
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Multi-Queue Fair Queuing
Mohammad Hedayati, University of Rochester; Kai Shen, Google;

Michael L. Scott, University of Rochester; Mike Marty, Google

https://www.usenix.org/conference/atc19/presentation/hedayati-queue

Multi-Queue Fair Queueing

Mohammad Hedayati
University of Rochester

Kai Shen
Google

Michael L. Scott
University of Rochester

Mike Marty
Google

Abstract
Modern high-speed devices (e.g., network adapters, storage,
accelerators) use new host interfaces, which expose multiple
software queues directly to the device. These multi-queue in-
terfaces allow mutually distrusting applications to access the
device without any cross-core interaction, enabling through-
put in the order of millions of IOP/s on multicore systems.
Unfortunately, while independent device access is scalable,
it also introduces a new problem: unfairness. Mechanisms
that were used to provide fairness for older devices are no
longer tenable in the wake of multi-queue design, and straight-
forward attempts to re-introduce it would require cross-core
synchronization that undermines the scalability for which
multiple queues were designed.

To address these challenges, we present Multi-Queue Fair
Queueing (MQFQ), the first fair, work-conserving scheduler
suitable for multi-queue systems. Specifically, we (1) reformu-
late a classical fair queueing algorithm to accommodate multi-
queue designs, and (2) describe a scalable implementation
that bounds potential unfairness while minimizing synchro-
nization overhead. Our implementation of MQFQ in Linux
4.15 demonstrates both fairness and high throughput. Evalua-
tion with an NVMe over RDMA fabric (NVMf) device shows
that MQFQ can reach up to 3.1 Million IOP/s on a single
machine—20× higher than the state-of-the-art Linux Bud-
get Fair Queueing. Compared to a system with no fairness,
MQFQ reduces the slowdown caused by an antagonist from
3.78× to 1.33× for the FlashX workload and from 6.57× to
1.03× for the Aerospike workload (2× is considered “fair”
slowdown).

1 Introduction
Recent years have seen the proliferation of very fast devices
for I/O, networking, and computing acceleration. Commod-
ity solid-state disks (e.g., Intel Optane DC P4800X [22] or
Samsung PM1725a [38]) can perform at or near a million
I/O operations per second. System-area networks (e.g., In-
finiBand) can sustain several million remote operations per
second over a single link [25]. RDMA delivers data across fab-

ric within a few microseconds. GPUs and machine learning
accelerators may offload computations that run just a few mi-
croseconds at a time [30]. At the same time, the proliferation
of multicore processors has necessitated architectures tuned
for independent I/O across multiple hardware threads [4, 36].

These technological changes have shifted performance bot-
tlenecks from hardware resources to the software stacks that
manage them. In response, it is now common to adopt a multi-
queue architecture in which each hardware thread owns a
dedicated I/O queue, directly exposed to the device, giving
it an independent path over which to send and receive re-
quests. Examples of this architecture include multi-queue
SSDs [22, 38, 50] and NICs [42], and software like the
Windows and Linux NVMe drivers, the Linux multi-queue
block layer [5], SCSI multi-queue support [8], and data-plane
OSes [4, 36]. A recent study [51] demonstrated up to 8×
performance improvement for YCSB-on-Cassandra, using
multi-queue NVMe instead of single-queue SATA.

To support the full bandwidth of modern devices, multi-
queue I/O systems are designed to incur no cache-coherence
traffic in the common case when sending and receiving re-
quests. It’s easy to see why: a device supporting millions of
IOP/s sees each new request in a fraction of a microsecond—a
time interval that allows for fewer than 10 cross-core cache
coherence misses, and is comparable to the latency of a single
inter-processor interrupt (IPI). Serializing requests at such
high speeds is infeasible now, and will only become more
so as device speeds continue to increase while single-core
performance stays relatively flat. As a result, designers have
concluded that conventional fair-share I/O schedulers, includ-
ing fair queueing approaches [35, 40], which reorder requests
in a single queue, are unsuited for modern fast devices.

Unfortunately, by cutting out the OS resource scheduler,
direct multi-queue device access undermines the OS’s tradi-
tional responsibility for fairness and performance isolation.
While I/O devices (e.g., SSD firmware, NICs) may multiplex
hardware queues, their support for fairness is hampered by
their inability to reason in terms of system-level policies for
resource principals (applications, virtual machines, or Linux

USENIX Association 2019 USENIX Annual Technical Conference 301

cgroups), or to manage an arbitrary number of flows. As a
result, device-level scheduling tends to cycle naively among
I/O queues in a round robin fashion [44]. Given such simple
scheduling, a greedy application or virtual machine may gain
unfair advantage by issuing I/O operations from many CPUs
(so it can obtain resource shares from many queues). It may
also gain advantage by “batching” its work into larger requests
(so more of its work gets done in each round-robin turn). Even
worse, a malicious application may launch a denial-of-service
attack by submitting a large number of artificially created ex-
pensive requests (e.g., very large SSD writes) through many
or all command queues.

As a separate issue, it is common for modern SSDs [9, 44]
and accelerators [20, 32] to support parallel requests internally.
Traditional resource scheduling algorithms, which assume
underlying serial operation, are unsuitable for devices with a
high degree of internal parallelism.

To overcome these problems, we present Multi-Queue Fair
Queueing (MQFQ)—the first fair scheduler, to the best of our
knowledge, capable of accommodating multi-queue devices
with internal parallelism in a scalable fashion. As in classical
fair queueing [13, 34], we ensure that each flow (e.g., an ap-
plication, virtual machine, or Linux cgroup) receives its share
of bandwidth. While classical fair queueing employs a single
serializing request queue, we adapt the fair queueing prin-
ciple to multi-queue systems, by efficiently tracking global
resource utilization and arranging to throttle any queue that
has exceeded its share by some bounded amount.

Accordingly, we introduce a throttling threshold T such
that each core can dispatch, without coordinating with other
cores, as long as the lead request in its queue is within T
of the utilization of the slowest active queue, system-wide.
This threshold creates a window within which request dis-
patches can commute [10], enabling scalable dispatch. We
show mathematically that this relaxation has a bounded im-
pact on fairness. When T = 0, the guarantees match those of
classical fair queueing.

The principal obstacle to scalability in MQFQ is the need
for cross-queue synchronization to track global resource uti-
lization.We demonstrate that it is possible, by choosing ap-
propriate data structures, to sustain millions of IOP/s while
guaranteeing fairness. The key to our design is to localize syn-
chronization (intra-core rather than inter-core; intra-socket
rather than inter-socket) as much as possible. An instance
of the mindicator of Liu et al. [29] allows us to track flows’
shares without a global cache miss on every I/O request. A
novel data structure we call the token tree allows us to track
available internal device parallelism: an I/O completion frees
up a slot that is preferentially reused by the local queue if
possible; otherwise, our token tree allows fast reallocation
to a nearby queue. Finally, a nonblocking variant of a timer
wheel [43, 47] keeps track of queues whose head requests
are too far ahead of the shares of their contributing flows:
when resource utilization has advanced sufficiently, update

of a single index suffices to turn the wheel and unblock the
appropriate flows. MQFQ demonstrates that while scalable
multi-queue I/O precludes serialization, it can tolerate infre-
quent, physically localized synchronization, allowing us to
achieve both fairness and high performance.

Summarizing contributions:
• We present Multi-Queue Fair Queueing—to the best

of our knowledge, the first scalable, fair scheduler for
multi-queue devices.
• We demonstrate mathematically that adapting the fair

queueing principle to multi-queue devices results in a
bounded impact on fairness.
• We introduce the token tree, a novel data structure that

tracks available dispatch slots in a multi-queue device
with internal parallelism.
• We present a scalable implementation of MQFQ. Our

implementation uses the token tree along with two other
scalable data structures to localize synchronization as
much as possible.

2 Background and Design
Fair queueing [13, 34] is a class of algorithms to schedule a
network, processing, or I/O resource among competing flows.
Each flow comprises a sequence of requests or packets ar-
riving at the device. Each request has an associated cost,
which reflects its resource usage (e.g., service time or band-
width). Fair queueing then allocates resources in proportion
to weights assigned to the competing flows.

A flow is said to be active if it has any requests in the system
(either waiting to be dispatched to the device, or waiting to
be completed in the device), and backlogged if it is active
and has at least one outstanding request to be dispatched.
Fair queueing algorithms are work-conserving: they schedule
requests to consume surplus resources in proportion to the
weights of the active flows. A flow whose requests arrive
too slowly may become inactive and forfeit the unconsumed
portion of its share.

Start-time Fair Queueing (SFQ) [18, 19] assigns a start
and finish tag to each request when it arrives, and dispatches
requests in increasing order of start tags; ties are broken ar-
bitrarily. The tag values represent the point in the history of
resource usage at which each request should start and com-
plete according to a system notion of virtual “time.” Virtual
time always advances monotonically and is identical to real
time if: (1) all flows are backlogged, (2) the device (server)
completes work at a fixed ideal rate, (3) request costs are an
accurate measure of service time, and (4) the weights sum to
the service capacity. The start tag for a request is set to be the
maximum of the virtual time at arrival and the last finish tag
of the flow. The finish tag for a request is its start tag plus its
cost, normalized to the weight of the flow.

When the server is busy, virtual time is defined to be equal
to the start tag of the request in service, and when it is idle,
maximum finish tag of any request that has been serviced by

302 2019 USENIX Annual Technical Conference USENIX Association

(a) (b) (c)

Figure 1: MQFQ (b) employs a set of per-CPU priority queues,
rather than (a) a single central queue or (c) fully independent access.
Queues coordinate through scalable data structures (suggested by
the dotted line; described in Sec. 3) to maintain fairness.

that time. Note that this definition assumes at most a single
request can be in service at any moment.

Parallel Dispatch A server with internal parallelism may
service multiple requests simultaneously, so virtual time as
defined in SFQ is not well-defined in this setting. Moreover,
even an active flow may lag behind in resource utilization if
it generates an insufficient number of concurrent requests to
consume its assigned share.

SFQ(D) [23] works the same as SFQ but allows up to D in-
service requests (D = 1 reduces to SFQ). Due to out-of-order
completion, for the busy server case, virtual time is redefined
to be the start tag of the last dispatched request. Note that
this definition requires requests to be dispatched in increasing
order of start tags, which precludes scalable implementation
on multi-queue systems.

2.1 Multi-Queue Fair Queueing
The main obstacle in adapting fair queueing—or most other
scheduling algorithms, for that matter—to a multi-queue I/O
architecture is the need to dispatch requests in an order en-
forced by a central priority queue. Additional challenges in-
clude the need to dispatch multiple requests concurrently (to
saturate an internally parallel device) and the inability to sim-
ply advance virtual “time” on dispatch or completion events,
since these may occur out of order.

In MQFQ, we replace the traditional central priority queue
(Fig. 1(a)) with a set of per-CPU priority queues (Fig. 1(b)),
each of which serves to order local requests. To limit imbal-
ance across queues, we suspend (throttle) any queue whose
lead request is ahead of the slowest backlogged flow in the
system (the one that determines the virtual time) by more than
some predefined threshold T , allowing other queues to catch
up. Setting T = 0, while limits scalability in practice, would
effectively restore the semantics of a global priority queue.
Setting T > 0 leads to relaxed semantics but lower synchro-
nization overhead by utilizing the Scalable Commutativity
Rule [10] to allow requests dispatches to be reordered, i.e., to
commute. Specifically, it allows for windows of conflict free
operations (i.e., no core writes a cache line that was read or
written by another core) enabling scalable implementation.
While short-term fluctuations of as much as T in the relative
progress of flows is possible, it still preserves long-term shares.

By adjusting T appropriately, we can find a design point that
provides most of the fairness of traditional fair queueing with
most of the performance of fully independent queues.

For an internally parallel device, in order to keep the device
busy, we will often need to dispatch a new request before the
previous one has finished. At the same time, since the device
decides the order in which dispatched requests are served,
we must generally avoid dispatching more requests than can
actually be handled in parallel, thereby preserving our ability
to order them. We therefore introduce a second parameter,
D, which represents the maximum number of outstanding
dispatched requests across all queues.

Recall that a backlogged flow is one that has requests ready
to be dispatched, and an active flow is one that is either back-
logged or has requests pending in the device. For any de-
vice that supports D≥ 2 concurrent requests, the distinction
between backlogged and active is quite important: it is no
longer the case that an active flow is using at least its fair share
(i.e., the flow could be non-saturating). In a traditional fair
queueing system, an active flow determines the progression
of virtual time. With a parallel device, this convention would
allow a non-saturating active flow to keep idle resources from
being allotted to other flows, leading to underutilization. To
fix this, a scheduler aware of internal parallelism needs to use
backlogged (instead of active) flows to determine virtual time.
We therefore define virtual time (and thus the start tag of a
newly arriving request on a previously non-backlogged flow)
to be the minimum start tag of all requests across all queues.
In a multi-queue system, computing this global minimum
without frequent cache misses is challenging. In Sec. 3.1 we
show how we localize the misses using a mindicator [29].

The lack of a central priority queue, and our use of the throt-
tling threshold T, raises the possibility not only that requests
will complete out of order, but that they may be dispatched
out of order.

We now define our notion of per-flow virtual time, in a
way that accommodates the internal parallelism of the device
while retaining the essential property that a lagging flow (i.e.,
a flow that is not backlogged) can never accumulate resources
for future use. Recall that queues hold requests that have been
submitted but not yet dispatched to the device. The flows that
submitted these requests are backlogged by definition. For
each such flow f , its virtual time is defined to be the start tag
of f ’s first (oldest) backlogged (waiting to be dispatched) re-
quest. (Note that f may have backlogged requests in multiple
queues.) Assuming f has multiple pending requests, dispatch-
ing this first request would increase f ’s virtual time by l/r,
where r is f ’s weight (its allotted share of the device) and l is
the length (size) of the request. (For certain devices we may
also scale the “size” in accordance with operation type—e.g.,
to reflect the fact that writes are more expensive than reads
on an SSD.)

We define global virtual time to be the minimum of per-flow
virtual times across all backlogged flows. This is the same

USENIX Association 2019 USENIX Annual Technical Conference 303

as the minimum of the start tags of the lead requests across
all queues, since requests in each queue are sorted by start
tags. This equivalence allows us to ignore the maintenance
of per-flow virtual times; instead, we directly maintain the
global virtual time (hereafter, simply "virtual time") as the
minimum start tag of the lead requests across all queues.

As soon as a flow becomes lagging, it stops contributing to
the virtual time, which may advance irrespective of a lack of
activity in the lagging flow. Request start tags from a lagging
flow are still subject to the lower bound of current virtual
time. MQFQ then ensures that no request is dispatched if its
start tag exceeds the virtual time by more than T. To throttle
a flow f that has advanced too far, it suffices to throttle any
queues headed by f ’s requests: since requests in each queue
are sorted by start tags, all other requests in such a queue are
also guaranteed to be more than T ahead of virtual time.

High-level pseudocode for MQFQ appears in Fig. 2.

2.2 Fairness Analysis
If flows have equal weight, allocation of the device is fair if
equal bandwidth is allocated to each (backlogged) flow in
every time interval. With unequal weights, each backlogged
flow should receive bandwidth proportional to its weight.

If we represent the weight of flow f as r f and the service
(in bytes) that it receives in the interval [t1, t2] as Wf (t1, t2),
then an allocation is fair if for every time interval [t1, t2], for
every two backlogged flows f and m, we have:

Wf (t1, t2)
r f

−Wm(t1, t2)
rm

= 0

Clearly, this is possible only if the flows can be broken into
infinitesimal units. For a packet- or block-based resource we
want ∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣≤ H(f ,m)

to be as close to 0 as possible. H(f ,m) is a function of the
maximum request lengths, lmax

f and lmax
m , of flows f and m.

Golestani [17] derives a lower bound on the fairness of any
scheduler with single dispatch:

H(f ,m)≥ 1
2

(lmax
f

r f
+

lmax
m

rm

)
We similarly derive bounds on the fairness achieved by

MQFQ. Our analysis builds on the fairness bounds for Start-
time Fair Queueing (SFQ) [18] and SFQ(D) [23]. Goyal et
al. [18] have previously shown in SFQ that in any interval for
which flows f and m are backlogged during the entire interval,
the difference of weighted services received by two flows at
an SFQ server, given as:∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣≤ lmax
f

r f
+

lmax
m

rm

is twice the lower bound. SFQ uses a single priority queue
and serves one request at a time. Now consider an otherwise

global structures:
VT mindicator
wheel of throttled queues
token tree of available slots
set of ready queues (nonempty, unthrottled)

per-flow structures:
end tag of last submitted request

per-CPU structures:
local queue of not-yet-dispatched requests

on submission of request R:
set R’s start tag = MAX(VT, per-flow end tag)
set R’s end tag =

R’s start tag + R’s service time
update per-flow end tag
insert R in local queue
if R goes at the head

update VT
dispatch()

dispatch():
if local queue is in throttling wheel

remove it from wheel
if local queue is in ready queues

remove it from ready queues
if local queue is empty

return
for lead request R from local queue

if R’s start tag is more than T ahead of VT
add local queue to throttling wheel
return

attempt to obtain slot from token tree
if unsuccessful

add local queue to set of ready queues
return

remove R from local queue
deliver R to device
update VT
if VT has advanced a bucket’s worth

turn the throttling wheel
unblock any no-longer-throttled queues

for which slots are readily available
add the rest to the set of ready queues

on unblock:
dispatch()

on request completion:
choose nearest Q in ready queues (could be self)
return slot to token tree w.r.t. Q
unblock Q

Figure 2: High-level pseudocode for the MQFQ algorithm. Logic to
mitigate races has been elided, as have certain optimizations (e.g.,
to avoid pairs of data structure changes that cancel one another out).

unchanged variant of SFQ in which the single priority queue
is replaced by multiple priority queues with throttled dispatch.
We service one request at a time, which can come from any
of the queues so long as its start tag is less than or equal to
the global minimum + T. We call this variant Multi-Queue
Fair Queueing with single dispatch—MQFQ(1).

Theorem 1 For any interval in which flows f and m are back-
logged during the entire interval, the difference in weighted
services received by two flows at an MQFQ(1) server with
throttling threshold T is:∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣≤ 2T +
lmax

f

r f
+

lmax
m

rm

304 2019 USENIX Annual Technical Conference USENIX Association

We sketch a proof of Theorem 1 as follows.

Lemma 1 (Lower bound of service received by a flow): If
flow f is backlogged throughout the interval [t1, t2], then in
an MQFQ(1) server with throttling threshold T :

Wf (t1, t2)≥ r f · (v2−T − v1)− lmax
f

where v1 is virtual time at t1 and v2 is virtual time at t2.

Lemma 1 is true since at t2 any backlogged flow has dis-
patched all requests whose start tag ≤ v2−T . Only the last
request may be outstanding at t2—i.e., all but the last request
must have completed. Since the last request’s size is at most
lmax

f , the finish tag of the last completed request must be at
least v2−T − lmax

f /r f . Therefore if we just count the com-
pleted requests in [t1, t2], the minimum service received by
backlogged flow f is at least r f · (v2−T − v1)− lmax

f .

Lemma 2 (Upper bound of received service by a flow): If
flow f is backlogged throughout the internal [t1, t2], then in
an MQFQ(1) system with throttling threshold T :

Wf (t1, t2)≤ r f · (v2 +T − v1)+ lmax
f

Lemma 2 is true since at t2 flow f may have, at most, dis-
patched all requests with start tag ≤ v2 +T. In the maximum
case, the last completed request’s finish tag will be no more
than v2 + T . In addition, one more request of size at most
lmax

f may be outstanding and, in the maximum case, almost
entirely serviced. Counting the completed requests and the
outstanding request, the maximum service received by flow f
is at most r f · (v2 +T − v1)+ lmax

f .
Unfairness is maximized when one flow receives its upper

bound of service while another flow receives its lower bound.
Therefore, unfairness in MQFQ(1) with throttling threshold
T is bounded by∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣≤ 2T +
lmax

f

r f
+

lmax
m

rm

This completes the proof of Theorem 1.
Note that when T = 0, MQFQ(1) provides the same fairness

bound as SFQ. Therefore T represents a tradeoff between
fairness and scalability in a multi-queue system.

If we allow D > 1 parallel dispatches in an MQFQ(D)
server, the fairness bound changes as follows:

Theorem 2 In any interval for which flows f and m are back-
logged during the entire interval, the difference of weighted
services received by the two flows at an MQFQ(D) server
with throttling threshold T is given as:∣∣∣∣Wf (t1, t2)

r f
−Wm(t1, t2)

rm

∣∣∣∣ ≤ (D+1)
(

2T +
lmax

f

r f
+

lmax
m

rm

)
This is true based on a combination of Theorem 1 and

the proved fairness bound for SFQ(D) [23]. We omit the de-
tailed proof. When the throttling threshold T = 0, MQFQ(D)
provides the same fairness bound as SFQ(D).

3 Scalability
MQFQ employs a separate priority queue for every CPU
(hardware thread), to minimize coherence misses and maxi-
mize scalability. A certain amount of sharing and synchroniza-
tion is required, however, to maintain fairness across queues.
Specifically, we need to track (1) the progression of virtual
time; (2) the number of available I/O slots and the queues that
can use them; and (3) the state of queues (throttled or not)
and when they should be unthrottled. Our guiding principle is
to maximize locality wherever possible. So long as utilization
and fairness goals are not violated, we prefer to dispatch from
the local queue, queues on the same core, queues on the same
socket, and queues on another socket, in that order.

3.1 Virtual Time
Virtual time in MQFQ reflects resource usage (e.g., bandwidth
consumed), and not wall-clock time. When a flow transitions
from lagging to backlogged, the request responsible for the
transition is set to have its start tag equal to current virtual
time. As long as the flow remains backlogged, its following
requests get increasing start tags with respect to the flow’s
resource usage: the start tag of each new request is set to the
end tag of the previous request. Virtual time, in turn, is the
minimum start tag of any request across all queues.

Naively, one might imagine an array, indexed by queue,
with each slot indicating the start tag of its queue’s lead re-
quest (if any). We could then compute the global virtual time
by scanning the array. Such a scan, however, is far too expen-
sive to perform on a regular basis (see Sec. 4.3.1). Instead,
we use an instance of Liu et al.’s mindicator structure [29],
modified to preclude decreases in the global minimum. The
mindicator is a tree-based structure reminiscent of a priority-
queue heap. Each queue is assigned a leaf in the tree; each
internal node indicates the minimum of its children’s values.
A flow whose virtual time changes updates its leaf and, if its
previous value was the minimum among its siblings, prop-
agates the update root-ward. Changes reach the root only
when the global minimum changes. While this is not uncom-
mon (time continues to advance, after all), many requests in a
highly parallel device complete a little out of order, and the
mindicator achieves a significant reduction in contention.

Within each flow, we must also track the largest finish tag
across all threads. For this we currently employ a simple
shared integer value, updated (with fetch-and-add) on each
request dispatch. In future work, we plan to explore whether
better performance might be obtained with a scalable mono-
tonic counter [6, 14], at least for flows with many threads.

3.2 Available Slots
A queue in MQFQ is unable to dispatch either when it is too
far ahead of virtual time or when the device is saturated. For
the latter case, MQFQ must track the number of outstanding
(dispatched but not yet completed) requests on the device.
Ideally, we want to dispatch exactly as many requests as the

USENIX Association 2019 USENIX Annual Technical Conference 305

root

socket

core

queue1 0 0 0 0 0 1 0 00 2 1 32 0

0 2 0 3 0 0 0 0

0
0 1 2 4 8 9 11 12 137 10 14 153 5 6

9

3 0

Figure 3: Example token tree for a 2-socket, 4-core-per, 2-thread-per
machine. Values indicate currently unused device capacity. (If the
device were fully subscribed [D outstanding requests], all values in
the tree would be zero.) In the figure, there are 3 slots immediately
available to queue 15. Queues 6 or 7 could use capacity allocated to
their core; queues 4 or 5 could use capacity allocated to their socket;
queues 8 or 9 would need to use capacity from the root.

device can handle in parallel, thereby avoiding any buildup
in the device and preserving our ability to choose the ideal
request to submit when an outstanding request completes.

We find (see Sec. 4.3.3) that a naive single shared cache
line, atomically incremented and decremented upon dispatch
and completion of requests, fails to scale when many queues
are frequently trying to update its value. We therefore aim to
improve locality by preferentially allocating available slots to
physically nearby queues, in a manner reminiscent of cohort
locks [15]. This approach meshes well with our notification
mechanism, which prefers to unblock nearby queues.

As a compromise between locality and flexibility, we have
implemented a structure we call the token tree (Fig. 3). Values
in leaves represent unused capacity (“slots”) currently allo-
cated to a given local queue. Parent nodes represent additional
capacity allocated to a given core, and so on up the tree. The
values of all nodes together sum to the difference between D
and the number of active requests on the device. When we
need to dispatch a request, we try to acquire a slot from the
leaf associated with the local queue. If the leaf is zero, we try
to fetch from its parent, continuing upward until we reach the
root. If nothing is available at that level, we suspend the queue.
If there is unused capacity elsewhere in the tree, queues in
that part of the tree will eventually be throttled. Capacity will
then percolate upward, and ready queues will be awoken.

When releasing slots (in the completion interrupt handler,
when the local queue is throttled or empty), we first choose a
queue to awaken. We then release slots to the lowest common
ancestor (LCA) of the local and the target CPUs in the token
tree. Finally, we awaken the target CPU with an interprocessor
interrupt (IPI). The strategy of picking nearby queues tends
to keep capacity near the leaves of the token tree, minimizing
contention at the higher levels, minimizing the cost of the
IPI, and maximizing the likelihood that slots will be passed
through a cache line in a higher level of the memory hierar-
chy. Experiments described in Sec. 4.3.2 confirm that IPIs
significantly outperform an alternative based on polling.

1
2

0 0 0 0 1 0 0 0 1 0
. . . 6 5 4 3 2 1 0

3

4

5
. . .

B

Figure 4: Timer wheel for throttled queues. If queue q is k > T units
ahead of global virtual time, it is placed in bucket min(dk/be,B),
where B is the number of buckets and b is a quantization parameter.
In the figure, queues 1 and 5 are throttled in bucket 4.

3.3 Ready and Throttled Queues
The D parameter in MQFQ controls the number of outstand-
ing requests and is a trade-off between utilization and fairness.
While a larger D may better utilize the device, it can also
impose looser fairness bounds and higher waiting time for
incoming requests from a slower flow. Therefore, MQFQ will
stop dispatching once there are D outstanding requests in the
device. A queue in this case is likely to be both nonempty and
unthrottled; such a queue is said to be ready.

As noted in Sec. 3.2, a completion handler whose local
queue is empty or throttled will give away its released to-
ken. To do so, it looks for the closest queue (based on a
pre-computed proximity matrix) that is flagged as ready and
passes the token through the token tree.

Regardless of the number of outstanding requests, a queue
will be throttled when its lead request is T ahead of global
virtual time. When this happens, we need to be able to tell
when virtual time has advanced enough that the queue can be
unthrottled. To support this operation, we employ a simple
variant of the classical timer wheel structure [43, 47] (Fig. 4).
Each bucket of the wheel represents a b-unit interval of virtual
time, and contains (as a bitmask) the set of queues that should
be unthrottled at the beginning of that interval. Conceptually,
we turn the wheel every b time units (in actuality, of course,
we update an index that identifies bucket number 1), clear the
bitmask in the old bucket 1, and unthrottle the queues that
used to appear in that mask.

Given a finite number of buckets, B, a queue that needs to
be throttled for longer than B×b will be placed in bucket B;
this means that the wakeup handler for a queue must always
double-check to make sure it doesn’t have to throttle the
queue again. Unlike a classical timing wheel, which contains
a list of timer events in every bucket, our bitmask buckets can
be manipulated with compare-and-swap, making the whole
wheel trivially nonblocking.

As noted in Sec. 3.2, when slots become available in a
completion handler, we choose queues from among the ready
set, release the slots to the token tree, and send IPIs to the
CPUs of the chosen queues. In a similar vein, if slots are
available at the root of the token tree when the throttling wheel
is turned, we likewise identify ready queues to which to send

306 2019 USENIX Annual Technical Conference USENIX Association

IPIs. No fairness pathology arises in always choosing nearby
queues: if some far-away queue lags too far behind, nearby
queues will end up throttling, slots will percolate upward in
the token tree, and the lagging queues will make progress.

3.4 Determining D and T in Practice
In practice, we use a hand-curated workload with varying
degrees of concurrency and request sizes (with an approach
similar to that of Chen et al. [9]) as a one-time setup step
to discover the internal parallelism of a given multi-queue
device which determines the parameter D. Any smaller value
for D will not saturate the device, while larger Ds would lead
to greater unfairness – specially for burstier workloads.

Unlike D which is determined solely by the degree of paral-
lelism in the multi-queue device, the parameter T is affected
by the characteristic of the workload – i.e., concurrency and
request size. While a single-threaded workload can afford to
have T = 0, a workload with small requests being submitted
from multiple threads across multiple sockets require larger
T value. To that end, once we have determined D, in a one-
time setup step, we over-provision the parameter T for the
worst-case workload so that the maximum throughput of the
device can always be met.

4 Evaluation
We evaluate fairness and performance of MQFQ on two fast,
multi-queue devices: NVMe over RDMA (NVMf, with multi-
queue NICs) and multi-queue SSD (MQ-SSD). We also eval-
uate the scalability of each of our concurrent data structures.

In our NVMf setup, the host machine (where MQFQ runs)
issues NVMe requests over RDMA to the target machine,
which serves the requests directly from DRAM. We use the
kernel host stack and SPDK [21] target stack. This setup can
reach nearly 4 M IOP/s for 1KB requests. In our MQ-SSD
setup, requests are fulfilled by a PCIe-attached Intel P3700
NVMe MQ-SSD. This setup provides nearly 0.5 M IOP/s for
4K requests.

We measured (with an approach similar to that of Chen et
al. [9]) available internal parallelism to be 128 for the NVMf
setup and 64 for the MQ-SSD setup. We chose T in each setup
to be (roughly) the smallest value that didn’t induce significant
contention. We preconditioned the MQ-SSD with sequential
writes to the whole address space followed by a series of
random writes to reach steady state performance. We also
disabled power management to ensure consistent results. We
ran all experiments on a Linux 4.15 kernel in which KPTI [12]
was disabled via boot parameter. For scalability experiments,
thread affinities were configured to fill one hardware thread
on each core of the first socket, then one on each core of
the second socket before returning to populate the second
hardware thread of each core. The CPU mask for fairness
experiments was configured to partition the cores among
competing tasks. Table 1 summarizes the experimental setup.
In all of the experiments we use the length of requests in KB

to advance virtual time—hence the unit for T is KB. Because
the MQ-SSD setup has significantly lower bandwidth than
the NVMf setup, we use it only for fairness experiments, not
for scalability. The source code for our implementation is
available at http://github.com/hedayati/mqfq.

4.1 Fairness and Efficiency
We compare MQFQ to two existing systems: (1) the recom-
mended Linux setup for fast parallel devices, which performs
no I/O scheduling (nosched) and is thus contention free, and
(2) Budget Fair Queueing (BFQ) [46], a proportional share
scheduler included for multi-queue stacks since Linux 4.12.
For each of these, we consider three benchmarks: (a) the Flex-
ible I/O Tester (FIO) [3], (b) the FlashX graph processing
framework [52], and (c) the Aerospike key-value store [41].

FIO: FIO is a microbenchmark that allows flexible config-
uration of I/O patterns and scales quite well. We use FIO to
generate workloads with known characteristics. Because FIO
does so little processing per request, we also use it as an antag-
onist in multiprogrammed runs with FlashX and Aerospike.
Each FIO workload has a name of the form αxβ (e.g., 2x4K)
where α indicates the number of threads (each on a dedicated
queue) and β indicates the size of each request. For propor-
tional sharing tests, we also indicate the weight of the flow in
parentheses (e.g., 2x4K(3)). The FIO queue depth (i.e., the
number of submitted but not yet completed requests) is set to
128—large enough to maintain maximum throughput to the
device.

To evaluate fairness and efficiency, we consider co-runs of
FIO workloads where the internal device scheduler (if any)
fails to provide fairness. We compare the slowdown of the
flows relative to their time when running alone (in the absence
of resource competition) as a measure of fairness as well as
aggregated throughput as a measure of efficiency. We ex-
plore three cases in which competing flows differ in only one
characteristic—request size, concurrency, or priority (weight).
The results show that the underlying request processing, being
oblivious to these characteristics, fails to provide fairness.

In Fig. 5 top-left and bottom-left, each of the flows uses
an equal number of device queues. The device alternates
between queues and guarantees the same number of processed
requests from each. This results in flows sharing the device in
proportion to request sizes rather than getting equal shares.

Fig. 5 top-middle and bottom-middle show two flows, one
of which uses half the number of physical queues used by
the other flow. With both flows submitting 4KB requests, the
requests are processed in proportion to the number of utilized
queues, causing unfairness.

Finally, Fig. 5 top-right and bottom-right show how MQFQ
can be used to enforce shares in proportion to externally-
specified per-flow weights (shown in parentheses).

In all of the above cases, the BFQ scheduler also guarantees
fairness (as defined by flows’ throughputs) but at a much
higher cost compared to MQFQ.

USENIX Association 2019 USENIX Annual Technical Conference 307

http://github.com/hedayati/mqfq

Table 1: Experimental setup.

MQ-SSD Setup NVMf Setup
CPU & Mem. Intel E5-2620 v3 (Haswell) @ 2.40GHz – 8GB Intel E5-2630 v3 (Haswell) @ 2.40GHz – 64GB
Sockets×Cores 2×6 (24 hardware threads) 2×8 (32 hardware threads)
Target device Intel P3700 NVMe MQ-SSD (800GB) NVMe over RDMA

Mellanox ConnectX-3 VPI Dual-Port 40Gbps
MQFQ parameters D = 64, T = 45KB D = 128, T = 64KB

2
4GB/s

8KB vs. 4KB on NVMf

nosched mqfq bfq

6

12

18

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

16x8KB

16x4KB

nosched mqfq bfq

1
2GB/s

8KB vs. 4KB on SSD

nosched mqfq bfq

2

4

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

12x8KB

12x4KB

nosched mqfq bfq

2
4GB/s

16 vs. 8 Channels on NVMf

nosched mqfq bfq

6

12

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

16x4KB

8x4KB

nosched mqfq bfq

1
2GB/s

12 vs. 6 Channels on SSD

nosched mqfq bfq

2

4

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

12x4KB

6x4KB

nosched mqfq bfq

2
4GB/s

Proportional Share on NVMf

nosched mqfq bfq

20

40

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

8x4KB(1)

8x4KB(2)

8x4KB(3)

nosched mqfq bfq

1
2GB/s

Proportional Share on SSD

nosched mqfq bfq

6

12

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

8x4KB(1)

8x4KB(2)

8x4KB(3)

Figure 5: FIO fairness and efficiency. Round-robin (nosched) processing is unfair with respect to different request sizes (left), different
numbers of queues (middle) and different proportional shares (right). Red dashed lines in the left and middle columns indicate proportional
(ideal) slowdown. Aggregate bandwidth is shown above each graph.

FlashX: FlashX is a data analytics framework that utilizes
SSDs to scale to large datasets. It can efficiently store and
retrieve large graphs and matrices, and uses FlashR, an ex-
tended R programming framework, to process terabyte-scale
datasets in parallel. We used FlashX to execute pagerank on
the SOC-LiveJournal1 social network graph from SNAP [28].
The graph has 4.8M vertices and 68.9M edges and is stored
on SSD or the NVMf target’s DRAM for corresponding tests.
We use FIO as an antagonist process to create contention with
FlashX over the storage resource.

Fig. 6 shows the slowdown of co-runs of FlashX and FIO
with different schedulers (or none—nosched). FlashX does
not maintain a large queue depth; as a result, it can sustain
only a fraction of the device’s throughput. FIO, by contrast, is
able to fully utilize the device given its large (I/O) parallelism.
Running these together, MQFQ guarantees that FlashX gets
its small share of I/O, while the rest is available to FIO, result-
ing in small (better than proportional) slowdowns (33% for
FlashX and 14% for FIO on average between MQ-SSD and
NVMf) — note that this is not unexpected since one of the

flows, i.e., FlashX, is not saturating. While BFQ also reduces
the slowdown for FlashX (from almost 4× to less than 2×), it
slows down FIO due to its lack of support for I/O parallelism.

Aerospike: Aerospike is a flash-optimized key-value store.
It uses direct I/O to a raw device in order to achieve high
performance. Meta-data is kept in memory, but we configure
our instance to make sure all requests will result in an I/O to
the underlying device. We use the benchmark tool provided
with Aerospike, running on a client machine, to drive a work-
load of small (512B) reads, ensuring that there will be no
contention over the network for the NVMf setup. As in the
FlashX experiments, we use FIO as a competitor workload.

Fig. 7 shows the slowdown of co-runs of Aerospike and FIO
under BFQ, MQFQ, and nosched. For the NVMf setup, de-
spite performing nearly 1 M transactions /sec., Aerospike fails
to saturate the device before running out of CPUs. Therefore,
as with FlashX, the co-run under MQFQ has negligible slow-
down (3% for Aerospike and less than 20% for FIO). How-
ever, on the MQ-SSD setup Aerospike can fully utilize the

308 2019 USENIX Annual Technical Conference USENIX Association

nosched mqfq bfq
0

1

2

3

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

proportional
slowdown

FlashX vs. FIO on NVMf

flashx-pagerank

fio-6x4KB

nosched mqfq bfq
0

1

2

3

4

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

proportional
slowdown

FlashX vs. FIO on SSD

flashx-pagerank

fio-6x4KB

Figure 6: Fairness comparison for FlashX. MQFQ maintains fairness
for FlashX, while allowing FIO to utilize the remaining bandwidth
of the device.

nosched mqfq bfq
0

5

10

15

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

proportional
slowdown

Aerospike vs. FIO on NVMf

aerospike

fio-8x4KB

nosched mqfq bfq
0

1

2

3

4

5

6

Sl
o

w
d

o
w

n
re

l.
to

 r
un

 a
lo

ne

proportional
slowdown

Aerospike vs. FIO on SSD

aerospike

fio-4x4KB

Figure 7: Fairness comparison for Aerospike. MQFQ maintains
fairness (approximately at or below proportional slowdown). On the
MQ-SSD (right), where Aerospike can utilize the full device, FIO is
slowed down to half the available bandwidth.

device (with nearly 0.5 M transactions /sec.) and Aerospike
and FIO end up getting half the available bandwidth each.
BFQ’s lack of support for parallel dispatch is evident on the
faster NVMf device, where it results in 15× slowdown for
FIO while giving only a modest improvement for Aerospike.

4.2 Scalability
We compare the scalability of MQFQ to that of an existing
single-queue implementation of fair queueing—i.e., BFQ [46].
As noted in Sec. 1, Linux BFQ doesn’t support concurrent
dispatches and may not be able to fully utilize a device with
internal parallelism. Other schedulers with support for par-
allel dispatch (e.g., FlashFQ [40]) have no multi-queue im-
plementation. As a reasonable approximation of the missing
strategy, we also compare MQFQ to a modified version of
itself (MQFQ-serial) that serializes dispatches using a global
lock. It differs from a real single-queue scheduler for a device
with internal parallelism in that it maintains the requests in
separate, per-CPU queues coordinated with our scalable data
structures and the T and D parameters.

0 5 10 15 20 25 30
of CPUs

0

1000

2000

3000

4000

T
hr

o
ug

hp
ut

 (
x1

00
0

IO
P

/s
)

Scalability for 1KB IO on NVMf

nosched

mqfq

mqfq-serial

bfq

Figure 8: Overall scalability of unfair Linux multi-queue vs. MQFQ
vs. MQFQ-serial vs. BFQ.

Our MQ-SSD setup at 460K IOP/s is not suitable for scala-
bility experiments—the IOP/s limit, rather than the scheduler,
becomes the scaling bottleneck. Some higher-IOP/s devices
exist in the market and more will surely emerge in the future.
Employing an array of SSDs can also enable over a million
IOP/s. Alternatively, remote storage software solutions (e.g.,
ReFlex [26], NVMe over Fabric [33], FlashNet [45]) have the
potential to yield more than a million IOP/s.

For this scalability evaluation, we therefore rely on the
NVMf setup with 1KB requests. We chose 1KB because
it yields the largest number of IOP/s (more request churn,
leading to higher scheduler contention). In the nosched (no
contention) case, this setup can reach 4 M IOP/s. We need
multiple FIO threads to reach this maximum throughput.

Fig. 8 compares the throughput achieved with nosched,
MQFQ, MQFQ-serial, and BFQ. With 15–19 active threads,
MQFQ reaches more than 3 M IOP/s—2.6× better than
MQFQ-serial and 20× better than BFQ. This constitutes 71%
of the peak throughput of the in-memory NVMf device while
providing the fairness properties needed for shared systems
(as demonstrated in Sec. 4.1).

4.3 Design Decisions and Parameters
We assess the degree to which each of MQFQ’s scalable data
structures improves performance.

4.3.1 Virtual Time

We first evaluate the scalability of computing virtual time in
MQFQ. As described in Sec. 3.1, our implementation uses
a variant of the mindicator [29] to find the smallest start tag
among queued requests across all queues. As in the token tree
(Fig. 3), we structure the mindicator with successive levels
for cores, sockets, and the full machine.

Fig. 9 shows how the mindicator scales with the number
of queues. We are unaware of any existing data structure suit-
able as a replacement for the mindicator; we therefore imple-
mented another lock-free alternative in which the minimum is

USENIX Association 2019 USENIX Annual Technical Conference 309

0 5 10 15 20 25 30
of CPUs

1000

2000

3000

4000

T
hr

o
ug

hp
ut

 (
x1

00
0

IO
P

/s
)

Virtual Time Computation Scalability for 1KB IO on NVMf

nosched

mindicator

array-min

Figure 9: Throughput when maintaining virtual time with a mindica-
tor vs. iterating over an array of queue minima.

0 8 16 24 32
of CPUs

500

1000

1500

2000

2500

3000

T
hr

o
ug

hp
ut

 (
x1

00
0

IO
P

/s
)

Throughput

timing-wheel

1usec polling

5usec polling

0 8 16 24 32
of CPUs

102

103

104

105

106

#
 o

f
re

sc
he

d
ul

es
/s

Overhead

timing-wheel

1usec polling

Timing Wheel Scalability for 1KB IO on NVMf

Figure 10: Scalability of unthrottling. Left: MQFQ throughput
achieved using timing wheel vs. 1µs and 5µs polling. Right: polling
causes spurious reschedules.

found by iterating over an array of queue-local minima after
each request dispatch. (This could be thought as a one-level
mindicator.) Our contention-localizing structure outperforms
the array scan by nearly 40% at 32 threads.

4.3.2 Unthrottling

As discussed in Sec. 2, when a queue cannot dispatch it will be
throttled. Once the situation changes (completion or progress
of virtual-time) some throttled queues may need to be un-
throttled. Any delay in doing so could leave the device un-
derutilized. Our approach uses inter-processor interrupts to
promptly notify appropriate CPUs that they can proceed when
the unthrottling condition is met. We use a scalable timer
wheel (Sec. 3.3) to support such notifications efficiently.

For comparison, arranging for each queue to poll the con-
dition would be an easy but expensive way to implement
unthrottling. We explore this option with a pinned, high reso-
lution timer (hrtimer [11]), as it requires no communication
between queues and can provide latency comparable to that

0 5 10 15 20 25 30
of CPUs

1000

2000

3000

4000

T
hr

o
ug

hp
ut

 (
x1

00
0

IO
P

/s
)

Token Tree Scalability for 1KB IO on NVMf

nosched

token-tree

sbitmap

counter

Figure 11: Scalability of token-tree vs. global counter vs. scalable
bitmap in maintaining available dispatch slots.

of a cross-socket inter-processor interrupt. The timer is armed
whenever the queue is throttled and upon firing, reschedules
the dispatch routine. The effect is essentially polling for a
change in virtual time, with a polling frequency determined
by the value of the timer.

Fig. 10 (left) compares the throughput that MQFQ can
achieve with the timing wheel vs. polling at 1µs or 5µs in-
tervals. Results confirm that a delay in unthrottling leads
to throughput degradation. Even extremely frequent (1µs)
polling cannot achieve IOP/s performance comparable to that
of our timer wheel approach. Less frequent polling leads to a
dispatch delay that leaves the device underutilized.

In order to quantify the wasted CPU, we measure the num-
ber of reschedule operations caused by our timer wheel and
by 1µs polling. The difference between the two shows how
inefficient polling can be (the timer wheel incurs no spurious
reschedules). Fig. 10 (right) shows the savings, in resched-
ules per second, achieved by using the timer wheel instead
of a 1µs timer. With a few CPUs, roughly every queue is
being signaled on every completion (so a carefully chosen fre-
quency for polling that matches the rate of completion could
be practical when the device is fully utilized), but the number
of wasted cycles grows with the number of CPUs. With the
timing wheel, on the other hand, unthrottling comes only as a
result of completion, and therefore is upper-bounded by the
device throughput.

4.3.3 Dispatch Slots

In order to keep a device with internal parallelism fully uti-
lized, while also avoiding queue build-up in the device (which
would adversely affect the fairness guarantee), MQFQ has to
track the number of available dispatch slots. This number is
modified by each queue as a result of a dispatch or a comple-
tion. Our scalable MQFQ design uses a novel token tree data
structure for this purpose (presented in Sec. 3.2).

Kyber [39], a multi-queue I/O scheduler added since Linux
4.12, uses another data structure, called sbitmap (for Scalable

310 2019 USENIX Annual Technical Conference USENIX Association

Bitmap), to throttle asynchronous I/O operations if the latency
experienced by synchronous operations exceeds a threshold.
The main idea in sbitmap is to distribute the tokens as bits in
a number of cache lines (determined by expected contention
over acquiring tokens). A thread tries to find the first clear bit
in the cache line where the last successful acquire happened,
falling back to iterating over all cache lines if all bits are set.
This data structure reduces contention when the number of
tokens is significantly larger than the number of threads. Yet
another alternative to maintain a single global count of avail-
able dispatch slots using atomic increments and decrements.

Fig. 11 plots 1KB MQFQ IOP/s as a function of thread
count using an atomic counter, a scalable bitmap, and a token
tree to track the number of dispatched requests. To isolate
the impact of these data structures, we disable virtual time
computation in MQFQ. Using an atomic counter doesn’t scale
beyond the first socket. The scalable bitmap falls short when
the number of waiting requests is significantly larger than
device parallelism, resulting in local acquire and release of
tokens. In comparison, the token tree paired with our throttling
mechanism prefers interaction with local queues (based on
a pre-computed proximity matrix) as long as they are no
more than T ahead of virtual time, resulting in significantly
better scalability (more than 2× the throughput of the atomic
counter and 36% more than the scalable bitmap).

5 Related Work
Fairness-oriented resource scheduling has been extensively
studied in the past. Lottery scheduling [49] achieves proba-
bilistic proportional-share resource allocation. Fairness can
also be realized through per-task timeslices as in Linux
CFQ [2] and BFQ [46], Argon [48], and FIOS [35]. Time-
slice schedulers, however, are generally not work-conserving:
they will sometimes leave the device unused when there are
requests available in the system. The original fair queueing
approaches, including Weighted Fair Queueing (WFQ) [13],
Packet-by-Packet Generalized Processor Sharing (PGPS) [34],
and Start-time Fair Queueing (SFQ) [18], employ virtual-time–
controlled request ordering across per-flow request queues to
maintain fairness.

Fair queueing approaches like SFQ(D) [23] and FlashFQ
[40] have been tailored to manage I/O resources, allowing
requests to be re-ordered and dispatched concurrently for
better I/O efficiency in devices with internal parallelism. To
maintain fairness in a multi-resource (e.g., CPU, memory
and NIC) environment, DRFQ [16] adapted fair queueing by
tracking usage of the respective dominant resource of each
operation. Disengaged fair queueing [30] emulates the effect
of fair queueing on GPUs while requiring only infrequent OS
kernel involvement. It accomplishes its goal by monitoring
and mitigating potential unfairness through occasional traps.
All previous fair queueing schedulers assume a serializing
scheduler over a single device queue, which does not scale
well on modern multicores with fast multi-queue devices.

For multi-queue SSDs, Ahn et al. [1] supported I/O re-
source sharing by implementing a bandwidth throttler at the
Linux cgroup layer (above the multi-queue device I/O paths).
However, their time interval budget-based resource control is
not work conserving: if one cgroup does not use its allotted re-
sources in an interval, those resources are simply wasted. Lee
et al. [27] improved read performance by isolating queues of
multi-queue SSDs used for reads from those used for writes.
Kyber [39] achieves better synchronous I/O latency by throt-
tling asynchronous requests. However, neither approach is
a full solution for fair I/O resource management. Stephens
et al. [42] found that the internal round-robin scheduling of
hardware queues in NICs leads to unfairness when the load
is asymmetrically distributed across a NIC’s multiple hard-
ware queues. Their solution, Titan, requires programmable
NICs to internally implement deficit round-robin and ser-
vice queues in proportion to configured weights. FLIN [44]
identifies major sources of interference in multi-queue SSDs
and implements a scheduler in SSD controller firmware to
protect against them. Unlike MQFQ, which is applicable to
accelerators and multi-queue NICs, FLIN deals with the id-
iosyncrasies of Flash devices such as garbage collection and
access patterns. In addition, FLIN considers any request orig-
inating from the same host-side I/O queue as belonging to
the same “flow” and, being implemented in hardware, is un-
able to reason in terms of system-level resource principals
(applications, virtual machines, or Linux cgroups).

For performance isolation and quality-of-service, ReFlex
[26] employs a per-tenant token bucket mechanism to achieve
latency objectives in a shared-storage environment. The to-
ken bucket mechanism and fair queueing resource allocation
are complementary—the former performs admission control
under a given resource allocation while the latter supports
fair, work-conserving resource uses. Decibel [31] presents a
system framework for resource isolation in rack-scale stor-
age but it does not directly address the problem of resource
scheduling. It uses two existing scheduling policies in its
implementation—strict time sharing is not work-conserving;
deficit round robin is work-conserving but requires a serializ-
ing scheduler queue that limits scalability.

Among multicore operating systems, Arrakis [36] and IX
[4] support high-speed I/O by separating the control plane
(managed by the OS) and the data plane (bypassing the OS) to
achieve coherency-free execution. Their OS control planes en-
force access control but not resource isolation or fair resource
allocation. Zygos [37] suggests that sweeping simplification
introduced by shared-nothing architectures like IX [4] leads
to (1) not being work-conserving and (2) suffering from head-
of-the-line blocking. They propose a work-stealing packet
processing scheme that, while introducing cross-core inter-
actions, eliminates head-of-the-line blocking and improves
latency. Recent work has also built scalable data structures
that localize synchronization in the multicore memory hier-
archy (intra-core rather than inter-core; intra-socket rather

USENIX Association 2019 USENIX Annual Technical Conference 311

than inter-socket). Examples include the mindicator global
minimum data structure [29], atomic broadcast trees [24], and
NUMA-aware locks [15] and data structures [7]. For MQFQ,
we introduce new scalable structures, including a timer wheel
to track virtual time indexes and a token tree to track available
device dispatch slots.

6 Conclusion
With the advent of fast devices that can complete a request
every microsecond or less, it has become increasingly difficult
for the operating system to fulfill its responsibility for fair
resource allocation—enough so that some OS implementa-
tions have given up on fairness altogether for such devices.
Our work demonstrates that surrender is not necessary: with
judicious use of scalable data structures and a reformulation
of the analytical bounds, we can maintain fairness in the long
term and bound it in the short term, all without compromising
throughput.

Our formalization of multi-queue fair queueing introduces
a parameter, T, that bounds the amount of service that a flow
can receive in excess of its share. Crucially, this bound does
not grow with time. Moreover, our new definition of virtual
time is provably equivalent to existing definitions when T is
set to zero. Experiments with a modified Linux 4.15 kernel,
a two-socket server, and a fast NVMe over RDMA device
confirm that MQFQ can provide both fairness and very high
throughput. Compared to running without a fairness algorithm
on an NVMf device, our MQFQ algorithm reduces the slow-
down caused by an antagonist from 3.78× to 1.33× for the
FlashX workload and from 6.57× to 1.03× for the Aerospike
workload. Its peak throughput reaches 3.1 Million IOP/s on
a single machine, outperforming a serialized version of our
own algorithm by 2.6× and Linux BFQ by 20×.

In future work, we plan to develop strategies for automatic
tuning of the T and D parameters; extend our implementation
to handle small computational kernels for GPUs and accel-
erators; and evaluate the extent to which fairness guarantees
can continue to apply even to kernel-bypass systems, with
dispatch queues in user space.

Acknowledgment
We thank our shepherd, Jian Huang, and the anonymous re-
viewers for their helpful feedback. This work was supported
in part by NSF grants CNS-1319417, CCF-1717712, CCF-
1422649 and by a Google Faculty Research award. Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of our sponsors.

References
[1] S. Ahn, K. La, and J. Kim. Improving I/O resource

sharing of Linux cgroup for NVMe SSDs on multi-core
systems. In 8th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage), Denver, CO,
June 2016.

[2] J. Axboe. Linux block IO—Present and future. In
Ottawa Linux Symp., pages 51–61, Ottawa, ON,
Canada, July 2004.

[3] J. Axboe et al. Flexible I/O tester.
github.com/axboe/fio.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected
dataplane operating system for high throughput and low
latency. In 11th USENIX Symp. on Operating Systems
Design and Implementation (OSDI), pages 49–65,
Broomfield, CO, Oct. 2014.

[5] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet.
Linux block IO: Introducing multi-queue SSD access
on multi-core systems. In 6th ACM Intl. Systems and
Storage Conf. (SYSTOR), Haifa, Israel, June 2013.

[6] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich. An
analysis of Linux scalability to many cores. In 9th
USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 1–16, Vancouver, BC,
Canada, 2010.

[7] I. Calciu, S. Sen, M. Balakrishnan, and M. K. Aguilera.
Black-box concurrent data structures for NUMA
architectures. In 22nd Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 207–221, Xi’an, China, Apr.
2017.

[8] B. Caldwell. Improving block-level efficiency with
scsi-mq. arXiv e-prints, abs/1504.07481v1, Apr. 2015.

[9] F. Chen, R. Lee, and X. Zhang. Essential roles of
exploiting internal parallelism of flash memory based
solid state drives in high-speed data processing. In 2011
IEEE 17th Intl. Symp. on High Performance Computer
Architecture (HPCA), pages 266–277, San Antonio, TX,
2011.

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The scalable commutativity rule:
Designing scalable software for multicore processors.
In 24th ACM Symp. on Operating Systems Principles
(SOSP), pages 1–17, Farminton, PA, 2013.

[11] J. Corbet. The high-resolution timer API.
lwn.net/Articles/167897.

[12] J. Corbet. The current state of kernel page-table
isolation. lwn.net/Articles/741878/, Dec. 2017.

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In ACM
SIGCOMM Conf. on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, pages 1–12, Austin, TX, Sept. 1989.

[14] D. Dice, Y. Lev, and M. Moir. Scalable Statistics
Counters. In 25th ACM Symp. on Parallelism in

312 2019 USENIX Annual Technical Conference USENIX Association

github.com/axboe/fio
lwn.net/Articles/167897
lwn.net/Articles/741878/

Algorithms and Architectures (SPAA), pages 43–52,
Montreal, PQ, Canada, 2013.

[15] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting:
A general technique for designing NUMA locks. ACM
Trans. on Parallel Compututing, 1(2):13:1–13:42, Feb.
2015.

[16] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-resource fair queueing for packet processing. In
ACM SIGCOMM Conf. on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, pages 1–12, Helsinki, Finland, 2012.

[17] S. J. Golestani. A self-clocked fair queueing scheme for
broadband applications. In 13th IEEE Conf. on
Networking for Global Communications (INFOCOM),
pages 636–646, San Jose, CA, 1994.

[18] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair
queueing: A scheduling algorithm for integrated
services packet switching networks. IEEE/ACM Trans.
on Networking, 5(5):690–704, Oct. 1997.

[19] A. G. Greenberg and N. Madras. How fair is fair
queueing. Journal of the ACM, 39(3):568–598, July
1992.

[20] Hyper-Q Example. developer.download.nvidia.com/
compute/DevZone/C/html_x64/6_Advanced/
simpleHyperQ/doc/HyperQ.pdf.

[21] Intel Corp. Storage performance development kit.
www.spdk.io.

[22] Intel Optane SSD DC P4800X Series.
www.intel.com/content/www/us/en/products/
memory-storage/solid-state-drives/data-center-ssds/
optane-dc-p4800x-series/p4800x-750gb-aic.html.

[23] W. Jin, J. S. Chase, and J. Kaur. Interposed Proportional
Sharing for a Storage Service Utility. In Joint Intl. Conf.
on Measurement and Modeling of Computer Systems,
SIGMETRICS, pages 37–48, New York, NY, 2004.

[24] S. Kaestle, R. Achermann, R. Haecki, M. Hoffmann,
S. Ramos, and T. Roscoe. Machine-aware atomic
broadcast trees for multicores. In 12th USENIX Symp.
on Operating Systems Design and Implementation
(OSDI), pages 33–48, Savannah, GA, Nov. 2016.

[25] A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high performance RDMA systems. In
USENIX Annual Technical Conf. (ATC), pages
437–450, Denver, CO, June 2016.

[26] A. Klimovic, H. Litz, and C. Kozyrakis. Reflex:
Remote flash ≈ local flash. In 22nd Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 345–359, Xi’an,
China, Apr. 2017.

[27] M. Lee, D. H. Kang, M. Lee, and Y. I. Eom. Improving
read performance by isolating multiple queues in
NVMe SSDs. In 11th Intl. Conf. on Ubiquitous
Information Management and Communication, Beppu,
Japan, Jan. 2017.

[28] J. Leskovec and A. Krevl. SNAP datasets: Stanford
large network dataset collection.
snap.stanford.edu/data/.

[29] Y. Liu, V. Luchangco, and M. Spear. Mindicators: A
Scalable Approach to Quiescence. In 2013 IEEE 33rd
Intl. Conf. on Distributed Computing Systems (ICDCS),
pages 206–215, Philadelphia, PA, July 2013.

[30] K. Menychtas, K. Shen, and M. L. Scott. Disengaged
scheduling for fair, protected access to fast
computational accelerators. In 19th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Salt Lake City, UT, Mar.
2014.

[31] M. Nanavati, J. Wires, and A. Warfield. Decibel:
Isolation and sharing in disaggregated rack-scale
storage. In 14th USENIX Symp. on Networked Systems
Design and Implementation (NSDI), pages 17–33,
Boston, MA, Mar. 2017.

[32] Nvidia Corp. Sharing a GPU between MPI processes:
Multi-process service (MPS).
docs.nvidia.com/deploy/mps/index.html.

[33] NVM Express Workgroup. NVM express, revision 1.3a.
nvmexpress.org/wp-content/uploads/
NVM-Express-1_3a-20171024_ratified.pdf, Oct. 2017.

[34] A. K. Parekh. A generalized processor sharing
approach to flow control in integrated services
networks. PhD thesis, Dept. of Electrical Engineering
and Computer Science, MIT, 1992.

[35] S. Park and K. Shen. FIOS: A Fair, Efficient Flash I/O
Scheduler. In 10th USENIX Conf. on File and Storage
Technologies (FAST), pages 13–13, San Jose, CA, 2012.

[36] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the control plane. In
11th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 1–16, Broomfield, CO,
Oct. 2014.

[37] G. Prekas, M. Kogias, and E. Bugnion. Zygos:
Achieving low tail latency for microsecond-scale
networked tasks. In 26th Symp. on Operating Systems
Principles (SOSP), pages 325–341, Shanghai, China,
2017.

[38] Samsung SSD PM1725a.
www.samsung.com/semiconductor/global/file/insight/
2016/08/Samsung_PM1725a-1.pdf.

[39] O. Sandoval. Kyber multi-queue I/O scheduler.
lwn.net/Articles/720071/.

[40] K. Shen and S. Park. FlashFQ: A fair queueing I/O
scheduler for flash-based SSDs. In USENIX Annual
Technical Conf. (ATC), San Jose, CA, June 2013.

[41] V. Srinivasan, B. Bulkowski, W.-L. Chu,
S. Sayyaparaju, A. Gooding, R. Iyer, A. Shinde, and
T. Lopatic. Aerospike: Architecture of a real-time

USENIX Association 2019 USENIX Annual Technical Conference 313

developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
www.spdk.io
www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
snap.stanford.edu/data/
docs.nvidia.com/deploy/mps/index.html
nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
www.samsung.com/semiconductor/global/file/insight/2016/08/Samsung_PM1725a-1.pdf
www.samsung.com/semiconductor/global/file/insight/2016/08/Samsung_PM1725a-1.pdf
lwn.net/Articles/720071/

operational dbms. Proc. of the VLDB Endowment,
9(13):1389–1400, Sept. 2016.

[42] B. Stephens, A. Singhvi, A. Akella, and M. Swift.
Titan: Fair packet scheduling for commodity
multiqueue NICs. In USENIX Annual Technical Conf.
(ATC), pages 431–444, Santa Clara, CA, 2017.

[43] S. A. Szygenda, C. W. Hemming, and J. M. Hemphill.
Time flow mechanisms for use in digital logic
simulation. In 5th ACM Winter Simulation Conf., pages
488–495, New York, NY, 1971.

[44] A. Tavakkol, M. Sadrosadati, S. Ghose, J. S. Kim,
Y. Luo, Y. Wang, N. M. Ghiasi, L. Orosa,
J. Gómez-Luna, and O. Mutlu. FLIN: Enabling fairness
and enhancing performance in modern NVMe solid
state drives. In 45th Intl. Symp. on Computer
Architecture (ISCA), pages 397–410, Los Angeles, CA,
2018.

[45] A. Trivedi, N. Ioannou, B. Metzler, P. Stuedi,
J. Pfefferle, I. Koltsidas, K. Kourtis, and T. R. Gross.
Flashnet: Flash/network stack co-design. In 10th ACM
Intl. Systems and Storage Conf. (SYSTOR), pages
15:1–15:14, Haifa, Israel, 2017.

[46] P. Valente and A. Avanzini. Evolution of the BFQ
Storage-I/O scheduler. algo.ing.unimo.it/people/paolo/
disk_sched/mst-2015.pdf.

[47] G. Varghese and A. Lauck. Hashed and hierarchical
timing wheels: Efficient data structures for

implementing a timer facility. ACM/IEEE Trans. on
Networking, 5(6):824–834, Dec. 1997.

[48] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared
storage servers. In 5th USENIX Conf. on File and
Storage Technologies (FAST), pages 61–76, San Jose,
CA, Feb. 2007.

[49] C. Waldspurger and W. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In
1st USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 1–11, Monterey, CA,
Nov. 1994.

[50] Skyhawk & Skyhawk Ultra NVMe PCIe SSD.
www.sandisk.com/content/dam/sandisk-main/en_us/
assets/resources/data-sheets/
Skyhawk-Series-NVMe-PCIe-SSD-DS.pdf.

[51] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi,
Z. Guz, A. Shayesteh, and V. Balakrishnan.
Performance analysis of NVMe SSDs and their
implication on real world databases. In 8th ACM Intl.
Systems and Storage Conf. (SYSTOR), Haifa, Israel,
May 2015.

[52] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. Flashgraph: Processing
billion-node graphs on an array of commodity SSDs. In
13th USENIX Conf. on File and Storage Technologies
(FAST), pages 45–58, Santa Clara, CA, 2015.

314 2019 USENIX Annual Technical Conference USENIX Association

algo.ing.unimo.it/people/paolo/disk_sched/mst-2015.pdf
algo.ing.unimo.it/people/paolo/disk_sched/mst-2015.pdf
www.sandisk.com/content/dam/sandisk-main/en_us/assets/resources/data-sheets/Skyhawk-Series-NVMe-PCIe-SSD-DS.pdf
www.sandisk.com/content/dam/sandisk-main/en_us/assets/resources/data-sheets/Skyhawk-Series-NVMe-PCIe-SSD-DS.pdf
www.sandisk.com/content/dam/sandisk-main/en_us/assets/resources/data-sheets/Skyhawk-Series-NVMe-PCIe-SSD-DS.pdf

	Introduction
	Background and Design
	Multi-Queue Fair Queueing
	Fairness Analysis

	Scalability
	Virtual Time
	Available Slots
	Ready and Throttled Queues
	Determining D and T in Practice

	Evaluation
	Fairness and Efficiency
	Scalability
	Design Decisions and Parameters
	Virtual Time
	Unthrottling
	Dispatch Slots

	Related Work
	Conclusion

