
1 of 12

Rethinking Password Policies
Abe Singer, Warren Anderson, Rik Farrow

August 2013
	
“In	 the	 practice	 of	 security	 we	 have	 accumulated	 a	 number	 of	 “rules	 of	 thumb”	 that	 many	
people	 accept	 without	 careful	 consideration.	 Some	 of	 these	 get	 included	 in	 policies,	 and	 thus	
may	 get	 propagated	 to	 environments	 they	 were	 not	 meant	 to	 address.	 It	 is	 also	 the	 case	 that	
as	 technology	 changes,	 the	 underlying	 (and	 unstated)	 assumptions	 underlying	 these	 bits	 of	
conventional	 wisdom	 also	 change.	 The	 result	 is	 a	 stale	 policy	 that	 may	 no	 longer	 be	 effec-
tive…or	 possibly	 even	 dangerous.”	

—	 Gene	 Spafford	 [23]	

We are all familiar with having “rules” for passwords: must have at characters from various
character sets, have a minimum length, get changed regularly, not be written down, etc.

These rules are supposed to make passwords “secure,” but there’s little to no research to support
that argument. In fact, they can even weaken security. Most of the “best practices” in use today
are based largely on folklore, or in some cases on severely outdated theories of password
strength. Even the US Government “standards” on password strength appear to be based on noth-
ing more than then-current default settings on a particular operating system.
These password best practices have several usability problems. Some believe that security and
usability are mutually exclusive, and therefore security has to make things difficult. We argue
that security depends on usability.

Passwords have to be strong enough to defeat cracking attempts, yet usable. This requires both
an understanding of usability, and quantitative measurements of password strength.

Below we provide a summary of the relatively scant research and government standards that
have led to where we are today, an overview of usability as it applies to security, an analysis as
to how current best practices aren’t effective, and finish with a modest proposal for more usable
and secure passwords.

Why do we have password rules?
An attacker can try to discover passwords using guessing attacks, whereby the attacker tries
various passwords to find one that matches that of the target. The simplest form of such attack is
a brute-force attack — trying every possible password (the entire key space). This approach
guarantees that the attacker will eventually find the password, if the attacker has enough compute
resources to do so.

2 of 12

Users, left to their own devices, tend to choose passwords using real words and simple variations
of them. Which is understandable — users want to have a password that’s easy to remember. At-
tackers, knowing this, use dictionaries of real words for dictionary attacks (cracking). If the dic-
tionary is considerably smaller than the keyspace, the computational cost of the attack is much
smaller than that of a brute force attack.
Password strength rules ostensibly force the user to choose a password that’s not in the attacker’s
dictionary. More formally, the rules attempt to prevent successful dictionary attacks, by ensuring
that users choose passwords with sufficient entropy to render the attack infeasible. Entropy is the
measure of the probability distribution of the passwords across the keyspace; a measure of the
relative randomness of each password to all the other passwords.

Note that password strength rules provide no protection from brute-force attack. (To be clear, a
brute-force attack is an exhaustive attack against the entire keyspace, a dictionary attack is an
attack against a smaller subset of the keyspace).
So how did password rules evolve into the current “best practices?” Here’s a brief history.

Some history of password attacks, and rules.
“The	 problem	 with	 using	 passwords	 that	 are	 derived	 directly	 from	 obvious	 words	 is	 that	 when	
a	 user	 thinks	 ‘‘Hah,	 no	 one	 will	 guess	 this	 permutation,’’	 they	 are	 almost	 invariably	 wrong.	
Who	 would	 ever	 suspect	 that	 I	 would	 find	 their	 passwords	 when	 they	 chose	 ‘‘fylgjas’’	 (guard-
ian	 creatures	 from	 Norse	 mythology),	 or	 ‘‘pataitai’’	 (the	 Chinese	 word	 for	 ‘‘hen-pecked	 hus-
band’’)?	

—	 Dan	 Klein	 [24]	

Passwords for computer use date back to at least the 1960s. The first mention of computer pass-
words in open literature was on the MIT Compatible Time Sharing System (CTSS), which was
one of the first (if not the first) multi-user operating systems. At that time, passwords were used
to separate and identify users, in order to control users’ use of limited resources such as CPU
time.
The desire and attempts to compromise passwords has been around about as long. A graduate
student on the CTSS system, who needed more compute time than allocated, admitted to have
taken advantage of a bug in the system to obtain a copy of the password file, which was not en-
crypted/hashed. [25]
Dictionary attacks were first discussed in 1979. [8] At that time, the passwords were hashed, and
the hashes were kept in the passwd file and readable by all users. Morris and Thompson ac-
knowledge the threat of dictionary attacks, using a dictionary of English words.

[8] also proposed the first example of password rules, where users were required to choose a
password of at least a minimum length (6 characters for alphabetic, 5 characters if the password
included non-alpha). They alternatively proposed system-generated random passwords while
noting a case where that approach actually weakened password security.

The “Green Book” [9] discusses strength of crypto algorithms, and includes suggestions for
password length and generation.

3 of 12

On the latter point, we note that it specifically recommends that password be machine generated
due to users choosing bad passwords. The Green Book also recommends that users memorize
their passwords, but allows for writing down passwords as long as the written password is suffi-
ciently secured.

While dictionary attacks were discussed as far back in 1979, the first openly published program
to do so was Crack, posted to Usenet by Alec Muffet in 1992. [10] Discussions about the posting
acknowledged that underground tools had been available to attackers for years. Around the same
time, Bellovin notes that attackers had been observed trying to download the password file from
Bell Labs ftp servers. [26]
Crack was intended for use by system administrators to run a dictionary attack against the hashed
passwords on their systems, to detect and change weak passwords hopefully before an attacker
could do so. Muffet and others also acknowledge that a preferred approach would be to prevent
users from entering dictionary words in the first place, but tools to do so were not yet available,
and vendors were slow to implement such features (Indeed, it was more than a decade before
such capabilities commonly available).
On a side note, we found it interesting in retrospect that the publication of Crack was quite con-
troversial at the time. Many people thought it wrong to release a “hacker tool” that could be used
by attackers. The counter argument was that the attackers already had the tools, and the publica-
tion of Crack provided defenders with a tool to fend off attackers. These days, tools such as
Crack are considered a standard component of a defender’s toolbox, and there is no controversy
about it.
In 1989-1992, Klein [7][24] ran dictionary attacks against a set of ~15,000 encrypted passwords
contributed by volunteers. Armed with a ~62,000 word dictionary, Klein cracked approximately
39% of the passwords.

At that point in time, the Unix and other password entry systems did not impose any restrictions
on what password a user could choose; obtaining strong passwords was expected to get ad-
dressed with user training. Klein and Bishop proposed “pro-active password checking,” whereby
the password setting program would check the password entered by the user against a dictionary
and for certain compositional aspects such as upper/lower case.[7]
A similar, but less rigorous, proposal was made in [12]. The authors not only performed pass-
word cracking, but pre-computed hashes for dictionary words and stored them, so that successive
cracking attempts could be done without having to recompute hashes each time. At the time, due
to I/O limitations, their approach made cracking 28 times faster than computation.
In 2003, the Teracrack project repeated the pre-computation experiment with much larger dic-
tionary, and for all 4096 salts used for Unix password hashes. The results took up 1.5 Tb of stor-
age, and reduced the time to attempt to crack any one password hash to a maximum of a couple
of minutes — the time required to load and read a tape from the library. The same technique to-
day could be stored on a single hard disk and search time reduced to the disk seek time. Note that
this approach only is feasible for Unix DES salts, the MD5 hashes used on newer versions of
Unix/Linux use a 20 bit salts, making the storage requirements much too large in todays’ envi-
ronment. [13]

Standards for Password Rules

4 of 12

One would think, with the research done on the guessability of passwords, that the current “best
practices” for password rules have been based on rigorous research and analysis, resulting in
thoroughly documented standards. In reality, what few standards exist are based on inconsistent
research at best, and in some cases appear to be pulled out of thin air.

NASA’s password requirements are representative of the common “best practice” for password
strength. [14] The document claim to be in compliance with the Federal Desktop Core Configu-
ration. [15] However, we could find no documents within the FDCC provide specific password
complexity requirements.

A search for Federal documents on password strength came up with the following data, which is
itself incomplete and inconsistent:

[17] notes that users are bad at choosing passwords and recommends that passwords be auto-
matically generated.

[18] states that “Passwords shorter than 10 characters are usually considered to be weak” and
“Passphrases shorter than 20 characters are usually considered weak,” but does not provide any
justification or citations for those statements.
[19], notes the difficulty in measuring the entropy of user chosen passwords.

[20] mentions password composition as a factor in password requirements, but leaves the spe-
cific requirements up to the organization.

[21] does not give specific requirements for password strength, but suggests that users be trained
on good password practices and that systems might restrict password choices based on password
composition. It also gives suggestions for choosing good passwords such as using the first char-
acter of a well known phrase, etc.

The document also notes the difference between the keyspace of the password hashing scheme
and what users actually pick: “When determining policies for password length and complexity,
organizations should consider maximum and likely actual keyspace.”
[22] states that “Totally alphabetic password composition should be discouraged.”

The first case we could find of the current common practice of requiring characters from differ-
ent character sets is from Microsoft. Microsoft Windows NT Service Pack 2 introduced pass-
word strength requirements with a minimum length of 6 characters, and the password must con-
tain at least one character from the four character sets of A-Z, a-z, 0-9, and “special” or punctua-
tion characters. Microsoft gives no justification or citations for those requirements, and
the requirements were hard coded.

Windows 2000 allowed for changing of the requirements, but left the default the same as in NT
but with a minimum password length of 8 characters.

Password Aging
There’s no there there.

—	 Gertrude	 Stein	

5 of 12

Aging passwords — requiring users to change passwords at regular intervals — originated due
to the use of hashing algorithms which were weak enough to be subject to a brute force attack.
Password aging is a defense against brute force attacks, not dictionary attacks.
The Green Book [9] details the relationship between password length and password lifetime, and
includes formulae for calculating minimum password length. Note that at the time that the Green
Book was written, brute-force attacks against the hash algorithms in use were considered within
reach of government funded agencies.
NIST SP800-118 [21] comments on password lifetime limits: “Password expiration is also often
a source of frustration to users, who are often required to create and remember new passwords
every month or two for dozens of user accounts. [...]

In cases where password hashes are at significant risk of compromise, organizations should take
estimates of cracking abilities into consideration when setting policies for password expiration,
length, and complexity.”
For Windows 2000, Microsoft stated “Where security is a concern, good values [for password
lifetimes] are 30, 60, or 90 days. Where security is less important, good values are 120, 150, or
180 days.” [27] But they do not provide any definition for what “important” and “less important”
are, nor how they calculated those numbers. Defaults password lifetimes in Windows 2000 were
42 days.

None of these recommendations provide any analysis as to how much, if any, password aging
reduces the risk of dictionary attacks. For any given password aging interval n, assuming some
unknown attack on the passwords has equal probability of discovery at any point over n, the
mean exposure time for a compromised password is n/2. It would seem that for any reasonable
value of n, the exposure time would be unacceptable.
We argue below that eliminating password aging contributes greatly to the usability of pass-
words.

Passwords and Usability
“This	 belief	 of	 the	 fundamental	 conflict	 between	 strong	 computer	 security	 mechanisms	 and	
usable	 computer	 systems	 pervades	 much	 of	 modern	 computing.	 According	 to	 this	 belief,	 in	 or-
der	 to	 be	 secure,	 a	 computer	 system	 must	 employ	 security	 mechanisms	 that	 are	 sophisticated	
and	 complex	 —	 and	 therefore	 difficult	 to	 use.”	 	

—	 Matt	 Bishop	 [4]	

Computing professionals have long held onto the belief of an inherent tension between security
and usability, that each works against the other, which has often led to a disregard of usability for
the sake of securing systems. But that belief turns out to be a misconception based largely on a
lack of understanding of the meaning of usability.

So what do we mean by “usability” in the context of security? Usability is often associated with
perceived ease of use — the less effort required, the more usable the system. More fundamental
properties of usability are [2][3]

6 of 12

• Is the user able to understand what is required of her; Can the user understand how to use the
security mechanism properly, recognize when she’s failed, and understand why?

• Is the user capable of using the mechanism properly?
• Does the user understand the goal of the security mechanism;
• Is the user motivated to follow the security requirements?
• Do the requirements and interface match the user’s understanding of the security goals?
	
The study of Human Factors separates tasks into “production tasks” and “supporting tasks”
(sometimes called “enabling tasks.”) [4]. Production tasks are the actual end goal of the user, the
desired output. Supporting tasks are those that enable the user to work on the production tasks.
For example, a user authenticating herself to the system enables the user to access data on the
system. Accessing the data is the production task, and authentication is the supporting task. Us-
ers don’t want to spend time on supporting tasks — those that have too much of an impact on
production tasks affect the usability of the system, and productivity of the users.

“Ease of use” is an important factor, but does not completely equate with work factor; The work
factor of supporting tasks can involve not only physical time and effort, but cognitive load, the
measure of the ability of people to learn [5]. The amount of mental effort a user has to expend on
understanding security requirements and complying with them are all a cognitive load that af-
fects the size of the supporting task.
In order for a security mechanism to be used properly, the user must be able to understand both
how and why to use it, and be able to use it efficiently. Security depends on usability.

The usability of common password requirements
“Does	 added	 security	 make	 things	 more	 difficult	 to	 use?	 Will	 people	 always	 resent	 the	 extra	
steps?	 The	 answer	 to	 both	 questions	 is	 the	 same:	 Not	 necessarily.	 Consider	 the	 physical	 world	
of	 doors	 and	 locks.	 Locks	 on	 houses,	 cars,	 and	 private	 records	 get	 in	 the	 way	 of	 easy	 access,	 but	
are	 tolerated	 because	 they	 seem	 necessary	 and	 the	 amount	 of	 effort	 required	 to	 open	 them	
usually	 seems	 reasonable.	 Note	 the	 two	 different	 components:	 the	 understanding	 of	 the	 neces-
sity	 for	 protection	 and	 the	 reasonableness	 of	 the	 effort	 required.	 Both	 are	 design	 issues.	 And	
both	 require	 at	 their	 base,	 a	 coherent,	 understandable	 conceptual	 model	 of	 both	 the	 need	 for	
security	 or	 privacy	 and	 the	 workings	 of	 the	 mechanisms	 that	 enforce	 them.”	

	 —	 Don	 Norman	 [28]	

Common password requirements have a negative impact on the usability of passwords. Namely:
• rules for password complexity
• requirements to change passwords on a periodic basis (password aging)
• requirements to not reuse old passwords
• prohibitions against writing down passwords
	
As we noted above, some of these rules were originally devised in a context that does not apply
in all contexts. Here we discuss how these rules impact usability, and the ensuing risks.

Password Complexity and Aging

7 of 12

Password complexity rules make the user expend time and effort to devise an acceptable pass-
word, and then memorize it immediately. This imposes a cognitive load on the user and increases
supporting task work factor. [2] notes the inherent cognitive conflict between the requirement
that a password be effectively difficult to remember and the requirement that passwords never
get written down.
Password aging further increases the cognitive load and work factor, by forcing the user to repeat
the process of devising and remembering passwords repeatedly. The negative impact of this
combination of rules has been noted in several places.

A study on password usage within the FAA [6] quantified the direct cost in staff time in chang-
ing passwords, noting that the costs were greatly magnified by the fact that users had numerous
(up to 20!) passwords for different systems, all with different password rules and aging policies.
Users were essentially in a steady-state of changing passwords.

This same study noted that due to the burden of remembering passwords, coupled with the im-
pact of forgetting passwords on production tasks, that users adopted numerous coping strategies,
which were in turn violation of other security policies: leaving sessions logged in, sharing pass-
words with coworkers, writing passwords down, etc.

Even the federal government acknowledges that password changing can cause problems. “The
FIPS guidelines actually acknowledge that the load on users created by frequent password
changes creates its own risks, which in many contexts outweigh those created by changing a
password less frequently.” [4]

And here’s the fun part: there is absolutely no risk justification for any of the time intervals (42
days, 3 months, 6 months, 1 year) seen in current “best practices.” As far as we can tell, all of
those numbers have been pulled out of thin air (or less well-lit regions).

Usability of Pro-Active Password Checking

When [7] originally proposed pro-active password checking, it seemed like an effective ap-
proach: Avoiding dictionary attacks was best solved by preventing users from entering pass-
words that were in the dictionary. That approach assumes, of course, that one can check against a
dictionary that’s at least as good as any attacker would use.
Computation power in 1992 was such that a reasonably modest dictionary of 100,000 words or
so, plus common substitutions, was sufficient to deter attacks. But current computational power,
combined with easy on-line access to wordlists in the millions, has changed the landscape.

We made an attempt at implementing pro-active checking by doing what an attacker would do:
creating the biggest dictionary we possibly could. Using 1-grams from the Google Book project.
[29] We started with a list of ~4,000,000 words, and after applying the Crack substitution algo-
rithms, ended up with a dictionary of about 90,000,000 passwords.

Having users change their passwords while checking against the dictionary was a colossal fail-
ure. There were so many unacceptable words that users became frustrated trying to come up with
an acceptable password, an ended up choosing randomly until one was accepted by the system.
Pro-active password checking fails usability because it’s impossible for the user to understand
how to comply with the rules without guessing, and ends up increasing both the work factor and
cognitive load of choosing a new password.

8 of 12

Risks of Writing Down Passwords
The prohibition against writing down passwords is an assumed mandatory requirement. [2] So
the user is forced to devise a difficult to remember password, and then immediately remember it,
further exacerbating the cognitive load on the user. [4] Add to this the often times useless feed-
back provided to the user while attempting to create an acceptable password.

But that risk from writing down passwords is very context dependent. Prohibition against writing
passwords hails from the military, where the threat of an malicious insider (a spy) looking for
written down passwords was substantial, and the liability of that risk, astronomical. That threat
may be substantially lower in other contexts, where the threat of password guessing from a re-
mote anonymous attacker is much higher.
And, as mentioned above, the burden of having to remember passwords causes users to take
other measures that can impose equal or greater risks. Writing down passwords reduces the cog-
nitive load for users, especially for passwords that get used infrequently.

Writing down passwords is also perceived as being very insecure because the passwords may get
left someplace they are easy to discover. That risk can be easily mitigated with some simple rules
for keeping the written password in a reasonably secure location (e.g. wallet, locked desk, etc.).
Note that eve the Green Book also recommends that users memorize their passwords, but allows
for writing down passwords as long as the written password is sufficiently secured.
In many environments, the risk of dictionary attacks against passwords greatly outweighs the risk
of writing down passwords; strong passwords are more important than memorable passwords.

Single Sign On
The FAA study noted that many subjects had numerous passwords to remember. [6] Reducing
the number of password that users have to remember greatly reduces cognitive load. A single-
sign-on system, where the user has to remember and use one at a given interval (e.g. every 24
hours), has a profound effect on usability. [2]

Passwords and Entropy
People often speak of password entropy as a measurement of password strength, and attempt to
measure the entropy of a given password. But as stated above, entropy is the measurement of the
relative randomness of all the passwords together — you can’t measure the entropy of a single
password.

The only way to guarantee high entropy of user chosen passwords is to require users to enter
passwords that are significantly different than other passwords. But the only way to achieve that
is to reject the user’s new password as being too similar to another password, which in turn pro-
vides hints about the composition of another password on the system. And the user would have
no way of knowing what passwords would be considered acceptable without repeatedly trying
passwords until one was accepted — a usability failure.

Password character class rules fail to provide any guarantees of entropy because they do nothing
to prevent users from choosing the same or similar passwords.

9 of 12

Improving the Usability and Security of Passwords at the
Same Time
Here’s a modest proposal to make password management more usable for users, and improve the
entropy of the passwords at the same time.
First, provide single/common sign on to minimize the number of passwords the user must re-
member (reducing cognitive load) and the number of times the user has to authenticate (mini-
mize supporting tasks).

Allow the user to write down her password, as long as it’s done in a reasonably secure manner,
reducing cognitive load, and reducing the need for users to adopt insecure coping strategies.

Eliminate password aging, minimizing work factor and cognitive load for devising and remem-
bering new passwords. Only require password change when the password may have been com-
promised. To minimize compromise, prohibit (or at least discourage) the users from using the
same password at sites out of your control.

Eliminating aging means that you need sufficient password entropy to prevent a dictionary at-
tack. Even if you don’t eliminate aging, you need to still need to be able to quantify the entropy,
in order to determine an aging interval that has acceptable risk.
So you need to implement password rules that guarantee sufficient entropy across the set of user
passwords. But here’s the rub: when you let users choose their own passwords, you can’t devise
password rules that are both usable and have enough entropy. We will be authoring a paper in the
near future that demonstrates this.
One answer to that dilemma is to not let users choose their passwords, but to generate passwords
for them using a random algorithm. It’s an easy (perhaps only) way to assure entropy, and when
done right, can be usable. At least, if the random passwords are sufficiently memorable (and
typable), they can be more usable than requiring the user to choose a complicated, difficult to
remember password that she can’t write down and have to change often.

While the cognitive load of learning the new password may be greater (and we’re not sure that
it’s true), it doesn’t have to be much greater, and can be offset by allowing the user to write it
down.
The above combined approach creates a “grand bargain” with the user: in return for not being
able to choose her own password, the user will only have to learn this one assigned can write it
down to aid with memorization, and will never (normally) have to change it.

Reasonably Memorable Random Passwords
There is a standing assertion that random passwords are difficult to remember and therefore fun-
damentally unusable. [4][3] However, these assertions turn on assumptions as to how those
passwords get formed, e.g. random strings of characters. We argue that if done properly, they can
be reasonably usable and memorable.

In order to randomly generate usable passwords, consider that not all users are the same; their
criteria for acceptable passwords can vary:

10 of 12

• A short, complicated password requires less typing.
• A longer alpha-only password that’s easy to enter via iPhone or tablet
• A very long password that’s easy to remember, e.g. a pass-phrase.
	
Random generation of passwords can be acceptable when the user is given a set of choices
within the constraints of the password entropy requirements. Giving the user a limited set of
choices also gives the user the opportunity to select a password they find more memorable, re-
ducing cognitive load.

To demonstrate, consider the following set of choices, which were generated randomly:

Passwords generated from a word list

opinion parting theological
infrastructure lecture vividly

Lower case alphabetic passwords

vukizocylqhxzxiexq
qgmblqmtngtiurtybj

Alpha-numeric passwords

khjd2gjact31koo7
ntrv5xbrvdbt6d05

Mixed case alphabetic passwords ywcgyRwIdUbBsL

zmbLwdAFvQuIPQ

Random passwords im&c<Z+I)<t^

XvG[9Hm8klpN

Our experience (albeit anecdotal) with this system found that the passphrases are reasonably easy
to remember.

Generating memorable random passphrases requires drawing from a dictionary of words that are
already well familiar to the user. The average English-speaking adult vocabulary is 20,000-
50,000 words [16], but that list includes words the user recognizes, but does not know well
enough to spell or remember. Using a dictionary of the 10,000 (or less) most frequent words
seems to provide passphrases that are sufficiently memorable to the user.

References
[1] National Security Agency, “Guide to the Secure Configuration of Red Hat Enterprise Linux
5.” Revision 4.2. August 26, 2011.

11 of 12

[2] Anne Adams and Martina Angela Sasse. 1999. “Users are not the enemy.” Commun. ACM
42, 12 (December 1999), 40-46. DOI=10.1145/322796.322806

[3] Saltzer, J.H.; Schroeder, M.D., "The protection of information in computer systems," Pro-
ceedings of the IEEE , vol.63, no.9, pp.1278,1308, Sept. 1975

doi: 10.1109/PROC.1975.9939
[4] Lorrie Cranor and Simson Garfinkel. 2005. Security and Usability. O'Reilly Media, Inc.

[5] Horcher, A.-M.; Tejay, G.P., "Building a better password: The role of cognitive load in in-
formation security training," Intelligence and Security Informatics, 2009. ISI '09. IEEE Interna-
tional Conference on , vol., no., pp.113,118, 8-11 June 2009
[6] Allendoerfer, K., & Pai, S. (2006). “Human factors considerations for passwords and other
user identification techniques part 2: Field study, results and analysis.” (DOT/FAA/TC-06/09).
[7] M. Bishop and D. Klein, “Improving System Security Through Proactive Password Check-
ing,” Computers and Security 14(3) pp. 233–249 (May/June 1995).
[8] Robert Morris and Ken Thompson. Password security: a case history. Commun. ACM 22, 11
(November 1979), 594-597. DOI=10.1145/359168.359172
http://doi.acm.org/10.1145/359168.359172]

[9] DoD Password Management Guideline, CSC-STD-002-85, Library No. S-226,994
[10] Muffet, A. (1992-4-30). “Is an apology necessary for posting Crack ? (Longish).”
comp.sources.d.
http://groups.google.com/group/comp.sources.d/browse_thread/thread/5a54f763d11833fc/99739
1d5c07758f3?#997391d5c07758f3
[12] David C. Feldmeier and Philip R. Karn. 1989. UNIX Password Security - Ten Years Later.
In Proceedings of the 9th Annual International Cryptology Conference on Advances in Cryptol-
ogy(CRYPTO '89), Gilles Brassard (Ed.). Springer-Verlag, London, UK, UK, 44-63.

[13] Perrine, T. “The End of crypt() Passwords . . . Please?”, ;login: issue: December 2003, Vol-
ume 28, Number 6

[14] HQ Domain Passwords Frequently Asked Questions (FAQ’s), August 20, 2008. Down-
loaded from http://itcd.hq.nasa.gov/documents/faq_hq_domain.doc

[15] NIST Federal Desktop Core Configuraiton.
[16 Vocabulary. 24 July 2013 03:07 UTC. In Wikipedia: The Free Encyclopedia. Wikimedia
Foundation Inc. Encyclopedia on-line. Available from http://en.wikipedia.org/wiki/Vocabulary.
[17] Helen M. Wood. “The Use of Passwords for Controlled Access to Computer Resources.”
Volume 500, Issue 9 of Computer science and technology, NBS special publication. U.S. De-
partment of Commerce, National Bureau of Standards, 1977.

[18]	 Meltem Sönmez Turan, Elaine Barker, William Burr, and Lily Chen.
“Recommendation for Password-Based Key Derivation Part 1: Storage Applications.” NIST
Special Publication 800-132. National Institute of Standards and Technology. December 2010.

12 of 12

[19]	 William	 E.	 Burr,	 Donna	 F.	 Dodson	 and	 W.	 Timothy	 Polk.	 “Electronic	 Authentication	
Guideline.”	 NIST	 Special	 Publication	 800-‐63.	 National	 Institute	 of	 Standards	 and	 Technol-‐
ogy.	 April	 2006

[20]	 	 “Recommended	 Security	 Controls	 for	 Federal	 Information	 Systems	 and	 Organiza-‐
tions”	 NIST	 Special	 Publication	 800-‐53.	 National	 Institute	 of	 Standards	 and	 Technology.	
August	 2009.
[21]	 Karen	 Scarfone	 	 and	 Murugiah	 Souppaya.	 “Guide	 to	 Enterprise	 Password	 Management	
(Draft).”	 	 NIST	 Special	 Publication	 800-‐118.	 National	 Institute	 of	 Standards	 and	 Technology.	
April	 2009.
[22]	 “Announcing	 the	 Standard	 for	 PASSWORD	 USAGE.”	 	 Federal	 Information	 Processing	
Standards	 Publication	 112.	 National	 Institute	 of	 Standards	 and	 Technology	 1985.
[23] Gene Spafford, “Security Myths and Passwords”, CERIAS Blog, April 19, 2006.
http://www.cerias.purdue.edu/site/blog/post/password-change-myths

[24] Klein, D. V.; "Foiling the Cracker; A Survey of, and Improvements to Unix Password Secu-
rity." In Proceedings of the USENIX Security Workshop, Summer 1990.

[25] Robert McMillan, “The World’s First Computer Password? It Was Useless Too.”
Wired.com. 1-27-2012. http://www.wired.com/wiredenterprise/2012/01/computer-password/

[26] Steven M. Bellovin. “There be dragons.” In Proceedings of the Third Usenix Unix Security
Symposium, pages 1-16, September 1992.

[27] William R. Stanek. “Microsoft Windows 2000 Administrator's Pocket Consultant.”
Microsoft Corporation. 1999.

[28] Norman, D. A. “When security gets in the way.” Interactions, volume 16, issue 6: (2010).
[29] “Google Books Ngram Viewer.” 2012.
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

