
 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 5

Deploying a Python App with Puppet
S p e n c e r K r u m a n d W i l l i a m V a n H e v e l i n g e n

In this article, we will explain how to deploy a simple Django app from
source using Puppet [1]. Puppet is an open source configuration man-
agement tool developed by Puppet Labs, a Portland-based automation

startup. The Puppet software pulls its configuration from code written in a
Ruby DSL, which makes Puppet extremely configurable and pluggable. The
application we are going to deploy is OSQA [2], an open source stack over-
flow-like web application. Because Puppet is distribution-agnostic, we can do
this on any modern Linux. This recipe of Puppet code easily can be converted
to your automatic deployment needs.

To deploy our web application, we are going to build a Puppet class and install some public
modules. First make sure your system has git and Puppet 2.7.x or later installed. Pup-
pet is available in the standard Ubuntu repositories as well as EPEL for Red Hat 6-based
distributions. If you want the latest version of Puppet, which won’t be required today, you
can add the Puppet Labs package repository for your operating system. You will also need
to use the Puppet Labs package repos if you are on a Red Hat 5-based distribution. You can
also install Puppet from RubyGems.

Lets create a module to hold our class. We can use the Puppet utility to build the skeleton
of the Puppet module:

$ puppet module generate demouser/osqa

Notice: Generating module at /root/demouser-osqa

demouser-osqa

demouser-osqa/spec

demouser-osqa/spec/spec_helper.rb

demouser-osqa/Modulefile

demouser-osqa/README

demouser-osqa/manifests

demouser-osqa/manifests/init.pp

demouser-osqa/tests

demouser-osqa/tests/init.pp

$ mv demouser-osqa/ /etc/puppet/modules/osqa

The vast majority of our code is going to be written into osqa/manifests/init.pp. We also
need to pull in some public Puppet modules we will use for component tasks:

$ puppet module install puppetlabs/vcsrepo

$ puppet module install puppetlabs/apache

$ puppet module install puppetlabs/mysql

$ git clone https://github.com/stankevich/puppet-python /etc/puppet/modules/python

Spencer Krum is a Linux and
application administrator with
UTI Worldwide, a shipping
and logistics firm. He lives
and works in Portland. He has

been using Linux and Puppet for years. Krum
is co-authoring Pro Puppet, 2nd Edition (http://
www.apress.com/9781430260400), which
should be available from Apress in October
2013. He is also writing an original book,
Beginning Puppet, which should be available
from Apress in late 2013. Krum helps maintain
a number of public Puppet modules on the
Puppet Forge. His favorite non-puppet open
source project to commit to is the Ops School
curriculum (opsschool.org), a project to build
an Operations 101 handbook/manual for
people who want to break into the operations
engineering career field. He enjoys hacking,
tennis, IRC bots, StarCraft, and Hawaiian food.
krum.spencer@gmail.com

William Van Hevelingen is
the Unix Team Lead at the
Computer Action Team
(TheCAT), which provides
IT support for the Maseeh

College of Engineering and Computer Science
at Portland State University. Van Hevelingen
oversees the Linux/Unix systems and services
for the college with the help of a small army of
volunteer students. He is an active contributor
to open source projects and is a co-author
(with Spencer Krum and Ben Kero) of the
second edition of Pro Puppet.
william.vanhevelingen@pdx.edu

https://www.usenix.org
http://www.apress.com/9781430260400
http://www.apress.com/9781430260400
krum.spencer@gmail.com
william.vanhevelingen@pdx.edu

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 6

Deploying a Python App with Puppet

We’re going to build the OSQA module part by part. If you want
to cut to the chase and see the final version, you can look at
https://github.com/nibalizer/puppet-module-osqa.

If you look in osqa/manifests/init.pp, you will find that
the Puppet module tool has already created some boiler-
plate for you. You should come back later and fill out this
documentation.

First, we need to add some parameters to this class so that it
can be used by others:

class osqa (

 $install_dir 	 = ‘/home/osqa’,

 $username 	 = ‘osqa’,

 $group 	 = ‘osqa’,

 $db_name 	 = ‘osqa’,

 $timezone 	 = ‘America/Los_Angeles’,

 $app_url 	 = ‘http://puppet-article-4’,

 $db_username 	 = ‘osqa’,

 $db_password 	 = ‘changme!’,

) {

…

This syntax means the class can be called with any of these
parameters, but if any are omitted the the default on the right
side will be used. Generally users will want to run this applica-
tion as the OSQA user, and out of the /home/osqa directory, but
someone might want to run it out of /var/www or /srv/www to
be more congruent with their existing infrastructure.

Next we will create the user, group, and do other preliminary
setup:

 group { $group:

 ensure => present,

 }

user { $username:

 ensure 	 => present,

 gid 	 => $group,

 managehome 	 => true,

 require 	 => Group[$username],

 }

 file { $install_dir:

 owner 	 => $username,

 recurse 	 => true,

 require 	 => Group[$username],

 before 	 => File[“${install_dir}/requirements.txt”],

 }

These stanzas are Puppet resources. When the class is
included on a host, these resources will be created. Notice that
the user resource has a require => relationship with the group

resource. Puppet is a declarative language; resources are not
created in the order of the file, but in a random order. The way
to break the randomness and chain logical dependencies is to
use the require or before syntax.

Next we create resources for managing Apache. Because we
are already including the Apache module, we can give very
high-level directives here. Unfortunately, the Apache module is
not really ready to manage WSGI applications, but we can work
around that using the custom_fragment parameter and a file
resource:

class { ‘apache’:

 default_vhost => false,

 }

 include apache::mod::wsgi

 # FIXME: 2013/08/16 apache module does not support wsgi yet

 file { ‘/etc/apache2/sites-enabled/wsgi.conf’:

 ensure	 => file,

 content	 => “WSGISocketPrefix \${APACHE_RUN_DIR}

WSGI\nWSGIPythonHome ${install_dir}/virtenv-osqa”,

 notify	 => Service[‘apache2’],

 }

 # FIXME: 2013/08/16 apache module does not support wsgi yet

 apache::vhost { ‘osqa-vhost’:

 port	 => 80,

 docroot	 => “${install_dir}/osqa-server”,

 custom_fragment 	 => “ WSGIDaemonProcess OSQA \n

WSGIProcessGroup OSQA\n WSGIScriptAlias / ${install_dir}/

osqa-server/osqa.wsgi\n “,

 directories 	 => [

 { path => “${install_dir}/osqa-server/forum/upfiles”, order

=> ‘deny,allow’, allow	 => ‘from all’ },

 { path => “${install_dir}/osqa-server/forum/skins”, order

=> ‘allow,deny’, allow	 => ‘from all’ }

],

 aliases	 => [

 { alias => ‘/m/’,		 path =>

“${install_dir}/osqa-server/forum/skins/” },

 { alias => ‘/upfiles/’	path =>

“${install_dir}/osqa-server/forum/upfiles/” }

],

 require	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

Next we need a source checkout of our application. This par-
ticular application is using svn, but the vcsrepo resource below
supports many version control systems, which is selected via
the provider attribute:

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 7

Deploying a Python App with Puppet

vcsrepo { “${install_dir}/osqa-server”:

 ensure	 => present,

 provider	 => svn,

 source 	 => ‘http://svn.osqa.net/svnroot/osqa/trunk/’,

 revision 	 => ‘1285’,

 user 	 => $username,

 owner 	 => $group,

 require 	 => [User[‘osqa’], File[$install_dir]],

 }

After this we have to create some file resources and set some
permissions that our application probably should create for
itself, but Puppet can do just fine:

file { “${install_dir}/osqa-server/log”:

 ensure 	 => directory,

 owner 	 => $username,

 group 	 => ‘www-data’,

 recurse 	 => true,

 mode 	 => ‘0775’,

 require 	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

 file { “${install_dir}/osqa-server/log/django.osqa.log”:

 owner 	 => $username,

 group 	 => ‘www-data’,

 mode 	 => ‘0664’,

 require 	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

 $osqa_directories = [

 “${install_dir}/osqa-server/forum/upfiles”,

 “${install_dir}/osqa-server/cache”,

 “${install_dir}/cache”,

 “${install_dir}/log”,

 “${install_dir}/forum_modules”]

 file { $osqa_directories:

 ensure 	 => directory,

 group 	 => ‘www-data’,

 mode 	 => ‘0770’,

 require 	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

 file { “${install_dir}/osqa-server”:

 owner 	 => $username,

 group 	 => $group,

 recurse 	 => true,

 require 	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

Next we use Puppet’s templating engine, which is the same
ERB templating you’ve possibly been exposed to in Ruby web

development, to create the wsgi file and configuration files for
our application:

file { “${install_dir}/osqa-server/osqa.wsgi”:

 content 	 => template(‘osqa/osqa.wsgi.erb’),

 require 	 => User[‘osqa’],

 }

 file { “${install_dir}/osqa-server/settings_local.py”:

 owner 	 => $username,

 content 	 => template(‘osqa/settings_local.py.erb’),

 require 	 => Vcsrepo[“${install_dir}/osqa-server”]

 }

 file { “${install_dir}/requirements.txt”:

 content 	 => template(‘osqa/requirements.txt’),

 require 	 => Vcsrepo[“${install_dir}/osqa-server”]

 }

We’re templating out “requirements.txt” because the applica-
tion doesn’t ship with one. This further demonstrates how
Puppet can be an effective deployment tool even in less than
ideal circumstances.

The template files are stored as osqa/templates/filename.erb.
You can check out the git repository for puppet-module-osqa if
you would like to see them. (More information is available on
ERB templating is available online at the Puppet Labs website
and elsewhere.)

Next we will install and configure the MySQL server. Thanks
to the MySQL module, this is painless:

class { ‘mysql::server’:

 config_hash => { ‘root_password’ => hiera(‘mysql_root_

password’, ‘changme!’) },

 }

 package { ‘libmysqlclient-dev’:

 ensure => present,

 }

 include mysql::bindings::python

 mysql::db { $db_name:

 user 	 => $db_username,

 password 	 => $db_password,

 grant 	 => [‘all’],

 }

Above we have used the hiera function call. Hiera allows us to
look up data, like a database password above, in an external
datastore. Commonly this datastore is just yaml files. This is
useful because it allows us to separate data from code. Next we

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 8

Deploying a Python App with Puppet

will install the Python virtual environment and install all the
dependencies using pip inside that virtualenv. This is quick,
easy, and simple thanks to the Python module:

class { ‘python’:

 version	 => ‘system’,

 dev	 => true,

 virtualenv	 => true,

 }

 python::virtualenv { “${install_dir}/virtenv-osqa”:

 ensure 	 => present,

 version 	 => ‘system’,

 systempkgs 	 => false,

 distribute 	 => true,

 requirements 	 => “${install_dir}/requirements.txt”,

 owner 	 => $username,

 require 	 => [Vcsrepo[“${install_dir}/osqa-server”],

Class[‘python’], File[“${install_dir}/requirements.txt”]],

 notify 	 => Exec[‘syncdb’],

 }

The last set of resources are what Puppet calls “exec”
resources. In any LAMP stack deployment, commands must be
run for the application to configure the database. Puppet has
the exec resource available to run any piece of shell the system
administrator or developer wants to. Entering the virtual
environment and running Django’s manage.py is simple. The
refreshonly directive coupled with the notify coming from the
virtualenv means that these execs will only run right after the
virtualenv is created, which will only happen on initial con-
figuration, not continuously:

exec { ‘syncdb’:

 cwd 	 => “${install_dir}/osqa-server”,

 provider 	 => shell,

 user 	 => $username,

 command 	 => “. ../virtenv-osqa/bin/activate && yes no |

${install_dir}/virtenv-osqa/bin/python manage.py syncdb --all”,

 refreshonly 	 => true,

 notify 	 => Exec[‘migrate-forum’],

 }

 exec { ‘migrate-forum’:

 cwd 	 => “${install_dir}/osqa-server”,

 provider 	 => shell,

 user 	 => $username,

 command 	 => “. ../virtenv-osqa/bin/activate &&

${install_dir}/virtenv-osqa/bin/python manage.py migrate forum

--fake”,

 refreshonly => true,

With all our resources in place, we need to use another piece of
Puppet syntax to chain them together in the correct way:

 Class[‘python’] -> Python::Virtualenv <| |>

 -> Python::Pip <| |> -> Class[‘mysql::server’]

 -> Mysql::Db[$db_name]

This syntax ensures that the Python class comes first, fol-
lowed by its virtual environment and any pip resources, then
the mysql::server class comes, followed by its MySQL database.
When we try to run manage.py, we are required to have a data-
base online.

With all that code entered, we can run this against a server
with

 $ puppet apply -e ‘class { “osqa”: } ‘

which will run for a while, then we have a functional OSQA
installation up and running under mod_wsgi.

You can also use any of the parameters we allowed for above
with the following syntax:

 $ puppet apply -e ‘class { “osqa”: user => “web-osqa” }’

Or, if your environment already has puppet set up in master/
agent mode, you could just add these class resources to the osqa
server’s node definition.

With that, we have built a simple Puppet module to deploy a
Django web application. We are managing all of the primary
components of the application: database, source code, Apache
configuration, and virtual environment. We are also leverag-
ing Puppet to overcome some of the limitations of the software,
such as creating var and cache directories because the applica-
tion doesn’t create them itself. Puppet modules like this one
can be used to streamline production deployment or to shorten
iterative cycles in development.

References
[1] Puppet: docs.puppetlabs.com

[2] OSQA: http://www.osqa.net/download/

https://www.usenix.org
docs.puppetlabs.com
http://www.osqa.net/download/

