third-party source files, which can

be identified based on their URLs

§4.2

First-party scripts typically use third-party code cautiously, so that reliability of former is not depen-

dent on availability of latter

Prune unreachable DRP APIs typically have no impact on control flow §4.3

code For event handlers associated with post-load interactions which work on archived pages, page state

accessed is disjoint across handlers and user input does not influence control flow

Table 1: Overview of the main insights that influence our design of Jawa.

non-trivial because browsers do not offer any APIs to extract

runtime information that can be used to identify state depen-

dencies between different scripts on any page.

3.3 Requirements

Based on all the considerations discussed thus far, we focus

on three objectives.

• High fidelity. First, we seek to ensure that any archived

page faithfully mimics the original page in two respects:

1) how the page is rendered, and 2) all functionality on

the page which does not require communicating with the

page’s back-end servers works.

• Low cost. Second, we aim to enable a web archive to

improve its coverage by reducing the amount of storage

needed for any collection of page snapshots. In doing

so, we seek computationally lightweight methods so as to

minimize the cost overheads associated with maintaining

the same rate of crawling pages as today.

• Simplicity. Lastly, our solutions must be simple to imple-

ment. In our discussions with the Internet Archive, they

have emphasized that simplicity is key for any proposed

changes to be viable in practice.

4 DESIGN

We describe our design of Jawa in three parts. We begin

by describing how Jawa improves page fidelity by eliminat-

ing the sources of non-determinism which result in failed

resource fetches while loading archived pages. Thereafter,

we present the methods used by Jawa to identify what sub-

set of crawled JS files need not be saved: first to eliminate

non-functional code, and second to prune unreachable code

while preserving post-load interactions. To enable Jawa’s

use at scale, the overriding principle that guides all aspects of

our design is to minimize computational overheads by lever-

aging properties of JS typically found on the web; Table 1

provides an overview of our observations. Later (§7), we de-

scribe how a web archive which uses Jawa could potentially

handle pages which do not satisfy these properties.

Analysis framework. Throughout this section, we use our

custom JavaScript analysis framework (4.5K LOC) to study

the properties of JavaScript found on pages in Corpus3K. As

in prior program analysis tools for JavaScript [49, 55, 38],

our analysis framework first performs offline, static analysis

of the JS in a page, converting each JS file into an abstract

syntax tree (AST) representation. It then parses this AST to

identify the different JS scope levels – local, block, closure,

and global – and leverages this information to associate each

JS variable to its corresponding scope. The framework also

uses the AST to detect JS function invocations.

Building on these insights, our framework instruments

pages with code that is triggered in each function invocation,

and records the arguments to the function, all the closure and

global scope variables read and written inside the function

body, and the return value. Special care is taken to (1) record

all accesses to the DOM, (2) track accesses of any global

variable’s properties via an alias, e.g., “var a = window”

followed by a read of “a.innerHeight”, (3) identify DOM

elements with registered event handlers and the correspond-

ing handler functions, and (4) monitor and control the return

values of browser APIs such as “navigator.userAgent”.

4.1 Improve fidelity by eliminating failed fetches

To ensure that users do not encounter failed resource fetches

when they load archived pages, a web archive could rewrite

every stored page to ensure that, when the page is loaded,

the flow of execution and the return values of all browser

APIs match those seen when the page was crawled.2 If a

web archive were to eliminate sources of non-determinism in

this manner, we observe that fixing the schedule of execution

cannot result in any loss of functionality; after all, developers

of pages have no control over the client-side schedule of exe-

cution of asynchronous scripts. However, a page’s developer

can indeed ensure that code on the page behaves differently

based on the results from browser APIs. Therefore, we seek

to understand the impact of these APIs on resource URLs

and eliminate only those sources of non-determinism which

result in failed fetches during loads of archived pages.

Impact of different sources of non-determinism. We

measure the impact of each source of non-determinism as

follows. We first load our locally stored copies of all pages in

Corpus3K with a desktop client. We then reload these pages

mimicking a different client (“iPhone 6”). Mimicking a dif-

ferent client allows us to exercise different values of most

2Alternatively, a web archive could crawl every page under all possible com-

binations of non-determinism. Doing so is not only impractical, but would

dramatically inflate compute and storage overheads.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    809



(a) (b)

0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1
0.00

0.25

0.50

0.75

1.00

Fraction of URLs unmatched

C
D

F
 a

c
ro

s
s
 p

a
g

e
s

Fuzzy
Querystrip
Exact

Figure 4: For every page in Corpus3K, fraction of resource re-

quests which cannot be matched with any crawled resource.

The impact of different URL matching algorithms is shown

when the sources of non-determinism are (a) APIs for client

characteristics as well as DRP APIs, and (b) only DRP APIs.

client characteristics, such as user-agent, screen dimensions,

and OS. We reload all pages once more, this time matching

the client characteristics used in the original load.

On 72% of pages, at least one different resource URL was

requested in the second load compared to the first load; these

two loads differ in the values for both APIs for client charac-

teristics and DRP APIs. Whereas, when comparing the third

load to the first, which differ only with respect to DRP API

values, the corresponding fraction was 52%. Note that, in

both cases, even one failed resource fetch can have a cascad-

ing effect, resulting in many other resources going unfetched.

Variance in resource URLs due to non-determinism results

in failed network fetches only if a web archive (like IA) ex-

pects requests from clients to specify URLs which are iden-

tical to the ones crawled. However, across loads of a page, if

the same resources are being requested using different URLs,

it might suffice for the web archive to employ a better algo-

rithm to match URLs requested to those crawled.

To check if this is the case, we consider two URL match-

ing algorithms used in prior work: 1 querystrip, where the

query string in any URL (i.e., the portion of the URL beyond

the delimiter ‘?’) is stripped before initiating a match [57],

and 2 fuzzy matching, which leverages Levenshtein dis-

tance [45] to find the best match for any given URL [26].

Querystrip relies on the fact that query strings are typically

used for updating server-side state, and they do not influence

the content of the response. Fuzzy matching accounts for

cases where non-determinism across loads results in simple

string transformations of the URLs for the same resources.

In any page load, we match URLs in the order they are

requested, and we match any requested URL against those

crawled URLs that have not already been matched.

Figure 4(a) shows that, on many pages, a significant frac-

tion of URLs were unmatched with both algorithms, when

APIs for client characteristics were a source for diverging

URLs. This is because, when client characteristics dif-

fer, often the number of resources fetched on the same

page changes. For example, www.nytimes.com fetches the

JavaScript file player-embedded.js on mobile clients to en-

able video players, whereas it fetches no such scripts on

desktop clients.

Digging deeper into DRP APIs. In contrast, when DRP

APIs are the only source of non-determinism, Figure 4(b)

shows that either URL matching algorithm suffices to elimi-

nate almost all failed resource fetches. However, this might

be the case only because we compare two loads of every

page, and the return values of DRP API invocations did not

sufficiently differ to have an impact.

To capture the effects of all possible return values of DRP

APIs, we turn to concolic execution [37, 61, 42], a variant

of symbolic execution which executes programs concretely

(rather than symbolically) while ensuring complete cover-

age of all control flows. We modify a prior concolic execu-

tion tool [42] to only track control flows influenced by DRP

APIs. We then randomly sample 300 pages from Corpus3K

because it takes around 20 minutes per page with this tool.

On all pages, DRP APIs had no impact on control flow. Thus,

comparing any two loads of a page suffices to examine the

divergence in URLs across loads due to these APIs.

Takeaways. These results influence our design of Jawa in

two ways. First, we instrument all scripts on any page so

that, when clients execute these scripts, all APIs for client

characteristics return the same values as when the page was

crawled. Compared to a thin-client model where a web

archive serves requests for pages by executing page loads

on behalf of users [26], our approach of letting users execute

page loads on their devices reduces server-side overheads.

Second, we do not need to account for any differences across

loads in DRP APIs because the impact of these differences

can be accounted for with server-side matching of requested

URLs to crawled URLs.

Note that we choose to patch all invocations of client char-

acteristic APIs, and not just the ones which influence the

URLs fetched. This is because, even if a particular invo-

cation of an API does not impact which URLs are fetched,

it can impact the reachability of code which assumes that

state dependent on the client’s type has been setup earlier

in the page load. Hence, if different API invocations return

inconsistent values, this could exercise code which accesses

uninitialized state, resulting in runtime errors.

4.2 Pruning non-functional code

We now turn our attention to reducing the storage overhead

of JavaScript on web archives. Jawa’s crawler uses two com-

plementary approaches to take advantage of the two previ-

ously mentioned properties which distinguish archived page

snapshots from pages on the web. The key consideration in

both cases is to ensure that pruning any JavaScript code does

not affect the execution of the remaining code.

Characteristics of non-functional code. Our first ap-

proach for pruning JavaScript code is based on two observa-

tions about the code which will not work on archived copies

of pages, i.e., code which relies on clients interacting with

810    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

www.nytimes.com


origin servers. First, on a typical page, we find that most of

such code is compartmentalized into a few files, rather than

being evenly spread across all JavaScript source files on the

page. As we will show later, these files do not contain any

code that is worth preserving. Second, functionality which

will not work on archived pages is largely implemented by

third-party scripts. Even though some of the functional-

ity which relies on communication with origin servers (e.g.,

intra-site search, login) is implemented by the first-party ori-

gin, we only focus on discarding third-party files, for reasons

discussed shortly.

The implication of these observations is that, to iden-

tify most of the non-functional JavaScript code in archived

pages, it is unnecessary to perform any complex code anal-

ysis. Instead, it suffices to assemble and use a “filter list”

which captures the features distinctive to the URLs of scripts

containing non-functional code; when crawling pages, a web

archive would simply have to discard (and not even fetch)

any script whose URL matches the filter list.

For example, via manual analysis of the URLs of all

scripts seen in Corpus1M, we assemble a filter list comprising

45 rules. We consider those script URLs which are included

on many pages. For each such popular script, we first visit

the domain on which the script is hosted to understand the

services offered by that domain. In cases where a domain

hosts scripts of many kinds, some of which are important to

retain even on archived pages, we examine the script’s con-

tent to determine its utility.

Every rule in our list matches URLs at one of three granu-

larities: 1) domain, i.e., filter any file hosted on that domain

(e.g., “zephr.com” enables support for user subscriptions), 2)

file name, i.e., filter scripts if the file name matches, regard-

less of the domain hosting the script (e.g., “jquery.cookie.js”

is used for cookie management), and 3) URL token, i.e., fil-

ter scripts if a specific keyword appears anywhere in their

URL (e.g., “pagesocial-sdk” and “recaptcha”).

Recall that Corpus1M comprises page snapshots crawled

from the Internet Archive, which already discards resources

that users often block on the live web, e.g., ads. In contrast,

our filter list aims to prune scripts which implement func-

tionality that is important to preserve on the live web, but will

not work on archived copies. Moreover, since a few popular

third-party service providers are used by the vast majority of

websites [46], we find that we only need to add 6 rules to our

filter list to account for pages on 300 additional sites beyond

the 300 sites included in Corpus1M.

Filtering has no impact on fidelity. Discarding a subset

of the JS files on a page might, however, break the execution

of code in files that are retained. Therefore, we study the

impact of filtering along two dimensions: 1) visual (i.e, does

the page look the same?), and 2) functional (i.e, are post-load

interactions that will work on archived pages unaffected?)

We load every page in Corpus3K with and without filter-

ing enabled. We take a screenshot after every page load.

<script src="https://js.sentry-cdn.com/7bc8b.min.js" </script>
<script>

if (window.Sentry) {

window.Sentry.onLoad(function() {
window.Sentry.init({

maxBreadcrumbs: 30,
environment: 'prd', });

});

}
</script>

Figure 5: Code snippet from www.nytimes.com where the

main frame first fetches a third-party JavaScript file hosted on

www.js.sentry-cdn.com and then cautiously invokes a func-

tion from it inside an if condition.

Leveraging our JavaScript instrumentation described earlier,

we also 1) identify all event handlers registered during each

page load, 2) trigger all event handlers after the page load

completes, and 3) track all values read or written from the

JavaScript heap and DOM by these handlers.

First, when we compare the screenshots for every page

with and without filtering, we observe that these screenshots

differ in the value of at least one pixel for 109 of the 3000

pages in Corpus3K. Upon manual examination of these 109

pages, we find that all differences are either due to anima-

tions or because DRP APIs result in a different timestamp

on the page. Second, for all event handlers registered by

the unfiltered files, we find 35 pages on which at least one

value accessed by at least one of these event handlers dif-

fered across loads with and without filtering. Again, these

differences were not consequential: they were due to differ-

ences in timing information, e.g., some event handlers log

the times at which their execution starts and ends.

A key reason for these positive results, which show that

Jawa’s filtering has no impact on the fidelity of the code

retained, is our explicit choice to only consider third-party

source files for filtering. On the one hand, most third party

scripts are self-encapsulated, i.e., the code in these files only

interacts with itself or the files it subsequently fetches. On

the other hand, as shown in Figure 5, first-party scripts typi-

cally invoke third-party code cautiously, so that the former is

unaffected in the off chance that the latter fails to be fetched.

Note that one cannot simply eliminate all third-party

scripts; that would render dysfunctional many post-load in-

teractions which do work, and are important to preserve, on

archived pages. As we show later in our evaluation (§6),

while discarding files which match our carefully curated fil-

ter list enables significant storage savings, doing so preserves

all navigational and informational interactions.

4.3 Prune unreachable code

In the Javascript files which do not match Jawa’s filter list,

many lines of code will never be executed in any page load.

This is because 1) some sources of non-determinism are ab-

sent in loads of archived pages (§3.1), and 2) Jawa elim-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    811

www.nytimes.com
www.js.sentry-cdn.com


812    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



4.4 Summary

Put together, our observations on the differences between

loads of archived and live pages enable Jawa to use a fairly

simple methodology to crawl and save pages, as shown in

Figure 6. For every page that it crawls, Jawa fetches all those

resources which do not match its filter list. For the remaining

files, it 1 injects code to identify what code was executed

during the page load and in what order, and 2 triggers ev-

ery registered event handler using default input values (e.g.,

the default x and y coordinates for a mouse click event is

0,0) and identifies the code executed. Finally, it stores those

portions of the page that are exercised in either step above.

It instruments the retained code so that, when users load the

page, their browser follows the same execution schedule and

uses the same client characteristics.

5 IMPLEMENTATION

Implementing a web archive involves several considerations

which are outside the scope of this paper, e.g., distributing

data across servers, detecting and coping with hardware fail-

ures, etc. Our implementation focuses on the aspects of a

web archive addressed by Jawa (Figure 6), namely crawling

and storing page snapshots. We also describe the impact of

Jawa’s design on serving page snapshots to users.

5.1 Crawling pages

When crawling a page, Jawa’s crawler (1.2K LOC) uses

a Node.js based man-in-the-middle proxy to interpose on

all requests/responses. The proxy uses the Esprima [9]

and BeautifulSoup [4] libraries to instrument JavaScript and

HTML files as they are fetched. Jawa references the filter

list for every outgoing request and, using regular expression

matching, blocks the request for any resource whose URL

matches any of the rules in the filter list. For all the remain-

ing resources fetched, Jawa selectively instruments JS files

prior to their execution. This instrumented code, upon exe-

cution, enables Jawa to 1) interpose on all browser APIs, 2)

track the subset of JS code executed (in terms of JS func-

tions), and 3) helps enumerate all event handlers registered

on the page. The instrumentation overhead incurred by the

crawler is significantly lower compared to when tracking all

state accesses (§4).

5.2 Storing page snapshots

For every page that it crawls, Jawa saves only a subset of the

JavaScript code on that page. Consequently, when the same

JavaScript file (e.g., a library) is included on many pages, it

is often the case that different subsets of this file need to be

stored as part of different page snapshots, thereby preempt-

ing simple file-level deduplication, as used by the Internet

Archive today [23].

Our solution is to store every unique file as a set of parti-

tions; each partition represents a different disjoint subset of

the file: from a specific start byte offset to an end byte offset.

When Jawa crawls a new page snapshot, for every JavaScript

Crawl index

Key Value

IA URL List of (content hash, WARC file

ID) tuples

Jawa (URL, content

hash)

List of (start byte offset, end byte

offset, WARC file ID) tuples

Serving index

Key Value

IA (URL, timestamp) (WARC file ID, byte offset)

Jawa (URL, timestamp) List of (WARC file ID, byte off-

set) tuples

Table 2: Comparison of indices maintained by IA and Jawa.

file crawled that is not filtered, it identifies the subset of code

in this file relevant for this snapshot. It then looks up the

crawl index (Table 2) to determine if this subset is already

covered by the byte ranges in this file that have previously

been stored. The crawler creates new WARC records for

portions of the file that have not been previously stored and

appends new entries to the crawl index. The crawl index is

processed asynchronously to produce the serving index (like

is the case today with Internet Archive).

5.3 Serving page snapshots

The implication of storing any JavaScript file’s contents as

above is that, when a client requests for a file while loading

a page snapshot, one does not know which of the partitions

stored for this file are relevant for this particular snapshot.

Instead, a web archive which uses Jawa can return the union

of all stored partitions for the requested JavaScript file; after

all, the portion of the file needed for any snapshot is a subset

of the stored partitions. Since the size of this union is at most

equal to the size of the original file, clients will have to fetch

no more bytes than they do today.

6 EVALUATION

We evaluate Jawa with three metrics: storage (to store

crawled resources and to store indices), fidelity (similarity of

archived page snapshots to the corresponding original pages)

and performance (both for crawling and serving). In all

cases, we compare against the corresponding techniques cur-

rently in use by the Internet Archive (§2), which we refer to

as IA*.3 In some cases, we also break down the utility/over-

head of each of Jawa’s components. The key findings from

our evaluation are as follows:

• Jawa reduces the storage needed for our corpus of 1 mil-

lion page snapshots by 41%. This reduction stems from

Jawa discarding 84% of JavaScript bytes.

• Despite this significant reduction in storage, on a random

sample of pages, all event handlers that one would expect

to function on archived pages continue to work.

• When we mimic loads of archived pages from IA, at least a

quarter of resource fetches fail on more than 10% of pages.

3IA* refers to us mimicking the techniques used by IA.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    813



0

100

200

300

IA* IA*+
Custom Filter

IA*+Combined
Filter

Jawa

T
o

ta
l 
S

to
ra

g
e

 (
G

B
)

0

100

200

300

400

500

600

IA* IA*+
Custom Filter

IA*+Combined
Filter

Jawa

T
o

ta
l 
S

to
ra

g
e

 (
G

B
)

(a) JavaScript resources (b) All resources

Figure 7: Total storage necessary to store corpus of 1 million page snapshots.

Whereas, on over 99% of pages, Jawa eliminates all failed

network fetches and ensures that the set of resources re-

quested from the archive match those crawled.

• Crawling throughput with Jawa improves by 39%, thanks

to our use of lightweight techniques for code analysis and

filtering of JavaScript files.

6.1 Storage

6.1.1 Storage for resources.

To begin, we consider the total amount of storage needed

to store the resources in our Corpus1m corpus. We crawl

all of these page snapshots from IA using our crawler

(§5). On each page, Jawa’s crawler only fetches third-party

JavaScripts which do not match its filter list. Apart from

our manually curated filter list for pruning code which will

not function on archived pages, we also leverage the open-

source filter list from EasyList [8], which is widely used by

many browser extensions to identify ads and analytics. In

every script that it does fetch when crawling a page snap-

shot, Jawa’s crawler identifies the subset of code necessary

for this snapshot and stores the portion of this subset that is

not covered by the subsets of this file previously stored.

Figure 7(a) shows that Jawa stores 40 GB of JavaScript

across the 1 million pages, a reduction of 84% compared to

IA*. Of course, to store the entire corpus, all resources on ev-

ery page snapshot need to be saved, not only JavaScripts. For

resources other than scripts (images, CSS, HTML, fonts),

Jawa offers no storage benefits; it stores them exactly as IA*.

Yet, we see a 41% reduction in total storage: 535GB with

IA* to 314GB with Jawa (Figure 7(b)). This is because, as

seen earlier in §2.2, JavaScript files account for 49% of all

the bytes across all pages, even after file-level deduplication.

Since 63% of the more than 140 PB of data stored by IA

is devoted to web page snapshots [12, 13], we estimate that

Jawa can reduce IA’s storage needs by 35 PB.

Sources of storage benefits. Storage savings enabled by

Jawa stem from a combination of not storing filtered files

and pruning unreachable code. When we break down the

impact of the filter lists we use, Figure 7(a) shows that our

custom filter list alone reduces the total amount of JavaScript

saved by 36%, and EasyList’s rules result in a further reduc-

tion of 28%. Jawa also significantly reduces storage needs

by eliminating unused code: the difference between the two

right most bars in Figure 7.

6.1.2 Storage for indices

In addition to storing crawled resources, both IA* and Jawa

also need to store the crawling and serving indices (Table 2).

The former enables the crawler to not store duplicate con-

tent, whereas the latter enables lookups of requested re-

sources when serving page snapshots. For our corpus of 1

million page snapshots, we find that size of both indices is

marginally smaller (15%) with Jawa than with IA*. First,

for most script files, Jawa ends up having to store a single

WARC record; for such files, after the first time a subset of

the file’s code is stored, all subsequent page snapshots which

include the same file end up needing the same subset. Sec-

ond, the increase in index entries for other files (for which

multiple subsets end up being stored) is offset by the elimi-

nation from the index of filtered files.

6.2 Fidelity

To evaluate Jawa’s preservation of page fidelity, we crawl

all 3000 pages in Corpus3K from the live web. We perform

these crawls on a desktop, once with Jawa’s crawler, and

once without using any of its methods. We then load these

pages from the two local copies, mimicking a different client

(“iPhone 6”). When using page snapshots saved by Jawa,

we match requested URLs to crawled URLs after stripping

query strings.

Resource fetches. We first evaluate Jawa’s impact on fi-

delity by examining the discrepancy between the set of re-

sources stored for any snapshot and the set of resources

fetched by a client when it loads that snapshot. Figure 8(a)

shows that, while 7% of network requests return a 404 on the

median page in loads of IA*, this fraction drops to 0% with

Jawa. On the 95th percentile page, the corresponding frac-

tions are 36% with IA* and 0% with Jawa. Consequently,

Figure 8(b) shows that, while 10% of stored resources are

not fetched on the median page when mimicking loads from

IA, this fraction drops to 0% with Jawa. On the 95th per-

centile page, the corresponding fractions are 75% with IA*

and 0% with Jawa.

814    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
 Fraction of requests that failed

C
D

F
 a

c
ro

s
s
 p

a
g
e
s

Jawa
IA*

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
 Fraction of bytes not fetched

C
D

F
 a

c
ro

s
s
 p

a
g
e
s

Jawa
IA*

(b)
Figure 8: When snapshots of 3K pages are served, (a) number

of resources requested by client which are not stored, and (b)

fraction of resources stored for a snapshot which are not fetched

by the client.

Visual analysis. To check if the pages served by Jawa are

identical to the ones it crawled, we take a screenshot of ev-

ery page both when crawling it and when we reload it from

our local copy. We then compare every pair of screenshots

to check if the value of every pixel matches. Apart from

the visual differences accounted for by animations and non-

determinism in 54 pages, both screenshots matched exactly

for every other page when using Jawa. Since loads of IA*

do not patch APIs for client characteristics, differences in

screen dimensions between clients make it moot to compare

screenshots.

Interactions. Finally, to evaluate Jawa’s impact on post-

load interactions, we randomly sample 150 pages. For each

page, we load the versions that would be served by IA* and

by Jawa. To isolate the impact of Jawa’s techniques, we also

consider an intermediate design point (Only filter) where we

only use Jawa’s filtering but do not prune unreachable code.

We categorize all event handlers on every page into three

types: 1) navigational, i.e., they help in navigating either

to a different page (e.g., a navigational bar) or within the

page (e.g., a scroll-to-bottom button), 2) informational, i.e.,

they help make more information available (e.g., carousels

or tabs), and 3) transactional (e.g., login or post buttons). On

archived pages, transactional event handlers will not func-

tion. So, on each of the 150 sampled pages, we manually

trigger all event handlers that belong to the first two cate-

gories. All 124 navigational interactions and 100 informa-

0.0

0.5

1.0

1.5

ArchiveBox Jawa
baseline

Jawa

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(N
o

rm
a

liz
e

d
)

Figure 9: Comparison of crawling throughput, normalized to

that offered by ArchiveBox.

tional interactions worked as expected in all three loads: IA*,

Only filter, and Jawa. Key to preserving these post-load in-

teractions are Jawa’s carefully curated filter list for discard-

ing non-functional code, and its methods for identifying and

retaining all reachable code. In contrast, if we discard all

third-party files or if we use Jawa’s filter list but save only

the functions registered as handlers, then only 42% of these

interactions work in the former case and 10% in the latter.

6.3 Performance

Crawling throughput. IA’s production crawler is not pub-

lic to the best of our knowledge. Therefore, we turn to

two open-source crawlers: Brozzler [5] and ArchiveBox [3].

Brozzler is operated by IA, and used alongside their pro-

duction crawler. Whereas, ArchiveBox is a very active and

commonly used crawler by individual archivists (over 12K

stars on GitHub). We find that Brozzler is 20% slower than

ArchiveBox because of the latter’s more efficient implemen-

tation of their headless Chrome interface. We also note, that

on a server with 32 cores and 128 GB RAM, we were able to

crawl 5000 URLs in 15 minutes with ArchiveBox. With this

crawling throughput, IA would need to dedicate 900 such

servers for crawling pages, which is comparable to the num-

ber of servers they currently claim to use [11]. Therefore, we

evaluate Jawa against ArchiveBox.

Figure 9 shows that Jawa’s crawler offers throughput com-

parable to Archivebox when all of Jawa’s techniques are dis-

abled (Jawa baseline). Enabling all the methods in Jawa’s

design increases our crawler’s throughput by 39%.

To breakdown the overheads, we measure the latency of

each of the techniques used by Jawa’s crawler in isolation,

namely 1) filter: filtering JavaScript files, 2) code injec-

tion (CI): instrumenting the code in fetched scripts, 3) dy-

namic tracking (DT): dynamically tracking code execution

and event handler registration, and finally 4) event trigger-

ing (ET): invoking event handlers and capturing the code

executed. Figure 10 shows that not having to fetch filtered

scripts completely offsets the overheads of all other tech-

niques. Not only does Jawa’s crawler not fetch any scripts

which match its filter list, but all the resources that would

have been fetched by the filtered files also go unfetched; this

latter set of files often do not match the filter list.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    815



0

100

200

300

400

500

600

Filter CI DT ET

L
a

te
n

c
y
(m

s
)

−5000

−2500

0

1000

2000

Filter CI DT ET

Figure 10: Benchmarking the overhead of techniques used in

Jawa’s crawler. Bars plot median across pages, and whiskers

plot 10th and 90
th percentiles. Graph on the left zooms in on

the yrange 0 to 500ms in the graph on the right.

Index I/Os per page Reduction in I/Os

with IA* per page with Jawa

50
th %ile 90

th %ile 50
th %ile 90

th %ile

Crawling 3 15 1 5

Serving 41 107 1 3

Table 3: Writes on crawling index and reads on serving index;

values shown for 50th and 90th percentile page on median site.

Jawa also impacts crawling throughput by requiring more

writes to the crawling index because, unlike IA*, it spreads

the code in some script files across multiple WARC records.

We cannot quantify the performance impact of doing so since

our setup does not match a production archive like IA. How-

ever, we can quantify the number of additional writes that

Jawa performs to the crawl index, compared to IA*. Table 3

shows that the number of writes to the crawl index decrease

with Jawa; due to filtering, fewer files are crawled.

Serving performance. When serving page snapshots,

Jawa’s only overhead is in needing to potentially lookup mul-

tiple WARC records in order to respond to a request for a

JavaScript file. We find that page load times on IA’s Way-

back Machine are proportional to the number of resources

on the requested page snapshot, or equivalently, the num-

ber of WARC records that IA needs to lookup to serve the

snapshot. Therefore, as a proxy for estimating Jawa’s impact

on user-perceived performance, we examine the increase due

to Jawa in the number of WARC records read when serv-

ing page snapshots. Table 3 shows that the number of in-

dex lookups decrease with Jawa; again, thanks to filtering, a

client has to fetch fewer files per snapshot.

7 VERIFYING PAGE PROPERTIES

Jawa’s methods for pruning non-functional and unreachable

code are based on three properties that we found to be true

on archived web pages:

• DRP APIs have no impact on control flow

• Discarding third-party JavaScript files which match a

manually curated filter list has no impact on fidelity

• For post-load interactions which work on archived pages,

the event handlers which power them do not have read-

write dependencies that influence branch conditions

All of these observations are rooted in our empirical analysis

of a variety of web pages in Corpus3K: 9 internal pages and

1 landing page in each of 300 sites, which span a wide range

of rankings among Alexa’s top million sites. However, we

recognize that not all pages may abide by these properties.

For example, consider a page which shows the time until a

deadline and switches the font color when the time remain-

ing is below a threshold; such a page would violate the first

property listed above.

To handle such cases, we observe that web archives do not

crawl every page just once; they repeatedly recrawl pages

over time in order to capture changes to every page’s con-

tent. For any given page, in some crawls of the page, a

web archive can disable all of Jawa’s methods and check if

the properties expected to be true indeed hold on this page.

For example, like the analysis we performed (§4), the web

archive can instrument scripts to track state accesses, and

then examine dependencies between event handlers and be-

tween files which do or do not match the filter list. It can also

perform concolic execution to verify that DRP APIs have no

impact on control flow.

The key to restricting the compute overheads of these

heavyweight analyses is to run them on a sample of snap-

shots. To determine the sampling rate, a web archive can

leverage properties that are stable across a page’s snapshots.

For example, upon analyzing all of IA’s snapshots for 300

randomly chosen pages, we observe that the median page

has the same number of runtime errors for an average of 53

snapshots. Therefore, once in every 53 crawls of any of these

pages, a web archive can disable filtering and check if the

number of runtime errors matches prior crawls where filter-

ing had been used. If there is a mismatch, the web archive

can disable the use of filtering for this page going forward.

Since Jawa serves any JavaScript file to users as the union of

all partitions of this file stored across crawls (§5), disabling

filtering in one crawl of the page will also benefit all prior

crawls of that page.

8 DISCUSSION

How future proof is Jawa? In the immediate future, re-

cent trends [18] indicate that the amount of JS on pages will

continue to increase, making it important for web archives to

adopt Jawa’s techniques for pruning JS and for eliminating

fidelity issues due to the non-determinism introduced by JS.

In the long term, we expect that the principles that dictate

Jawa’s design will continue to hold: to serve pages with high

fidelity, 1) archives must account for non-determinism, and

2) a large fraction of JS can be discarded with no risk.

Optimize already archived pages. Jawa’s simple tech-

niques make it highly amenable to be used with pages that

have already been archived. First, a web archive can sig-

816    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



nificantly reduce its storage needs by discarding all JS files

that match Jawa’s filter list. Second, the web archive can

rewrite the HTML of every archived page to include a cus-

tom script which will enforce the same client characteristics

as the crawler when users load the page. The only aspect of

Jawa that would be hard to use on already archived pages is

the elimination of unreachable code, as that requires invok-

ing all event handlers on every page.

9 RELATED WORK

Impact of JavaScript on web crawlers. Prior work

has shown that it is important for web crawlers to execute

JavaScript when crawling pages, both in the context of web

archives [31, 32, 33] and web search engines [1], else many

important resources on a page will often go uncrawled. Our

work highlights that, due to the non-deterministic execution

of JavaScripts, archived pages often have poor fidelity even

when pages are crawled using a browser which executes all

scripts on every page.

Beyond executing JavaScripts while crawling a page, sys-

tems like Conifer [6] also save all resources on the page that

are fetched while the user is interacting with the page. How-

ever, such systems are designed for private web archival, i.e.,

a user saves a page and its constituent resources for the user’s

own personal use later. If users load a page archived by a

different user using a different device/browser, they will face

the same fidelity issues seen on the Internet Archive.

Coverage of web archives. Many measurement stud-

ies [27, 28] have demonstrated that web archives are far

from comprehensive in archiving all pages on the web. Prior

work [50, 41] has attempted to address the incompleteness

caused due to large portions of the web not being openly

available (e.g., behind paywalls) and requiring user logins

(e.g., social media). In contrast, we seek to enable web

archives to improve their coverage by reducing the costs as-

sociated with archiving any corpus of pages; thereby, for the

same budget, a web archive can crawl and save more pages.

Supporting bulk processing of archives. Jawa focuses on

enabling web archives to support the use case where users

load individual page snapshots and interact with them. Al-

ternatively, web archives are used by researchers to perform

large scale analyses of historical information. Xinyue et

al. [64] demonstrate the performance penalties of the WARC

format for such batch processing workloads, and many sys-

tems [47, 2, 39] have been developed to enable programmatic

analysis of large corpuses without needing to access each in-

dividual resource on every page.

JavaScript record and replay systems. A number of

prior systems [29, 52, 60] enable users to record and replay

JavaScript execution, both in the context of browsers [29]

and independent JavaScript programs [60]. These record and

replay tools are critical for debugging JavaScript based er-

rors. Therefore, to ensure high fidelity replay, all of these

systems identify and patch all sources of non-determinism

to match the recorded version. In contrast, we analyze the

individual impact of each source of non-determinism on the

URLs fetched and patch them accordingly.

Code reachable through event handlers. JavaScript test-

ing tools automate the process of testing by dynamically

constructing test cases to achieve maximum code coverage.

A key part of this process is identifying all code that can

be potentially executed by event handlers. Doing so re-

quires heavyweight symbolic execution analysis [42], or ex-

haustively going through all possible orders and inputs [30].

Jawa leverages the differences between archived and live

web pages to simplify this analysis by only needing to use

the trace from a single execution.

Program analysis on the web. JavaScript on the web

has been notorious for various kinds of security, privacy and

performance issues. A large body of prior work focuses on

addressing such issues by relying on sophisticated program

analysis techniques [63, 66]. Such techniques, however, in-

cur a high computation cost. This is why, in solutions for

optimizing web performance [42, 54, 49] which use com-

putationally expensive JavaScript analysis techniques, web

servers perform such analysis in the background to mitigate

the impact of their overheads. For archival systems, even if

crawled JavaScript resources are processed offline, the cost

for computationally heavyweight processing is not sustain-

able. Hence, Jawa employs lightweight approaches, rooted

in properties of JavaScript on the web.

Dead code elimination on the web. One way to optimize

web performance is to eliminate dead code (i.e., code that

is never reachable) from resources such as JavaScript and

CSS. Tools [17, 25] which do so using static analysis are

widely used. We observe that, in archived pages, a signif-

icantly greater fraction of code is potentially unreachable,

since many sources of non-determinism (e.g., variation in

client state and server responses) are absent. Jawa exploits

this property to provide significant storage savings.

10 CONCLUSION

Since when the Internet Archive began operating in the late

1990s, a marked change on the web has been the increased

use of JavaScript. In this paper, we shined light on two

significant problems caused by this change: broken render-

ing of archived pages, and petabytes of storage wasted on

JavaScript which will either be non-functional or never be

used. Our design of Jawa addresses these problems while

emphasizing low overhead on both crawling and serving

pages. As a result of our work, web archives will be able to

archive many more pages than they can today for the same

cost and ensure that archived pages more closely approxi-

mate their original versions.

Acknowledgements: We thank the anonymous reviewers

and our shepherd, Philip Levis, for their valuable feedback.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    817



REFERENCES

[1] https://developers.google.com/search/docs/

advanced/javascript/javascript-seo-basics.

[2] Archive unleashed. https://github.com/

archivesunleashed/aut.

[3] Archivebox. https://github.com/ArchiveBox/

ArchiveBox.

[4] BeautifulSoup. https://pypi.org/project/

beautifulsoup4/.

[5] Brozzler. https://github.com/internetarchive/

brozzler.

[6] Conifer. https://conifer.rhizome.org/.

[7] Donate to the Internet Archive! https://archive.org/

donate/.

[8] EasyList. https://easylist.to/.

[9] Esprima. https://esprima.org/.

[10] HTTP Archive: State of the web. https://httparchive.

org/reports/state-of-the-web#bytesTotal.

[11] IA infrastructure. https://archive.org/details/jonah-

edwards-presentation.

[12] Inside wayback machine. https://thehustle.co/inside-

wayback-machine-internet-archive/.

[13] Internet archive. https://www.archive.org/about/.

[14] Internet Archive tax return. https://projects.

propublica.org/nonprofits/organizations/

943242767.

[15] jQuery element selector. https://api.jquery.com/

element-selector/.

[16] Page-vault. https://www.page-vault.com/solutions/.

[17] Prepack. https:/www.prepack.io.

[18] State of JavaScript. https://httparchive.org/reports/

state-of-javascript.

[19] Stillio. https://www.stillio.com/.

[20] The Boston Globe: Internet archive’s copy from

August 2, 2020. https://web.archive.org/web/

20200802084355/https://www.bostonglobe.com/.

[21] The Daily Caller: Internet archive’s copy from

September 5, 2020. https://web.archive.org/web/

20200905133311/https://dailycaller.com/.

[22] The WARC format 1.0. https://iipc.github.io/warc-

specifications/specifications/warc-format/warc-

1.0/.

[23] WARC revisit tag. https://iipc.github.io/warc-

specifications/specifications/warc-format/warc-

1.0/#revisit.

[24] Wayback machine. https://www.archive.org/web.

[25] Webpack. https://webpack.js.org/guides/tree-

shaking/.

[26] Webrecorder. https://webrecorder.net/.

[27] S. G. Ainsworth, A. Alsum, H. SalahEldeen, M. C.

Weigle, and M. L. Nelson. How much of the web is

archived? In Joint Conference on Digital Libraries,

2011.

[28] A. AlSum, M. C. Weigle, M. L. Nelson, and H. Van de

Sompel. Profiling web archive coverage for top-level

domain and content language. International Journal

on Digital Libraries, 2014.

[29] S. Andrica and G. Candea. WaRR: A tool for high-

fidelity web application record and replay. In DSN,

2011.

[30] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip.

A framework for automated testing of javascript web

applications. In ICSE, 2011.

[31] J. F. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle,

and M. L. Nelson. Not all mementos are created equal:

Measuring the impact of missing resources. Interna-

tional Journal on Digital Libraries, 2015.

[32] J. F. Brunelle, M. Kelly, M. C. Weigle, and M. L. Nel-

son. The impact of javascript on archivability. Interna-

tional Journal on Digital Libraries, 2016.

[33] J. F. Brunelle, M. C. Weigle, and M. L. Nelson.

Archival crawlers and javascript: discover more stuff

but crawl more slowly. In Joint Conference on Digital

Libraries. IEEE, 2017.

[34] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,

and V. Sekar. Klotski: Reprioritizing Web Content to

Improve User Experience on Mobile Devices. In NSDI,

2015.

[35] Z. T. Fernando, I. Marenzi, and W. Nejdl. ArchiveWeb:

Collaboratively extending and exploring web archive

collections—how would you like to work with your

collections? International Journal on Digital Li-

braries, 2018.

[36] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener.

A large-scale study of the evolution of web pages. Soft-

ware: Practice and Experience, 2004.

[37] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

automated random testing. In PLDI, 2005.

[38] A. Goel, V. Ruamviboonsuk, R. Netravali, and H. V.

Madhyastha. Rethinking client-side caching for the

mobile web. In HotMobile, 2021.

[39] H. Holzmann, V. Goel, and A. Anand. Archivespark:

Efficient web archive access, extraction and derivation.

In Joint Conference on Digital Libraries, 2016.

[40] International Internet Preservation Consortium. Access

Working Group. Use cases for access to internet

archives. IIPC Report, 2006.

[41] M. Kelly, M. L. Nelson, and M. C. Weigle. A frame-

work for aggregating private and public web archives.

In Joint Conference on Digital Libraries, 2018.

[42] R. Ko, J. Mickens, B. Loring, and R. Netravali.

Oblique: Accelerating page loads using symbolic ex-

ecution. In NSDI, 2021.

[43] J.-w. Kwon and S.-M. Moon. Web application migra-

tion with closure reconstruction. In WWW, 2017.

[44] S. Lawrence, F. Coetzee, E. Glover, G. Flake, D. Pen-

nock, B. Krovetz, F. Nielsen, A. Kruger, and L. Giles.

Persistence of information on the web: Analyzing cita-

818    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developers.google.com/search/docs/advanced/javascript/javascript-seo-basics
https://developers.google.com/search/docs/advanced/javascript/javascript-seo-basics
https://github.com/archivesunleashed/aut
https://github.com/archivesunleashed/aut
https://github.com/ArchiveBox/ArchiveBox
https://github.com/ArchiveBox/ArchiveBox
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
https://github.com/internetarchive/brozzler
https://github.com/internetarchive/brozzler
https://conifer.rhizome.org/
https://archive.org/donate/
https://archive.org/donate/
https://easylist.to/
https://esprima.org/
https://httparchive.org/reports/state-of-the-web#bytesTotal
https://httparchive.org/reports/state-of-the-web#bytesTotal
https://archive.org/details/jonah-edwards-presentation
https://archive.org/details/jonah-edwards-presentation
https://thehustle.co/inside-wayback-machine-internet-archive/
https://thehustle.co/inside-wayback-machine-internet-archive/
https://www.archive.org/about/
https://projects.propublica.org/nonprofits/organizations/943242767
https://projects.propublica.org/nonprofits/organizations/943242767
https://projects.propublica.org/nonprofits/organizations/943242767
https://api.jquery.com/element-selector/
https://api.jquery.com/element-selector/
https://www.page-vault.com/solutions/
https:/www.prepack.io
https://httparchive.org/reports/state-of-javascript
https://httparchive.org/reports/state-of-javascript
https://www.stillio.com/
https://web.archive.org/web/20200802084355/https://www.bostonglobe.com/
https://web.archive.org/web/20200802084355/https://www.bostonglobe.com/
https://web.archive.org/web/20200905133311/https://dailycaller.com/
https://web.archive.org/web/20200905133311/https://dailycaller.com/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/#revisit
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/#revisit
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/#revisit
https://www.archive.org/web
https://webpack.js.org/guides/tree-shaking/
https://webpack.js.org/guides/tree-shaking/
https://webrecorder.net/


tions contained in research articles. In CIKM, 2000.

[45] V. I. Levenshtein. Binary codes capable of correcting

deletions, insertions and reversals. Soviet Physics Dok-

lady, 1966.

[46] T. Libert. Exposing the hidden web: An analysis of

third-party HTTP requests on 1 million websites. In-

ternational Journal of Communication, 2015.

[47] J. Lin, M. Gholami, and J. Rao. Infrastructure for sup-

porting exploration and discovery in web archives. In

WWW, 2014.

[48] B. Loring, D. Mitchell, and J. Kinder. ExpoSE:

Practical symbolic execution of standalone JavaScript.

In SPIN Symposium on Model Checking of Software,

2017.

[49] S. Mardani, A. Goel, R. Ko, H. V. Madhyastha, and

R. Netravali. Horcrux: Automatic javascript par-

allelism for resource-efficient web computation. In

OSDI, 2021.

[50] C. C. Marshall and F. M. Shipman. On the institutional

archiving of social media. In Joint Conference on Dig-

ital Libraries, 2012.

[51] J. Mickens. Rivet: Browser-agnostic remote debugging

for web applications. In USENIX ATC, 2012.

[52] J. W. Mickens, J. Elson, and J. Howell. Mugshot: De-

terministic capture and replay for javascript applica-

tions. In NSDI, 2010.

[53] J. Nejati, M. Luo, N. Nikiforakis, and A. Balasubrama-

nian. Need for mobile speed: A historical analysis of

mobile web performance. In TMA, 2020.

[54] R. Netravali, A. Goyal, J. Mickens, and H. Balakrish-

nan. Polaris: Faster page loads using fine-grained de-

pendency tracking. In NSDI, 2016.

[55] R. Netravali and J. Mickens. Prophecy: Accelerating

mobile page loads using final-state write logs. In NSDI,

2018.

[56] R. Netravali, V. Nathan, J. Mickens, and H. Balakrish-

nan. Vesper: Measuring time-to-interactivity for web

pages. In NSDI, 2018.

[57] R. Netravali, A. Sivaraman, K. Winstein, S. Das,

A. Goyal, J. Mickens, and H. Balakrishnan. Mahimahi:

Accurate record-and-replay for HTTP. In USENIX

ATC, 2015.

[58] A. Ntoulas, J. Cho, and C. Olston. What’s new on the

web? the evolution of the web from a search engine

perspective. In WWW, 2004.

[59] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCa-

mant, and D. Song. A symbolic execution framework

for javascript. In IEEE Symposium on Security and Pri-

vacy, 2010.

[60] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi:

A selective record-replay and dynamic analysis frame-

work for javascript. In FSE, 2013.

[61] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic

unit testing engine for C. In ESEC/FSE, 2005.

[62] D. Spinellis. The decay and failures of web references.

Communications of the ACM, 46(1):71–77, 2003.

[63] O. Tripp and O. Weisman. Hybrid analysis for

javascript security assessment. In ESEC/FSE, 2011.

[64] X. Wang and Z. Xie. The case for alternative web

archival formats to expedite the data-to-insight cycle.

In Joint Conference on Digital Libraries, 2020.

[65] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,

and D. Wetherall. Demystifying page load performance

with WProf. In NSDI, 2013.

[66] S. Wei and B. G. Ryder. Practical blended taint analysis

for javascript. In International Symposium on Software

Testing and Analysis, 2013.

A ARTIFACT APPENDIX

A.1 Abstract

Our open-source artifact contains the scripts and the data

necessary to produce the key results from this paper. It also

contains the code for the analysis framework which informed

Jawa’s design.

A.2 Scope

The artifact can be used to confirm the three main benefits

of Jawa: a) reduced storage overhead, b) improved fidelity

by eliminating almost all failed network requests, and c) im-

proved crawling throughput.

A.3 Contents

The artifact contains all the code required to generate the

key results with respect to three metrics: storage, fidelity and

throughput. This includes a) Jawa’s filter list and a NodeJS

based crawler that leverages this filter list while loading web

pages; b) a NodeJS based analyzer that injests JS files and

instruments them to track all the JS functions executed at

runtime, the set of event handlers registered, and the return

values of browser APIs; and c) a set of scripts to automati-

cally run the above code on a given corpus of pages. These

scripts will produce the following results:

• E1: Reduced storage overhead using Jawa’s two tech-

niques: eliminating non-functional code using the filter

list, and eliminating unused code by tracking the set of

functions executed during the page load plus those re-

quired for enabling user interactions. This result will

mimic the trend shown in Figure 7.

• E2: Improved page fidelity by eliminating almost all

failed network requests. This result will reproduce the

number of failed requests and the corresponding num-

ber of bytes not fetched, as shown in Figure 8.

• E2: Improved crawling throughput by reducing the

number of IOs on the crawling index. This result will

mimic the trend shown in the “Crawling” column of

Table 3.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    819



Apart from the scripts, the artifact contains a corpus of 3000

pages which is pre-recorded using the Mahimahi [57] tool.

All scripts are run on this corpus of pages. Finally, the arti-

fact also contains the JS analysis framework which was used

to inform Jawa’s design choices (§3).

A.4 Hosting

The source code of the artifact is hosted on https://github.

com/goelayu/Jawa with the corresponding commit ID:

“07e358eeed7cc054747271b19070b5563f3ff189”. The cor-

pus of pages is hosted on Google Drive.

A.5 Requirements

Software dependencies

The artifact has been tested on Ubuntu 16.04.7 LTS. It re-

quires installing the following dependencies, in addition to

the NodeJS dependencies included in the github repo (§A.6):

$ sudo apt-get install mahimahi google-chrome-

stable parallel r-base r-base-core

$ sudo sysctl -w net.ipv4.ip_forward=1

A.6 Installations

Setting up the artifact involves three steps: a) downloading

the source code and installing the NodeJS dependencies, b)

patching the NodeJS dependencies to use the modified ver-

sions included in the github repo, and c) fetching and extract-

ing the corpus of pages to run the analysis on.

Install the code

$ git clone https://github.com/goelayu/Jawa

$ cd Jawa

$ npm install

$ export NODE_PATH=${PWD}

Patch the dependencies

$ vim node_modules/puppeteer-extra-plugin-

adblocker/dist/index.cjs.js

# add to line 73:

return adblockerPuppeteer.PuppeteerBlocker.parse

(fs.readFileSync(’../filter-lists/combined-

alexa-3k.txt’, ’utf-8’));

Fetch the data

$ cd data

# download tarball from https://drive.google.com/

file/d/17j6AYgaaXMhmV0VKWUmU_kMcHibMryVV/view?

usp=sharing

$ tar -xf corpus.tar

A.7 Experiments workflow

As listed in §A.3, the artifact scripts will produce results cor-

responding to three metrics: storage, fidelity and crawling

throughput.

A.7.1 Fidelity

We provide scripts and data to exactly reproduce Figure 8

(both a and b). The corpus used for this experiment con-

tained 3000 pages. On a single core machine, it takes

roughly 20–30 seconds for each page to load and, therefore,

takes about 20 hours to load all 3000 pages once. We rec-

ommend to either run this experiment on a smaller corpus

of pages (more details below) or to use a multi-core (16–32

cores) machine to speed up the overall execution time.

$ cd ../ae

# Usage: ./fidelity.sh <corpus_size> <num of

parallel processes>

$ ./fidelity.sh 3000 1 # depending on the number

of available cores on your machine, provide

the 2nd argument

The output graphs will be generated in the same directory:

“count fidelity.pdf” and “size fidelity.pdf”, corresponding

to Figures 8(a) and 8(b), respectively.

A.7.2 Storage

Reproducing Figure 7 requires processing 1 million pages,

which would take around a week (even with 128 CPU

cores). We instead provide scripts to process 3000 pages,

and demonstrate storage savings derived from both of Jawa’s

techniques. We provide preprocessed web pages, i.e., in-

jected with instrumentation code to detect which functions

are executed at runtime, and code to track event handlers.

You can fetch the the instrumented pages as follows:

$ cd ../data

# download tarball from https://drive.google.com/

file/d/16Pt4a2l1CNxC8UBwjalgEki-UlGAnFUm/view?

usp=sharing

$ tar -xf processed.tar

You can now run the end-to-end storage analysis script:

$ cd ../ae

# Usage: ./storage.sh <corpus_size> <num of

parallel processes>

$ ./storage.sh 3000 1 # depending on the number of

available cores on your machine, provide the

2nd argument

The above script will print three storage numbers (in

bytes) to the console. a) Total JS storage after deduplication

(as incurred by Internet Archive); this mimics the “IA*” bar

in Figure 7(a). b) Total JS storage after applying Jawa’s filter;

this mimics the “IA*+Combined Filter” bar in Figure 7(a).

c) Total JS storage after removing unused JS functions; this

mimics the “Jawa” bar in Figure 7(a).

A.7.3 Crawling throughput

We reproduce the throughput results from Table 3’s “Crawl-

ing” column. The storage script above outputs the crawling

index IOs as well. It prints the following two numbers: a)

reductions in crawling IOs for the 50th percentile page, and

b) reductions in crawling IOs for the 95th percentile page.

820    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/goelayu/Jawa
https://github.com/goelayu/Jawa


Ekko: A Large-Scale Deep Learning Recommender System
with Low-Latency Model Update

Chijun Sima∗

Tencent
Yao Fu∗

The University of Edinburgh
Man-Kit Sit

The University of Edinburgh
Liyi Guo
Tencent

Xuri Gong
Tencent

Feng Lin
Tencent

Junyu Wu
Tencent

Yongsheng Li
Tencent

Haidong Rong
Tencent

Pierre-Louis Aublin
IIJ research laboratory

Luo Mai
The University of Edinburgh

Abstract
Deep Learning Recommender Systems (DLRSs) need to up-
date models at low latency, thus promptly serving new users
and content. Existing DLRSs, however, fail to do so. They
train/validate models offline and broadcast entire models to
global inference clusters. They thus incur significant model
update latency (e.g. dozens of minutes), which adversely af-
fects Service-Level Objectives (SLOs).

This paper describes Ekko, a novel DLRS that enables
low-latency model updates. Its design idea is to allow model
updates to be immediately disseminated to all inference clus-
ters, thus bypassing long-latency model checkpoint, valida-
tion and broadcast. To realise this idea, we first design an
efficient peer-to-peer model update dissemination algorithm.
This algorithm exploits the sparsity and temporal locality in
updating DLRS models to improve the throughput and la-
tency of updating models. Further, Ekko has a model update
scheduler that can prioritise, over busy networks, the sending
of model updates that can largely affect SLOs. Finally, Ekko
has an inference model state manager which monitors the
SLOs of inference models and rollbacks the models if SLO-
detrimental biased updates are detected. Evaluation results
show that Ekko is orders of magnitude faster than state-of-
the-art DLRS systems. Ekko has been deployed in production
for more than one year, serves over a billion users daily and
reduces the model update latency compared to state-of-the-art
systems from dozens of minutes to 2.4 seconds.

1 Introduction

Deep Learning Recommender Systems (DLRSs) are a key
infrastructure in large technology organisations such as
Meta [54], ByteDance [23], Google [15] and NVIDIA [56].
A DLRS often contains a large group of parameter servers
that host numerous Machine Learning (ML) models (i.e. em-
bedding tables [10, 26, 54] and deep neural networks [18]).
The parameter servers are replicated in geo-distributed data

*Chijun and Yao are co-primary authors.

centres for fault-tolerance and low-latency communication
with clients. Each data centre has a group of inference servers
which pull models from local parameter servers and serve
clients with recommendation results. To ensure new users and
content can be served promptly, a DLRS must update ML
models continuously: it first uses training servers to collect
new training data and compute model gradients. It then uses
parameter servers to disseminate model updates to model
replicas, usually through a Wide-Area Network (WAN).

Large-scale DLRSs need to serve billions of users [15,
23, 54] and they must achieve latency-related Service-Level
Objectives (SLOs) [49], e.g. the latency of making a newly
created content available to users. To best achieve SLOs, the
operators of DLRSs have emerging requirements for achiev-
ing low latency in updating models. There are several reasons
for this: (i) recent DLRS applications (e.g. YouTube [24]
or TikTok [8]) have enabled users to create massive short
videos, articles and images. All these contents need to be
made available for clients as soon as possible, usually in min-
utes if not seconds; (ii) data protection laws (e.g. GDPR [60])
allow DLRS users to become anonymous. The behaviours of
anonymous users need to be learnt online; (iii) numerous on-
line ML models (e.g. reinforcement learning [74]) have been
adopted in production to improve recommendation quality.
These models must be continuously updated online to achieve
the best possible performance.

Unfortunately, achieving low-latency model updates is ex-
tremely difficult in existing DLRSs. Existing systems such
as Merlin [56], TFRA [66], Check-N-Run [21] and Big-
Graph [39] follow an offline approach to updating models:
after having collected new training data, these systems com-
pute gradients for models offline, validate model checkpoints,
and broadcast the checkpoints to all data centres. Such a
model update process can take minutes and even hours [21].
An alternative approach is to use WAN-optimised ML sys-
tems [28] or federated learning systems [37]. These systems
update replicated models using locally collected data and
lazily synchronise replicas. The lazy synchronisation, how-
ever, introduces a non-trivial level of asynchrony, which often

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    821



adversely affects the achievement of SLOs [28, 42].
We want to explore a DLRS design that can achieve low-

latency model updates without compromising SLOs. Our key
idea is to allow training servers to update models (using gra-
dients) online and immediately disseminate model updates
to all inference clusters. This design allows us to bypass
long-latency update steps, including offline training, model
checkpoint, validation and broadcast, thereby reducing model
update latency. To make this design feasible, we need to ad-
dress several challenges: (i) how to efficiently disseminate
massive model updates over WANs which have limited band-
widths and heterogeneous network paths [28]; (ii) how to
protect SLOs from network congestion that can delay critical
updates; and (iii) how to protect SLOs from biased model
updates that are detrimental to model accuracy.

This paper introduces Ekko, a novel large-scale DLRS that
updates globally replicated models at low latency. The design
of Ekko makes several key contributions:
(1) Efficient peer-to-peer model updates dissemination.
Existing parameter servers often adopt primary-backup data
replication protocols [11, 41, 67] to realise model updates.
With massive model updates, however, primary-backup pro-
tocols exhibit insufficient scalability due to long update la-
tency [67] and leader bottlenecks [2].

To address these issues, we explore how to enable Peer-
to-Peer (P2P) [20] model update dissemination. We design
an efficient log-less state-based synchronisation algorithm
for geo-distributed DLRSs (see §4). This algorithm is effec-
tive in DLRSs because model updates often hit hot parame-
ters [21], and it only transfers the latest version of a model
parameter (i.e. state). Ekko must allow parameter servers to
efficiently discover the differences of model states in a P2P
manner. To this end, we design (i) model update caches that al-
low parameter servers to efficiently track and compare model
states, (ii) shard versions that can significantly reduce network
bandwidth consumption when comparing model states, and
(iii) WAN-optimised dissemination topologies that allow pa-
rameter servers to prioritise bandwidth-affluent intra-DC net-
work paths over bandwidth-limited inter-DC network paths.
(2) SLO protection mechanisms. Ekko allows model updates
to reach inference clusters without offline model validation.
Such a design can make SLOs (particularly those related to the
freshness and quality of recommendation results) vulnerable
to network congestion and biased updates, both possible in
production environments.

To handle network congestion, we design an SLO-aware
model update scheduler (see §5). This scheduler computes
metrics, including the update freshness priority, the update
significance priority and the model priority. These metrics
predict the impact of model updates on the inference SLOs.
The scheduler computes a priority for each model update
online based on these metrics. We integrate the scheduler
into parameter servers without changing the decentralised
architecture of the P2P model update dissemination in Ekko.

Ekko handles biased updates using a novel inference model
state manager. This manager creates a baseline model for
each group of inference models. This baseline model receives
a small amount of user traffic and serves as the ground truth
to the inference model. The manager continuously monitors
the quality-related SLOs for baseline and inference models.
When biased model updates corrupt the state of the inference
model, the manager notifies witness servers to roll back the
model to a healthy state.

We evaluate Ekko using both test-bed and large-scale produc-
tion clusters (see §6). Test-bed experimental results show that
Ekko reduces the model update latency by up to 7× compared
to state-of-the-art parameter servers, namely Adam [11]. We
further run large-scale production experiments with 40 TB
models and over 4,600 servers spread across geo-distributed
regions. Experimental results show that Ekko disseminates
updates in 2.4 seconds while executing 1 billion updates per
second (i.e. 212 GB/s). Ekko only uses 3.0% of the total
network bandwidth for synchronisation, leaving the rest for
training and inference. This second-level latency performance
is orders of magnitude faster than the minute-level latency
(i.e. 5 minutes [69]) achieved by state-of-the-art DLRS infras-
tructures (e.g. TFRA [66] and Check-N-Run [21]).

2 Low-Latency Model Updates in DLRSs

In this section, we introduce DLRSs and their algorithms
for updating models. We then describe their Service-Level
Objectives (SLOs) that can benefit from reducing the latency
of updating models. Finally, we discuss the system challenges
associated with realising low-latency model updates.

2.1 DLRSs and model updates
Most technology organisations adopt DLRSs following a sys-
tem architecture shown in Figure 1. A DLRS often serves
clients distributed across the globe ( 1 ). To minimise serving
latency, DLRS models (i.e. embedding tables [10, 26, 54] and
deep neural networks [18]) are geo-replicated in multiple data
centres. When a client’s request arrives, an inference server
pulls the model parameters from local parameter servers and
infers over this model to answer the request.

Data pipelines collect training data (e.g. new content and
user activities) from clients at run-time. The collected data
reach training servers in a data centre ( 2 ). The training servers
use optimisers [33] to compute gradients that correct corre-
sponding models. All updated models (usually 100s - 1,000s)
are persisted as checkpoints ( 3 ). The checkpoints are first
validated, and only those that can improve SLOs are dissem-
inated to the parameter servers in inference-oriented data
centres over a WAN ( 4 ), finishing the model update process.

In practice, the latency of updating a DLRS model com-
prises the time of computing model updates and disseminat-

822    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Training servers

Parameter servers

Checkpoint & 
Evaluation

Parameter servers

Inference servers

Parameter servers

Inference servers

Wide area network Model update

Serve global clientsClients Clients

2

3

4

Data centre

1

New data

Figure 1: A typical DLRS architecture.

ing the updates to global data centres. This latency definition
presumes that we have used low-latency message queues,
e.g. Kafka [36], to accelerate the training data ingestion. Re-
cent DLRSs, e.g. NVIDIA Merlin [56] and Meta Check-N-
Run [21], report minute-level and hour-level latencies in up-
dating models. Suppose we want to update a DLRS model
with a large embedding table (often several TB in size). In
this case, it can take tens of minutes to persist this model as
a checkpoint and validate the model. It takes another dozen
minutes to disseminate this model over a WAN (assuming
this WAN provides several Gbps bandwidth [72]).

2.2 Reasons for low-latency model updates
DLRSs need to achieve numerous SLOs (usually related to
the freshness and quality of recommendation results). Take a
short-video recommendation service (e.g. TikTok) as an ex-
ample. The DLRS model accuracy determines this service’s
quality SLOs. The time of making freshly made videos acces-
sible to users decides this service’s freshness SLOs.

In real-world DLRSs, we observe that SLOs often depend
on the latency of finishing model updates, making low-latency
model updates a critical system requirement. There are several
reasons for this:
(1) Massive new content created in a short time. Global
DLRSs, e.g. YouTube [24], TikTok [8] and Instagram [22],
often serve billions of users, and they allow users to create
massive content quickly. The DLRSs need to quickly incor-
porate the created content into recommendation results — by
updating their models at low latency — otherwise affecting
user engagement.
(2) Increasing anonymous users. Data protection laws (e.g.
GDPR [60]) have forbidden many DLRSs from tracking user
activities. As a result, such a DLRS can have anonymous users
yet unknown to the recommendation models, even though
these users have used the same service before. A DLRS thus
must quickly react to the online activities of anonymous users,

thus meeting their recommendation requirements. Such a
quick reaction depends on low-latency model updates.
(3) Increasing online recommendation models. DLRSs
have increasing online ML models, e.g. those using rein-
forcement learning [74] and continual learning [69]. These
models improve recommendation quality. They need to col-
lect training data from online user activities, and they thus
must continuously update model parameters at low latency.

2.3 Our key idea and associated challenges
We want to explore how to achieve low latency in updating
DLRS models. Our observation is that the update latency
is accumulated mainly due to several offline steps: model
training, validation and broadcast. Suppose we bypass these
offline steps and allow updated models to be disseminated
to the inference clusters directly. In that case, we can vastly
reduce the steps for updating models, thus achieving low
latency. To realise such a design, however, we must address
several challenges:
(1) Lack of efficient algorithms for disseminating massive
model updates. A real-world DLRS often has a large number
of models (e.g. usually 100s - 1,000s). It needs to update
many of these models online. These models comprise those
on a multi-stage recommendation pipeline [10, 15] and those
for A/B tests [69]. These models often cost 10s of TB mem-
ory. They have the requirement to complete massive model
updates online (e.g. 100s of GB per second).

Suppose we use conventional data replication protocols, e.g.
chain replication [41] and two-phase commit [11]. These pro-
tocols target generic data replication. They lack mechanisms
to coordinate ML model updates (which may exhibit different
impacts on inference SLOs) over a bandwidth-limited net-
work (i.e. WAN). Furthermore, these conventional protocols
suffer from leader bottlenecks. They also incur long update
latency caused by the heterogeneous WAN paths and network
stragglers. As a result, these protocols are ill-suited to meet
our high-throughput, low-latency requirements. Alternatively,
we could use geo-replication protocols [72]. These protocols,
however, cannot handle the failures of servers in the train-
ing data centres, making them unable to meet our system
availability requirement.

We also considered network-efficient distributed ML sys-
tems, e.g. Gaia [28] and Google Federated [35]. These sys-
tems [7, 28, 35, 37, 46] allow models to be trained indepen-
dently in each data centre, thus improving the throughput and
latency of updating models. They, however, lazily synchronise
their states and therefore incur stale model states [47], which
can adversely affect recommendation quality. As a result, the
loosely synchronised distributed ML systems cannot meet our
model accuracy requirement.
(2) Lack of mechanisms for protecting SLOs. Enabling
online model updates in a DLRS poses challenges to SLOs.
Such a DLRS can have model updates competing for network

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    823



Training servers

Parameter servers

Parameter servers

Inference servers

Parameter servers

Inference servers

Clients Clients

2 SLO-aware model 
update scheduler

P2P model update1

P2P model update P2P model update

Model state 
manager

3

Figure 2: Ekko architecture overview.

bandwidth, delaying critical updates (e.g. those that signifi-
cantly affect model accuracy or bring new items online). Even
though there are systems that schedule the sending of model
gradients [6], these systems target training clusters. As a re-
sult, they prioritise model updates based on gradients [6, 28]
and lack awareness of how those updates will affect the SLOs
of inference models.

Online model updates can be even detrimental. Since on-
line updates are often computed based on a small batch of
data (collected in a short time window: seconds or minutes),
they often contain noise [34]. When updates become par-
ticularly noisy, they become detrimental to inference SLOs
(i.e. decrease the accuracy of inference models). To handle
this, existing model serving systems, e.g. Clipper [16] and
Clockwork [25], use offline model validation, which aver-
ages model updates accumulated for an extended period (e.g.
hours). Other model serving systems, e.g. Google TFRA [66],
track the SLO metrics of inference models, and they reload
checkpoints when SLOs are deteriorating. Such a design,
however, is challenging to implement in DLRSs. Giant DLRS
models (e.g. recommendation-oriented transformers [18]) are
increasingly common. Reloading these models affect the avail-
ability of services.

3 Ekko System Architecture

This paper introduces Ekko, a novel DLRS system that en-
ables low-latency model updates. In this section, we describe
the system model of Ekko and present an overview that high-
lights the novel components in Ekko.

3.1 System model
Ekko is a geo-distributed DLRS. It updates models in a cen-
tral data centre. It then disseminates updated models to geo-
distributed data centres close to global users (i.e. clients).
Ekko represents models as key-value pairs, and it partitions

the models into shards (e.g. 100,000 in our production envi-
ronment). It stores model shards in key-value stores (named
as a parameter store in Ekko). The parameter stores assign
key-value pairs to shards through hashing. The model size
can change over time since the model often incorporates new
items and feature expiration online [32].

Ekko directs parameter requests to model shards using
software-based routers. The routers designate parameter
servers in the training DC as the primaries for model shards.
They also ensure that the choice of primaries can balance the
workload of parameter requests. The implementation of the
routers follows typical key-value stores and databases [38].
We omit the details of the router implementation in this paper.

In the routers, there are shard managers which can handle
resource overload, fault domains [55] and copyset issues [12].
Different from conventional shard managers, Ekko’s shard
managers realise several DLRS-specific optimisations: (i) To
amortise request processing overhead, Ekko batches concur-
rent inference requests for the same model [16]. Batched
requests, however, can query a large number (e.g. 1000s) of
parameters on different parameter servers, resulting in long-
tail query latency [19]. To prevent long-tail latency, Ekko
limits the number of servers assigned to a model’s shards;
(ii) Ekko supports multiple DLRS applications which require
performance isolation. It maps the shards of different applica-
tions to different servers. Therefore, the spike of requesting
the shards of an application will not affect the shards of other
applications.

3.2 Architecture overview

We highlight the novel designs in Ekko in Figure 2. As we
can see, Ekko enables parameter servers to achieve efficient
peer-to-peer model updates ( 1 ) (see §4). The P2P model
update algorithm prevents the central training data centre
from broadcasting updated models. Instead, it uses all net-
work paths inside and across data centres (those solid lines
in the figure), thus achieving high throughput in disseminat-
ing model updates. Without using a central coordinator, each
data centre can independently choose optimised intervals that
synchronise model updates.

Ekko supports concurrent dissemination of massive model
updates. These updates can compete for network resources,
delaying the updates that largely benefit SLOs. To handle this,
Ekko relies on an SLO-aware model update scheduler ( 2 )
(see §5.2). This scheduler predicts how each model update
will affect inference results. The prediction results facilitate
the computation of the priority of each model update. Based
on the priority, Ekko coordinates which model updates to
disseminate first at the training data centre, thus improving
the overall satisfaction of the SLOs on inference servers.

Ekko can protect inference servers from being affected by
detrimental model updates. To achieve this, it has a model
state manager ( 3 ) (see §5.3) running in the inference clusters.

824    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Replica 1

Parameter 1
Version

Shard versions of 
recently modified 
shards Shard knowledge of 

potentially updated 
shards 

All updated 
parameters

Shard 1
Shard Version

Shard Knowledge

Parameter Q

Replica 2

Shard M

Update 
Cache

Request
recently 
modified
shard 
versions

……

Figure 3: Ekko P2P model update overview.

This model state manager monitors SLO-related metrics of
inference models. Suppose an inference model shows down-
graded performance (caused by online updates). In that case,
the manager rollbacks the model’s state to a better-performing
one, thus recovering the performance of the inference model.

4 Efficient Peer-to-Peer Model Update

This section introduces the efficient P2P model update mech-
anism in Ekko. To enable P2P model update in parameter
servers, the design of Ekko achieves the following goals:

• Ekko needs to coordinate a large number (e.g. thousands)
of parameter servers (deployed across the globe) to finish
model updates. To avoid stragglers (which can be caused
by slow networks), we design log-less synchronisation
for the parameter servers in Ekko (§4.3).

• As a shared DLRS, Ekko needs to host thousands of
models. These models can generate massive (e.g. billions
per second) updates online. To support this, Ekko enables
parameter servers to efficiently discover model updates
through peers and pull updates without using excessive
computation and network resources (§4.4).

• Ekko needs to support geo-distributed deployments,
which often involve heterogeneous network paths across
WANs and server/network failures. To support this, Ekko
has system designs that improve the throughput/latency
of sending model updates over a WAN and tolerate
server/network failures (§4.5).

In the following, we give an overview of the P2P model
update mechanism and describe its implementation in detail.

4.1 Model update overview
Figure 3 highlights the components and steps involved in a
model update in Ekko. Suppose that we want to synchronise a

shard (denoted by shard 1) between two replicas (denoted by
replica 1 and replica 2). Similar to all other shards, shard 1 has
a (i) shard knowledge which summarises parameter updates,
and (ii) an update cache that tracks recent model updates
based on parameter versions. Each shard also associates a
shard version which tells if this shard potentially has parame-
ters to synchronise. The shard knowledge, update cache and
shard version together accelerate parameter synchronisation
among parameter servers.

To finish a model update, replica 2 requests the recently
modified shard versions from replica 1 ( 1 ). Once receiving
the request, replica 1 returns a list of recently modified shard
versions ( 2 ). Replica 2 then compares all shard versions of
replica 1 with its local shard versions and then sends related
shard knowledge to replica 1 ( 3 ). Finally, replica 1 sends all
updated parameters to replica 2 ( 4 ). Following these steps,
Ekko can ensure that model updates are eventually dissemi-
nated to all replicas at low latency (i.e. eventual consistency).

We find eventual consistency acceptable in real-world
DLRSs. Even though DNN replicas may diverge in a small
time window, they often exhibit close (even often identical) in-
ference results [11]. This is because DNNs often use floating-
point numbers to represent model parameters, and therefore,
DNN replicas make close predictions even though there is a
slight difference in the values of their local parameters.

4.2 Parameter versions in DLRSs
To track the state of model parameters, Ekko assigns each
key-value pair (i.e. the storage format of a model parameter)
with a parameter version defined below:

Definition 1 (Parameter Version). A Parameter Version v
is a pair (t, id) that consists of a timestamp t and an id
uniquely identifying a replica. The timestamp t is generated
based on the time range provided by modern physical time
sources [14, 43]. Ekko makes sure t increases monotonically
in each replica and pads the physical timestamp with a counter
to make sure any two updates that originate from a single
replica do not share the same timestamp. We define the total
order of Parameter Versions:

v1 ≥ v2 ⇐⇒ (t1 > t2) | ((t1 = t2)∧ (id1 ≥ id2))

A parameter with a larger Parameter Version supersedes an-
other during conflict resolution [62].

In Ekko, it is worth noting that the timestamp is based
on a real-time clock instead of a logical clock (which is of-
ten used in key-value stores and storage services). We find
such a design effective in distributed DLRSs for a reason: a
DLRS has embedding tables where parameters are sparsely
updated. Suppose there is an embedding’s parameter in a
primary replica and this parameter has a significant update
count, but the primary does not disseminate this parameter

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    825



before it fails. When this primary recovers, the counter can
overwrite the current primary with a small update count. Such
an overwrite can adversely affect recommendation quality
because the overwritten primary can have a newer parame-
ter (updated by recently collected training data), leading to
better recommendation results. Hence a logical counter is not
sufficient to resolve conflicts in distributed DLRSs.

4.3 Log-less parameter synchronisation
Once version numbers have been assigned to parameters,
Ekko needs to decide how to synchronise the different replicas.
We observe that a DLRS often overwrites parameters and only
the last write decides the state of a parameter. We therefore
decide to send the last version of parameters.

Ekko needs to decide the interval of synchronising replicas.
We could use log-based synchronisation algorithms [9, 11]:
these algorithms choose synchronisation intervals so that
model updates can be sent at the rates that do not exceed
the bandwidth on the slowest links in a network. These algo-
rithms, however, cause the under-utilisation of many network
links. More importantly, it results in stragglers which can
significantly increase the latency of synchronisation, making
parameter servers more likely to have stale states when they
recover from failures. Hence, we want to realise log-less pa-
rameter synchronisation in parameter servers so that these
servers can dynamically choose synchronisation intervals
with their peers according to the bandwidth on each link.
Shard knowledge in parameter servers. We propose to use
shard knowledge [50, 51] to realise log-less parameter syn-
chronisation. More formally, in each replica, all its shards
maintain a corresponding shard knowledge. The shard knowl-
edge, implemented using version vectors [58], summarises
the parameter updates they have learnt. Shard data (associ-
ated with the shard knowledge VVshard) reflect the state of an
empty shard applying all historical parameter updates origi-
nating from each replica r, where the update corresponding
parameter version v≤VVshard [r]. Suppose there is an update
for the parameter p to be processed in replica r. To main-
tain shard knowledge, this replica generates a new parameter
version vp = (t, id) and sets VVshard [id] = vp.
Shard synchronisation process. To synchronise a shard,
replica r sends its shard knowledge VVr1 to a selected replica
s. Replica s records its current shard knowledge VVs — that is,
it atomically reads out VVs and selects from its store all param-
eters p whose parameter version vp = (tp, idp) > VVr1 [idp]
— and responds to r with VVs. Then, r atomically applies all
parameter updates based on the response from s, and further
merges VVs with its current shard knowledge VVr2 .

There are several considerations to note in the synchroni-
sation process: (i) When replica r synchronises with replica
s, r could have concurrent synchronisation operations with
another replica (denoted as replica k). These operations can
complete before r finishes processing the response from s. As

a result, VVr2 (which is the result of VVr
⊔

VVk) does not nec-
essarily equal VVr1 . (ii) The synchronisation process omits all
superseded versions of an updated parameter in failure-free
scenarios where the requests for updating a parameter are
always routed to the same primary. We find these failure-free
scenarios common in our production environments.

4.4 Making synchronisation efficient
Ekko must ensure parameter synchronisation have negligible
performance overheads on parameter servers. Otherwise, syn-
chronisation can consume excessive computation and commu-
nication resources, affecting parameter servers’ performance
in serving model inference and training requests. In the fol-
lowing, we discuss how to make parameter synchronisation
efficient through parameter update caches (which reduce com-
putation costs) and shard versions (which reduce communica-
tion costs).

4.4.1 Parameter update caches

Since a shard can have a large number of parameters, naively
iterating all parameters to answer a synchronisation request
incurs substantial computation costs. Even though we could
use an index to accelerate the parameter iteration, maintaining
such an index costs tremendous memory resources, which are
difficult to provision on parameter servers.

We design parameter update caches to reduce the compu-
tation cost of parameter synchronisation. The design of such
caches exploits the sparsity and temporal locality we often
observe in DLRSs [21]. Unlike dense DNN training systems
where the entire models are updated every iteration, a DLRS
updates a subset of its parameters (i.e. sparsity). For example,
in our production DLRSs, 3.08% of its parameters are up-
dated per hour. Further, model updates are often overwriting
certain parameters (i.e. temporal locality) in a time window.
This is because a DLRS often has trendy items and users, and
their parameter updates dominate in a short period.

More specifically, a parameter update cache contains point-
ers to recently updated parameters. It exploits a Dominator
Version Vector (denoted as DVV ) to judge whether to hit the
cache when a synchronisation request arrives.
Cache maintenance algorithm. The maintenance of
the cache guarantees two invariants: (i) for all parame-
ters puncached existing in a shard but not in the cache,
DVV [idpuncached ] ≥ vpuncached ; (ii) for all cached parameters
pcached , DVV [idpcached ]< vpcached .

Algorithm 1 describes the maintenance of the parameter
update cache in Ekko. The maintenance relies on the esti-
mated update propagation time Dprop. Consider the function
of updating the cache: UpdateCache (line 1). tpruneto is a
timestamp that describes DVVproposed – a version vector that
judges whether a parameter should be pruned. For every mod-
ification request, the cache records a pointer to that parameter

826    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Algorithm 1: Update Cache Maintenance using Dprop

1 Function UpdateCache(p):
2 if vp.t ≤ tpruneto then
3 DVV.Merge(vp);
4 else
5 cache.Add(p);
6 end
7 Function PruneCache():
8 tpruneto← max(tpruneto, tnow−Dprop);
9 for p ∈ cache do

10 if vp.t ≤ tpruneto then
11 cache.Erase(p);
12 DVV.Merge(vp);
13 end
14 end

if the parameter version vp = (tp, idp) of the modified param-
eter p is larger than DVVproposed [idp] (line 5). Otherwise, the
cache merges the parameter version with DVV (line 3).

Consider the function of pruning a parameter pointer:
PruneCache (line 7). This function takes Dprop, which es-
sentially allows Ekko to exploit online observations towards
cache hit rates to guide cache pruning operations. Suppose
we want to prune parameter pointers when the cache size has
grown beyond a limit. In that case, the cache first determines
DVV ′proposed , which strictly dominates DVVproposed (line 8). It
then removes parameter pointers dominated by DVV ′proposed
(line 11). Eventually, the cache updates DVV by merging it
with parameter versions of pruned parameters (line 12). By
doing so, Ekko achieves adaptive management of the cache
size, reducing its memory footprint.

Cache hit analysis. We analyse when parameter updates hit
the cache. Suppose replica s receives the synchronisation
request from replica r which holds the shard knowledge VVr.
If VVr dominates DVVs, the request hits the cache and its
subsequent operations (e.g. selecting a parameter) only touch
the parameters in the cache.

Ekko ensures that the use of the update cache does not
affect the eventual consistency property of log-less parameter
synchronisation: the synchronisation process needs to select
out parameters p in s where vp >VVr[idp]. Because the update
cache holds the invariant that DVVs[idpuncached ]≥ vpuncached and
VVr dominates DVVs, the process selects out the same set of
parameters as the previous algorithm.

The parameter update caches are particularly effective in
reducing the cost of selecting parameters. According to the
traces of the caches deployed in our production environments,
99.4% of the synchronisation requests can hit the caches,
leading to a 99% reduction in the cost of selecting parameters.

4.4.2 Shard versions

We introduce shard versions to reduce network costs in syn-
chronising replicas. Shard versions capture partial causality
relationships of shard data on replicas, and they are much
smaller than version vectors. We can allow the replicas to
book-keep shard version lists where each list is associated
with a neighbour replica. By doing this, replicas can iden-
tify potentially updated shards by exchanging and comparing
shard version lists. Formally, we define shard versions as:

Definition 2 (Shard Version). A shard version sv = (c, id) is
a pair consisting of a counter c, which is monotonically incre-
mented in each shard of each replica, and an id identifying
the replica that generates this version. sv1 ⪰ sv2 of a same
shard s if and only if id1 = id2 and c1 ≥ c2.

Shard version maintenance. On initialisation, each replica
generates shard versions for its shards. It later generates a
new shard version when a training worker issues a parameter
update. Since each shard has a primary replica, there is a
single replica generating shard versions in normal cases.

Once receiving a synchronisation request, the responder
replica, denoted as s, replies its shard version: svs together
with VVs and updated parameters. Once having this reply, the
requester replica, denoted as r, finishes the following opera-
tions in an atomic manner: it (1) merges its shard knowledge
VVr with the received VVs (The merging result is denoted as
VV ′r ), and (2) it updates its shard version sv′r to be svs when
VV ′r =VVs; Otherwise, replica r generates a new shard ver-
sion if VV ′r ̸=VVr. Note that: when VVr equals VVs, to avoid
livelock, Ekko will choose a shard version from s and r fol-
lowing deterministic rules (e.g. choosing the shard version
which exhibits a larger numerical value).

We implement book-keeping techniques [51] which main-
tain the shard version lists associated with different replicas.
By applying both shard versions and book-keeping, Ekko can
effectively reduce synchronisation-oriented network traffic.
For example, in one of our production DLRSs, Ekko filters
out 98% of shards in synchronisation.
Synchronisation with shard versions. We discuss how shard
versions facilitate synchronisation. Ekko maintains the invari-
ant sv1 ⪰ sv2 only if shard knowledge VV1 dominates VV2
for the same shard s. Thus replica r needs to synchronise a
shard with replica s only if svr ⪰̸ svs. Furthermore, consider
different replicas which have comparable shard versions for
the same shard. Ekko prefers to synchronise with the one
with the largest shard version because larger shard versions
indicate a more refreshed version of parameters.

4.5 Implementation details

WAN optimisation. Ekko targets geo-distributed deploy-
ments, which comprise multiple intra-DC networks and an

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    827



inter-DC WAN. To improve its performance with such de-
ployments, Ekko uses a WAN-optimised model update dissem-
ination strategy. This strategy constructs a flexible commu-
nication topology for P2P synchronisation. It lets each DC
elect a local leader for each shard using Zookeeper [31]. The
leaders pull model updates from other DCs while other repli-
cas pull updates from this leader. By doing so, Ekko allows
a large proportion of synchronisation traffic to go through
bandwidth affluent intra-DC networks and only a small of
synchronisation traffic to go over WANs. Note that the imple-
mentation of the parameter synchronisation does not require a
specific communication topology. Ekko can use other overlay
topologies to improve synchronisation performance.
Failure tolerance. Ekko uses the request routers to toler-
ate failures. The routers decide the routes of client requests,
and they detect the healthiness of replicas using heartbeats.
Suppose a router speculates a replica failure (either fail-stop
or fail-slow [30]). In that case, it prevents clients (inference
servers and training servers) from requesting that replica. It
also tracks the shard knowledge of replicas in the cluster. If a
previously suspected failed replica recovers and sends heart-
beats to the router, the router will instruct that replica to catch
up with a sufficiently updated replica in the cluster. When
the catching-up finishes, the router directs client requests to
that replica. If a replica loses its state, it re-joins the clus-
ter with a new id. Training servers stop sending parameter
updates if they cannot contact the router for a given period,
which achieves best-effort protection of model parameters
from divergence in the case of having network partitions [5].

5 SLO Protection Mechanisms

Ekko allows model updates to reach parameter servers in in-
ference clusters directly. This, however, raises two challenges
for the SLOs of recommendation services: (i) network con-
gestion can cause critical model updates to be delayed, and
(ii) model updates based on a small batch of biased data can
have detrimental impacts on inference results.

This section introduces mechanisms that protect inference
SLOs from network congestion and biased updates. We first
define the SLOs (see §5.1), describe an SLO-aware model
update scheduler (see §5.2), and discuss an inference model
state manager that handles biased updates (see §5.3).

5.1 SLOs in a DLRS
A DLRS has two major types of SLOs:

• Freshness SLOs measure the latency of including new
content and users in model inference. They are vital for
recommendation services, especially those interacting
with users in real-time, e.g. TikTok and YouTube. For
example, such services often need to capture the inter-
ests of new users in a timely manner so that they are

User embeddings

Item 1

Item 2

Item N

User 
request

Recommendation 
result

DNNs

…

…

…Item embeddings

Figure 4: Overview of the inference process in Ekko.

sufficiently engaged; otherwise, they leave the recom-
mendation applications due to the loss of interest. Im-
proving the freshness SLOs usually leads to a better user
experience. Also, new content will have better exposure,
securing the prosperity of DLRSs.

• Quality SLOs measure user experience and engagement.
They have immediate impacts on the profitability of a
DLRS. Examples of such objectives include the number
of viewed videos and user watching time.

Figure 4 describes how an inference server affects the fresh-
ness and quality SLOs. Once receiving a request, the inference
server selects related user and item embeddings. It then aggre-
gates the embeddings and sends an aggregated embedding to
a DNN that returns the scores for recommendation items. The
DLRS finally returns a list of items sorted by the scores. In
this case, the freshness SLO is measured based on the latest
timestamp of the recommended items (Ideally, this timestamp
should be as close to the current time as possible). The quality
SLO can be measured based on the viewing time of the items
and how many items are clicked. In practice, Ekko main-
tains a large number of freshness and quality SLOs online.
The implementations of such SLOs are contributed by DLRS
application developers.

5.2 SLO-aware model update scheduler

Ekko prevents both freshness and quality SLOs from being
affected by network congestion. This is achieved by an SLO-
aware model update scheduler and an integration of this sched-
uler into P2P model update dissemination.

5.2.1 SLO-aware priorities for model updates

Ekko computes a set of priorities in scheduling model updates:
Update freshness priority. Ekko computes an update fresh-
ness priority pu. This priority is designed based on the follow-
ing observation. If a parameter has been created recently, it
has a high priority; otherwise, it has a relatively lower priority.
The reason for this is that newly created parameters have more
significant impacts on inference results than those served for

828    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



an extended period. Suppose a user’s embedding is unavail-
able in the inference server, but her request has arrived. In this
case, the DLRS cannot answer this request, compromising
quality SLOs. Another case is that if the embedding table
does not include an item on the inference servers, the DLRS
will not recommend this item, compromising freshness SLOs.
Update significance priority. Ekko computes an update sig-
nificance priority pg for each model update based on its gra-
dient g. This priority is initially inspired by studies which
showed how the gradient magnitude |g| affects the inference
results of a DNN [6, 28]. However, naively adopting the gra-
dient magnitude is insufficient in Ekko. As a shared DLRS,
Ekko multiplexes the updates from different models on a
shared network. As a result, Ekko must have ways to compare
gradient magnitudes that have different distributions. There-
fore, we define pg = |g|/|g|, where |g| denotes the 1-norm of
g and |g| denotes the average gradient magnitude of recent
model updates. Intuitively, this definition normalises gradient
magnitudes, thus making them comparable.
Model priority. In a DLRS, models often receive inference
requests at different rates, indicating their varied importance
in measuring the overall satisfaction of SLOs. To consider this,
Ekko allows the models that handle the majority of requests
to be assigned with higher priorities compared to those that
rarely receive requests. To this end, we define the model
priority as pm = cm/∑

M
i=1 ci, where cm is the request count of

model m and ∑
M
i=1 ci denotes the total request count of all M

models.
Combining priorities. We combine all the above priorities
to compute the overall priority p of a model update as below:

p = (pg + pu) pm

where the significance priority pg and the freshness priority
pu have both been normalised so that they can be summed up.
The sum is multiplied by the model priority pm.

Note that Ekko does not require its users only to use the
above priorities. Some Ekko users have custom priority defini-
tions, including update count, update interval and the positions
of parameters in embedding tables. These custom priorities
are specific to certain DLRS workloads [69], and they are
not generic enough to be included in a default setting. Ekko
accommodates these custom priorities by supporting User-
Defined-Functions (UDFs) in defining priorities.

5.2.2 Scheduler implementation

The model update scheduler computes the priority for each
update once it is produced. It needs to ensure the cost of pri-
ority computation is negligible; otherwise, it can become a
bottleneck in model updates. To achieve this, the scheduler
offloads the maintenance of priority-related statistics (e.g. |g|
and pm for each model m) to a background thread. Moreover,
to bound memory cost, it uses a quantile sketch (e.g. DDS-
ketch [52]) that computes the k percentile priority pk in a time

Algorithm 2: Priority-based synchronisation

1 Function UpdateSVV(SVVother):
2 SVV.Merge(SVVother);
3 T SVV.Merge(SVV );
4 Function WriteStoreParameter(p):
5 WriteI fVersionLarger(store, p);
6 EraseI fVersionNotSmaller(storesigni f icant , p);
7 Function OnRecvPrioritisedSync(T SVVother):
8 reply.T SVV ← T SVV ;
9 for p ∈ (store

⋃
storesigni f icant) do

10 if not T SVVother.Dominate(p.sigv) then
11 reply.parameters.Add(p);
12 end
13 end
14 return reply;
15 Function PrioritisedSync():
16 reply← OnRecvPrioritisedSyncother(T SVV );
17 for p ∈ reply.parameters do
18 if VersionLarger(store

⋃
storesigni f icant , p)

then
19 storesigni f icant [p.name]← p;
20 end
21 end
22 T SVV.Merge(reply.T SVV )

window, where k is a ratio set by algorithm managers. Ekko
executes user-defined priority computation using WebAssem-
bly [27] to achieve efficient isolation among UDFs.
Integrating schedulers into parameter servers. To achieve
the promise of priority scheduling, we must have ways of
integrating the schedulers into the parameter servers which
have enabled log-less P2P synchronisation. To this end, we
propose the significant version, denoted as sigv, for each pa-
rameter and the significant knowledge SVV for each shard.
Moreover, Ekko assigns each shard with a transient significant
parameter store storesigni f icant and a corresponding transient
significant knowledge T SVV to enable P2P synchronisation
with priority scheduling.

Algorithm 2 describes the log-less P2P synchronisation
augmented with priority schedulers. Suppose we have a model
update from a replica. In this case, Ekko calculates p. If
p≥ pk, Ekko sets sigv= v, where v is the parameter version of
this update; otherwise, sigv remains unchanged. Then, Ekko
uses sigv to construct SVVother and call the UPDATESVV
function (line 1). In the case that Ekko does not apply priori-
ties in synchronisation, replicas exchange SVV and execute
the UPDATESVV function. On writing parameters into the
persistent parameter store, Ekko prunes superseded param-
eters by executing the WRITESTOREPARAMETER function
(line 4). Note that replicas estimate how long the model up-
dates to reach themselves. Hence, when network congestion
occurs, servers will have update time-outs. In this case, Ekko

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    829



uses the PRIORITISEDSYNC function (line 15) that triggers
priority schedulers in synchronisation. Once receiving re-
quests, replicas prefer to return parameters in significant pa-
rameter stores.

5.3 Inference model state manager

Ekko uses an inference model state manager to protect SLOs
from detrimental model updates. This manager monitors in-
ference models’ healthiness (i.e. quality SLOs) and conducts
low-latency model state rollback on demand.

5.3.1 Monitoring model healthiness

Ekko monitors model healthiness based on the following idea:
for a DLRS application, it creates baseline models for its
inference models. Baseline models process a small amount
of user traffic (usually < 1%). They are different from the
online inference models because they carry delayed states. In
other words, they are trained with previous training samples,
usually several minutes earlier than the samples training the
current inference model.

Ekko measures model healthiness based on metrics col-
lected from inference servers and clients (e.g. user devices).
To compute these metrics, Ekko defines a custom watermark
and trigger [3]. Its state manager emits anomaly detection
events only if confident (i.e. observing monitoring data for
an extended period). Note that Ekko is not constrained to use
specific anomaly detection algorithms. It supports custom
anomaly detection algorithms, such as those often used with
time-series data [61].

We model the transition of model states (i.e. healthy
or not) as a replicated state machine [63], implemented
within the model state manager. This manager evaluates and
records model healthiness at a timestamp t by inspecting the
healthiness-related metrics and the model update latency. The
timestamp t monotonically increases. The manager makes
judgements if the model state is healthy, corrupted or uncer-
tain. When the manager is confident that changes have oc-
curred in the model state (i.e. healthy or corrupted), it records
this information in its replicated state. If the model state has
corrupted, the manager re-directs client requests to alternative
inference models (still healthy) and then launches a model
state rollback.

5.3.2 Low-latency model state rollback

Ekko uses witness servers to roll back corrupted model states
at low latency. The witness servers join replica synchroni-
sation but they do not participate in model training. Unlike
parameter servers, the witness servers (i) do not immediately
flush updated parameters into parameter stores and (ii) do not
run priority scheduling in synchronisation. More specifically,
Ekko inserts the parameter updates that are not flushed yet

Parameter 
Server

Parameter 
Server

Quality SLOs

Baseline

Model State Manager

Parameter 
Server

Healthy

Update Log

Witness Server

Healthy Parameter Store

Sync

Flush

Corrupted Uncertain

Decide model state:

Update Log
Update Log

Stop 
update

Start rollback

Get recent 
updates

Set values 
back

Resume 
update

Figure 5: Inference model state manager.

into the logs. The logs are attached with the physical times-
tamp of synchronisation (denoted as t). If there are multiple
synchronisation operations in a small time window, Ekko
merges their logs to save space.

The model state manager controls witness servers to launch
state rollbacks. Suppose a model state is regarded as thealthy
at the time t. In that case, witness servers find a timestamp
tmax that meets two conditions: (i) it is ≤ thealthy and (ii) it is
not within any time interval where corrupted states have oc-
curred. The witness servers then flush the logs which have the
timestamps≤ tmax. The model state manager records this tmax,
and tmax will be later used in witness servers for recovering a
healthy model state. Following this way, we can ensure the
parameter store storehealthy always keep healthy model states
on witness servers.

Rollback process. Figure 5 illustrates the process of rolling
back a model state. Suppose a model is found to be corrupted.
The model state manager first informs parameter servers to
stop accepting training requests of this model ( 1 ). It then
instructs parameter servers to stop priority-based synchroni-
sation, clears their storesigni f icant , and resets T SVV = SVV .
The manager then waits for the model shards on parameter
servers and witness servers to converge. Later, the manager
selects witness servers to initiate the state rollback ( 2 ). We
need to ensure recovered model shards can be used together.
Hence, the manager selects shards from the storehealthy on
witness servers only if tmax of these shards are in a small time
window.

A key design is that the witness servers will compare
storehealthy and its current state to find a state difference ( 3 ).
This difference is often small because of the locality in up-
dated parameters. We thus only write the difference into the
parameter servers to recover a state. We need to ensure the
write operations can succeed. Hence, the written parame-
ters are assigned with parameter versions that are larger than
those currently on parameter servers ( 4 ). After that, the man-

830    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



ager waits for the model shards to converge on parameter
servers and witness servers. Finally, Ekko will recover a small
amount of traffic on the recovered model. When this model’s
healthiness metrics go back to normal, the manager informs
parameter servers to resume accepting requests ( 5 ).

Note that if a witness server fails, its non-flushed update
logs are discarded. This helps Ekko prevent potentially cor-
rupted updates from being flushed. If a parameter server or
a witness server fails (or re-joins the cluster), the rollback
process will be re-executed.

6 Evaluation

In this section, we evaluate the following aspects of Ekko
through test-bed and in-production experiments: (i) The up-
date latency of Ekko and its scalability with the number of
data centres (§6.1.1); (ii) The update latency of Ekko in a
heterogeneous-WAN (§6.1.1); (iii) The performance break-
down of optimisations implemented in Ekko (§6.1.2); (iv) The
real-world latency and availability of Ekko in a large-scale pro-
duction DLRS (§6.2.1); (v) The benefits of low-latency model
updates in online services (§6.2.1); (vi) The effectiveness of
using model update schedulers with a busy network (§6.2.2);
and (vii) The latency of rolling back a model upon model
corruption (§6.2.2).

Unless otherwise specified, the update latency is the max-
imum time difference between the time an update commits
and the time this update becomes visible [68] in all replicas
(failure-free scenarios). In all experiments, we measure the
update latency and report its average across all updates.

6.1 Test-bed experiments

We conduct test-bed experiments in a 30-server cluster. Each
server has a 24-core CPU, 64 GB RAM and a 5 Gbps network
link. We group every three servers as a DC to emulate a
multi-DC scenario, forming up to 10 DCs. We choose one of
the DCs as the training-oriented DC, which receives model
updates from a server (which acts as a DLRS client). We let
other DCs be inference-oriented and connect them with the
training-oriented DC. The inter-DC bandwidth is 4,800 Mbps
(unless otherwise specified), emulating a WAN.

Our test-bed experiments comprise two workloads. The
first workload trains a large ranking model typically used in
our production environments. In this workload, we choose the
shard size as 0.4 MB. The second workload trains the Wide &
Deep model [10] using the Criteo Terabyte Click Logs [17]
sorted chronologically. We initialise embedding tables using
21-day data logs. To ensure experiments are reproducible,
we record model update traces and replay them during the
experiments.

1 5 10
Number of data centres

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

La
te

nc
y 

(s
)

Ekko
Adam

(a) Production workload

1 5 10
Number of data centres

0

2

4

6

8

10

La
te

nc
y 

(s
)

Ekko
Adam

(b) Criteo workload

Figure 6: Average model update latency.

6.1.1 Update latency

We evaluate Ekko’s update latency in a homogeneous WAN
and a heterogeneous WAN. Both of these WANs are common
in the real world. The first baseline is Adam [11] which is
often used in parameter servers to synchronise model updates
using the two-phase commit protocol. Our Adam implemen-
tation removes the waiting time between update broadcasts,
thus improving network utilisation. The second baseline is
Checkpoint-Broadcast which is the de-facto approach that
applies model updates in DLRSs [1, 21]. We omit the experi-
ments with general key-value stores, e.g. PaxosStore [73] and
TiKV [29], which provide linearisability in writing operations.
Our early adoption results show that these key-value stores
achieve low writing throughput, orders of magnitude lower
than what a production DLRS requires.

To make a fair comparison, Ekko and baselines all
use DRAM for storage [57] and adopt the same primary-
assignment and load-balancing schemes. We further ensure
their dissemination are all network-bound and use the same
numbers of shards.
Homogeneous WAN results. We first compare Ekko against
Adam in the homogeneous WAN. We measure their latency
with 1 DC (3 replicas), 5 DCs (15 replicas), and 10 DCs (30
replicas), respectively. Figures 6a and 6b show the results. As
we can see, Ekko achieves significantly lower latency than
Adam in both the production and Criteo workloads. More
specifically, with the 10 DCs that run the production work-
load, Ekko achieves a 2.6-second latency, 7× lower than the
18.8-second latency achieved by Adam. We also observe that
the performance gap between Ekko and Adam increases with
more DCs. The reason is that Ekko has a scalable P2P syn-
chronisation architecture. It also optimises its dissemination
topology for a WAN. In contrast, Adam relies on the primary
replica to send updates, constraining itself with the limited
bandwidth available in the training DC.

We also compare Ekko against Checkpoint-Broadcast. Ac-
cording to our experimental results, Checkpoint-Broadcast
takes more than 7 seconds to synchronise 4 GB of param-
eters in the WAN. The total parameters are 113 GB. With

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    831



0 5 10 15 20 25 30
Number of machines synced

0

50

100

150

Ti
m

e 
(s

)

Ekko
Adam

(a) Production workload

0 5 10 15 20 25 30
Number of machines synced

0

50

100

Ti
m

e 
(s

)

Ekko
Adam

(b) Criteo workload

Figure 7: Update latency in a heterogeneous WAN.

10 DCs, the training DC needs to send 113×9 = 1,017 GB
parameters to all other inference DCs. The training DC thus
has to spend more than 29 minutes finishing the parameter
broadcast (since the WAN has a 4,800 Mbps network link).
This broadcast latency is orders of magnitude longer than the
second-level latency (e.g. 2.6 seconds) achieved by Ekko.
Heterogeneous WAN results. We then evaluate Ekko and
baselines in the heterogeneous WAN. In this WAN, we set
inter-DC bandwidth to 256 Mbps by default. To introduce
heterogeneity, we choose one link in between the training DC
and another inference DC, and we set this link to 128 Mbps.
The experiments run with 3 replicas per DC, for a total of
10 DCs. As shown in Figures 7a and 7b, Ekko is effective
in mitigating slow heterogeneous links in both production
and Criteo workloads. It allows replicas to synchronise at
independent rates, preserving second-level synchronisation
latency. Such low-latency performance shows the effective-
ness of Ekko’s log-less P2P synchronisation in alleviating the
adverse effects of having heterogeneous network paths. On
the contrary, Adam suffers from the slow paths in the WAN.
As a result, it spends more than 150 seconds synchronising
replicas in the production workload and 100 seconds in the
Criteo workload.

Apart from Adam, we also considered other log-based syn-
chronisation approaches, e.g. Multi-Paxos [9]. We could let
these approaches aggregate updates (which arrive in a time
interval) into a log entry to save bandwidth in using a WAN.
These approaches, however, still suffer from the existence
of heterogeneous links. This is because they choose the ag-
gregation interval based on the slowest links in the network,
under-utilising many other links.

6.1.2 Performance breakdown

We want to know the effectiveness of individual compo-
nents in Ekko’s synchronisation. We thus conduct a perfor-
mance breakdown analysis for the production workload with
10 DCs. We first configure Ekko to only use shard knowl-
edge (see §4.3) in synchronisation. This configuration is the
baseline in this experiment, and it is equivalent to the Ver-
sion Vector (VV) [50, 51] which is the state-of-the-art of P2P
synchronisation.

Figure 8 shows the results. With only VV, Ekko needs 76.3
seconds to synchronise all parameters. After enabling update

VV +Cache +Shard +WAN-opt0

10

20

30

40

50

60

70

80

La
te

nc
y 

(s
)

Figure 8: Performance breakdown.

caches (§4.4.1), Ekko reduces the latency to 27.4 seconds
(i.e. 2.8× speed-up). Diving into the update caches traces, we
find out the caches achieve a 100% hit ratio in our production
workload. Note that the total memories of a replica on our test-
bed servers are smaller (i.e. 10×) than those on our production
servers, which means there are fewer parameters in a shard
than in practical scenarios. With more parameters in a shard,
VV will spend more time on synchronisation, while update
caches can keep latency low.

Figure 8 also shows the effects of shard versions (§4.4.2).
By further enabling shard versions, Ekko reduces the latency
from 27.4 seconds to 6.0 seconds (i.e. 4.6× speed-up). This
shows the effects of skipping non-updated shards to reduce
network consumption incurred by synchronisation.

Finally, after enabling WAN optimisations (§4.5), Ekko
further reduces the latency from 6.0 seconds to 2.6 seconds
(i.e. 2.3× speed-up). This shows that P2P synchronisation
must account for the bandwidth available on each link in
a WAN. Otherwise, P2P synchronisation cannot deliver its
full promise. In summary, enabling all components in Ekko
leads to a total of 29.3× (i.e. 2.6 seconds vs. 76.3 seconds)
speed-up in P2P synchronisation.

6.2 Production cluster experiments
We have deployed Ekko into production for over one year.
The production environment comprises 4,600 servers spread
across 6 geo-distributed DCs. By 2022, we have used Ekko to
support a wide range of recommendation services, including
short video recommendations, searching and advertisement.
More than one billion users are using these services daily. In
this section, we report Ekko’s performance in this production
environment.

6.2.1 Model updates

We collect traces from the production environment to anal-
yse Ekko’s performance in updating models. The production
environment has hundreds of DLRS models (40 TB parame-
ters or 250 billion key-value pairs in total). Each parameter
shard ranges from 0.1 MB to 20 MB depending on model size.
Ekko can execute 1 billion updates per second (i.e. 212 GB/s).

832    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0 60 120 180 240 300 360 420 480
Time (minutes)

0
2
4
6
8

10
12

%
 o

f p
ar

am
et

er
s

10 min 20 min 30 min 60 min

Figure 9: The proportions of updated parameters over time in
different time intervals.

Regarding latency performance, Ekko spends 2.4 seconds
synchronising the parameters in all DCs and 0.7 seconds in
the training DC only. The synchronisation traffic accounts for
only 3.0% of the total network traffic, reflecting the effective-
ness of Ekko used as a background synchronisation service
on parameter servers. Ekko’s low-latency, high-throughput
performance does not compromise system availability. Since
its deployment, Ekko has achieved >99.999% availability for
parameter reading and writing operations.
Update cache analysis. We are particularly interested in the
performance of the update caches with various real-world
recommendation services. Our traces show that: the update
cache only needs to keep 0.13%-0.2% parameters in caches,
and they can already achieve >99.4% hit ratios. These perfor-
mance results verify that the update locality widely exists. In
fact, our production recommendation services update 3.08%
of the parameters per hour on average.

We choose an update-intensive DLRS model to demystify
the update locality in the worse case. Figure 9 shows the
proportions of updated parameters in a 480-minute window.
This time window covers the busiest time of our production
DLRSs in a day. We report the proportions with different time
intervals. In a 10-minute interval, only 4.3% of parameters are
updated, and this proportion is stable in the 480-minute time
window. In a 60-minute interval, we observe a similar pattern,
and the proportion only slightly increases to around 10%. In
practice, many other models have fewer update workloads,
and their proportions of updated parameters are lower than
this model.
Benefits of low-latency model updates. We want to know
if the low-latency model updates can actually improve the
quality of recommendation services. To this end, we con-
duct a 15-day online A/B test [64] in a short video recom-
mender service [65]. This service comprises a multi-stage
pipeline [10,15]. We conduct the experiment only in the rank-
ing stage. We fork the ranking model: one as the experimental
group and the other as the control group. Each group receives
1% of the total traffic for training and inference. We delay
the data (i.e. event logs) used to train the model in the con-
trol group by 20 minutes through caching real-time logs in a

distributed file system.
Our A/B-test results show that: compared to the control

group, the experimental group exhibits a 3.82% increase in
the proportion of fresh videos (posted within one hour) among
all recommended videos. This means that the system recom-
mends more fresh videos to users in the experimental group.

Moreover, the experimental group exhibits a 1.30% de-
crease in the proportion of users swiping through the video
list as well as a 1.68% increase in the total time of brows-
ing videos. These mean that users in the experimental group
spend more time watching videos and are more interested in
the recommended videos.

Finally, the experimental group exhibits a 2.17% increase in
the percentage of users who clicked on comments. This means
that user interaction in the experimental group increases. It
is worth noting that the improvements in the range of 1%-
3% are regarded as significant in a real-world multi-stage
DLRS [10, 21, 71]. In fact, since enabling low-latency model
updates in more stages in DLRSs, we have observed more
significant improvements in recommendation quality.

6.2.2 SLO protection mechanisms

We also run A/B tests to evaluate the effectiveness of Ekko’s
SLO protection mechanisms.
SLO-aware model update scheduler. We fork the ranking
model into an experimental group (where priority schedulers
are enabled) and a control group. Each group has 1% of
the training and inference traffic, and they are deployed into
dedicated servers to avoid traffic interference. We monitor
metrics that reflect freshness SLOs: the count of fresh videos
(i.e. posted in the last one hour) in recommendation results.
To emulate network congestion, we reduce the bandwidth
available for model updates by 92%. The model update sched-
uler (i) uses the default priority computation rule (defined in
§5.2.1) and (ii) sets the percentile priority k to 99 (k is defined
in §5.2.2).

The A/B-test results show that, in the experimental group,
Ekko reduces synchronisation traffic by 92% and keeps the
latency of updating significant updates low. In contrast, the
control group cannot distinguish model updates when sending
them over a busy network. As a result, the control group de-
lays SLO-critical updates, and it suffers from a 2.32% drop in
its SLO metric. Such a drop is significant in practice because
this SLO metric is a key factor that decides the profit of a
DLRS.
Online model state rollback. We evaluate the latency of
rolling back a model state online. We compare Ekko with the
checkpoint-recovery approach. To make a fair comparison,
we let the rollback latency exclude (i) the time of collecting
SLO metrics in Ekko and (ii) the time of waiting for diverged
parameters to converge. We deploy 5 witness servers. For
each witness server, we allocate 113 GB parameters and 800
Mbps network bandwidth.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    833



Ekko Checkpointer

101

102

103
Ti

m
e 

(s
)

Figure 10: Model state rollback time.

During the experiment, we notify Ekko’s model state man-
ager to roll back the state of a DLRS model to a version that is
1 minute earlier. The manager then notifies all witness servers
to identify the parameters updated in the last 1 minute. The
witness servers thus only reload the difference between the
current state and the earlier state. Hence, the entire rollback
operation takes only 6.4 seconds to complete. In contrast,
the checkpoint-recovery approach is agnostic to the recent
updates to the model state. As a result, it has to reload the
entire state, taking 1,157 seconds to complete (180× slower
than Ekko).

7 Related Work

Data replication systems. The parameter synchronisation
problem explored in Ekko is related to prior work on data
replication. Existing data replication systems often explore
how to leverage the characteristics of applications to improve
their latency performance in replicating data [13, 40, 45, 53].
For example, Egalitarian Paxos [53] exploits the low in-
terference rate of state machine commands, Gemini [40]
leverages mixed consistency operations, and COPS [45] and
PNUTS [13] exploit the tolerance of relaxed consistency in
Internet services. Unlike these systems, Ekko leverages the
DLRS-specific model update locality and the eventual con-
sistency model to speed up the synchronisation of model
parameters (instead of generic data), making Ekko unique in
the design space.
Bandwidth saving techniques in ML systems. The prob-
lem of prioritising model updates relates to bandwidth saving
techniques in distributed ML systems. Such techniques often
involve gradient compression [4, 6, 28, 44] which prioritises
large gradients in a busy network, with an anticipation that
these large gradients have significant impacts on the final
accuracy of a trained model. Unlike these techniques, Ekko
targets model inference scenarios where people care about
numerous inference SLO metrics instead of the model’s accu-
racy only. Hence, Ekko does not rely on gradient magnitude
solely. It further considers model freshness and priority in
scheduling model updates.

SLO-aware scheduling in ML systems. Being aware of
SLOs in scheduling has been explored in prior ML systems.
Model serving systems often treat inference latency as the
primary SLO to guide the scheduling of inference-related
computation tasks [16, 25, 70]. Model training systems, e.g.
Pollux [59] and KungFu [48], use ML-specific SLOs, e.g.
training goodput and gradient statistics, to decide how to
schedule training workers. Compared to these systems, Ekko
sheds light on freshness and quality SLOs. It enables the use
of these SLOs in scheduling model updates.

8 Conclusion

This paper proposes Ekko, a novel DLRS that enables massive
model parameters to be updated at the second-level latency.
Ekko has an efficient P2P model update algorithm which can
coordinate billions of model updates to be efficiently dissemi-
nated to replicas in geo-distributed data centres. It further has
SLO protection mechanisms that protect model states from
being affected by network congestion and detrimental model
updates online. Experimental results show that Ekko is orders
of magnitudes faster than state-of-the-art DLRSs, indicating
the effectiveness of its novel designs.

Acknowledgements

We sincerely thank our shepherd Miguel Castro and the OSDI
reviewers for their insightful suggestions. This paper presents
a multi-team effort previously known as WeChat Parameter
Server (WePS). Part of this work is supported by gift funding
from Tencent.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for Large-
Scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 265–283, Savannah, GA, November 2016.
USENIX Association.

[2] Ailidani Ailijiang, Aleksey Charapko, and Murat Demir-
bas. Dissecting the performance of strongly-consistent
replication protocols. In Proceedings of the 2019 In-
ternational Conference on Management of Data, pages
1696–1710, 2019.

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers,
Slava Chernyak, Rafael Fernández-Moctezuma, Reuven

834    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, and Sam Whittle. The dataflow model: A prac-
tical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data process-
ing. Proc. VLDB Endow., 8(12):1792–1803, 2015.

[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola
Konstantinov, Sarit Khirirat, and Cedric Renggli. The
convergence of sparsified gradient methods. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018.

[5] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An analysis of Network-
Partitioning failures in cloud systems. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 51–68, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

[6] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong,
Feng Yan, Ruichuan Chen, and Yinlong Xu. Gradi-
ent Compression Supercharged High-Performance Data
Parallel DNN Training, page 359–375. Association for
Computing Machinery, New York, NY, USA, 2021.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé
Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan
McMahan, Timon Van Overveldt, David Petrou, Daniel
Ramage, and Jason Roselander. Towards federated learn-
ing at scale: System design. In A. Talwalkar, V. Smith,
and M. Zaharia, editors, Proceedings of Machine Learn-
ing and Systems, volume 1, pages 374–388, 2019.

[8] ByteDance. TikTok. https://www.tiktok.com/,
2021. Accessed on 2021-12-08.

[9] Tushar D. Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos made live: An engineering perspective. In
Proceedings of the Twenty-Sixth Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC
’07, page 398–407, New York, NY, USA, 2007. Associ-
ation for Computing Machinery.

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceed-
ings of the 1st workshop on deep learning for recom-
mender systems, pages 7–10, 2016.

[11] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and
Karthik Kalyanaraman. Project adam: Building an effi-
cient and scalable deep learning training system. In 11th
USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 571–582, Broomfield,
CO, October 2014. USENIX Association.

[12] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman,
Sachin Katti, John K. Ousterhout, and Mendel Rosen-
blum. Copysets: Reducing the frequency of data loss
in cloud storage. In Andrew Birrell and Emin Gün
Sirer, editors, 2013 USENIX Annual Technical Confer-
ence, San Jose, CA, USA, June 26-28, 2013, pages 37–48.
USENIX Association, 2013.

[13] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivas-
tava, Adam Silberstein, Philip Bohannon, Hans-Arno
Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform.
Proceedings of the VLDB Endowment, 1(2):1277–1288,
2008.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’12, page
251–264, USA, 2012. USENIX Association.

[15] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Pro-
ceedings of the 10th ACM Conference on Recommender
Systems, RecSys ’16, page 191–198, New York, NY,
USA, 2016. Association for Computing Machinery.

[16] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 613–627, Boston, MA,
March 2017. USENIX Association.

[17] CRITEO. CRITEO Terabyte Click Logs. https://la
bs.criteo.com/2013/12/download-terabyte-cl
ick-logs/, 2022. Accessed on 2022-05-04.

[18] Gabriel de Souza Pereira Moreira, Sara Rabhi,
Jeong Min Lee, Ronay Ak, and Even Oldridge. Trans-
formers4Rec: Bridging the Gap between NLP and
Sequential / Session-Based Recommendation, page
143–153. Association for Computing Machinery, New
York, NY, USA, 2021.

[19] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    835

https://www.tiktok.com/
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://labs.criteo.com/2013/12/download-terabyte-click-logs/


[20] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart,
and Doug Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth an-
nual ACM Symposium on Principles of distributed com-
puting, pages 1–12, 1987.

[21] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram,
Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Kr-
ishnakumar Nair, Misha Smelyanskiy, and Murali An-
navaram. Check-N-Run: a checkpointing system for
training deep learning recommendation models. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 929–943, Renton, WA,
April 2022. USENIX Association.

[22] Facebook. Instagram. https://www.instagram.co
m/, 2021. Accessed on 2021-12-11.

[23] Weihao Gao, Xiangjun Fan, Chong Wang, Jiankai Sun,
Kai Jia, Wenzhi Xiao, Ruofan Ding, Xingyan Bin, Hui
Yang, and Xiaobing Liu. Learning an end-to-end struc-
ture for retrieval in large-scale recommendations. In
Gianluca Demartini, Guido Zuccon, J. Shane Culpep-
per, Zi Huang, and Hanghang Tong, editors, CIKM ’21:
The 30th ACM International Conference on Information
and Knowledge Management, Virtual Event, Queens-
land, Australia, November 1 - 5, 2021, pages 524–533.
ACM, 2021.

[24] Google. Youtube. https://www.youtube.com/, 2021.
Accessed on 2021-12-06.

[25] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like clockwork: Performance
predictability from the bottom up. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 443–462. USENIX Association,
November 2020.

[26] Huifeng Guo, Ruiming TANG, Yunming Ye, Zhenguo
Li, and Xiuqiang He. Deepfm: A factorization-machine
based neural network for ctr prediction. In Proceed-
ings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pages 1725–1731,
2017.

[27] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and J. F. Bastien. Bringing the web
up to speed with webassembly. In Albert Cohen and
Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017, pages 185–200. ACM, 2017.

[28] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dim-
itris Konomis, Gregory R. Ganger, Phillip B. Gibbons,
and Onur Mutlu. Gaia: Geo-distributed machine learn-
ing approaching LAN speeds. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 629–647, Boston, MA, March 2017.
USENIX Association.

[29] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong
Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,
Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.
Tidb: A raft-based htap database. Proc. VLDB Endow.,
13(12):3072–3084, aug 2020.

[30] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Alexandra Fedorova, Andrew Warfield,
Ivan Beschastnikh, and Rachit Agarwal, editors, Pro-
ceedings of the 16th Workshop on Hot Topics in Operat-
ing Systems, HotOS 2017, Whistler, BC, Canada, May
8-10, 2017, pages 150–155. ACM, 2017.

[31] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8, 2010.

[32] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui
Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue
Wang, Yue Song, Liqin Zhao, Zhi Wang, Peng Sun,
Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang Zhu,
and Kun Gai. Xdl: an industrial deep learning frame-
work for high-dimensional sparse data. Proceedings
of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data, 2019.

[33] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[34] Alexandros Koliousis, Pijika Watcharapichat, Matthias
Weidlich, Luo Mai, Paolo Costa, and Peter Pietzuch.
Crossbow: Scaling deep learning with small batch sizes
on multi-gpu servers. Proceedings of the VLDB Endow-
ment, 12(11).

[35] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage,
and Peter Richtárik. Federated optimization: Distributed
machine learning for on-device intelligence. arXiv
preprint arXiv:1610.02527, 2016.

[36] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A
distributed messaging system for log processing. In
Proceedings of the NetDB, volume 11, pages 1–7, 2011.

836    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.instagram.com/
https://www.instagram.com/
https://www.youtube.com/


[37] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learning
via guided participant selection. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 19–35. USENIX Association, July
2021.

[38] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,
Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun
Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-
araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,
and Chunqiang Tang. Shard manager: A generic shard
management framework for geo-distributed applications.
In Robbert van Renesse and Nickolai Zeldovich, editors,
SOSP ’21: ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event / Koblenz, Germany,
October 26-29, 2021, pages 553–569. ACM, 2021.

[39] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix,
Luca Wehrstedt, Abhijit Bose, and Alex Peysakhovich.
Pytorch-biggraph: A large-scale graph embedding sys-
tem. arXiv preprint arXiv:1903.12287, 2019.

[40] Cheng Li, Daniel Porto, Allen Clement, Johannes
Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. Mak-
ing Geo-Replicated systems fast as possible, consis-
tent when necessary. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 265–278, Hollywood, CA, October 2012.
USENIX Association.

[41] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 583–598, Broomfield,
CO, October 2014. USENIX Association.

[42] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang,
and Zhihua Zhang. On the convergence of fedavg on
non-iid data. In International Conference on Learning
Representations, 2020.

[43] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, and
Amin Vahdat. Sundial: Fault-tolerant clock synchroniza-
tion for datacenters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1171–1186. USENIX Association, November
2020.

[44] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. Deep gradient compression: Reducing the com-
munication bandwidth for distributed training. In In-

ternational Conference on Learning Representations,
2018.

[45] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,
and David G. Andersen. Don’t settle for eventual: Scal-
able causal consistency for wide-area storage with cops.
In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, page 401–416,
New York, NY, USA, 2011. Association for Computing
Machinery.

[46] Luo Mai, Chuntao Hong, and Paolo Costa. Optimizing
network performance in distributed machine learning.
In 7th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 15), 2015.

[47] Luo Mai, Alexandros Koliousis, Guo Li, Andrei-
Octavian Brabete, and Peter Pietzuch. Taming hyper-
parameters in deep learning systems. ACM SIGOPS
Operating Systems Review, 53(1):52–58, 2019.

[48] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos
Fertakis, Andrei-Octavian Brabete, and Peter Pietzuch.
KungFu: Making training in distributed machine learn-
ing adaptive. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
937–954. USENIX Association, November 2020.

[49] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh,
Shivaram Venkataraman, Paolo Costa, Terry Kim, Sar-
avanan Muthukrishnan, Vamsi Kuppa, et al. Chi: A
scalable and programmable control plane for distributed
stream processing systems. Proceedings of the VLDB
Endowment, 11(10):1303–1316, 2018.

[50] Dahlia Malkhi, Lev Novik, and Chris Purcell. P2p
replica synchronization with vector sets. SIGOPS Oper.
Syst. Rev., 41(2):68–74, April 2007.

[51] Dahlia Malkhi and Doug Terry. Concise version vec-
tors in winfs. In Pierre Fraigniaud, editor, Distributed
Computing, pages 339–353, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[52] Charles Masson, Jee E. Rim, and Homin K. Lee.
Ddsketch: A fast and fully-mergeable quantile sketch
with relative-error guarantees. Proc. VLDB Endow.,
12(12):2195–2205, 2019.

[53] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parlia-
ments. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13,
page 358–372, New York, NY, USA, 2013. Association
for Computing Machinery.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    837



[54] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[55] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pa-
van Kumar, Maxim Khutornenko, Mayank Pundir, Yirui
Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le, Bren-
don Daugherty, Apurva Samudra, Prashasti Baid, James
Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre Ro-
drigues, Scott Michelson, Ben Christensen, Kaushik
Veeraraghavan, and Chunqiang Tang. RAS: continu-
ously optimized region-wide datacenter resource alloca-
tion. In Robbert van Renesse and Nickolai Zeldovich,
editors, SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, pages 505–520. ACM,
2021.

[56] Even Oldridge, Julio Perez, Ben Frederickson, Nicolas
Koumchatzky, Minseok Lee, Zehuan Wang, Lei Wu, Fan
Yu, Rick Zamora, Onur Yilmaz, et al. Merlin: A gpu ac-
celerated recommendation framework. In Proceedings
of IRS, 2020.

[57] John Ousterhout, Parag Agrawal, David Erickson, Chris-
tos Kozyrakis, Jacob Leverich, David Mazières, Sub-
hasish Mitra, Aravind Narayanan, Diego Ongaro, Guru
Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric
Stratmann, and Ryan Stutsman. The case for ramcloud.
Commun. ACM, 54(7):121–130, jul 2011.

[58] D.S. Parker, G.J. Popek, G. Rudisin, A. Stoughton, B.J.
Walker, E. Walton, J.M. Chow, D. Edwards, S. Kiser,
and C. Kline. Detection of mutual inconsistency in
distributed systems. IEEE Transactions on Software
Engineering, SE-9(3):240–247, 1983.

[59] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learn-
ing. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21).

[60] General Data Protection Regulation. Regulation eu
2016/679 of the european parliament and of the council
of 27 april 2016. Official Journal of the European Union,
2016.

[61] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi,
Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang,
Jie Tong, and Qi Zhang. Time-series anomaly detec-
tion service at microsoft. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, KDD ’19, page 3009–3017,
New York, NY, USA, 2019. Association for Computing
Machinery.

[62] Yasushi Saito and Marc Shapiro. Optimistic replication.
ACM Comput. Surv., 37(1):42–81, mar 2005.

[63] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, dec 1990.

[64] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and
Mike Meyer. Overlapping experiment infrastructure:
more, better, faster experimentation. In Bharat Rao, Bal-
aji Krishnapuram, Andrew Tomkins, and Qiang Yang,
editors, Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, July 25-28, 2010, pages
17–26. ACM, 2010.

[65] Tencent. WeChat. https://www.wechat.com/, 2022.
Accessed on 2022-05-06.

[66] Tensorflow. TensorFlow Recommenders Addons. http
s://github.com/tensorflow/recommenders-add
ons, 2021. Accessed on 2021-12-08.

[67] Robbert Van Renesse and Fred B Schneider. Chain repli-
cation for supporting high throughput and availability.
In OSDI, volume 4, 2004.

[68] Paolo Viotti and Marko Vukolić. Consistency in non-
transactional distributed storage systems. ACM Comput.
Surv., 49(1), jun 2016.

[69] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang,
Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wan-
hong Xu, and Jiwu Shu. Kraken: Memory-efficient
continual learning for large-scale real-time recommen-
dations. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’20. IEEE Press, 2020.

[70] Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo
Mai, and Rahul Potharaju. Move fast and meet deadlines:
Fine-grained real-time stream processing with cameo.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 389–405.
USENIX Association, April 2021.

[71] Zhiqiang Xu, Dong Li, Weijie Zhao, Xing Shen, Tianbo
Huang, Xiaoyun Li, and Ping Li. Agile and Accurate
CTR Prediction Model Training for Massive-Scale On-
line Advertising Systems, page 2404–2409. Association
for Computing Machinery, New York, NY, USA, 2021.

[72] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Mar-
tin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang,

838    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.wechat.com/
https://github.com/tensorflow/recommenders-addons
https://github.com/tensorflow/recommenders-addons
https://github.com/tensorflow/recommenders-addons


and Kai Chen. Bds: A centralized near-optimal overlay
network for inter-datacenter data replication. In Proceed-
ings of the Thirteenth EuroSys Conference, EuroSys ’18,
New York, NY, USA, 2018. Association for Computing
Machinery.

[73] Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei
Zeng, Pingan Yang, and Yunfan Zhang. Paxosstore:
High-availability storage made practical in wechat. Proc.
VLDB Endow., 10(12):1730–1741, aug 2017.

[74] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Wei-
dong Liu, and Dawei Yin. Reinforcement learning to
optimize long-term user engagement in recommender
systems. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD ’19, page 2810–2818, New York,
NY, USA, 2019. Association for Computing Machinery.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    839





FAERY: An FPGA-accelerated Embedding-based Retrieval System

Chaoliang Zeng1∗ Layong Luo2 Qingsong Ning2 Yaodong Han2 Yuhang Jiang2 Ding Tang1∗

Zilong Wang1∗ Kai Chen1 Chuanxiong Guo2

1Hong Kong University of Science and Technology 2ByteDance

Abstract
Embedding-based retrieval (EBR) is widely used in recom-
mendation systems to retrieve thousands of relevant candi-
dates from a large corpus with millions or more items. A
good EBR system needs to achieve both high throughput and
low latency, as high throughput usually means cost saving
and low latency improves user experience. Unfortunately, the
performance of existing CPU- and GPU-based EBR are far
from optimal due to their inherent architectural limitations.

In this paper, we first study how an ideal yet practical EBR
system works, and then design FAERY, an FPGA-accelerated
EBR, which achieves the optimal performance of the prac-
tically ideal EBR system. FAERY is composed of three key
components: It uses a high bandwidth HBM for memory
bandwidth-intensive corpus scanning, a data parallelism ap-
proach for similarity calculation, and a pipeline-based ap-
proach for K-selection. To further reduce hardware resources,
FAERY introduces a filter to early drop the non-Top-K items.
Experiments show that the degraded FAERY with the same
memory bandwidth of GPU still achieves 1.21×-12.27×
lower latency and up to 4.29× higher throughput under a
latency target of 10 ms than GPU-based EBR.

1 Introduction

Recommendation systems have gained significant adoption in
many online services [11, 12, 18, 38]. To make a recommen-
dation from a large corpus containing millions of candidate
items, industrial large-scale recommendation systems are usu-
ally divided into two layers, namely retrieval and ranking,
as shown in Figure 1. Retrieval quickly selects thousands of
relevant items from the large corpus with simple algorithms,
while ranking utilizes sophisticated algorithms to sort the re-
trieval results more precisely, and then chooses dozens out of
the sorted items.

Real-world retrieval systems conduct multi-channel re-
trieval [26, 39, 43]: It leverages different strategies in sep-
arate channels to retrieve different candidates, which are
then merged and filtered to generate the final retrieval re-
sult. Among the multi-channel retrieval strategies, embedding-
based retrieval (EBR) gains increasing popularity [12, 18, 20,
25, 38, 42]. EBR represents user queries and candidate items

∗ This work is done while Chaoliang Zeng, Ding Tang, and Zilong Wang
are interns in ByteDance.

thousands dozens

Corpus Retrieval Ranking

End Results

…

> millions

Figure 1: A typical recommendation system. Retrieval selects
thousands of candidate items from a large corpus, and ranking
further chooses dozens from the retrieval results.

with semantic embedding vectors (embedding for short) using
representation learning [9], and converts the retrieval problem
into a similarity search problem in the embedding space. In
particular, an EBR algorithm, as shown in Listing 1, involves
scoring, which scans the corpus to get all items and calculates
a similarity score (e.g., via inner product) between every item
embedding and the given query embedding, and K-selection,
which returns the Top-K items based on their similarity scores.
The returned Top-K items of EBR are usually sorted [25, 42],
to simplify merging and filtering retrieval candidates from
multiple channels.

The performance of such EBR systems is important. On
the one hand, increasing the throughput of every EBR server
reduces the overall server cost, as fewer servers are required
to serve a target number of queries per second (QPS). On
the other hand, decreasing the latency of each EBR server
reduces the retrieval time, which can either shorten user’s
overall waiting time or leave more time for ranking compu-
tation to get better recommendation results [11]. Therefore,
latency-bounded throughput becomes a critical metric for
EBR systems.

To achieve high latency-bounded throughput, we charac-
terize the EBR algorithm shown in Listing 1 and derive a
practically ideal EBR hardware architecture (§2.2). Specifi-
cally, corpus scanning (line 3) is a memory-intensive operator
which requires both large external memory capacity and high
memory bandwidth. Similarity calculation (line 4) and K-
selection (line 6) are both compute-intensive. They should
match the memory bandwidth with a data-parallel architec-
ture across multiple operator instances. Moreover, to overlap
communications with computations among steps or operators,
both inside K-selection and the entire EBR data flow require
pipeline parallelism. Then, we extend the ideal architecture
to support batch queries, by sharing corpus scanning among
queries in a batch and providing separate compute pipelines

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    841



1 # Scoring
2 for i in corpus_size:
3 item_emb = corpus[i] # corpus scanning
4 scores[i] = sim_calc(user_emb, item_emb) # similarity calc
5 # K-selection
6 ret_items = topk(scores) # returns the sorted top_k items

Listing 1: Simplified EBR algorithm for a single user query.

to serve different queries in the batch in parallel. As a result,
the ideal architecture achieves the optimal query latency, and
scales the latency-bounded throughput linearly with the batch
size.

By comparing existing CPU- and GPU-based EBR with
the ideal architecture, we realize that, unfortunately, none of
the existing approaches achieve the optimal performance due
to their inherent architectural limitations (§2.3). First, despite
large memory capacity, CPU does not perform well in corpus
scanning due to low memory bandwidth, and fails to well
support the desired parallelism paradigms simultaneously
due to the limited number of cores. Second, although GPU
provides higher memory bandwidth and massive compute
cores for data parallelism, GPU is not optimized for pipeline
parallelism required by K-selection and the entire EBR data
flow due to explicit resource boundaries.

We observe that FPGA, a programmable hardware device
readily available in some hyper-scale cloud providers [10, 14,
41, 45], has all the desired properties of the practically ideal
EBR architecture. Some modern FPGAs are equipped with
large high bandwidth memory (HBM), ideal for corpus scan-
ning. Moreover, FPGAs provide sufficient on-chip memories
and fully programmable compute elements to enable appro-
priate parallelism paradigms for various operators (§2.4).

We exploit the above observations to design FAERY (§3),
an FPGA-Accelerated Embedding-based Retrieval sYstem,
which is an embodiment of the ideal EBR architecture and
achieves high performance. Specifically, FAERY stores the
corpus in FPGA’s HBM, which provides high bandwidth for
the memory bandwidth-intensive corpus scanning. FAERY
leverages a corpus manager to maximize the HBM bandwidth
utilization in runtime while preserving memory-efficient stor-
age and enabling online corpus update. FAERY follows the
ideal architecture to design similarity calculation with data
parallelism and K-selection with pipeline parallelism. Dif-
ferent from the ideal architecture, FAERY needs only a sin-
gle K-selection pipeline, and adds a filter in front of it to
significantly lower its throughput requirement, based on a
unique property observed in the K-selection pipeline. The fil-
ter optimization lowers the resource requirements of FAERY
compared with the ideal architecture by eliminating multiple
K-selection pipelines.

The above ideas make a single FPGA-based EBR accelera-
tor perform well. To further enhance its capabilities, multiple
such accelerator cards can be inserted into a FAERY server
(§4) and work together. When a corpus can fit into a single

card, we can scale the aggregate query throughput by repli-
cating the corpus among multiple cards. When the corpus
is too large to fit into a single card, we can shard it evenly
among multiple cards. FAERY supports both the replication
and sharding modes and leverages a software front-end to
dispatch queries and to merge retrieval results for multiple
accelerator cards.

We have implemented a fully functional FAERY prototype
with Xilinx FPGA cards (§5). Experiments (§6) show that
the degraded FAERY with the same memory bandwidth of
GPU achieves 1.21×-12.27× lower latency and up to 4.29×
higher throughput under a latency target of 10 ms than an
EBR system accelerated by Nvidia T4 GPU.

This paper makes the following contributions:

• We study the EBR algorithm from the first principles and
derive a practically ideal EBR architecture to achieve the
optimal query latency and to scale the latency-bounded
throughput linearly with the batch size, constrained by
hardware resources. We further identify the performance
bottlenecks of CPU- and GPU-based EBR using the ideal
EBR architecture as a reference (§2).

• We design FAERY, a domain specific accelerator (DSA) for
EBR. FAERY arranges its key components: corpus scan-
ning, similarity calculation, and K-selection in a perfect
pipeline, and accelerates these components using appropri-
ate data and/or pipeline parallelisms. FAERY is an embodi-
ment of the ideal EBR architecture, with balanced filtering
and buffering which matches the capability of parallel sim-
ilarity score calculations with a single K-selection pipeline,
based on a thorough analysis (§3 and §4).

• We implement FAERY using FPGA, evaluate its perfor-
mance, and quantify its advantages over CPU- and GPU-
based EBR systems, respectively (§5 and §6).

2 Background & Motivation

2.1 EBR Algorithms: KNN vs. ANN

EBR represents user queries and candidate items with em-
beddings, and converts the retrieval problem into a K-Nearest
Neighbor (KNN) or an Approximate Nearest Neighbor (ANN)
search problem in the vector space [20]. KNN-based EBR
searches the accurate k-nearest item embeddings from the
corpus, while ANN-based EBR retrieves the approximate
k-nearest item embeddings, by sacrificing accuracy for effi-
ciency using techniques such as indexing (e.g., IVF [34] and
HNSW [28]) and quantization (e.g., PQ [21]). The tradeoff
between accuracy and efficiency in various ANN algorithms
is well studied in [8].

CPU provides limited memory bandwidth and computing
power, so that it is challenging for CPU to perform KNN
search on a large corpus due to the tremendous costs of mem-
ory accesses and computations. As a result, ANN search is

842    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



⑥ Pipeline parallelism for the entire EBR data flow

③ Data parallelism① Large 
external memory

② High memory bandwidth

…

M
erge

④ Data parallelism

step 1 … step n

⑤ Pipeline parallelism
K-selection

Emb

Emb
…

Emb

Emb
…

Emb

Emb
…

… …

k

k

k

Top-K

Scoring

Figure 2: A practically ideal EBR architecture with the batch
size of 1. It has the following properties: ¬ large external
memory for corpus store,  high memory bandwidth for cor-
pus scanning, ® data parallelism for similarity calculation,
¯ data parallelism among multiple K-selection instances,
° pipeline parallelism within a K-selection instance, and ±
pipeline parallelism for the entire EBR data flow.

widely applied in CPU-based EBR in the industry. In contrast,
accelerators, e.g., GPU and FPGA, provide much higher mem-
ory bandwidth and computing power, so that KNN search is
usually adopted by these accelerators to trade memory band-
width and computing power for higher accuracy and thus
better recommendation quality.

To simplify discussion and comparison, we use the same
KNN search (shown in Listing 1) for EBR on all platforms
(CPU, GPU, and FPGA) in this paper, but our analysis re-
sults and acceleration ideas apply to ANN as well, as ANN
shares similar characteristics and bottlenecks with KNN, just
to different extents.

2.2 Practically Ideal EBR Architecture

To maximize latency-bounded throughput, an ideal architec-
ture should first achieve minimal latency for each individual
query (equivalent to maximal throughput with the batch size
of 1), and then scale the throughput linearly with increasing
batch sizes while preserving the consistent minimal latency.

In a theoretically ideal architecture, for each query, we do
similarity calculation with ALL item embeddings in paral-
lel and finish this operator in O(1) time, followed by a per-
fect K-selection to match the parallelism. This is obviously
impractical, as it requires millions of item accesses and mil-
lions of similarity calculation (e.g., inner product) operators
in parallel, not to mention the design challenge of K-selection
to match that extreme parallelism. A practically ideal EBR
should take into account both realistic hardware constraints
and the EBR characteristics which we discuss below.

Corpus scanning (line 3) is a memory-intensive operator.
The size of an industrial corpus is up to several GBs [19],
and scanning such a large corpus incurs millions of memory
accesses for a single query. Thus, corpus store and scanning
require large external memory and high memory bandwidth.

Similarity calculation (line 4) is a compute-intensive op-
erator, which calculates similarity scores between the user

External
memory

Scoring K-selection
Items Scores

Query

BS = 1

External
memory

Scoring K-selection
Items

Scores

Query 1

BS = N
(N > 1)

Result

Result for 
query 1

Scoring K-selection
Scores

Query N
Result for 
query N

…
Figure 3: A practically ideal EBR architecture with the batch
size of N, where the throughput scales linearly with the batch
size N, while the latency remains the same as shown in Equa-
tion 1.

query and all item embeddings. As the calculations for differ-
ent item embeddings are independent, an ideal architecture
should perform similarity calculation with data parallelism to
match the throughput of corpus scanning.

K-selection (line 6) is another compute-intensive operator.
To match the throughput of multiple similarity calculation
instances, K-selection requires data parallelism with multiple
instances as well. Inside a single instance, K-selection can be
realized by various algorithms [23, 33], among which a com-
mon practice is to partition this complex task into multiple
steps, and organizes them in a pipelined manner.

Based on these characteristics, a practically ideal EBR ar-
chitecture for optimal latency should have a large and high-
bandwidth memory for corpus store and scanning, appropriate
parallelisms for EBR operators to match their throughput to
the memory bandwidth, and a perfect overlap among commu-
nications and computations of operators in the entire pipeline
to minimize latency. Figure 2 describes a practically ideal
EBR architecture with the batch size of 1 and its desired
properties. The minimal query latency of this architecture is:

latency =
S
B
+C, (1)

where S is the corpus size, B is the external memory band-
width, and C is a constant delay, i.e., the pipeline latency,
which is the time it takes for the last embedding going through-
out the pipeline. Thus, the maximal throughput is 1/latency
queries per second (QPS) with the batch size of 1.

The ideal architecture can be extended to support batch
queries to increase latency-bounded throughput linearly, as
shown in Figure 3. The key is to share corpus scanning among
multiple queries in a batch (i.e., scan the corpus only once
in each batch), and process multiple queries with separate
compute pipelines in a data-parallel manner. In this way, the
latency remains constant as shown in Equation 1, and the
latency-bounded throughput scales linearly with the number
of batched queries. In practice, the batch size cannot be in-
creased unlimitedly due to resource constraints, and hence
the maximum latency-bounded throughput will be bounded
by the available hardware resource of the chosen platform.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    843



ScoresItem
embeddings

Scoring

K-statesStates

K-selection

External Memory

Streaming Multiprocessors

kernel kernel

Step 1 Step 2 Step n

On-chip 
memory

Compute
cores

Top-K
results

…

(a) GPU-based EBR (GPU-o,
K-selection with on-chip memory)

…
Scoring

K-selection

States

Streaming Multiprocessors

kernel kernel kernel kernel

Step 1

States

Step 2

States

Step n

States

ScoresItem 
embeddings

External Memory

K-states 1 K-states 2 … Top-K
results

On-chip 
memory

Compute
cores

(b) GPU-based EBR (GPU-e,
K-selection with external memory)

FPGA

Item 
embeddings

fifo fifo

Top-K
results

K-selection

fifo
states

Scoring Step 1

states states

Step nScores K-states 1 

…

External Memory

On-chip 
memory

Compute
logic

(c) FPGA-baesd EBR

Figure 4: Comparison between GPU- and FPGA-based EBR architectures. (a) GPU-o is a GPU-based EBR that stores intermediate
states of K-selection in on-chip memory [23] and maintains corpus and scores in external memory. It suffers from heavy state
maintenance cost and small k values; (b) GPU-e is a GPU-based EBR that moves all intermediate states of K-selection to external
memory [33, 36], requiring multiple passes over the external memory; (c) is an FPGA-based EBR which stores only corpus in
external memory, traverses external memory only once, and keeps the computation and communication of other operators fully
on chip and in a streaming pipeline.

2.3 Existing EBR Architectures

Using the ideal EBR architecture as a reference, we analyze
existing CPU- and GPU-based EBR architectures, and show
that their performance are both sub-optimal due to inherent
architectural limitations.

2.3.1 CPU-based EBR

Datacenter CPUs are equipped with large DDR memory (hun-
dreds of GBs), able to store a very large corpus with millions
or more item embeddings. However, CPU-based EBR does
not perform well due to the following reasons.

Low memory bandwidth violates  in Figure 2. The the-
oretical DDR memory bandwidth of a CPU is proportional
to the limited number (typically 2∼8) of DDR channels [3],
and the memory bandwidth utilization driven by a CPU is
not high. Taking the server used in our evaluations (§6) as an
example, a CPU with six DDR channels provides a theoretical
maximum bandwidth of 140.8 GB/s, and an empirical upper
bound of only 78 GB/s measured with Intel MLC [1]. The
low memory bandwidth (B) significantly increases the first
part (S/B) of Equation 1.

Limited number of CPU cores cannot support ®-± and
batch queries, simultaneously. A CPU contains dozens of
processor cores that can be flexibly used for data parallelism,
pipeline parallelism, and/or batch processing. However, due to
the limited number of cores, CPU-based EBR fails to support
all the above features well simultaneously, where the num-
ber of cores desired is the product of the number of memory
channels, the number of pipeline stages, and the batch size
as shown in Figure 2 and Figure 3. The poor support of data
parallelism and pipeline parallelism results in throughput mis-
match and imperfect overlapping among operators, leading to
an increase on the second part (C) of Equation 1 as well as a

sub-linear throughput increase with batch queries.

2.3.2 GPU-accelerated EBR

Compared with CPU, GPU provides high external memory
bandwidth (e.g., Nvidia T4 [2] provides 300 GB/s bandwidth
with GDDR6), and massive lightweight SIMT (Single Instruc-
tion Multiple Threads) cores optimized for data parallelism.
Although GPU provides a smaller memory capacity (e.g.,
16−80 GB in a typical GPU and 128−640 GB in a holistic
server with 8 GPU cards), the size is still large enough to store
the corpora in most recommendation services. For example,
given a typical embedding size of 256 bytes, 128 GB memory
can store more than 500M items that can meet the require-
ments of most recommendation systems [11,12,16,40]. These
strengths inspire the design of GPU-accelerated EBR [23, 46]
to achieve higher performance.

However, the performance of these GPU-based EBR sys-
tems are still sub-optimal, as GPU is not optimized for
pipeline parallelism. GPU consists of a large number of
streaming multiprocessors (SM), each of which contains ex-
clusive on-chip memory and compute cores. Communication
between SMs or kernels1 is only possible via external mem-
ory, and the available on-chip memories for a single SM are
very limited (e.g, 304 KB in Nvidia T4). These restrictions
make GPU-based EBR not perfectly pipelined, leading to an
increase on the second part (C) of Equation 1.

Inter-operator communication via external memory vio-
lates ±. Different EBR operators are organized as separate
kernels. The similarity scores generated by scoring kernels are
transmitted to the K-selection kernels via the external mem-
ory, as shown in Figure 4a and Figure 4b. The explicit kernel
boundaries make it difficult to exploit pipeline parallelism

1A kernel is a function executed on GPU, which realizes a data-parallel
portion of an application. An operator may consist of one or multiple kernels.

844    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



across EBR operators to overlap perfectly communication
and computation [24, 47].

Existing K-selection pipelines violate °. Existing GPU-
based K-selection algorithms can be classified into the fol-
lowing two categories.

K-selection with on-chip memory (e.g., WarpSelect [23]),
denoted as GPU-o, as shown in Figure 4a, fuses all K-
selection sub-steps into a single kernel to avoid cross-kernel
overhead, and keeps all K-states in on-chip memory. However,
maintaining all K-states on chip and executing these steps
in the SIMT cores introduce non-trivial computation over-
head (e.g., per-thread queue sorting, sorted queues merging,
and thread synchronization [23]), resulting in poor latency.
To show this overhead, we measure Faiss [23], which adopts
WarpSelect, with a 4M corpus and the same setting as §6.
The result shows that the K-selection operator consumes up to
80.4% of the total time. Moreover, given the limited on-chip
memory size of each SM, it fails to support a large k value,
i.e., at most 2048 in this setting.

K-selection with external memory (e.g., RadixSelect [33,
36]), denoted as GPU-e, as shown in Figure 4b, implements
different K-selection sub-steps as separate kernels, and trans-
mits intermediate data among kernels via the external memory.
As a result, the K-selection operator has to access the external
memory multiple passes (well studied in [33]), leading to sub-
optimal K-selection performance, which will become worse
with a larger batch size due to heavy bandwidth contention on
external memory. With the same setting mentioned above, the
query latency of RadixSelect is increased by 12.36× when
the batch size is increased from 1 to 16.

2.4 FPGA Opportunities

We observe that FPGA has the following properties that meet
the requirements of the ideal EBR architecture.

• Similar to GPU, high-end FPGAs are equipped with HBM
of large capacity (typically 8 to 32 GB). A typical HBM is
a stack of 32 parallel DRAM channels (versus up to 8 DDR
channels in a CPU), providing parallel memory accesses
and thus high bandwidth (460 GB/s), which fundamentally
eliminates the biggest memory bandwidth bottleneck in
CPU-based EBR.

• Unlike GPU with exclusive and small on-chip memories
for each SM, FPGA provides sufficient on-chip memories
(dozens of MB in total), which are accessible to all compute
elements. This could be leveraged to overcome the prob-
lems of GPU-based EBR as discussed in §2.3.2. Unlike
GPU with SIMT cores optimized only for data parallelism,
the massive compute elements and interconnects among
them in FPGA are fully programmable, so that they can be
orchestrated in any parallelism strategy (data parallelism
or pipeline parallelism).

Desired features in ideal arch. CPU GPU FPGA
large memory capacity 4 4 4

high memory bandwidth 4 4

data parallelism 4 4 4

pipeline parallelism 4 4

batch queries with low latency 4 4 4

Table 1: EBR architecture comparison among CPU, GPU,
and FPGA. 4 means perfect support, while4 means limited
support.

Table 1 summarizes the architecture comparison of CPU,
GPU, and FPGA for EBR. Based on FPGA’s advantages, we
can design an FPGA-based EBR pipeline similar to that in
Figure 4c: It traverses the HBM only once, passes intermedi-
ate data between operators via on-chip memory, and overlaps
communications with computations of operators via careful
pipeline designs. In this way, FPGA-based EBR has the po-
tential to approach the optimal performance (Equation 1). The
design details of such a system, named FAERY, are presented
in the following sections.

3 FAERY Accelerator

We design the FAERY accelerator by following the most de-
sired properties of the ideal EBR architecture, with some
additional optimizations. Figure 5 presents the architecture
of the FAERY accelerator, with a few major components in-
cluding HBM, corpus manager, similarity calculation, filter,
and K-selection. FAERY stores the corpus in HBM and uses
the corpus manager (§3.1) for corpus scanning and update.
FAERY applies data parallelism across multiple similarity
calculation units (§3.2), and pipeline parallelism within K-
selection (§3.3). Different from the ideal EBR architecture,
FAERY does not need multiple K-selection pipelines with
data parallelism, thanks to a new filter operator (§3.4) in-
serted before the K-selection pipeline to lower its throughput
requirement. This optimization lowers the resource overhead
compared with the ideal architecture. The above operators
are perfectly pipelined and overlapped, and the resulting data
streams are shown in §3.5.

3.1 Corpus Manager

FAERY stores the corpus in HBM and uses the corpus manager
to perform corpus scanning and update. The corpus manager
is designed to meet two objectives toward high bandwidth
utilization of HBM: maximizing single-channel performance
and maximizing multi-channel parallelism.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    845



HBM Corpus Manager

Similarity Calculation

embemb

F
ilter

Scoring Unit

K-selection

1-1
M

erger

2-2
M

erger

K
-K

M
erger

…

query

DMA Engine
result

Horizontal
Buffer

Division

Embedding 
Compaction

Corpus Store Corpus Scanning

embemb

embemb

embemb

embemb

Scoring Unit

Scoring Unit

Scoring Unit

Scoring Unit
Minimum value in running Top-K

Figure 5: FAERY accelerator architecture with the batch size of 1. It stores item embeddings in high bandwidth memory (HBM),
uses a corpus manager for corpus scanning and update, and applies appropriate parallelism paradigms for different key operators:
data parallelism for similarity calculation and pipeline parallelism for K-selection. A filter is added between the above two
operators to bridge their throughput mismatch and lower the resource requirement. The overall architecture is fully pipelined,
with computations and communications perfectly overlapped to minimize latency and maximize throughput.

B
W

 u
til

iz
at

io
n 

(%
)

0

20

40

60

80

100

Burst size (B)
32 64 128 256

Figure 6: Bandwidth utilization of a single HBM channel with
different burst sizes. The utilization is over 90% when the
burst size is not smaller than 64 bytes.

3.1.1 Embedding Compaction to Maximize Single-
channel Performance

The bandwidth utilization of a single HBM channel is affected
by two factors: access pattern (sequential or random access)
and burst size (the number of bytes in a memory transaction).
Given the nature of brute-force KNN search, both corpus
scanning and corpus update perform sequential access, which
is more efficient than random access. We show in Figure 6 the
bandwidth utilization of a single HBM channel in sequential
access over various burst sizes. The result reveals that, to
achieve bandwidth utilization of over 90%, an ideal burst size
should be not smaller than 64 bytes and be a multiple of the
channel width of 32 bytes.

However, the size of embeddings could be smaller than 64
bytes, especially for those generated by quantization-aware
training [30, 31, 37]. It could also be not a multiple of the
channel width. To bridge the mismatch between the ideal
burst size requirement and the realistic embedding size, we
compact one or multiple embeddings into a burst, whose size
might not be exactly a multiple of the embedding size, leaving

Corpus buffer 1 Corpus buffer 2

Channel ID
A

dd
re

ss
Channel ID

A
dd

re
ss

(a) Horizontal division. (b) Vertical division.

Figure 7: HBM can be divided into two buffers in two ways.
(a) Horizontal division: divide buffers based on address, which
preserves all memory channels and maximum memory band-
width for each buffer. (b) Vertical division: divide buffers
based on channel ID, which halves the number of available
channels and the memory bandwidth for each buffer.

some unused bytes in a burst. To minimize the waste, we
choose an ideal burst size with minimal unused bytes.

3.1.2 Horizontal HBM Division to Maximize Multi-
channel Parallelism

To support the online corpus update, the corpus manager
partitions HBM into two corpus buffers: a runtime buffer
to store the latest corpus and serve queries, and an update
buffer reserved for update. Upon receiving a new corpus from
the host, the corpus manager stores it into the update buffer,
and then switches the EBR pipeline to scan corpus from that
buffer for new queries. In this way, the runtime buffer and
update buffer switch roles after each update.

HBM can be partitioned into two corpus buffers in two
ways, horizontally or vertically, as shown in Figure 7. The
horizontal division is chosen, as it keeps all the available
HBM channels and thus the maximum memory bandwidth

846    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



for each buffer, while the vertical division loses half channels
and thus half memory bandwidth for each buffer.

During corpus update, the HBM write caused by update
and HBM read caused by query, may contend for HBM mem-
ory bandwidth with horizontal division. Such contention is
negligible. Considering that the realistic HBM bandwidth is
414 GB/s (90% utilization of a typical 460 GB/s HBM), and
corpus update is bounded by the PCIe Gen3 x16 bandwidth
(16 GB/s), the update (HBM write) throughput over the total
HBM throughput is less than 4%. Moreover, given that corpus
update happens much less frequently than query, update can
be further throttled to minimize its impact to query. Other
update methods will be discussed in §7.

3.2 Similarity Calculation
Similarity calculation receives multiple item embeddings
from multiple HBM channels simultaneously. In order to
match the bandwidth of HBM, we apply data parallelism in
similarity calculation, where multiple scoring units (SU) are
instantiated to work in parallel, and each performs similar-
ity calculation, e.g., inner product, between a separate item
embedding and the given query embedding. The number of
parallel SUs required is the product of the total number of
HBM channels and the maximum number of item embeddings
inside a channel width, which may contain more than one item
embedding due to the embedding compaction (§3.1.1).

3.3 K-selection
There exist multiple different K-selection architectures [27,29,
44], suitable for different scenarios. In the context of recom-
mendation systems, the value of k is from a few thousand to
dozens of thousands in realistic EBR [16, 25], so K-selection
in FAERY aims to achieve both high performance and high
scalability in supporting a large value of k. To this end, we
choose an existing K-selection pipeline [29] based on bottom-
up merge sort for the following two reasons.

First, the bottom-up merge sort allows processing input
scores in a streaming manner to avoid storing the entire scores
before computing. In contrast, some algorithms incapable
of streaming processing, e.g., RadixSelect [36], inevitably
need external memory to store the entire scores of a large
size. Leveraging external memory to cache the scores should
be avoided, as it will not only reduce the available storage
space for the corpus, but also interfere with the performance
of corpus scanning due to bandwidth contention.

Second, pipeline parallelism within K-selection is
compute-efficient and scalable, e.g., the chosen K-selection
pipeline [29] requires only O(logk) comparators. In contrast,
some data-parallel K-selection architectures [27, 44] use a
large number of parallel comparators to process a batch of
input scores at a time. The number of parallel comparators
required by this method is O(p∗ k), where p is the batch size

C
M
P

C
M
P

1-merger 2-merger

top4-merger

C
M
P

4-sorter

input output

Current Top-4

New Top-4

Figure 8: An example of the 4-selection pipeline in [29].

of input scores. Such design is not scalable, especially for k
in the order of thousands.

Pipeline parallelism within K-selection. Figure 8 illus-
trates a K-selection pipeline where k = 4. The K-selection
pipeline in [29] contains a series of i-mergers and a final topk-
merger. An i-merger merges two sorted lists with length i into
a sorted list with length 2i, followed by a 2i-merger in the
pipeline. The pipeline starts at a 1-merger, and log2k sequen-
tial i-mergers form a k-sorter. At the end of the pipeline, a
topk-merger merges the output of the k-sorter with the current
sorted Top-K to generate a new running Top-K. All modules
process data in a streaming manner, and the latency of such a
pipeline is k+ log2k clock cycles [29].

The above K-selection pipeline processes one score every
clock cycle, which is slower than the throughput of scores gen-
erated by similarity calculation with data parallelism. Accord-
ing to the ideal architecture shown in Figure 2, K-selection
can simply match the throughput with multiple K-selection
pipelines, i.e., instantiating multiple K-selection pipelines
in parallel, each processing different scores, followed by a
merger at the end to get the final Top-K from multi-channel
sorted Top-K. However, a single K-selection pipeline is much
more resource-hungry than a single scoring unit. Instantiat-
ing multiple K-selection pipelines to match the throughput
of the multi-channel similarity calculation is not resource-
efficient, especially when supporting a large k and a large
batch size. Based on an important observation on the K-
selection pipeline, we address the throughput mismatch prob-
lem in a resource-efficient way by introducing a new operator:
filter (§3.4).

3.4 Filter
The K-selection pipeline maintains inside a running Top-K
(e.g., the current Top-4 in Figure 8), which continuously up-
dates the Top-K for all the past scores until the current point.
We observe that, if the input score to K-selection is not greater
than the minimum score of the running Top-K, the input won’t
change the internal running Top-K and thus can be dropped.
Based on this observation, we design a filter to early drop
non-Top-K scores, which significantly reduces the number
of scores sent to K-selection. Figure 9 shows the through-
put model of FAERY, where corpus scanning and similarity
calculation are designed with data parallelism to match the
HBM throughput, K-selection only provides a single pipeline
to save resources, and the filter bridges the throughput mis-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    847



Filter K-selection
HBM, Corpus scanning 
& Similarity calculation

Figure 9: Throughput model of FAERY. Corpus scanning
and similarity calculation are designed to fully match the
HBM bandwidth, followed by a filter to early drop most of
scores generated by similarity calculation, thus significantly
lowering the throughput requirement of K-selection.

match between the multi-channel similarity calculation and
the single-channel K-selection.

Let x (x> 1) denote the number of scores generated by simi-
larity calculation per clock cycle. The throughput of similarity
calculation is x scores per clock cycle, and the throughput of
K-selection is one score per clock cycle, so that the through-
put mismatch is (x− 1)/x. We define filtering efficiency as
the number of scores (m) dropped by the filter over the total
number of scores (n), i.e., m/n. As long as m/n≥ (x−1)/x,
the design will work well without performance degradation.

In practice, the recall ratio of EBR (the ratio of the retrieved
items to the total items, i.e., k : n) is usually very low, e.g.,
1 : 1000. The majority of scores will be early dropped by
the filter, and the filtering efficiency will be high enough to
bridge the throughput gap. We analyze the average filtering
efficiency as follows.

Filtering efficiency. Given that n >> k in practice, we can
derive the filtering efficiency using a simplified model. As-
suming the input scores follow a random distribution, and
the running Top-K values are already generated from all the
previous scores when the dropping decision for a score is
made, the probability of the ith (i > k) score dropped by the
filter follows

p(i) =
i− k

i
. (2)

The expected number of scores dropped by the filter follows

m = ∑
n
i=k+1 p(i) = ∑

n
i=k+1

i− k
i

. (3)

As a result, the average filtering efficiency is

e =
m
n
=

∑
n
i=k+1

i−k
i

n

= 1− k
n
− k

n ∑
n
i=k+1

1
i

> 1− k
n
− k

n
ln(n).

(4)

Given a typical setting in practice where k = 1024, n = 106,
the filtering efficiency is larger than 98%. In our implementa-
tion (§5), x is 4, and the throughput mismatch is 3/4 = 75%.
This shows that the filtering efficiency is much higher than the

……

…

Result (Final Top-K)

…

Time

………

………

…

Corpus scanning 

Query

Similarity calculation 

Filter

K-selection

Running Top-K 

Figure 10: The perfect overlap of data streams in FAERY.

throughput mismatch in practice, and thus the filter enables
K-selection to match the throughput of similarity calculation
with just one pipeline, reducing resource consumption.

Buffer to absorb bursts. Although the filter balances good
performance and low resource cost in practice, it can fail to
drop any scores in the worst case when all the input scores
are sorted ascendingly. Since the item embeddings are stored
randomly in HBM, the probability that such worst case hap-
pens is very low. However, we do have a buffer in the filter
to absorb two types of temporal bursts. The initial burst is
built up while the filter is processing the first y scores of every
new query, when the drop probability (p(i), i < y) of score
i is lower than the throughput mismatch (x− 1)/x between
similarity calculation and K-selection. Based on Equation 2, y
is (k∗x). The other type of burst is occasional score sequences
in which all scores are larger than the minimum of the running
Top-K. The size of this burst is variable but should be small
given the increasing drop probability shown in Equation 2.

3.5 Perfect Overlap of FAERY Data Streams

As described in the above sections, all operators work in a
streaming manner, i.e., all operators start processing as soon as
the data begin to stream in, and the communications between
operators are perfectly overlapped with computations. As a
result, the data streams in this architecture exhibit a perfect
overlap, as shown in Figure 10. Upon receiving a query, the
corpus manager starts corpus scanning and gets a multi-stream
of embeddings from 32 HBM channels, followed by similarity
calculation and filter streams in the subsequent cycles. The
filter operator early drops most of scores, so that a single
stream of scores is sent to K-selection. As scores begin to
stream into K-selection, the running Top-K is updated, and it
is output as the final Top-K result soon after the last score is
injected into the K-selection pipeline.

Batch is supported in FAERY in the same way as the ideal
architecture (Figure 3). The data streams of multiple queries
start at the same point. Therefore, the latency remains the
same, and the throughput scales linearly with the batch size.

848    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Host

…

Front-end

Dispatcher

Merger

Query

Result

PCIe

Manager
New

Corpus

Similarity 
Calculation

HBM 
(Corpus)

K-selection

Runtime 
Buffer

Update 
BufferCorpus Manager

Similarity 
Calculation

HBM 
(Corpus)

K-selection

Runtime 
Buffer

Update 
BufferCorpus Manager

FAERY Accelerator 

C
orpus 

Scanning
C

orpus 
Scanning

FAERY Accelerator 

Figure 11: FAERY server architecture. A FAERY server hosts
multiple FAERY accelerators to increase either the query
throughput or the supported corpus size. A software front-end
on the host CPU dispatches user queries to multiple accel-
erators, merges retrieval results from them, and updates the
corpus on the fly.

4 FAERY Server

Figure 11 presents the FAERY server architecture, which in-
cludes a software front-end on the host CPU and multiple
FAERY accelerators inserted in server PCIe slots.

Multiple FAERY accelerators can work together to enhance
the capabilities of a single accelerator in two modes: replica-
tion and sharding. In the replication mode, these accelerators
store separate replicas of the same corpus and serve different
queries simultaneously to increase the query throughput. In
the sharding mode, multiple accelerators store different shards
of the same corpus and serve the same query simultaneously
to increase the supported corpus size. The front-end running
in the host CPU is responsible for query dispatching via a
dispatcher module and result merging via a merger module in
the above two modes.

When there is a new corpus received by the server, a man-
ager module in the software front-end handles this update
request. It determines whether corpus replicating or sharding
is needed based on the working mode listed above, and then
sends the corpus replicas (or shards) to the corresponding
accelerators via PCIe. The corpus manager in each FAERY
accelerator stores the update corpus in the update buffer and
switch buffer roles as described in §3.1.2.

5 Implementation

We build a fully functional prototype of FAERY using FPGAs.
The FPGA accelerator is built with Xilinx VU35P FPGA [4],
which contains an HBM of 8 GB capacity, 32 memory chan-
nels, and 460 GB/s bandwidth. We implement the FAERY
pipeline described in Figure 5 using the hardware program-
ming language SystemVerilog. In the following part, we dis-

cuss several implementation details using this FPGA with a
typical setting: One embedding contains 128 elements of 2
bytes each (i.e., the embedding size is 256 bytes), k is 1024,
and the prototype runs at a clock frequency of 400 MHz,
which matches the HBM bandwidth. An ASIC implemen-
tation of FAERY with the same HBM bandwidth but higher
clock frequency (e.g., 1 GHz), could not provide significant
performance improvement, as the end-to-end performance is
mainly determined by the HBM bandwidth.

Corpus manager. Since the embedding size is 256 bytes,
the burst size can be set to 256 bytes based on the embedding
compaction strategy, resulting in no waste on both storage
space and read bandwidth. Based on the measurement, the
achievable HBM bandwidth is 414 GB/s, with 90% utilization
of the theoretical upper bound of 460 GB/s. Given that the
HBM has 32 memory channels of 32-byte width, the corpus
scanning reads 1024 (32∗32 = 1024) bytes from HBM every
clock cycle, almost catching up with the HBM bandwidth
at 400 MHz (1024∗400/1000 = 409.6 GB/s), and outputs 4
(1024/256 = 4) embeddings per clock cycle on average. To
support online corpus update, horizontal division keeps half
of the 8 GB HBM space (i.e., 4 GB) for the runtime corpus,
which supports up to 16M item embeddings in a single FPGA.

Similarity calculation. To match the throughput of 32 paral-
lel HBM channels, similarity calculation is implemented with
32-channel SUs in parallel. Each SU performs inner product
calculation, which consists of three stages. The first stage per-
forms element-wise multiplications between the item and the
query. Given that an HBM channel width (32 bytes) contains
16 elements (each 2 bytes) of an embedding, it requires 16
parallel multipliers in this stage to sustain the HBM channel
bandwidth. In the second stage, it conducts a summation of
the results in the first stage with an accumulation tree, which
has log216 = 4 layers. The summation result is finally added
to the computing score in the last stage. Therefore, the latency
of similarity calculation is 6 (1+4+1 = 6) cycles, and the
throughput of similarity calculation with 32 parallel SUs (i.e.,
4 scores per clock cycle) matches exactly the throughput of
corpus scanning (i.e., 4 item embeddings per clock cycle).

K-selection. K-selection is implemented based on an existing
pipeline [29], whose latency is k+ log2k clock cycles. For
k = 1024, the latency is 1034 cycles. This fully pipelined
K-selection can process one score per clock cycle. Different
from the ideal architecture, a single K-selection pipeline is
required in FAERY, with the filter to bridge the throughput
mismatch between similarity calculation and K-selection.

Filter. Since similarity calculation generates four scores per
cycle, while K-selection only processes one score per cycle,
the filter must drop at least 3/4 of the scores on average to
bridge their speed gap. Based on the analysis in §3.4, the
filtering efficiency in this setting is higher than 98% and thus
greater than 3/4. To absorb bursts, the filter buffer is set to
store at most 8192 (2∗k∗x, where x= 4 and k = 1024) scores,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    849



Per-query resources Common resources
LUT 7.31% 11.05%
FF 6.98% 14.78%

BRAM 13.05% 10.66%
DSP 8.6% 0.07%

Table 2: Breakdown of FAERY resource consumption (batch
size = 1). Per-query resources increase linearly with the batch
size, while common resources remain unchanged.

slightly larger than the initial burst size (k ∗ x) derived in §3.4
to reduce approximation error in the analysis. This buffer is
implemented with only 8 Block RAMs (BRAMs), consuming
less than 0.2% of the total FPGA memory resources. With
both the high filtering efficiency and the sufficient buffer,
the filter works well to bridge the throughput mismatch and
to absorb temporal bursts, and we observe no performance
loss with the above setting. Compared with the ideal archi-
tecture shown in Figure 2, FAERY with the filter and a sin-
gle K-selection pipeline, can save 32% on-chip memories
and 27% compute resources by eliminating the other three
K-selection pipelines and a four-port merger [35] per query
compute pipeline.

Batch support. FAERY supports batch queries as described
in Figure 3. Despite the performance advantages, the resource
requirements of batch queries increase with the batch size. As
a result, the maximum batch size supported in our prototype
is determined by the available resources in the Xilinx VU35P
FPGA. The resources are consumed by two types of com-
ponents: per-query compute pipelines (similarity calculation,
K-selection, and filter) exclusive for each query, and common
modules (corpus manager and PCIe DMA) shared among
batch queries. Table 2 breaks down the resource consumption
of a FAERY accelerator with the batch size of 1 into per-query
resources and common resources. Based on this result, the
upper bound of the batch size is 6 in the Xilinx VU35P FPGA.
However, this FPGA chip is composed of multiple dies, so
that timing closure is challenging when the resource utiliza-
tion is high or cross-die routing is congested. We end up with
an implementation with a batch size of 3, to balance good
batch performance and easy timing closure.

6 Evaluation

We evaluate the performance of the FAERY implementation,
and compare it with CPU- and GPU-based EBR, respectively.
Our results reveal that:
• FAERY approaches the optimal query latency, and achieves

98.09×-118.99× and 1.85×-18.81× lower latency than
CPU- and GPU-based EBR, respectively. The degraded
FAERY with the same memory bandwidth of GPU still
achieves 1.21×-12.27× lower latency than GPU-based
EBR.

• In terms of latency-bounded (≤ 10 ms) throughput, FAERY
and the degraded FAERY outperform GPU-based EBR by
1.33×-6.58× and 0.87×-4.29×, respectively, while CPU-
based EBR fails to meet the 10 ms latency target.

• FAERY achieves 1.66×-8.20× higher energy efficiency
and 1.31×-6.46× higher cost efficiency than GPU-based
EBR.

• A FAERY server with two accelerators provides 2× higher
query throughput in the replication mode, and 2× higher
corpus capacity in the sharding mode with less than 1.1%
increase in latency.

6.1 Experiment Setup

Baseline. We compare FAERY with Faiss [23], an open-
source similarity search library that supports both CPU and
GPU. The K-selection implementation in Faiss GPU is
WarpSelect, a heap-based algorithm using on-chip memory,
as shown in Figure 4a, denoted as GPU-o. We further replace
the Faiss K-selection implementation with an algorithm using
external memory, as shown in Figure 4b, denoted as GPU-e.
We choose RadixSelect implemented in [33], which reports
the best performance when k is greater than 512, compared
to other algorithms. Both GPU-o and GPU-e use fp16 for
embeddings and fp32 for scores.

Platforms. FAERY is evaluated on a server with two 8-core
Intel Xeon Silver 4110 CPUs. CPU-based EBR is evaluated
on a server with two 16-core Xeon Gold 5218 CPUs and
192 GB memory. We choose Nvidia Tesla T4 GPU [2] in
GPU-based EBR, as the T4 GPU shares a similar cost to
the Xilinx VU35P FPGA (cost comparison will be discussed
in §6.2.4). The CUDA version is 11.2 and the Tensor Core
acceleration is enabled. T4 GPU is equipped with 16 GB
GDDR6 of 300 GB/s bandwidth. To bridge the difference
of memory bandwidth between FPGA (460 GB/s) and GPU
(300 GB/s), we also evaluate a degraded FAERY, denoted as
FAERY-d, by throttling its HBM bandwidth to 300 GB/s.

Corpus. We use the synthetic corpus, with randomly gen-
erated 128-dimensional item embeddings of 2 bytes each di-
mension, and retrieve k = 1024 items for each query. We use
synthetic random corpora to verify the generality of FAERY,
which by design, is not sensitive to any specific workload.

In the following, we first evaluate the performance of a sin-
gle accelerator (§6.2). Many important applications contain
a moderate corpus. For example, the YouTube video corpus
contains tens of millions of items [40], and the Google play
application corpus contains one million items [11]. The cor-
pus of these applications could fit into the HBM of a single
card based on the current FAERY implementation (§5). Then,
we show the performance of a FAERY server with two acceler-
ators (§6.3) to demonstrate FAERY’s capability in supporting
either higher query throughput or a larger corpus by adding
cards.

850    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Ideal
FAERY
FAERY-d
GPU-o
GPU-e
CPU

La
te

nc
y 

(m
s)

1

101

102

103

#items in the corpus
1M 3M 5M 7M 9M

Figure 12: Query latency compari-
son among different EBR architectures
(batch size = 1, latency is in log scale).

FAERY
FAERY-d
GPU-o
GPU-e
CPU

1e3

Th
ro

ug
hp

ut
 (Q

PS
)

0
1
2
3
4
5

Latency (m
s)

1

102

104

#items in the corpus
1M 3M 5M 7M 9M

Figure 13: Query throughput compari-
son among different EBR architectures
(Corresponding latency is also shown).

FAERY
FAERY-d
GPU-e

1e3

La
te

nc
y-

bo
un

de
d

th
ro

ug
hp

ut
 (Q

PS
)

0

1

2

3

4

5

#items in the corpus
1M 3M 5M 7M 9M 11M 13M 15M

Figure 14: Comparison of latency-
bounded throughput, where CPU and
GPU-o fail to meet the latency target
(≤ 10 ms), and thus are not shown.

6.2 Single-accelerator Performance

6.2.1 Latency

We compare the query latency among different EBR architec-
tures in Figure 12. Average latency is used as the metric, as
latency distribution in each of these architectures doesn’t show
significant variance due to the deterministic execution flow of
KNN. The query latency of the ideal architecture is calculated
based on Equation 1, where S is N ∗256 bytes, N is the num-
ber of items in the corpus, B is the maximum HBM bandwidth
460 GB/s, and C is the FAERY pipeline latency 2.6 us. The
query latency of FAERY approaches the optimal latency of the
ideal architecture, with only 1.13×-1.16× increases, which re-
sults from non-full (∼ 90%) memory bandwidth utilization as
measured in Figure 6. Both FAERY and FAERY-d consistently
outperform CPU and GPU in query latency with different cor-
pus sizes. Compared with CPU, FAERY significantly reduces
the average latency (98.09×-118.99× lower) due to its high
memory bandwidth and appropriate parallelism paradigms
for different operators. Compared with GPU, FAERY achieves
9.48×-18.81× and 1.85×-2.44× lower latency than GPU-
o and GPU-e, respectively. Even if we degrade the FAERY
memory bandwidth to that of GPU T4 (300 GB/s), FAERY-d
also achieves 6.18×-12.27× and 1.21×-1.59× lower latency
than GPU-o and GPU-e, respectively. This verifies that even
with the same memory bandwidth, FAERY-d still outperforms
GPU-based EBR, because the poor pipeline support of GPU
leads to a significant increase of the second part (C) in Equa-
tion 1, as detailed in §2.3.2.

6.2.2 Throughput

We compare the maximum throughput and its correspond-
ing latency among different EBR architectures in Figure 13.
Batch queries are used in all architectures to achieve the max-
imum throughput. Both FAERY and FAERY-d are evaluated
with the batch size of 3, the same as that in the implementa-
tion. Although the throughput of CPU- and GPU-based EBR
systems can be improved by increasing the batch size, we only

show the results with the batch size up to 1024, because fur-
ther increasing the batch size leads to marginal improvement.
GPU-o consistently outperforms FAERY in throughput by
1.04×-1.44×, and FAERY-d by 1.60×-2.21×, with a large
batch size but a much higher query latency (ranging from
212 ms to 1339 ms with different corpus sizes). In contrast,
both FAERY and FAERY-d keep low query latency as that of
batch size 1 when increasing the batch size. The throughput
of GPU-e does not increase significantly with larger batch
sizes, due to heavy contention on external memory bandwidth
in K-selection among multiple queries. As a result, GPU-e
achieves only 59%-78% (91%-119%) of the FAERY (FAERY-
d) throughput, but has a much higher latency (ranging from
18 ms to 102 ms). FAERY outperforms CPU in throughput
by 2.60×-3.45× even when the CPU-based EBR runs with
a large batch size. Moreover, CPU suffers form the worst
latency.

6.2.3 Latency-bounded Throughput

Latency-bounded throughput is a critical metric for EBR,
as retrieval is a typical real-time service with strict require-
ments on the response time. For example, the response time is
within 10 ms in the Taobao production retrieval [15, 25], and
the query serving time of the entire recommendation pipeline
(retrieval + ranking) is on the order of 10 ms in the Google
application recommendation [11]. In this paper, we set the
upper bound of the retrieval latency to 10 ms, and compare
the latency-bounded throughput among different EBR archi-
tectures.

Since CPU and GPU-o fail to meet the latency target in
any condition, we only compare FAERY and GPU-e in Fig-
ure 14. The latency target prevents GPU-e from using a large
batch size, which increases per-query latency significantly
due to the contention on memory bandwidth. In contrast,
FAERY follows the ideal architecture for batch queries, main-
taining constantly low latency when increasing the batch size,
as discussed in §2.2. When the number of items in the cor-
pus ranges from 1M to 7M, FAERY achieves 1.33×-6.58×

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    851



FAERY
GPU-e

En
er

gy
 e

ffi
ci

en
cy

 (Q
PS

 / 
W

at
t)

0
10
20
30
40
50
60
70
80

#items in the corpus
1M 3M 5M 7M 9M 11M 13M 15M

Figure 15: Comparison of energy effi-
ciency among different EBR accelera-
tors.

FAERY
GPU-e

1e2

C
os

t e
ffi

ci
en

cy
 (Q

PS
 / 

$)

0
1
2
3
4
5
6
7
8
9
10

#items in the corpus
1M 3M 5M 7M 9M 11M 13M 15M

Figure 16: Comparison of cost effi-
ciency among different EBR accelera-
tors.

1 card 2 cards
1e3

Replication Mode Sharding Mode

Th
ro

ug
hp

ut
 (Q

PS
)

0

1

2

3

4

5

#items in the corpus
5M 10M 15M 20M 25M 30M

Figure 17: Throughput of a FAERY
server with two cards.

higher latency-bounded throughput than GPU-e. However,
FAERY-d achieves only 87% of the GPU-e latency-bounded
throughput with the small corpus size of 1M, as GPU-e can
leverage a large batch size (64 in GPU-e vs. 3 in FAERY-d)
to boost the throughput with moderate memory bandwidth
contention when the corpus size is small. As the corpus size
increases from 3M to 7M items, FAERY-d exhibits its ad-
vantages in latency-bounded throughput and achieves 1.46×-
4.29× higher latency-bounded throughput than GPU-e. When
the number of items is larger than 7M, GPU-e fails to meet
the latency target in any batch size, while FAERY-d can in-
crease the corpus size until 9M items under latency target,
and FAERY supports up to 15M items.

6.2.4 Energy & Cost Efficiency

The GPU and FPGA used in the evaluation have different
architectural advantages and disadvantages, e.g., the GPU has
lower memory bandwidth (300 GB/s vs. 460 GB/s), but much
higher computing power (130 TOPS vs. 18.6 TOPS for INT8)
than the FPGA. In addition to using the degraded FAERY with
300 GB/s memory bandwidth in a direct comparison between
FPGA and GPU in terms of latency and throughput, we con-
sider both energy efficiency (performance per watt) and cost
efficiency (performance per dollar), as yet another fair metrics
to compare the efficiency between totally different hardware
architectures. We use the latency-bounded throughput mea-
sured in Figure 14 as the performance reference.

Energy efficiency. Based on the measurement, FAERY is 57
Watt and GPU-e is 71 Watt during serving. The above power
consumption does not vary significantly with different corpus
sizes. Given these power consumption and throughput data,
Figure 15 shows the result of energy efficiency (QPS/Watt),
where FAERY consistently outperforms GPU-e with 1.66×-
8.20× higher energy efficiency.

Cost efficiency. As the concrete cost numbers are confiden-
tial, we normalize the costs of GPU, FPGA, and server used in
the evaluation to 1, 1.1, and 4.4, respectively. With these cost
units, the normalized costs of the FAERY and GPU servers are
5.5 (=1.1+4.4) and 5.4 (=1+4.4), respectively. Based on these

normalized costs and the latency-bounded throughput data,
Figure 16 shows the result of cost efficiency (i.e., QPS/(cost
unit)), where FAERY provides 1.31×-6.46× higher cost effi-
ciency than GPU-e.

6.2.5 Summary

Table 3 summarizes the EBR performance comparison among
different processors, and reveals that each processor has its
unique advantages for EBR. FAERY, an FPGA-based EBR,
achieves the lowest latency, the highest latency-bounded
throughput, and the highest energy and cost efficiency com-
pared with CPU and GPU. Compared with CPU, FPGA’s
performance gain results from the high memory bandwidth
provided by HBM and massive programmable compute ele-
ments to enable appropriate parallelism paradigms and batch
processing. FPGA outperforms GPU due to the fully pipelined
design with perfectly overlapping communications with com-
putations of operators, and a programmable architecture that
supports efficient K-selection. All these advantages make
FAERY not only approach the optimal latency, but also achieve
linear-scaling throughput when increasing the batch size.
CPU-based EBR supports the largest corpus size, thanks to
the large capacity of CPU DDR memory. GPU-based EBR
achieves the highest raw throughput without latency bound
with a very large batch size, thanks to its massive compute
cores.

6.3 Multi-accelerator Performance

We evaluate a FAERY server with two accelerators. Figure 17
shows the aggregate query throughput with different corpus
sizes. When the corpus can fit into a single card (i.e., the num-
ber of items is not larger than 16M), we replicate the corpus
in the two cards to double the query throughput, as shown in
the left part of Figure 17. When the corpus size is larger than
the memory capacity of a single card, we evenly shard the
corpus between the two cards, and thus the supported corpus
size is extended up to 32M items, i.e., 2× the HBM capacity
of a single card, as shown in the right part of Figure 17. In the

852    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Corpus size
in bytes

Normalized
latency

Normalized
throughput

Normalized
latency-bounded

throughput (< 10 ms)

Normalized
energy efficiency

Normalized
cost efficiency

CPU > 100 GB 98.09-118.99 0.290-0.385 - - -
GPU 16-80 GB 1.85-18.81 0.593-1.440 0.152-0.752 0.122-0.602 0.155-0.763

FPGA (FAERY-d) 8-32 GB 1.53 0.652 0.652 - -
FPGA (FAERY) 8-32 GB 1 1 1 1 1

Table 3: Summary of performance comparison among different EBR processors.

sharding mode, the software front-end in CPU has to merge
the two Top-K results from the two cards and yield the final
Top-K, introducing an extra latency of less than 15 us, i.e.,
1.1% of the total query latency.

7 Discussion

System lessons. While we focus on FPGA-accelerated EBR
in this paper, we believe FPGA is a promising choice for not
only EBR acceleration in specific, but also domain specific ac-
celerator (DSA) in general. First, FPGAs are readily available
for DSA in several hyper-scale cloud providers [10,14,41,45].
Second, FPGAs are inherently capable of faithfully imple-
menting DSA systems such as FAERY, MicroRec [22], and
Tiara [41]. These systems are memory and compute bounded,
so they can benefit from customized parallelism and pipelin-
ing with optimized memory accesses provided by FPGAs.

Most FPGA-based architectures can be baked into custom
ASICs for higher performance and efficiency. In FAERY, the
query latency and throughput are mainly limited by the mem-
ory bandwidth, so an ASIC implementation with the same
memory bandwidth would not significantly improve the per-
formance. However, an ASIC version of FAERY can achieve
higher energy efficiency. Nonetheless, it will require a signifi-
cant volume to amortize the high non-recurring engineering
(NRE) cost for higher cost efficiency.

Online update. The online update approach described in
§3.1 minimizes the degradation of the total query throughput
(QPS) during the update, by taking half of the HBM mem-
ory in each card as update buffer. We further note that there
are other ways for online update from a distributed system
perspective. In a typical production EBR system, there are
multiple corpus replicas distributed across multiple FAERY
servers for reliability and load balancing purposes. The on-
line update in this case can be performed by taking off one
replica at a time for updating while keeping the others online.
This approach may achieve higher memory utilization, but
experience higher update time and lower QPS than our update
approach during the update process.

Support new models. In addition to the online corpus up-
date, FAERY is able to change the pipeline structure on the
fly to adapt to new models. Given the relatively stable EBR

pipeline structure, including corpus scanning, similarity calcu-
lation, and K-selection, we are able to use the same hardware
code to support different EBR pipeline variants with just dif-
ferent parameters (e.g., embedding size, data type, k). When a
new model requires a change of the pipeline structure, we can
simply change parameters in the code, generate a hardware
image, and then load the image into FPGA on the fly.

Accelerate ANN-based EBR. Although FAERY is designed
to accelerate KNN-based EBR, it can be extended to ac-
celerate ANN to achieve higher throughput by sacrificing
retrieval accuracy. Indexing-based ANN algorithms, e.g.,
IVF [34] and HNSW [28], leverage an index layer before
corpus scanning to reduce the number of accessed items per
query. Quantization-based ANN algorithms, e.g., PQ [21]
and OPQ [17], leverage a codebook to compact the corpus.
FAERY can support both ANN variants by maintaining the
index layer or the cookbook in FPGA on-chip memory. Most
of the other operators are the same, and their designs can be
shared among KNN- and ANN-based FAERY.

Use FAERY for other services. Although FAERY is a DSA
for retrieval in recommendation systems, we believe a similar
idea can be applied to vector search in general, which is a
fundamental part of many applications [13, 20, 25] that use
semantic embedding vectors to represent contents (articles,
images, audios, videos, etc.) and perform searches. These
applications share a similar data flow to that described in this
paper, but their characteristics vary. Interesting future work is
to extend FAERY to accelerate a generic vector search service
(such as Microsoft Vector search [5] and Google Vertex AI
Matching Engine [6]).

8 Related Work

CPU- and GPU-based EBR systems have been discussed in §2.
Existing FPGA-based similarity searches [27,44] were not de-
signed for EBR, and thus not suitable. They leveraged massive
parallel comparators to perform K-selection, whose resource
consumption is unbearable for k being a few thousand in EBR.
Moreover, they did not optimize the efficiency of corpus scan-
ning, as they either did not leverage the high bandwidth of
HBM [44] or failed to achieve high bandwidth utilization [27].
There are other kinds of work that accelerated specific ANN

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    853



algorithms, e.g., HPQ [7] for quantization-based ANN and
QuickNN [32] for indexing-based ANN. They are orthogonal
to FAERY that focuses on optimizing the entire EBR pipeline
as a whole, including corpus scanning, similarity calculation,
and K-selection.

9 Conclusion

FAERY is a domain specific accelerator (DSA) for embedding-
based retrieval (EBR). The components of FAERY: corpus
scanning, similarity calculation, and K-selection are arranged
using the appropriate parallel techniques as required by an
ideal EBR architecture. As a result, FAERY does not have
the shortcomings and performance penalties of existing CPU-
and GPU-based EBR approaches. FAERY not only provides
both low latency and high throughput compared with CPU-
based EBR, but also outperforms GPU-based EBR in terms
of latency-bounded throughput.

Acknowledgments

We thank our anonymous reviewers and shepherd Christo-
pher Rossbach for their insightful comments. We also thank
Hong Zhang and Lixin Zheng for all technical discussions
and valuable comments. This work is supported in part by
the Key-Area Research and Development Program of Guang-
dong Province (2021B0101400001), an HKUST-ByteDance
Research Project, and the Hong Kong RGC TRS T41-603/20-
R, GRF 16213621 and GRF 16215119.

References

[1] Intel memory latency checker (mlc).
https://www.intel.com/content/www/
us/en/developer/articles/tool/
intelr-memory-latency-checker.html.

[2] T4 tensor core datasheet. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/
tesla-t4/t4-tensor-core-datasheet-951643.
pdf.

[3] Theoretical maximum memory bandwidth for
intel® core™ x-series processors. https:
//www.intel.com/content/www/us/en/
support/articles/000056722/processors/
intel-core-processors.html.

[4] Ultrascale+ fpga product tables and product se-
lection guide. https://www.xilinx.com/
support/documentation/selection-guides/
ultrascale-plus-fpga-product-selection-guide.
pdf.

[5] Vector search - microsoft ai lab. https:
//www.microsoft.com/en-us/ai/
ai-lab-vector-search.

[6] Vertex ai matching engine overview. https:
//cloud.google.com/vertex-ai/docs/
matching-engine/overview.

[7] Ameer MS Abdelhadi, Christos-Savvas Bouganis, and
George A Constantinides. Accelerated approximate
nearest neighbors search through hierarchical product
quantization. In 2019 International Conference on Field-
Programmable Technology (ICFPT), 2019.

[8] Martin Aumüller, Erik Bernhardsson, and Alexander
Faithfull. Ann-benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. In Interna-
tional conference on similarity search and applications,
2017.

[9] Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine in-
telligence, 2013.

[10] Adrian M Caulfield, Eric S Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, et al. A cloud-scale acceleration architecture. In
2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016.

[11] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceed-
ings of the 1st workshop on deep learning for recom-
mender systems, 2016.

[12] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Pro-
ceedings of the 10th ACM conference on recommender
systems, 2016.

[13] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Ming-
ming Sun, and Ping Li. Mobius: towards the next gener-
ation of query-ad matching in baidu’s sponsored search.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2019.

[14] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smart-
nics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), 2018.

854    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.intel.com/content/www/us/en/support/articles/000056722/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000056722/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000056722/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000056722/processors/intel-core-processors.html
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.microsoft.com/en-us/ai/ai-lab-vector-search
https://www.microsoft.com/en-us/ai/ai-lab-vector-search
https://www.microsoft.com/en-us/ai/ai-lab-vector-search
https://cloud.google.com/vertex-ai/docs/matching-engine/overview
https://cloud.google.com/vertex-ai/docs/matching-engine/overview
https://cloud.google.com/vertex-ai/docs/matching-engine/overview


[15] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai.
Fast approximate nearest neighbor search with the navi-
gating spreading-out graph. In Proceedings of the VLDB
Endowment, 2019.

[16] Weihao Gao, Xiangjun Fan, Chong Wang, Jiankai Sun,
Kai Jia, Wenzhi Xiao, Ruofan Ding, Xingyan Bin, Hui
Yang, and Xiaobing Liu. Deep retrieval: Learning a
retrievable structure for large-scale recommendations.
In arXiv preprint arXiv:2007.07203, 2021.

[17] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Op-
timized product quantization. In IEEE transactions on
pattern analysis and machine intelligence, 2013.

[18] Mihajlo Grbovic and Haibin Cheng. Real-time person-
alization using embeddings for search ranking at airbnb.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2018.

[19] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
The architectural implications of facebook’s dnn-based
personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), 2020.

[20] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanabhan,
Giuseppe Ottaviano, and Linjun Yang. Embedding-
based retrieval in facebook search. In Proceedings of
the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

[21] Herve Jegou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search. In
IEEE transactions on pattern analysis and machine in-
telligence, 2010.

[22] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B
Preußer, Kai Zeng, Liang Feng, Jiansong Zhang, Tongx-
uan Liu, Yong Li, Jingren Zhou, et al. Microrec: efficient
recommendation inference by hardware and data struc-
ture solutions. In Proceedings of Machine Learning and
Systems, 2021.

[23] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. In arXiv preprint
arXiv:1702.08734, 2017.

[24] Gwangsun Kim, Jiyun Jeong, John Kim, and Mark
Stephenson. Automatically exploiting implicit pipeline
parallelism from multiple dependent kernels for gpus.
In Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation, 2016.

[25] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xi-
aoyi Zeng, Xiao-Ming Wu, and Qianli Ma. Embedding-
based product retrieval in taobao search. In Proceedings
of the 27th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2021.

[26] Jianxun Lian, Fuzheng Zhang, Xing Xie, and
Guangzhong Sun. Towards better representation
learning for personalized news recommendation: a
multi-channel deep fusion approach. In IJCAI, 2018.

[27] Alec Lu, Zhenman Fang, Nazanin Farahpour, and Les-
ley Shannon. Chip-knn: A configurable and high-
performance k-nearest neighbors accelerator on cloud
fpgas. In 2020 International Conference on Field-
Programmable Technology (ICFPT), 2020.

[28] Yu A Malkov and Dmitry A Yashunin. Efficient and
robust approximate nearest neighbor search using hier-
archical navigable small world graphs. In IEEE trans-
actions on pattern analysis and machine intelligence,
2018.

[29] Naoyuki Matsumoto, Koji Nakano, and Yasuaki Ito. Op-
timal parallel hardware k-sorter and top k-sorter, with
fpga implementations. In 2015 14th International Sym-
posium on Parallel and Distributed Computing, 2015.

[30] Yuriy Mishchenko, Yusuf Goren, Ming Sun, Chris
Beauchene, Spyros Matsoukas, Oleg Rybakov, and Shiv
Naga Prasad Vitaladevuni. Low-bit quantization and
quantization-aware training for small-footprint keyword
spotting. In 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA), 2019.

[31] Hieu Duy Nguyen, Anastasios Alexandridis, and
Athanasios Mouchtaris. Quantization aware training
with absolute-cosine regularization for automatic speech
recognition. In Interspeech, 2020.

[32] Reid Pinkham, Shuqing Zeng, and Zhengya Zhang.
Quicknn: Memory and performance optimization of kd
tree based nearest neighbor search for 3d point clouds.
In 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2020.

[33] Anil Shanbhag, Holger Pirk, and Samuel Madden. Effi-
cient top-k query processing on massively parallel hard-
ware. In Proceedings of the 2018 International Confer-
ence on Management of Data, 2018.

[34] Josef Sivic and Andrew Zisserman. Video google: A
text retrieval approach to object matching in videos. In
Proceedings Ninth IEEE International Conference on
Computer Vision, 2003.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    855



[35] Wei Song, Dirk Koch, Mikel Luján, and Jim Garside.
Parallel hardware merge sorter. In 2016 IEEE 24th An-
nual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2016.

[36] Elias Stehle and Hans-Arno Jacobsen. A memory
bandwidth-efficient hybrid radix sort on gpus. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, 2017.

[37] Shyam A Tailor, Javier Fernandez-Marques, and
Nicholas D Lane. Degree-quant: Quantization-aware
training for graph neural networks. In arXiv preprint
arXiv:2008.05000, 2020.

[38] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Bin-
qiang Zhao, and Dik Lun Lee. Billion-scale commodity
embedding for e-commerce recommendation in alibaba.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2018.

[39] Ruobing Xie, Zhijie Qiu, Jun Rao, Yi Liu, Bo Zhang, and
Leyu Lin. Internal and contextual attention network for
cold-start multi-channel matching in recommendation.
In IJCAI, 2020.

[40] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan
Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe Zhao,
Li Wei, and Ed Chi. Sampling-bias-corrected neural
modeling for large corpus item recommendations. In
Proceedings of the 13th ACM Conference on Recom-
mender Systems, 2019.

[41] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong
Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing
Wan, Lichao Liu, Zhipeng Ding, et al. Tiara: A scal-
able and efficient hardware acceleration architecture for
stateful layer-4 load balancing. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), 2022.

[42] Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang,
Yunjiang Jiang, Yun Xiao, Weipeng Yan, and Wen-Yun
Yang. Towards personalized and semantic retrieval: An
end-to-end solution for e-commerce search via embed-
ding learning. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development
in Information Retrieval, 2020.

[43] Heng-Ru Zhang, Fan Min, Zhi-Heng Zhang, and Song
Wang. Efficient collaborative filtering recommendations
with multi-channel feature vectors. In International
Journal of Machine Learning and Cybernetics, 2019.

[44] Jialiang Zhang, Soroosh Khoram, and Jing Li. Effi-
cient large-scale approximate nearest neighbor search

on opencl fpga. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[45] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He,
Feifei Li, Wei Cao, et al. Fpga-accelerated compactions
for lsm-based key-value store. In 18th USENIX Con-
ference on File and Storage Technologies (FAST 20),
2020.

[46] Weijie Zhao, Shulong Tan, and Ping Li. Song: Approxi-
mate nearest neighbor search on gpu. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE),
2020.

[47] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen,
Youngmin Yi, and Wenguang Chen. Versapipe: a versa-
tile programming framework for pipelined computing
on gpu. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2017.

856    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Efficient and Scalable Graph Pattern Mining on GPUs

Xuhao Chen
MIT CSAIL

Arvind
MIT CSAIL

Abstract
Graph Pattern Mining (GPM) extracts higher-order informa-
tion in a large graph by searching for small patterns of interest.
GPM applications are computationally expensive, and thus
attractive for GPU acceleration. Unfortunately, due to the
complexity of GPM algorithms and parallel hardware, hand
optimizing GPM applications suffers programming complex-
ity, while existing GPM frameworks sacrifice efficiency for
programmability. Moreover, little work has been done on
GPU to scale GPM computation to large problem sizes.

We describe G2Miner, the first GPM framework that
runs efficiently on multiple GPUs. G2Miner uses pattern-
aware, input-aware and architecture-aware search strategies
to achieve high efficiency on GPUs. To simplify program-
ming, it provides a code generator that automatically gener-
ates pattern-aware CUDA code. G2Miner flexibly supports
both breadth-first search (BFS) and depth-first search (DFS)
to maximize memory utilization and generate sufficient par-
allelism for GPUs. For the scalability of G2Miner, we pro-
pose a customized scheduling policy to balance workload
among multiple GPUs. Experiments on a V100 GPU show
that G2Miner is 5.4× and 7.2× faster than the two state-of-
the-art single-GPU systems, Pangolin and PBE, respectively.
In the multi-GPU setting, G2Miner achieves linear speedups
from 1 to 8 GPUs, for various patterns and data graphs. We
also show that G2Miner on a V100 GPU is 48.3× and 15.2×
faster than the state-of-the-art CPU-based systems, Peregrine
and GraphZero, on a 56-core CPU machine.

1 Introduction

Graph Pattern Mining (GPM) finds subgraphs in a given data
graph which match the given pattern(s) (Fig. 1). GPM is a
key building block in many domains, e.g., protein function
prediction [6, 29, 83], network alignment [62, 76], spam de-
tection [9, 34, 37], chemoinformatics [31, 57, 84], sociometric
studies [36, 48], image segmentation [119]. Graph machine
learning tasks can also benefit from GPM, including anomaly

3 4

5 6

1

3

21

5 6

3 3 4

6

Pattern PData Graph G Matched subgraphs
2

Figure 1: Graph Pattern Mining example. The pattern P is a triangle,
and 3 triangles are found in the data graph G .

detection [4, 78], entity resolution [12], community detec-
tion [90], role discovery [88] and relational classification [61].

GPM is extremely compute intensive, since it searches
a space that is exponential in the pattern size. For exam-
ple, Peregrine [53], a state-of-the-art GPM system on CPU,
takes 9 hours to mine the 4-cycle pattern (see Fig. 3) in the
Friendster graph on a 56-core CPU machine. GPUs provide
much higher compute throughput and memory bandwidth
than CPUs, and thus are attractive for GPM acceleration.

However, implementing GPM on GPU efficiently is chal-
lenging. This is because it requires sophisticated optimiza-
tions by leveraging information in the GPU hardware archi-
tecture, the pattern(s) of interest, and the input data graph.

• Architecture Awareness: A GPU usually has smaller mem-
ory capacity than a CPU and requires more fine-grain data
parallelism to be fully utilized. More threads, however, re-
quire more memory to accommodate intermediate data!
The search order, BFS or DFS, offers a similar tradeoff be-
tween memory and parallelism and therefore, GPM on GPU
requires careful orchestration of parallelism and memory
usage to maximize efficiency. GPUs are also much more
sensitive to thread divergence and workload imbalance [18]
than CPUs. This necessitates a more sophisticated task-to-
hardware mapping for GPU than that for CPU.

• Pattern Awareness: State-of-the-art GPM systems on CPU
use pattern aware search plans that prune the search space
using pattern information. This has been shown to be orders-
of-magnitude faster than the pattern-oblivious search [53].
This pattern-aware approach has worked well for CPU, but
it has not been well explored on GPU. For example, many

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    857



NVCC
compiler

                

G2Miner Framework user

specify Pattern
analyzer

pattern 

Code
generator

Multi-GPU
hardware

Runtime
system

C++/CUDA
program

Library of GPU
primitives+

pattern 
info

data graph

Loader &
Preprocessor

pattern specific
CUDA kernel

input
info

architecture info
...

Figure 2: G2Miner system overview. It contains a graph loader, a pattern analyzer, a runtime, a library of GPU primitives and a code generator.

pattern-aware pruning schemes are only effective under
DFS exploration, but existing GPU-based systems use BFS,
and thus loss these opportunities for pruning.

• Input Awareness: Dynamic memory allocation is expensive
in GPU [110] and we can avoid it if we can estimate the
worst-case memory usage. This can be done by using some
meta information such as the maximum degree of the input
graph. For labelled graphs, we can use the vertex label
distribution of the input graph to get the maximum number
of possible patterns, which helps save memory space. In
general, input information helps make better tradeoff among
work efficiency, parallelism and memory consumption.

Given this complexity, the design goal of our GPM frame-
work on GPUs involves the following considerations:

• Efficiency: To achieve high efficiency on GPU, a GPM sys-
tem must be highly optimized with awareness of the pattern,
the input and the hardware architecture. There is no prior
system, neither on CPUs nor on GPUs, that considers all
three aspects together. This asks for a holistic solution that
incorporates sophisticated optimizations systematically.

• Ease of programming: Writing efficient GPM code on
GPUs is particularly difficult for domain users, who may
not be parallel programming experts. Thus, hiding GPU
programming complexity is essential for system usability.

• Scalability: The skewness in power-law graphs causes load
imbalance. This problem is exacerbated for DFS-based
GPM algorithms, because accesses to neighbors are multi-
ple hops away. Hence, we need effective task scheduling
and distribution policies to scale to multiple GPUs.

General CPU GPU Multi-GPU Order Code Gen
EmptyHeaded [2] X DFS X

Graphflow [7, 55, 75] X DFS
GraphZero [73, 74] X DFS X

GraphPi [93] X DFS X
Peregrine [53] X X DFS

Pangolin [25, 26] X X X BFS
PBE [42, 43] X BFS

G2Miner X X X both X

Table 1: Comparison of state-of-the-art GPM systems, in terms of
support for generality of the programming model, hardware plat-
forms (CPU/GPU/multi-GPU), search orders, and code generation.

We propose G2Miner to overcome these challenges. Table 1
compares G2Miner to the state-of-the-art systems, including
those that solve only the subgraph matching problem, which
is a subset of the GPM problem. In Table 1, subgraph match-
ing systems include EmptyHeaded, Graphflow, GraphZero,
GraphPi and PBE, while Peregrine, Pangolin and G2Miner
are general GPM systems. Much of the prior work focuses on
CPU, and uses DFS to reduce the memory footprint. GPU-
based systems (Pangolin and PBE), on the other hand, use
BFS because straightforward DFS implementations on GPU
suffer from thread divergence and load imbalance. This, how-
ever, limits their efficiency and/or the problem size they can
solve. Additionally, G2Miner simplifies GPU programming
with automated CUDA code generation, while Pangolin re-
quires users to write CUDA code manually, and PBE is not
programmable at all. Last but not least, G2Miner is the only
system that scales to multiple GPUs.

Fig. 2 shows the overview of G2Miner. It consists of a
graph loader, a pattern analyzer, a runtime system, a library of
CUDA primitives and a code generator. The user is only
responsible for specifying the pattern(s) of interest using
our API (§4). The pattern analyzer does analysis on the
pattern and generates a pattern-specific search plan, based
on which, the code generator (§5) automatically generates
pattern-specific CUDA kernels for GPUs. The kernels contain
invocations to the device functions defined in the GPU primi-
tive library (§6) which includes efficiently implemented set
operations. The generated kernels, the GPU primitive library,
and the runtime are compiled together by the NVCC compiler
to generate the executable that runs on multi-GPU.

At runtime, the graph loader reads in the data graph, ex-
tracts input information (e,g., maximum degree and label
distribution) and performs pattern-specific preprocessing on
the data graph. The pattern, input and architecture information
is fed to the runtime (§7) which heuristically handles GPU
memory allocation, data transfer, and multi-GPU scheduling.

This paper makes the following contributions:

• G2Miner is the first pattern-aware, input data-graph-aware
and architecture-aware framework for GPM, and it is the
first GPM system that automates CUDA code generation
for arbitrary patterns to simplify programming.

858    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



wedge triangle 3-star 4-path 4-cliquetailed
triangle

4-cycle diamond

3 motifs 4 motifs

Figure 3: 3-vertex (left) and 4-vertex (right) motifs [26].

• G2Miner is the first multi-GPU framework for GPM and
the first GPU-based GPM framework that flexibly supports
both BFS and DFS. It uses a novel task scheduling policy
to balance workload among GPUs and we show G2Miner
performance increases linearly from 1 to 8 V100 GPUs.

• On a V100 GPU, G2Miner is 5.4× faster than Pangolin, the
only existing GPM system on GPU, and 7.2× faster than
PBE, the state-of-the-art subgraph matching solver on GPU,
thanks to the optimizations enabled in G2Miner (Table 2).

• G2Miner on a V100 GPU is 48.3× and 15.2× faster than
state-of-the-art CPU-based GPM system Peregrine and sub-
graph matching system GraphZero on a 56-core CPU.

2 Background and Related Work

2.1 Graph Pattern Mining Problems

Let G (V , E ) be an undirected graph with V as the vertex and
E as the edge set. Given a vertex v ∈ V , the neighbor set of v
is N (v), the degree dv of v is |N (v)| and ∆ is the maximum
degree in G . A graph G′(W,F) is said to be a subgraph of G
if W ⊆ V and F ⊆ E . G′ is a vertex-induced subgraph of G
if F contains all the edges in E whose endpoints are in W .
G′ is an edge-induced subgraph of G if W contains all the
vertices in V which are the endpoints of edges in F .

Definition of GPM. Given an undirected graph G and a
set of patterns Sp={P1, P2, ...} by the user, GPM finds vertex-
induced or edge-induced subgraphs in G that are isomorphic
to any P in Sp. If the cardinality of Sp is 1, we call it a single-
pattern problem. Otherwise, it is a multi-pattern problem. The
output of GPM varies in different problems, e.g., the pattern
frequency (a.k.a, support) or listing all matched subgraphs.
The definition of support also varies, e.g., the count of matches
or the domain support [26] used in FSM. Note that listing
requires enumerating every subgraph, but counting does not.
Thus, counting allows more aggressive search-space pruning.

A pattern P is a small graph that can be defined explicitly
or implicitly. An explicit definition specifies the vertices and
edges of P , whereas an implicit definition specifies the desired
properties of P . For explicit-pattern problems, the solver finds
matches of P in Sp. For implicit-pattern problems, Sp is not
known in advance. Therefore, the solver must find the patterns
as well as their matches during the search.

GPM requires guarantee for completeness, i.e., every match
of P in G should be found, and often uniqueness, i.e., every
distinct match should be reported only once [101]. To avoid

confusion, we call a vertex in the pattern P as a pattern vertex
and denote it as ui, and a vertex in the data graph G as a
data vertex and denote it as vi. Our work covers the following
GPM problems from the literature [26, 33, 101]:

• Triangle counting (TC): It counts the number of triangles
(Fig. 1), i.e., 3-cliques, in G .

• k-clique listing (k-CL): It lists all the k-cliques in G (k≥ 3).
A k-clique is a k-vertex graph whose every pair of vertices
are connected by an edge.

• Subgraph listing (SL). It lists all edge-induced subgraphs
of G that are isomorphic to a pattern P .

• k-motif counting (k-MC): It counts the number of occur-
rences of all possible k-vertex patterns. Each pattern is
called a motif [11, 77]. Fig. 3 shows all 3-motifs and 4-
motifs. This is also an example of a multi-pattern problem
because we have to find all the subgraphs that are isomor-
phic to any pattern in a given set of patterns.

• k-frequent subgraph mining (k-FSM): Given k and a thresh-
old σmin, this problem considers all patterns with fewer
than k edges and lists a pattern P if the support σ of P is
greater than σmin. This is called a frequent pattern. If k is
not specified, it is set to ∞, meaning that it is necessary to
consider all possible values of k. In k-FSM, vertices in G
have application-specific labels.

For TC and k-CL, vertex-induced and edge-induced sub-
graphs are the same. SL and FSM find edge-induced sub-
graphs, while k-MC looks for vertex-induced subgraphs. All
problems seek to find explicit pattern(s) except FSM which
finds implicit patterns. k-MC and FSM are multi-pattern prob-
lems, while the others are single-pattern problems.

✘✓

1 2 3 4

1 2 1 3 2 1 2 3 3 1 3 2 3 4

2 1

3

2 1

4

3 1

2

3 2

4 5

3 2

4 1

1 2

3 4

data graph G

5

5

3 1

4

2 4

3 2

1

3 2

4

... ...

2 1

3 4

✘ ✘

Level 0

Level 1

Level 2

Level 3

Level 4
3 1

2 4

3 2

1 4

u1

u2u3
pattern P

u4

Maching u1

Maching u2

Maching u3

Maching u4

Figure 4: A search tree using vertex extension. Vertex colors (not
vertex labels) show the matching between data vertices and pattern
vertices. The matching order is {u1→ u2→ u3→ u4}. The symme-
try order is {va > vb, vc > vd}. Subgraphs in grey are ruled out by
symmetry breaking. × shows the unnecessary extensions that are
pruned by the matching order. X shows the matched subgraph.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    859



Algorithm 1 Pseudo code for finding diamond in DFS order
1: for each vertex v1 ∈ V in parallel do . match v1 to u1
2: for each vertex v2 ∈ N (v1) do . match v2 to u2
3: if v2 ≥ v1 then break; . symmetry breaking
4: W ← N (v1) ∩ N (v2); . set intersection: buffered in W
5: for each vertex v3 ∈W do . match v3 to u3
6: for each vertex v4 ∈W do . match v4 to u4; W is reused
7: if v4 ≥ v3 then break; . symmetry breaking
8: else count ++; . do the counting

2.2 Pattern-Aware GPM Algorithms

A GPM problem is a search problem, whose search space
is a subgraph tree [25, 27] (Fig. 4). Each node in the tree is
a subgraph of the data graph G . Subgraphs in level l of the
tree have l vertices. The root of the tree (level 0) is an empty
subgraph, while the leaves of the tree are potential candidates
of matches. A GPM problem can be solved by building this
search tree, and checking each leaf if it is isomorphic to the
pattern P using the typical graph isomorphism test.

The search tree is built by vertex extension: subgraph
S1=(W1,E1) can be extended by a single vertex v /∈W1 to
obtain subgraph S2=(W2,E2), if v is connected to some ver-
tex in W1 (i.e., v is in the neighborhood of subgraph S1). When
two subgraphs are related in this way, we say that S2 is a child
of S1. Formally, this can be expressed as W2=W1∪{v} where
v /∈W1 and there is an edge (v,u) ∈ E for some u ∈W1. Simi-
larly, edge extension extends a subgraph S1 with a single edge
(u,v), with at least one of the endpoints of the edge is in S1.

The efficiency of a GPM algorithm depends heavily on how
much we can prue the search tree. State-of-the-art GPM frame-
works [53, 74] use pattern-aware search plans that leverage
the properties of the pattern to prune the tree. A pattern-aware
search plan consists of a matching order and symmetry order.
Matching order is a total order that defines how the data
vertices are matched to pattern vertices. This order is used to
eliminate irrelevant subgraphs on-the-fly. As shown in Fig. 4,
to find the diamond pattern, we use a matching order among
pattern vertices: {u1 → u2 → u3 → u4}, meaning that each
vertex v1 added at level 1 is matched to u1; each vertex v2
added at level 2 are matched to u2, and so on. To search for
matching candidates, there are connectivity constraints for the
data vertices. For example, in diamond, since u3 is connected
to both u1 and u2, candidate vertices of v3 must be found in
the intersection of v1 and v2’s neighborhoods, i.e., v3 ∈ N
(v1) ∩ N (v2). The same constraint should also be applied to
v4. For a given pattern P , there exist multiple valid matching
orders. To choose the best performing matching order, prior
works [7, 21, 22, 53, 59, 73, 74, 93] have proposed various cost
models to predict the performance of matching orders, and
choose the one with the highest expected performance.
Symmetry order is a partial order enforced among data ver-
tices for symmetry breaking, which removes redundant sub-
graph enumerations (a.k.a automorphism [26]), and thus guar-

Algorithm 2 Pseudo code for finding Pattern P in BFS order
1: for each level i ∈ [1, P .size] do . level i from 1 to the pattern size
2: for each subgraph sg ∈ SLi in parallel do . SLi: subgraph list
3: for each vertex u ∈ sg do
4: for each vertex v ∈ N (u) do
5: sg′ ← sg∪ v . vertex extension: add vertex v
6: if sg′ satisfy P .constraints(i) then
7: if i = P .size then count ++; . leaf: a match found
8: else SLi+1.insert(sg′) . go to the next level

antees that any match of P in G is found only once. For
example, for diamond, we enforce that vertices added at level
1 must have larger ids than vertices added at level 2, i.e.,
v1 > v2. Thus, in level 2 of the tree in Fig. 4, the subgraph
{2, 1} is selected to be extended further, but subgraph {1, 2}
is pruned. Similarly we add a constraint that v3 > v4. So the
symmetry order for diamond is {v1 > v2, v3 > v4}.

2.3 DFS vs. BFS
Any search order (e.g., BFS, DFS) can be used to explore the
search tree, but different search orders come with different
work efficiency, parallelism and memory consumption.

Algorithm 1 shows a DFS algorithm to mine the pattern
diamond. It contains 4 nested for loops (Line 1, 2, 5, 6). Each
loop corresponds to a data vertex (v1,v2,v3,v4) that is mapped
to a pattern vertex (u1,u2,u3,u4) in Fig. 5 (a). A buffer W in
Line 4 holds intermediate data that is reused multiple times,
which avoids redundant computation and thus improves work
efficiency. The memory footprint contains only four vertices
(vi, i = 1,2,3,4) and W in Line 4 whose size is bounded by ∆.
In DFS, every parallel task does a DFS walk on the entire sub-
tree rooted at v1 (Line 1). This is known as vertex parallelism.
The amount of parallelism is |V |. Another way to parallelize
it is edge parallelism, in which every task contains the sub-
tree rooted at each edge (say, if we make Line 2 in parallel).
The amount of parallelism then is |E |.

The BFS algorithm in Algorithm 2 explores the tree level by
level. In each level, it maintains a subgraph list that is shared
globally among all threads. Each thread takes a subgraph from
the subgraph list (Line 2), and extends it to generate its child
subgraphs (Line 5). The child subgraphs are inserted into
the next-level subgraph list (Line 8). In BFS, each parallel
task is a subgraph in the subgraph list of the current level.
Since the size of the subgraph list increases exponentially
level by level, the amount of parallelism increases rapidly.

v1 v2
v1

v3 v2

v1

v3 v2

v4u1

u3 u2

u4

(a) Matching Order

(b) Step 1: add 
partial order 

between v1 and v2 (c) Step 2: no op (d) Step 3: add 
partial order 

between v3 and v4

Figure 5: Generating symmetry order for diamond [27].

860    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Although it provides more parallelism than DFS, BFS needs
much more memory to accommodate the subgraph list. For
example, the BFS-based GPM system Pangolin [26] needs
more than 40GB memory to mine the 5-clique pattern in a
moderate size graph livejournal, making it impossible to
run in most of off-the-shelf GPUs.

2.4 GPM Systems and Applications

Many existing GPM systems [20, 26, 101, 107, 120] use the
BFS order. As they do level-by-level subgraph extension, they
generate massive intermediate data and thus are limited to
small graphs and patterns. Recently, a few DFS-based GPM
systems [25, 33, 53, 74] have been proposed to support larger
datasets, but they are all CPU-based. Among all, Pangolin is
the only existing GPM system that supports GPU. However,
limited by the BFS order, Pangolin can only handle small
graphs, and it lacks pattern and input awareness.

There also exist subgraph matching systems on CPU [2,55,
73, 93, 104] and GPU [42, 43, 117]. But they only support a
subset of GPM problems and are usually not programmable.

Numerous hand-optimized GPM applications have been
developed, including triangle counting [32, 39, 47, 50, 80, 81,
94, 98, 109, 111, 116] , k-clique listing [30] and counting [5,
19, 52, 92], motif counting [3, 67, 70, 82, 89, 95], subgraph
listing/matching [13, 14, 17, 46, 54, 59, 60, 65, 68, 72, 85, 86,
91, 96, 97, 103, 105, 108], and FSM [1, 35, 58, 99, 100, 102,
106,114]. All of them are manually optimized with significant
programming effort to achieve high efficiency, which is quite
a lot of burden for the domain programmers.

3 Challenges of Efficient GPM on GPU

3.1 GPM vs. Graph Analytics

Similar to graph analytics, GPM algorithms are irregular [18]
because the control flow and memory accesses are input-data
dependent and thus, cannot be predicted statically. This irreg-
ularity causes random memory accesses and load imbalance,
making it difficult to be efficiently parallelized. Unlike graph
analytics that only accesses 1-hop neighbors, GPM requires
accessing multi-hop neighbors, which exacerbates the irregu-
larity problem. For example, load imbalance is much worse
for DFS-based GPM than graph analytics because each paral-
lel task (a DFS walk on the entire sub-tree) is more coarse-
grain in GPM. In addition, GPM generates intermediate data
during the search (buffer W in DFS or subgraph list in BFS),
which consumes extra memory than graph analytics.

3.2 GPM on GPU vs. GPM on CPU

Since the tasks are independent of each other, they are fairly
easy to parallelize on CPU, as shown in Algorithm 1 Line 1.

But it is not as straightforward on GPU due to GPU’s mas-
sively parallel model and limited memory capacity.

A GPU often consists of multiple streaming multiproces-
sors (SM). Each SM accommodates multiple vector units.
This hardware organization results in a hierarchical parallel
model: each CUDA kernel includes groups of threads called
cooperative thread arrays (CTAs) or thread blocks. Within
each CTA, subgroups of threads called warps are executed
simultaneously. Thus GPUs, to be fully utilized, require much
more hierarchical parallelism than CPUs.

GPUs generally have less memory than CPUs, while BFS-
based GPM algorithms consume memory exponential in the
pattern size. Using DFS can reduce memory consumption, and
also improve work efficiency. Hence, state-of-the-art CPU-
targeted GPM frameworks [25, 53, 73, 74, 93] all adopt DFS.
However, naively porting the DFS-based CPU algorithms to
GPU is not efficient because of the following reasons:

(1) Branch Divergence. In Algorithm 1, each thread takes
a vertex v1 from V and starts DFS walk rooted by v1. Since
different vertices have different neighborhoods, the threads
in a warp may take different paths at the branches, leading to
inefficiency on GPU [87]. Branch divergence is much more
severe for DFS than BFS due to the multiple nested loops for
DFS backtracking that access multi-hop neighborhoods.

(2) Memory Divergence. DFS walk also makes memory
accesses more irregular. This causes memory divergence in
GPU, i.e., threads in a warp access non-consecutive memory
locations. In this case, each load instruction generates multiple
(up to the warp size, i.e., 32) memory requests to the memory
subsystem, which wastes memory bandwidth, congests on-
chip data path [24], and thus results in poor GPU performance.

(3) Load Imbalance. Variance of neighborhood sizes in
power-law graphs causes load imbalance. In CPU it is less sig-
nificant because there are limited number of cores/threads and
each core is very powerful. However, GPUs have thousands
of lightweight cores and more than ten times the number of
active threads. If unbalanced, it would be much more costly
since the slowest thread is running on a low-frequency core
and thousands of cores are waiting. Load imbalance is also
less concerned for BFS, since it does level-by-level extension
and at each level the tasks are lightweight, i.e., fine-grained.

Therefore, existing GPU-based GPM systems [26] and
subgraph matching systems [42, 43] all use BFS order. This
severely limits the graph sizes that they can handle. PBE [42]
partitions the data graph to support large graphs, but partition-
ing introduces cross-partition communication. Note that using
beam search [71] or bounded DFS does not fully resolve these
issues, but loses the benefit of work efficiency of using DFS.

4 G2Miner System Overview and Interface

We propose G2Miner (Fig. 2) to address the challenges in §3.
It hides away GPU programming complexity, and takes into

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    861



Listing 1: k-Clique Listing (k-CL) user code in G2Miner

1 Graph G = loadDataGraph("graph.csr");
2 Pattern p = generateClique(k);
3 list(G, p); // count(G, p) for counting

Listing 2: Subgraph Listing (SL) user code in G2Miner

4 Pattern p("pattern.el", EdgeInduced);
5 list(G, p);

account the properties of the pattern, input data graph and
hardware architecture to achieve high efficiency on GPU. We
first describe how to program in G2Miner in §4.1, and then
introduce the system interface for extracting information out
of the input, pattern and architecture (§4.2). Lastly we give
an overview of the optimizations in §4.3.

4.1 Making Programming Easy

G2Miner provides the same API as state-of-the-art CPU-based
systems, e.g., Peregrine and Sandslash, making it friendly to
users of CPU frameworks. As shown in Listing 1, to program
a k-CL solver in G2Miner, the user specifies the pattern using
an utility function generateClique() (Line 2), and then call
list() to do listing or count() to do counting. If count() is
used, it allows the system enable counting-only optimizations
(details in §5). To list an arbitrary pattern P (Listing 2), the
user can specify P using its edgelist (pattern.el at Line 4).
By default G2Miner finds vertex-induced subgraphs. Since
SL requires listing edge-induced subgraphs by definition, the
user needs to specify it (EdgeInduced at Line 4).

For multi-pattern problems, the user is interested in a
set of patterns instead of just one. For k-MC in Listing 3,
the patterns can be generated by calling an utility function
generateAll() (Line 6) or parsing the patterns’ edgelists.

Programmability is particularly important for implicit-
pattern problems. The user must implement API functions
to specify the patterns. For example, for k-FSM in Listing 4,
the user chooses to use domain support by implementing
updateSupport (Line 8). To specify the properties that dif-
ferentiate the interesting patterns with irrelevant patterns, the
user must define patternFilter (Line 11). As FSM asks
for only listing the patterns, we can specify a PATTERN_ONLY
keyword in list to avoid listing the subgraphs (Line 16).
If the user wants to customize the output, one can define
a output() function and pass it to list, instead of using
PATTERN_ONLY. This function defines custom operations on
each subgraph of interest, which can also be used to do early
termination [53] by checking a user-defined condition.

Listing 3: k-Motif Counting (k-MC) user code in G2Miner

6 Set<Pattern > patterns = generateAll(k);
7 Map<Pattern ,int> result = count(G, patterns);

Listing 4: Frequent Subgraph Mining (k-FSM) user code in G2Miner

8 Void updateSupport(Subgraph s) {
9 map(s.getPattern(), s.getDomain());

10 }
11 bool patternFilter(Pattern p) {
12 return p.getDomainSupport() >= threshold;
13 }
14 Set<Pattern > patterns = generateAll(k,
15 EdgeInduced , patternFilter);
16 list(G, patterns , PATTERN_ONLY);

4.2 System Interface
The pattern specified by user API is fed to a pattern analyzer
to extract useful pattern information. Meanwhile, the GPU
hardware information is taken by G2Miner to enable opti-
mizations in the runtime, code generator and GPU primitives.
At runtime, the data graph is loaded by a graph loader which
collects input information and also performs preprocessing.
Pattern Analyzer. The pattern analyzer generates: (1) a
search plan with a matching order and a symmetry order,
which is used by the code generator; (2) reuse opportunities
using buffers (e.g., W in Algorithm 1), used by the code gen-
erator and the runtime; (3) other important properties of the
pattern, e.g., whether the pattern is a clique or hub-pattern
(§5.4 (2)), used by the runtime and code generator.

The pattern analyzer enumerates all the possible matching
orders of P , and uses a cost model to pick the best one. We use
the same cost model as GraphZero [73] for fair comparison,
but any cost model can be employed by G2Miner. We also use
the algorithm in GraphZero to generate a symmetry order: it
takes the generated matching order M O and builds a subgraph
incrementally in the order specified by M O. At each step it
detects symmetric vertex pairs and adds orders accordingly.
For example, for diamond, the matching order in Fig. 5 (a)
results in the three steps shown in (b), (c) and (d), during
which we add partial order v2 < v1 and v4 < v3.
Graph Loader and Preprocessor. The data graph G is
loaded by the graph loader into the memory in the com-
pressed sparse row (CSR) format. As G is being loaded, use-
ful input information of the data graph is extracted, e.g., |V |,
|E | and ∆ of G . In addition, if the graph is labelled, the ver-
tex frequency of each label is computed (see usage for FSM
in §7.2). After G is loaded into memory, some preprocessing
is performed on G . First, the neighbor list of each vertex is
sorted by ascending order of vertex IDs, so that we can ap-
ply early exit when we search the list with an upper bound
(i.e., symmetry breaking). Second, if a pattern of clique is
detected, G2Miner enables a typical optimization called orien-

862    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Effect
Optimizations mitigate

divergence
load

balance
mem.
saving

algorithm
pruning

extra GPU
efficiency

Used in
Pangolin?

Used in hand
written apps? Conditions to apply

Category-(1):
Known

A: Data graph preprocessing
(edge orientation) §4.2 X X X X cliques

B: Data graph partitioning
§7.2 (1) X × TC only

hub patterns, graph size,
GPU memory size

C: Two-level parallelism
§5.1 X X × TC only always enabled on GPU

D: Counting-only pruning
§5.4 (1) X × CPU only

automatic pattern
decomposition [82]

E: Local graph search
§5.4 (2) X × CL only

F: Flexible data format
§6.2 X × CC only

hub patterns &
∆ <1024

Category-(2):

Known, but not
enabled in prior
GPM systems

G: Multi-gpu scheduling
§7.1 X × MC only always used on multi-GPU

H: SIMD-aware primitives
§6.1 X × × hardware support for

warp level primitives
I: Multi-pattern fission

§5.3 X × × explicit multi-pattern &
kernel occupancy by NVCC

J: Edgelist reduction
§7.2 (2) X × × if v0 >v1 in symmetry order

K: Adaptive buffering
§7.2 (3) X × × buffer W usage in matching

order & GPU memory size
M: Hybrid order on GPU

§5.2 X × × implicit, intermediate data
unbounded, user-specified

Category-(3):

Novel
for GPM

N: memory reduction using
label frequency §7.2 (4) X × × implicit, vertex label

frequency, user-specified

Table 2: Optimizations in G2Miner. Among them, optimizations A, B, D, E, F, I, J, K, M, N are pattern-aware; optimizations B, C, G, H, I,
K, M are architecture-aware; and optimizations B, E, F, K, N are input-aware. Pattern-aware optimizations are applied based on the pattern
analysis, while input-aware and architecture-aware optimizations are enabled according to the input and architecture information, respectively.
TC: triangle counting. CL/CC: clique listing/counting. MC: motif counting.

tation [26] . It gives every edge a direction in the undirected
data graph G , which in turn converts G into a directed graph.
This halves the edge count in G , significantly reduces ∆, and
completely eliminates on-the-fly checking. Third, our prepro-
cessor also supports sorting (e.g., by degree) and renaming
the vertices in G to improve load balance [53, 73]. Note that
all these preprocessing operations need to be done only once.

4.3 Overview of Optimizations

Table 2 lists all the optimizations enabled in G2Miner. We
classify them into three categories. Optimizations in Category-
(1) are those exist in prior GPM systems. Optimizations
in Category-(2) do not exist in prior GPM systems (e.g.,
Pangolin) but have been used in some hand-written GPM
applications. For example, optimization D: data graph
partitioning has only been used for triangle counting,
while in G2Miner we generalize it for all the clique patterns.
These optimizations are missing in prior GPM systems be-
cause prior systems are oblivious to the required pattern, input
or architecture information. Optimizations in Category-(3)
are novel as they have never been used for GPM, though some
of them are known for GPU computing in general.

As shown in column 3 to 7 of Table 2, these optimizations
have different kinds of effect on GPM applications: (1) miti-
gating thread divergence; (2) improving load balancing; (3)

reducing memory consumption; (4) pruning search space; and
(5) improving efficiency based on GPU hardware features.

The last column of Table 2 shows the conditions for each
optimization to be applied. All the optimizations in Table 2
are automated in G2Miner based on detecting the conditions,
except for M and N (the last two rows). M and N are particu-
larly used for implicit-pattern problems like FSM, for which
the system cannot infer the conditions automatically. Thus,
M and N are user-activated by specifying a flag.

Next, we describe these optimizations in detail, in the three
major components of G2Miner: the code generator (§5), the
device function library (§6) and the runtime scheduler (§7).

5 Pattern-specific GPU Code Generation

G2Miner includes a pattern-aware code generator that auto-
matically generate CUDA code specific to the pattern. Prior
work [73, 74] has explored how to generate pattern-specific
CPU code based on the matching order and symmetry order,
but code generation is more challenging for GPU.

Generating pattern-specific CPU code is relatively straight-
forward. For example, to generate Algorithm 1 for diamond,
the matching order in Fig. 5 (a) is used to generate the 4
nested for loops, and the symmetry order is then used to
insert breaks at Line 3 and 7. Whenever a set operation is
needed, a function call to the set operation primitive (imple-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    863



mented in a library) is inserted (Line 4). Since v3 and v4 are
both from N (v1) ∩ N (v2), a buffer W is created for data
reuse. Finally, task parallelism is used to parallelize the pro-
gram, i.e., each thread processes one task at a time (Line 1).

However, generating efficient GPU code is more challeng-
ing, because (1) DFS-based GPM suffers from the thread di-
vergence and load imbalance issues (§5.1); (2) hybrid search
orders are needed in some cases (§5.2); and (3) extra support
is needed for multi-pattern problems (§5.3) and advanced
pruning schemes (§5.4).

5.1 Parallel Strategies for DFS on GPU

To maximize GPU efficiency for the DFS algorithm, we em-
ploy a two-level parallelism strategy in G2Miner to exploit
both inter-warp task parallelism and intra-warp data paral-
lelism. This is motivated by our key observation that in GPM
algorithms most of execution time is spent on set operations.
For example, when we executed Peregrine on a multicore
CPU, set operations for each benchmark took 75% to 92%
of the total execution time. This motivated us to parallelize
set operations by exploiting the data parallelism within each
warp. It alleviates divergence and also provides more paral-
lelism to fully utilize GPUs. To reduce load imbalance and
further increase parallelism, we use edge parallelism for GPU
instead of the vertex parallelism used for CPU.
(1) Reduce divergence with warp-centric parallelism. We
could map each task to a thread, a warp or a CTA in a GPU. As
DFS has much more coarse-grained tasks than BFS, mapping
a task to a thread would be highly divergent and unbalanced
for GPUs. However, if we map a task to a CTA, all (e.g.,
256) threads in the CTA will be used to process the same set
operations. If the two input neighbor-lists of a set operation
are small, many threads in the CTA will be idle, leading to
low utilization. Moreover, all threads in the CTA will do the
same DFS walk, which is a lot of redundant computation.

In G2Miner we use warp-centric data parallelism. Each
task is assigned to a warp. All threads in a warp synchronously
perform the same DFS walk of the task. During the DFS
walk, whenever a set operation is encountered, all threads in
the warp work cooperatively to compute the set operation
in parallel. It has several benefits. First it achieves higher
throughput than CPU since set operations are parallelized.
Second, it alleviates thread divergence within each warp as
all threads in a warp are progressing synchronously. Third, it
causes less redundancy than using CTA. Our evaluation shows
it is on average 2× faster than CTA-centric parallelism.
(2) Reduce task granularity for load balance. GPM sys-
tems on CPU use vertex parallelism [25, 53, 73, 74], i.e., each
task is a DFS walk rootedin a vertex, as shown in Fig. 6 (a).
This can already provide enough parallelism for CPU, needs
no auxiliary data, and potentially enjoys data reuse within the
sub-tree. But the coarse-grain tasks lead to load imbalance
which can not be well tolerated by GPUs. To reduce task gran-

1 2 3 4

1 2 1 3 2 1 2 3 3 1 3 2 3 4

2 1

3

2 1

4

3 1

2

3 2

4 5

3 2

4 1

5

3 1

4

2 4

3 2

1

3 2

4

... ...

2 1

3 4

3 1

2 4

3 2

1 4

1 2 3 4

1 2 1 3 2 1 2 3 3 1 3 2 3 4

2 1

3

2 1

4

3 1

2

3 2

4 5

3 2

4 1

5

3 1

4

2 4

3 2

1

3 2

4

... ...

2 1

3 4

3 1

2 4

3 2

1 4

(a) vertex parallel mode (b) edge parallel mode

Figure 6: (a) vertex-parallel vs. (b) edge-parallel execution. Each
dashed circle is a parallel task. A task is mapped to one thread on
CPU, but in G2Miner it is mapped to one warp on GPU.

ularity, we use edge-parallelism, i.e., each task explores the
subtree rooted by an edge. As shown in Fig. 6 (b), apparently
more work is required to search the subtree below a vertex on
average compared to searching the subtree below an edge. In
addition to better load balance, edge parallelism can provide
more parallelism (|E |>|V |) for GPU than vertex parallelism.

• By default, our code generator generates edge-parallel ker-
nels. Our evaluation shows they are mostly (1.5× on aver-
age) faster than vertex parallel ones. But some GPM algo-
rithms must use vertex parallelism. For example, the 3-MC
algorithm in [25] can only be done in vertex parallelism.
G2Miner supports both vertex and edge parallelism. The
user can set a compiler flag to use vertex parallelism, in
which case Ω is not generated to save memory.

Discussion. Two-level parallelism has been only used for tri-
angle counting [50], and it is challenging to extend it for all
GPM problems. First, triangle counting does subgraph exten-
sion only once, which needs no DFS traversal. Thus, G2Miner
is the first to support DFS for GPM on GPU. Second, naive
GPU implementations for complex patterns can easily run out
of memory for intermediate data. This is not a concern for
triangle counting. Third, during the DFS traversal, it requires
extension to support high-performance generic set operations
and multi-pattern, which triangle counting does not require. In
the following, we show that these challenges can be resolved
by applying optimizations H, I, J, K, M, N in Table 2.

5.2 Support for Hybrid Search Orders
With the two-level parallelism in §5.1, for many GPM prob-
lems, DFS is faster than BFS in G2Miner. However, this is not
the case for problems like FSM. FSM computes the domain
support and thus requires aggregating all the subgraphs for
each pattern to compute its support. In the DFS-based FSM
algorithm [99,114], each task is a single-edge pattern (instead
of subgraph) and the entire subtree of that pattern. This is
pattern-parallel, instead of vertex-parallel or edge-parallel.
Since the number of patterns is much smaller than the number
of vertices or edges, the parallelism in FSM is not sufficient
for GPU. Moreover, the task granularity in pattern-parallelism
is much larger than that in vertex- or edge-parallelism, making

864    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Algorithm 3 Pseudo code for counting diamond

1: for each vertex v1 ∈ V in parallel do . match v1 to u1
2: for each vertex v2 ∈ N (v1) do . match v2 to u2
3: if v2 ≥ v1 then break; . symmetry breaking
4: n = |N (v1) ∩ N (v2)|; . # triangles incident to (v1,v2)
5: count += n*(n-1)/2 . choose 2 from n to form a diamond

the problem even more unbalanced.
In G2Miner we use a hybrid of BFS and DFS, or bounded

BFS search for problems that use domain support (e.g.,
FSM). At the single-edge level (i.e., level-2), we start with
BFS search to aggregate edges by their patterns in paral-
lel, which provides abundant parallelism. As the search goes
deeper, the number of subgraphs increases exponentially. To
fit the intermediate data in memory, we divide the subgraphs
into blocks. Each block has a size that can resides in GPU
memory, but also contains enough amount of subgraphs that
can fully utilize the GPU. Once the current block is processed,
it moves to the next block. Using this bounded BFS search,
G2Miner can support larger graphs than Pangolin.

5.3 Support for Multi-pattern Problems
Multiple patterns may have a common sub-pattern, which
can be shared if they are searched in the same CUDA kernel.
On the other hand, mining multiple patterns simultaneously
would need a significant amount of intermediate resources,
e.g., registers, which results in low hardware utilization (oc-
cupancy) on GPU.

Instead of generating a single gigantic kernel for all pat-
terns, we employ kernel fission to reduce register pressure.
Given multiple patterns, we leverage pattern analysis to find
which patterns share the same sub-pattern, so that they should
be merged into the same kernel to enjoy sharing. For those pat-
terns do not share the same sub-patterns, we generate different
kernels for them, so that each kernel is lightweight enough to
avoid high register pressure. For example, in 4-motifs (Fig. 3),
tailed-triangle, diamond and 4-clique share the same
sub-pattern triangle. So we generate a single CUDA kernel
for the three patterns, in which they share the same workflow
that enumerates triangles. However, for the other patterns,
since there is no sharing opportunity, we generate one kernel
for each. These separated kernels use fewer registers than
a combined kernel, so that each SM in GPU can accommo-
date more co-running warps to maximize utilization. This
improves performance by 15% for mining 4-motifs.

5.4 Support for Advanced Pruning Schemes
(1) Counting-only Pruning. If the user is interested in count-
ing instead of listing subgraphs, there may exist an advanced
pruning opportunity to further reduce the search space. For
example, to count edge-induced diamond (Algorithm 3), be-
cause a diamond consists of two triangles, we first compute

the triangle count n for each edge (v1,v2) using set intersec-
tion (Line 4), and then use the formula

(n
2

)
= n× (n−1)/2

to get the diamond count (Line 5). Note that this pruning
opportunity is pattern specific and is not always available.
For example, there is no such opportunity for 4-cycle. Our
pattern analyzer detects the opportunities by using automatic
pattern decomposition [21,82], and based on the detection, our
code generator can accordingly generate the CUDA kernel.

(2) Local Graph Search (LGS). This is a pruning scheme
used for hub-patterns. A hub-pattern contains at least one
hub vertex that is connected to all other vertices. For example,
any vertex in a clique is a hub vertex. The key idea of LGS is,
instead of searching a massive data graph G , we can construct
a small local graph for each vertex in G and search in the local
graphs. For a hub pattern with a hub vertex u1, we match the
first data vertex v1 to u1, and the entire sub-tree rooted by
v1 is confined within v1’s 1-hop neighborhood. Fig. 7 shows
an example of constructing a local graph. Search in the local
graph is faster because the vertex degrees in the local graph
are smaller than those in the global data graph. When the
pattern analyzer detects a hub-pattern, the code generator
inserts a call to construct local graphs, and generates code to
search in the local graphs, instead of the original data graph.

• Previously, LGS has only been used for clique patterns [30],
while G2Miner generalizes and automates it for all hub
patterns. Moreover, unlike CPUs, naive implementation on
GPUs is not beneficial. We combine LGS with the bitmap
format (see §6.2) to achieve significant speedups.

• Input Awareness. LGS is not always beneficial [25]. The
key indicator is the maximum degree ∆ of the data graph.
For example, if ∆ is too large, it is not beneficial due to high
overhead of local graph construction. Therefore, we gener-
ate CUDA kernels for both cases: LGS enabled and disabled.
The runtime system checks if ∆ is above a threshold and
decides accordingly which kernel to use. LGS brings us 1.2
∼ 3.7× speedup on GPU for various data graphs.

6 Device Primitives for Set Operations

As G2Miner assigns each task to a warp, whenever there is
a set operation, all the thread in a warp work cooperatively
to compute it. For example, in Algorithm 1, there is a set
intersection at Line 4. In G2Miner, set operations are done
by invoking the corresponding device functions predefined
in the GPU primitive library. We leverage GPU hardware
SIMD support to implement efficient set operations (§6.1) and
flexibly support various data formats for vertex sets (§6.2).

6.1 SIMD-aware Primitives
Given two sets A and B, we need two major set operations in
GPM: (1) set intersection: C = A∩B; (2) set difference: C =
A−B, where C is the output set. Besides, another operation

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    865



set bounding is also often needed: given a set A and an upper
bound y, set bounding computes {x|x < y&x∈ A}. We discuss
set intersection in detail, and the other operations are similar.

In Algorithm 1 Line 4, the result of set intersection is stored
in a buffer W for reuse. Buffering is widely used in GPM algo-
rithms to avoid repetitive computation [74]. To support buffer-
ing in G2Miner, each warp is allocated a private buffer in the
GPU memory. In the primitive functions, threads in a warp
write outputs to the buffer in parallel. To do this efficiently, we
use CUDA warp-level primitives [69] which are supported by
the GPU hardware (special instructions). For each vertex v in
set A, we use a boolean flag to indicate whether it exists in set
B. Using the flag, we compute a mask using __ballot_sync
primitive. The mask is then used to compute the index and
the total size of the buffer using __popc primitive.
Implementation details. Previous work has explored set in-
tersection for SIMD [10,15,45,51,118] or GPU [8,38,40,41,
49, 50, 79, 80, 112, 113]. We classify their algorithms into
3 categories: Merge-path [40, 41], Binary-search [38, 50]
and Hash-indexing [80]. We have extensively evaluated these
methods on GPU, and we find that binary search works the
best since it is less divergent. In our library, we implement a
high-performance binary search [50]: to exploit temporal lo-
cality, we leverage the scratchpad in GPU to pre-load the first
five layers of the binary search tree, which further mitigates
memory divergence. We extend this method to also support
set difference, set bounding, and local graph construction.

6.2 Flexible Data Representation

Vertex set is a key data structure in GPM, which is used for
the neighbor list in G and the buffer W in Algorithm 1. Its rep-
resentation on GPU has a major impact on performance. For
the set operations particularly, using a dense representation
makes set operations easy to compute, but it requires more
storage space. If using a sparse representation, it saves space
but complicates the computation of set operations.

We support two types of formats for vertex set on GPU:
sorted-list (sparse) and bitmap (dense). sorted-list is
a list (i.e. array) of vertices sorted in ascending order. bitmap
is a sequence of bits (length=|V |), each of which indicates the
connectivity to a vertex in V . Set operations on bitmap are
very simple and efficient, but bitmap consumes more space
when V is large. Thus, by default we use sorted-list, and
we only enable bitmap for hub-patterns since the bitmap
size can be reduced significantly (∆ instead of |V |).

7 Runtime Scheduling and Management

Our runtime system is aware of the pattern, input data graph
and GPU architecture to balance workload among multiple
GPUs (§7.1) and make full use of the GPU memory (§7.2).

7

5

3

4

8

6 5

7 8

6

Global data graph

0 1

Local data graph

intersect
rename 

vertex ID
u2 v3

u1

v4

Pattern

1

2

9 9
2

Common neighborhood

Figure 7: Local graph constructed for v1=5 and v2=6 which are
matched to hub vertices u1 and u2 in the pattern respectively. We
first compute set intersection of vertex 5 and 6, to get their common
neighbors (vertex 7, 8, 9). The common neighbors are renamed to
form a local graph. Renaming can reduce bitmap storage.

7.1 Task Scheduling for Multi-GPU

Given n as the number of GPUs1 available in the system and
a data graph G with an edgelist Ω = {e1,e2, ...,em} where
m = |E | (in the case of symmetry breaking at level 2, m = |E
|/2), the task scheduler aims to divide GPM computation onto
the n GPUs, by dividing Ω into n segments, each of which
has the same amount of work, such that the execution time of
the last completed GPU is minimized.

BFS-based GPM systems, e.g., Arabesque, RStream, and
Pangolin, balance workload by reassigning tasks at every level.
But this does not work for the DFS algorithm because DFS
does not work in the level-by-level way as BFS. Existing
DFS-based GPM systems target only CPUs, and thus can use
sophisticated work stealing techniques [33]. But this will incur
non-trivial runtime overhead on multi-GPU (∼20%) [23, 50].
Policy 1: Even-split Scheduling. Ω is to evenly split into n
consecutive ranges, each of which contains m/n tasks. This is
used in existing triangle counting solvers on multi-GPU [80].
This policy is simple and has no scheduling overhead, but it
results in severe load imbalance for skewed graphs. Fig. 8
shows the time spent on each GPU to finish its work under
the even-split scheme. Due to the skewness of the workload
assigned to each GPU, under the 2-GPU setting we observe
that GPU_0 takes much more time to finish its work than
GPU_1. The same time variance is observed for the 3-GPU
and 4-GPU setting. Worse still, in the 4-GPU setting, since
most of the heavy tasks are assigned to GPU_1, it makes the 4-
GPU setting even slower than the 3-GPU setting. This means
the even-split scheme does not scale beyond 3-GPU for this
benchmark. The reason of poor scalability is two-folds: (1)
the granularity of splitting workload is too coarse-grain; (2)
it is unaware to the skewness of task workload by assuming
every task has the same amount of work.
Policy 2: Round-robin Scheduling. Each GPU has a task
queue, denoted as Qi for the i-th GPU, i ∈ [0,n). The tasks in
Ω are assigned to each queue in a round-robin fashion, i.e., e j
is assigned to Qi, where i = j mod n, j ∈ [0,m). This is a fine-
grained scheduling policy that has been used in existing motif
counting solvers on multi-GPU [89]. The policy comes with
some overhead, i.e., copying tasks into task queues. This copy
is needed only once for a specific data graph and n, i.e., once

1We assume that every GPU has the same compute power for simplicity,
otherwise it is not difficult to scale the workload by a factor accordingly.

866    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1-GPU 2-GPU 3-GPU 4-GPU0

10

20

30
Ex

ec
ut

io
n 

Ti
m

e 
(s

ec
) GPU_0

GPU_1
GPU_2
GPU_3

Figure 8: Running time of each GPU using even-split: 3-MC on Tw2.

done, the queues can be reused for mining different patterns.
Policy 3: Chunked Round-robin Scheduling. Ω is first split
into lots of small chunks, and then we assign chunks to the
task queues in a round-robin way. This is a generalization of
the previous two policies. When the chunk size c = m/n, it be-
comes the same as policy 1. When c = 1, it becomes the same
as policy 2. Thus if c is too small the data copying overhead
will be high, but if c is too large, we see load imbalance as
in policy 1. We use c = α× y, where y is the total number of
warps and α is a constant (set to 2 empirically). Our chunking
is also pattern aware, as described in §7.2.

Implementation details. To further reduce data copy over-
head, we parallelize it as the location to copy to is fixed for
each queue if the chunk size is fixed. Note that this over-
head is constant to the pattern size k, which is trivial (< 1%)
when k > 3, since the GPM computation is exponential to
k. For small pattern like triangle, we overlap the scheduling
overhead with the GPU computation, by first assigning a few
chunks to each GPU and launch the kernel. During the GPU
computation, we continue sending the remaining chunks from
the CPU to feed the GPUs. Orthogonal work on ordering
tasks in Ω [89] or grouping tasks by community may help
further improve load balance and locality.

7.2 GPU Memory Management
GPU memory is a scarce resource. In GPM algorithms, the
major memory usage involves the data graph G , the edgelist
Ω and the buffers (e.g., W in Algorithm 1)). For FSM, the
subgraph list of each pattern requires additional space.
(1) Preprocessing the data graph. We have discussed orien-
tation in §4.2. In the multi-GPU setting, for any hub-pattern,
since the search is confined in the root vertex v1’s neighbor-
hood, we partition V into n subsets (n is the number of GPUs).
For each i-th subset we generate its vertex induced subgraph
of G , and copy it to the i-th GPU. This partitioning reduces
memory usage and guarantees that there is no communication
needed between GPUs. This technique has been used in [47]
only for triangle counting. We generalize it for all hub-pattern
problems. The scheduling policy is then adjusted by chunking
vertices and assigning incident edges in Ω to the correspond-
ing GPUs. For non-hub patterns, we do not partition G if it
can fit in the single-GPU memory. This is because GPM algo-

rithms access multi-hop neighbors, which leads to non-trivial
communication overhead [99], especially for small-diameter
graphs. When G is too large to fit in memory, we leverage
community-aware partition [56] to minimize communication.
(2) Reducing the size of edgelist. For Ω, we apply an impor-
tant optimization by considering symmetry at the edge level
(level-2). Since G is an undirected graph, for each undirected
edge in G , the edgelist contains two instances, each for one
of the two directions of the edge. However, when there is a
partial order between v1 and v2 for symmetry breaking, we
generate the edgelist that contains only one instance. More
specifically, if v1 > v2 is included in the symmetry order (e.g.,
in Fig. 5 (b)), the edgelist includes only the edges whose
source vertex id is larger than its destination vertex id. In this
way, we can reduce half of the edges before execution. It not
only saves memory but also reduces checking on-the-fly. Note
that there is a similar optimization [96] to split the neighbor
list of each vertex v into two sets, with one holding all neigh-
bors whose IDs are larger than v, and the other holding the
rest which have smaller IDs than v. This reduces on-the-fly
checking, but it is not used to reduce memory usage.
(3) Adaptive buffering. In G2Miner’s warp-centric DFS
walk, each warp is allocated with X buffers. The value of X
is pattern specific and the pattern analyzer can decide it when
generating the search plan. For a pattern of size k, X ≤ k−3
because the first two levels and the last level do not need
buffers. So the worst case memory consumption for buffer-
ing is O(∆× (k−3)). This is linear to k for a given specific
data graph. In comparison, the intermediate data generated
in Pangolin is exponential to k, which can be easily over the
GPU memory capacity (see in §8.1). Although ∆ is much
smaller than E (see Table 3), given the large number of warps
in GPU, the memory space for buffers can still be very large.
Therefore, the runtime limits the total number of warps to
save memory usage, so that all tasks assigned to the same
warp share the buffer usage. In this way, given different data
graphs, we can adaptively tune the number of warps to make
full use of memory and maximize parallelism. More specif-
ically, we subtract the size of G and Ω from the total GPU
memory size, to get the remaining memory size, denoted as Y .
Then we can get the maximum number of warps Y/(X×∆).
Finally we launch min(Y/(X×∆), |Ω|) warps.
(4) Reducing memory allocation using label frequency.
This optimization is particularly useful for problems that find
frequent patterns, such as FSM. The graph loader in G2Miner
computes the vertex frequency for each label. This informa-
tion can be leveraged to find frequent labels, i.e., labels with
vertex frequency above the user-defined support threshold
σmin. Since infrequent labels can not be part of frequent pat-
terns, the total number of possible frequent patterns N can
be significantly reduced, if there are many infrequent labels.
Note that in FSM we allocate a subgraph list for each possible
pattern to store subgraphs for aggregation, and the memory
consumption of these subgraph lists is proportional to N. With

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    867



Graph Source |V| |E| Label Max deg. ∆

Mi Mico [35] 0.1M 2M 29 1,359
Pa Patents [44] 3M 28M 37 789
Yo Youtube [28] 7M 114M 28 4,017
Lj LiveJournal [66] 4.8M 43M 0 20,333
Or Orkut [66] 3.1M 117M 0 33,313
Tw2 Twitter20 [63] 21M 530M 0 698,112
Tw4 Twitter40 [64] 42M 2,405M 0 2,997,487
Fr Friendster [115] 66M 3,612M 0 5,214
Uk Uk2007 [16] 106M 6,603M 0 975,419

Table 3: Data graphs (symmetric, no loops or duplicate edges). Max-
imum degrees are smaller when orientation is applied for cliques.

Data Graph Lj Or Tw2 Tw4 Fr Uk
G2Miner (GPU) 0.03 0.14 1.6 5.1 3.2 7.5
Pangolin (GPU) 0.06 0.25 3.0 OoM 5.2 OoM

PBE (GPU) 0.27 1.12 13.4 53.5 23.0 55.3
Peregrine (CPU) 1.63 7.25 112.1 8492.4 100.3 3640.9

GraphZero (CPU) 0.61 2.22 24.4 1399.3 49.0 1041.3

Table 4: TC running time (sec). OoM: out of memory.

this awareness of the input (i.e., label frequency), we can dras-
tically reduce this memory consumption in many cases.

8 Evaluation

We compare G2Miner2 with state-of-the-art systems: (1) GPM
system on GPU, Pangolin [26], (2) subgraph matching solver
on GPU, PBE [42, 43], (3) CPU-based GPM system Pere-
grine [53] and (4) CPU-based subgraph matching system
GraphZero [73, 74]. Note that Pangolin also provides a CPU
implementation, but it is slower than GraphZero.

Table 3 lists the data graphs. The first 3 graphs (Mi, Pa, Yo)
are vertex-labeled graphs which are used for FSM. We use
all the GPM applications listed in §2.1 for evaluation, i.e.,
TC, k-CL, SL, k-MC. For SL, we use two patterns 4-cycle
and diamond. Note that GraphZero does not support FSM,
Pangolin does not support SL, and PBE does not support k-
MC and FSM. For FSM, we include DistGraph [99] in Table 8
as the state-of-the-art hand-written FSM solver.

CPU-based systems and solvers are evaluated on a 4 socket
machine with Intel Xeon Gold 5120 2.2GHz CPUs (56 cores
in total) and 190GB RAM, while GPU-based solutions are
evaluated on NVIDIA V100 GPUs (each with 32GB device
memory). We exclude preprocessing (e.g., DAG construction
in Pangolin and vertex reordering in Peregrine) time in all
systems. We use a time-out of 30 hours for CPU and 8 hours
for GPU, and report all results as an average of three runs.
We show single-GPU performance in §8.1 and compare with
CPU solutions in §8.2. Multi-GPU performance of G2Miner
is shown in §8.3. Impact of optimizations is analyzed in §8.4.

8.1 Single-GPU Performance
We compare with Pangolin and PBE on a V100 GPU. Table 4
lists the GPU running time for triangle counting (TC). We

2G2Miner source code: https://github.com/chenxuhao/GraphMiner

Pattern 4-CL 5-CL
Data Graph Lj Or Tw2 Tw4 Fr Lj Or Fr
G2Miner (G) 0.32 0.54 113.3 362.9 7.3 3.2 1.7 13.1
Pangolin (G) 1.48 4.04 OoM OoM OoM OoM OoM OoM

PBE (G) 3.90 11.11 3640.1 TO 117.8 246.4 99.2 399.8
Peregrine (C) 15.90 73.70 39921.0 TO 397.3 520.8 782.1 957.6

GraphZero (C) 3.48 12.96 2152.2 20591.1 177.7 60.0 48.3 243.3

Table 5: k-CL running time (sec). TO: timed out.

Pattern Diamond 4-cycle
Data Graph Lj Or Tw2 Tw4 Fr Lj Or Fr
G2Miner (G) 0.29 0.75 26.8 183.1 12.8 2.7 33.7 1291.2

PBE (G) 0.48 1.71 26.3 102.0 39.9 17.3 177.8 5211.3
Peregrine (C) 5.38 10.24 553.6 20898.4 178.1 144.4 1867.2 32276.8

GraphZero (C) 1.73 7.27 165.1 7938.6 136.4 34.0 345.5 9251.5

Table 6: SL running time (sec). ‘G’: GPU; ‘C’: CPU.

observe that Pangolin runs out of memory for Tw43 and Uk,
while G2Miner can run with all the data graphs. We also
observe that G2Miner is constantly faster than Pangolin, due to
optimized set operations in our library. On average, G2Miner
is 1.8× faster than Pangolin on V100 GPU.

The speedups are more significant for k-CL and k-MC. As
shown in Table 5, G2Miner outperforms Pangolin by 4.6×
and 7.6× for 4-clique listing on Lj and Or respectively. The
speedups mainly come from data reuse enabled in DFS (i.e.,
buffering W in Algorithm 1) and optimized set operations4.
Meanwhile, for all the rest of graphs and the larger pattern 5-
clique, Pangolin runs out of memory. Similar trend is found in
Table 7, where we observe an average of 21.3× speedup over
Pangolin on 3-MC, and Pangolin also runs out of memory for
most of the cases. G2Miner managed to run all cases, which
demonstrates that its DFS order and optimization J and K in
Table 2 can effectively reduce memory consumption.

For FSM in Table 8, G2Miner is competitive with Pangolin
for the small graphs, since we use bounded BFS (optimization
M in Table 2) that provides enough parallelism. For the largest
graph Yo, Pangolin runs out of memory again, while G2Miner
succeeds to run it, thanks to both optimization M and N in
Table 2 which help reduce memory consumption.

Overall, G2Miner achieves an average speedup of 5.4×
over Pangolin, and the speedup is more significant for larger
patterns. Moreover, G2Miner can run much larger graphs.

We also compare with PBE [42, 43] on the V100 GPU.
PBE partitions the data graph when it gets large, which al-
lows it run all the single-pattern workloads. However, its
performance is even worse (3.8× slower) than Pangolin, due
to the cross-partition communication overhead and lack of
data graph orientation. Particularly, for subgraph listing, as
diamond contains a sub-pattern triangle but 4-cycle does
not, searching diamond generates much less intermediate data
than searching 4-cycle. Thus in Table 6 we observe that
PBE’s 4-cycle performance is much worse than G2Miner as

3Since data graphs are oriented in TC, Fr takes less memory than Tw4
4It can not be directly used for Pangolin, as Pangolin maps connectivity
checks [26] to threads, but G2Miner maps set operations to warps.

868    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 2 3 4 5 6 7 8
Number of GPUs

1
2
3
4
5
6
7
8

Sp
ee

du
p 

ov
er

 si
ng

le
-G

PU Even-Split
Chunked-Round-Robin

(a) Triangle counting on Tw4.

1 2 3 4 5 6 7 8
Number of GPUs

1
2
3
4
5
6
7
8

Sp
ee

du
p 

ov
er

 si
ng

le
-G

PU Even-Split
Chunked-Round-Robin

(b) Listing 4-cycle on Fr.

1 2 3 4 5 6 7 8
Number of GPUs

1
2
3
4
5
6
7
8

Sp
ee

du
p 

ov
er

 si
ng

le
-G

PU Even-Split
Chunked-Round-Robin

(c) 3-motif counting on Tw2.

Figure 9: G2Miner multi-GPU scalability using two task scheduling policies: even-split vs. chunked-split.

Pattern 3-Motif 4-Motif
Data Graph Lj Or Tw2 Tw4 Fr Lj Or Fr
G2Miner (G) 0.17 0.97 33.3 1703.6 22.0 138.1 2068.4 15475.4
Pangolin (G) 2.05 22.62 1165.5 OoM OoM OoM OoM OoM
Peregrine (C) 9.36 19.46 418.7 27954.9 367.9 1435.4 20219.1 TO

GraphZero (C) 1.50 7.74 276.5 7439.4 169.6 3039.6 16394.6 TO

Table 7: k-MC running time (s). OoM: out of mem.; TO: timed out.

it has to do partitioning and suffers from the overhead. Over-
all, G2Miner achieves a 7.2× speedup over PBE on average.

8.2 Mining on GPU vs. on CPU

To evaluate how much speedup we can get from GPU over
CPU, we compare G2Miner (on V100 GPU) with GraphZero
(on 56-core CPU). Note that for each specific GPM applica-
tion, G2Miner and GraphZero use exactly the same matching
order and symmetry order, making it a fair comparison to
show the benefit from the difference of hardware architec-
tures. As listed in Table 4, G2Miner is significantly faster than
GraphZero on TC, with an average speedup of 38.0×. The
same trend is observed for k-CL in Table 5, where G2Miner
outperforms GraphZero by 18.2×. This tremendous perfor-
mance improvement is due to three parts: (1) the orientation
optimization, (2) higher throughput (i.e. more parallelism) on
GPU, and (3) our high-performance set operations on GPU.

For SL, orientation can not be applied. Thus it can be used
to evaluate the benefit of the other two parts. As shown in
Table 6, G2Miner still achieves overwhelmingly better perfor-
mance than GraphZero, with an average speedup of 10.5×.
The speedup would be marginal if we use the BFS strategy in
Pangolin and PBE or implement our DFS scheme naively.

While TC, k-CL and SL uses only set intersection, k-MC
includes both set intersection and set difference. As G2Miner
optimizes both operations, we also observe dramatic perfor-
mance boost for k-MC. In Table 7, it constantly outperforms
GraphZero for all benchmarks. On average G2Miner is 8.5×
faster than GraphZero.

Overall, G2Miner on GPU achieves 15.2× speedup over
GraphZero on CPU, which demonstrates the significant bene-
fit of using GPU to accelerate GPM applications.

As GraphZero does not support FSM, we also compared to

Data Graph Mico Patent Youtube
σ 300 500 1000 5000 300 500 1000 5000 300 500 1000 5000

G2Miner (G) 0.6 0.4 0.3 0.1 2.6 2.6 2.6 1.7 7.2 6.0 6.0 8.7
Pangolin (G) 0.6 0.5 0.3 0.2 2.7 2.7 2.7 1.7 OoM OoM OoM OoM
Peregrine (C) 4.4 4.4 4.2 4.3 94.2 103.8 118.4 94.3 59.3 52.8 69.9 60.8
DistGraph (C) 56.1 61.0 57.6 57.0 13.2 13.1 13.0 14.1 OoM OoM OoM OoM

Table 8: 3-FSM running time (sec). OoM: out of memory.

Peregrine. G2Miner on GPU is 48.3× faster than Peregrine
on CPU. Note that Peregrine does not mine multiple patterns
simultaneously for multi-pattern problems. Instead, for k-MC
and FSM, it enumerates every pattern one by one, making it
impossible to reuse data across similar patterns. Thus it is
mostly even slower than GraphZero.

8.3 Multi-GPU Scalability

We evaluate multi-GPU performance by varying the number
of GPUs from 1 to 8 in a single machine. Since PBE and Pan-
golin do not support multi-GPU, we only evaluate G2Miner
in this section. We compare two task scheduling policies in
Fig. 9. As illustrated, the chunked round-robin scheme con-
stantly works much better than the even-split scheme. More
importantly, the chunked scheme scales linearly for all cases,
while the even-split scheme fails to scale beyond 3-GPU for
3-MC on Tw2. The poor scalability of even-split is dues to the
load imbalance. As shown in Fig. 10, in the 4-GPU setting,
the execution time of each GPU varies dramatically for the
even-split setting. In contrast, for the chunked scheme, each
GPU finishes its work roughly at the same time.

8.4 Impact of Optimizations

Different optimizations in Table 2 contribute differently to
the performance improvement. First, architecture-aware opti-
mizations are crucial for all workloads on GPU. G2Miner is
5.4× faster then Pangolin, where two-level parallelism (C in
Table 2) and SIMD-aware primitives (H in Table 2) contribute
3.1× and 1.7× respectively. Second, for a pattern-aware opti-
mization, it is beneficial only for the target pattern(s), and the
speedups vary a lot depending on how much the search space
is pruned. For example, local-graph search (E+F in Table 2)
brings 1.2×∼ 3.7× speedup for hub-patterns (2.1× on av-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    869



Even-Split Chunked-RR0

200

400

600

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) GPU_0
GPU_1
GPU_2
GPU_3

Figure 10: Running time of each GPU
in the 4-GPU setting: 4-cycle on Fr.

4 5 6 7 8
Pattern size (k)

101

102

103

104

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

G2Miner GraphZero

Figure 11: Running time of k-clique
listing over Fr, k ∈[4,8].

TC-Lj TC-Or TC-Tw2 4-CL-Lj 4-CL-Or 3-MC-Lj 3-MC-Or
Benchmarks (pattern-graph)

0%

20%

40%

60%

80%

W
ar

p 
Ex

ec
ut

io
n 

Ef
fic

ie
nc

y Pangolin G2Miner

Figure 12: Warp execution efficiency.

Pattern Diamond 3-Motif 4-Motif
Time (sec) Lj Or Tw2 Tw4 Fr Lj Or Tw2 Tw4 Fr Lj Or Fr

G2Miner (GPU) 0.09 0.47 9.9 66.9 10.4 0.06 0.27 6.8 21.4 5.2 2.6 34.2 1307.2
Peregrine (CPU) 2.20 8.66 245.8 16312.6 158.8 2.51 4.90 116.0 8447.4 165.3 163.6 1701.4 TO

Table 9: Running time of G2Miner vs. Peregrine, both with counting-only pruning enabled. TO: timed out.

erage), while counting-only pruning (D in Table 2) achieves
1.2× (diamond, Fr) to 79.7× (3-motif, Tw40), with 6.2×
on average. Other optimizations in Table 2 are for memory
saving, which is crucial for enabling larger datasets.

Large Pattern and Large Graph. A major advantage of
G2Miner over Pangolin is that G2Miner can support much
larger graphs and patterns. Fig. 11 shows that G2Miner can
run up to 8-clique listing on a billion-edge graph Fr. In
contrast, Pangolin can not even run 4-clique due to out-of-
memory, as shown in Table 5. Fig. 11 also shows that, from
4-clique to 8-clique, G2Miner on GPU consistently achieves
an order of magnitude speedup over GraphZero on the CPU,
although the GPU has much less memory than the CPU.
This trend implies that GPUs can be not only capable but
also highly efficient for processing large graphs and patterns,
thanks to G2Miner’s memory management and optimizations
for the GPU architecture.

GPU Efficiency. To evaluate GPU utilization, we measure
warp execution efficiency, which is the average percentage of
active threads in each executed warp. As shown in Fig. 12, the
warp execution efficiency in Pangolin is around 40%. This
is relatively low since more than half of the compute horse
power is wasted. In comparison, G2Miner significantly im-
proves the warp execution efficiency. This is mainly due to
the highly efficient implementation of our warp-centric set op-
erations. Besides, we also measure branch efficiency, i.e., the
ratio of non-divergent branches to total branches. Although
G2Miner uses DFS, We find that Pangolin and G2Miner have
almost the same branch efficiency, thanks to the two-level
parallelism scheme. Since we assign each task to a warp, all
threads in a warp does the same DFS walk synchronously,
which avoids most of the branch divergence. This creates
some redundancy, but since most of execution time is spent
on set operations, it is still a good tradeoff.

Counting-only pruning. In §8.1, we do not enable optimiza-
tion D in Table 2, because GraphZero and Pangolin do not
support it. We observe that for those patterns (e.g., diamond)

enabling this pruning in G2Miner further improve perfor-
mance by 6.2× on average. Enabling this optimization in
Peregrine also improves its performance, as shown in Table 9.
However, due to our high efficiency on GPU, G2Miner still
outperforms Peregrine by 41.1× when both enable it. This
again demonstrates the performance superiority of GPU over
CPU, no matter what algorithm optimizations are applied.
Sorting and renaming vertices. For fair comparison, this
optimization done by the preprocessor is also not enabled
in §8.1. Our evaluation shows that this can futher improve
G2Miner performance by 5% (up to 90%). Applying this to
GraphZero also helps, but G2Miner is still 12× faster.

9 Conclusion

We present G2Miner, the first multi-GPU GPM framework
that supports efficiently mining large graphs and patterns.
For high efficiency, G2Miner is aware of the input, pattern
and architecture to fully unlock the potential of GPM com-
puting on GPUs, which results in a 5× speedup over the
state-of-the-art GPU-based GPM system, Pangolin, on a sin-
gle GPU. For scalability, G2Miner employs a custom task
scheduler that can scale GPM computation to multiple GPUs
linearly. For programmability, it automatically enables appli-
cable optimizations and generates CUDA code, which hides
away GPU programming complexity, and in turn provides the
same easy-to-use programming interface as the state-of-the-
art CPU-based GPM frameworks (e.g., Peregrine). We also
show that G2Miner on a single V100 GPU is 48× faster than
Peregrine on a 56-core Intel CPU, a free lunch for GPM users.

10 Acknowledgements

This research is funded by Samsung Semiconductor (GRO
grants) and MIT-IBM Watson AI Lab, and supported by
XSEDE allocation TG-CIE-170005 and ASC22045. We thank
Tianhao Huang and OSDI reviewers for their feedback.

870    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis,
Zuhair Khayyat, and Fuad Jamour. Scalemine: Scal-
able parallel frequent subgraph mining in a single large
graph. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’16, pages 61:1–61:12, Piscataway,
NJ, USA, 2016. IEEE Press.

[2] Christopher R. Aberger, Andrew Lamb, Susan Tu, An-
dres Nötzli, Kunle Olukotun, and Christopher Ré. Emp-
tyheaded: A relational engine for graph processing.
ACM Trans. Database Syst., 42(4), October 2017.

[3] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi,
and Nick Duffield. Efficient graphlet counting for large
networks. In ICDM, pages 1–10, 2015.

[4] Leman Akoglu, Hanghang Tong, and Danai Koutra.
Graph based anomaly detection and description: a sur-
vey. Data mining and knowledge discovery, 29(3):626–
688, 2015.

[5] Mohammad Almasri, Izzat El Hajj, Rakesh Nagi, Jin-
jun Xiong, and Wen-mei Hwu. K-clique counting on
gpus. arXiv preprint arXiv:2104.13209, 2021.

[6] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and
SC. Sahinalp. Biomolecular network motif count-
ing and discovery by color coding. Bioinformatics,
24(13):241–249, 2008.

[7] Khaled Ammar, Frank McSherry, Semih Salihoglu,
and Manas Joglekar. Distributed evaluation of sub-
graph queries using worst-case optimal low-memory
dataflows. Proc. VLDB Endow., 11(6):691–704, Febru-
ary 2018.

[8] Rasmus Resen Amossen and Rasmus Pagh. A new
data layout for set intersection on gpus. In 2011 IEEE
International Parallel & Distributed Processing Sym-
posium, pages 698–708. IEEE, 2011.

[9] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aris-
tides Gionis. Efficient semi-streaming algorithms for
local triangle counting in massive graphs. In Proceed-
ings of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages
16–24, 2008.

[10] Christos Bellas and Anastasios Gounaris. An evalu-
ation of large set intersection techniques on gpus. In
DOLAP, pages 111–115, 2021.

[11] Austin R. Benson, David F. Gleich, and Jure Leskovec.
Higher-order organization of complex networks. Sci-
ence, 353(6295):163–166, 2016.

[12] Indrajit Bhattacharya and Lise Getoor. Entity resolu-
tion in graphs. Mining graph data, 311, 2006.

[13] Bibek Bhattarai, Hang Liu, and H. Howie Huang.
CECI: Compact Embedding Cluster Index for Scalable
Subgraph Matching. In Proceedings of the 2019 In-
ternational Conference on Management of Data, SIG-
MOD ’19, pages 1447–1462, New York, NY, USA,
2019. ACM.

[14] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie
Zhang. Efficient subgraph matching by postponing
cartesian products. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD
’16, page 1199–1214, New York, NY, USA, 2016. As-
sociation for Computing Machinery.

[15] Jovan Blanuša, Radu Stoica, Paolo Ienne, and Kubilay
Atasu. Manycore clique enumeration with fast set
intersections. Proc. VLDB Endow., 13(12):2676–2690,
July 2020.

[16] Paolo Boldi, Massimo Santini, and Sebastiano Vigna.
A large time-aware graph. SIGIR Forum, 42(2):33–38,
2008.

[17] Vincenzo Bonnici, Rosalba Giugno, and Nicola
Bombieri. An efficient implementation of a sub-
graph isomorphism algorithm for gpus. In 2018
IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 2674–2681. IEEE, 2018.

[18] M. Burtscher, R. Nasre, and K. Pingali. A quantitative
study of irregular programs on gpus. In 2012 IEEE In-
ternational Symposium on Workload Characterization
(IISWC), pages 141–151, Nov 2012.

[19] Amlan Chatterjee, Sridhar Radhakrishnan, and John K.
Antonio. Counting problems on graphs: Gpu storage
and parallel computing techniques. In 2012 IEEE
26th International Parallel and Distributed Processing
Symposium Workshops PhD Forum, pages 804–812,
2012.

[20] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan,
Da Yan, and James Cheng. G-miner: An efficient
task-oriented graph mining system. In Proceedings
of the Thirteenth EuroSys Conference, EuroSys ’18,
New York, NY, USA, 2018. Association for Computing
Machinery.

[21] Jingji Chen and Xuehai Qian. Dwarvesgraph: A high-
performance graph mining system with pattern decom-
position, 2021.

[22] Jingji Chen and Xuehai Qian. Kudu: An efficient and
scalable distributed graph pattern mining engine, 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    871



[23] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and
Guang R Gao. Dynamic load balancing on single-and
multi-gpu systems. In 2010 IEEE International Sym-
posium on Parallel & Distributed Processing (IPDPS),
pages 1–12. IEEE, 2010.

[24] Xuhao Chen, Li-Wen Chang, Christopher I. Rodrigues,
Jie Lv, Zhiying Wang, and Wen-Mei Hwu. Adaptive
cache management for energy-efficient gpu computing.
In Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-47,
pages 343–355, Washington, DC, USA, 2014. IEEE
Computer Society.

[25] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc
Hoang, and Keshav Pingali. Sandslash: A Two-Level
Framework for Efficient Graph Pattern Mining. In
Proceedings of the 35th ACM International Conference
on Supercomputing, ICS ’21, 2021.

[26] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and
Keshav Pingali. Pangolin: An efficient and flexible
graph mining system on cpu and gpu. Proc. VLDB
Endow., 13(8), August 2020.

[27] Xuhao Chen, Tianhao Huang, Shuotao Xu, Thomas
Bourgeat, Chanwoo Chung, and Arvind. Flexminer: A
pattern-aware accelerator for graph pattern mining. In
Proceedings of the International Symposium on Com-
puter Architecture, 2021.

[28] X. Cheng, C. Dale, and J. Liu. Dataset for
statistics and social network of youtube videos.
http://netsg.cs.sfu.ca/youtubedata/.

[29] Young-Rae Cho and Aidong Zhang. Predicting protein
function by frequent functional association pattern min-
ing in protein interaction networks. IEEE Transactions
on information technology in biomedicine, 14(1):30–
36, 2009.

[30] Maximilien Danisch, Oana Balalau, and Mauro Sozio.
Listing k-cliques in sparse real-world graphs*. In
Proceedings of the 2018 World Wide Web Conference,
WWW ’18, pages 589–598, Republic and Canton of
Geneva, Switzerland, 2018. International World Wide
Web Conferences Steering Committee.

[31] M. Deshpande, M. Kuramochi, N. Wale, and
G. Karypis. Frequent substructure-based approaches
for classifying chemical compounds. IEEE Trans-
actions on Knowledge and Data Engineering,
17(8):1036–1050, Aug 2005.

[32] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun.
Theoretically efficient parallel graph algorithms can be
fast and scalable. In Proceedings of the 30th on Sympo-
sium on Parallelism in Algorithms and Architectures,

SPAA ’18, page 393–404, New York, NY, USA, 2018.
Association for Computing Machinery.

[33] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes,
Wagner Meira, and Srinivasan Parthasarathy. Fractal:
A general-purpose graph pattern mining system. In
Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, pages 1357–1374,
New York, NY, USA, 2019. ACM.

[34] Carmel Domshlak, Samir Genaim, and Ronen Brafman.
Preference-based configuration of web page content.
In 14th European Conference on Artificial Intelligence
(ECAI 2000), Configuration Workshop, Berlin, Ger-
many, pages 19–22, 2000.

[35] Mohammed Elseidy, Ehab Abdelhamid, Spiros Ski-
adopoulos, and Panos Kalnis. Grami: Frequent sub-
graph and pattern mining in a single large graph. Proc.
VLDB Endow., 7(7):517–528, March 2014.

[36] Katherine Faust. A puzzle concerning triads in so-
cial networks: Graph constraints and the triad census.
Social Networks, 32(3):221 – 233, 2010.

[37] Dima Feldman and Yuval Shavitt. Automatic large
scale generation of internet pop level maps. In IEEE
Global Telecommunications Conference (GLOBE-
COM), pages 1–6. IEEE, 2008.

[38] James Fox, Oded Green, Kasimir Gabert, Xiaojing An,
and David A Bader. Fast and adaptive list intersec-
tions on the gpu. In 2018 IEEE High Performance
extreme Computing Conference (HPEC), pages 1–7.
IEEE, 2018.

[39] I. Giechaskiel, G. Panagopoulos, and E. Yoneki. PDTL:
Parallel and distributed triangle listing for massive
graphs. In 2015 44th International Conference on
Parallel Processing, pages 370–379, Sep. 2015.

[40] Oded Green, James Fox, Alex Watkins, Alok Tripa-
thy, Kasimir Gabert, Euna Kim, Xiaojing An, Kumar
Aatish, and David A Bader. Logarithmic radix binning
and vectorized triangle counting. In 2018 IEEE High
Performance extreme Computing Conference (HPEC),
pages 1–7. IEEE, 2018.

[41] Oded Green, Robert McColl, and David A. Bader. Gpu
merge path: A gpu merging algorithm. In Proceedings
of the 26th ACM International Conference on Super-
computing, ICS ’12, pages 331–340, New York, NY,
USA, 2012. ACM.

[42] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xi-
aokui Xiao, and Kian-Lee Tan. Gpu-accelerated sub-
graph enumeration on partitioned graphs. In Proceed-
ings of the 2020 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’20, page

872    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1067–1082, New York, NY, USA, 2020. Association
for Computing Machinery.

[43] Wentian Guo, Yuchen Li, and Kian-Lee Tan. Exploit-
ing reuse for gpu subgraph enumeration. IEEE Trans-
actions on Knowledge and Data Engineering, pages
1–1, 2020.

[44] B. H. Hall, Jaffe A. B., and Trajtenberg M. The NBER
patent citation data file: Lessons, insights and method-
ological tools. http://www.nber.org/patents/, 2001.

[45] Shuo Han, Lei Zou, and Jeffrey Xu Yu. Speeding
up set intersections in graph algorithms using simd
instructions. In Proceedings of the 2018 International
Conference on Management of Data, pages 1587–1602,
2018.

[46] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee.
Turbo<sub>iso</sub>: Towards ultrafast and robust
subgraph isomorphism search in large graph databases.
In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’13, page 337–348, New York, NY, USA, 2013. Asso-
ciation for Computing Machinery.

[47] Loc Hoang, Vishwesh Jatala, Xuhao Chen, Udit Agar-
wal, Roshan Dathathri, Gurbinder Gill, and Keshav
Pingali. DistTC: High performance distributed triangle
counting. In HPEC 2019 23rd IEEE High Perfor-
mance Extreme Computing, Graph Challenge, Septem-
ber 2019.

[48] Paul W Holland and Samuel Leinhardt. Local structure
in social networks. Sociological methodology, 7:1–45,
1976.

[49] Lin Hu, Lei Zou, and Yu Liu. Accelerating triangle
counting on gpu. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, SIGMOD-
/PODS ’21, page 736–748, New York, NY, USA, 2021.
Association for Computing Machinery.

[50] Y. Hu, H. Liu, and H. H. Huang. Tricore: Parallel
triangle counting on gpus. In SC18: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 171–182, Nov 2018.

[51] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura.
Faster set intersection with simd instructions by re-
ducing branch mispredictions. Proc. VLDB Endow.,
8(3):293–304, November 2014.

[52] Shweta Jain and C. Seshadhri. A fast and provable
method for estimating clique counts using turán’s theo-
rem. In Proceedings of the 26th International Confer-
ence on World Wide Web, WWW ’17, pages 441–449,
Republic and Canton of Geneva, Switzerland, 2017.

International World Wide Web Conferences Steering
Committee.

[53] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora.
Peregrine: A pattern-aware graph mining system. In
Proceedings of the Fifteenth EuroSys Conference, Eu-
roSys ’20, 2020.

[54] Madhav Jha, C. Seshadhri, and Ali Pinar. Path sam-
pling: A fast and provable method for estimating 4-
vertex subgraph counts. In Proceedings of the 24th
International Conference on World Wide Web, WWW
’15, pages 495–505, Republic and Canton of Geneva,
Switzerland, 2015. International World Wide Web Con-
ferences Steering Committee.

[55] Chathura Kankanamge, Siddhartha Sahu, Amine
Mhedbhi, Jeremy Chen, and Semih Salihoglu. Graph-
flow: An active graph database. In Proceedings of the
2017 ACM International Conference on Management
of Data, SIGMOD ’17, page 1695–1698, New York,
NY, USA, 2017. Association for Computing Machin-
ery.

[56] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

[57] Hisashi Kashima, Hiroto Saigo, Masahiro Hattori, and
Koji Tsuda. Graph kernels for chemoinformatics. In
Chemoinformatics and advanced machine learning per-
spectives: complex computational methods and collab-
orative techniques, pages 1–15. IGI Global, 2011.

[58] Robest Kessl, Nilothpal Talukder, Pranay Anchuri, and
Mohammed J. Zaki. Parallel graph mining with gpus.
In Proceedings of the 3rd International Conference
on Big Data, Streams and Heterogeneous Source Min-
ing: Algorithms, Systems, Programming Models and
Applications - Volume 36, BIGMINE’14, pages 1–16.
JMLR.org, 2014.

[59] Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick,
Wook-Shin Han, JeongHoon Lee, Seongyun Ko, and
Moath H.A. Jarrah. DUALSIM: Parallel subgraph
enumeration in a massive graph on a single machine.
In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, pages 1231–
1245, New York, NY, USA, 2016. ACM.

[60] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon
Lee, Sungpack Hong, Hassan Chafi, Hyungyu Shin,
and Geonhwa Jeong. Turboflux: A fast continuous
subgraph matching system for streaming graph data.
In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, pages 411–
426, New York, NY, USA, 2018. ACM.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    873



[61] Daphne Koller, Nir Friedman, Sašo Džeroski, Charles
Sutton, Andrew McCallum, Avi Pfeffer, Pieter Abbeel,
Ming-Fai Wong, Chris Meek, Jennifer Neville, et al.
Introduction to statistical relational learning. MIT
press, 2007.

[62] Oleksii Kuchaiev, Tijana Milenković, Vesna Memiše-
vić, Wayne Hayes, and Nataša Pržulj. Topological
network alignment uncovers biological function and
phylogeny. Journal of the Royal Society Interface,
7(50):1341–1354, 2010.

[63] Jérôme Kunegis. Konect: the koblenz network collec-
tion. In Proceedings of the 22nd International Con-
ference on World Wide Web, pages 1343–1350. ACM,
2013.

[64] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is twitter, a social network or a news
media? In Proceedings of the 19th International Con-
ference on World Wide Web, WWW ’10, pages 591–
600, New York, NY, USA, 2010. ACM.

[65] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang.
Scalable subgraph enumeration in mapreduce. Proc.
VLDB Endow., 8(10):974–985, June 2015.

[66] J. Leskovec. Snap: Stanford network analysis platform,
2013.

[67] W. Lin, X. Xiao, X. Xie, and X. Li. Network motif
discovery: A gpu approach. In 2015 IEEE 31st In-
ternational Conference on Data Engineering, pages
831–842, April 2015.

[68] Xiaojie Lin, Rui Zhang, Zeyi Wen, Hongzhi Wang,
and Jianzhong Qi. Efficient subgraph matching using
gpus. In Hua Wang and Mohamed A. Sharaf, edi-
tors, Databases Theory and Applications, pages 74–85,
Cham, 2014. Springer International Publishing.

[69] Yuan Lin and Vinod Grover. Using cuda warp-level
primitives. https://developer.nvidia.com/blog/using-
cuda-warp-level-primitives/, 2018.

[70] Yongchao Liu, Bertil Schmidt, Weiguo Liu, and Dou-
glas L. Maskell. Cuda-meme: Accelerating motif
discovery in biological sequences using cuda-enabled
graphics processing units. Pattern Recognition Letters,
31(14):2170 – 2177, 2010.

[71] Bruce T Lowerre. The harpy speech recognition system.
Carnegie Mellon University, 1976.

[72] Shuai Ma, Yang Cao, Jinpeng Huai, and Tianyu Wo.
Distributed graph pattern matching. In Proceedings
of the 21st International Conference on World Wide
Web, WWW ’12, pages 949–958, New York, NY, USA,
2012. ACM.

[73] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tong-
ping Liu, and Bo Wu. Graphzero: A high-performance
subgraph matching system. SIGOPS Oper. Syst. Rev.,
55(1):21–37, June 2021.

[74] Daniel Mawhirter and Bo Wu. Automine: Harmonizing
high-level abstraction and high performance for graph
mining. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages
509–523, New York, NY, USA, 2019. ACM.

[75] Amine Mhedhbi and Semih Salihoglu. Optimizing
subgraph queries by combining binary and worst-case
optimal joins. Proc. VLDB Endow., 12(11):1692–1704,
July 2019.

[76] Tijana Milenković, Weng Leong Ng, Wayne Hayes,
and Nataša Pržulj. Optimal network alignment with
graphlet degree vectors. Cancer informatics, 9:CIN–
S4744, 2010.

[77] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: Sim-
ple building blocks of complex networks. Science,
298(5594):824–827, 2002.

[78] Caleb C Noble and Diane J Cook. Graph-based
anomaly detection. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 631–636, 2003.

[79] Saher Odeh, Oded Green, Zahi Mwassi, Oz Shmueli,
and Yitzhak Birk. Merge path-parallel merging made
simple. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD
Forum, pages 1611–1618. IEEE, 2012.

[80] Santosh Pandey, Xiaoye Sherry Li, Aydin Buluc, Jiejun
Xu, and Hang Liu. H-index: Hash-indexing for par-
allel triangle counting on gpus. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC),
pages 1–7. IEEE, Sep. 2019.

[81] Roger Pearce, Trevor Steil, Benjamin W Priest, and
Geoffrey Sanders. One quadrillion triangles queried
on one million processors. In 2019 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pages
1–5. IEEE, 2019.

[82] Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. Es-
cape: Efficiently counting all 5-vertex subgraphs. In
Proceedings of the 26th International Conference on
World Wide Web, WWW ’17, pages 1431–1440, Re-
public and Canton of Geneva, Switzerland, 2017. Inter-
national World Wide Web Conferences Steering Com-
mittee.

874    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[83] Natasa Pržulj, Derek G Corneil, and Igor Jurisica. Mod-
eling interactome: scale-free or geometric? Bioinfor-
matics, 20(18):3508–3515, 2004.

[84] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and
Pierre Baldi. Graph kernels for chemical informatics.
Neural networks, 18(8):1093–1110, 2005.

[85] Raghavan Raman, Oskar van Rest, Sungpack Hong,
Zhe Wu, Hassan Chafi, and Jay Banerjee. Pgx. iso:
parallel and efficient in-memory engine for subgraph
isomorphism. In Proceedings of Workshop on GRAph
Data management Experiences and Systems, pages 1–
6, 2014.

[86] Xuguang Ren, Junhu Wang, Wook-Shin Han, and Jef-
frey Xu Yu. Fast and robust distributed subgraph
enumeration. Proceedings of the VLDB Endowment,
12(11):1344–1356, 2019.

[87] Timothy G. Rogers, Mike O’Connor, and Tor M.
Aamodt. Divergence-aware warp scheduling. In 2013
46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 99–110, 2013.

[88] Ryan A Rossi and Nesreen K Ahmed. Role discovery
in networks. IEEE Transactions on Knowledge and
Data Engineering, 27(4):1112–1131, 2014.

[89] Ryan A. Rossi and Rong Zhou. Leveraging multiple
gpus and cpus for graphlet counting in large networks.
In Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Management,
CIKM ’16, pages 1783–1792, New York, NY, USA,
2016. ACM.

[90] Satu Elisa Schaeffer. Graph clustering. Computer
science review, 1(1):27–64, 2007.

[91] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao,
and Ning Xu. Parallel subgraph listing in a large-scale
graph. In Proceedings of the 2014 ACM SIGMOD In-
ternational Conference on Management of Data, SIG-
MOD ’14, pages 625–636, New York, NY, USA, 2014.
ACM.

[92] Jessica Shi, Laxman Dhulipala, and Julian Shun. Par-
allel clique counting and peeling algorithms. arXiv
preprint arXiv:2002.10047, 2020.

[93] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai.
Graphpi: High performance graph pattern matching
through effective redundancy elimination. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’20. IEEE Press, 2020.

[94] J. Shun and K. Tangwongsan. Multicore triangle com-
putations without tuning. In 2015 IEEE 31st Interna-
tional Conference on Data Engineering, pages 149–
160, April 2015.

[95] Shuya Suganami, Toshiyuki Amagasa, and Hiroyuki
Kitagawa. Accelerating all 5-vertex subgraphs count-
ing using gpus. In International Conference on
Database and Expert Systems Applications, pages 55–
70. Springer, 2020.

[96] Shixuan Sun, Yulin Che, Lipeng Wang, and Qiong Luo.
Efficient parallel subgraph enumeration on a single
machine. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pages 232–243. IEEE,
2019.

[97] Shixuan Sun and Qiong Luo. Scaling up subgraph
query processing with efficient subgraph matching. In
2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 220–231. IEEE, 2019.

[98] Siddharth Suri and Sergei Vassilvitskii. Counting trian-
gles and the curse of the last reducer. In Proceedings
of the 20th International Conference on World Wide
Web, WWW ’11, pages 607–614, New York, NY, USA,
2011. ACM.

[99] N. Talukder and M. J. Zaki. A distributed approach for
graph mining in massive networks. Data Min. Knowl.
Discov., 30(5):1024–1052, September 2016.

[100] N. Talukder and M. J. Zaki. Parallel graph mining with
dynamic load balancing. In 2016 IEEE International
Conference on Big Data (Big Data), pages 3352–3359,
Dec 2016.

[101] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco
Serafini, Georgos Siganos, Mohammed J. Zaki, and
Ashraf Aboulnaga. Arabesque: A system for dis-
tributed graph mining. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP
’15, pages 425–440, New York, NY, USA, 2015. ACM.

[102] Tatsuya Toki and Tomonobu Ozaki. Experimental
evaluation of a gpu-based frequent subgraph miner
using synthetic databases. In 2016 Fourth International
Symposium on Computing and Networking (CANDAR),
pages 504–507, 2016.

[103] Ha-Nguyen Tran, Jung-jae Kim, and Bingsheng He.
Fast subgraph matching on large graphs using graphics
processors. In Matthias Renz, Cyrus Shahabi, Xiao-
fang Zhou, and Muhammad Aamir Cheema, editors,
Database Systems for Advanced Applications, pages
299–315, Cham, 2015. Springer International Publish-
ing.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    875



[104] Vasileios Trigonakis, Jean-Pierre Lozi, Tomáš Faltín,
Nicholas P. Roth, Iraklis Psaroudakis, Arnaud Dela-
mare, Vlad Haprian, Calin Iorgulescu, Petr Koupy, Jin-
soo Lee, Sungpack Hong, and Hassan Chafi. aDFS: An
almost Depth-First-Search distributed Graph-Querying
system. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 209–224. USENIX Associa-
tion, July 2021.

[105] J. R. Ullmann. An algorithm for subgraph isomor-
phism. J. ACM, 23(1):31–42, January 1976.

[106] Fei Wang, Jianqiang Dong, and Bo Yuan. Graph-based
substructure pattern mining using cuda dynamic par-
allelism. In Hujun Yin, Ke Tang, Yang Gao, Frank
Klawonn, Minho Lee, Thomas Weise, Bin Li, and Xin
Yao, editors, Intelligent Data Engineering and Auto-
mated Learning – IDEAL 2013, pages 342–349, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[107] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang
Nguyen, and Guoqing Harry Xu. Rstream: Marrying
relational algebra with streaming for efficient graph
mining on a single machine. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, pages 763–782, Berkeley,
CA, USA, 2018. USENIX Association.

[108] Leyuan Wang and John D Owens. Fast gunrock
subgraph matching (gsm) on gpus. arXiv preprint
arXiv:2003.01527, 2020.

[109] Leyuan Wang, Yangzihao Wang, Carl Yang, and John D
Owens. A comparative study on exact triangle counting
algorithms on the gpu. In Proceedings of the ACM
Workshop on High Performance Graph Processing,
pages 1–8, 2016.

[110] Martin Winter, Mathias Parger, Daniel Mlakar, and
Markus Steinberger. Are dynamic memory managers
on gpus slow? a survey and benchmarks. In Proceed-
ings of the 26th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’21,
page 219–233, New York, NY, USA, 2021. Association
for Computing Machinery.

[111] Michael M Wolf, Mehmet Deveci, Jonathan W Berry,
Simon D Hammond, and Sivasankaran Rajaman-
ickam. Fast linear algebra-based triangle counting
with kokkoskernels. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–7.
IEEE, 2017.

[112] Di Wu, Fan Zhang, Naiyong Ao, Fang Wang, Xi-
aoguang Liu, and Gang Wang. A batched gpu algo-
rithm for set intersection. In 2009 10th International
Symposium on Pervasive Systems, Algorithms, and Net-
works, pages 752–756. IEEE, 2009.

[113] Di Wu, Fan Zhang, Naiyong Ao, Gang Wang, Xi-
aoguang Liu, and Jing Liu. Efficient lists intersection
by cpu-gpu cooperative computing. In 2010 IEEE In-
ternational Symposium on Parallel & Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), pages
1–8. IEEE, 2010.

[114] Xifeng Yan and Jiawei Han. gspan: graph-based sub-
structure pattern mining. In Proceedings of the 2002
IEEE International Conference on Data Mining, pages
721–724, Dec 2002.

[115] Jaewon Yang and Jure Leskovec. Defining and eval-
uating network communities based on ground-truth.
CoRR, abs/1205.6233, 2012.

[116] Abdurrahman Yaşar, Sivasankaran Rajamanickam,
Michael Wolf, Jonathan Berry, and Ümit V Çatalyürek.
Fast triangle counting using cilk. In 2018 IEEE High
Performance extreme Computing Conference (HPEC),
pages 1–7. IEEE, 2018.

[117] Li Zeng, Lei Zou, M Tamer Özsu, Lin Hu, and Fan
Zhang. Gsi: Gpu-friendly subgraph isomorphism. In
2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 1249–1260. IEEE, 2020.

[118] Jiyuan Zhang, Yi Lu, Daniele G Spampinato, and Franz
Franchetti. Fesia: A fast and simd-efficient set inter-
section approach on modern cpus. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE),
pages 1465–1476. IEEE, 2020.

[119] Luming Zhang, Mingli Song, Zicheng Liu, Xiao Liu,
Jiajun Bu, and Chun Chen. Probabilistic graphlet cut:
Exploiting spatial structure cue for weakly supervised
image segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 1908–1915, 2013.

[120] Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng,
and Jiafeng Guo. Kaleido: An Efficient Out-of-core
Graph Mining System on A Single Machine. In Pro-
ceedings of the 2020 IEEE International Conference
on Data Engineering (ICDE 2020), ICDE ’20, 2020.

876    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A Artifact Appendix

Abstract
This artifact appendix helps the readers reproduce the main
evaluation results of the OSDI’ 22 paper: Efficient and Scal-
able Graph Pattern Mining on GPUs.

Scope
The artifact can be used for evaluating and reproducing the
main results of the paper, including Table 4, Table 5, Table 6,
Table 7, Table 8 and Fig. 9, Fig. 10, Fig. 11, Fig. 12 in §8.

Contents
The artifact evaluation includes all the experiments
in the paper. Details of the experiments are listed here:
https://github.com/chenxuhao/GraphMiner/blob/master/OSDI-
experiments-guide.md

Hosting
The source code of this artifact can be found on GitHub:
https://github.com/chenxuhao/GraphMiner, master branch.

Requirements
Hardware dependencies

This artifact depends on an NVIDIA V100 GPU.
Software dependencies

This artifact requires CUDA toolkit 11.1.1 or greater and
GCC 8 or greater.

Details of the dependencies are listed here:
https://github.com/chenxuhao/GraphMiner/blob/master/OSDI-
experiments-guide.md

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    877

https://github.com/chenxuhao/GraphMiner/blob/master/OSDI-experiments-guide.md
https://github.com/chenxuhao/GraphMiner
https://github.com/chenxuhao/GraphMiner/blob/master/OSDI-experiments-guide.md



	osdi22_full_proceedings_interior
	osdi22-flinn
	Introduction
	Design and Implementation
	Peers
	Trackers
	Superpeers
	Tracker-Peer Communication
	Ephemeral Distribution Trees
	Selection Policies
	Caching policies
	Tracker sharding
	Security and integrity
	Virtual superpeers
	Ephemeral data sources
	Fault tolerance
	Emulation and customization

	Evaluation
	Reducing load on external storage
	Benefits of delegation
	Comparison with prior systems
	Optimization results
	Overheads

	Related work
	Conclusion
	Acknowledgements

	osdi22-reidys
	Introduction
	Characterization for Storage Harvesting
	Cloud Storage Utilization
	Opportunities for Storage Harvesting

	Technical Background
	Storage Virtualization and SDF
	Harvest Virtual Machine

	Design and Implementation
	Design Goals and Challenges
	System Overview
	New Abstraction for Storage Harvesting
	Definition of Ghost vSSD
	Management of Ghost vSSDs

	Predictions for Storage Harvesting
	Heuristic-based Prediction for Unsold VMs
	Online Learning for Allocated and Harvest VMs
	Resource Provisioning for Improved Accuracy

	Exception Handling in Storage Harvesting
	Implementation Details

	Evaluation
	Experimental Setup
	Improved Storage Utilization
	Improved Performance for Harvest VM
	Performance Impact on Regular VM
	Overhead Sources in BlockFlex

	Discussion and Future Work
	Related Work
	Conclusion

	osdi22-wang
	Introduction
	Background
	Motivation 
	MemLiner Design and Implementation
	Application and GC Coordination 
	MemLiner Tracing Algorithm 
	Design Overview 
	Object Location Estimation 
	MemLiner Tracing Algorithm

	Discussion

	GC-Specific Optimizations
	Limitations
	Evaluation
	Experiment Setup
	Performance with G1 GC
	Performance with Shenandoah GC 
	Comparisons with Other Systems 
	More Detailed Results 

	Related Work
	Conclusion
	Artifact Appendix
	Artifact Summary
	Artifact Check-list
	Description
	MemLiner's Codebase
	Deploying MemLiner
	Running Applications



	osdi22-zhou_yang
	Introduction
	Background
	Carbink Design
	Failure Model
	Remotable Pointers
	Span-Based Memory Management
	Fault Tolerance via Erasure Coding
	EC-Batch: Swapping
	EC-Batch: Remote Compaction

	Failure Recovery
	Thread Synchronization

	Implementation
	Evaluation
	Microbenchmarks
	Macrobenchmarks
	Failure Recovery
	Comparison with AIFM-like Systems

	Discussion
	Related Work
	Conclusion

	osdi22-huang_leixiang
	Introduction
	Metastability in the Wild
	Methodology
	Summary of Metastable Failures in the Wild

	Metastability Framework
	System Model
	Triggers
	Sustaining Effect Loop
	Metastability Scenarios
	System States
	Stable State
	Vulnerable State
	Metastable Failure State

	Recovery

	Metastability at Twitter
	Replicating Metastability
	Metastability due to GC
	Experiment Setup
	Inducing Metastable Failures

	Metastability due to Retries
	Experiment Setup
	Inducing Metastable Failures

	Metastability due to Look-aside Cache
	Experiment Setup
	Inducing Metastable Failures


	Discussion
	Multi-System Failures
	Human Factors
	Fix to Break
	Mild Metastable Failures
	Prevention and Mitigation

	Related Work
	Conclusion
	Proof of model theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4


	osdi22-lou-semantic
	Introduction
	Background
	Definition
	An Example

	Study Methodology
	Are Silent Semantic Failures Rare?
	What Kind of Semantics Is Violated?
	Sources of Violated Semantics
	Categorizations of Violated Semantics

	Why Do Silent Semantic Failures Occur?
	How Are Semantic Failures Manifested?
	Current Practice for Semantic Failures
	Testing
	Assertions
	Observability

	Oathkeeper: A Semantic Violation Checker
	Design Overview and Workflow
	Instrumentation and Trace Generation
	Template-Driven Inference
	Rule Validation
	Runtime Checking
	Optimizations
	Implementation
	Limitations

	Evaluation
	Generation Overview
	Checking Newer Violations
	Performance
	Runtime Overhead
	Rule Activation and False Positive

	Related Work
	Conclusion

	osdi22-lou-resin
	Introduction
	Background and Motivation
	Host Memory Compositions
	Memory Leaks
	Requirements

	Overview of Resin
	Design of Leak Detection
	Challenges
	Lightweight Memory Usage Monitoring
	Detection Algorithms
	Bucketization-based Pivot Analysis
	Localizing Individual Processes


	Diagnosis of Detected Leaks
	Background: Heap Snapshot
	Choosing Candidate Hosts to Profile
	Deciding Trace Collection Strategy
	Collecting Reference Snapshots
	Trace Analyses for Diagnosis

	Mitigating Leaks
	Evaluation
	Deployment Status and Scale
	Detecting Production Memory Leaks
	End-to-End Impact
	Effectiveness of Detection
	Effectiveness of Diagnosis
	Effectiveness of Mitigation
	Comparison of Different Algorithms
	Runtime Overhead
	Tuning Effort

	Lessons and Limitations
	Related Work
	Conclusion

	osdi22-sethi
	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 Why Do Applications Cancel Tasks?
	5 Root Causes of Cancel-Related Bugs
	5.1 Cancel-initiation bugs
	5.2 Cancel-propagation bugs
	5.3 Cancel-fulfill bugs
	5.4 Discussion: cancel mechanisms

	6 Symptoms of Cancel-Related Bugs
	7 Task Cancel Anti-Patterns
	7.1 Unhandled Interrupt Exception (Java).
	7.2 Interrupt API Misuse (Java).
	7.3 Cancel not propagated to dependent tasks (Java)
	7.4 Ignored cancellation tokens in loop (C#)
	7.5 Token not passed - .NET analyzer (C#)
	7.6 Anti-pattern limitations

	8 Related Work
	9 Future Research Directions
	10 Conclusions
	11 Acknowledgements
	References

	osdi22-sun
	Introduction
	Background and Motivation
	Sieve Design
	Perturbing A Controller's View of The State
	Collecting Reference Traces
	Test Plan Generation
	Avoiding Ineffective Test Plans
	Pruning by Causality
	Pruning Unsuccessful Updates

	Test Plan Execution
	Differential Test Oracles
	Checking End States
	Checking State-Update Summaries

	Dealing with Nondeterminism

	Implementation
	Evaluation
	Finding New Bugs
	New Bugs Detected by Sieve
	Oracle Effectiveness

	Test Efficiency
	False Positives

	Discussion
	Limitations
	Related Work
	Conclusion

	osdi22-kim
	Introduction
	Background and Motivation
	 Hybrid DRAM+NVMM Key-Value Store 
	Log-Structured Merge Tree
	Asynchronous Incremental Checkpointing
	Write in LSM Tree
	Search in LSM Tree
	Side Effect of Write Buffer: Write Stall
	Write Amplification in LSM Trees

	NUMA Effects

	Design of ListDB
	Three-Level Architecture
	Index-Unified Logging
	Conversion of IUL into SkipList
	MemTable Flush without clflush
	Walk-Through Example
	Checkpointing L0 PMTable

	NUMA Effects for SkipList
	NUMA-aware Braided SkipList

	Zipper Compaction
	Scan Phase
	Merge Phase
	Lock-Free Search
	Updates and Deletes
	Fragmentation and Garbage Collection
	Linearizability 

	Look-up Cache
	Recovery

	Evaluation
	Experimental Setup
	Evaluation of Index-Unified Logging
	IUL vs. WAL: Flush Throughput
	Evaluation of IUL using YCSB

	Evaluation of Braided SkipList
	Putting It All Together
	Recovery Performance
	Comparison with Other Designs
	Write Amplification

	Comparison with NoveLSM and SLM-DB
	Comparison with Pmem-RocksDB

	Conclusion

	osdi22-zhou_diyu
	Introduction
	PM Performance Analysis
	Intel Optane internals
	Concurrent accesses to PM
	NUMA impact on PM

	Odinfs Design
	Odinfs Design Goals
	Odinfs Architecture
	Handling system calls
	NUMA-aware PM allocation
	Opportunistic delegation
	Concurrency control
	Crash consistency

	Odinfs implementation
	Evaluation
	Evaluation methodology
	Throughput and latency
	IO amplification
	Sensitivity analysis
	Datapath scalability
	Macrobenchmarks

	Discussion
	PM I/O scheduling
	Comparison against RAID0
	Applicability to future PM hardware

	Limitations
	Related work
	Conclusion

	osdi22-fu
	Introduction
	Background
	Linearizability
	Durable Linearizability
	Persistence Model

	Durable Linearizability Bugs
	The Gap Between LP and DP
	DL Bug Pattern 1: An Incompletely-Durable Bug
	DL Bug Pattern 2: An Unrecovered-Durable Bug
	DL Bug Pattern 3: A Visible-But-Not-Durable Bug

	Overview of Our Approach
	Challenges in Detecting DL Bugs
	Adversarial NVM State and Thread Interleaving
	Likely-Linearization Point Inference

	Design of Durinn
	Tracing Memory Accesses
	Likely-Linearization Point Inference
	Adversarial NVM State and Thread Interleaving Construction
	Incompletely-Durable Bug Pattern
	Unrecovered-Durable Bug Pattern
	Visible-But-Not-Durable Bug Pattern
	Cache and NVM Simulation

	Durable Linearizability Validation

	Implementation
	Discussion
	False Negatives and False Positives in Durinn
	Persistent Cache
	Relationship to ACID

	Evaluation
	Evaluation Methodology
	Detected Durable Linearizability Bugs
	Statistics of DL Bug Detection
	Likely-Linearization Point Inference
	Comparison with Other Tools

	Related Work
	Conclusion

	osdi22-zheng-ningxin
	Introduction
	Background and Motivation
	SparTA Design
	The TeSA abstraction
	Sparsity Attribute Propagation
	Code Generation with TeSA

	Implementation
	Evaluation
	End-to-End Experiments
	SparTA on CUDA GPUs
	SparTA on Other Accelerators

	Sparsity Attribute Propagation
	Efficient Code Generation with TeSA
	Augmented Model Sparsity Exploration
	Accelerating Sparse Model Training

	Related Works
	Conclusion
	Artifact Appendix

	osdi22-zhu
	Introduction
	Motivation and Key Observations
	System Design
	Tensor Expression and rTile
	Tensor Program Construction
	Efficient Evaluation of an rProgram

	Implementation
	Evaluation
	Evaluation on NVIDIA GPUs
	Evaluation on Other Accelerators.

	Discussion and Future Work
	Related Work
	Conclusion

	osdi22-lv
	Introduction
	Preliminaries
	Background and Motivation
	Practical Challenges
	System Requirements

	Walle: Architecture and Design Rationale
	Architecture Overview
	Design Rationale

	Compute Container in Walle 
	Tensor Compute Engine
	Data and Model Related Libraries
	Python Thread-Level Virtual Machine
	Standard APIs

	Data Pipeline in Walle
	On-Device Stream Processing Framework
	Real-Time Device-Cloud Tunnel

	Deployment Platform
	Evaluation of Walle
	Performance in E-Commerce Scenarios
	Benchmark Testing
	Deployment Platform Statistics

	Related Work
	Conclusion

	osdi22-unger
	Introduction
	Unity's Approach

	Background
	Parallelization
	Algebraic Transformations
	Intermediate Representations

	Parallel Computation Graph
	Tensor Representation
	Machine Mappings
	Parallelization Operators
	Discussion and Comparison

	Graph Substitutions
	Joint Optimization
	Substitution Selection
	Finding Optimized Machine Mappings
	Scaling to Large Graphs

	Evaluation
	Implementation and Experimental Setup
	End-to-end Evaluation
	Parallelism Dimensions
	Joint Optimization
	Search Algorithm

	Related Work
	Limitations and Future Work
	Conclusion

	osdi22-gao
	Introduction
	Motivation
	Contribution

	Understanding Mobile Graphics APIs
	Background
	Real-World Graphics Workloads
	Implications for Mobile Emulation

	System Overview
	Graphics Projection
	Shadow Context
	Resource Handle

	Flow Control
	Data Teleporting
	System and Data Dynamics
	Workflow

	Implementation
	Evaluation
	Experiment Setup
	Evaluation Results
	Performance Breakdown

	Related Work
	Conclusion
	Artifact Appendix

	osdi22-mahgoub
	Introduction
	Motivation
	Workload Characterization
	Performance Modeling

	Design
	Modeling E2E Latency Distribution
	Allocating the Right Resources
	Bundling Parallel Invocations 
	Pre-warming to Mitigate Cold Starts
	Further Design Considerations

	Implementation
	Experimental Evaluation
	Serverless DAG Applications
	Orion and Competing Approaches
	End-to-End Evaluation
	Microbenchmarks
	Impact of Pre-warming on Utilization & Latency
	Evaluation of Performance Model
	Optimizing Resources for a Target E2E Latency
	Impact of Varying Bundle Size

	Generalizability to Microsoft Azure

	Pre-warming Policy Simulator
	Related Work
	Discussion
	Conclusion
	Acknowledgments
	Artifact Appendix

	osdi22-shanny
	Introduction
	Background, motivation, and related work
	Universal constructions
	Transactional memory
	Summary and goals

	Occualizer Overview
	Scope
	Code transformations
	LCOW synchronization library
	Linearizability argument
	Discussion: Prerequisite verification

	Design
	Library interface & code transformations
	LCOW synchronization library
	Optimizing range scans

	Implementation
	Correctness
	Evaluation
	Contention benchmarks
	Full-system benchmark
	Overhead analysis

	Conclusion

	osdi22-yildiz
	osdi22-quinn
	Introduction
	Motivation
	Views 
	Queries
	First Query
	Second Query 
	Third Query 
	Fourth Query
	Fifth Query


	The OmniTable Query Model
	Relations
	Relational Operators
	Column Operators
	Derived Views 

	Design 
	Parsing
	Planning
	Logical Planning
	Physical Planning

	Execution
	Instrumentation Generation
	Materialization


	Implementation
	Evaluation
	Case Studies
	Complexity
	Query Latency
	Optimizations

	Related Work
	Conclusion
	Acknowledgements

	osdi22-zhong
	Introduction
	Background and Motivation
	Software is Now the Storage Bottleneck
	BPF Primer
	The Potential Benefit of BPF

	Design Challenges and Principles
	XRP Design and Implementation
	Resubmission Logic
	BPF Hook
	BPF Verifier
	The Metadata Digest
	Resubmitting NVMe Requests

	Synchronization Limitations
	Interaction with Linux Schedulers

	Case Studies
	BPF-KV
	WiredTiger

	Evaluation
	BPF-KV
	Thread Scaling
	Range Query
	WiredTiger

	Related Work
	Conclusions and Future Work
	Acknowledgments
	Artifact Appendix

	osdi22-feng
	Introduction
	Background and Motivation
	Design and Implementation of TriCache
	Overview of TriCache
	Shared Cache
	Software Address Translation Cache
	Compile-time Instrumentation

	Evaluation
	Performance on Graph Processing
	Performance on Key-Value Stores
	Performance on Big-Data Analytics
	Performance on Graph Database
	Micro-benchmarks
	Performance Breakdown

	Related Work
	Discussion
	Conclusion

	osdi22-kadekodi
	Introduction
	Background and Motivation
	Existing designs are impractical

	Eclectic Stripes and their challenges
	Mechanisms to enable eclectic stripes
	Interpreting reliability of eclectic stripes
	Exact MTTDL calculation is costly
	Efficient and accurate MTTDL approximation

	Understanding MTTDL of eclectic stripes
	Eclectic Volumes

	Design and working of Tiger
	Data flow in Tiger
	The Eclectic Stripe Manager
	The Eclectic Volume Manager

	Evaluation of Tiger
	Tiger enables flexible data placement
	Tiger achieves high risk-diversity
	Tiger adapts redundancy efficiently
	Challenging situations for Tiger

	Additional Related Work
	Conclusion
	Acknowledgements
	Derivation of approximation of MTTDL of eclectic stripes

	osdi22-stamler
	Abstract
	1 Introduction
	2 Background
	2.1 Copies in IO-Intensive Applications
	2.2 Copy Case Study: Redis
	2.3 When is IO Performance Copy-Limited?
	2.4 Limitations of Existing Zero-Copy IO APIs

	3 zIO Design
	3.1 Application Copy Elimination
	3.2 IO Stack API Copy Elimination
	3.3 Optimistic Input Persistence
	3.4 Discussion

	4 Implementation
	5 Evaluation
	5.1 Microbenchmarks
	5.2 Redis
	5.3 Icecast
	5.4 MongoDB

	6 Related Work
	7 Conclusion
	References

	osdi22-chajed
	Introduction
	Related work
	Verifying storage systems
	Concurrency verification
	Verified two-phase locking
	Unverified file systems

	System design
	Dafny file system
	Transaction system

	Specifying DaisyNFS
	Formalizing NFS
	Specifying correctness for DaisyNFS

	Verification approach
	Simulation transfer
	Putting simulation transfer together with Dafny proofs

	Verifying the transaction system
	GoTxn's implementation
	Verifying two-phase locking with local reasoning

	Verifying the Dafny implementation
	Implementing the file system using transactions
	Avoiding deadlock in renames
	Freeing space

	Achieving good performance

	Development effort
	Evaluation
	Performance
	Scalability
	Testing the trusted code and spec
	Incremental improvements

	Conclusion

	osdi22-li
	Introduction
	Threat Model
	CCA Design
	VIA Framework
	Mover Oracle Queries
	Permutation Conditions
	Register Accounting
	Ideal Secure System Model

	CCA Implementation and Verification
	Concurrent Multi-level Page Tables
	Relaxed Memory
	C and Assembly Code Integration
	Security
	Bugs Found
	CCA KVM

	Performance Evaluation
	Microbenchmarks
	Application Benchmarks

	Related Work
	Conclusions
	Acknowledgments

	osdi22-yao
	Introduction
	Overview
	Minimum Implication Graph
	Candidate Invariant Enumeration
	Top-down Invariant Refinement
	Bottom-up Invariant Refinement
	Optimizations Based on Mutual Implication
	Evaluation
	Related Work
	Conclusions
	Acknowledgments

	osdi22-athalye
	Introduction
	Threat model and security goal
	Information-preserving refinement
	Applying IPR to HSMs

	Proving IPR
	Physical implementation
	Refinement relation and initialization
	Functional equivalence
	Physical equivalence
	Crash safety

	The Knox framework
	Nondeterminism
	Unbounded-length inputs
	Hints

	Implementation
	Evaluation
	Case studies
	PIN-protected backup HSM
	Password-hashing HSM
	TOTP token
	Summary

	Performance

	Discussion
	Emulator efficiency
	Randomness
	Allowed leakage
	Monolithic end-to-end verification

	Related work
	Conclusion

	osdi22-yu
	Introduction
	Background
	Challenges and Proposed Solutions
	Orca Design
	Distributed Architecture
	Scheduling Algorithm

	Implementation
	Evaluation
	Engine Microbenchmark
	End-to-end Performance

	Related Work and Discussion
	Conclusion

	osdi22-han
	Introduction
	Background and Motivation
	Characterizing GPU-Accelerated DNN Inference
	State-of-the-art GPU Scheduling

	Reef Overview
	System Architecture
	An Illustrative Example

	Reset-based Preemption
	Evicting Buffered Kernels
	Killing Running Kernels
	Restoring Preempted Tasks
	Preemption on closed-source GPUs

	Dynamic Kernel Padding
	Efficient Function Pointers
	Kernel Selection

	Implementation
	Evaluation
	Experimental Setup
	Overall Performance
	DNN Inference Preemption
	Dynamic Kernel Padding
	Closed-source GPUs

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Artifact Appendix

	osdi22-zheng_lianmin
	Introduction
	Background: Distributed Deep Learning
	Conventional View of ML Parallelism
	Intra- and Inter-Operator Parallelisms

	Overview
	Intra-Operator Parallelism
	The Space of Intra-Operator Parallelism
	ILP Formulation

	Inter-Operator Parallelism
	The Space for Inter-Operator Parallelism
	DP Formulation

	Parallelism Orchestration
	Limitations and Discussion
	Evaluation
	End-to-End Performance
	Intra-Op Parallelism Ablation Study
	Inter-Op Parallelism Ablation Study
	Compilation Time
	Cross-Mesh Resharding
	Case Study: Wide-ResNet

	Related Work
	Conclusion
	Acknowledgement
	Proof of Submesh Shape Covering
	Model Specifications
	Extra Case Study

	osdi22-mohan
	Introduction
	Background and Motivation
	Motivation : Resource sensitivity
	Synergy Scheduling Policies
	Assumptions & Limitations

	Synergy: Design
	Optimistic Profiling
	Scheduling mechanism
	Synergy-Greedy: Greedy Scheduling

	Scheduling Algorithms
	Synergy-Opt
	Finding ideal allocation
	Feasible Allocation on Multiple Machines
	Challenges with operationalizing Synergy-Opt

	Synergy-Tune
	Implementation

	Evaluation
	Experimental setup
	End-to-End Physical Cluster Experiments
	End-to-end results in simulation
	Simulation with production traces
	Simulation with varying load

	Impact of workload split
	Impact of CPU:GPU ratio
	Comparison to Synergy-Opt
	Comparison to DRF and Tetris

	Discussion and Future Work
	Related Work
	Conclusion

	osdi22-sartakov
	Introduction
	Hardware Isolation Support
	Isolation and sharing in the cloud
	CHERI capability architecture
	Threat model

	cVM Design
	Architecture overview
	Isolation boundaries
	Creation and communication API
	Capability management

	Implementation
	cVM lifecycle
	Calls between nested compartments
	Communication mechanisms
	Capability revocation

	Security Analysis
	Evaluation
	Experimental environment
	Multi-tier deployment with NGINX/Redis
	Platform validation with Redis
	Process compartmentalization with Python library
	Inter-cVM communication
	Deployment time

	Related Work
	Conclusions

	osdi22-huang_yongzhe
	Introduction
	Background: Device Driver Isolation
	KSplit Overview
	Threat Model and Security Goal

	KSplit Static Analysis
	Program Dependence Graph
	Computing Shared and Private Data
	Cross-Domain Synchronization
	Critical Sections and Atomic Primitives

	Low-Level Kernel Programming Idioms
	Implementation
	Evaluation
	Generality of Static Analysis
	Case Study: Ixgbe Network Driver

	Performance

	Conclusions
	Acknowledgments
	Artifact Appendix

	osdi22-jing
	Introduction
	Motivation and Goals
	Auxiliary Tasks
	Example: MySQL Deadlock Checker
	Safety and Performance Concerns
	Why Fork or Sandbox Is Insufficient?

	Orbit: OS Support For Auxiliary Executions
	Overview
	Design Challenges and Insight

	Orbit Designs
	System Interfaces
	Managing Orbit
	Synchronizing States to Orbit
	Orbit Task Execution
	Controlled State Alteration
	Optimizations
	Incremental Snapshotting
	Dynamic Page Mode Choice
	Delegate Objects for Large Structs

	Compiler Support

	Evaluation
	Evaluation Setup
	Microbenchmark
	Applying Orbit on Large Applications
	Fault Isolation
	Fault Injection Testing
	Real-world Bug Testing

	Performance Overhead
	Effectiveness of Optimizations
	Memory Footprint
	Usage Effort

	Discussions and Limitations
	Related Work
	Conclusion

	osdi22-ren
	Introduction
	Background and Motivation
	Insufficient Functionality
	Inefficient Performance

	iFed Design
	Design Principles
	iFed Functionality and Usage
	iFed Architecture
	Runnable In-memory Format
	iFed Pass Manager
	Dynamic Library Concatenation
	Relocation Branch Elimination
	Discussion and Summary

	iFed Implementation
	Evaluation
	Micro-benchmarks
	Application Benchmarks
	Web Serving

	Related Work
	Conclusions

	osdi22-park
	Introduction
	Background And Motivation
	Lock evolution
	Kernel customization
	Application-defined locking matters
	The need for dynamic lock patching

	The SynCord Framework
	SynCord overview
	Programming with SynCord
	SynCord APIs
	Auxiliary data structures

	SynCord properties for lock design

	SynCord Implementation
	eBPF for SynCord
	Kernel livepatching for SynCord

	Use Cases
	NUMA-aware spinlock
	Asymmetric multicore lock
	Scheduler-cooperative lock
	Biased per-cpu readers-writer lock
	Dynamic lock profiling
	Experience with SynCord

	Discussion
	Generality of SynCord
	Support for multi-tenancy
	Easier programming of lock policy
	Patching time

	Related Work
	Conclusion
	Acknowledgment


	osdi22-hof
	Introduction
	Threat Model and Assumptions
	Design
	System Boot and Initialization
	Enclaved Container Initialization
	Enclaved Task Execution
	Memory
	Inter-process Communucation
	Container File System

	Implementation
	Experimental Results
	Performance Measurements
	System Call Coverage
	Evaluation of Practical Attacks

	Related Work
	Conclusions
	Acknowledgments

	osdi22-zhang
	Introduction
	Related Work
	System Design
	Application Assumptions and Threat Model
	System Overview
	Application Requirements

	View-based Policy and Compliance
	Specifying Policies as Views
	Compliance to View-based Policy
	From Query Compliance to Noninterference

	Compliance Checking with SMT
	Translating Noncompliance to SMT
	Handling Practical SQL Queries
	Basic SQL Queries
	Rewriting Into Basic Queries

	Optimizations and SMT Encoding

	Decision Generalization and Caching
	Example
	Definitions and Goals
	Generating Decision Templates
	Step One: Trace Minimization
	Interlude: Model Finding for Satisfiable Formulas
	Step Two: Find Value Constraints
	Optimizations

	Decision Cache and Template Matching

	Implementation
	Evaluation
	Constraints, Policies, and Annotations
	Code Modifications
	Experiment Setup and Benchmark
	Page Load Times
	Fetch Latency
	Solver Comparison
	Template Generalization

	Additional Issues
	Conclusion
	Artifact Appendix

	osdi22-vuppalapati
	Introduction
	Shortstack Background
	System, Threat and Failure Models
	Oblivious Data Access Approaches

	Limitations of Strawman approaches
	Centralized proxy: Insecure and/or long periods of unavailability
	Challenges in Distributing Proxy Logic

	Shortstack Design
	Design Overview
	Shortstack Design Details
	Handling Failures
	Handling Dynamic Distributions

	Security Analysis
	Need for New Security Definitions
	Security Definitions and Proof of Security

	Evaluation
	Scalability Analysis
	Failure Recovery

	Related Work
	Conclusion

	osdi22-barman
	Introduction
	Related Work
	Overview
	Threat model
	Goals

	Background
	Design
	Client schedules
	Non-interactive circuit setup
	Oblivious replacement
	Efficient messaging
	Forward secrecy
	Provider availability and switching providers

	Privacy analysis
	Oblivious delegation
	Non-interactive setup
	Oblivious replacement & device partitions
	Efficient messaging


	Implementation
	Parameter selection

	Evaluation
	Server performance and costs
	Mobile clients
	Comparison with prior work

	Conclusion

	osdi22-david
	Introduction
	Survey of Dependency Usage in OSS
	Upgradvisor Overview
	An Example Dependency Update Problem
	Using Upgradvisor to Update Qlib

	Static Analysis of Dependency Updates
	Application and Dependency Call Graphs
	Grouping Changes
	Clustering Changes Into Call Targets

	Dynamic Hardware Tracing
	Target-focused Tracing
	Coarse-grained Hardware Tracing
	Gather Trace Results

	Implementation
	Evaluation
	Facilitating Dependency Updates
	Analyzing Multiple Blocked Updates
	Contributing to the OSS Community
	Detecting API Breakage
	Tracing Overhead

	Related Work
	Conclusions and Future Work
	Artifact Appendix

	osdi22-kallas
	Introduction
	Example & Overview
	Interfacing With the Shell
	Dynamic Interposition
	Preprocessor
	Parsing Library

	The JIT Engine
	JIT Stages

	Parallelizing Compilation Server
	Command Annotations
	Early, Pure Expansion
	Dependency Untangling
	Profile-driven Compiler Configuration

	Commutativity Awareness
	Compilation: Dataflow Model
	Runtime: Commutativity Implementation

	Evaluation
	Correctness
	Performance
	Further Microbenchmarks

	Related Work
	Discussion & Conclusion
	Artifact Appendix
	Artifact available
	Artifact functional
	Results reproducible


	osdi22-luo
	Introduction
	Challenges and Opportunities
	Contributions

	Related Work
	Case Studies
	Background and Overview
	Goals and Requirements
	The Failure Diagnosis Process
	Anomaly Detection
	The Utility of Hubble

	Overview of Hubble

	In-memory Tracing
	Data Format and Encoding
	Format under 64-bit Mode
	Format under 32-bit Mode
	Efficient Recording
	Alignment

	Hand-optimized Assembly

	Tracing Control
	Privacy and Security
	Evaluation
	Trace Point Overhead
	Cache Effects Microbenchmark
	Startup Overhead Macrobenchmark

	Experiences
	Concluding Remarks

	osdi22-goel
	Introduction
	Background and Motivation
	Poor fidelity due to JS non-determinism
	High storage overhead
	Downsides of alternate archival formats

	Overview
	Distinguishing properties of archived pages
	Challenges
	Requirements

	Design
	Improve fidelity by eliminating failed fetches
	Pruning non-functional code
	Prune unreachable code
	Summary

	Implementation
	Crawling pages
	Storing page snapshots
	Serving page snapshots

	Evaluation
	Storage
	Storage for resources.
	Storage for indices

	Fidelity
	Performance

	Verifying Page Properties
	Discussion
	Related work
	Conclusion
	Artifact Appendix
	Abstract
	Scope
	Contents
	Hosting
	Requirements
	Installations
	Experiments workflow
	Fidelity
	Storage
	Crawling throughput



	osdi22-sima
	Introduction
	Low-Latency Model Updates in DLRSs
	DLRSs and model updates
	Reasons for low-latency model updates
	Our key idea and associated challenges

	Ekko System Architecture
	System model
	Architecture overview

	Efficient Peer-to-Peer Model Update
	Model update overview
	Parameter versions in DLRSs
	Log-less parameter synchronisation
	Making synchronisation efficient
	Parameter update caches
	Shard versions

	Implementation details

	SLO Protection Mechanisms
	SLOs in a DLRS
	SLO-aware model update scheduler
	SLO-aware priorities for model updates
	Scheduler implementation

	Inference model state manager
	Monitoring model healthiness
	Low-latency model state rollback


	Evaluation
	Test-bed experiments
	Update latency
	Performance breakdown

	Production cluster experiments
	Model updates
	SLO protection mechanisms


	Related Work
	Conclusion

	osdi22-zeng
	Introduction
	Background & Motivation
	EBR Algorithms: KNN vs. ANN
	Practically Ideal EBR Architecture
	Existing EBR Architectures
	CPU-based EBR
	GPU-accelerated EBR

	FPGA Opportunities

	Faery Accelerator
	Corpus Manager
	Embedding Compaction to Maximize Single-channel Performance
	Horizontal HBM Division to Maximize Multi-channel Parallelism

	Similarity Calculation
	K-selection
	Filter
	Perfect Overlap of Faery Data Streams

	Faery Server
	Implementation
	Evaluation
	Experiment Setup
	Single-accelerator Performance
	Latency
	Throughput
	Latency-bounded Throughput
	Energy & Cost Efficiency
	Summary

	Multi-accelerator Performance

	Discussion
	Related Work
	Conclusion

	osdi22-chen
	Introduction
	Background and Related Work
	Graph Pattern Mining Problems
	Pattern-Aware GPM Algorithms
	DFS vs. BFS
	GPM Systems and Applications

	Challenges of Efficient GPM on GPU
	GPM vs. Graph Analytics
	GPM on GPU vs. GPM on CPU

	G2Miner System Overview and Interface
	Making Programming Easy
	System Interface
	Overview of Optimizations

	Pattern-specific GPU Code Generation
	Parallel Strategies for DFS on GPU
	Support for Hybrid Search Orders
	Support for Multi-pattern Problems
	Support for Advanced Pruning Schemes

	Device Primitives for Set Operations
	SIMD-aware Primitives
	Flexible Data Representation

	Runtime Scheduling and Management
	Task Scheduling for Multi-GPU
	GPU Memory Management

	Evaluation
	Single-GPU Performance
	Mining on GPU vs. on CPU
	Multi-GPU Scalability
	Impact of Optimizations

	Conclusion
	Acknowledgements
	Artifact Appendix




