
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Transkernel: Bridging Monolithic Kernels
to Peripheral Cores

Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin, Purdue ECE

https://www.usenix.org/conference/atc19/presentation/guo

Transkernel: Bridging Monolithic Kernels to Peripheral Cores

Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin

Purdue ECE

Abstract
Smart devices see a large number of ephemeral tasks driven
by background activities. In order to execute such a task, the
OS kernel wakes up the platform beforehand and puts it back
to sleep afterwards. In doing so, the kernel operates various
IO devices and orchestrates their power state transitions. Such
kernel executions are inefficient as they mismatch typical
CPU hardware. They are better off running on a low-power,
microcontroller-like core, i.e., peripheral core, relieving CPU
from the inefficiency.

We therefore present a new OS structure, in which a
lightweight virtual executor called transkernel offloads spe-
cific phases from a monolithic kernel. The transkernel trans-
lates stateful kernel execution through cross-ISA, dynamic
binary translation (DBT); it emulates a small set of stateless
kernel services behind a narrow, stable binary interface; it spe-
cializes for hot paths; it exploits ISA similarities for lowering
DBT cost.

Through an ARM-based prototype, we demonstrate
transkernel’s feasibility and benefit. We show that while cross-
ISA DBT is typically used under the assumption of efficiency
loss, it can enable efficiency gain, even on off-the-shelf hard-
ware.

1 Introduction

Driven by periodic or background activities, modern em-
bedded platforms1 often run a large number of ephemeral
tasks. Example tasks include acquiring sensor readings, re-
freshing smart watch display [44], push notifications [38],
and periodic data sync [91]. They drain a substantial frac-
tion of battery, e.g., 30% for smartphones [13, 12] and smart
watches [45], and almost the entire battery of smart things for
surveillance [84]. To execute an ephemeral task, a commodity
OS kernel, typically implemented in a monolithic fashion,

1This paper focuses on battery-powered computers such as smart wear-
ables and smart things. They run commodity OSes such as Linux and Win-
dows. We refer to them as embedded platforms for brevity.

Wakeup
CPU

User Task

Sleep
Existing

Device
Resume

Thaw user

CPU
Peripheral

Core

Suspend
Resume

Commodity
Kernel

DRAM

Emu

Dynamic
Binary
Translation

IO

Translated
code

Freeze user

Device
Suspend

CPU Peripheral
Core

w/ Transkernel

(a) The transkernel model (b) System execution workflow
Time

A transkernel

Figure 1: An overview of this work

drives the whole hardware platform out of deep sleep before-
hand (i.e., “resume”) and puts it back to deep sleep afterwards
(i.e., “suspend”). During this process, the kernel consumes
much more energy than the user code [44], up to 10× shown
in recent work [38].

Why is the kernel so inefficient? Recent studies [26, 92, 44]
show the bottlenecks as two kernel phases called device sus-
pend/resume as illustrated in Figure 1. In the phases, the
kernel operates a variety of IO devices (or devices for brevity).
It invokes device drivers, cleans up pending IO tasks, and
ensures devices to reach expected power states. The phases
encompass concurrent execution of drivers, deferred func-
tions, and hardware interrupts; they entail numerous CPU idle
epochs; their optimization is proven difficult (§2) [92, 50, 46].

We deem that device suspend/resume mismatches CPU.
It instead would be much more efficient on low-power,
microcontroller-like cores, as exemplified by ARM Cortex-
M. These cores are already incorporated as peripheral cores
on a wide range of modern system-on-chips (SoCs) used in
production such as Apple Watch [59] and Microsoft Azure
Sphere [52]. On IO-intensive workloads, a peripheral core
delivers is much more efficient than the CPU due to lower idle
power and higher execution efficiency [42, 43, 54, 1]. Note
that running user code (which often builds atop POSIX) on
peripheral cores is a non-goal: on one hand, doing so would
gain much less efficiency due to fewer idle epochs in user

USENIX Association 2019 USENIX Annual Technical Conference 675

execution; on the other hand, doing so requires to support a
much more complex POSIX environment on peripheral cores.

Offloading the execution of a commodity, monolithic kernel
raises practical challenges, not only i) that the peripheral core
has a different ISA and wimpy hardware but also ii) that the
kernel is complex and rapidly evolving [68]. Many OS propos-
als address the former while being inadequate in addressing
the latter [5, 61, 6, 48, 75]. For instance, one may refactor a
monolithic kernel to span it over CPU and a peripheral core;
the resultant kernel, however, depends on a wide binary in-
terface (ABI) for synchronizing state between the two ISAs.
This interface is brittle. As the upstream kernel evolves, main-
taining binary compatibility across different ISAs inside the
kernel itself soon becomes unsustainable. Instead, we argue
for the code running on peripheral cores to enjoy firmware-
level compatibility: developed and compiled once, it should
work with many builds of the monolithic kernel – generated
from different configurations and source versions.

Our response is a radical design called transkernel, a
lightweight virtual executor empowering a peripheral core to
run specific kernel phases – device suspend/resume. Figure 1
overviews the system architecture. A transkernel executes
unmodified kernel binary through cross-ISA, dynamic binary
translation (DBT), a technique previously regarded as expen-
sive [5] and never tested on microcontroller-like cores to our
knowledge. Underneath the translated code, a small set of
emulated services act as lightweight, drop-in replacements
for their counterparts in the monolithic kernel. Four principles
make transkernel practical: i) translating stateful code while
emulating stateless kernel services; ii) identifying a narrow,
stable translation/emulation interface; iii) specializing for hot
paths; iv) exploiting ISA similarities for DBT.

We demonstrate a transkernel prototype called ARK (An
aRm transKernel). Atop an ARM SoC, ARK runs on a Cortex-
M3 peripheral core (with only 200 MHz clock and 32KB
cache) alongside Linux running on a Cortex-A9 CPU. ARK
transparently translates unmodified Linux kernel drivers and
libraries. It depends on a binary interface consisting of only
12 Linux kernel functions and one kernel variable, which
are stable for years. ARK offers complete support for de-
vice suspend/resume in Linux, capable of executing diverse
drivers that implement rich functionalities (e.g., DMA and
firmware loading) and invoke sophisticated kernel services
(e.g., scheduling and IRQ handling). As compared to na-
tive kernel execution, ARK only incurs 2.7× overhead, 5.2×
lower than a baseline of off-the-shelf DBT. ARK reduces sys-
tem energy by 34%, resulting in tangible battery life extension
under real-world usage.

We make the following contributions on OS and DBT:
• We present the transkernel model. In the design space of
OSes for heterogeneous multi-processors, the transkernel rep-
resents a novel point: it combines DBT and emulation for
bridging ISA gaps and for catering to core asymmetry, respec-
tively.

• We present a transkernel implementation, ARK. Target-
ing Linux, ARK presents specific tradeoffs between kernel
translation versus emulation; it identifies a narrow interface
between the two; it contributes concrete realization for them.

• Crucial to the practicality of ARK, we present an inverse
paradigm of cross-ISA DBT, in which a microcontroller-like
core translates binary built for a full-fledged CPU. We con-
tribute optimizations that systematically exploit ISA similar-
ities. Our result demonstrates that while cross-ISA DBT is
typically used under the assumption of efficiency loss, it can
enable efficiency gain, even on off-the-shelf hardware.

The source code of ARK can be found at http://
xsel.rocks/p/transkernel.

2 Motivations

We next discuss device suspend/resume, the major kernel
bottleneck in ephemeral tasks, and that it can be mitigated by
running on a peripheral core. We show difficulties in known
approaches and accordingly motivate our design objectives.

2.1 Kernel in device suspend/resume

Expecting a long period of system inactivity, an OS kernel
puts the whole platform into deep sleep: in brief, the kernel
synchronizes file systems with storage, freezes all user tasks,
turns off IO devices (i.e., device suspend), and finally powers
off the CPU. To wake up from deep sleep, the kernel performs
a mirrored procedure [11]. In a typical ephemeral task, the
above kernel execution takes hundreds of milliseconds [31]
while the user execution often takes tens of milliseconds [44];
the kernel execution often consumes several times more en-
ergy than the user execution [38].

Problem: device suspend/resume By profiling recent Linux
on multiple embedded platforms, our pilot study [92] shows
the aforementioned kernel execution is bottlenecked by de-
vice suspend/resume, in which the kernel cleans up pending
IO tasks and manipulates device power states. The findings
are as follows. i) Device suspend/resume is inefficient. It
contributes 54% on average and up to 66% to the total kernel
energy consumption. CPU idles frequently in numerous short
epochs, typically in milliseconds. ii) Devices are diverse. On
a platform, the kernel often suspends and resumes tens of
different devices. Across platforms, the bottleneck devices
are different. iii) Optimization is difficult. Device power state
transitions are bound by slow hardware and low-speed buses,
as well as physical factors (e.g., voltage ramp-up). While
Linux already parallelizes power transitions with great ef-
forts [50, 46], many power transitions must happen sequen-
tially per implicit dependencies of power, voltage, and clock.
As a result, CPU idle constitutes up to 68% of the device
suspend/resume duration.

676 2019 USENIX Annual Technical Conference USENIX Association

http://xsel.rocks/p/transkernel
http://xsel.rocks/p/transkernel

SoC Cores ISAs Shared
DRAM?

Mapping
kern mem?

Shared
IRQ

OMAP4460
[83] (2010) A9+M3 v7a+v7m Full Yes. MPU 39/102

AM572x [81]
(2014) A15+M4 v7a+v7m Full Yes. MPU 32/92

i.MX6SX [62]
(2015) A9+M4 v7a+v7m Full Yes. MPU 85/87

i.MX7 [65]
(2017) A7+M4 v7a+v7m Full Yes. MPU 88/90

i.MX8M [63]
(2018) A53+M4 v8a+v7m Full Yes. MPU 88/88

MT3620 [52]
(2018)* A7+M4 v7a+v7m Full Likely. MPU Likely

most

Table 1: Our hardware model fits many popular SoCs which
are used in popular products such as Apple Watch and Azure
Sphere. Section 7.5 discusses caveats. *: lack public technical
details.

Challenge: Widespread, complex kernel code Device sus-
pend/resume invokes multiple kernel layers [68, 32]. Specif-
ically, it invokes functions in individual drivers (e.g., MMC
controllers), driver libraries (e.g., the generic clock frame-
work), kernel libraries (e.g., for radix trees), and kernel ser-
vices (e.g., scheduler). In a recent Linux source tree (4.4), we
find that over 1000 device drivers, which represent almost all
driver classes, implement suspend/resume callbacks in 154K
SLoC. These callbacks in turn invoke over 43K SLoC in
driver libraries, 8K SLoC in kernel libraries, and 43K SLoC
in kernel services. The execution is control-heavy, with dense
branches and callbacks.

Opportunities We observe the following kernel behaviors in
device suspend/resume. i) Low sensitivity to execution delay
On embedded platforms, most ephemeral tasks are driven by
background activities [38, 53, 13]. This contrasts to many
servers for interactive user requests [93, 53]. ii) Hot kernel
paths In successful suspend/resume, the kernel acquires all
needed resources and encounters no failures [41]. Off the hot
paths, the kernel handles rare events such as races between
IO events, resource shortage, and hardware failures. These
branches typically cancel the current suspend/resume attempt,
perform diagnostics, and retry later. Unlike hot paths, they
invoke very different kernel services, e.g., syslog. iii) Simple
concurrency exists among the syscall path (which initiates
suspend/resume), interrupt handlers, and deferred kernel work.
The concurrency is for hardware asynchrony and kernel mod-
ularity rather than exploiting multicore parallelism.

Summary: design implications Device suspend/resume
shall be treated systematically. We face challenges that the
invoked kernel code is diverse, complex, and cross-layer; we
see opportunities that allow focusing on hot kernel paths, spe-
cializing for simple concurrency, and gaining efficiency at the
cost of increased execution time.

2.2 A peripheral core in a heterogeneous SoC

Hardware model We set to exploit peripheral cores already
on modern SoCs. Hence, our software design only assumes
the following hardware model which fits a number of popular
SoCs as listed in Table 1.

1. Asymmetric processors: In different coherence domains,
the CPU and the peripheral core offer disparate performance/-
efficiency tradeoffs. The peripheral core has memory protec-
tion unit (MPU) but no MMU, incapable of running commod-
ity OSes as-is.

2. Heterogeneous, yet similar ISAs: The two processors
have different ISAs, in which many instructions have sim-
ilar semantics, as will be discussed below.

3. Loose coupling: The two processors are located in sepa-
rate power domains and can be turned on/off independently.

4. Shared platform resources: Both processors share access
to platform DRAM and IO devices. Specifically, the periph-
eral core, through its MPU, should map all the kernel code/-
data at identical virtual addresses as the CPU does. Both
processors must be able to receive interrupts from the de-
vices of interest, e.g., MMC; they may, however, see different
interrupt line numbers of the same device.

How can peripheral cores save energy? They are known to
deliver high efficiency for IO-heavy workloads [42, 54, 78, 1,
76]. Specifically, they benefit the kernel’s device suspend/re-
sume in the following ways. i) A peripheral core can operate
while leaving the CPU offline. ii) The idle power of a periph-
eral core is often one order of magnitude lower [43, 64], min-
imizing system power during core idle periods. iii) Its simple
microarchitecture suits kernel execution, whose irregular be-
haviors often see marginal benefits from powerful microarchi-
tectures [58]. Note that a peripheral core offers much higher
efficiency than a LITTLE core as in ARM big.LITTLE [24],
which mandates a homogeneous ISA and tight core coupling.
We will examine big.LITTLE in Section 7.

ISA similarity On an SoC we target, the CPU and the periph-
eral core have ISAs from the same family, e.g., ARM. The two
ISAs often implement similar instruction semantics despite
in different encoding. The common examples are SoCs inte-
grating ARMv7a ISA and ARMv7m ISA [62, 65, 81, 52, 83].
Other families also provide ISAs amenable to same-SoC inte-
gration, e.g., NanoMIPS and MIPS32. We deem that the ISA
similarities are by choice. i) For ISA designers, it is feasible
to explore performance-efficiency tradeoffs within one ISA
family, since the family choice is merely about instruction
syntax rather than semantics [8]. ii) For SoC vendors, incor-
porating same-family ISAs on one chip simplifies software
efforts [40], silicon design, and ISA licensing.

USENIX Association 2019 USENIX Annual Technical Conference 677

Linux

kernel

Suspend

Resume

Peripheral

kernel

Kernel State

Linux

kernel

DBT

CPU Peripheral Core

2

1
Translated

Code

4

DRAM IO IO

CPU Peripheral Core

Kernel State

3

(a) Source code transplant (b) Full cross-ISA DBT

Figure 2: Alternative ways for offloading kernel phases

359

845

217

858

Device
specific

Driver
lib

Kernel
lib

Kernel
services

(a) # of functions

848

55

721

159

828

173

v4.17

(Jul 2018)

1075

1111 1043

354

498

395

155

674

214

707661

v3.16 v4.4 v4.9 v4.17v2.6

213

1060

384

1015

155

378

196

385

194

384

848

216

780

214

797

163

v2.6

(Jan 2011)

v3.16

(Aug 2014)

v4.4

(Jan 2016)

v4.9

(Dec 2016)

640

855

606

717

500

816

938

From To

(b) # of functions (upper) & types (lower) w/
changed ABI across kernel versions

Figure 3: Counts of Linux kernel functions referenced by
device suspend/resume, showing (a) the functions are rich
and diverse and (b) their ABI change is substantial over time.
Exported functions only. Build config: omap2defconfig. ABI
changes detected with ABI compliance checker [70]

2.3 OS design space exploration

We set to realize heterogeneous execution for an existing
monolithic kernel.

How about refactoring the kernel and cross-compiling
statically? One may be tempted to modify a monolithic
kernel (we use Linux as the example below) [43, 5] to be one
unified source tree; the tree shall be cross-compiled into a
kernel binary for CPU and a “peripheral kernel” for the pe-
ripheral core. This approach results in an OS structure shown
in Figure 2(a). Its key drawback is the two interfaces that are
difficult to implement and maintain, shown as in the
figure.
1 The interface between two heterogeneous ISAs, as needed

for resolving inter-kernel data dependency. Through the inter-
face, both kernels synchronize their kernel state, e.g., devices
configurations, pending IO tasks, and locks, before and after
the offloading. Built atop shared memory [43, 5, 23], the in-
terface is essentially an agreement on thousands of shared
Linux kernel data types, including their semantics and/or
memory layout. The agreement is brittle, as it is affected
by ISA choices, kernel configurations, and kernel versions.
Hence, keeping data types consistent across ISAs entails te-
dious tweak of kernel source and configurations [22, 23]. As

Greg Kroah-Hartman puts, “you will go insane over time if
you try to support this kind of release, I learned this the hard
way a long time ago.” [36]
2 The interface between the transplant code and the periph-

eral kernel, as needed for resolving functional dependency.
In principle, this interface is determined by the choice of
transplant boundary. In prior work, the example choices in-
clude the interface of device-specific code [22, 23, 80], that of
driver classes [10, 79], or that of driver libraries [43]. All these
choices expose at least hundreds of Linux kernel functions
on this interface, as summarized in Figure 3(a). This is due
to Linux’s diverse, sophisticated drivers. Implementing such
an interface is daunting; maintaining it is even more difficult
due to significant ABI changes [37] as shown in Figure 3(b).

In summary, all these difficulties root in the peripheral ker-
nel’s deep dependency on the Linux kernel. This is opposite
to the common practice: heterogeneous cores to run their own
“firmware” that has little dependency on the Linux kernel.
This is sustainable because the firmware stays compatible
with many builds of Linux.

How about virtual execution? Can we minimize the depen-
dency? One radical idea would be for a peripheral core to
run the Linux kernel through virtual execution, as shown in
Figure 2(b). Powered by DBT, virtual execution allows a host
processor (e.g., the peripheral core) to execute instructions
in a foreign guest ISA (e.g., the CPU). Virtual execution is
free of the above interface difficulties: the translated code pre-
cisely reproduces the kernel behaviors and directly operates
the kernel state (3). The peripheral core interacts with Linux
through a low-level, stable interface: the CPU’s ISA (4).

The problem, however, is the high overhead of existing
cross-ISA DBT [4]. It is further exacerbated by our inverse
DBT paradigm: whereas existing cross-ISA DBT is engi-
neered for a brawny host emulating a weaker guest (e.g., an
x86 desktop emulating an ARM smartphone) [17, 87], our
DBT host, a peripheral core, shall serve a full-fledged CPU.
A port of popular DBT exhibits up to 25× slowdown as will
be shown in §7. Such overhead would negate any efficiency
promised by the hardware and result in overall efficiency loss.
Furthermore, cross-ISA DBT for the whole Linux kernel is
complex [7]. A peripheral core lacks necessary environment,
e.g., multiple address spaces and POSIX, for developing and
debugging such complex software.

2.4 Design objective

We therefore target threefold objective.
G1. Tractable engineering. We set to reuse much of the ker-
nel source, in particular the drivers that are impractical to
build anew. We target simple software for peripheral cores.
G2. Build once, work with many. One build of the peripheral
core’s software should work with a commodity kernel’s bi-
naries built from a wide range of configurations and source

678 2019 USENIX Annual Technical Conference USENIX Association

versions. This requires the former to interact with the latter
through a stable, narrow ABI.
G3. Low overhead. The offloaded kernel phases should yield
a tangible efficiency gain.

3 The Transkernel Model

Running on a peripheral core, a transkernel consists of two
components: a DBT engine for translating and executing the
unmodified kernel binary; a set of emulated, minimalistic ker-
nel services that underpin the translated kernel code, as will
be described in detail in Section 4. A concrete transkernel im-
plementation targets a specific commodity kernel, e.g., Linux.
A transkernel does not execute user code in ephemeral tasks
as stated in Section 1.

The transkernel follows four principles:

1. Translating stateful code; emulating stateless services
By stateful code, we refer to the offloaded code that must
share states with the kernel execution on CPU. The stateful
code includes device drivers, driver libraries, and a small set of
kernel services. They cover the most diverse and widespread
code in device suspend/resume (§2). By translating their bi-
naries, the transkernel reuses the commodity kernel without
maintaining wide, brittle ABIs. (objective G1, G2)

The transkernel emulates a tiny set of kernel services. We
relax their semantics to be stateless, so that their states only
live within one device suspend/resume phase. Being stateless,
the emulated services do not need to synchronize states with
the kernel on CPU over ABIs. (G2)

2. Identifying a narrow, stable translation/emulation ABI
The ABI must be unaffected by kernel configurations and
unchanged since long in the kernel evolution history. (G2)

3. Specializing for hot paths In the spirit of OS specializa-
tion [20, 71, 51], the transkernel only executes the hot path of
device suspend/resume; in the rare events of executing off the
hot path, it transparently falls back on CPU. The transkernel’s
emulated services seek functional equivalence and only im-
plement features needed by the hot path; they do not precisely
reproduce the kernel’s behaviors. (G1)

4. Exploiting ISA similarities for DBT The transkernel de-
parts from generic cross-DBT that bridges arbitrary guest/host
pairs; it instead systematically exploits similarities in instruc-
tions semantics, register usage, and control flow transfer. This
makes cross-ISA DBT affordable. (G3)

Limitations First, across ISAs of which instruction se-
mantics are substantially different, e.g., ARM and x86, the
transkernel may see diminishing or even no benefit. Second,
the transkernel’s longer delays (albeit lower energy) may mis-
fit latency-sensitive contexts, e.g., for waking up platforms in
response to user input. Our current prototype relies on heuris-
tics to recognize such contexts and falls back on the CPU
accordingly (Section 4).

sched
spin

lock

virt

addr

deferred

work
IRQ

handler

IRQ

handler

(early)

mutex

sem

mem

alloc

fallback

Translated

Code

(stateful)

delay

sleep Emulation

(stateless)

Linux

kernel

binary

Device-specific

Driver libs

Accessing

Linux

kernel state
private

lib

Stable ABI

Kernel libs

DBT

contexts

DBT Engine

Figure 4: The ARK structure on a peripheral core

In Section 4 below we describe how to apply the model to
a concrete transkernel, in particular our translation/emulation
decisions for major kernel services, and our choices of the
emulation interface. We will describe DBT in Section 5.

4 ARK: An ARM Transkernel

Targeting an ARM SoC, we implement a transkernel called
ARK. The SoC encompasses a popular combination of ISAs:
ARMv7A for its CPU and ARMv7m for its peripheral core.
The CPU runs Linux v4.4.

Offloading workflow ARK is shipped as a standalone binary
for the peripheral core, accompanied by a small Linux kernel
module for control transfer between CPU and the peripheral
core. We refer to such control transfer as handoff. Prior to
a device suspend phase, the kernel shuts down all but one
CPU cores, passes control to the peripheral core, and shuts
down the last CPU core. Then, ARK completes the device
phase in order to suspend the entire platform. Device resume
is normally executed by ARK on the peripheral core; in case
of urgent wakeup events (e.g., a user unlocking a smart watch
screen), the kernel resumes on CPU with native execution.

System structure As shown in Figure 4, ARK runs a DBT
engine, its emulated kernel services, and a small library for
managing the peripheral core’s private hardware, e.g., in-
terrupt controllers. The emulated services serves downcalls
() from the translated code and makes upcalls (
) into the translated code. Table 2 summarizes the interfaces.
Upon booting, ARK replicates Linux kernel’s linear mem-
ory mappings for addressing kernel objects in shared mem-
ory [43, 23]. ARK maps I/O regions with MPU and time-
multiplexes the regions on the MPU entries.

To support concurrency in the offloaded kernel phases,
ARK runs multiple DBT contexts. Each context has its own
DBT state (e.g., virtual CPU registers and a stack), executing
DBT and emulated services independently. Context switch is
as cheap as updating the pointer to the DBT state.

ARK executes the hot paths. Upon entering cold branches
pre-defined by us, e.g., kernel WARN(), ARK migrates all the

USENIX Association 2019 USENIX Annual Technical Conference 679

Kernel services Implementations & reasons

Scheduler (§4.1) Emulated. Reason: simple concurrency.
IRQ handler (§4.2) Early stage emulated; then translated
HW IRQ controller (§4.2) Emulated. Reason: core-specific
Deferred work (§4.3) Translated. Reason: stateful
Spinlocks (§4.4) Emulated. Reason: core-specific
Sleepable locks (§4.4) Fast path translated. Reason: stateful
Slab/Buddy allocator (§4.5) Fast path translated. Reason: stateful
Delay/wait/jiffies (§4.6) Emulated. Reason: core-specific

jiffies udelay() msleep() tasklet_schedule() irq_thread()
ktime_get() queue_work_on() worker_thread() run_local_timers()
generic_handle_irq() schedule() async_schedule()* do_softirq()*

*=ABI unchanged since 2014 (v3.16); others unchanged since 2011 (v2.6).

Table 2: Top: Kernel services supported by ARK. Bottom:
Linux kernel ABI (12 funcs+1 var) ARK depends on. ARK
offers complete support for device suspend/resume in Linux.

DBT contexts of translated code back to the CPU and contin-
ues as native execution there (§6).

4.1 A Scheduler of DBT Contexts
ARK emulates a scheduler which shares no state, e.g., schedul-
ing priorities or statistics, with the Linux scheduler on the
CPU. Corresponding to the simple concurrency model of
suspend/resume (§2), ARK eschews reproducing Linux’s pre-
emptive multithreading but instead maintains and switches
among cooperative DBT contexts: one primary context for
executing the syscall path of suspend/resume, one for exe-
cuting IRQ handlers (§4.2), and multiple for deferred work
(§4.3). Managing no more than tens of contexts, ARK uses
simple, round-robin scheduling. It begins the execution in
the syscall context; when the syscall context blocks (e.g., by
calling msleep()), ARK switches to the next ready context to
execute deferred functions until they finish or block. When an
interrupt occurs, ARK switches to the IRQ context to execute
the kernel interrupt handler (§4.2).

4.2 Interrupt and Exception Handling
During the offloaded device phase, all interrupts are routed to
the peripheral core and handled by ARK.
Kernel interrupt handlers ARK emulates a short, early
stage of interrupt handling while translating the kernel code
for the remainder. This is because this early stage is ISA-
specific (e.g., for manipulating the interrupt stack), on which
the CPU (v7a) and the peripheral core (v7m) differ. Hence,
the emulated services implement a v7m-specific routine and
install it as the hardware interrupt handler. Once an interrupt
happens, the routine is invoked to finish the v7m-specific
task and make an upcall to the kernel’s ISA-neutral interrupt
handling routine (listed in Table 2), from where the ARK
translates the kernel to finish handling the interrupt.
Hardware interrupt controller ARK emulates the CPU’s
hardware interrupt controller. This is needed as the two cores

have separate, heterogeneous interrupt controllers. The CPU
controller’s registers are unmapped in the peripheral core;
upon accessing them (e.g., for masking interrupt sources) the
translated code triggers faults. ARK handles the faults and
operates the peripheral core’s controller accordingly.

Exception: unsupported We don’t expect any exception in
the offloaded kernel phases. In case exception happens, ARK
uses its fallback mechanism (§6) to migrate back to CPU.

4.3 Deferred Work
Device drivers frequently schedule functions to be executed in
the future. ARK translates the Linux services that schedule the
deferred work as well as the actual execution of the deferred
work. ARK chooses to translate such services because they
must be stateful: the peripheral core may need to execute
deferred work created on the CPU prior to the offloading, e.g.,
freeing pending WiFi packets; it may defer new work until
after the completion of resume.

ARK maintains dedicated DBT contexts for executing the
deferred work (Section 4.1). While the Linux kernel often
executes deferred work in kernel threads (daemons), our in-
sight is that deferred work is oblivious to its execution context
(e.g., a real Linux thread or a DBT context in ARK). Beyond
this, ARK only has to run the deferred work that may sleep
with separate DBT contexts so that they do not block other
deferred work. From these DBT contexts, ARK translates the
main functions of the aforementioned kernel daemons, which
retrieve and invoke the deferred work.
Threaded IRQ defers heavy-lifting IRQ work (i.e., deferred
work) to a kernel thread which executes the work after the
hardware IRQ is handled. A threaded IRQ handler may sleep.
Therefore, ARK maintains per-IRQ DBT contexts for ex-
ecuting these handlers. Each context makes upcalls into
irq_thread() (the main function of threaded irq daemon,
listed in Table 2).

Tasklets, workitems, and timer callbacks The kernel
code may dynamically submit short, non-sleepable functions
(tasklets) or long, sleepable functions (workitems) for de-
ferred execution. Kernel daemons (softirq and kworker) exe-
cute tasklets and workitems, respectively.

ARK creates one dedicated context for executing all non-
sleepable tasklets and per-workqeueue contexts for execut-
ing workitems so that one workqueue will not block oth-
ers. These contexts make upcalls to the main functions of
the kernel daemons (do_softirq(), worker_thread(), and
run_local_timers()), translating them for retrieving and ex-
ecuting deferred work.

4.4 Locking
Spinlocks ARK emulates spinlocks, because their implemen-
tation is core-specific and that ARK can safely assume all
spinlocks are free at handoff points: as described in early

680 2019 USENIX Annual Technical Conference USENIX Association

Section 4, handoff happens between one CPU core and one
peripheral core, which do not hold any spinlock; all other CPU
cores are offline and cannot hold spinlocks. Hence, ARK em-
ulates spinlock acquire/release by pausing/resuming interrupt
handling. This is because ARK runs on one peripheral core
and the only hardware concurrency comes from interrupts.
Sleepable locks ARK translates sleepable locks (e.g., mu-
tex, semaphore) because these locks are stateful: for example,
the kernel’s clock framework may hold a mutex preventing
suspend/resume from concurrently changing clock configura-
tion [56]. Furthermore, mutex’s seemingly simple interface
(i.e., compare & exchange in fast path) has unstable ABI and
therefore unsuitable for emulation: a mutex’s reference count
type changes from int to long (v4.10), breaking the ABI
compatibility. The translated operations on sleepable locks
may invoke spinlocks or the scheduler, e.g., when updating
reference counts or putting the caller to sleep, for which the
translated execution makes downcalls to the emulated ser-
vices.In practice, no sleepable lock is held prior to system
suspend.

4.5 Memory Allocation
The device phase frequently requests dynamic memory, often
at granularities of tens to hundreds of bytes. By Linux design,
such requests are served by the kernel slab allocator backed
by a buddy system for page allocation (fast path); when the
physical pages runs low, the kernel may trigger swapping or
kill user processes (slow path).

ARK provides memory allocation as a stateful service. It
translates the kernel code for the fast path, including the slab
allocator and the buddy system. In the case that the allocation
enters the slow path (e.g., due to low physical memory), ARK
aborts offloading; fortunately, our stress test suggests such
cases to be extremely rare, as will be reported in Section 7.
With a stateful allocator, the offloaded execution can free
dynamic memory allocated during the kernel execution on
CPU, and vice versa. Compare to prior work that instantiates
per-kernel allocators with split physical memory [43], ARK
reduces memory fragmentation and avoids tracking which
processor should free what dynamic memory pieces. Our
experience in Section 7 show that ARK is able to handle
intensive memory allocation/free requests such as in loading
firmware to a WiFi NIC.

4.6 Delays & Timekeeping

Delays ARK emulates udelay() and msleep() for busy wait-
ing and sleeping. ARK converts the expected wait time to the
hardware timer cycles on the peripheral core. ARK imple-
ments msleep() by pausing scheduling the caller context.
jiffies The Linux kernel periodically updates jiffies, a global
integer, as a low-overhead measure of elapsed time. By con-
sulting the peripheral core’s hardware timer, ARK directly

updates the jiffies. It is thus the only shared variable on the
kernel ABI that ARK depends (all others are functions).

5 The Cross-ISA DBT Engine

A Cross-ISA DBT Primer DBT, among its other uses [60,
49, 27], is a known technique allowing a host processor to
execute instructions in a foreign guest ISA. In such cross-
ISA DBT, the host processor runs a program called DBT
engine. At run time, the engine reads in guest instructions,
translates them to host instructions based on the engine’s built-
in translation rules, and executes these host instructions. The
engine translates guest instructions in the unit of translation
block – a sequence (typically tens) of guest instructions that
has one entry and one or more exits. After translating a block,
the engine saves the resultant host instructions to its code
cache in the host memory, so that future execution of this
translated block can be directed to the code cache.

Design overview We build ARK atop QEMU [7], a popular,
opensource cross-ISA DBT engine. ARK inherits QEMU’s
infrastructure but departs from its generic design which trans-
lates between arbitrary ISAs. ARK targets two well-known
DBT optimizations: i) to emit as few host instructions as
possible; ii) to exit from the code cache to the DBT engine
as rarely as possible. We exploit the following similarities
between the CPU’s and the peripheral core’s ISAs (ARMv7a
& ARMv7m):

1. Most v7a instructions have v7m counterparts with identi-
cal or similar semantics, albeit in different encoding. (§5.1)
2. Both ISAs have the same general purpose registers. The
condition flags in both ISAs have same semantics. (§5.2)
3. Both ISAs use program counter (PC), link register (LR),
and stack pointer (SP) in the same way. (§5.3)

Beyond the similarities, the two ISAs have important dis-
crepancies. Below, we describe our exploitation of the ISA
similarities and our treatment for caveats.

5.1 Exploiting Similar Instruction Semantics

Category Cnt v7m

w
/

C
N

T
P

R
T

 Identity 447 1

Side effect 52 3-5

Const constraints 22 2-5

Shift modes 10 2

w/o counterparts 27 2-5

Total (v7a) 558

Table 3: Translation rules for
v7a instructions. Column 3:
the number of v7m instructions
emitted for one v7a instruction

We devise translation
rules with a principled
approach by parsing a
machine-readable, for-
mal ISA specification
recently published by
ARM [72]. Our over-
all guideline is to map
each v7a instruction to
one v7m instruction
that has identical or
similar semantics. We
call them counterpart

instructions. For a counterpart instruction with similar (yet

USENIX Association 2019 USENIX Annual Technical Conference 681

ARMv7a ARMv7m (by ARK)

G1: ldr r0, [r1],

r2, lsr #4

H1: ldr.w r0, [r1]

H2: lsr.w t0, r2, 0x4

H3: add.w r1, r1, t0

G2: adds r0, r1,

0x80000001

H4: mov.w t0, 0xc0

H5: ror.w t0, t0, 0x7

H6: adds.w r0, r1, t0

G3: sub r0, r1, r2 H7: sub.w r0, r1, r2

Table 4: Sample translation by ARK. By contrast, our baseline
QEMU port translates G1–G3 to 27 v7m instructions

non-identical) semantics, ARK emits a few “amendment”
v7m instructions to make up for the semantic gap. The resul-
tant translation rules are based on individual guest instruc-
tions, different from translation rules based on one or more
translation blocks commonly seen in cross-ISA DBT [86].
This is because semantics similarities allows identity transla-
tion for most guest instructions. Amendment instructions are
oblivious to interrupts/exceptions: as stated in §4.2, ARK de-
fers IRQ handling to translation block boundary and expects
no exceptions.

Table 3 summarizes ARK’s translation rules for all 558
v7a instructions. Among them, 80% can be translated with
identity rules, for which ARK only needs to convert instruc-
tion encoding at run time. 15% of v7a instructions have v7m
counterparts but may require amendment instructions, which
fortunately fall into a few categories: i) Side effects. After
load/store, v7a instructions may additionally update memory
content or register values (shown in Table 4, G1). ARK emits
amendment instructions to emulate the extra side effect (H3).
ii) Constraints on constants. The range of constants that can
be encoded in a v7m instruction is often narrower (Table 4,
G2). In such cases, the amendment instructions load the con-
stant to a scratch register, operate it, and emulate any side
effects (e.g., index update) the guest instruction may have.
iii) Richer shift modes. v7a instructions support richer shift
modes and larger shift ranges than their v7m counterparts.
This is exemplified by Table 4 G1, where a v7m instruction
cannot perform LSR (logic shift right) inline as its v7a coun-
terpart. Similar to above, the amendment instructions perform
shift on the operand in a scratch register.

Beyond the above, only 27 v7a instructions have no v7m
counterparts, for which we manually devise translation rules.

In summary, through systematic exploitation of similar
instruction semantics, ARK emits compact host code at run
time. In the example shown in Table 4, three v7a instructions
are translated into seven v7m instructions by ARK, while to
27 instructions by our QEMU baseline.

5.2 Passthrough of CPU registers

General purpose registers Both the guest (v7a) and the host
(v7m) have the same set (13) of general-purpose registers. In
allocating registers of a host instruction, ARK follows guest

register allocation with best efforts (e.g., one-to-one mapping
in best case, as in Table 4, G1). ARK emits much fewer host
instructions than QEMU, which emulates all guest registers
in host memory with load /store.
Caveats fixed The amendment host instructions operate
scratch registers as exemplified by t0 in Table 4, H2-H6. How-
ever, the wimpy host faces higher register pressure, as it (v7m)
has no more registers than the brawny guest (v7a). To spill
some registers to memory while still reusing the guest’s regis-
ter allocation, we make the following tradeoff: we designate
one host register as the dedicated scratch register, and emu-
lates its guest counterpart register in memory. We pick the
least used one in the guest binary as the dedicated scratch
register, which is experimentally determined as R10 by ana-
lyzing kernel binary. We find most amendment instructions
are satisfied by one scratch register; in rare cases when extra
scratch registers are needed, ARK follows a common design
to allocate dead registers and spill unused ones to memory.

Condition flags Both the guest and the host ISAs involve
five hardware condition flags (e.g., zero and carry) with iden-
tical semantics; fortunately, most guest (v7a) instructions
and their host (v7m) counterparts have identical behaviors
in testing/setting flags per the ISA specifications [72]. ARK
hence directly emits instructions to manipulate the host’s cor-
responding flags. Such flag passthrough especially benefits
control-heavy suspend/resume, which contains extensive con-
ditional branches (§2); we study its benefits quantitatively in
§7.3.
Caveats fixed Amendment host instructions may affect the
hardware condition flags unexpectedly. For amendment in-
structions (notably comparison and testing) that must update
the flags as mandated by ISA, ARK emits two host instruc-
tions to save/restore the flags in a scratch register around the
execution of these amendment instructions.

5.3 Control Transfer and Stack Manipulation

Function call/return Both guest (v7a) and host (v7m) use
PC (program counter) and LR (link register) to maintain the
control flow. QEMU emulates guest PC and LR in host mem-
ory. As a result, the return address, loaded from stack or the
emulated LR, points to a guest address (i.e., kernel address).
Each function return hence causes the DBT to step in and
look up the corresponding code cache address. This overhead
is magnified in the control-heavy device phase.

By contrast, ARK never emits host code to emulate the
guest (i.e., kernel) PC or LR. For each kernel function call,
ARK saves the return addresses within code cache on stack
or in LR; for each kernel function return, ARK loads the
return address (which points to code cache) to hardware PC
from the stack or the hardware LR. By doing so, ARK no
longer participates in all function returns. Our optimization is
inspired by same-ISA DBT [34].

682 2019 USENIX Annual Technical Conference USENIX Association

Stack and SP QEMU emulates the guest (i.e., kernel) stack
and SP with a host array and a variable. Each guest push/pop
translates to multiple host instructions updating the stack
array and the emulated SP. This is costly, as suspend/resume
frequently makes function calls and operates stack heavily.

ARK avoids such expensive stack emulation by emitting
host push/pop instructions to directly operate the guest stack
in place. This is possible because ARK emulates the Linux
kernel’s virtual address space (§4). ARK also ensures the host
code generate the same stack frames as the guest would do
by making amendment instructions avoid using stack, which
would introduce extra stack contents. In addition, this further
facilitates the migration in abort (§6).

Caveats fixed i) As the host saves on the guest stack the code
cache addresses, which are meaningless to the guest CPU,
upon migrating from the peripheral core (host) to the CPU
(guest), the DBT rewrites all code cache addresses on stack
with their corresponding guest addresses. ii) guest push/pop
instruction may involve emulated registers (i.e., scratch reg-
ister). ARK must emit multiple host instructions to correctly
synchronize the emulated registers in memory.

6 Translated −→ Native Fallback

As described in Section 3, when going off the hot paths, ARK
migrates the kernel phase back to the CPU and continues as
native execution, analogous to virtual-to-physical migration
of VMs [85]. Migrating one DBT context is natural, as ARK
passes through most CPU registers and uses the kernel stack
in place (§5.3). Yet, to migrate all active DBT contexts, ARK
address the following unique challenges.

Migrate DBT contexts for deferred work After fallback,
all blocked workitems should continue their execution on the
CPU. Unfortunately, their enclosing DBT contexts do not
have counterparts in the Linux kernel. To solve this issue, we
again exploit the insight that the workitems are oblivious to
their execution contexts. Upon migration, the Linux kernel
creates temporary kernel threads as “receivers” for blocked
workitems to execute in. Once the migrated workitems com-
plete, the receiver threads terminate.

Migrate DBT context for interrupt If fallback happens
inside an ISA-neutral interrupt handler (translated), the re-
mainder of the handler should migrate to the CPU. This chal-
lenge, again, is that ARK’s interrupt context has no counter-
part on the CPU: the interrupt never occurs to the CPU. ARK
addresses this by rethrowing the interrupt as an IPI (inter-
processor interrupt) from the peripheral core to the CPU;
the Linux kernel uses the IPI context as the receiver for the
migrated interrupt handler to finish execution.

Section 7 will evaluate the fallback frequency and cost.

7 Evaluation

We seek to answer the following questions:
1. Does ARK incur tractable engineering efforts? (§7.2)
2. Is ARK correct and low-overhead? (§7.3)
3. Does ARK yield energy efficiency benefit? What are the
major factors impacting the benefit? (§7.4)

7.1 Methodology

Test Platform We evaluate ARK on OMAP4460, an ARM-
based SoC [83] as summarized in Table 6. We chose this
SoC mainly for its good documentation and longtime kernel
support (since 2.6.11), which allows our study of kernel ABI
over a long timespan in Section 2. As Cortex-M3 on the
platform is incapable of DVFS, for fair comparison, we run
both cores at their highest clock rates. Note that OMAP4460
is not completely aligned with our hardware model, for which
we apply workarounds as will be discussed in Section 7.5.

Benchmark setup We benchmark ARK on the whole sus-
pend/resume kernel phases. We run a user program as the test
harness that periodically kicks ARK for suspend/resume; the
generated kernel workloads are the same as in all ephemeral
tasks. Our benchmark is macro: it exercise extensive drivers
and services, during which ARK translates and executes over
200 million instructions.

The benchmark operates nine devices for suspend/resume.
1. SD card: SanDisk Ultra 16GB SDHC1 Class 10 card;
2. Flash drive: a generic drive connected via USB; 3. MMC
controller: on-chip OMAP HSMMC host controller; 4. USB
controller: on-chip OMAP HS multiport USB host controller;
5. Regulator: TWL6030 power management IC connected
via I2C; 6. Keyboard: Dell KB212-B keyboard connected
via USB; 7. Camera: Logitech c270 connected via USB;
8. Bluetooth NIC: an adapter with Broadcom BCM20702
chipset connected via USB; 9. WiFi NIC: TI WL1251 mod-
ule. The kernel invokes sophisticated drivers, thoroughly exer-
cising various services including deferred work (2–4,6–8),
slab/buddy allocator (1–4,6–9), softirq (9), DMA (2,6–9),
threaded IRQ (1,5,9), and firmware upload (9).

We measure device suspend/resume executed by ARK on
Cortex-M3 and report the measured results. We compare ARK
to native Linux execution on Cortex-A9. We further compare
to a baseline ARK version: its DBT is a straightforward v7m
port of QEMU that misses optimizations described in Sec-
tion 5. We report measurements taken with warm DBT code
cache, as this reflects the real-world scenario where device
suspend/resume is frequently exercised.

7.2 Analysis of engineering efforts
ARK eliminates source refactoring of the Linux kernel (§2.3).
As shown in Table 5, ARK transparently reuses substantial
kernel code (15K SLoC in our test), most of which are drivers

USENIX Association 2019 USENIX Annual Technical Conference 683

0 1 2 3 4 23
a) Accumulated Time (s)

Native
ARK

Baseline

Idle
Busy

0 70 140 210 280 681
b) Energy (mJ)

IO
DRAM

Core busy
Core idle

Figure 5: Execution time and energy in device suspend/re-
sume. ARK substantially reduces the energy.

and their libraries. We stress that ARK, as a driver-agnostic
effort, not only enables reuse of the drivers under test but also
other drivers in the ARMv7 Linux kernel.

Existing code (unchanged)

Translated 15K SLoC

Substituted

w/ emu
25K SLoC

New implementation

DBT 9K SLoC

Emulation 1K SLoC

Table 5: Source code

Table 5 also shows that
ARK requires modest efforts
in developing new software
for the peripheral core. The
9K new SLoC for DBT is low
as compared to commodity
DBT (e.g., QEMU has 2M
SLoC). ARK implements em-
ulation in as low as 1K SLoC and in return avoids translating
generic, sophisticated Linux kernel services [34, 21]. The
result validates our principle of specializing these emulated
services.

ARK meets our goal of “build once, run with many”. We
verify that the ARK binary works with a variety of ker-
nel configuration variants (including defconfig-omap4 and
yes-to-all) of Linux 4.4. We also verify that ARK works
with a wide range of Linux versions, from version 3.16 (2014)
to 4.20 (most recent at the time of writing). This is because
ARK only depends on a narrow ABI shown in Table 2, which
has not changed since Linux 3.16.

7.3 Measured execution characteristics

ARK’s correctness Formally, we derive translation rules
from the specification of ARM ISA [72]; experimentally, we
validate ARK by comparing its execution results side-by-side
with native execution and examining the translated code with
the native kernel binary. Over 200 million executed instruc-
tions, we verify that ARK’s translation preserves kernel’s
semantics and presents consistent execution results.

Core activity We trace core states during ARK execution.
Figure 5 (a) shows the breakdown of execution time. Com-
pared to the native execution on CPU, ARK shows the same
amount of accumulated idle time but much longer (16×) busy
time. The reasons are Cortex-M3’s much lower clock rate
(1/6 of the A9’s clock rate) and ARK’s execution overhead.
Despite the extended busy time, ARK still yields energy ben-
efit, as we will show below.

Memory activity We collect DRAM activities by sampling

0x

5x

10x

15x

20x

25x

O
v
e
rh

e
a
d

Baseline

Baseline + Reg Passthrough

ARK (Baseline + all optimizations)

SD Card
Flash

MMC-Ctrl

USB-Ctrl

RegulatorKB
Cam BT

Wi-F
i

0x

5x

10x

15x

20x

25x

Figure 6: Busy execution overhead for devices under test (top:
suspend; bottom: resume). Our DBT optimizations reduce the
overhead by up to one order of magnitude

the hardware counters of the SoC’s DDR controller. We ob-
served that ARK on Cortex-M3 generates much higher av-
erage DRAM utilization (32 MB/s read and 2MB/s write)
than the native execution on A9 (only 8MB/s read and 4MB/s
write). We attribute such thrashing to M3’s small (32KB) last-
level cache (LLC). Throughout the test, the ARK emitted and
executed around 230KB host instructions, which far exceeds
the LLC capacity and likely causes thrashing. By contrast,
Cortex-A9 has a much larger LLC (1MB), which absorbs
most of the kernel memory access. The memory activity has
a strong energy impact, as will be shown below.

Busy execution overhead Our measurement shows that
ARK incurs low overhead in busy kernel execution, which
includes both DBT and emulation. We report the overhead
as the ratio between ARK’s cycle count on Cortex-M3 to
the Linux’s cycle count on A9. Note that an M3 cycle is 6×
longer than A9 due to different clock rates.

Overall, the execution overhead is 2.7× on average (sus-
pend: 2.9×; resume: 2.6×). Of individual drivers, the execu-
tion overhead ranges from 1.1× to 4.5× as shown in Figure 6.
Our DBT optimizations (§5) have strong impact on lower-
ing the overhead. Lacking them, our baseline design incurs
a 13.9× overhead on average, 5.2× higher than ARK. We
examined how our optimizations contribute to the gap: reg-
ister passthrough (§5.2) reduces the baseline’s overhead by
2.5× to 5.5×. Remaining optimizations (e.g., control trans-
fer) collectively reduce the overhead by additional 2×. Our
optimizations are less effective on drivers with very dense
control transfer (e.g., USB) due to high DBT cost.

Emulated services Our profiling shows that ARK’s emu-
lated services incur low overhead. Overall, the emulated ser-
vices only contribute 1% of total busy execution. i) The early,
core-specific interrupt handling (§4.2) takes 3.9K Cortex-M3
cycles, only 1.5–2× more cycles than the native execution on

684 2019 USENIX Annual Technical Conference USENIX Association

CPU Peripheral core
Core Cortex A9@1.2GHz Cortex M3@200MHz
Cache L1:64KB + L2:1MB L1:32KB
Typical busy/idle power 630mW/80mW 17mW/1mW

Table 6: The test platform - OMAP4460 on a Pandaboard

A9. ii) Emulated workqueues (§4.3) incurs a typical queueing
delay of tens of thousands M3 cycles. The delay is longer than
the native execution but does not break the deferred execution
semantics.

Fallback frequency & cost We stress test ARK by repeating
the benchmark for 1000 runs. Throughout the 1000 runs,
ARK encounters only four cases when the execution goes
off the hot path, all of which caused by the WiFi hardware
failing to respond to resume commands; it is likely due to
an existing glitch in WiFi firmware. In such a case, ARK
migrates execution by spending around 20 us on rewriting
code cache addresses on stack (§5.3), 17 us to flush Cortex-
M3’s cache, and 2 us to wake up the CPU through an IPI.

7.4 Energy benefits

Methodology We study system-level energy and in particular
how it is affected by ARK’s its extended execution time. We
include energy of both cores, DRAM, and IO.

We measure power of cores by sampling the inductors on
the power rails for the CPU and the peripheral core. As the
board lacks measurement points for DRAM power [19], we
model DRAM power as a function of DRAM power state and
read/write activities, with Micron’s official power model for
LPDDR2 [55]. The system energy of ARK is given by:

EARK = Ecore︸︷︷︸
Measured

+Tidle · (Pmem_sr +Pio)︸ ︷︷ ︸
Modeled

+Tbusy · (Pmem +Pio)︸ ︷︷ ︸
Modeled

Here, Ecore is the measured core energy. All T s are mea-
sured execution time. Ps are power consumptions for DRAM
and IO: Pmem is DRAM’s active power derived from mea-
sured DRAM activities as described in Section 7.3; Pmem_sr is
DRAM’s self-refresh power, 1.3mW according to the Micron
model; Pio is the average IO power which we estimate as 5mW
based on prior work [90]. Note that during suspend/resume,
IO devices no longer actively perform work, thus consuming
much less power.

Energy saving ARK consumes 66% energy (a reduction
of 34%) of the native execution, despite its longer execution
time. The energy breakdown in Figure 5(b) shows the benefit
comes from two portions: i) in busy execution, ARK’s energy
efficiency is 23% higher than the native execution due to low
overhead (on average 2.7×); ii) during system idle, ARK re-
duces system energy to a negligible portion, as the peripheral
core’s idle power is only 1.25% of the CPU’s. Figure 5(b)
highlights the significance of our DBT optimizations: the
baseline, like ARK, benefits from lower idle power as well;
however its high execution overhead ultimately leads to 5.1×
energy compared to the native execution. Interestingly, ARK

1x 3x 5x 7x 9x 11x 13x 15x

DBT Overhead

0%

20%

40%

60%

80%

100%

%
 o

f B
us

y
Ti

m
e

in
 N

at
iv

e
Ex

ec
ut

io
n

(2.7x,41%)
ARK energy: 66%

(13.9x,41%)
w/o optimization

energy: 333%

0%
50%
100%
150%
200%
250%
300%
350%
400%

Figure 7: System energy consumption (inc. cores, DRAM,
and IO) of ARK relative to native execution (100%), under
different DBT overheads (x-axis) and processor core usage
(y-axis). ARK’s low energy hinges on low DBT overhead.

consumes more DRAM energy than the native execution. We
deem the cause as Cortex-M3’s tiny LLC (32KB) as describe
earlier. Our result suggests that the current size is suboptimal
for the offloaded kernel execution.

What-if analysis How sensitive is ARK’s energy saving
to two major factors: the DBT overhead (ARK’s behavior)
and the processor core usage (Linux’s behavior)? To answer
the question, we estimate the what-if energy consumption
by using the power model as described above. The analysis
results in Figure 7 show two findings. i) ARK’s energy benefit
will be more pronounced with lower core usage (i.e., longer
core idle), because ARK’s efficiency advantage over native
execution is higher during core idle. ii) ARK’s energy benefit
critically depends on DBT. When the DBT overhead (on
x-axis) drops to below 3.5×, ARK saves energy even for
100% busy execution; when the overhead exceeds 5.2×, ARK
wastes energy even for 20% busy execution, the lowest core
usage observed on embedded platforms in prior work [92].

Qualitative comparison with big.LITTLE We estimate
ARK saves tangible energy compared to a LITTLE core.
We use parameters based on recent big.LITTLE characteriza-
tions [66, 25]: compared to the big (i.e., CPU on our platform),
a LITTLE core has 40 mW idle power [69] and offers 1.3×
energy efficiency at 70% clock rate [47]. We favorably as-
sume LITTLE’s DRAM utilization is as low as the big, while
in reality the utilization should be higher due to LITTLE’s
smaller LLC. Even with this favorable assumption for LIT-
TLE and unfavorable, tiny LLC for ARK, LITTLE consumes
77% energy of native execution, more than ARK (51%–66%),
mainly because LITTLE’s idle power is 40× of Cortex-M3.
Furthermore, ARK’s advantage will be even more pronounced
with a proper LLC as discussed earlier.

Battery life extension Based on ARK’s energy reduction in
device suspend/resume, we project the battery life extension
for ephemeral tasks reported in prior work [38]. When the
ephemeral tasks are executed at 5-second intervals and the

USENIX Association 2019 USENIX Annual Technical Conference 685

native device suspend/resume consumes 90% system energy
in a wakeup cycle, ARK extends the battery life by 18%
(4.3 hours per day); with 30-second task intervals and a 50%
energy consumption percentage, ARK extends the battery
life by 7% (1.6 hours per day). This extension is tangible
compared to complementary approaches in prior work [38,
90].

7.5 Discussions

Workarounds for OMAP4460 While OMAP4460 mostly
matches our hardware model as summarized in Table 1, for mi-
nor mismatch we apply the following workarounds. Memory
mapping Our hardware model (§2.2) mandates that the periph-
eral core should address the entire kernel memory. Yet, Cortex-
M3, according to ARM’s hardware specification [82], is only
able to address memory in certain range (up to 0xE0000000),
which unfortunately does not encompass the Linux kernel’s
default address range. As a workaround, we configure the
Linux kernel source, shifting its address range to be address-
able by Cortex-M3. Interrupt handling While our hardware
model mandates that both processors should receive all in-
terrupts, OMAP4460 only routes a subset of them (39/102)
to Cortex-M3, leaving out IO devices such as certain GPIO
pins. These IO devices hence are unsupported by the ARK
prototype and are not tested in our evaluation.

Recommendation to SoC architects To make SoCs friendly
to a transkernel, architects may consider: i) routing all inter-
rupts to CPU and the peripheral core, ideally with the identical
interrupt line numbers; ii) making the peripheral core capable
of addressing the whole memory address space; iii) enlarging
the peripheral core’s LLC size modestly. We expect a careful
increase (e.g., to 64 KB or 128 KB) will significantly reduce
DRAM power at a moderate overhead in the core power.

Applicability to a pair of 64-bit/32-bit ISAs While today’s
smart devices often use ARMv7 CPUs, emerging ARM SoCs
start to combine 64-bit CPUs (ARMv8) with 32-bit peripheral
core (ARMv7m), as listed in Table 1. On one hand, transker-
nel’s idea of exploiting ISA similarity still applies, as exem-
plified by G2→H2 in Table 7; on the other hand, its DBT
overhead may increase significantly for the following rea-
sons. Compared to the 32-bit ISA, the 64-bit ISA has richer
instruction semantics, more general purpose registers, and
a much larger address space. As a result, ARK cannot pass
through 64-bit CPU registers but instead have to emulate them
in memory; ARK must translate the guest’s 64-bit memory
addresses to 32-bit addresses supported by the host (Table 7
G1→H1), e.g., by keeping consistent two sets of page tables,
for 64-bit and 32-bit virtual address spaces, respectively; with
large physical memory (>4GB), even this technique will not
work because the peripheral core’s page tables are incapable
of mapping the extra physical memory.

ARMv8 ARMv7m (by ARK, ideally)

G1:

ldrb w2, [x22, #1059]

ldrb w1, [x0, #160]

H1:
(emulate x22+#1059 in addr1)
ldrb r2, [addr1]
(emulate x0+#160 in addr2)
ldrb r1, [addr2]

G2: cmp w2, w1 H2: cmp r2, r1

G3: beq
mmc_select_bus_width+0x160

H3: beq
mmc_select_bus_width+0x160

Table 7: Ideal AARCH64 translation by ARK for
mmc_compare_ext_csds() in Linux v4.4. While identity map-
ping still exists (G2→H2), software emulation can diminish
ARK’s benefits (G1→H1).

8 Related Work

OS for heterogeneous cores A multikernel OS runs its ker-
nels on individual processors. A number of such OSes are
designed anew with a strong distributed system flavor. They
define explicit message interfaces among kernels [6, 88, 2];
some additionally exploit managed languages/compilers to
generate such interfaces [61]. Unlike them, transkernel targets
spanning an existing monolithic kernel and therefore adopts
DBT to address the resultant interface challenge.

OSes like Popcorn [5] and K2 [43] seek to present a sin-
gle Linux image over heterogeneous processors. For sharing
kernel state across ISAs, they rely on manual source tweaks
or hand-crafted communication. They face the interface diffi-
culty as described in §2.3.

Prior systems distribute OS functions over CPU and acceler-
ators [57, 77]. The accelerators cannot operate autonomously,
which is however required by device suspend/resume. Prior
systems offload apps from a smartphone (weak) to cloud
servers (strong) for efficiency [15, 14]. Unlike them, transker-
nel offloads kernel workloads from a strong processor to a
weak peripheral core on the same chip.

DBT DBT has been used for system emulation [7] and bi-
nary instrumentation [34, 27, 49, 21]; DeVuyst et al. [18] uses
DBT to speed up process migration. Related to transkernel,
prior systems run translated user programs atop an emulated
syscall interface [7, 29, 87]. Unlike them, transkernel trans-
lates kernel code and emulates a narrow interface inside the
kernel. Prior systems use DBT to run binaries in commod-
ity ISAs (e.g., x86) on specialized VLIW cores and hence
gain efficiency [9, 35, 73, 74]. None runs on microcontrollers
to our knowledge. transkernel demonstrates that DBT can
gain efficiency even on off-the-shelf cores. Existing DBT
engines leverage ISA similarities, e.g., between aarch32 and
aarch64 [17, 16]. They still fall into the classic DBT paradigm,
where the host ISA is brawny and the guest ISA is wimpy
(i.e., lower register pressure). With an inverse DBT paradigm,
ARK addresses very different challenges. Much work is done
on optimizing DBT translation rules, using optimizers [28, 3]
or machine learning[86]. Compared to them, ARK leverages
ISA similarities and hence reuses code optimization already

686 2019 USENIX Annual Technical Conference USENIX Association

in guest code by guest compilers.

Kernels and drivers The transkernel is inspired by the
POSIX emulator [30] however is different as it emulates ker-
nel ABIs. Prior kernel studies show rapid evolution of the
Linux kernel and the interfaces between kernel layers are
unstable [68, 67]. This observation motivates transkernel. Ex-
tensive work transplants device drivers to a separate core [23],
user space [22], or a separate VM [39]. However, the trans-
plant code cannot operate independent of the kernel, whereas
transkernel must execute autonomously.

Encapsulating the NetBSD kernel subsystems (e.g., drivers)
behind stable interfaces respected by developers, rump ker-
nel [33] seeks to enable their reuse in foreign environments,
e.g., hypervisors. The transkernel targets a different goal:
spanning a live Linux kernel instance over heterogeneous
processors. Applying Rump kernel’s approach to Linux is
difficult, as Linux intentionally rejects interface stability for
drivers [36].
Suspend/resume’s inefficiency raises attention for cloud
servers [53, 89] and mobile [38]. Drowsy [38] mitigates inef-
ficiency by reducing the devices involved in suspend/resume
through user/kernel co-design; Xi et al. propose to reorder de-
vices to resume [89]. While acknowledging the value of such
kernel optimizations, we believe ARK is a key complement
that works on unmodified binaries. ARK can co-exist with the
mentioned optimizations in the same kernel. PowerNap [53]
takes a hardware approach to speed up suspend/resume for
servers. It does not treat kernel execution for operating diverse
IO on embedded platforms. Kernels may put idle devices to
low power at runtime [90], complementary to suspend/resume
that ensures all devices are off.

9 Conclusions

We present transkernel, a new executor model for a peripheral
core to execute a commodity kernel’s phases, notably device
suspend/resume. The transkernel executes the kernel binary
through cross-ISA DBT. It translates stateful code while emu-
lating stateless services; it picks a stable ABI for emulation; it
specializes for hot paths; it exploits ISA similarities for DBT.
We experimentally demonstrate that the approach is feasible
and beneficial. The transkernel represents a new OS design
point for harnessing heterogeneous SoCs.

Acknowledgments

The authors were supported in part by NSF Award #1619075,
#1718702, and a Google Faculty Award. The authors thank the
paper shepherd, Prof. Timothy Roscoe, and the anonymous
reviewers for their insightful feedback. The authors thank
Prof. Lin Zhong for providing a JTAG debugger. The authors
are grateful to numerous video game emulators that inspired
this project.

References

[1] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl,
and R. Gupta. Somniloquy: Augmenting Network Inter-
faces to Reduce PC Energy Usage. In Proc. USENIX
Symp. Networked Systems Design and Implementation
(NSDI), 2009.

[2] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and
G. P. Fettweis. M3: A Hardware/Operating-
System Co-Design to Tame Heterogeneous Many-
cores. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2016.

[3] S. Bansal and A. Aiken. Binary translation us-
ing peephole superoptimizers. In Proc. USENIX
Conf. Operating Systems Design and Implementation
(OSDI), 2008.

[4] A. Barbalace, R. Lyerly, C. Jelesnianski, A. Carno,
H.-R. Chuang, V. Legout, and B. Ravindran. Break-
ing the boundaries in heterogeneous-ISA datacen-
ters. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2017.

[5] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski,
A. Ravichandran, C. Kendir, A. Murray, and B. Ravin-
dran. Popcorn: Bridging the Programmability Gap in
heterogeneous-ISA Platforms. In Proc. The European
Conf. Computer Systems (EuroSys), 2015.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: a new OS architecture
for scalable multicore systems. In Proc. ACM Symp.
Operating Systems Principles (SOSP), 2009.

[7] F. Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In Proc. USENIX Annual Technical Conference
(ATC), 2005.

[8] E. Blem, J. Menon, T. Vijayaraghavan, and K. Sankar-
alingam. ISA wars: Understanding the relevance of
ISA being RISC or CISC to performance, power, and
energy on modern architectures. ACM Transactions on
Computer Systems (TOCS), 33(1):3, 2015.

[9] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman.
Denver: Nvidia’s First 64-bit ARM Processor. IEEE
Micro, 35(2):46–55, 2015.

[10] S. Boyd-Wickizer and N. Zeldovich. Tolerating Ma-
licious Device Drivers in Linux. In Proc. USENIX
Annual Technical Conference (ATC), 2010.

USENIX Association 2019 USENIX Annual Technical Conference 687

[11] A. L. Brown and R. J. Wysocki. Suspend-to-RAM in
Linux. In Ottawa Linux Symposium, 2008.

[12] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta,
and R. Vannithamby. Smartphone Energy Drain in
the Wild: Analysis and Implications. In Proc. ACM
SIGMETRICS (SIGMETRICS), 2015.

[13] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta,
and R. Vannithamby. Smartphone Background Activ-
ities in the Wild: Origin, Energy Drain, and Optimiza-
tion. In Proc. Ann. Int. Conf. Mobile Computing &
Networking (MobiCom), 2015.

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic Execution Between Mobile Device
and Cloud. In Proc. The European Conf. Computer
Systems (EuroSys), 2011.

[15] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wol-
man, S. Saroiu, R. Chandra, and P. Bahl. MAUI: mak-
ing smartphones last longer with code offload. In
Proc. ACM Int. Conf. Mobile Systems, Applications,
& Services (MobiSys), 2010.

[16] A. d’Antras, C. Gorgovan, J. Garside, J. Goodacre,
and M. Luján. HyperMAMBO-X64: Using Virtual-
ization to Support High-Performance Transparent Bi-
nary Translation. In Proc. Int. Conf. Virtual Execution
Environments (VEE), 2017.

[17] A. d’Antras, C. Gorgovan, J. Garside, and M. Luján.
Low Overhead Dynamic Binary Translation on ARM.
In Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2017.

[18] M. DeVuyst, A. Venkat, and D. M. Tullsen. Execu-
tion migration in a heterogeneous-ISA chip multiproces-
sor. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2012.

[19] eLinux.org. PandaBoard Power Measurements. http:
//elinux.org/PandaBoard_Power_Measurements.

[20] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exoker-
nel: An Operating System Architecture for Application-
level Resource Management. In Proc. ACM Symp.
Operating Systems Principles (SOSP), 1995.

[21] P. Feiner, A. D. Brown, and A. Goel. Comprehensive ker-
nel instrumentation via dynamic binary translation. In
ACM SIGARCH Computer Architecture News, 2012.

[22] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan,
M. M. Swift, and S. Jha. The Design and Imple-
mentation of Microdrivers. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2008.

[23] B. Gerofi, A. Santogidis, D. Martinet, and Y. Ishikawa.
PicoDriver: Fast-path Device Drivers for Multi-kernel
Operating Systems. In Proc. Int. Symp. on
High-Performance Parallel and Distributed Computing
(HPDC), 2018.

[24] P. Greenhalgh. Big.LITTLE processing with ARM
Cortex-A15 and Cortex-A7. Technical report, 2011.

[25] M. Hähnel and H. Härtig. Heterogeneity by the
numbers: A study of the ODROID XU+E big.little
platform. In Y. Agarwal and K. Rajamani, editors,
Proc. Workshp. Power-Aware Computing and Systems
(HotPower), 2014.

[26] U. Hansson. SDIO power on/off time impacts system
suspend/resume time! http://connect.linaro.org/
resource/sfo17/sfo17-402/, 2017.

[27] B. Hawkins, B. Demsky, D. Bruening, and Q. Zhao. Op-
timizing Binary Translation of Dynamically Generated
Code. In Proc. Int. Symp. on Code Generation and
Optimization (CGO), 2015.

[28] D. Hong, C. Hsu, P. Yew, J. Wu, W. Hsu, P. Liu, C. Wang,
and Y. Chung. HQEMU: a multi-threaded and retar-
getable dynamic binary translator on multicores. In
Proc. Int. Symp. on Code Generation and Optimization
(CGO), 2012.

[29] R. J. Hookway and M. A. Herdeg. Digital FX! 32:
Combining emulation and binary translation. Digital
Technical Journal, 9:3–12, 1997.

[30] J. Howell, B. Parno, and J. R. Douceur. How to Run
POSIX Apps in a Minimal Picoprocess. In Proc.
USENIX Annual Technical Conference (ATC), 2013.

[31] Intel. Intel SuspendResume Project. https://01.org/
suspendresume, 2015.

[32] A. Kadav and M. M. Swift. Understanding Modern De-
vice Drivers. In Proc. ACM Int. Conf. Architectural
Support for Programming Languages & Operating
Systems (ASPLOS), 2012.

[33] A. Kantee and J. Cormack. Rump Kernels No OS? No
Problem! Login: USENIX Magazine, 39(5), 2014.

[34] P. Kedia and S. Bansal. Fast Dynamic Binary Trans-
lation for the Kernel. In Proc. ACM Symp. Operating
Systems Principles (SOSP), 2013.

[35] A. Klaiber. The technology behind Crusoe processors.
Transmeta Technical Brief, 2000.

[36] G. Kroah-Hartman. The Linux Kernel
Driver Interface – Stable API Nonsense.
https://www.kernel.org/doc/Documentation/

688 2019 USENIX Annual Technical Conference USENIX Association

http://elinux.org/PandaBoard_Power_Measurements
http://elinux.org/PandaBoard_Power_Measurements
http://connect.linaro.org/resource/sfo17/sfo17-402/
http://connect.linaro.org/resource/sfo17/sfo17-402/
https://01.org/suspendresume
https://01.org/suspendresume
https://www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst

process/stable-api-nonsense.rst. (Accessed on
05/04/2019).

[37] M. Larabel. A Stable Linux Kernel API/ABI?
"The Most Insane Proposal" For Linux Develop-
ment. https://www.phoronix.com/scan.php?page=
news_item&px=Linux-Kernel-Stable-API-ABI,
2016.

[38] M. Lentz, J. Litton, and B. Bhattacharjee. Drowsy Power
Management. In Proc. ACM Symp. Operating Systems
Principles (SOSP), 2015.

[39] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmod-
ified Device Driver Reuse and Improved System De-
pendability via Virtual Machines. In Proc. USENIX
Conf. Operating Systems Design and Implementation
(OSDI), 2004.

[40] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy,
and S. Hahn. Operating system support for overlapping-
ISA heterogeneous multi-core architectures. In Proc.
IEEE Int. Symp. on High Performance Computer
Architecture (HPCA), 2010.

[41] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos. Lock-
in-Pop: securing privileged operating system kernels by
keeping on the beaten path. In Proc. USENIX Annual
Technical Conference (ATC), 2017.

[42] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong.
Reflex: using low-power processors in smartphones
without knowing them. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2012.

[43] F. X. Lin, Z. Wang, and L. Zhong. K2: A mo-
bile operating system for heterogeneous coherence do-
mains. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2014.

[44] R. Liu and F. X. Lin. Understanding the Characteristics
of Android Wear OS. In Proc. ACM Int. Conf. Mobile
Systems, Applications, & Services (MobiSys), 2016.

[45] X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang,
and K. Chen. Characterizing Smartwatch Usage in the
Wild. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and
Services, 2017.

[46] LKML. [GIT PULL] PM updates for 2.6.33, 2009.

[47] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M.
Teo. A Performance Study of Big Data on Small Nodes.
Proc. VLDB Endow., 8(7):762–773, 2015.

[48] G. Lu, J. Zhan, X. Lin, C. Tan, and L. Wang. On Hori-
zontal Decomposition of the Operating System. CoRR,
abs/1604.01378, 2016.

[49] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Proc. ACM
SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), 2005.

[50] LWN. Redesigning asynchronous suspend/resume.
https://lwn.net/Articles/366915/, 2009.

[51] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. In Proc. ACM Int. Conf. Architectural
Support for Programming Languages & Operating
Systems (ASPLOS), 2013.

[52] MediaTek. Microsoft Azure Sphere MCU with ex-
tensive I/O peripheral subsystem for diverse IoT ap-
plications. https://www.mediatek.com/products/
azureSphere/mt3620, 2018.

[53] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap:
Eliminating Server Idle Power. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2009.

[54] D. Meisner and T. F. Wenisch. DreamWeaver: architec-
tural support for deep sleep. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2012.

[55] Micron Technology, Inc. TN4201 LPDDR2 Sys-
tem Power Calculator. https://www.micron.com/
support/tools-and-utilities/power-calc,
2013.

[56] Mike Turquette. The Common Clk Framework. https:
//www.kernel.org/doc/Documentation/clk.txt.

[57] C. Min, W. Kang, M. Kumar, S. Kashyap, S. Maass,
H. Jo, and T. Kim. Solros: a data-centric operating sys-
tem architecture for heterogeneous computing. In Proc.
The European Conf. Computer Systems (EuroSys),
2018.

[58] J. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan,
and V. Talwar. Using Asymmetric Single-ISA CMPs
to Save Energy on Operating Systems. IEEE Micro,
28(3):26–41, 2008.

[59] J. Morrison, D. Yang, and C. Davis. Apple watch:
teardown. https://www.techinsights.com/about-
techinsights/overview/blog/apple-watch-
teardown/. (Accessed on 01/10/2019).

USENIX Association 2019 USENIX Annual Technical Conference 689

https://www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Stable-API-ABI
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Stable-API-ABI
https://lwn.net/Articles/366915/
https://www.mediatek.com/products/azureSphere/mt3620
https://www.mediatek.com/products/azureSphere/mt3620
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.kernel.org/doc/Documentation/clk.txt
https://www.kernel.org/doc/Documentation/clk.txt
https://www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/
https://www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/
https://www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/

[60] N. Nethercote and J. Seward. Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumenta-
tion. In Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2007.

[61] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: heterogeneous multiprocessing
with satellite kernels. In Proc. ACM Symp. Operating
Systems Principles (SOSP), 2009.

[62] NXP Semiconductors. i.MX 6SoloX - fact
sheet. https://www.nxp.com/docs/en/fact-sheet/
IMX6SOLOXFS.pdf. (Accessed on 05/14/2019).

[63] NXP Semiconductors. i.MX 8M Family of Applica-
tions Processors Fact Sheet. https://www.nxp.com/
docs/en/fact-sheet/i.MX8M-FS.pdf. (Accessed on
05/14/2019).

[64] NXP Semiconductors. i.MX 7DS power consump-
tion measurement. https://www.nxp.com/docs/en/
application-note/AN5383.pdf, 2016.

[65] NXP Semiconductors. i.MX 7 Series Applications
Processors | Arm® Cortex®-A7, Cortex-M4 | NXP.
https://www.nxp.com/products/processors-and-
microcontrollers/arm-based-processors-and-
mcus/i.mx-applications-processors/i.mx-7-
processors:IMX7-SERIES, 2017. (Accessed on
05/14/2019).

[66] H. Oi. A Case Study of Energy Efficiency on a Het-
erogeneous Multi-Processor. SIGMETRICS Perform.
Eval. Rev., 45(2):70–72, 2017.

[67] Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
Linux device drivers. In J. S. Sventek and S. Hand,
editors, Proc. The European Conf. Computer Systems
(EuroSys), 2008.

[68] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding
collateral evolution in Linux device drivers. In ACM
SIGOPS Operating Systems Review, 2006.

[69] N. Peters, S. Park, S. Chakraborty, B. Meurer, H. Payer,
and D. Clifford. Web browser workload character-
ization for power management on HMP platforms.
In Proc. IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis
(CODES), 2016.

[70] A. Ponomarenko. ABI Compliance Checker. https://
lvc.github.io/abi-compliance-checker/, 2018.

[71] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the Library OS from the Top
Down. In Proc. ACM Int. Conf. Architectural Support

for Programming Languages & Operating Systems
(ASPLOS), 2011.

[72] A. Reid. Trustworthy Specifications of ARM v8-A
and v8-M System Level Architecture. In Proc. Formal
Methods in Computer-Aided Design (FMCAD), 2016.

[73] S. Rokicki, E. Rohou, and S. Derrien. Hardware-
accelerated dynamic binary translation. In Proc.
ACM/IEEE Design Automation & Test in Europe Conf.
(DATE), 2017.

[74] S. Rokicki, E. Rohou, and S. Derrien. Supporting
runtime reconfigurable VLIWs cores through dynamic
binary translation. In 2018 Design, Automation &
Test in Europe Conference & Exhibition, DATE 2018,
Dresden, Germany, March 19-23, 2018, 2018.

[75] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A
Disseminated, Distributed OS for Hardware Resource
Disaggregation. In Proc. USENIX Conf. Operating
Systems Design and Implementation (OSDI), 2018.

[76] H. Shen, A. Balasubramanian, A. LaMarca, and
D. Wetherall. Enhancing Mobile Apps to Use Sensor
Hubs Without Programmer Effort. In Proc. Int. Conf.
Ubiquitous Computing (UbiComp), 2015.

[77] M. Silberstein, B. Ford, I. Keidar, and E. Witchel.
GPUfs: Integrating a File System with GPUs.
In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2013.

[78] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins.
Turducken: hierarchical power management for mobile
devices. In Proc. ACM Int. Conf. Mobile Systems,
Applications, & Services (MobiSys), 2005.

[79] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering Device Drivers. In Proc. USENIX
Conf. Operating Systems Design and Implementation
(OSDI), 2004.

[80] M. M. Swift, B. N. Bershad, and H. M. Levy. Improv-
ing the Reliability of Commodity Operating Systems.
In Proc. ACM Symp. Operating Systems Principles
(SOSP), 2003.

[81] Texas Instruments. AM5728 Sitara Processor: Dual
Arm Cortex-A15 & Dual DSP, Multimedia | TI.com.
http://www.ti.com/product/AM5728. (Accessed on
05/14/2019).

[82] Texas Instruments. Cortex-M3: Proces-
sor technical reference manual. http:
//infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0337h/index.html. (Accessed on
05/07/2019).

690 2019 USENIX Annual Technical Conference USENIX Association

https://www.nxp.com/docs/en/fact-sheet/IMX6SOLOXFS.pdf
https://www.nxp.com/docs/en/fact-sheet/IMX6SOLOXFS.pdf
https://www.nxp.com/docs/en/fact-sheet/i.MX8M-FS.pdf
https://www.nxp.com/docs/en/fact-sheet/i.MX8M-FS.pdf
https://www.nxp.com/docs/en/application-note/AN5383.pdf
https://www.nxp.com/docs/en/application-note/AN5383.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://lvc.github.io/abi-compliance-checker/
https://lvc.github.io/abi-compliance-checker/
http://www.ti.com/product/AM5728
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html

[83] Texas Instruments. OMAP4 Applications Processor:
Technical Reference Manual. http://www.ti.com/
lit/ug/swpu235ab/swpu235ab.pdf, 2010. (Ac-
cessed on 05/14/2019).

[84] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chan-
dra, S. Sinha, A. Kapoor, M. Sudarshan, and S. Strat-
man. FarmBeats: An IoT Platform for Data-Driven Agri-
culture. In Proc. USENIX Symp. Networked Systems
Design and Implementation (NSDI), 2017.

[85] VMWARE. Virtual Machine to Physical Machine
Migration. https://www.vmware.com/support/v2p/
doc/V2P_TechNote.pdf, 2004.

[86] W. Wang, S. McCamant, A. Zhai, and P.-C. Yew.
Enhancing Cross-ISA DBT Through Automatically
Learned Translation Rules. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2018.

[87] W. Wang, P.-C. Yew, A. Zhai, S. McCamant, Y. Wu, and
J. Bobba. Enabling Cross-ISA Offloading for COTS
Binaries. In Proc. ACM Int. Conf. Mobile Systems,
Applications, & Services (MobiSys), 2017.

[88] D. Wentzlaff and A. Agarwal. Factored operating sys-
tems (fos): the case for a scalable operating system

for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85,
2009.

[89] S. L. Xi, M. Guevara, J. Nelson, P. Pensabene, and B. C.
Lee. Understanding the Critical Path in Power State
Transition Latencies. In Proc. ACM/IEEE Int. Symp.
Low Power Electronics & Design (ISLPED), 2013.

[90] C. Xu, F. X. Lin, Y. Wang, and L. Zhong. Au-
tomated OS-level Device Power Management for
SoCs. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), 2015.

[91] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin,
Y. Zhang, and Q. Li. Optimizing Background Email
Sync on Smartphones. In Proc. ACM Int. Conf. Mobile
Systems, Applications, & Services (MobiSys), 2013.

[92] S. Zhai, L. Guo, X. Li, and F. X. Lin. Decelerating Sus-
pend and Resume in Operating Systems. In Proc. ACM
Workshp. Mobile Computing Systems & Applications
(HotMobile), 2017.

[93] Q. Zhu, M. Zhu, B. Wu, X. Shen, K. Shen, and Z. Wang.
Software Engagement with Sleeping CPUs. In Proc.
Workshp. Hot Topics in Operating Systems (HotOS),

2015.

USENIX Association 2019 USENIX Annual Technical Conference 691

http://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf
http://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf
https://www.vmware.com/support/v2p/doc/V2P_TechNote.pdf
https://www.vmware.com/support/v2p/doc/V2P_TechNote.pdf

	Introduction
	Motivations
	Kernel in device suspend/resume
	A peripheral core in a heterogeneous SoC
	OS design space exploration
	Design objective

	The Transkernel Model
	ARK: An ARM Transkernel
	A Scheduler of DBT Contexts
	Interrupt and Exception Handling
	Deferred Work
	Locking
	Memory Allocation
	Delays & Timekeeping

	The Cross-ISA DBT Engine
	Exploiting Similar Instruction Semantics
	Passthrough of CPU registers
	Control Transfer and Stack Manipulation

	Translated -3mu Native Fallback
	Evaluation
	Methodology
	Analysis of engineering efforts
	Measured execution characteristics
	Energy benefits
	Discussions

	Related Work
	Conclusions

