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Data Domain Cloud Tier: Backup here, backup there, deduplicated everywhere!

Abhinav Duggal Fani Jenkins Philip Shilane Ramprasad Chinthekindi Ritesh Shah
Mahesh Kamat
Dell EMC
Abstract ments necessary to support basic capabilities required by

Data Domain has added a cloud tier capability to its on-
premises storage appliance, allowing clients to achieve the
cost benefits of deduplication in the cloud. While there were
many architectural changes necessary to support a cloud tier
in a mature storage product, in this paper, we focus on in-
novations needed to support key functionality for customers.
Consider typical customer interactions: First, a customer de-
termines which files to migrate to the cloud by estimating
how much space will be freed on the on-premises Data Do-
main appliance. Second, a customer transfers selected files
to the cloud and later restores files back. Finally, a cus-
tomer deletes a file in the cloud when its retention period
has expired. Each of these operations requires significant ar-
chitectural changes and new algorithms to address both the
impact of deduplicated storage and the latency and expense
of cloud object storage. We also present analysis from de-
ployed cloud tier systems. As an example, some customers
have moved more than 20PB of logical data to the cloud tier
and achieved a total compression factor (deduplication * lo-
cal compression) of 40x or more, resulting in millions of
dollars of cost savings.

1 Introduction

Today many customers want options to migrate portions of
their data to cloud storage. Object storage in public and
private clouds provides cost-effective, on-demand, always
available storage. Data protection is a key requirement, and
Data Domain [32] has traditionally served as an on-premises
data protection product, holding backups of customers’ pri-
mary data. Data Domain added a deduplicated cloud tier
to its data protection appliances. Our deduplication system
consists of an active tier where customers backup their pri-
mary data (typically retained for 30-90 days) and a cloud tier
where selected backups are transitioned to cloud storage and
retained long term (1-7 years). Our recent cloud tier product
is currently being used by hundreds of customers.

Adding a cloud tier to a mature storage appliance involved
numerous architectural changes to support local and remote
storage tiers. We present some of the most novel improve-

customers. First a customer wishes to free up space on their
active tier by migrating files to the cloud and wishes to deter-
mine how much space will be saved (Section 4). While this
is straightforward to calculate in traditional storage systems,
deduplication complicates the process because the files may
have content that overlaps with other files that will remain
on the active tier. We present a new algorithm to estimate
the amount of space unique to a set of files. This algorithm
builds upon a previous technique using perfect hashes and
sequential storage scans [7] for memory and I/O efficiency.

Once a customer selects files for migration to the cloud
tier, we wish to transfer the unique content to the cloud
tier to preserve the benefits of deduplication during transfer.
When a large quantity of data is being initially transferred,
we developed a bulk seeding algorithm that also uses perfect
hashes to select the set of chunks to transfer (Section 5). For
ongoing transfers, we developed a file migration algorithm
that leverages metadata that is stored locally to accelerate
the deduplication process and avoids the latency of accesses
to cloud object storage (Section 6.1). We then describe how
files can be efficiently restored to the active tier.

Finally, as a customer deletes files from a cloud tier, un-
referenced chunks must be removed to free space and reduce
storage costs (Section 7.2). While garbage collection for the
active tier has been described [11], we updated the cloud tier
version to handle the latency and financial cost of reading
data from the cloud back to the on-premises appliance.

From experience with a deployed cloud tier, we have
learned lessons about sizing objects stored in private and
public object storage systems and trade-offs of performance
and cost. After analyzing deployed systems, we found that
customers achieve a range of deduplication ratios. Our cus-
tomers achieved an active tier deduplication ranging between
1x and 848x and cloud tier deduplication ranging between
Ix and 66x. The space savings result in cost savings and
one customer saved as much as $10 million (Section 8).

Our largest system has a single 1PB active tier and two
1PB cloud units within a single cloud tier. This is the phys-
ical capacity before the benefits of deduplication and com-
pression. A cloud unit is a single deduplication domain.
Each cloud unit has its own metadata, data and fingerprint
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Figure 1: Data Domain with active and cloud tiers

index. For simplicity, we will use active tier and cloud tier
as the terminology when referring to the active and cloud
components of our backup appliance. Our cloud tier is de-
signed to work with object storage that is either on-premises
or in a public cloud, and we use the terms object storage and
cloud storage interchangeably.

The vast majority of the technology described in this paper
is publicly available and used by our customers. The excep-
tion is an experimental improvement to our garbage collec-
tion algorithm described in Section 7.2 based on microser-
vices for public cloud providers. We believe the following
contributions, except the performance results, are applicable

to other deduplicated storage systems adding a cloud tier.
1. An architecture for a deduplicated cloud storage tier

2. A space estimation algorithm for files within dedupli-
cated storage

3. Algorithms to seed a cloud tier or perform ongoing file
migration

4. A garbage collection algorithm designed for cloud stor-

age properties

An evaluation of how customers are using the cloud tier

6. Performance results on internal systems

¢

2 Architecture

We updated our deduplicated storage architecture to support
both a local, active tier and a remote, cloud tier. We first
review the active tier architecture and then describe changes
for a cloud tier as shown in Figure 1.

2.1 Active Tier Architecture

A file in both, active and cloud tiers, is represented by a
Merkle tree with user data as variable sized chunks at the
bottom level of the tree, referred to as LO chunks. The SHA1
fingerprints of those chunks are grouped together at the next
higher level of the tree to form chunks, referred to as L1
chunks. SHAI fingerprints of L1 chunks are grouped to-
gether as L2 chunks, and this continues up to L6 which rep-
resents the entire file. The top chunk of the tree is always
an L6 chunk, even though it may refer to chunks in a lower
numbered level. We refer to chunks above LO as LP chunks.
The L6 chunk of every file is stored in a namespace which is
represented as a B+ Tree [11].

Deduplication happens when different files refer to the
same LO and LP chunks. As an example, if two files are
exactly the same, they would have the same L6 fingerprint.
But if two files only partially overlap in content, then some
branches of the tree will be identical (LP and LO chunks),
while other branches will have different fingerprints. Multi-
ple LO chunks are compressed into 64K-128K sized com-
pression regions, while LP chunks are not compressed as
SHA1 fingerprints are quite random and do not compress.
If encryption is enabled, the compression regions are also
encrypted before they are written to storage containers.

A Data Domain appliance tends to be utilized by a sin-
gle customer, who typically selects a single encryption key
for all of the data. If multiple keys are selected, customers
accept a potential loss in cross-dataset deduplication. We
have not found customer demand for convergent encryption
or stronger encryption requirements for cloud storage than
on-premises storage.

All chunks (LOs and LPs) are written into storage contain-
ers. On the active tier, containers are 4.5MB in size, while
the container size on the cloud tier varies with properties of
each cloud storage system (Section 2.3). We segregate the
LO and LP chunks into separate containers, which we refer
to as LO-Containers and LP-Containers, respectively. Creat-
ing separate LP-Containers supports various operations like
garbage collection that need to process LP chunks. Segregat-
ing LO chunks from LP chunks also ensures that the locality
of LO chunks is preserved which results in better read per-
formance. Both types of containers consist of a data section
with the chunks and a metadata section with fingerprints of
the chunks. During deduplication, container metadata sec-
tions are loaded into a memory cache. This loads 1,000
or more fingerprints into memory, helps to accelerate dedu-
plication, and reduces fingerprint index accesses from disk.
During reads, container metadata sections are loaded into the
same memory cache and this avoids having to read all sub-
sequent fingerprints in the container from disk [32].
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2.2 Cloud Tier Architecture

With the introduction of cloud tier, there is a single names-
pace, referred to as global namespace. The global namespace
spans both, active tier and cloud tier files. The Merkle trees
of files in the cloud tier are stored on the local storage of the
Data Domain system to facilitate high-speed access of those
files. The global namespace which contains the L6 chunks of
every file is periodically written to the cloud tier. In this de-
sign, files exist in one tier or the other based on a customer’s
policy. In some cases, customers use the cloud tier as extra
capacity, while other customers use it for long term archival
of selected data.

For the cloud tier, we introduced a third type of con-
tainer, which we refer to as Metadata-Container. Metadata-
Containers store the metadata sections from multiple LO and
LP-Containers. Since the metadata sections of containers are
read during deduplication and garbage collection, and re-
quire quick access, Metadata-Containers are stored on the
local storage as well as in cloud storage.

The SHA1 fingerprints of chunks are stored in an on-disk
fingerprint index which consists of a mapping of fingerprint
to container number. To avoid these writes and reads to the
cloud, the cloud tier fingerprint index is stored on the local
storage of the Data Domain system. In the active tier, the
fingerprint index contains fingerprint to LO or LP-Container
number mappings, while the cloud tier index contains fin-
gerprint to Metadata-Container number mappings. This is
an optimization to load fingerprints from a local Metadata-
Container instead of a remote LO or LP-Container.

Figure 1 shows an active tier file that contains LO chunks
with fingerprints f1, {2, f3, and f4. The LO chunk finger-
prints are stored in an LP chunk with fingerprint f10. The LO
chunks and their fingerprints are stored in an LO-Container
A, while the LP chunks and their fingerprints are stored in
an LP-Container B. The active tier fingerprint index contains
mappings for all the LO and LP chunks’ fingerprints. Fig-
ure 1 also shows a cloud tier file. The global namespace
contains the location of this file. The file contains LO chunks
with fingerprints f5, f6, f7, and f8. The LO chunk finger-
prints are stored in an LP chunk with fingerprint f11. The LO
chunks and their fingerprints are stored in an LO-Container
D, while the LP chunks and their fingerprints are stored in
an LP-Container E. LO-Container D is written to object stor-
age in the cloud, while LP-Container E is written to both,
object storage in the cloud and local storage. The cloud tier
fingerprint index contains mappings for all the LO and LP
chunks’ fingerprints, and is stored on local storage.

As explained above, we store critical cloud tier metadata
on the local storage of the Data Domain system to improve
performance and reduce cost. The majority of this metadata,
including the global namespace, is also mirrored to the cloud
in order to provide a disaster recovery (DR) functionality.
Disaster recovery is needed if a Data Domain system with a

cloud tier was lost in a disaster. Such a disaster can result in
the loss of active tier and the local cloud tier storage, where
cloud tier metadata resides. Disaster recovery is the main
reason why the active tier and cloud tier have different dedu-
plication domains. If an active tier is lost, the backup copies
migrated to object storage can be recovered.

The DR procedure to recover the cloud tier includes
procuring a replacement Data Domain system and initiat-
ing an automated recovery process, which involves: creating
a new cloud unit, copying the metadata (LP and Metadata-
Containers) to the local storage for the cloud tier, rebuilding
the cloud tier fingerprint index, and recovering the global
namespace. Note that we only recover the metadata from the
cloud storage. The data continues to reside in cloud storage,
and it is not copied to the Data Domain system. After the
DR procedure is completed, the cloud tier is accessible from
the new Data Domain system.

To summarize our new architecture, we support an active
tier and a cloud tier. Both tiers offer the benefits of dedu-
plication, however each tier is a separate deduplication do-
main. Chunks are not shared between the active tier and the
cloud tier. Note that if the underlying object storage provides
deduplication, it would be ineffective since our deduplication
algorithm removes the majority of duplicates at 8KB gran-
ularity. A global namespace maintains the location of both,
active tier and cloud tier files. Each tier has its own metadata,
data, and fingerprint index. To eliminate the costly reads and
writes from/to the cloud, we copy key cloud tier data struc-
tures on the local storage of the Data Domain system. The
data structures stored locally are the Metadata-Containers,
the LP-Containers, the Merkle trees, and the cloud tier fin-
gerprint index. The Metadata-Containers and LP-Containers
are also mirrored to the cloud to facilitate disaster recovery.

2.3 Object Sizes for Cloud Tier

The cloud tier architecture we have chosen allows us to se-
lect an optimum object size because we write LO-Containers
as individual objects and we have the ability to control the
container size, up to 4.5MB. We are not able to write con-
tainers larger than 4.5MB without significant changes to our
implementation. In the case of cloud tier, we use the terms
objects and containers interchangably.

We started with 64KB objects, but evolved to larger sizes
in the range of 1-4MB for several reasons. Larger objects re-
sult in less metadata overhead at the cloud storage provider
because they store per-object metadata. Larger objects also
decrease transaction costs as cloud storage providers charge
per-object transaction costs. We have also discovered that
larger objects perform better. Using an internal tool, we ex-
perimented with object sizes ranging between 64K and 4MB.
On private cloud storage such as ECS [8], we saw a 6x im-
provement with 4MB objects compared to 64KB objects. On
public cloud storage such as Amazon S3 [3], we saw a 2x
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improvement with 4MB objects compared to 64KB objects.
Even though the performance does not improve much af-
ter IMB, a higher object size is better as it reduces the cost
of transfer. Ultimately, writing larger-sized objects is a bet-
ter choice for our cloud tier solution, though the exact size
we choose varies with properties of each cloud storage sys-
tem. In some cases certain object sizes align better with the
provider’s block size. For different providers, we choose dif-
ferent object sizes ranging from 1MB to 4MB.

3 Background on Perfect Hashing and Physi-
cal Scanning for the Cloud Tier

In addition to the architecture changes described in Sec-
tion 2.2, we introduced several new algorithms specific to
cloud tier. Since these algorithms utilize the perfect hashing
technique from Botelho et al. [7] and the physical scan tech-
nique of Douglis et al. [11] as building blocks, we briefly
review those works. Perfect hashing and physical scanning
provide the basis for building the following cloud tier algo-
rithms: space estimation (Section 4), seeding (Section 5),
and cloud tier garbage collection (Section 7.2). Adapting
perfect hashing and physical scanning to these cloud tier al-
gorithms was mostly an engineering effort, and the novelty is
specific to solving the challenges of the cloud tier algorithms
and not necessarily the underlying techniques used.

3.1 Perfect Hashing

For algorithms described below, we need to perform a mem-
bership query for our fingerprints. Perfect hashing is a tech-
nique that helps us to perform this membership query by rep-
resenting a fixed key set. We use a perfect hash vector which
consists of a perfect hash function and a bit vector [7, 11].
A perfect hash function is a collision-free mapping which
maps a key to a unique position in a bit vector. To generate
the hash functions, a static set of fingerprints under consid-
eration is used to generate a 1:1 mapping of fingerprint to
a unique position in the bit vector. The function building
process involves hashing the fingerprints into buckets where
multiple fingerprints map to one bucket. Then for the fin-
gerprint set in each bucket, we build a perfect hash function.
By dividing the fingerprints into these buckets, we can build
functions for each bucket in parallel. Once we obtain the
function for each bucket, we store the function in a compact
way [5, 6, 9]. Without the compactness of the perfect hash-
ing representation, we would not have sufficient memory to
reference all fingerprints in the system.

Building the perfect hash functions is quite efficient. For
example, on a full 1PB system, we can build the perfect hash
functions for 256 billion fingerprints in less than 3 hours with
about 2.8 bits needed per fingerprint. The bit value in the
perfect hash vector is used to record membership, such as
chunk liveness for garbage collection.

3.2 Physical Scanning

As files are deduplicated, new LP chunks are written which
refer to lower level LP and LO chunks. Say two L2’s written
by two different files refer to the same L1, then these L2s
most likely will get written to different containers. Hence
these LP chunks get fragmented over time. For algorithms
described in the sections below (e.g. garbage collection), we
need to walk the LP chunks of all or most of the files in the
system.

One way to walk the Merkle trees of LP chunks is to do it
in a depth first manner. For every file, walk from L6 chunk,
to L5, L4, L3, L2 and down to L1 chunks and get the LO ref-
ererences. There are two problems with this traversal. First
is that if two files point to the same LP chunk, then by do-
ing file by file walk in depth-first manner, we will enumerate
the same LP twice. The second problem is that since these
LP chunks can be in different containers, loading these LP
chunks will result in doing a random lookup to first get the
location of LP chunk from the fingerprint index and second
to read the LP chunk. Over time as deduplication increases,
the same LP and LO chunks get referenced multiple times
and the LP fragmentation worsens.

Hence, instead of doing an expensive depth-first traver-
sal, enumeration is done in a breadth first manner. By keep-
ing track of LP chunks we have already enumerated (using a
perfect hash vector), we avoid enumerating the same chunk
twice. To reduce the random lookups, we first segregated
LP and LO chunks in different containers. By doing this, we
converted random lookup for every LP to a random lookup
for a group of LPs present in same compression region of
the container. Here is a summary of the steps we follow to
perform a physical scan of the file system:

Analysis Step: We walk the on-disk fingerprint index to
create three perfect hash vectors as described in Section 3.1.
Two of the perfect hash vectors are called the walk vector
and read vector, respectively, and are used to assist in the
breadth-first walk of the Merkle trees of all the files. These
two vectors are only built for LP chunks. The third vector is
called the fingerprint vector, and is used to record the live-
ness of a fingerprint. The fingerprint vector has bits for LP
and LO chunks. 97% of chunks are LOs, so the fingerprint
vector is the largest.

Enumeration Step: We perform a number of sequential
scans of containers to find chunks at specific levels in the
Merkle trees. We first walk the namespace and mark all
L6 fingerprints in the walk and fingerprint vectors. The top
chunk is always a L6 chunk, which may refer to any lower-
numbered chunk. Our system has an in-memory structure
that records which LP types (L6, L5, ... LO) exist in each
container, so we can specifically scan containers with L6
chunks. Figure 2 shows the next two steps of the enumer-
ation process along with how the perfect hash vectors are
used. Blue indicates the state of perfect hash vectors in the
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Figure 2: Physical Enumeration process

previous step, green indicates that we are reading containers
and setting the read vector and yellow indicates that we are
setting the walk and fingerprint vectors and gray indicates
that we are yet to process those fingerprints. In step 1, we
walk the container set reading L6 chunks and for any L6 fin-
gerprints marked in the walk vector, we mark that L6 in the
read vector (green). In this example, the L6 chunks reference
L2 fingerprints, so we mark the L2 fingerprints in the walk
(yellow) and fingerprint vectors (yellow). In step 2, we walk
the container set again reading L2 chunks and for any L2 fin-
geprints which are marked in walk vector, we mark those L2
fingerprints in read vector (green). We read the L1 finger-
prints from the marked L2 chunks and mark those L1 finger-
prints in the walk (yellow) and fingerprint (yellow) vectors.
For deeper trees, we repeat the steps of reading a level, mark-
ing fingerprints in a walk vector and fingerprint vector, and
then reading the lower level and marking fingerprints in the
walk vector. Finally, in the L1 container set walk, the L1
chunks have a list of LO fingerprints, which we mark in the
fingerprint vector. Parallel I/O is leveraged to read contain-
ers from the RAID array, and multiple threads are used for
marking the chunks in the walk, read, and fingerprint vectors.

4 Estimate Freeable Space

Deduplication creates a new challenge for customers inter-
ested in reducing their active tier footprint. In traditional
storage, transferring 10GB of files would reduce the active
tier by 10GB. With deduplicated storage, less space may be
freed because of content overlap with files that remain on
the active tier. So, a customer may end up paying for on-
premises capacity as well as object storage capacity despite
their intention.

Such customers need a way to evaluate how much space
would be freed on the active tier by moving files to the cloud
tier. Variants of this problem have been considered for di-
recting content to storage nodes [10, 12, 20] to maximize
deduplication and to evaluate the unique space referenced by
volumes of block storage [14]. Our system does not maintain
reference counts due to the difficulty of maintaining accurate
counts under complex error cases, so we implemented an al-
gorithm to calculate the space that would be saved on the
active tier if selected files were migrated to the cloud.

Using the perfect hashing (Section 3.1) and physical scan-
ning (Section 3.2) techniques, we walk the files selected for
migration in a breadth-first manner through the Merkle tree
and mark the chunks in an in-memory perfect hash vector.
Then, we walk all the remaining files (those not selected for
migration) and repeat the breadth-first traversal again. In
the second traversal, we unmark the chunks referenced by
these remaining files. After this traversal is complete, the
chunks which are still marked in the perfect hash vector are
the chunks which are uniquely referenced by files selected
for migration to the cloud tier. We perform a walk of the con-
tainers and sum up the chunk sizes for any chunks marked in
the perfect hash vector.

This gives us an exact count of the bytes that would be
freed. It becomes an estimate when new files are written to
the active tier after constructing the perfect hash vector and
such files deduplicate with selected chunks. In such cases,
our algorithm overestimates the number of bytes that would
be freed due to migration.

Since space estimation uses perfect hashing, the estima-
tion cannot be done until the perfect hash functions are gen-
erated. As discussed in Section 3.1, this process takes nearly
3 hours for 1 PB of physical data. Also, this process gives
only a point in time space estimate. As new data gets written
to active tier, it can deduplicate against the chunks that will
be moved to the cloud storage. As a result the point in time
estimate becomes stale. Our customers can run this tool pe-
riodically to get the updated estimate. In practice, this has
not been an issue.

S Seeding

When customers started using cloud tier, they faced new
challenges with data migration to the cloud. Some customers
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had hundreds of TBs of data on the active tier that they
wanted to migrate to the cloud tier. Being a deduplication
system, migration of large amount of data to the cloud suf-
fered from the same challenges as described in Section 3.2.
Hence, we implemented a seeding algorithm based on the
perfect hashing (Section 3.1) and physical scanning (Sec-
tion 3.2) techniques.

We first build an in-memory perfect hash vector for fin-
gerprints in the active tier fingerprint index. Then, for all the
files that need to be transferred to the cloud tier, we traverse
the Merkle trees in the same breadth first manner and mark
the corresponding chunks live in the perfect hash vector. We
then walk the containers on the active tier, pick the chunks
which are marked live in the perfect hash vector, pack them
in destination containers, and write them to cloud tier. This
process generates both data containers (L0O) and containers
for metadata (LP and Metadata-Containers). Once all these
containers are written, we update the namespace to indicate
that all these files are now located in the cloud tier.

Seeding needs to be resumable because the memory re-
quirements for seeding and GC are high and memory is
shared between these processes. Cloud GC and seeding
share memory, but until seeding is complete, there is no need
to run cloud GC since the cloud tier is nearly empty. Active
GC and seeding may need to run at the same time, especially
since seeding may take weeks to transfer data depending on
WAN speed. To make it resumable, after we mark the chunks
that need to be transferred in the perfect hash vector, we per-
sist the perfect hash vector (function and bit vector) to disk
and then start active GC. Once active GC finishes, we load
the perfect hash vector and resume writing to the cloud.

Seeding guarantees that all the LO and LP chunks are
transferred to the cloud tier before the file’s location is
changed in the namespace. It uses the perfect hash vector to
guarantee that property. As we transfer chunks to the cloud
tier, we change the membership bit in the perfect hash vector
from 1 to 0. At the end of seeding, all the bits in the per-
fect hash vector should be 0 to guarantee that all necessary
chunks are transferred.

There is an important caveat with seeding. The chunks
written to the cloud tier do not pass through the deduplication
process. So, seeding is only used to transfer large amounts
of data for the first time when a customer buys a cloud tier
license. We cannot use the typical fingerprint caching and
prefetching approach for deduplication because the seeding
process works in physical disk order instead of the logical
order of chunks in a file, so caching is ineffective. Another
approach is to consider generating a perfect hash vector for
data already stored in the cloud tier, but this would double
the memory requirements since we would need to generate
perfect hash vectors for both the active and cloud tiers. We
already use a large perfect hash vector and cloud tier had to
be supported on existing active tier systems in the field, so
adding more memory for this is not a practical solution.

6 File Migration and Restore

6.1 File Migration

Unlike seeding which is a one time process to transfer a large
amount of data from the active tier to a nearly empty cloud
tier, file migration is designed to transfer a few files incre-
mentally. File migration reduces the amount of data trans-
ferred to the cloud tier by performing a deduplication process
relative to chunks already present in the cloud tier.

File migration starts in the active tier by traversing the
Merkle trees for selected files in a depth-first search man-
ner. This traversal is performed in parallel for a number of
selected files. The traversal ends when we reach the desired
L1 chunks, which contain LO fingerprints. The fingerprints
are checked against the cloud tier using the same container
metadata prefetching technique used during deduplication to
see if identical fingerprints are already present in the cloud
tier. If the fingerprints are not present in the cloud tier, then
the corresponding chunks are read from the active tier and
packed to form new LO-Containers. This process generates
both data containers (LLO) and containers for metadata (LP
and Metadata-Containers). After Metadata-Containers are
written, all contained fingerprints are added to the cloud tier
fingerprint index. Finally, the namespace is updated to indi-
cate that the file is located in the cloud tier.

To compare seeding and file migration, seeding is de-
signed for bulk transfers such as when first moving files from
a full active tier to nearly empty cloud tier. Seeding has the
overhead of generating the perfect hash function, which is
nearly 3 hours per 1PB of physical capacity. This is accept-
able relative to the many days or weeks possibly required to
transfer a large dataset to the cloud. Seeding has the advan-
tage of physical enumeration, which uses sequential I/O in-
stead of random I/O. On the other hand, when transferring a
small number of files, it is more efficient to perform the ran-
dom I/O to find the needed chunks for the files than generate
the perfect hash function. Newer backup files on the active
tier also tend to have better physical locality as our dedu-
plication engine explicitly writes duplicates to keep locality
high [2, 25]. Seeding and file migration are experimentally
compared in Section 8.

6.2 File Restore

Restoring a file back from the cloud tier involves the reverse
process of reading the Merkle trees to the L1 chunks in a
depth-first manner. The L1 chunks are read from local stor-
age since the LP-Containers are stored locally. The LO fin-
gerprints are checked against the active tier fingerprint in-
dex, and if present, do not need to be read from cloud tier.
For new LO fingerprints (not present in the active tier), we
get the Metadata-Container number from the cloud tier fin-
gerprint index, read the Metadata-Container to get the LO-
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Container number, read the LO-Container from object stor-
age, and write the relevant LO chunks to LO-Containers in
the active tier. As LO-Containers are being written to ac-
tive tier, new Merkle trees for the active tier are formed in a
bottom-up manner. This process generates new LP chunks
which are written to LP-Containers in the active tier, and the
namespace is updated.

To summarize, while performing file migration to the
cloud tier, we deduplicate against chunks in the cloud tier,
and while restoring files from the cloud tier, we deduplicate
against chunks in the active tier.

7 Garbage Collection (GC)

When customers expire backups, some chunks become un-
referenced. The Data Domain filesystem is log-structured
and garbage collection is responsible for cleaning the unref-
erenced data asynchronously. Our garbage collection is mark
and sweep based and described in our previous work [11].
To briefly summarize the process, we use the physical scan-
ning technique described in Section 3.2 to mark chunks live
(referenced from live files) in the perfect hash vector. Then,
we perform the sweep operation. Active tier GC and Cloud
tier GC differ in the sweep process, and we describe the dif-
ferences here. Most of our customers run GC on the active
tier weekly according to a default schedule, whereas cloud
tier garbage collection varies from once every two weeks to
once every month to never.

7.1 Active Tier Garbage Collection

After marking chunks live in the perfect hash vector, the
sweep process walks the container set to copy live chunks
from old containers into newer containers while deleting the
old containers. This sweep process is also called copy for-
ward. This process focuses on a subset of the container set
which will give us the maximum space back.

During this process we first read the source containers
from disk. Then, we check the fingerprints from the metadata
sections of these containers against the perfect hash vector to
determine which LO chunks are live. Finally, we decrypt (if
encrypted) and uncompress the compression regions inside
the source containers, encrypt and compress the live chunks
into new compression regions, and pack them into destina-
tion containers which are written to disk. The copy forward
process for LP Containers does not perform decompression/-
compression since LP chunks are not compressed.

7.2 Cloud Tier Garbage Collection

As data is written to the cloud tier, space usage and costs
grow. Similar to the active tier, when customers expire files
in the cloud, GC needs to clean unreferenced chunks on the
cloud tier. The challenge for cloud GC is that LO containers

are not local and reading them from the cloud is expensive.
It is also slow in terms of performance as we have to read the
container objects over WAN.

From our experience with active tier, we know that a single
cycle of GC copies forward 15% of the containers on aver-
age, where each container has an average of 50% live data.
Hence, for 1PB of physical capacity in a cloud tier, we need
to read 150TB of partially-live containers and write 75TB of
newly-formed containers, increasing data transfer costs and
transactional costs. As an example, based on AWS pricing,
we calculated the cost of copy forward for 150TB of data
to be nearly $14,000 per GC cycle. The major contributor
to this cost is egress data transfer cost, so we needed a way
to do garbage collection without reading the LO-Containers
from object storage and writing new LO-Containers to ob-
ject storage. To address this, we defined an API to perform
copy forward inside the cloud provider’s infrastructure. ECS
and VirtuStream cloud providers have implemented this API.
The API takes a list of source container objects, a list of off-
set ranges inside of those container objects, and a destination
container object. The offset ranges correspond to live com-
pression regions within the source container objects. Upon
receiving the API, the cloud provider copies the live offset
ranges from the source container object to a new, destination
container object.

In order to perform the chunk level copy forward done by
active tier GC, the compression regions need to be decrypted
and uncompressed, and the live chunks need to be copied for-
ward to form new compression regions inside new contain-
ers. Doing all of this in the cloud provider’s infrastructure
poses a challenge as we need to expose our container for-
mat, compression libraries, and encryption keys to the cloud
provider. To address this, the new API we have implemented
does not decompress/compress or decrypt/encrypt compres-
sion regions. It performs copy forward at the compression
region level. We only delete a compression region in a cloud
container when it is completely unreferenced. This approach
is different from active tier GC where we delete individual
chunks. The advantage of treating an entire compression re-
gion as live or dead is that the service running inside the
cloud does not need to understand the container format or
to compress/uncompress or decrypt/encrypt the compression
regions. The service just reads offset ranges of where the
live compression regions reside in existing container objects
and writes a new destination container object. The disadvan-
tage is that we won’t delete a compression region until all
the chunks inside the compression region are unreferenced.
This can reduce our cleaning efficiency. In Section 8.1.2, we
present field analysis of how live and dead data is distributed
in compression regions and how much cleaning efficiency
is lost due to compression region based cleaning instead of
chunk based cleaning.

The cloud GC copy forward process works as follows.
Once the live chunks have been identified in the per-
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fect hash vector using the physical scanning technique de-
scribed in Section 3.2, cloud tier GC performs a copy
forward process of the Metadata-Containers. This pro-
cess copies the live chunks’ metadata from an exist-
ing Metadata-Container to a new Metadata-Container, and
deletes the old Metadata-Container. The copy forward pro-
cess of Metadata-Containers occurs on the local storage as
Metadata-Containers are stored locally. As part of this pro-
cess, we create a recipe containing the old LO-Container,
the offset ranges of the live compression regions in that LO-
Container, and a destination LO-Container which is being
generated. Next, we send this recipe to the cloud provider
in the form of the new API, and the cloud provider performs
the copy forward of compression regions within their infras-
tructure. We then delete the old container objects.

For public cloud storage like AWS, Azure, and Google
Cloud, such an API does not yet exist, so we have created
an experimental version (not yet available to our customers)
using a microservice that can be deployed and run inside the
public cloud provider environment. Our plan is to work with
cloud providers to either use a custom API for copy forward
or our microservice. The results from the API and microser-
vices based approaches are presented in Section 8.

8 Evaluation

We divide our evaluation into results from deployed systems
and results from internal experiments.

8.1 Deployed Systems Evaluation

In this section, we show how our customers are using cloud
tier in terms of data written, deduplication, and data deleted.
We do not present results for space estimation and seeding
in this section as these were recently released and the sam-
ple set is statistically small. Those techniques are evaluated
on internal systems. We considered results from hundreds
of deployed systems, filtered out systems with less than 1TB
(post dedup/compression) of data in the cloud tier and incon-
sistent reports, and randomly selected 200 systems for anal-
ysis. Across systems, the age of the cloud tier varied from a
few months to over two years.

Figure 3 shows monthly cumulative bytes (before dedu-
plication and compression) sent from active tier to cloud tier
for our 200 systems in the last three months. On one end,
in 35% of the cases, less than 60TB (before dedup/compres-
sion) per month has been moved to cloud tier. On the other
end, in 15% of the cases, over 660TB per month was sent to
the cloud tier.

Figure 4 shows a scatter plot comparing the amount of
data (before deduplication and compression) the deployed
systems have moved to cloud tier and the total compression
they have achieved. Total compression ratio is defined as
deduplication ratio * local compression ratio. The general
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Figure 4: Data moved to the cloud versus total compression

trend is that as more data is moved to the cloud tier, the more
total compression is achieved because the new data dedupli-
cates with older data. But there are some cases where even
after moving large amounts of data to the cloud tier, the to-
tal compression is low. We further analyzed those systems
and discovered that those customers are selecting and mov-
ing datasets with low total compression to the cloud tier to
reduce their on-premises cost. Interestingly, we also found
a few systems that have moved 20PB or more to the cloud
tier and achieved a total compression factor of 40x or more.
One system in particular achieved 66x total compression af-
ter moving 40PB of logical data to the cloud tier, resulting in
substantial space and cost savings.

To understand the cost savings seen by our customers, we
calculated how much money our customers are saving due
to deduplication and compression. Even though customers
are using various cloud providers, for simplicity, we assume
Amazon S3 cost metrics for transaction and storage costs.
We calculated total storage costs by calculating a monthly
storage cost and accumulating it for all the months. We then
calculated the transaction costs based on the total number
of transactions performed and the cost of each transaction.
Next, we added the storage and transaction costs based on
bytes written before and after deduplication and compres-
sion, and we calculated the difference of the two. The his-
togram in Figure 5 shows this difference which represents
the cumulative cost savings due to deduplication and com-
pression in thousands of dollars on a log scale. Some of our
customers saved nearly $10 million due to deduplication and
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Figure 6: Comparison of physical churn due to file deletes
and duplicates

compression. As customers retain the cloud tier data for a
longer time period or write more data, their savings due to
deduplication and compression will further increase.

8.1.1 Field GC Analysis

To understand how customers are deleting data and how
much churn is really generated, we looked at customers who
ran GC at-least once (40% of our selected 200 systems). As
customers delete files in the cloud tier, data becomes unrefer-
enced and needs to be cleaned. As mentioned in Section 7.2,
our system writes some duplicates to improve restore perfor-
mance. In turn, our GC algorithm retains the most recent
version of a duplicate (written to the newest container) and
removes older duplicates to reclaim space. Hence there are
two types of chunks that can be freed from our system: un-
referenced chunks due to file deletions and duplicate chunks.
Figure 6 presents the percentage of physical churn (bytes
deleted within a time period) that is dead due to file dele-
tions and due to duplicates relative to total capacity of the
system. Results from the last three months are included for
systems that have run cloud GC at least once.

The churn due to file deletions is relatively low-90% of
the systems had less than 5% of space reclaimed for dead
chunks, because deduplication creates many references to
chunks and because customers tend to retain their cloud data
for long periods. There are some cases where the churn due
to file deletions is over 25%, suggesting some customers
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Figure 7: Percentage of cleaning efficiency loss
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delete a large fraction of their cloud tier periodically. In
the steady state, most customers continue to delete the oldest
backups as newer backups are stored. This graph also shows
that while most of the systems have less than 30% of their
churn as duplicates, in some cases the duplicates are very
high (up to 75%). We looked at those systems and found
that some of those customers have never run GC or have not
run GC recently, so duplicates have not yet been removed.
In contrast, active tier GC runs each week, so duplicates do
not accumulate. We have learned that retention policies dif-
fer between active and cloud data, and we have provided an
option to customers to control the amount of duplicates they
want to write to cloud tier in case they infrequently run GC.

8.1.2 Cleaning Efficiency Loss due to Compression Re-
gion Cleaning

We analyzed the 200 systems to understand how much clean-
ing efficiency we lose with compression region-based clean-
ing for the cloud tier relative to possibly running chunk-level
cleaning. Figure 7 shows the percentage of bytes that cannot
be deleted by compression-region level cleaning but could
have been deleted by chunk-level cleaning. As we can see,
the cleaning efficiency loss is almost 100% in some cases. In
such cases, compression-region level cleaning won’t delete
anything. We looked at some of these systems closely and
found that this happens because the churn (bytes deleted
within a time period) in the cloud tier is low. Even though
there are a lot of duplicates that can be removed, these dupli-
cates reside in the same compression regions as chunks that
are still live, and this prevents us from deleting the compres-
sion region. In contrast, chunk-level cleaning is able to delete
the duplicates while keeping only the live chunks. Further
analysis of this observation is needed as the frequency and
pattern of deletions and deduplication can result in different
amounts of cleaning efficiency loss. In cases where we are
not able to free up any space using compression-region level
cleaning, we offer a chunk-level cleaning option, which per-
forms the traditional algorithm of reading and writing con-
tainer objects over the WAN. We also plan to augment our
API and microservice based cleaning services to perform
chunk level cleaning in the future.
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Hardware DD-Mid DD-High

Memory 192GB 384GB
CPU(cores * GHz) 8 * 2.4GHz 24*2 5GHz
Active tier capacity 288TB 720TB
Cloud tier capacity 576TB 1440TB

Table 1: Data Domain hardware for experiments

8.1.3 Deployed Systems Summary

Here are findings from our cloud tier deployments:

1. Some customers are writing SO0TB logically per month
while others are writing 100TB or less.

2. Customer data is achieving a broad range of total com-
pression ratios, from less than 4x to 100X, because cus-
tomers are using a cloud tier in different ways. Some
are writing highly redundant data to cloud tier (their
total compression factor on the cloud and active tiers
are both high). Such customers may accumulate more
metadata than we originally anticipated and this can af-
fect the runtime of GC and other algorithms. Other
customers are writing non-redundant data to the cloud
tier. It is likely that such customers are choosing low-
deduplication data to migrate to the cloud tier. Other
customers have not written much data to the cloud tier
yet, so their total compression factor is lower.

3. Some customers have more data written to the cloud tier
than to the active tier, so these customers are trying to
reduce their on-premises storage cost.

4. Churn on the cloud tier (0-5% per month) is substan-
tially lower than churn on the active tier (10% per week)
because customers are not deleting much data. This
finding is aligned with our expectation that cloud tier
is used for long term retention.

5. Most customers are running cloud tier GC infrequently
or not at all and have accumulated a high number of
duplicates. Modifications to internal parameters can re-
duce the number of duplicates in these situations.

8.2 Experiments on Internal Systems

In this section, we focus on results from internal systems
experiments. For all experiments, we used two cloud storage
systems, Amazon S3 (public cloud) and ECS (private cloud).
We used two Data Domain systems shown in Table 1, with
the cloud tier feature as described in this paper. The two
systems are representative of midrange (DD6800) and high-
end (DD9300) products. We provide the size of the active
tier and local storage for the cloud tier configuration.

8.2.1 Load Generator

To measure performance of our algorithms, we used an in-
house synthetic load generator described previously [1, 11,
7]. A first generation backup is randomly generated, and
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Figure 8: Space estimation performance

the following generations have deletions, shuffles, and ad-
ditions. We typically write many streams in parallel, each
stream consisting of generations of backups beginning from
a unique seed. The change rate between two consecutive
generations is 5%. Gen0 is the first generation of backups
where we only get local compression (an average of 2x)
and no deduplication. GenX is aged data where generations
Gen0-Gen(X-1) are already written to the active or cloud
tiers. Due to deduplication, only the new content in GenX
is stored while the rest deduplicates. In the experiments be-
low, we vary the initial backup size, number of generations,
and number of parallel streams. Beyond 42 generations, the
physical locality of data is degraded at a similar level as what
many of our customers experience. In one experiment (Sec-
tion 8.2.4), we generated 100 generations to explore the im-
pact of extremely poor locality.

8.2.2 Freeable Space Estimation

To evaluate space estimation, we used the synthetic gener-
ator to create a data set, selected portions of the data set to
potentially migrate, and ran the space estimation algorithm.
We created a dataset using 96 parallel streams, each writ-
ing generations 0-50 of backups that average 24GB each
for a total logical size of 120TB. Figure 8 shows the eval-
uation time and amount of space that can be freed as we
vary the number of generations selected to potentially mi-
grate. With no generations selected (None), the evaluation
time is 15 minutes, and no space can be freed. As the num-
ber of generations selected increases up to including every
generation (the rightmost bar), the evaluation time is consis-
tently about 24 minutes while the amount of freeable space
increases with the number of generations selected. When
all generations are selected, the amount of freeable space
jumps since chunks common to the highest generation can
finally be freed. These results show that our space estima-
tion algorithm has a run time based on the allocated space of
the system. This is because space estimation does physical
scans of metadata chunks followed by a container walk to
calculate the estimated space that will be freed. The time for
both physical scans and a container walk are a function of
the physical space on the system.
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Figure 9: File Migration and Restore performance

The duration of each run is only a few minutes because
we wrote a small dataset instead of filling up a 1 PB sys-
tem, which can take weeks. From experiences with active
GC runs on a 1PB system (with the same underlying perfect
hashing and physical scans), space estimation on a system of
such capacity should finish within a couple of days.

8.2.3 File Migration and Restore from Cloud

Figure 9 shows the logical performance of file migration and
restore on DD-Mid and DD-High using both AWS and ECS
for object storage. We connected to AWS across the public
Internet, while ECS was within our lab. We used Gen42 data
to model aged data with high deduplication ratio. Gen42
file migration performance is higher than GenO file migra-
tion performance because of deduplication, as we only need
to transfer the changed data to the cloud tier. In the case of
Gen file migration, the performance for both hardware con-
figurations is the same. This is because for Gen0, we are
reading non-deduplicated data from the active tier and writ-
ing to the cloud tier, which is mainly gated by object stor-
age latency and the hardware configuration does not have
much impact. But in the case of Gen42, DD-High performs
16% better than DD-Mid on Amazon S3 and 31% better on
ECS. This happens because Gen42 has highly deduplicated
data compared to Gen0O, and DD-High is able to sustain a
higher throughput because it has higher parallelism. High
object storage latencies continue to be a bottleneck, other-
wise the performance difference between the systems would
be higher. Gen42 restore from object storage is better than
Gen0 restore because in case of Gen42 we are deduplicat-
ing against the previous generations of active tier. Also, the
latest generation has better locality and hence better perfor-
mance as GC tries to keep the latest copy of the chunk and
hence over time the old generations get fragmented.
Restoring from object storage is typically slower than
writing, because it involves reading data from different ob-
jects in object storage and writing to the active tier. For com-
parison, Gen42 write performance on the active tier with the
same hardware is 3x better than writing to ECS and 2x better
than restore performance from ECS. The major difference in
performance is due to object storage latencies. On the active
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Figure 10: File Migration vs. Seeding performance

tier latencies of 10-50ms latencies are common, while on the
cloud tier these latencies vary from 100 ms to 1 second for
both public and private cloud vendors.

8.2.4 File Migration vs. Seeding Performance

Seeding does a bulk transfer of data in a breadth-first man-
ner as opposed to the depth-first manner of file migration.
To fairly compare the two algorithms, we did a transfer us-
ing both techniques. We ran three sets of tests, where we
wrote Gen(, Gen0-50, and Gen0-100 to the active tier and
then moved Gen0, Gen0-25, and Gen0-50 to the cloud tier,
respectively, using both seeding and file migration. After ev-
ery 5th generation written, we ran active tier GC and forced it
to copy forward 30% of the containers to remove duplicates
and degrade the physical locality of the data on the active
tier. This simulates the scenario where customers have old,
highly deduplicated data on the active tier and would like to
move 50% of their oldest data to the cloud tier.

Figure 10 shows that seeding and file migration have sim-
ilar performance for Gen0O because locality is high and seed-
ing has the overhead of generating the perfect hash func-
tions. As we transfer Gen0-25 and Gen0-50, seeding is faster
than file migration by a 2x factor. This is because Gen0-50
have highly deduplicated data with degraded locality and the
depth-first approach of file migration has to traverse the same
containers repeatedly and incur random I/Os. In the case of
seeding, the sequential scans during the breadth-first traver-
sal compensates for the overhead of perfect hashing hence
making the movement more efficient. This experiment was
only performed on a DD-Mid system with Amazon S3 as
the cloud storage. Similar to the GenO file migration perfor-
mance discussed in Section 8.2.3, the hardware configuration
does not have much impact because we are bottlenecked by
the network throughput.

8.2.5 Garbage Collection Performance

Our analysis focuses on the copy forward process of cloud
tier GC, as shown in Figure 11, since it is the only phase
that differs from active tier GC. As described in Section 7.2,
we developed a new API to perform copy forward for pri-
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Figure 11: GC copy forward with different algorithms

vate cloud providers. Using this API, the system performs a
copy forward of live compression regions (64-128KB) from
existing container objects into new container objects without
reading the data back to the Data Domain system to avoid
transfer costs. Using the API, we are able to achieve a copy
forward performance of 600MB/s.

For public cloud providers that do not provide a copy for-
ward API, we developed an experimental microservice al-
gorithm for garbage collection. The Data Domain system
makes compression region cleaning decisions and passes a
recipe to one or more GC microservice instances running in
the cloud that perform the copy forward operations, similar
to the functionality of the API. We increased the number of
AWS t3.xlarge instances [4] to evaluate how well it scales.
Aggregate performance scaled close to linearly, starting at
256 MB/s with one instance and increasing to 2,040 MB/s
with eight instances. Even though microservice performance
is better than API performance, we can use a microservice
only in the case of a public provider where we can spin up
compute to run the microservice. This might not be possible
in private cloud environments.

9 Related Work

Deduplication is a well-studied field with multiple survey
articles [21, 23, 31]. Deduplication is a key aspect of the
Data Domain product to enable space savings and high per-
formance for backups [32], and Data Domain has evolved
with media and use case changes [1, 2].

There have been multiple papers characterizing backup
data [15, 17, 19, 26, 30], and the terms backup and archive
are often used interchangeable, so the previous analysis may
have applications to archival system design. In our data anal-
ysis, customers have specifically decided to archive a subset
of their backup data for longer term retention in the cloud.

Reading from deduplicated cloud storage can be slow, and
several papers suggest ways to improve read performance,
usually involving writing duplicates, caching, and prefetch-
ing techniques [18, 27]. Security implications of cloud stor-
age have also been considered [16, 22, 24]. In contrast to
these papers, we show how to evolve an existing dedupli-
cated backup product to support a cloud tier.

The issue of deciding where to place large directories

to maximize content overlap has been considered [10, 12].
Nagesh et al. [20] presented a technique to partition a col-
lection of files by related content using an in-memory graph
relationship on fingerprints. A current publication represents
the content of storage volumes with sketches of sampled fin-
gerprints to determine unique content for volumes [14]. In
contrast, our technique can estimate the amount of space ref-
erenced from an arbitrary set of files selected by the user and
scales to PB capacity.

Cumulus [28] provides backups to cloud storage by trans-
ferring file differences and storing files in large objects.
BlueSky [29] presents a file system backed by cloud stor-
age that uses a local cache for performance. Though neither
incorporates deduplication, both projects describe garbage
collection for large objects in the cloud as regions become
unreferenced. Fu et al. [13] improve GC and restore per-
formance in deduplicated storage by analyzing the history of
container references during a backup. They rewrite duplicate
chunks from sparse containers from a previous backup and
record emerging sparse containers. They also manage con-
tainer manifests that record which backups reference each
container, and when a manifest becomes empty, a container
can be safely removed. Such techniques could be used within
our cloud GC algorithm, though copy-forward bandwidth is
unlikely to be improved.

10 Conclusion

Data protection continues to be a key priority as customers
transition their archival data to cloud storage. Data Domain
is a mature data protection product, and adding a cloud tier
involved trade-offs within the current architecture. We had to
make decisions about object sizes and data structure relation-
ships to balance performance and cost not only of migrating
data to the cloud tier but also running GC. To address these
concerns, we developed several techniques: mirroring meta-
data locally supports efficient deduplication and GC, and us-
ing perfect hashes to track billions of references in memory
enables space estimation, seeding, and cloud GC. Experi-
ences with initial customers shows a strong interest in dedu-
plicated archival storage. Large amounts of data are trans-
ferred each month, which benefit from deduplication both in
terms of faster transfer speeds but also lower storage costs.
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