
 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 2

Uncertain Infrastructures
M a r k  B u r g e s s

To our shame, one of the rarely voiced complaints one could level at the 
IT service industry is that we don’t know how to make promises we 
can keep. In fact, we have not designed technology to keep anything; 

the main focus lies in building, tweaking, and fire-fighting, all within an 
increasingly fast-moving and disposable culture.

Against the backdrop of this uncertainty, we’ve invested in our reliance on technology. 
Smart devices enable and enhance our personal freedom in ways that are just too seduc-
tive to forego, and they interface with services that lie behind the scenes. In the new age  
of IT-powered commerce, the continuity of that lifestyle has come centre-stage. We used 
to talk about business continuity and disaster recovery, now we talk about continuous 
delivery of products to market, as well as continuous availability of services. We are start-
ing to realize that the modern world is always on, and we will not accept anything less.

The builders and custodians of today’s infrastructure have designed technology to be 
managed by direct commands or remote control, replacing manual error with amplified 
manual error. Errors are reported by independent monitors and shot down by further 
manual intervention: errors slain like dragons in a gaming experience. But this will not do 
for mission critical infrastructure.

Systems Thinking: Clockwork Uncertainty
We can really only promise a tiny number of things about the vastly complex environ-
ments we build. This does not give cause for complete certainty, but it can help to set 
expectations. We can promise certain aspects of behavior, albeit with margins for error, 
but we should also be clear: We build systems and essentially hope for the best; nothing  
we do can fully determines whether a system crosses a threshold into instability.

Over the years I’ve had the privilege to work with many smart people at installations of 
varying scale and complexity, often through the lens of CFEngine, and I’ve seen the issues 
first hand and been able to learn some lessons from them. There is growing recognition 
that systems are composed of both humans and automated processes, and that systemic 
complexity amplified by scale is the main cause of uncertainty. But few voices have 
invested in a science to understand and describe such complexity.

There are big ideas here, far too large to fit into this brief comment; so, I decided that it 
was time to write them into a book. In Search of Certainty: The Science of our Informa-
tion Infrastructure is my new book [1], a popular science account of what I learned over the 
past 20 years.

Smart but Resilient
Infrastructure is getting smarter. Why? Because we want to get at stuff faster. The less 
work we have to do, the more accessible marketplaces for “stuff” are, the happier we seem. 
That means embedded computation.

Mark Burgess is the CTO and 
Founder of CFEngine, formerly 
professor of Network and 
System Administration at  
Oslo University College, and 

the principal author of the Cfengine software. 
His the author of numerous books and papers 
on topics from physics, Network and System 
Administration, to fiction.  
mark.burgess@cfengine.com

References
[1] Burgess, Mark. In Search of 
Certainty: The Science of our 
Information Infrastructure. 
XtAxis Press, 2013. http://mark-
burgess.org/certainty.html

[2] Gordon, J.E. The New Science 
of Strong Materials: Or Why We 
Don’t Fall Through the Floor. 
Princeton University Press, 2006.

https://www.usenix.org
mailto:mark.burgess@cfengine.com
http://markburgess.org/certainty.html
http://markburgess.org/certainty.html


 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 3

Uncertain Infrastructures

We’ve seen a lot of progressive thinking over the past few years 
under the banner of software defined systems. There has 
been talk about “anti-fragility,” with chaos monkeys prodding 
systems to make them fail. Of course it is not the breaking of 
systems that makes them stronger, but adaptive processes 
behind the scenes that no one is really talking about. This is 
where the science lies.

The thrust of my activism in system administration has been 
that we have to start thinking more scientifically. Computer 
science is weak in the broad traditions of science as a tool of 
explanation. Its roots lie in deductive reasoning, which is only 
a small part of a post hoc picture. Managing systems is not 
just a case of test-based development, or of analyzing big data. 
Test-based development is like trying to pin the tail on a mule, 
unless you have some guiding principles and empirical founda-
tions on which to home in on your design.

Semantics and Dynamics = Dev and Ops
I argue that there are two aspects to systems. I shall call these 
semantics and dynamics. Semantics are about purpose and 
intent. Dynamics are about behavior and performance. In some 
ways, these two aspects map on the dev (development) and 
ops (operations) in the the current parlance. Developers think 
mainly about purpose and intent, whereas operations engi-
neers have to deal with actual behavior. DevOps tries to teach 
the message that you need to understand both of these aspects 
together in a unified way if you want to understand IT services 
beyond a trivial scale and complexity.

In fact, there is deep science here—and not just the signal 
lambda calculus that has gained the unfair attention of a small 
crowd of developers—the study of behavior is known to us as 
physics and it spans a plethora of different methods and issues. 
I don’t have time to talk about them here, but I’ve tried to 
describe the key ideas in my book.

If Only Systems Were Deterministic...
If only systems would do as they’re told, developers would have 
their way. Many people I meet still believe that systems are 
deterministic. But this Newtonian dogma was shattered in the 
20th century. The history of scientific thinking tells us: The 
world is non-deterministic, get over it.

Computer science does itself a disservice by ignoring the 
main lesson of 20th century science, namely that the world is 
non-deterministic in fundamental ways. There is not even a 
well-developed theory of bugs. The push-button, imperative, 
API remote control approaches we use to instigate action today 
do not bring certainty. They offer a comfortable industrializa-
tion of process, but ultimately, by trying to remote control, we 
merely throw stuff over the wall and hope for the best. The only 

way to approach system reliability is to embrace the notion of 
indeterminism once and for all. It is about best effort.

Some things can help us here, such as building systems that 
are weakly coupled. System dependencies lead to strong cou-
pling. If one thing fails, the system immediately transmits 
the failure to the next component. A weakly coupled system 
is fault tolerant.

Artificial Criticality
We escape from criticality by diversifying systems through 
redundancy. We never control systems, we merely keep their 
forces in balance. The knife edge of if-else programming is the 
radiation or asbestos of the software world. We stuff the walls 
full of this potentially dangerous automated reasoning, believ-
ing that it is there to protect us, when in fact it exposes us to an 
instability by the myriad pinpricks of a jostling environment.

Trying to conclude true or false from a highly complex environ-
ment is found to be the main cause of software unreliability. 
The reasoning for this is explained in the book.

Our thinking is still incredibly primitive, if we are expecting to 
scale reliable systems. We have given little evidence that we’ve 
understood the key issues of system automation in IT. Manu-
facturing and electronics have come a lot further. It’s not only 
about how resilient the pieces are, but also about how they are 
put together. In several of the examples I’ve shown, the pres-
ence of regular maintenance could have prevented the gradual 
failure of the system.

The great pioneer of material science J.E. Gordon wrote [2] 
that: “The history of attempts to prevent cracks from spread-
ing or evade their consequences is almost the history of 
engineering.”

In the Comet airline disaster of 1954, microscopic cracks pre-
cipitated an avalanche failure that was so fast nothing could 
have prevented it from happening. In physical terms we would 
say that the rate of reaction dominated any process capable of 
preventing it. When there is a mismatch of dynamical scales 
like this, maintaining equilibrium is not possible. You are bal-
ancing on a knife edge. Semantics of design always give way to 
the dynamics of underlying reality.

There are two “answers” to this kind of failure: avoid stress 
concentrations, bottlenecks, and other points of failure; and 
use materials that catch the stress automatically by design, 
like the storm drain, like embedded glass and carbon fibers and 
alloys that spread load by deforming plastically. In IT terms, 
you want load balancing and failover without failure as part of 
the design, not as a late fire-fight.

https://www.usenix.org


 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 4

Uncertain Infrastructures

External Intervention vs Embedded Smart 
Infrastructure
Why do we continue to make remote control systems that 
make the worst use of both humans and machines? Because we 
believe it’s the only way to do it. But take a look at this picture 
of responding to a crisis.

◆◆ You wait for a crisis.
◆◆ You bring in a manual response (too late).
◆◆ You scale up the human operation by bringing power tools.

Now think about how simple drainage prevents most flooding 
as an entirely automated embedded system. We are obsessed by 
the manual intervention. It is a sign of technological immatu-
rity. It is even more apparent in the way we attempt to orches-
trate systems, using simplistic flow-chart thinking as a model 
of a highly parallel and distributed environment.

There are three phases to the system lifecycle that we need to 
rein in. We think very differently about each.

◆◆ Planning: Here we tend to think in terms of broad block 
semantics (boxes with arrows between) or workflows.

◆◆ Operations: A highly dynamic and parallel phase, where 
overt flow thinking is a hindrance / bottleneck.

◆◆ Evaluation: Here we look for artificial and misleading 
hindsight narratives about successes and failures.

Rimsky Korsakov would have rolled his eyes at contemporary 
descriptions of orchestration. Orchestration of total systems 
lies in the planning of highly parallel operations. We might only 
remember a specific storyline in hindsight—perhaps a good or 
a bad experience. This is how we usually describe the complex 
system, but it is not a true representation of it.

We have the opportunity to make introspective systems 
that merge semantics and dynamics into a unified picture. 

That will only happen when we remove the artificial distinc-
tion between development, configuration, operation, and 
monitoring.

In Search of Certainty
What does it mean to be certain about something? How do we 
make a reliable infrastructure for society?

Absolute certainty and determinism are myths. We can only 
do our best. As small forces in an environment that permits us 
islands of temporary calm, we must try to understand the big-
ger picture. There are three main issues: scale, complexity, and 
lack of knowledge.

Twenty years after I began CFEngine and my own research 
into these matters, it seemed time to tell the story of the think-
ing that went into it. My own interest has meandered around 
many topics within the scope of IT operations, and I have tried 
to describe how these pieces fit together in the book, but the 
main core of it can be understood easily as a simple-minded 
quest of a physicist to understand a system.

What I hope is that my book starts a discussion that shows 
how to apply some of the traditions of science to a subject that 
has ridden mainly on the coat-tails of engineering. How do we 
make promises we can keep? By understanding the nature of 
certainty itself.

If we take certainty seriously, we need to think carefully about 
how software is designed. We can’t just throw software logic 
over the wall for operations to catch. We need to build for 
intrinsic stability from the outset through true automation. 
And, even then, we’ll need to perform continuous maintenance, 
just to be sure(ish).

https://www.usenix.org

