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Abstract
The Spectre family of security vulnerabilities show that

speculative execution attacks on modern processors are prac-
tical. Spectre variant 2 attacks exploit the speculation of indi-
rect branches, which enable processors to execute code from
arbitrary locations in memory. Retpolines serve as the state-
of-the-art defense, effectively disabling speculative execution
for indirect branches. While retpolines succeed in protecting
against Spectre, they come with a significant penalty — 20%
on some workloads.

In this paper, we describe and implement an alternative
mechanism: the JumpSwitch, which enables speculative ex-
ecution of indirect branches on safe targets by leveraging
indirect call promotion, transforming indirect calls into con-
ditional direct calls. Unlike traditional inlining techniques
which apply call promotion at compile time, JumpSwitches
aggressively learn targets at runtime and leverage an opti-
mized patching infrastructure to perform just-in-time promo-
tion without the overhead of binary translation.

We designed and optimized JumpSwitches for common
patterns. If a JumpSwitch cannot learn safe targets, we fall
back to the safety of retpolines. JumpSwitches seamlessly
integrate into Linux, and are evaluated in Linux v4.18. We
show that JumpSwitches can improve performance over ret-
polines by up to 20% for a range of workloads. In some cases,
JumpSwitches even show improvement over a system without
retpolines by directing speculative execution into conditional
direct calls just-in-time and reducing mispredictions.

1 Introduction

Spectre is a family of security vulnerabilities first disclosed
to the public in January 2018 [38]. Spectre manipulates a pro-
cessor to speculatively execute code which leaves side-effects
that can be observed even after a processor decides the specu-
lation is incorrect and reverses its execution. Spectre attacks
have shown that it is practical to extract data which leaks
from these observable side-effects, known as side-channels.
As a result, both processor manufacturers and software devel-
opers have sought to defend against Spectre-style attacks by
restricting speculative execution.

In order to execute a Spectre attack, malicious code must
be able to control what the processor speculatively executes.

While several vectors of attack exist, indirect branches, which
enable a processor to execute code from arbitrary locations in
memory have been shown to be especially vulnerable. Vari-
ant 2 of Spectre, known as “Branch Target Injection” [38],
leverages indirect branches by causing the processor to mis-
predict the branch target and speculatively execute code de-
signed to leave side-effects. To mitigate against this attack,
a code sequence known as a retpoline [49] was developed,
which is used in software and throughout the OS kernels today.
Retpolines work by effectively disabling speculative execu-
tion of indirect branches. Instead of allowing the processor to
speculate on the target of an indirect branch, retpolines force
the processor to speculatively execute an infinite loop until
the target is known. This is achieved by leveraging return (or
RET) instructions, which are speculatively executed using a
different mechanism than indirect branches.

While retpolines are effective in mitigating against Spec-
tre variant 2, preventing speculative execution of indirect
branches comes at a significant cost: in some benchmarks,
we observe up to a 20% slowdown due to retpolines, making
Spectre variant 2 one of the most expensive Spectre attacks
to defend against. Unfortunately, indirect branches are used
extensively in software: they are the basis for software indi-
rection, they enable object-oriented constructs such as virtual
functions and they are present throughout the OS kernels to
enable their modular design. Spectre has made optimizing
indirect branches in software more important than ever, since
Spectre vulnerable hardware is no longer able to do so.

This paper describes our implementation of an alternative
mechanism, the JumpSwitch, which leverages a technique
known as indirect call promotion to transform indirect calls
into conditional direct calls. Indirect call promotion is often
employed by compilers [6, 9] to take advantage of profiling
data, or binary translators and JIT engines to avoid expen-
sive lookups in code caches [20]. These techniques alone,
however, are insufficient for OS kernels. Mechanisms such
as kernel address space layout randomization (KASLR) [45]
dynamic modules and JITed code (e.g., eBPF) make it dif-
ficult to reliably determine branch targets. Compiler-based
approaches such as PDO/FDO “lock” the results in a binary,
requiring recompilation for best performance and preventing
regressions [40] when the workload changes [54], which may
be untenable as most distributions package kernels as binaries.
Binary translation of the kernel incurs significant overheads
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while restricting functionality, obviating the benefits of indi-
rect call promotion [27].

Building on this observation, JumpSwitches learn execu-
tion targets either statically at compile-time or dynamically
at runtime and promote indirect calls using just-in time pro-
motion, learning targets using a lightweight mechanism as
the kernel runs. If correct targets cannot be learned, Jump-
Switches fall back to using retpolines. JumpSwitches are fully
integrated with the Linux kernel’s build system.1 Through the
Linux build infrastructure, we are able to seamlessly update
the kernel to leverage JumpSwitches without source code
changes. However, to further improve performance, we pro-
vide more advanced JumpSwitches known as semantic Jump-
Switches which are able to take advantage of the rich semantic
information available within the kernel such as process tables,
and we provide five different types of JumpSwitches tailored
for different use cases.

Our evaluation of JumpSwitches shows a performance im-
provement over retpolines in a variety of workloads by up to
20%. In some cases, we are able to even show improvement
on a system without retpolines, so JumpSwitches are use-
ful even if Spectre variant 2 is mitigated in hardware. Since
JumpSwitches are implemented within the kernel, they may
potentially benefit every workload running on Linux.

While conditional direct calls are vulnerable to Spectre
variant 1 (“Bounds Check Bypass”) [30,39,49], another Spec-
tre vulnerability which retpolines do defend against, other less
expensive mechanisms which JumpSwitches are compatible
with, such as static analysis and selective masking/serializa-
tion are typically used to defend against Spectre variant 1 [12].
Notably, future “Spectre safe” hardware which do not need
retpolines will still be vulnerable to Spectre variant 1 [46] and
require Spectre variant 1 mitigations. JumpSwitches provide
the same level of safety as this future hardware.

This paper makes the following contributions:
• We explore Spectre and the impact of current and future

mitigations on the performance of indirect calls. (§2.1)
• We explore previous work for indirect call promotion

and describe how JumpSwitches revisit indirect call pro-
motion in the era of Spectre. (§2.2, §2.4).

• We describe our implementation of JumpSwitches (§3)
which features:

– Five types of JumpSwitches, which are optimized
for the common case (generic JumpSwitches) and
special use cases (semantic JumpSwitches) (§3.1).

– A mechanism for learning which updates Jump-
Switches outside the path of execution (§3.2).

– A integration with the Linux kernel which lever-
ages semantic information within the kernel (sys-
tem calls, process information, seccomp) (§3.4).

• We evaluate JumpSwitches and show that they improve
performance in real-world benchmarks by up to 20%

1We have submitted upstream patches to the Linux kernel, with positive
feedback from the Linux community.

(§4).
• We conclude with remarks about the future of specula-

tive execution (§5).

2 Indirect Branches

Indirect branches are a basic type of processor instruction
which enable programs to dynamically change what code is
executed by the processor at runtime. To execute an indirect
branch, the processor computes a branch target, which deter-
mines what instruction to execute after the indirect branch.
Since targets are dynamically computed, indirect branches
can execute code depending on what data is present. This
indirection is most frequently used to enable polymorphism.
For example, in C++, different functions may be executed
depending on an object’s type, or in Linux, different functions
may be executed depending on whether an address is IPv4 or
IPv6. To enable this functionality, a compiler will generate
an indirect branch which computes the correct function as a
branch target based on the object’s type. Indirect branches are
not limited to object-oriented code: they are used by many
constructs such as callbacks and jump tables as well.

The use of indirect branches, however, poses a significant
problem for modern processors which are heavily pipelined
and require a constant instruction stream to achieve max-
imum performance. With an indirect branch, the processor
cannot fetch the next instruction until the branch target is com-
puted, resulting in pipeline stalls that significantly degrade
performance. To eliminate these stalls, processors leverage
speculation, which guesses the branch target and rolls back
executed instructions if the guess is later determined to be
incorrect. In many processors, speculation is done through
a branch target buffer (BTB), which serves as a cache for
previous branch targets of indirect branches.

The Spectre family of attacks observed that rolling back
speculative execution can be incomplete. For example, spec-
ulative execution of privileged code could leave memory as
a result of that execution in the processor’s caches. Timing
attacks can be used by an unprivileged process to determine
what memory was fetched, resulting in a data leak. Spectre
variant 2, known as “Branch Target Injection” specifically
targeted indirect branches and the BTB [30, 38]. In variant 2,
either training the predictor to speculatively execute a mali-
cious branch target or causing a collision in the BTB (which
uses a subset of address bits for performance) resulting in
an indirect branch speculatively executing code which leaves
side-effects in the processor cache. This work focuses on vari-
ant 2, and when we refer to Spectre we refer to variant 2 of
the attack.

In the next sections, we discuss both current and future
mitigations for Spectre and how performance is affected. We
then discuss software mechanisms currently used to optimize
indirect branches, and present how JumpSwitches enable dy-
namically optimization of indirect branches while mitigating
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1 c a l l %r a x

2
3
4
5
6
7
8

c a l l r a x _ r e t p o l i n e

r a x _ r e t p o l i n e :
c a l l t a r g e t

c a p t u r e : pause
l f e n c e
jmp c a p t u r e

t a r g e t : mov %rax , [% r s p ]
r e t

Figure 1: Retpolines. Unsafe indirect branches on the left are
replaced with a call (line 1) to a retpoline thunk (lines 2-8).

Spectre style attacks. For the rest of this paper, we focus on
the Intel x86 architecture. We believe that JumpSwitch can
be applied to other Spectre vulnerable architectures, such as
AMD, ARM and IBM.

2.1 Spectre Mitigations
Mitigations for Spectre can be categorized into three general
categories: software, hardware microcode and hardware.

Software mitigations. Retpolines [49] are the currently
preferred method for mitigating Spectre. Retpolines, shown in
Figure 1, work by directing speculative execution of indirect
branches into an infinite loop. This is achieved by redirect-
ing indirect branches to a thunk which captures the branch
target on the return stack buffer (RSB) and uses a RET in-
struction instead of a CALL. A RET uses a different speculative
prediction mechanism which leverages the RSB rather than
the vulnerable BTB, so it does not suffer from the same vul-
nerability as a CALL instruction. Speculative execution of the
return path will execute lines 4-6, labeled capture, which
exhausts speculative execution by looping forever. The PAUSE
instruction on line 4 is used to release processor resources to
a hardware simultaneous multithread (SMT) or to save power
if no execution is needed, and the LFENCE instruction acts as
a speculation barrier [15, 36].

Retpoline safety is based on the behavior of the predictor
for the RET instruction. On Intel architectures before Skylake,
speculation for RET instructions were always computed from
the RSB [14]. On Skylake and after however, the contents of
the BTB may be used if the RSB is empty, making these archi-
tectures vulnerable even if retpolines are used [31]. To prevent
an attack which causes the underflow of the RSB, a technique
known as RSB stuffing can be used on these architectures
on events which could cause the RSB to be emptied [51].
However, a deep call stack may still result in unpredictable
overflows, leaving these architectures vulnerable even with
both RSB stuffing and retpolines enabled.

Measuring precise performance overheads of retpolines
is difficult because they affect deep microarchitectural state

such as the RSB, and may cause future mispredictions. Em-
pirically, retpolines have been observed to result in as much
as a 20% slowdown on some workloads, increasing the cost
of an indirect branch from a worst-case cost of around 10
cycles [13] (indirect branch misprediction) to almost 70 cy-
cles in the common case. The performance penalty Spectre
imposes on indirect branches makes optimizing them much
more important.

Hardware microcode mitigations. As a result of Spectre,
microcode updates have been introduced which add func-
tionality to control indirect branch predictions. These mecha-
nisms include Indirect Branch Restricted Speculation (IBRS),
Single Thread Indirect Branch Predictors (STIBP) and In-
direct Branch Predictor Barrier (IBPB) [14]. IBRS works
by defining four privilege levels: host and guest modes with
corresponding user and supervisor modes. The processor guar-
antees that lower privilege modes and other logical proces-
sors cannot control the predictors of more privileged modes.
STIBP and IBPB are used to protect VMs and processes
across context switches by preventing predictions in one
thread or context from affecting another thread or context.

These microcode mechanisms can replace retpolines. Un-
fortunately, the performance penalty of IBRS is quite high:
Since it is implemented in microcode, it likely flushes the BTB
on each privilege transition and requires a model-specific
register (MSR) write whenever a privilege transition occurs.
IBRS has an extremely high overhead compared to retpolines
(observed to be as high as 25–53%+) [17, 47, 50].

IBRS is the only mechanism which completely protects
Skylake and future processors, because the BTB may be used
if the RSB underflows. However, due to concerns with com-
plexity and performance, the Linux kernel has adopted the
use of retpolines on all vulnerable architectures instead, using
RSB stuffing to protect the RSB [51, 53].

Hardware mitigations. Finally, Intel has proposed mitiga-
tions for Spectre in new microarchitectures which require new
microprocessors to be deployed. These mitigations cannot
address Spectre in the billions of already deployed proces-
sors [37]. This includes technologies such as Enhanced In-
direct Branch Restricted Speculation (Enhanced IBRS) [16]
and control flow enforcement technology (CET) [14]. En-
hanced IBRS eliminates the overhead of IBRS by removing
the requirement to write to an MSR. CET restricts the specula-
tions which the processor can make by requiring that indirect
branches target only special ENDBR (end-branch) instructions.

Hardware mitigations will be much more performant than
software or hardware microcode mitigation today, since future
processors will be able to make deep changes to the microar-
chitecture to account for Spectre. Practically implementing
these technologies on code which must run on both secure
and vulnerable hardware remains an open question, especially
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in the cloud where live migration between processors remains
a real possibility [36, 48].

2.2 Indirect Call Promotion
The cost of indirect calls have been historically observed
to be high, even before the discovery of Spectre. The most
common technique used to reduce the cost of indirect calls
is known as indirect call promotion, where likely call targets
are promoted to conditional direct calls, reducing the chance
that the processor will mis-speculate an indirect call using a
code fragment similar to that shown in Figure 2 [6, 7].

Promoting indirect calls comes at a cost, however. Each pro-
moted call increases code size, which significantly decreases
performance if infrequently used targets are promoted. Code
size also limits the number of targets that can be promoted.
Indirect branches which call a large number of targets with
equal likelihood are poor candidates for promotion.

Compilers can determine and promote likely targets at
compile-time [9, 23], through the use of profile-guided opti-
mization or feedback-directed optimization (PGO/FDO) [10,
11, 26, 32, 41, 42]. Collection of targets in the Linux kernel,
which is the focus of this paper, is complicated by several fac-
tors. First, branches collected through the use of profiling may
not resemble the actual execution at runtime and incorrect
learned targets may even result in regressions [40], particu-
larly if the code is executed under diverse conditions. Previous
work has shown that simply executing the Linux kernel un-
der different workloads results in different profiles [54, 55].
Second, mechanisms such as KASLR [45], JITed code (e.g.,
eBPF programs) and dynamically loaded modules, may make
it impossible to learn targets until runtime. Finally, incorporat-
ing learned branch targets requires recompilation, which may
mean having different binaries for each workload or a deploy-
ment infrastructure which adapts binaries over time [10, 42].
This is incompatible with how kernels are provided in most
OS distributions: as binary packages.

While binary translators [18, 27, 28] and JIT compil-
ers [25, 33, 44] are capable of collecting branch targets at
runtime, binary translators result in a significant overhead as
they are designed to translate and instrument the entire binary,
and may need to restrict the kernel’s functionality for best
performance [27]. JIT compilers cannot directly run the Linux
kernel, although some progress has been made to leverage
LLVM to run applications as complex as Linux [3].

2.3 Alternative Solutions
After we released parts of our code [4], several solutions that
employ indirect call promotion have been proposed by Linux
developers. Hellwig added a fast-path to code that invokes
DMA operation based on the I/O memory management unit
(IOMMU) that the system uses. This solution effectively per-
forms indirect branch promotion of each call to a single static

1 c a l l %r a x
2
3
4
5
6

cmp ${ l i k e l y },% eax
jnz miss
c a l l { l i k e l y }
jmp done

miss : c a l l %eax
done :

Figure 2: Indirect call promotion. Indirect branches on the
left are replaced with a direct branch (line 3) which is called
if the prediction is correct at runtime (lines 1, 2). Otherwise,
a normal indirect call is made (line 5).

predetermined target: the functions that are used when no
IOMMU is used. As a result, the solution does not provide
any benefit when an IOMMU is used [21].

A similar solution was introduced by Abeni to reduce the
overhead of indirect branches in the network stack [2]. This
solution is also static, requiring the developer to determine at
development time what the likely targets are of each call. In
addition, this solution is not suitable for calls to functions in
loadable modules, whose address is unknown at compilation
time. The implementation, which requires changing function
calls into C macros reduces code readability. As a result this
solution is limited to certain use-cases.

Finally, Poimboeuf [43] proposed a mechanism that ad-
dresses indirect calls whose target rarely changes. The pro-
posed solution uses direct calls, and when the target changes,
performs binary rewriting to change the direct call target. As
this mechanism does not have a fallback path, it is only useful
in certain calls. In addition, it requires the programmer to
explicitly invoke binary rewriting and the use of C macros
negatively affects code readability.

2.4 JumpSwitches
JumpSwitches are designed to mitigate Spectre by taking
advantage of indirect call promotion and leveraging semantic
information not available by compile-time. JumpSwitches are
motivated by the following observations:

• Retpolines induce ≈70 cycles of overhead which can be
leveraged by software to resolve indirect branches.

• Promoting indirect branches can be combined with en-
suring the safety of speculative branch execution.

• Committing to specific optimizations at compile-time
can limit performance and potentially risk safety (such
as assuming Spectre-safe hardware).

Threat Model. JumpSwitches assume that only indirect
branches and returns are vulnerable to Spectre variant 2, as
stated by Intel [14] and the original Spectre disclosure [30,38].
It is also to important to note that while retpolines can serve
as a defense against Spectre variant 1 (“Bounds Check By-
pass”) [30,39,49], JumpSwitches do not defend against Spec-
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Mechanism Overhead Spectre-Safe Learning
retpolines [49] medium yes none
EIBRS [48] low yes none
PGO/FDO [54] low w/retpoline static
DBT/JIT [27] high w/retpoline dynamic
JumpSwitches low dynamic dynamic+semantic

Table 1: Comparison of various indirect call mechanisms,
their relative overheads and if they are Spectre-safe.

tre variant 1. We assert that replacing retpolines with Jump-
Switches does not make the Linux kernel vulnerable to Spec-
tre variant 1, as retpolines are used solely as a Spectre variant
2 defense. In Linux, static analysis and selective masking/se-
rialization is used to defend against Spectre v1 [12], since
Spectre variant 1 defenses are still necessary even in “Spectre
safe hardware”, where retpolines are turned off for perfor-
mance. Spectre variant 1 is not expected to be fixed in future
hardware [46]. We assert that JumpSwitches are as safe as fu-
ture “Spectre safe” processors currently on vendor roadmaps.

Compared to indirect call promotion implemented with
a compiler, JumpSwitches are able to dynamically adapt to
changing workloads and take advantage of semantic informa-
tion only available at runtime, much as a JIT compiler may
employ polymorphic inline caching [22]. Unlike binary trans-
lation, JumpSwitches are integrated in the kernel and designed
for minimal overhead to only instrument indirect calls rather
than the entire binary. Furthermore, JumpSwitches are able
to take advantage of the rich semantic information available
in the kernel source and lost in the binary. A summary of
indirect call mechanisms can be found in Table 1.

Our work is focused on the Linux kernel since it fully
supports retpolines and runs privileged code which must be
protected against Spectre. We believe, however, that Jump-
Switches can be applied as a general mechanism and be
widely deployed as retpolines are today. The goals of Jump-
Switches are to:

• Predict indirect branch targets while preserving safety.
• Require minimal programmer effort: leveraging Jump-

Switches should not require source code changes.
• Be flexible: allow the programmer to provide additional

semantic information when available.

3 JumpSwitch Architecture

JumpSwitches are code fragments which, like retpolines,
serve as trampolines for indirect calls. Their purpose is to
leverage indirect call promotion and use direct calls which
have a much lower cost than indirect calls, especially in the era
of Spectre. JumpSwitches are Spectre aware: if a JumpSwitch
cannot promote an indirect call, a Spectre mitigated indirect
call is made. In Spectre-vulnerable hardware, JumpSwitches
fall back to retpolines, but future hardware may easily take
advantage of technologies such as Enhanced IBRS.

We have developed five different types of JumpSwitches,
each optimized for a different purpose. The simplest and de-
fault type of JumpSwitch is known as an Inline JumpSwitch,
which is optimized for code size and covers the majority of
use cases. The Outline JumpSwitch is used when we learn
that an indirect branch has multiple targets. Inline and out-
line JumpSwitches are known as generic JumpSwitches and
can be used on all indirect branches. We also provide three
semantic JumpSwitches which support commonly encoun-
tered indirect branches where deeper semantic information
is available from the programmer. Search JumpSwitches sup-
port a large number (hundreds) of targets. The Registration
JumpSwitch covers the commonly used registration pattern
used in callback lists. Finally, the Instance JumpSwitch covers
the case where call targets are strongly correlated with an
instance, such as an object or a process. Within the Linux
kernel, the JumpSwitch worker learns about new branch tar-
gets and makes decisions on whether a JumpSwitch should
be changed to a different type, outside the path of execution.
To change the active JumpSwitch, the worker makes use of a
multi-stage patching mechanism which atomically updates a
JumpSwitch without risking safety.

JumpSwitches are integrated into the Linux build infras-
tructure through the use of a compiler plugin. Thanks to our
integration with the Linux build system, taking advantage
of inline JumpSwitches and outline JumpSwitches requires
no source code changes. We also supply additional Jump-
Switches which leverage semantic information available in
the kernel provided by developers, enabling the search, regis-
tration and instance JumpSwitches.

In the next sections, we first describe each type of Jump-
Switch. Then, we show how the JumpSwitch worker learns
and adapts JumpSwitches during runtime. Finally, we show
how we patch Linux with JumpSwitches as well as optimiza-
tions we made during integration.

3.1 JumpSwitch Types

Generic JumpSwitches can be used on all indirect calls, while
semantic JumpSwitches cover common use cases. We enu-
merate the types of JumpSwitches below:

Inline JumpSwitch. These JumpSwitches serve as generic
trampolines which replace an indirect call. They act as a basic
building block for other JumpSwitches and enable dynamic
learning of branch targets. Because they replace code, they
must be short, otherwise they risk bloating code and increas-
ing pressure on the instruction cache. At the same time, they
must be upgradable by the JumpSwitch worker at runtime and
support learning. In order to fulfill these three requirements,
inline JumpSwitches are designed to be safe by default and
easily patched. An example of an inline JumpSwitch and the
indirect call it replaces is given in Figure 3.
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1 c a l l %eax
2
3
4
5
6

cmp ${ l i k e l y },% eax
jnz miss
c a l l { l i k e l y r e l }
jmp done

miss : c a l l { slow r e l }
done :

Figure 3: Inline JumpSwitch. Indirect branches on the left are
replaced with a sequence that may promote a likely call to a
direct call (lines 1–4), falling back to a slow path if the likely
target was not in %eax.

1 cmp ${ e n t r y 0 } , %eax
2 j z { e n t r y 0 r e l }
3 cmp ${ e n t r y 1 } , %eax
4 j z { e n t r y 1 r e l }
5 . . .
6 jmp l e a r n i n g r e l

Figure 4: Outline JumpSwitch. Multiple targets are supported,
using JZ instructions to avoid the need for a function epilogue
and falling back to learning if the target is not found.

The inline JumpSwitch may point to one of two targets:
likely or slow. Likely represents a branch target that the Jump-
Switch has learned to be likely and is promoted to avoid an
indirect jump. Slow can represent one of three targets, depend-
ing on which mode the inline JumpSwitch is in:

• Learning mode, where slow points to learning code
which updates a table of learned targets.

• Outline mode, where slow points to an outline Jump-
Switch leading to more targets.

• Fallback mode, where slow points to either a retpoline
or is a normal indirect call, depending on if the system
is Spectre vulnerable.

When compiled, the inline JumpSwitch is set to fallback
mode and both likely and slow point to a retpoline. At runtime,
the JumpSwitch worker may patch likely and slow depending
on which mode is required and what targets have been learned.
When an inline JumpSwitch is executed, if likely matches the
contents of the register holding the branch target (in this case,
eax), the call on line 3 is executed. Otherwise, the call to
slow is executed. It is important to note that while the value
of likely is used by the CMP instruction represents a direct
address, the target of the CALLs are relative, since there are no
direct absolute jumps in x86-64.

Outline JumpSwitch. To support multiple targets dynam-
ically without increasing code size in the common case
where there is only a single learned target, outline Jump-
Switches may be called by inline JumpSwitches. Unlike in-
line JumpSwitches, outline JumpSwitches are dynamically

allocated and generated by the JumpSwitch worker as targets
are learned. As an optimization, since outline JumpSwitches
are called by inline JumpSwitches, we avoid the normal work
of setting the frame pointer and returning by using jump in-
structions, as shown in Figure 4. As a result, each target uses
two instructions: a CMP and a JZ. If the target is not in the
outline JumpSwitch, we fall back to learning code, as in the
inline JumpSwitch in learning mode.

While outline JumpSwitches support multiple targets, each
target adds an additional conditional branch, which induces
overhead. To avoid reducing performance due to excessive
or unpredictable branch targets, we limit targets in an outline
JumpSwitch to 6, for a total of 7 (1 in the inline JumpSwitch
and 6 in the outline). To support more targets, a search Jump-
Switch can be used.

In addition to the generic indirect branches targeted by
inline and outline JumpSwitches, we also target common
indirect branches when semantic information is available.

Registration JumpSwitch. The registration pattern occurs
when a list of callbacks is registered for later use. Regis-
tration is used in the kernel for structures such as callback
lists (e.g., notifiers such as user_return_notifier and
mmu_notifier), or filter lists (e.g. seccomp).

In such cases, since the callbacks are called from a sin-
gle call-site in a loop, learning targets would fail if the call-
back list length is greater than the maximum number of learn-
ing JumpSwitch targets. Instead, we use a registration Jump-
Switch, which unrolls callback list invocation code, sets mul-
tiple call instructions to callbacks. When a function is added
or removed callbacks from a callback list the registration
JumpSwitch is explicitly invoked and patches the callback
addresses into the call instructions.

Instance JumpSwitch. Another common pattern that
JumpSwitches target are cases where the likely branch tar-
gets are strongly correlated with a process. For example, the
running process may dictate which seccomp filters are run-
ning, or per-process preemption_notifier used. Instance
JumpSwitches take advantage of semantic knowledge about
the running workload, and contain one of the previous three
JumpSwitch types, but on a per-instance basis.

To support instance JumpSwitches, a separate executable
memory area is allocated for each process. This memory
area contains the instance JumpSwitches. While each area is
located in a different physical memory address, the instance
JumpSwitch is always mapped in a fixed virtual address. This
allows us to invoke process specific JumpSwitches by direct
calls, as context switches between different processes also
switch instance JumpSwitches to the process-specific ones.
Learning and code modifications are then done on a per-
process basis.
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1 i n t s y s c a l l ( i n t nr , r e g s _ t ∗ r e g s )
2 {
3 i n t d i r e c t _ n r = p r i v a t e _ n r [ n r ] ;
4
5 i f ( d i r e c t _ n r == INVALID )
6 re turn c a l l _ t a b l e [ n r ] ( r e g s ) ;
7
8 /∗ H i t ; 4 e n t r i e s per−p r o c e s s ∗ /
9 i f ( d i r e c t _ n r < 2) {

10 i f ( d i r e c t _ n r < 1)
11 re turn p r i v a t e _ c a l l _ 0 ( r e g s ) ;
12 re turn p r i v a t e _ c a l l _ 1 ( r e g s ) ;
13 }
14 i f ( d i r e c t _ n r < 3)
15 re turn p r i v a t e _ c a l l _ 2 ( r e g s ) ;
16 re turn p r i v a t e _ c a l l _ 3 ( r e g s ) ;
17 }

Figure 5: Search JumpSwitch pseudo-code, similar to the one
that is used to invoke system-calls. In this example there are
4 slots for the most common targets. If there is a miss, an
indirect call is initiated (line 6). Otherwise, a direct branch is
performed (lines 9-16). System-call indirection table and func-
tions (prefixed with “private”) are set per instance (i.e., pro-
cess). They are located at a fixed virtual address, by mapped
to different physical memory on each process.

Search JumpSwitch. Some indirect branches may have
potentially hundreds of targets, such as in call tables (e.g.,
syscall, hypercalls) and event handlers (e.g., virtualization
traps) and other jump tables commonly used to execute se-
lection control, as commonly done by C “switch” statements.
These constructs typically translate a key such a handler num-
ber to a function for that key, and can be compiled to machine
code that use binary decision tree or to code that use jump-
tables. In practice, compilers prefer jump-tables for densely
packed case items, as they usually require fewer instructions
and branches [8]. However, this behavior is based on the
assumption that an indirect branches are inexpensive, an as-
sumption which has changed and should be reevaluated in the
era of Spectre, particularly when retpolines are required.

In these cases, the JumpSwitch may benefit from a search
tree which may reduce the number of branches needed for an
indirection lookup and support many more targets. However,
in the Linux kernel, we experimented with the most commonly
used table, the system call table, which is used to dispatch
the function that handles system calls based on a well known
(“magic”) number. Linux implements this table manually and
does not use a switch statement. In x86 Linux, there are over
300 system calls. When retpolines are enabled, we found both
static jump tables and binary decision trees to be inefficient.
Our experiments with static binary decision tree showed they

easily degrade performance when more than very few system
calls are used. Unfortunately, outline JumpSwitches do not
perform well as all the slots quickly fill up and the learning
mechanism disables the outline block to prevent excessive
overhead and performance degradation.

To address this situation, search JumpSwitches use an adap-
tive binary decision tree that caches the most frequent call
translations (in the case of a system call, from system call
number to handler), and the jump-table is used as a fallback.
We dynamically construct a binary decision tree and keep a
bitmap, where each bit corresponds to the respective trans-
lation in the jump-table. When the translation is called, the
search JumpSwitch checks and updates the bitmap if learning
is enabled, then dispatches the request (Figure 5). The Jump-
Switch worker periodically updates the decision tree based
on the learned frequency data.

3.2 Learning and the JumpSwitch Worker
To learn new targets, JumpSwitches use a learning routine,
which buffers learned targets in an optimized hash table, and
the worker periodically updates JumpSwitches using multi-
stage patching. Different routines are used for learning on
generic (inline and outline JumpSwitches) and search Jump-
Switches. Registration and instance JumpSwitches do not
learn asynchronously and do not require the worker.

Generic Learning Routine. To learn new branch targets,
we could have used hardware mechanisms such as Precise
Event-Based Sampling (PEBS) [24], which is used by many
PGO and FDO frameworks. However, PEBS has several limi-
tations, such as not being able to selectively profile branches
and cannot be run in most virtual environments. To ensure
that JumpSwitches are hardware agnostic, we developed a
lightweight software mechanism for learning branch targets.

Our software learning routine records branch targets in a
small 256-entry per-core hash table. The branch source and
destination instruction pointers are XOR’d and the low 8 bits
are used as a key for the table. Each entry of the table saves
the instruction pointer of the source and the destination (only
the low 32-bits, as the top 32-bits are fixed), as well as a
counter of number of invocations. We ignore hash collisions,
which can potentially cause destinations that do not match
the source to be recorded and wrong invocation count, as they
only lead to suboptimal decisions in the worst case and do
not affect correctness. This allows us to keep the learning
routine simple and short (14 assembly instructions), which is
important for keeping the overhead of learning low.

After the learning routine is done, fallback code is called,
which may either be a retpoline if Spectre-vulnerable hard-
ware is present or a normal indirect call.

Search Learning Routine. For search JumpSwitches, an
alternate method is used. Search JumpSwitches are tracked
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per process. Each thread holds a flag that indicates whether
learning needs to be done. When learning is on, each thread
records which calls have been performed in a per-core fre-
quency table. Upon context-switch the frequencies are added
to a per-process frequency table that sums them up, and the
per-core table is cleared. When training is over, an inter-
processor interrupt (IPI) is sent to cores that still run threads
of the process to sum them up into the per-process table.

JumpSwitch Worker. The worker runs once every epoch
(1 second default, configurable), or when a relearning event is
triggered. The worker performs learning by reading the targets
that were discovered by the learning routines and updating the
JumpSwitch. The worker processes generic JumpSwitches
and search JumpSwitches differently:

Generic JumpSwitch Updates. During each epoch, the
JumpSwitch worker checks if new call targets were encoun-
tered by reading the hash tables on each core and summing
the total calls for each source-destination pair on all cores. For
each source, the worker sorts each destination by the number
of hits and promotes those destinations. If the destinations
have already been promoted, they are ignored, and if the maxi-
mum capacity of an outline JumpSwitch is reached, the inline
JumpSwitch is put into fallback mode, which disables learn-
ing for the target. As a result, a worker run can result in the
following changes to a JumpSwitch:

• Update an inline JumpSwitch’s likely target.
• Switch an inline JumpSwitch from learning to outline.
• Create or add targets to an outline JumpSwitch.
• Switch an inline JumpSwitch to fallback mode.
Once the worker is done processing data, it clears all hash

tables allowing calls with hash conflicts to save their data.

Generic Learning Policy. Learning imposes some over-
head and should only be performed when a performance gain
will likely result. To mitigate learning overheads, the worker
holds generic JumpSwitches in three lists:

• Learning JumpSwitches, which are in learning mode.
They do not improve performance, but track targets.

• Stable JumpSwitches, which have a single target. These
JumpSwitches do not need to be disabled for relearning,
as their fallback path jumps to the learning routine.

• Unstable JumpSwitches, which have more than a single
target. These include JumpSwitches with an outlined
block, and those that have too many targets, and were
therefore set not to have an outlined block.

During each epoch, if no JumpSwitches were updated, the
JumpSwitch worker picks a number of JumpSwitches (con-
figurable, 16 default) from the unstable list and converts them
into learning JumpSwitches, disabling them and setting the
fallback to jump to the learning routine. To avoid being too

aggressive, the worker does not switch a JumpSwitch into
learning mode more than once every 60 seconds.

Search Learning Updates. For search JumpSwitches, the
worker sums up per-cpu frequency tables, but instead of up-
dating an inline JumpSwitch, a binary-search tree is updated,
promoting frequent values and clearing the bitmap.

Search Learning Policy. Learning is turned on periodically
per-process. For each process, we save whether learning is on
and the last time it was performed. When a thread is scheduled
to run, it checks if learning is on. If so, it caches the status
in thread-local memory. If it is off, a check is performed to
see whether a time interval passed since learning was last
on (20 seconds default). If that time has elapsed, learning is
turned back on, and the process is added into a list of learning
processes. Learning is stopped on the next update.

3.3 Patching and Updating
To minimize the performance impact of patching inline Jump-
Switches, the worker employs a multi-phase mechanism to
ensure that JumpSwitches are safely updated as multiple in-
structions are patched live without locks or halting execution.
We leverage the Linux text_poke infrastructure [29], de-
signed for live patching of code.2 Patching is a three phase
process, outlined below, and line numbers refer to inline Jump-
Switch shown on the right of figure 3.

1. A breakpoint is installed on line 1 by writing the single-
byte breakpoint opcode onto the first byte of the instruc-
tion. If the breakpoint is hit, the handler emulates a call to
the retpoline, as if it was executed on line 5. To simplify
implementation, the handler does not perform the emu-
lation directly, but instead moves the instruction pointer
to a newly created chunk that pushes onto the stack the
return address (line 6) and executes JMP branch to the
retpoline chunk.

2. The patching mechanism waits for a quiescence period,
to ensure no thread runs the instructions in lines 2–5.
In the Linux kernel, this is performed by calling the
synchronize_sched function. Afterwards, the instruc-
tions on lines 2, 3 and 5 are patched. The instruction
on line 4 is not changed, to allow functions that return
from the CALL in line 3 to succeed in completing the
JumpSwitch.

3. The same breakpoint mechanism in phase 1 is used, this
time restoring the CMP on line 1 with the new promoted
target, re-enabling the JumpSwitch.

When a fully-preemptable kernel is used, we also check
whether the JumpSwitch code was interrupted before the
target function was called and rewind the saved instruction

2We have submitted upstream patches to Linux to further harden the
security of this mechanism [5].
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pointer to line 1. This ensures the code will be executed again
when the thread is re-scheduled. To efficiently determine if
JumpSwitch code was interrupted, a check is only performed
only if instructions we use (cmp, jnz, jz, call and jmp) are
interrupted.

3.4 Linux Integration
We implement and integrate JumpSwitches on Linux v4.18
through a gcc-plugin integrated into the Linux build system.
The gcc-plugin is built during the kernel build and replaces
call sites with our JumpSwitch code, allowing generic Jump-
Switches to be seamlessly integrated into the Linux kernel
without source code changes. We write the instruction pointer
and the register used for the indirect call into a new ELF sec-
tion. This information is read during boot to compose a list of
calls, allowing the worker to easily realize which register is
used in each JumpSwitch. It also serves as a security precau-
tion to prevent intentional or malicious memory corruption
of the JumpSwitch sampling data from causing the Jump-
Switch worker from patching the wrong code. The use of
JumpSwitches is configurable via a Kconfig CONFIG option.

Semantic JumpSwitches require slight changes to kernel
source. To support instance JumpSwitches for processes, we
mapped a per-process page in kernel space. We implemented
both search and registration JumpSwitches to be placed in
per-process instance JumpSwitches. We modified seccomp
to use a registration JumpSwitch, which accounts for the fact
that filters are per process by being placed in an instance
JumpSwitch. We also patch system call dispatching to use
a search JumpSwitch, to account for the large system call
table which is used, and place it in an instance JumpSwitch.
Overall, implementing our semantic JumpSwitches in the
kernel required changing about 30 SLOC.

The JumpSwitch worker is integrated into the kernel in
a similar manner to other periodic tasks in Linux which
patch code such as the static-keys, jump-label and
alternatives infrastructure in Linux.

3.5 Direct Kernel Entry
During our Linux integration, we observed that JumpSwitches
did not provide the full speedup we expected. Further analy-
sis revealed that this was due to the overhead of page-table
isolation (PTI), which was introduced to mitigate against Melt-
down, a different speculative execution vulnerability [1, 34].
PTI introduced a new trampoline used during system calls to
switch between the user and kernel page tables. This tram-
poline is mapped to a different virtual address on each core
so the trampoline can determine the correct per-core transi-
tional kernel stack. The trampoline is part of a per-core data
structure, and since this data-structure is large, it is located
“far” (more than 2GB away from the kernel [19]), preventing
a direct jump. Unfortunately, the resulting indirect jump must

use a retpoline [52] on Spectre vulnerable hardware, resulting
in lower than expected gains when we used JumpSwitches.

To eliminate the need for this retpoline, we split the per-
core data structure into two data structures: a small one which
includes the transitional kernel stack, TSS and trampoline
code, which are all needed to transition into the kernel during
a system call; and a second larger one that includes the other
fields. This allowed us to move the small part of the tram-
poline back into the same 2GB in which the kernel code is
mapped, and use a relative jump instead of a retpoline, result-
ing in a significant performance gain. Our solution requires
replicating the trampoline page, which consumes a minimal
amount of extra physical memory (< 32MB for 8192 cores).

4 Evaluation

Our evaluation is guided by the following questions:
• How does the specialization of each JumpSwitch impact

the performance of the kernel in isolation? (§4.1)
• How do JumpSwitches perform with real-world applica-

tions and benchmarks? (§4.2)
• How does learning impact JumpSwitches? (§4.3)
• How many targets are needed per indirect branch? (§4.4)
• Is JumpSwitch is useful after the recent security vulnera-

bilities are resolved in hardware? (§4.5)

Testbed. Our testbed consists of a Dell PowerEdge R630
server with Intel E5-2670 CPUs, a Seagate ST1200 disk,
which runs Ubuntu 18.04. The benchmarks are run on guests
with a 2-VCPUs and 16GB of RAM. Each measurement was
performed at least 5 times and the average result and standard
deviation are reported. All workloads were executed with a
warm-up run prior to measurement.

Configurations. We run and report the speedup relative to
the baseline system which uses retpolines as a mitigation
against Spectre. We report the results of:

• base: The baseline system with retpolines enabled.
• direct-entry: direct jump kernel entry trampoline.
• +inline: direct-entry with inline JumpSwitches.
• +outline: +inline with outline JumpSwitches when

there are multiple targets.
• +registration: +outline with per-process (instance)

registration JumpSwitches for seccomp
• +search: +registration with per-process (instance)

search JumpSwitches for system calls.
• unsafe: the baseline system with retpolines disabled.

4.1 Microbenchmarks

Given the diversity of JumpSwitches we implemented, we
first wanted to evaluate how each type of JumpSwitch would
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Figure 6: System call speedup relative to the baseline setup
that uses retpolines. The runtime of the baseline system is
reported in parentheses.

improve the performance of the kernel in isolation. We evalu-
ate system calls in a microbenchmark as they have shown to
a particular source of slowdown as a result of both the Melt-
down [1] and Spectre hardware vulnerabilities, as system calls
stress user-kernel transitions, which must now be protected.

We measure the impact of JumpSwitch on the time it takes
to run common system-calls using the lmbench tools for
performance analysis [35]. Figure 6 shows the speedup rela-
tive to the baseline protected system. As shown, eliminating
the indirect call in the entry trampoline provides a benefit
of roughly 15ns which is more pronounced in short system
calls. The inline JumpSwitch improves performance by up
to 15%, making the system calls run as fast as they would
without retpolines. It is noteworthy that this is due to the fact
that the workload is very simple, which allows the training
mechanism to inline call targets with very high precision.

This high precision is the reason that Outline JumpSwitches
do not provide any benefit in this benchmark. Semantic Jump-
Switches also offer little benefit here: seccomp filters are not
installed and the same system call is called repeatedly.

To further understand the performance benefits of Jump-
Switches, we some simple operations: Redis key-value store
commands using redis-benchmark. Snapshotting is disabled
to reduce variance. Each test runs the same command re-
peatedly, and the results are depicted in Figure 7. As seen,
using registration JumpSwitches to avoid indirect calls when
seccomp filters are invoked, provide up to 9%, performance
improvement. This is due to the fact that systemd, software
which acts as a system and service manager in Ubuntu, at-
taches 17 seccomp filters, which are executed upon each sys-
tem call. Search JumpSwitches, whose benefit was not shown
when the same system call was repeatedly executed, improve
performance by up roughly 2%.
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4.2 Macrobenchmarks

Next, we want to see how JumpSwitches perform with
real-world workloads which do not necessarily stress the
userspace-kernel transition. We run the following bench-
marks: sysbench, which runs a mixture of file read, write and
flush operations, running on a temporary file-system (tmpfs);
dbench, a disk benchmark that simulates file server workload,
running on tmpfs; Nginx web-server, using ApacheBench
workload generator to send 500k requests for a static web-
page using with 10 concurrent requests at a time; and Redis,
using Yahoo Cloud System Benchmark (YCSB) as a work-
load generator (running workloadA). In all cases we ensure
the workload generator is not the bottleneck.

Figure 8 depicts the results. Eliminating the indirect branch
from the entry trampoline provides a modest performance
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Figure 9: UDP throughput and the number of patched
branches when the workload changes and learning is initi-
ated after 60 seconds. A single inlined JumpSwitch is used.

improvement, which is most pronounced in dbench as it in-
vokes many system calls. The inline JumpSwitch provides
the major part of the performance gains, up to 8% improve-
ment over the baseline system for the Redis benchmark. Like
the Redis micro-benchmarks, the macro-benchmark shows
a considerable gain (3%) from a registration JumpSwitch,
due to the multiple (17) seccomp filters which are attached to
it. Dbench shows a performance gain of up to 4% from the
search JumpSwitch, as it repeatedly runs a small subset of
system calls, which are quickly learned by the adaptive search
tree. It appears that this mechanism also improves Redis per-
formance, but due to the high standard deviation, it is hard to
say so definitively. For the same reason it is hard to conclude
whether the experienced performance degradation in nginx
with some mechanisms is meaningful, especially since regis-
tration JumpSwitches have almost no effect on nginx, whose
system calls do not go through seccomp filters.

Overall, the macro-benchmarks evaluation show that Jump-
Switches can restore most of the performance loss due to
retpolines, narrowing the difference between protected and
non-protected systems to less than 3%.

4.3 Dynamic Learning
One of the main benefits of the runtime instrumentation of
JumpSwitches over compile-time decisions is the ability to
dynamically learn branch targets. To evaluate the value, ef-
fectiveness and performance of dynamic learning we create
a scenario where the workload behavior changes. In this ex-
periment we only enable inline JumpSwitches, emulating
how compilers perform indirect branch prediction. To control
learning, we disable the automatic learning mechanism and
use a user-visible knob that initiates the relearning.

First, we run iperf—a network bandwidth measurement
tool—to send and receive UDP packets using IPv6, and we
set the kernel to learn and adapt the branches accordingly.
Then we use iperf to measure the throughput of IPv4 UDP
performance, by sending messages of a single byte. After 60
seconds, we restart the learning process.

Figure 9 shows the throughput (sampled every 5 seconds),
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Figure 10: Hit-rate of the inlined and outlined JumpSwitch
compared against a CDF of the number of targets that each
indirect call-site holds while running Nginx.

and the number of adapted branches (sampled every sec-
ond). As shown, restarting the learning process resets all
the branches, dropping the number of patched branches to
zero momentarily. Yet, within 5 seconds, over half of the
branches that were patched prior to the benchmark execution
are patched again with updated targets. The adaptation of the
branches improves the overall throughput by ≈5%.

This demonstrates the value of dynamic learning over
profile-based techniques, which “bake” in indirect branch pro-
motions at compile time. Since learning is fast, it can be done
periodically without degrading the overall performance of the
system. Future work may apply a more advanced algorithm
to do relearning, such as on a system event.

4.4 Branch Targets

The usefulness of inline and outline JumpSwitches depends
on the number of branch targets and the distribution of the
frequency in which they are used. To study this distribution,
we used our system by modifying the number of branch tar-
get slots in each JumpSwitch and measuring the hit rate. In
addition, we measured how many targets each branch has
and created a cumulative distribution function to compare
with the hit-rate. As shown in Figure 10, 71% of the function
calls had a single target, and the inlined JumpSwitch by itself
(only 1 allowed destination) achieved a hit-rate of 82%. As
we increase the number of allowed destinations, the outline
JumpSwitch further improves the hit-rate up to 96% when
both outlined and inlined JumpSwitch are used.

This shows that inline JumpSwitches alone are able to han-
dle a majority of cases, while outline JumpSwitches provide
more complete coverage for branches with many targets. Only
few branches require beyond 7 targets. In the small fraction
of branches with 8 or more targets, outline JumpSwitches
are disabled because the cost of the additional conditional
branches outweigh the benefits of call promotion.
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4.5 Post-Spectre Benefits
Finally, we examine whether JumpSwitches are relevant when
hardware solutions for Spectre and Meltdown mitigations are
present, and retpolines are not longer needed. The benefit of
JumpSwitches would be smaller, since the cost of an indirect
branch becomes considerably lower. Some of our proposed
mechanisms will become irrelevant. If Meltdown is resolved,
the indirect branch in the trampoline page is not used. If Spec-
tre is resolved, search and outline JumpSwitches become too
costly relatively to the cost of an indirect branches. Registra-
tion JumpSwitches may improve performance, but our exper-
iments indicate they require further micro-optimizations.

In contrast, inline JumpSwitches are potentially valuable
even after the recent CPU bugs are fixed. Their performance
benefit might be lower, making aggressive retraining of inline
JumpSwitches inappropriate, yet retraining can still be done
infrequently, based on user requests or in response to system
events (e.g., CPU saturation). To evaluate the impact of Jump-
Switches in such setups, we run the same macro-benchmarks
while directing Linux to drop the protections against Melt-
down (no page table isolation) and Spectre (no retpoline).
We disable the automatic relearning mechanism and relearn
manually when the workload is first invoked.

The results are shown in Figure 11. JumpSwitch can pro-
vide up to 2% performance improvement on systems which
that are not vulnerable to Spectre and Meltdown. As shown
on Redis, however, this benefit can be nullified in some cases.

5 Conclusion

The recent CPU vulnerabilities due to speculative execution
revealed that the CPU cannot be regarded as a black-box that
can be blindly relied on. Hardware bugs are hard to fix in ex-
isting systems, which necessitates the mitigation against the
vulnerabilities using software techniques. JumpSwitch per-
forms this task by extending compiler-optimization to make
runtime decisions, while reducing the overhead of the current
mitigation techniques. We have shown that JumpSwitches
achieve our goal of leveraging speculative execution cycles to

predict indirect branch targets while preserving safety, requir-
ing minimal programmer effort while providing the flexibility
for the programmer to add rich semantic information.

JumpSwitches show that software can efficiently perform
hardware tasks such as branch prediction. Since proposed
hardware mitigations against speculation will come with a
cost in performance, a hardware-software solution would al-
low software to define in fine granularity which speculation
is permitted and which needs to be blocked. JumpSwitches
limit the allowed speculation using direct branches. Hardware
mechanisms provide tools for software to perform this task
more efficiently, for example, by providing raw interfaces
to content addressable-memory. The benefit of combining
both solutions is both in performance, by leveraging software
knowledge, and in security, by allowing easier mitigation of
potential hardware vulnerabilities.
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