
Unikraft and The Coming of Age of Unikernels

Hugo Lefeuvre Gaulthier Gain Daniel Dinca
Alexander Jung Simon Kuenzer Vlad-Andrei Bădoiu
Răzvan Deaconescu Laurent Mathy Costin Raiciu

Pierre Olivier Felipe Huici

Article shepherded by: Rik Farrow

Thanks to their excellent performance, unikernels have always had a great deal of
potential for revolutionizing the efficiency of virtualization and cloud deployments.
However, after many years and several projects, unikernels, for the most part, have
not seen significant, real-world deployment. In this article we argue that several
factors contributed to this in the past, including lack of POSIX compatibility and
the resulting lack of support for applications and languages, difficult or not widely
adopted tooling ecosystems, lack of basic security features, and sometimes less-
than-stellar performance. After many years of work on the Linux Foundation’s
Unikraft project, whose explicit goal is to tackle these issues directly, we believe
that the time for unikernels to finally enter the main stage is now.

Introduction

Unikernels [7] have always had great promise: high performance (sometimes even
higher than Linux), lightweightness in the form of incredibly fast boot times (a few
milliseconds) and severely reduced memory usage, as well as strong security benefits,
to name a few metrics. But why hasn’t all of this potential materialized into wide
use and deployment? We argue that in the past, four main reasons have hampered
unikernels from becoming more widespread:

• POSIX Compatibility: Ultimately operating systems (and unikernels of course)
are only as good as the applications they can run. Arguably, wide adoption
depends solely on how good OSes are at running the applications and lan-
guages that people are interested in; for the most part, in the past, unikernels
have had no or rather limited POSIX compatibility [10] (much more on this
in Section Application Compatibility: System Calls Support).

• Tooling Ecosystem: Previous unikernel projects had little or no tooling
ecosystems to improve usability. Those that did developed their own tools [4],

1

partly because there hasn’t always been a clear de-facto standard as is the
case now (e.g., Kubernetes for deployment). Asking potential users to adopt
a new tooling ecosystem, or worse, having no such tooling, is always a tough
ask and has been an obstacle to adoption.

• Modularity: In order to maximize lightweightness and performance through
specialization, the unikernel should be fully modular. In the past, unikernel
projects such as OSv and MirageOS [4, 7] relied on smaller, but still mono-
lithic, kernels.

• Security: A few years back there were rather overblown claims about uniker-
nels’ strong security [1]. Although unikernels do have some intrinsic features
that could potentially make them more secure (e.g., a very small Trusted
Computing Base, immutability, no console, etc.), unfortunately most past im-
plementations have lacked basic security mechanisms such as stack protector
and ASLR [8].

We argue that after many years of struggle and false starts, unikernels, and
in particular the Unikraft [5] Linux Foundation project (www.unikraft.org) are
coming of age: its fully modular design allows for extreme specialization (and thus
performance and lightweightness), standard security features such as stack protector
are in place, and in the past months we have been putting effort towards seamless
integration with Kubernetes and Prometheus, arguably the de-facto standards for
deployment and monitoring. We give a high level overview of Unikraft in Sec-
tion Unikraft: a Modern, Fully Modular Unikernel, focusing on its high degree of
modularity and the resulting performance/lightweightness benefits.

What about POSIX compatibility? While Linux has over 300 system calls,
previous studies [11] have shown through static analysis that only a subset (224)
are needed to run a Ubuntu installation. This number is actually an overestimation
due to various reasons, including the fact that not all such applications make sense
in a unikernel context (e.g., desktop applications) and the imprecision of static
analysis. In Section Application Compatibility: System Calls Support we will show
a thorough investigation of what’s actually needed to explain why Unikraft’s 160
implemented syscalls (and counting) are more than enough to run a wide spectrum
of applications, including Redis, SQLite, nginx, HAProxy, TFLite and Memcached,
and languages like Python, Ruby and Go, to name a few.

Unikraft: a Modern, Fully Modular Unikernel

Unikraft is a novel micro-library OS that (1) fully modularizes OS primitives so that
it is easy to customize the unikernel and include only relevant components and (2)
exposes a set of composable, performance-oriented APIs in order to make it easy
for developers to obtain high performance.

Figure 1 shows Unikraft’s architecture. All components are micro-libraries that
have their own Makefile and Kconfig configuration files, and so can be added to
the unikernel build independently of each other. APIs are also micro-libraries that

www.usenix.org ;login: | 2

LI
BC

LA
YE

R

application

PO
SI

X
CO

M
PA

T
LA

YE
R

O
S

PR
IM

IT
IV

ES
LA

YE
R

PL
AT

FO
RM

LA
YE

R

1 musl newlib

syscall-shim

posix-fdtab posix-process pthread…
posix-socket vfscore

lw
ip

N
W

 S
TA

CK
S

m
tc

p

uknetdev

9p
fs

FI
LE

SY
ST

EM
S

ra
m

fs

ukblockdev
ex

t4

uksched

uk
pr

ee
m

pt

SC
HE

DU
LE

RS

uk
co

op

ukboot

dy
na
m
icb

oo
t

BO
OT

ER
S

uk
co

op

ukalloc

bu
dd

ya
llo
c

M
EM

 A
LL

O
CA

TO
RS

tin
yu
al
lo
c

tls
f

m
im
al
lo
c

os
ca
sr

KV
M virtio-net

clock
virtio-block

memregion

XE
N netfront

clock
blockfront

memregion
…

2 3
4 5 6

7 8

Figure 1: The Unikraft architecture enables specialization by allowing apps to plug
into APIs (black boxes) at different levels and to choose from multiple API imple-
mentations.

can be easily enabled or disabled via a Kconfig menu; unikernels can thus compose
which APIs to choose to best cater to an application’s need.

Using Unikraft’s build system and menu, it is quite easy to put together uniker-
nels for a wide range of standard, off-the-shelf applications, and to automatically
get the substantial benefits of deploying a unikernel without the hassle that was
typical of past projects. Figure 2, for instance, shows memory usage for nginx,
Redis and SQLite of only a few MBs compared to tens of MBs for even the leanest
of Linux distributions; and Figure 3 shows Unikraft rates of 290K requests/second
when running nginx on a single core on an inexpensive (less than $1000) server,
clearly out-pacing Linux.

Clearly we don’t expect all users to be interested in toying with Unikraft’s
build system and menu; for most users we provide pre-built images at https:

//releases.unikraft.org/ as well as kraft, a wrapper tool that allows users
to build unikernels with a single command (see https://github.com/unikraft/

kraft).

Application Compatibility: System Calls Support

The ability to run a wide range of applications and languages is paramount to how
much deployment any unikernel project will see. Unikraft addresses this directly
through what we term autoporting : we use an application’s native build system to

www.usenix.org ;login: | 3

Unikr
aft

Docke
r

Rumprun

Herm
itu

x

Lupine
OSv

Linux

Micr
oVM

0B

8MB

16MB

24MB

32MB

40MB

48MB
M

in
im

um
M

em
or

y
R

eq
ui

re
m

en
t

2M
B 5M

B
7M

B
4M

B
6M

B
7M

B
7M

B
6M

B
8M

B 12
M

B
13

M
B

10
M

B

11
M

B
13

M
B

10
M

B

20
M

B
21

M
B

21
M

B
21

M
B

24
M

B
26

M
B

40
M

B
26

M
B

29
M

B
29

M
B

30
M

B
29

M
B

hello
nginx

redis
sqlite

Figure 2: Minimum memory needed to
run different applications using different
OSes, including Unikraft.

Mira
ge

Solo
5

Lin
ux

FC

Lu
pin

e FC

Lin
ux

KVM

Rum
p KVM

Doc
ke

r Nati
ve

Lin
ux

Nati
ve

Lu
pin

e KVM

OSv KVM

Unik
ra

ft K
VM

0

50

100

150

200

250

300

350

A
ve

ra
ge

Th
ro

ug
hp

ut
(x

10
00

re
q/

s)

25
.9 60

.1 71
.6 10

4.
5 15
2.

6

16
0.

3

17
5.

6

18
9.

0 23
2.

7 29
1.

8

Figure 3: nginx and (Mirage HTTP-
reply) performance with wrk (1 minute,
14 threads, 30 conns., static 612B page)

Figure 4: Unikraft avoids porting of applications by building them using their native
build systems with musl and linking the object files into the Unikraft build.

build the application against the musl C standard library [9] and link the resulting
object files against Unikraft (see Figure 4). For this to work, Unikraft includes a
port of the musl library, which means, since musl is meant for Linux, that system
call support is required. To address this, Unikraft provides (a modular) system call
shim layer along with implementations of a growing number of syscalls (160 as of
this writing). Unikraft also supports binary compatibility mode, where unmodified
ELFs can be run on top of Unikraft with a slight performance hit; this functionality
will be upstreamed in the future.

But is 160 enough, given that Linux has over 300 syscalls? We answer that
question in the affirmative next.

A Trip Down POSIX-Compatibility Lane As a POSIX-like unikernel [4, 3, 10,
6], Unikraft strives for a high degree of compatibility with existing applications by
supporting the Linux system call API. Some system calls are more popular than
others [11] and the degree of compatibility of a given POSIX-like unikernel cannot

www.usenix.org ;login: | 4

simply be measured as the percentage of the Linux system call API it supports.
In a 2016 paper [11], Tsai et al. measured system call usage over the entire set

of applications from a typical Ubuntu/Debian distribution. They concluded that to
support 100% of these applications, 272 system calls needed to be implemented.
That number went down to 202, 145, 81, and 40 system calls for the 90%, 50%,
10% and 1% most popular applications, respectively, suggesting that a large im-
plementation effort would be required for an OS aiming at supporting even a small
number of applications.

However, in the process of implementing POSIX system calls and checking
whether applications where actually running, we gathered anecdotal evidence that
these requirements were not as stringent as they seemed: whenever a system call
is missing, the default behavior of Unikraft’s system call shim layer is to stub it
by returning ENOSYS; the result of this was that some applications where correctly
running despite not having some of the system calls they invoked implemented, so
we decided to take a closer look.

Looking Under the System Call API Hood To understand this behavior better,
we performed a study that uses both dynamic as well as source-level static analysis.
For the dynamic analysis we rely on seccomp to hook into each system call made by
the application and to selectively disable it, returning either -ENOSYS (stubbed) or
a success code even though the system call isn’t actually implemented (faked). By
monitoring the success/failure of the traced application, we can determine which
system calls can be stubbed and/or faked. Further, we developed a static analysis
tool that takes as input the application’s and dependencies’ code (e.g., libc) and
outputs an estimation of the system calls the application may invoke at runtime. As
a baseline we also ran the binary-level static analysis tools used by Tsai et al. [11].

For this initial analysis we focused on 5 applications (Redis, Nginx, Memcached,
SQLite and HAProxy), although we are in the process of adding many more to
the tool. We selected these because they are (a) popular applications (b) good
candidates for running as a unikernel/cloud environment and (c) they have thorough
benchmarking tools (redis-benchmark, wrk, etc.) and test suites. We use the
benchmarking tools to provide realistic workloads and the test suites good coverage
as we measure which syscalls the applications are making actual use of.

Results and Insights Figure 5 shows, for each application and corresponding
benchmarking tool and test suite, the number of system calls statically identified
and dynamically traced. Traced system calls are broken down between the ones
whose implementation is absolutely required for the application/workload, as well
as the ones that can be stubbed and/or faked.

The key insight is that applications are resilient to a significant portion of syscalls
being stubbed and faked, and that the number of implemented syscalls they require
to correctly run is significantly lower than the output of the static analysis suggests,
let alone the total number of syscalls in the Linux API.

To confirm this, we took a look at the applications’ source code: in cases
where the failure of a system call is non-critical for the execution of the program,

www.usenix.org ;login: | 5

0

20

40

60

80

100

120

all all suite
bench

all all suite
bench

all all suite
bench

all all suite
bench

all all suite
bench

N

of
 s

ys
te

m
 c

al
ls

 u
se

d

Static source

Static binary

Dynamic required

Dynamic stubbed

Dynamic faked

Dynamic any

HAProxySQLiteMemcachedNginxRedis

Figure 5: Number of system calls statically identified and dynamically traced for
applications under traditional (bench) and unit tests (suite) workloads. Traced
system calls are broken down into the ones that can be stubbed and/or faked and
the required ones. Applications require much fewer system calls to run than a static
analysis would suggest, and much less than the total syscalls in the Linux API.

the program can detect the error and decide to continue as usual, in which case
stubbing works. This snippet from the Redis code-base is a good example:

1 if (getrlimit(RLIMIT_NOFILE ,&limit) == -1) {

2 serverLog(LL_WARNING ,"Unable to obtain the current NOFILE"

3 "limit (%s), assuming 1024 and setting the max clients"

4 "configuration accordingly.", strerror(errno));

5 server.maxclients = 1024- CONFIG_MIN_RESERVED_FDS;

6 }

Here when we stub getrlimit or prlimit64, Redis handles it gracefully with
a default value. In other cases however, the program can interpret the error code
conservatively and decide to abort, in which case faking usually works (since the
failure of the system call is, in reality, non-critical). This snippet from the nginx
code-base is a good example of such behavior:

1 if (prctl(PR_SET_KEEPCAPS , 1, 0, 0, 0) == -1) {

2 ngx_log_error(NGX_LOG_EMERG , cycle ->log , ngx_errno ,

3 "prctl(PR_SET_KEEPCAPS , 1) failed");

4 /* fatal */

5 exit (2);

6 }

Here prctl fails to force the retaining of capabilities upon UID transition; in
the context of an OS that does not have a user/kernel separation (as is the case
for unikernels), capabilities make little sense and so it is fine to fake the success of
the check.

On average, the proportion of invoked system calls that can be stubbed/faked
is 42% for test suites, and 60% for traditional workloads. This shows that the effort
to provide comprehensive (test suite level) support for these popular applications is
relatively limited, and is even lower when considering partial support i.e. traditional

www.usenix.org ;login: | 6

workloads. We observe that the system calls that can be stubbed/faked vary among
applications. As an indication, the number of system calls that would need to be
effectively implemented for all these 5 applications to be supported is 78 for test
suites and only 37 for traditional benchmarks.

A second observation is that static analysis produces many false positives and
as such yields a large overestimation of the system calls made by an application.
For example on Redis, binary-level static analysis identifies 89 system calls, vs. 68
dynamically traced from the test suite. These trends are the same for all programs.
This is due to multiple reasons [2] such as dead code but also the imprecision of
binary-level static analysis. A concrete example is when such analysis encounters a
system call wrapper like setxid: it may mark all the possible system calls that can
be made through that wrapper as invoked, independently of those that will actually
be made at runtime.

Source-level analysis does not suffer from such issues and as such is more precise
than binary-level techniques. For example, on Redis, source-level static analysis
reports 71 system calls which is close to the 68 traced at runtime on the test
suite. Due to the difficulty of binary-level static analysis, this technique also suffers
from a small number of false negatives [2, 10]. Based solely on static analysis,
the amount of system calls that would need to be implemented to support all
5 applications is 141 for source-level and 125 for binary-level. We suspect that
this smaller number for binary-level analysis may come from its false negatives.
We conclude that relying solely on static analysis is not sufficient to get a good
understanding of the implementation effort required for an OS aiming at POSIX-
like compatibility.

In all, these results bring a message of hope to the level of POSIX compatibilty
unikernels can provide: the effort, while non-negligible, is not as insurmountable as
past studies relying on static analysis seemed to suggest.

Conclusions

We have argued that the time for wider unikernel deployment is now: the availabil-
ity of de-facto standard orchestration frameworks such as Kubernetes, coupled with
Unikraft’s high level of POSIX compatibility, fully modular architecture leading to
high performance, and standard but previously sorely missing security features should
remove the main barriers to adoption that have in the past crippled unikernel de-
ployment. If you’d like to know more about the project or join the growing Unikraft
OSS community please have a look at the project’s website at www.unikraft.org
and please don’t hesitate to drop us a line.

References

[1] Per Buer. Unikernels are secure. here is why., 2017. http://unikernel.org/
blog/2017/unikernels-are-secure, Online, accessed 6/17/2021.

www.usenix.org ;login: | 7

[2] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and
Vasileios P Kemerlis. Sysfilter: Automated system call filtering for commodity
software. In 23rd International Symposium on Research in Attacks, Intrusions
and Defenses ({RAID} 2020), pages 459–474, 2020.

[3] Antti Kantee and Justin Cormack. Rump kernels no os? no problem! USENIX;
login: magazine, 2014.

[4] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. Os v - optimizing the
operating system for virtual machines. In Proceedings of the 2014 USENIX
Annual Technical Conference, ATC’14, page 61, 2014.

[5] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan Santhanam,
Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, S, tefan Teodor-
escu, Costi Răducanu, Cristian Banu, Laurent Mathy, Răzvan Deaconescu,
Costin Raiciu, and Felipe Huici. Unikraft: Fast, specialized unikernels the easy
way. EuroSys’21, New York, NY, USA, 2021. ACM.

[6] Stefan Lankes, Simon Pickartz, and Jens Breitbart. Hermitcore: a unikernel for
extreme scale computing. In Proceedings of the 6th International Workshop
on Runtime and Operating Systems for Supercomputers, ROSS 2016. ACM,
2016.

[7] Anil Madhavapeddy and David J Scott. Unikernels: Rise of the virtual library
operating system. ACM Queue, 11(11):30, 2013.

[8] Spencer Michaels and Jeff Dileo. Assessing unikernel security, 2019.
https://research.nccgroup.com/wp-content/uploads/2020/07/ncc_

group-assessing_unikernel_security.pdf, Online, accessed 6/17/2021.

[9] musl libc. musl libc - Design Concepts. https://wiki.musl-libc.org/design-
concepts.html.

[10] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-
dran. A binary-compatible unikernel. In Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
pages 59–73, 2019.

[11] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E Porter.
A study of modern linux api usage and compatibility: what to support when
you’re supporting. In Proceedings of the Eleventh European Conference on
Computer Systems, page 16. ACM, 2016.

www.usenix.org ;login: | 8

