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There wasn’t any research that compares the performance
in-depth of popular managed languages, JS, Python and Java,
to each other or to compiled languages like C++ and Go.
We built benchmarks and instrumented the runtimes for JS,
Java, and Python, and determined which is faster (under our
benchmark) as well as why performing GC in Java can result
in net speedup when compared with C++.

The most widely used programming languages today are
managed languages. The three most popular languages on
GitHub since 2015 are JavaScript, Java, and Python [12].
These languages offer the promise of productivity and thus
faster product-to-market because of a variety of features they
offer, including easier readability and usability, dynamic type
checking, memory management with garbage collection, and
dynamic memory safety checks.

When selecting a programming language for a new service,
the performance of the language is rarely a consideration at
the outset, as engineers frequently opt for productivity, in part
because of the belief that performance issues can be addressed
later, perhaps through horizontal scaling by simply adding
hardware. Some go as far as to claim “Choosing a language
for your application simply because it’s ‘fast’ is the ultimate
form of premature optimization” [20].

However, performance will ultimately become a priority
as the usage of the service begins to scale and the service
becomes too slow or the cost of hardware becomes too high.
Developers then begin a large sequence of performance op-
timizations that can grow into herculean efforts. But there
can come a point where incremental optimizations (requiring
much time and effort) no longer suffice and a more radical
solution must be considered, namely switching to a “better
performing” language. A few examples from industry: Stream
abandoned Python for Go, as Python would spend 10ms cre-
ating objects from data that Cassandra took 1ms to fetch,
noting that “We’ve been optimizing Cassandra, PostgreSQL,
Redis, etc. for years, but eventually, you reach the limits of
the language you’re using.” Discord switched from Go to
Rust claiming that “Rust was able to outperform the hyper
hand-tuned Go version.” [16]. Performance issues are also
cited as the main reason Twitter was forced to switch from

Ruby on Rails to Scala and Java [14, 15].
When selecting a new language for performance reasons,

the question is: what language? Understanding the perfor-
mance and scalability implications of a (new) language today
is non-trivial, especially for managed languages. This is for
several reasons.

First, no empirical studies exist that scientifically compare
the different managed languages. The primary source of infor-
mation available today is the blogosphere containing heated
“religious” debates that include tunnel-visioned anecdotes
with few rigorous measurements to back up stated claims. For
example, while many believe programs written in Java run
slower than when written in C/C++ [9], others suggest that
Java programs can be faster than C, because the JIT compiler
produces faster machine code by leveraging a runtime pro-
file [8]. Similarly, there have been polarized debates with re-
spect to the performance of JavaScript [3,13], Go [16,19] and
even Python – for example, sources from Paypal claimed that
Python offered superior performance over other languages
and reported multiple cases where Python outperformed their
C++ and Java counterparts while requiring less code [1].

Discussions on scalability are even muddier. For example,
in a popular blog by the official Node.js account, develop-
ers conclude that by being event-driven and asynchronous,
JavaScript is ideal for scaling to millions of concurrent con-
nections, despite its event loop only executes on a single
thread [18]. As another example, while it should be well-
known that CPython, the de facto runtime for Python today,
uses a global interpreter lock (GIL) that serializes all concur-
rent thread executions, Paypal’s engineering blog claims that
it scales well, and noted that “Dropbox, Disqus, Eventbrite,
Reddit, Twilio, Instagram, Yelp, EVE Online, Second Life, and,
yes, eBay and PayPal all have Python scaling stories that
prove scale is more than just possible: it’s a pattern” [1].

Second, no benchmark suite is publicly available today that
enables a meaningful comparison between different managed
languages (and their implementations). As a result, any com-
parison on language runtime performance often compares
apples to oranges.

Third, language runtime systems are extremely complex
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software systems, providing multiple abstractions that all
affect performance. For example, a developer must under-
stand the interpreter, possibly multiple JIT compilers (e.g.,
the OpenJDK JVM contains 4 levels of JIT compilation), a
memory management subsystem that performs garbage col-
lect, the behavior of thread libraries, etc. But there are no
helpful, publicly available profiling tools for understanding
the overheads of language runtime systems. The language
subsystems themselves expose little profiling information on
their internals. For example, while it is widely speculated
that dynamic type checking adds significant overhead [17],
V8/Node.js does not expose any performance counters to
report this overhead.

In this work, we present an in-depth quantitative perfor-
mance analysis of four of the popular managed languages with
their most widely used runtime systems: CPython, OpenJDK,
Node.js with the V8 engine for JavaScript, and the reference
Go compiler [5,7,10,12]. We compare their performance char-
acteristics with that of C++ on GCC as the baseline. Our focus
is primarily on understanding their differences with respect
to speed and scalability. We chose these languages not just
because of their popularity, but also because they represent
different designs along the following three dimensions:

• Typing. JavaScript and Python are dynamically typed,
meaning the runtime must determine the type of objects at
run time, whereas others are statically typed.

• Execution modes. Only Go is ahead-of-time compiled.
OpenJDK and V8/Node.js first interpret bytecode, and com-
pile hot functions Just-In-Time (JIT). CPython only has an
interpreter and no JIT compiler.

• Concurrency models. V8/Node.js is event driven where
event handlers are executed sequentially on a single thread.
Similarly, CPython’s GIL only allows one thread to exe-
cute at a time. Go has its own scheduler and provides user
threads as “goroutines.” Its scheduler decides how many
kernel threads to use for the developer’s goroutines. Open-
JDK’s Thread is simply a kernel thread.

1 Instrumentations and Benchmark Suite

We instrumented three runtimes: OpenJDK, Node.js/V8, and
CPython. Our instrumentations measure two types of infor-
mation: (1) the performance of the execution of any bytecode
instruction in the interpreter, and (2) the dynamic type and
bounds checking overhead in V8’s JIT compiled code. Users
can specify a bytecode instruction to measure its overhead, or
any JavaScript (JS) function to measure the type and bounds
checking overhead when executing that function.
Why profile interpreter performance? Some have the view
that interpreter performance is not important as it mostly af-
fects the startup time, which will be amortized by “warm
execution.” We do not share this view. While interpreter

performance may have been irrelevant over a decade ago
when workloads ran in large, long-running monolithic appli-
cations that handle all requests [26], the paradigm shift to
the cloud [23, 24, 27] and data analytics [22] expose the run-
time’s startup performance as being significant. For example,
auto-scaling in the cloud often results in the bringing up of
additional instances in the face of a load spike [23, 24]; the
problem is also exemplified by short-running instances in
Function-as-a-Service platforms [23,27]. In 2020, the median
AWS Lambda invocation ran for only 60 milliseconds [11],
while startup times for the JVM and V8 are on the order of
hundreds of milliseconds or even seconds [22, 23, 27, 28].
Similarly, data analytics systems face a fundamental tension
between parallelizing long running jobs into shorter tasks
and the runtime’s start-up overhead [22]. And bytecode-level
profiling can enable effectual optimizations. For instance, In-
stagram engineers instrumented CPython to identify the byte-
code instructions with high overheads, and then optimized
their code to avoid using these expensive instructions [6].
Why profile type and bounds checking? Dynamic type and
bounds checking is a major source of V8’s overhead, as we
will show later. Similar to bytecode profiling, programmers
can optimize their JS programs to avoid such overhead once
the source is identified. Our instrumentation also enables elim-
inating type and bounds checking entirely for those functions
where developers know that they are safe. For instance, say a
JS function accesses a[i], the element at index i of array a,
and their types never change (known as “monotype”). V8 de-
tects that a and i are monotype, and it speculatively compiles
the function: it checks a against the array type (instead of
other types) and i against integer, before accessing a[i]. But
to ensure safety, it cannot remove the checks because their
types could dynamically change in the future. In that case,
the check will fail, forcing the JIT-compiled function to exit
and be destroyed, and V8 will re-execute the function in its
interpreter before recompiling it.

By disabling the checking logic for any JS function, we
effectively create a significantly more efficient, albeit unsafe,
version of the function. In the above example, developers
could enable this feature to turn off the checks when they
know a and i are monotype, so the JIT-compiled code will
directly access a[i] by indexing into a without any checks
(effectively turning the JS function into a C function).
Benchmark suite. We created 6 realistic applications from
the ground up. The applications, which range from micro-
benchmarks to real applications, cover a variety of scenar-
ios, differing in compute intensity, memory usage, I/O inten-
sity, relative startup time, and the degree of available con-
currency. Three of the six applications are parallel, and we
parallelize them using both multithreading and multiprocess-
ing where applicable. From the six applications, we created
twelve benchmarks by varying degrees of concurrency, and
exploring alternative implementations of the applications. We
implemented these applications in each of the 5 languages.
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While the design of every implementation of an application
is conceptually identical, each implementation is optimized
for the language: we used our best effort to make the code
idiomatic. The benchmark suite is called LangBench. The
source code of our instrumented runtimes and LangBench
can be found at https://github.com/topics/langbench.
More details can be found in our ATC paper [21].

2 Overview of Results

Figure 1 shows the run times for the benchmarks in Lang-
Bench. Unsurprisingly, GCC was the fastest on average, with
Go and OpenJDK close behind, being 1.30x and 1.43x slower
than GCC. Impressively, Go and OpenJDK outperform GCC
for 3 out of the 12 benchmarks. V8/Node.js and CPython per-
formed the worst with run times 8.01x and 29.50x slower than
GCC. At the extreme, CPython was 129.66x slower than GCC
(for the sort benchmark). V8/Node.js and CPython were com-
petitive with GCC only when the workload is bottlenecked
by disk I/O, i.e., in the file server benchmark.

We also found that V8/Node.js and CPython are limited
with respect to achievable parallelism. Their design serializes
the threads’ computation, and requires expensive serialization
for different threads (V8) or processes (CPython) to communi-
cate. This leads to the unintuitive result that adding additional
threads actually slows down parallel applications as more
serialization is required. In fact, for both the key-value store
and parallel log analysis benchmark, the best performance is
achieved using only a single thread. In contrast, both Go and
OpenJDK scale to multicores. Go achieves a 1.02x speedup
over GCC in the multithreaded key-value store benchmark,
despite being slower in the single threaded version.

Next, we use our instrumented runtimes to provide detailed
analyses that explain these results.

3 Runtime Overhead (Single-thread)

This section investigates the source of runtime overheads on
single-threaded applications that performed poorly. Specifi-
cally, we found (1) type and bounds checking (§3.1) is the
bottleneck for V8 in its slowest benchmarks (Sudoku and
Sort); (2) interpreter performance (§3.2) is the major cause
of CPython’s overhead – despite lacking a JIT compiler, its
interpreter performs much worse compared to OpenJDK and
V8; (3) GC write barrier (§3.3) can be the bottleneck for both
OpenJDK and Go, even when heap usage is small.

3.1 Type and Bounds Checking Overhead

We found that type checking and bounds checking made up
41.83% and 87.43% of V8’s execution time in the default Su-
doku and Sort benchmarks, which are the two single-threaded

Code Version Time (s) Overhead of
Checks (%)

Default 2.369 –
1-2 Remove Obj./Int Checks 2.177 8.105

3 Remove Shape Check 2.219 6.332
4 Remove Bounds Check 2.154 9.076
5 Remove Hole Check 2.051 13.423

1-5 Remove All Checks 1.378 41.832

Table 1: We modified V8’s JIT compiler and removed each of the
checks performed for a 2D array access to board[x][y] shown in
Figure 2. We measured the resulting execution time, and compare it
against the default execution time with all checks.

benchmarks where V8 showed the worst performance com-
pared to GCC. Next we zoom into the Sudoku benchmark to
explain this overhead.

For V8/Node.js, Sudoku spends 93% of its time primar-
ily comparing 2D array elements of the sudoku board. The
majority of this time is spent performing 11 type and bound
checks for each 2D array access, as shown in Figure 2. Each
dimension requires 5 checks, and the 11th check is used for
the final value. Table 1 shows the overhead for these checks.

The first check ensures that board is an object pointer, by
checking for a tagged bit to distinguish between an object
pointer and an integer. Second, V8 must similarly check that
x is an integer, rather than an object. Omitting these checks
made it 8.1% faster (Table 1) — removing them is safe, as we
know that no incorrect type will be used.

After V8 confirms that board is an object, it checks that the
internal type of board, called a shape, is an array. Fourth, V8
performs a bounds check for the access to board[x]. Finally,
V8 checks if the value accessed is a “hole”. In JavaScript,
arrays may be sparse, meaning not every index has a value.
Indexes without values are called holes. The same checks
must be repeated to access the second dimension of board. To
use board[x][y], a last check is necessary to verify it is an
integer.
Profiling enabled optimization. Initially, we preallocated the
fix-size sudoku board. In V8, preallocated arrays are created
sparse as their values are uninitialized, requiring the hole
checks. Even though the array was filled with integers before
being used, sparse arrays never lose their status.

We implemented an optimized version which would cre-
ate arrays without holes, known as “packed” arrays. This
optimized version was 1.48x faster (and is what is shown in
Fig. 1). Our optimized sudoku benchmark for V8/Node.js
starts with an empty array, then appends 9 Int8Arrays to cre-
ate the 2D sudoku board. This allows V8 to recognize that
there are no holes. Using the built in Int8Array, preallocation
initialized it with the default value of 0, rather than a hole.

Unfortunately, these optimizations cannot be applied uni-
versally. First, it presents a trade-off that can only be deter-
mined via profiling: while sparse arrays require hole checking,
building a large packed array requires many internal resizing
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Figure 1: Relative completion times for various language implementations normalized to GCC. Note the logarithmic scale of the y axis.
Sudoku, Sort, etc., are different benchmarks under LangBench (“LA” refers to the log analysis benchmark). The numbers at the bottom shows
the benchmark’s absolute execution time in the C++ implementation. For benchmarks with concurrency, the “Best” bars are annotated with the
thread count that results in best completion time. For key-value store and file server it is the number of client threads, not the number of threads
used server side. For GCC and OpenJDK, the server creates 1 thread to handle each client thread, so the number of server-side threads is the
same as the client. For both Node.js and CPython, their best completion time in key-value store is achieved when using a single server-side
thread (due to their scalability characterstic described in §4). As for the file server benchmark, both Node.js and CPython’s best performance
is achieved when using 64 server-side threads (§4). The number of server-side threads in Go is automatically determined by the runtime as
described in §5.2. The number of threads for log analysis is the number of worker threads (as there is no client).
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Figure 2: Checks required to access board[x][y] in V8/Node.js.
The meaning of each check is explained in §3.1.

operations to grow the array. In addition, typed arrays such as
Int8Array only exist for certain integral types. For example,
it is not possible to preallocate a packed array of strings or
any user defined type.

3.2 Interpreter Overhead
CPython is slower than the other runtimes because it lacks a
JIT compiler and so programs are strictly interpreted. There-
fore we further compare the three runtimes by running Sudoku
on each of them only in interpreter mode. OpenJDK’s inter-
preter outperforms both V8 and CPython by 2.59x and 5.34x
respectively. This is because static typing allows OpenJDK
to avoid the type checks that V8 and CPython must perform.
OpenJDK has dedicated bytecodes for accessing different
types of arrays (aaload for an array of arrays, iaload for an

Bytecode Insn. Cycles
per BC per BC

OpenJDK aaload 12 7.7
iaload 11 7.1

Node.js LdaKeyedProperty 90 26.3
CPython BINARY_SUBSCR 138 41.8

Table 2: Statistics for array access bytecodes (BC) performed by
various interpreters for the sudoku benchmark.

integer array). In contrast, V8 and CPython both have a sin-
gle bytecode (LdaKeyedProperty and BINARY_SUBSCR, respec-
tively) which must accommodate for any array or dictionary
type. Table 2 shows the performance profiling results of dif-
ferent bytecode executions, using our instrumentations.

CPython is still 2.07x slower than V8, even though both
of them do dynamic typechecking. As shown in Table 2,
CPython uses 138 instructions and 41.8 cycles to execute
each byte code instruction (BINARY_SUBSCR), whereas Node.js
only spends 90 instructions/26.3 cycles to process each byte
code instruction (LdaKeyedProperty). This is due to the op-
timizations of V8’s interpreter: it is hand-crafted in V8’s
intermediate representation (IR), whereas CPython is imple-
mented in C. Note that OpenJDK’s interpreter is entirely in
hand-crafted x86 assembly.

3.3 GC Write Barriers
We were surprised to see that under OpenJDK’s default GC
setting, it was 10.03x slower than GCC for the Sort bench-
mark. Sort is also the benchmark where Go performs the worst
relative to GCC: 2.14x slower. The source of the slowdown
for both OpenJDK and Go is the cost of GC write barriers.
This cost occurs despite GC hardly ever running in Sort, as
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write barriers are necessary to maintain data structures needed
to perform GC. For our in-place merge sort, swapping two
elements is the primary source of write barriers. This requires
two write barriers, one for each element being written. Open-
JDK’s default GC algorithm, G1 [4], adds 44 instructions for
these write barriers, completely dwarfing the 6 instructions
required to swap the elements and 5 for bounds checking.

4 Scalability Limitations

We found that CPython and Node.js limit the degree of paral-
lelism achievable. Node.js is event driven; by default, it uses
a single Node.js thread to drive an event loop and process all
incoming events. If the processing of an event blocks (e.g., on
I/O), the underlying kernel thread will block, and Node.js’s
event loop continues with another kernel thread to process the
next event. In other words, multiple threads can be blocked at
the same time, but CPU execution is serialized. While Node.js
supports running multiple Node.js threads (known as worker
threads), each runs its own event loop. Worker threads do not
share the heap (to avoid data races); data sharing requires
message passing with data being serialized.

In essence, CPython’s concurrency model is the same as
that of Node.js where multiple kernel threads can block on I/O
at the same time, except that it is the programmer’s job to cre-
ate the threads; the threads share the same heap. In CPython’s
case, CPU computation is serialized by the Global Interpreter
Lock (GIL) so that only one thread can use the CPU at a
time. CPython also supports multiprocessing, forking differ-
ent processes to avoid the GIL. However, data sharing and
communication requires serialization.
Node.js and CPython’s scalability on LangBench. We ran
three parallel benchmarks, namely log analysis, key-value
store, and file server, under different configurations, including
different number of threads, as well as parallelizing them
with multiple processes in CPython. In log analysis and key-
value store, the best performance is achieved using a single
CPython or Node.js thread, whereas the other runtimes are
able to improve performance by adding more threads.

These two benchmarks, namely log analysis and key-value
store, are bottlenecked by CPU or memory accesses, instead
of blocking I/O. Therefore, creating multiple threads offers
no advantage in Node.js and CPython as their executions
are serialized. In the case of Node.js, performance degrades
significantly when creating additional worker threads due to
the serialization overhead. On indexed search log analysis,
Node.js’s performance drops 4.7x when we use more than one
worker thread. In this benchmark, multiple workers communi-
cate frequently as they share the same dictionaries. Similarly,
serialization overhead slows down CPython when we switch
to multiprocess, resulting in a 4.9x slowdown on the same
benchmark. While multiple CPython threads share the heap,
they still introduce thread management overhead compared

(a) Before GC (b) After GC
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Figure 3: The key-value store before and after a GC pause. White
boxes logically represent Java objects, and the shaded boxes repre-
sent the objects’ location in the JVM heap. A ‘B’ denotes a bucket
mapped to by the hash function, and an ‘N’ denotes a node in the
bucket’s linked list. The number of the node represents the order
they are inserted into the hashtable. The memory for the nodes of
the bucket begins scattered, but after GC relocation is ordered by the
traversal of the bucket’s linked lists.

to using a single thread.
Specifically, in key-value store, CPython can only scale to

one client thread (adding additional concurrent client threads
will worsen the completion time). In comparison, Node.js/V8
scales up to 96 client threads, even though it only uses 1
Node.js event-loop thread at server side. However, its com-
pletion time can not keep improving with more client threads,
whereas it still can under GCC, Go, and OpenJDK.

5 Runtime Advantages

We found that the high-level abstractions provided by the
runtimes can, in some cases, result in better performance and
scalability. This is counter-intuitive given the conventional
wisdom that abstractions generally come at the expense of
performance [25]. We discuss three findings: (1) object relo-
cations in OpenJDK’s moving GC can result in better cache
locality; (2) Go’s scheduler automatically maps user threads
to kernel threads, and hence abstracts away the direct usage of
kernel threads, reducing the number of context switches and
the number of kernel threads used; (3) abstracting away the
low-level I/O operations allows runtimes to use the optimal
I/O system call configurations.

5.1 GC Improved Cache Locality

OpenJDK’s moving garbage collector can significantly im-
prove cache locality, resulting in speedups in three bench-
marks: single threaded key-value store and both iterative and
recursive implementations graph coloring. In particular, Open-
JDK was much faster than GCC at the single threaded key-
value store, with 1.46x speedup. This is the largest speedup
any runtime had over GCC.

Key-value store. We found that the source of cache locality
was from iterating over linked lists. Our key-value store im-
plements a hashtable with separate chaining, meaning hash
collisions are added to a bucket by appending the key-value
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Figure 4: The OpenJDK single threaded key-value store benchmark
run with increasing heap sizes, corresponding to fewer GC cycles.

(KV) pair to a list. This is shown as the white boxes in Fig-
ure 3. For example, N2, N3, and N6 are different KV pairs
hashed to the same bucket B1.

OpenJDK uses bump pointer allocation. Therefore, nodes
in the hashtable are laid out sequentially in memory based on
their insertion order. Figure 3 (a) shows how the nodes of a
bucket would be initially laid out in memory. There is little
locality, as adjacent nodes of the same linked list are scattered.
Therefore, whenever there is a lookup, insertion, or a deletion
of a key in the linked list, the traversal of the linked list is
expensive due to poor locality.

However, OpenJDK’s moving GC reorders the objects in
memory. It scans for all live objects that are reachable from
the GC roots (e.g., objects on the stack) by following the
pointers, copying them to a different memory region, before
freeing the old region. For the linked list, this means that the
objects will be allocated adjacently, in the same order as in
the linked list, as shown in Figure 3 (b).

In comparison, GCC uses a size segregated allocator
(malloc). Since nodes have the same size, they will be placed
in the same region, resulting in a similar pattern as with bump
pointer allocation, with nodes laid out in insertion order. When
profiling the iteration, we found that GCC actually executed
fewer instructions than OpenJDK, but was still slower. In the
tight loop iteration, the bucket GCC took only 5 assembly
instructions compared to OpenJDK’s 11.

This behavior presents the unintuitive case where the more
frequently GC is performed, the better the performance. Fig-
ure 4 shows that with more frequent GC cycles, objects are
re-ordered in memory more often, leading to improved per-
formance. We control the frequency of GC by using different
heap sizes. The larger the heap, the fewer GC cycles. When
it is 128 GB, performance is the worst because GC is never
triggered; objects are never moved, so there is no locality.

Graph coloring. We found OpenJDK outperformed GCC
(by 1.37x) on graph coloring, when the C++ program uses
the standard library. Our investigation showed that GC had a
similar effect as for the key-value benchmark given that graph
coloring also uses a hash table. Both hash table implementa-
tions on OpenJDK (HashMap and HashSet) and C++’s standard
libraries (std::unordered_set and std::unordered_map) use
an open hashing design; i.e., it uses separate chaining to con-
nect the elements in a linked list upon collision. As a result,

both GCC and OpenJDK suffer from poor locality initially.
However, OpenJDK quickly gains locality through GC, as
with the key-value store benchmark. We optimized our C++
benchmark by switching to hashtable implementations from
Google’s Abseil library [2], which uses a closed hashing im-
plementation that achieves better locality.

5.2 Scalability in Go
In the multithreaded key-value store implementation, Go has a
1.02x speedup compared to GCC, despite being 1.16x slower
than GCC in the single threaded version. Go outperforms
GCC by avoiding 2.2 million context switches through the
use of asynchronous networking I/O and significantly fewer
kernel threads. With GCC, network I/O is performed using
synchronous system calls, blocking the kernel thread, result-
ing in a context switch. When goroutines perform I/O, the
work is offloaded to an internal goroutine which uses asyn-
chronous system calls. A goroutine performing I/O is blocked
by Go’s scheduler, but the underlying kernel thread is not
blocked; instead, Go schedules another goroutine on the same
kernel thread. As a result, Go only uses at most 42 kernel
threads, regardless of the number of concurrent client threads.

5.3 I/O System Calls in the File Server
To read a file in the file server benchmark in C++, we initially
used the more general, idiomatic approach which uses iter-
ators. This results in repeated fixed size read system calls.
Unlike C++, all the managed runtimes abstract away the low-
level system call interfaces when performing I/O, so that they
can transparently issue system calls in an optimal way, by first
calling fstat to get the file size, followed by a single read

for its entire contents. All runtimes use this approach. So any
developer using the runtimes will benefit from the optimiza-
tions without any burden of knowledge. In comparison, we
have to manually optimize our C++ implementation to switch
to fstat and read, leading to a 2x speedup.
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