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Abstract

Data compression can not only provide space efficiency with
lower Total Cost of Ownership (TCO) but also enhance I/O
performance because of the reduced read/write operations.
However, lossless compression algorithms with high com-
pression ratio (e.g. gzip) inevitably incur high CPU resource
consumption. Prior studies mainly leveraged general-purpose
hardware accelerators such as GPU and FPGA to offload
costly (de)compression operations for application workloads.
This paper investigates ASIC-accelerated compression in file
system to transparently benefit all applications running on
it and provide high-performance and cost-efficient data stor-
age. Based on Intel R© QAT ASIC, we propose QZFS that
integrates QAT into ZFS file system to achieve efficient gzip
(de)compression offloading at the file system layer. A com-
pression service engine is introduced in QZFS to serve as an
algorithm selector and implement compressibility-dependent
offloading and selective offloading by source data size. More
importantly, a QAT offloading module is designed to lever-
age the vectored I/O model to reconstruct data blocks, mak-
ing them able to be used by QAT hardware without incur-
ring extra memory copy. The comprehensive evaluation val-
idates that QZFS can achieve up to 5x write throughput im-
provement for FIO micro-benchmark and more than 6x cost-
efficiency enhancement for genomic data post-processing over
the software-implemented alternative.

1 Introduction

Data compression has reached proliferation in systems involv-
ing storage, high-performance computing (HPC) or big data
analysis, such as EMC CLARiiON [14], IBM zEDC [7] and
RedHat VDO [18]. A significant benefit of data compression
is the reduced storage space requirement for data volumes,
along with the less power consumption for cooling per unit
of logical storage [12, 51]. Furthermore, if the input data to
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Hadoop [3], Spark [4] or stream processing job [40] is com-
pressed, the data processing performance can be effectively
enhanced as the compression not only saves bandwidth but
also decreases the number of read/write operations from/to
storage systems.

It is widely recognized that the benefits of data compression
come at the expense of computational cost [1, 9], especially
for lossless compression algorithms with high compression
ratio [41]. In a number of fields (e.g., scientific big data or
satellite data), lossless compression is the preferred choice
due to the requirement for data precision and information
availability [12, 43]. Prior studies mainly leveraged general-
purpose hardware accelerators such as GPU and FPGA to
alleviate the computational cost incurred by (de)compression
operations [15, 38, 41, 45, 52]. For example, Ozsoy et al. [38]
presented a pipelined parallel LZSS compression algorithm
for GUGPU and Fowers et al. [15] detailed a scalable fully
pipelined FPGA accelerator that performs LZ77 compression.
Recently, the emerging AISC (Application Specific Integrated
Circuit) compression accelerators, such as Intel R© QuickAssist
Technology (QAT) [24], Cavium NITROX [34] and AHA378
[2], are attracting attentions because of their advantages on
performance and energy-efficiency [32].

Data compression can be integrated into different system
layers, including the application layer (most common), the file
system layer (e.g., ZFS [48] and BTRFS [42]) and the block
layer (e.g., ZBD [27] and RedHat VDO [18]). Professional
storage products such as IBM Storwize V7000 [46] and HPE
3PAR StoreServ [19] may contain competitive compression
feature as well. If compression is performed at the file system
or lower layer, all applications, especially big data processing
workloads, running in the system can transparently benefit
from the enhanced storage efficiency and reduced storage I/O
cost per data unit. This feature also implies that only lossless
compression is acceptable to avoid influences on applications.
To the best of our knowledge, there is no practical solution at
present that provides hardware-accelerated data compression
at the layer of local or distributed file systems.

In this paper, we propose QZFS (QAT accelerated ZFS) that
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integrates Intel R© QAT accelerator into the ZFS file system
to achieve efficient data compression offloading at the file
system layer so as to provide application-agnostic and cost-
efficient data storage. QAT [24] is a modern ASIC-based
acceleration solution for both cryptography and compression.
ZFS [6,48] is an advanced file system that combines the roles
of file system and volume manager and provides a number
of features, such as data integrity, RAID-Z, copy-on-write,
encryption and compression.

In consideration of the goal of cost-efficiency, QZFS se-
lects to offload the costly gzip [1] algorithm to achieve high
space efficiency (i.e., high compression ratio) and low CPU
resource consumption at the same time. QZFS disassembles
the (de)compression procedures of ZFS to add two new mod-
ules for integrating QAT acceleration. First, a compression
service engine module is introduced to serve as a selector of
diverse compression algorithms, including QAT-accelerated
gzip and a number of software-implemented compression
algorithms. It implements compressibility-dependent offload-
ing (i.e., compression/non-compression switch) and selective
offloading by source data size (i.e., hardware/software switch)
to optimize system performance. Second, a QAT offloading
module is designed to efficiently offload compression and
decompression operations to the QAT accelerator. It lever-
ages the vectored I/O model, along with address translation
and memory mapping, to reconstruct data blocks prepared
by ZFS, making them able to be accessed by QAT hardware
through DMA operations. This kind of data reconstruction
avoids expensive memory copy to achieve efficient offloading.
Besides, considering QAT characteristics, this module further
provides buffer overflow avoidance, load balancing and fail
recovery.

In the evaluation, we deploy QZFS as the back-end file
system of Lustre [44] in clusters with varying nodes, and mea-
sure the performance with FIO micro-benchmark and practi-
cal genomic data post-processing. For FIO micro-benchmark,
QZFS with QAT-accelerated gzip can achieve up to 5x aver-
age write throughput with a similar compression ratio (3.6)
and about 80% reduction of CPU resource consumption (from
more than 95% CPU utilization to less than 20% CPU utiliza-
tion), compared to the software-implemented alternative. For
practical genomic data post-processing workloads, benefiting
from QAT acceleration, QZFS provides 65.83% reduction
of average execution time and 75.58% reduction of CPU re-
source consumption over the software gzip implementation.
Moreover, as compression acceleration is performed at the
file system layer, QZFS also significantly outperforms the
traditional simple gzip acceleration for applications while
conducting genomic data post-processing.

2 Background and Motivation

This section presents data compression benefits and the moti-
vation of hardware-assisted compression.
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Figure 1: Write throughput on hybrid storage of one 1.6TB
NVMe SSD and backup HDDs. Gzip and LZ4 achieve a
compression ratio of about 3.8 and 1.9 respectively.

2.1 Data Compression on Storage Devices

As high-performance storage devices, NVMe SSDs can re-
markably improve the read/write speed with low energy con-
sumption [25, 49]. Nonetheless, the limited capacity and high
price significantly discourage their widespread use and stor-
age devices have accounted for a large proportion of Total
Cost of Ownership (TCO) [50]. In the Mistral Climate Simu-
lation System, storage devices occupy more than 20% of the
TCO for the entire system [28]. Many studies have investi-
gated data compression on storage devices to improve I/O
performance and reduce system TCO simultaneously [31,36].

To show the benefits of data compression, we evaluated the
performance of a compression-enabled file system (i.e., ZFS)
by the FIO tool [5] on a hybrid storage system, including
one 1.6TB NVMe SSD (Intel R© P3700 series) and backup
HDDs. Two representative lossless compression algorithms,
gzip [16] and LZ4 [35], were used in ZFS to compare with
the compression OFF configuration. As shown in Figure 1,
the write throughput with data compression (for both gzip
and LZ4) outperforms the case of OFF because compression
can effectively reduce the total data size written into the stor-
age [33,53]. If the dataset size is larger than the capacity of the
1.6TB NVMe SSD, the excessive data are written into backup
HDDs. Due to the poor read/write performance of HDD, the
OFF configuration incurs throughput degradation rapidly once
the dataset size exceeds 1.6TB. The gzip algorithm achieves a
compression ratio of about 3.8 in this evaluation and the write
throughput degrades after the dataset size exceeds 6.1TB.
Since LZ4 is a fast compression algorithm (i.e. CPU time for
compression is largely reduced), it can bring a higher write
throughput than the gzip case although the compression ratio
is lower, with a value of about 1.9. However, the performance
of the LZ4 configuration begin to degrade after the dataset
size exceeds 3TB and has no advantage over the gzip algo-
rithm for a dataset size large than 4.5TB. In conclusion, data
compression improves space efficiency and allows more data
to benefit from the high-performance storage devices.
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Figure 2: The execution time of genomic data sorting under
different compression algorithms

2.2 The Selection of Compression Algorithms

Compression-enabled file systems leverage lossless data com-
pression algorithms to transparently serve upper applications.
An algorithm with both high compression ratio and low CPU
resource consumption is an optimal choice yet these two
aspects are actually hard to achieve at the same time. We
conducted an experiment with scientific big data workloads
running on ZFS to compare two representative lossless algo-
rithm: gzip and LZ4. SAMtools [30], a popular set of utilities
for sequence analysis, was used to manipulate 150GB ge-
nomic data stored on a NVMe SSD and perform the sorting
operation, which needs to create temporary files and conduct
a series of complex data reading and writing actions.

Figure 2 illustrates the breakdown of the total execution
time under different compression algorithms, including NVMe
SSD I/O time (Tio), sorting time (Ts) and (de)compression time
(Tc). The execution time for the compression OFF configu-
ration only comprises of Tio (117.21s) and Ts (231.77s). The
gzip and LZ4 algorithms have a similar Ts value because of
the same sorting processing while Tio is reduced to 35.02s and
48.45s respectively due to the different compression ratios:
3.56 for gzip and 2.41 for LZ4. However, the high compres-
sion ratio of gzip leads to a high Tc value of 278.02s, com-
pared to the 24.77s for the LZ4 configuration. This high CPU
resource consumption of gzip may further cause resource com-
petition and impact other tasks. Intuitively, if (de)compression
operations can be offloaded to hardware accelerators to elimi-
nate Tc for CPU, gzip could be an ideal compression algorithm
as it can achieve the highest space efficiency. This motivates
the design of a hardware-assisted compression-enabled file
system for high-performance and cost-efficient data storage.

2.3 Hardware-Assisted Data Compression

Nowadays, diverse hardware accelerators are continuously
emerging in cloud infrastructures and datacenters [10, 31, 32].
ASIC accelerators are increasingly attracting attentions due to
their advantages on performance and energy-efficiency over
general-purpose CPU, GPU and FPGA [1, 8, 32]. This paper
selects Intel R© QAT, a purpose-built ASIC for cryptography

and compression, to offload (de)compression tasks and free
up CPU resources. The latest high-performance QAT device
has been directly integrated into chipsets and is becoming
increasingly cheaper [22].

In essence, the offloading of a (de)compression task is to
replace the compression-related function call with an I/O call
to interact with the underlying QAT accelerator. However,
the way the QAT hardware treats data (e.g., physical address
and DMA operation) is different from that in the case of
software-implemented compression (i.e., using CPU). Run-
time translation and optimizations are necessary and impor-
tant to achieve an efficient offloading. Moreover, considering
the offload overhead (e.g., preparation/consumption of QAT
requests/responses and PCIe transactions) and the needed
preallocated system resources for QAT offloading, not all
(de)compression tasks are worth being offloaded into QAT
hardware. A well-designed heterogeneous data compression
system should investigate the necessity of software/hardware
switch or even compression/non-compression switch.

3 System Design

In this paper, based on ZFS file system and Intel R© QAT com-
pression accelerator, we propose QZFS (QAT-accelerated
ZFS), which can serve as either a local file system or the
back-end file system of Lustre (a type of parallel distributed
file system). The overall QZFS architecture, including the
I/O path of storage and the QAT acceleration subsystem, is
illustrated in Figure 3. The modification starts with the ZIO
Module of ZFS. The ZIO Module is a centralized I/O pro-
cess module where all I/O requests are abstracted as ZIOs
and forwarded to other modules for further processing, such
as data compression and checksum verification. Among the
subsequent modules, the ZIO_Compress Module is responsi-
ble for data (de)compression. To enable QAT offloading of
(de)compression operations, QZFS introduces two new mod-
ules: the Compression Service Engine and the QAT Offloading
Module.

To explain the functions of these QZFS modules, the com-
pression workflow is depicted in Figure 3. (1)-(2): The ZIO
Module forwards ZIO requests to the ZIO_Compress Module
which registers compression algorithms and delivers config-
uration information to the Compression Service Engine. (3):
The Compression Service Engine selects the compression
algorithm among one (gzip) accelerated by QAT and oth-
ers from software compression libraries. (4)-(5): The QAT
Offloading Module sends compression requests to the QAT
accelerator and consumes QAT responses to fetch compressed
result data. (6)-(8): The compressed result data is returned and
goes through the upper modules one by one. The data decom-
pression workflow is similar to this compression workflow but
does not involve the selection of decompression algorithm.

The main function of the Compression Service Engine is
to serve as a selector of diverse compression algorithms. The
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Figure 3: The overall architecture of QZFS

QAT-accelerated gzip is the default algorithm and another
four software-implemented compression algorithms, includ-
ing gzip, LZ4, ZLE and LZJB, are provided. The engine cur-
rently selects the compression algorithm according to the
configuration set by users. Besides, the Compression Service
Engine provides a uniform interface to the upper module.
This kind of decoupling makes it able to be easily extended to
support other hardware accelerators. Developers only need to
focus on the detailed implementation of a new compression
scheme and add it to this engine.

The QAT Offloading Module is responsible for offloading
data (de)compression operations to the QAT accelerator. The
existing source data prepared by the ZIO_Compress Module
are suitable for software-based compression schemes. How-
ever, they cannot be directly used in the (de)compression re-
quests to the QAT accelerator as data may be mapped into dis-
contiguous physical memory and cannot be accessed through
DMA operations of the QAT accelerator. To address this prob-
lem, a vectored (a.k.a. scatter/gather) I/O model is introduced
to avoid memory copy and ensure that the QAT accelerator
can sequentially read source data from multiple flat (i.e., phys-
ically contiguous) buffers and organize them to a single data
stream for (de)compression, or read (de)compressed result
data from a single data stream and organize them to multiple
flat buffers.

4 Implementation & Optimization

The implementation of QZFS prototype relies on QAT de-
velopment APIs and Linux environment (CentOS with Linux
Kernel 3.10) and it has been integrated into ZFS official re-

leases [37]. This section introduces detailed features and re-
cent bug fixes of QZFS, especially regarding performance
optimizations, to demonstrate the accomplishment of effec-
tive compression offloading in QZFS.

4.1 Compression Service Engine

The detailed architecture of the Compression Service Engine
is illustrated in Figure 4, which contains a compressibility
checker and an algorithm selector.

4.1.1 Compressibility Dependent Offloading

Compressibility is a performance factor that is determined by
data compression ratio to reduce unnecessary offloading op-
erations. Low compressibility means that data are not worth
being stored in a compressed format because, in that case, the
compressed data will not save much storage space but only
incur extra resource consumption for later decompression.
Even with the QAT acceleration, the decrease of unnecessary
offloading operations is beneficial as QAT resources can be
spared for useful (i.e., high compression ratio) tasks, espe-
cially in peak hours.

The compressibility checker in QZFS uses an auto-rejection
method to determine whether to store the data in a compressed
format or not. When the checker receives a ZIO request, it has
the knowledge of the source data size, denoted by Ssrc, and
presets the result data size, denoted by Sres, for placing the re-
turned compressed data. Conventionally, Sres may be set to the
same size as Ssrc when executing compression tasks. In QZFS,
the compressibility checker uses a default Sres = 0.9∗Ssrc for
QAT-accelerated gzip algorithm to indicate a compressibility
threshold of 10%. If the compressed result data overflows
the buffer of Sres, it is automatically rejected and the uncom-
pressed source data is returned to the ZIO_Comress Mod-
ule as the result. Compared to the original compressibility
threshold (i.e., 12.5%) in ZFS, QZFS actually relaxes the re-
striction as the decompression operation can be performed
more efficiently by the QAT accelerator. Users can further
adjust this compressibility threshold to maximize space ef-
ficiency, depending on the characteristics of workloads and
hardware conditions. For data decompression, the compress-
ibility checking is not necessary and the Sres is set to the size
of original uncompressed data, which is recorded by QZFS
during compression processing.

4.1.2 Selective Offloading by Source Data Size

The source data size (i.e., Ssrc) is an important factor that may
have an influence on system performance. ZFS has a parame-
ter named record size which defines the maximum size of a
block that may be compressed and written by ZFS. A storage
I/O operation with data size smaller than the record size may
be packed into one ZIO request for processing. That’s to say,
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Ssrc is variable within the upper limit defined by the record
size. ZFS uses a default record size value of 128KB, which
achieves a good performance in most cases, and users may
modify this parameter to obtain better performance in their
own scenarios.

QZFS selectively offloads ZIO requests with Ssrc from
4KB to 1MB and uses software alternatives to process other
ZIO requests. For small source data (i.e., Ssrc < 4KB), the
offload overhead, including preparation/consumption of QAT
requests/responses and PCIe communication, offsets most
of the benefit of QAT accelerating, so the software-based
compression is a better choice. The QAT support for big
source data (i.e., Ssrc > 1MB) requires a large kernel memory
preallocated to work as intermediate buffers. This memory
size is several times the product of the maximum Ssrc and
the number of allocated (typically tens of) QAT instances.
Moreover, for a fixed number of worker threads in ZFS that
synchronously offload (de)compression operations to QAT,
the use of bigger source data cannot give obviously higher
performance. Therefore, QZFS only preallocates a kernel
memory region that can support a maximum Ssrc of 1MB to
achieve both good performance and acceptable consumption
of kennel memory resources.

4.1.3 Applicability and Availability

The algorithm selector is implemented as a centralized sched-
uler of data compression algorithms. Algorithms are orga-
nized in a scalable algorithm vector that can easily be ex-
tended to incorporate other algorithms, either software-based
or hardware-assisted ones. Developers only need to focus on
the detailed implementation of a new compression scheme,
add it to this the algorithm vector and update the configura-
tion as needed. When runtime error occurs in some hardware
accelerator, the algorithm selector can seamlessly switch to
other software alternatives to provide fault tolerance and high
availability.

Currently, the selection of compression algorithm mainly
relies the the configuration, which defines the priorities of
different algorithms, with the QAT-accelerated gzip as the
default one. If in future, a number of hardware-assisted com-
pression algorithms with their own features are incorporated

into the Compression Service Engine, an intelligent selection
(e.g., use the hints from upper layers) is a good optimization
to reap the strengths of different compression schemes.

4.2 QAT Offloading Module

4.2.1 Vectored I/O Model

The QAT accelerator accesses data blocks through DMA op-
erations, which require the data to be stored in contiguous
physical memory. The original source and result data of a
ZIO request are stored using virtual memory pointed by two
pointers Psrc and Pres. The vectored I/O model can effectively
bunch together the discontinuous memory to form I/O trans-
actions for DMA operations. As illustrated in the left part
of Figure 5, we employ two buffer structures, flat buffer and
scatter/gather buffer list (SGL), to implement the vectored
I/O model.

The flat buffer consists of two parts: a data buffer length,
denoted by DataLenInByte and a pointer, pData, to the data
buffer owning contiguous physical memory. SGL is intro-
duced to organize multiple flat buffers in a vector manner
and consists of four parts: (1)numBuffers, the number of flat
buffers in this list; (2)pBuffers, a pointer to an unbounded ar-
ray containing multiple flat buffers; (3) pUserData, an opaque
field; (4)pPrivateMetaData, private representation of this
buffer list. In summary, SGL describes a collection of flat
buffers, each of which is physically contiguous. The QAT ac-
celerator can parse the SGL structure to obtain the beginning
physical address of each flat buffer and sequentially access
each data block through DMA operations.

4.2.2 Data Reconstruction and Memory Zero Copy

A simple approach for data reconstruction is to allocate
enough contiguous physical memory and copy data from/to
this memory. Specifically, before the (de)compression offload-
ing, a region of contiguous physical memory is allocated to
store data copied from Psrc and delivered in the request to
QAT. Also, another region of contiguous physical memory
is allocated to store the response (i.e., result data) from QAT.
After the completion of (de)compression offloading, the result
data is copied from the contiguous physical memory to Pres
prepared by ZIO.

Although the allocated contiguous physical memory can
be reused by multiple ZIO requests, this approach inevitably
introduces the overhead of memory copy, which likely be-
come a bottleneck in today’s high speed I/O. Therefore, we
introduce the vectored I/O model, along with virtual address
translation and memory mapping, to achieve memory zero
copy. As shown in Figure 5, the QAT Offloading Module
translates the virtual addresses of the source data prepared
by ZIO into physical addresses and organizes the physical
contiguous data blocks into the Input SGL structure.
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Figure 5: Data reconstruction and QAT offloading workflow in the QAT Offloading Module

A physical page (a.k.a. page frame) is the smallest fixed-
length contiguous block of physical memory into which vir-
tual pages are mapped by the operating system. The source
data represented by contiguous virtual addresses could be
divided into physical contiguous data blocks in terms of phys-
ical pages. The QAT Offloading Module directly maps these
physical pages to serve as the data of the flat buffers and
each flat buffer maps at most one PAGE_SIZE data. Note
that the start and end virtual addresses of the source data
may not be page-aligned, which has an influence on the num-
ber of involved physical pages. For example, in the case of
4KB PAGE_SIZE, a 11KB source data may correspond to
four physical pages (2KB+4KB+4KB+1KB), instead of three
ones. This information is important for the creation of the
data structures of Input/Output SGLs. The memory allocation
for the Input SGL data structure is performed according to
the maximum possible number of flat buffers: numBuffers =
(Ssrc >> PAGE_SHIFT) + 2.

The details of the data reconstruction for source data (i.e.,
building Input SGL) are as follows and the process for the
result data buffer to build Output SGL is similar. At first,
the virtual address indicated by the Psrc pointer (pointing to
the start address of the source data initially) is translated to
obtain the corresponding physical page structure. Note that
the virtual address may come from different kernel memory
zones, including the vmalloc region or the direct memory
region. The QAT Offloading Module checks whether the a
virtual address belongs to the vmalloc region by invoking the
is_vmalloc_addr function. If so, the vmalloc_to_page func-
tion is used to get the corresponding physical page structure;
otherwise, the virt_to_page function is used to obtain the right
page. Next, the QAT Offloading Module employs the kmap
function to establish a long-lasting mapping from kernel’s ad-
dress space to the obtained physical page. The pData field of
the first flat buffer points to the returned mapped address, plus

the same page offset as the Psrc value. The dataLenInBytes
field is accordingly set by considering the page offset. Finally,
the Psrc pointer moves to the beginning of the remaining un-
treated source data and the above steps are repeated to fill
subsequent flat buffers. For the last piece of the source data
that may correspond to only part of a physical page, the dataL-
enInBytes field is set to the actual size of this last piece. After
the completion of an offloading task, the kunmap function
needs to be invoked to release long-lasting mappings.

4.2.3 QAT Offloading Organization

Overflow avoidance and load balancing: When QZFS
boots up, the QAT Offloading Module initializes the QAT
logical instances to set up communication channels for re-
quests/responses to/from the QAT accelerator. Thus, a region
of contiguous physical memory needs to be allocated for
the QAT instance which includes an intermediate buffer to
place run-time process data (e.g., dynamic Huffman encod-
ing) of the QAT accelerator. The size of the intermediate
buffer should be enough for the maximally allowed source
data (i.e., 1MB). Data compression is supposed to reduce data
size but compression algorithms may cause data expansion
at some moment during compression. To avoid the buffer
overflow, its size is enlarged to be double of the maximally
allowed data size. Besides, when too many data compression
tasks are offloaded, the module may not obtain the QAT logi-
cal instances because there are not enough QAT computing
resources. Therefore, the module will balance the system’s
computational resources by sending the task to software alter-
natives and employing the CPU to finish it.

Fail recovery: A QAT compression session describes the
compression parameters to be applied across a number of
requests. After the initialization of logical instances and
source/result data reconstruction, the module sets up the com-
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munication with the QAT accelerator by QAT compression
sessions. Occasionally, the error may occur in these compres-
sion sessions, such as a driver process crash where a wrong
DMA address passed to the accelerator. If a failure on the
QAT accelerator cannot be handled correctly, the QAT device
may be restarted for recovery. In this situation, the QAT Of-
floading Module cleans all sessions and sets an availability
flag as FALSE to disable all QAT offloading actions until
the completion of re-initialization. The related internal data
structures, QAT logical instances and intermediate buffers
will be reset as well.

Offloading workflow: The data compression offloading
operations are organized as three steps shown in the right
part of Fig. 5. First, a header generator API function is called
to produce the gzip style header1, which requires the output
SGL as the parameter. The header is added to the front of
the output SGL, and the pData of the flat buffer is moved to
the corresponding offset of the gzip header. Second, the data
compression API function submits input and output SGLs
to the QAT accelerator that consumes the source data from
the input SGL and generates processed result data to the out-
put SGL. Note that the QAT accelerator uses the interrupt
mode for response processing which requires the module to
use the wait_for_completion_interruptible_timeout function
to wait the completion of the tasks. Third, a gzip compli-
ant footer2 is produced by the footer generator API function.
More details of the header and footer formats are given in
RFC 1952 [13], which are supported by the QAT accelerator.
The difference with data decompression is that it invokes the
data decompression API function for three steps.

5 Evaluation

In this section, we first describe the evaluation platform and
testing methodology. Then we use FIO micro-benchmark
and scientific big data processing workloads to evaluate our
implemented QZFS prototype on cluster servers.

5.1 Evaluation Methodology

Experimental testbed: We established an experimental
testbed with four physical servers, each of which was
equipped with two 22-core Intel R© Xeon R© E5-2699 v4 pro-
cessors, 128GB RAM, one NVMe SSD array and one Intel R©

DH8950 PCIe QAT card [21]. The NVMe SSD array was
comprised of three 1.6TB Intel R© P3700 Series NVNe SSDs.
In each server, a separate SATA SSD was used for housing the
operating system (CentOS 7.2) with Linux Kernel 3.10 and
QZFS. All these servers were connected via Intel R© XL710

1 a gzip header indicates metadata including compression ID, file flags,
timestamp, compression flags and operating system ID.

2 a gzip footer containing a CRC-32 checksum and the length information
of the original uncompressed data.

40GbE NICs and a 100GbE switch. The detailed topology is
illustrated in Figure 6.
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Figure 6: Topology of experimental testbed

Cluster: QZFS was deployed as the back-end file system
of Lustre distributed file system. To evaluate different Lustre
scenarios, three types of cluster settings were used: (1) all-
in-one single-node cluster, i.e., a single physical server as
both the client and the Object Storage Server (OSS); (2) three-
node cluster with one physical server as the client and the
other two physical servers as OSSes; (3) four-node cluster
with one more physical server as a client (on the basis of
the three-node cluster). All the servers in a cluster shared
the same Lustre distributed file system. The client server ran
benchmark workloads locally and read/wrote data from/to
one or two OSSes.

Note that Lustre inherently provides the ability to support
a large number of clients. In our in-lab evaluation, the num-
ber of available clients was limited. As a workaround, we
leveraged high-performance physical servers along with high-
speed NICs to work as heavy clients and produce enough
stress. In the following experiments, we will show that the
total stress is equivalent to tens to hundreds of ordinary clients.
The I/O stress from an ordinary client depends on a lot of
factors, including workload characteristics, client hardware
limits (e.g., NIC limit), the interconnection between Luster
clients and OSSes, etc. We assume that each ordinary client
generates an I/O stress between 100Mbps and 1Gbps.

Performance metrics: We mainly compared three con-
figurations: (1) OFF: QZFS without data compression; (2)
GZIP: QZFS with software-implemented gzip algorithm en-
abled; (3) QAT: QZFS with QAT-accelerated gzip algorithm
enabled. Other algorithms in the software compression li-
brary including LZ4, ZLE and LZJB may also be measured
for comparison. The following important metrics were col-
lected as performance indicators: read/write throughput of
micro-benchmarks, average execution time of completing big
data analytic tasks, compression ratio for indicating space
efficiency and CPU utilization (collected using Intel R© Perfor-
mance Analysis Tool [23]) for indicating computing resource
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consumption.
Particularly, we define a new comprehensive metric to mea-

sure the cost-efficiency of the entire system, which equals
compression ratio divided by CPU utilization (i.e., computing
resource consumption):

compression_ratio
cpu_utilization

CPU and high-performance storage devices account for a
large proportion of TCO. This metric reflects a combined
benefit of saved storage space and saved CPU resources, and
a higher value means more cost-efficiency gains. Note that
we do not consider QAT cost in this metric because QAT
device is becoming increasingly cheaper. The latest high-
performance QAT, directly integrated into chipsets, only costs
about $32 (comparing $132 for C625 chipset with QAT and
$100 for C624 chipset without QAT) [22], which is negligible
in comparison to CPU price.

5.2 Evaluation Benchmark
Micro-benchmark workloads: FIO (Flexible I/O tester) [5]
is a productive tool in Linux that can simulate all kinds of
I/O workloads and accurately measure I/O performance. We
used FIO to spawn several threads or processes for measur-
ing read/write throughput. The default FIO setting for ran-
dom data generation and management were employed. More
specifically, a buffer of random data (actually pseudo-random)
was created at the beginning and it was used continuously
during the test to reduce overhead. To comprehensively eval-
uate QZFS, we conducted the FIO experiments with different
I/O patterns, block sizes (i.e, the size of chunks for issuing
read/write I/O) and compression algorithms.

Scientific big data workloads: Genomic data post-
processing is a representative workload of scientific big data.
The original 3TB genomic dataset used in this experiment are
available in European Nucleotide Archive [29] and Interna-
tional Genome Sample Resource [11]. These data are stored
as specific formats, such as FastQ, BAM and SAM, which
are widely used in both industry and academia. For each
client, two genomic data post-processing tools, SAMTools
(v1.3.1) with htslib (1.3.2) [30] and Biobambam2 (v2.0.82)
with libmaus (2 2.0.435) [47], were used to work as comput-
ing workloads. Specifically, we selected five representative
operations from these two tools to evaluate the advantage of
QZFS. Converting is to convert one kind of genomic data
to other kind (e.g. FastQ format converted to BAM format
in this evaluation), which involves heavy CPU-bound tasks.
Viewing is to print all alignments information in the specified
input file to standard output in SAM format (with no header).
Sorting is to sort these data by leftmost coordinates and create
temporary BAM files as needed when the entire alignment
data cannot fit into memory. Merging is to merge multiple
sorted files, producing a single sorted output file that contains

all the input records and maintains the existing sorting order.
Indexing is to index a coordinate-sorted BAM or CRAM file
for fast random access.

5.3 FIO Micro-benchmark

The experiments were conducted in the four-node cluster
where 16 FIO threads were created in each Lustre client to
read/write job files independently from/to the two Lustre
OSSes. The total size of file I/O for each FIO thread is 2GB.
The read/write throughput stated in the evaluation is the sum
value collected from two clients and the CPU utilization is
the average value collected from Lustre OSSes.

Figure 7a shows experimental results for diverse I/O pat-
terns with a fixed 128KB FIO block size, including se-
quential read/write (SeqR/SeqW) and random read/write
(RandR/RandW). In the compression OFF configuration, the
average read throughput (i.e., the average value of SeqR and
RandR) is 18% higher than the average write throughput,
and RandR achieves up to 3937 MB/s throughput, which is
the highest. These results are in accordance with the hard-
ware characteristics of NVMe SSDs [17]. The average read
throughput in the GZIP configuration outperforms the average
write throughput by about 4.5x because the gzip algorithm has
an asymmetric compression/decompression speed, with the
former lagging much behind the latter [1]. After enabling the
QAT accelerator, the average read throughput is similar with
the average write throughput. In general, the QAT configura-
tion has the highest read/write throughput and cost-efficiency.
The GZIP configuration has a similar compression ratio with
the QAT configuration (3.78:3.65), but its high CPU resource
consumption (i.e., long compression time) causes not only
low write throughput but also low cost-efficiency. The QAT
offloading for gzip compression operations achieves about 5x
improvement on average write throughput and enhances the
cost-efficiency by a factor of more than four. In comparison to
the OFF configuration, the QAT configuration also provides a
throughput improvement (10% for read and 28% for write)
as the compressed data reduces storage I/O cost. Meanwhile,
the cost-efficiency is enhanced by a factor of more than three
due to the high compression ratio (3.65).

Figure 7b shows the I/O throughput and cost-efficiency
with the same amount of sequential read and write opera-
tions (SeqR:SeqW = 1:1) while varying the FIO block size in
each I/O request from 4KB to 1MB. Note that the record size
(128KB by default) in ZFS only defines the maximum size
of a block that may be compressed and written by ZFS. As
a result, a FIO block may be directly compressed/written by
ZFS or multiple FIO blocks may be combined into a whole
block for processing. For the compression OFF configuration
which can directly benefit from the high-performance NVMe
SSDs, the I/O throughput gradually grows from 1899MB/s
to 3213MB/s (about 70% improvement) as the increase of
FIO block size. For the GZIP and QAT configurations, the
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(c) Different compression algorithms

Figure 7: The read/write throughput and cost-efficiency on FIO micro-benchmark

varying of FIO block size does not show obvious influence
on I/O throughput. Still, the QAT configuration always has
the highest I/O throughput and cost-efficiency. A notable phe-
nomenon is that for the case of 4KB FIO block size with
software or QAT-accelerated gzip in ZFS, the cost efficiency
(actually compression ratio) is obviously higher than other
cases with bigger FIO block sizes. This may be a joint result
of the record size mechanism in ZFS and the reuse of ran-
dom data in FIO. Specifically, multiple small (i.e., 4KB) FIO
blocks may have a higher probability of being combined into
a whole block in ZFS for compression. Then, the possible
reuse of random data across these FIO blocks leads to a high
compression ratio for the whole block.

Figure 7c compares the QAT-accelerated gzip with other
software-implemented fast compression algorithms includ-
ing LZE, LZJB and ZLE. The QAT configuration gains an
average of 12.71% throughput improvement with SeqW and
an average of 4.83% throughput improvement with SeqR,
compared to these software-implemented algorithms. Also,
QAT-accelerated gzip in ZFS provides an average of 2.25x
and 1.62x cost-efficiency for SeqW and SeqR respectively.
This performance advantage comes from the high compres-
sion ratio of the gzip algorithm and the offloading of gzip
(de)compression operations. In addition, we can see that
SeqR operations show an obviously higher cost-efficiency
than SeqW operations. This is because decompression typi-
cally costs less computing resources in comparison to com-
pression.

Finally, we give a calculation about how many ordinary
clients the total stress in FIO experiments is equivalent to.
As shown in Figure 7, the average stress from the two heavy
client servers is more than 4000MB/s in the QAT configura-
tion, which equals the stress from 32 to 320 ordinary clients
(100Mbps to 1Gbps each).

5.4 Scientific Big Data Evaluation

The scientific workloads running on Luster clients interact
with the Luster OSSes to access the stored scientific data. We
used two different deployment modes for evaluation: shared
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Figure 8: Execution time of a complete converting operation
under different data compression schemes

deployment mode (i.e., single-node cluster) and separate de-
ployment mode (including three-node and four-node clusters).

5.4.1 Shared Deployment Mode

Eight scientific workload processes ran in parallel in the
shared server. Each workload process was set to read/write
9.5GB data and a total of 76GB data may be processed simul-
taneously in memory.

We first validated the benefits of QAT-accelerated gzip
compression at the file system layer over simple gzip use
at the application layer (i.e., the compressed big data needs
to be first decompressed into storage and then read again for
processing). The experiment results are shown in Figure 8. For
the first five configurations, the execution time of a complete
converting operation consists of two parts: (1) decompression
process time with given computing resources (e.g., 4 cores
or AHA accelerator), which includes the time for reading the
compressed data from storage, the time for decompression
and the time for writing the uncompressed data into storage;
(2) converting process time using eight scientific workload
processes, which includes the time for reading uncompressed
data from storage (76GB totally), the time for converting
operations and the time for writing new format data back to
storage.
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(a) Sorting performance with varying thread #
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(b) Different operations under 8 threads

Figure 9: The execution time and cost-efficiency on shared mode deployment (single-node cluster)
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(a) Three-node cluster with one client and two OSSes
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(b) Four-node cluster with two clients and two OSSes

Figure 10: The execution time and cost-efficiency on separate mode deployment

The first five configurations share a same converting pro-
cess time of 161.12s. The decompression process time of
OpenCL FPGA, IBM Verilog and AHA is calculated accord-
ing to the performance results reported in [1]. These accel-
erators show an obvious advantage on decompression com-
pared to the 4 or 8 CPU cores. QZFS keeps data compression
transparent to scientific workloads and obtains the shortest
execution time (156.71s). This value is even smaller than the
above pure converting process time without (de)compression
(161.12s) because QZFS directly reads compressed data from
storage, performs decompression and converting simultane-
ously and then writes compressed data back to storage. Since
the reading/writing of compressed data largely reduces stor-
age I/O cost and (de)compression is offloaded to QAT accel-
erator, a higher performance (i.e., shorter execution time) is
achieved.

It is true that an application may integrate (de)compression
module that can efficiently process compressed big data (e.g.,
small block based (de)compression and multiple threads),
along with the enabling of QAT acceleration, to achieve simi-
lar performance to QZFS. However, this likely involves heavy
modifications for each new application. In comparison, one-
time modification to the file system (i.e., the proposed QZFS)
can transparently benefit all applications running on it.

Figure 9a shows the execution time and cost-efficiency with
varying number of threads in each scientific workload process

performing sorting operations. When there is only one thread
in each workload process, the software gzip configuration
gives an execution time of 426s and a cost-efficiency value
of 6.6. The QAT configuration provides a 30% reduction of
execution time and enhances the cost-efficiency by a factor
of nearly 10 due to the faster (de)compression and largely
reduced CPU resource consumption. As the thread number
increases from 1 to 16, the execution time decreases gradually
for both GZIP and QAT configurations. In the case of 16
threads in each workload process, the performance advantage
of QAT-accelerated gzip grows from 30% to 60% as more
threads produce more parallel I/O requests and increases the
utilization of underlying QAT accelerators. This further leads
to a growing of CPU utilization for sorting from 5.8% to
12.2% in the QAT configuration. In comparison, the CPU
utilization in the GZIP configuration grows from 64% to
83%.

Figure 9b evaluates the post-processing scientific work-
loads performing different operations with a fixed eight
threads in each workload process. All the five types of oper-
ations need to read the genomic data from storage and the
operations excluding viewing further needs to write the newly-
generated data (smaller or bigger) back to storage. We can see
that the QAT configuration achieves 73% and 63% reduction
of execution time for the converting and merging operations
respectively over the GZIP configuration. For other opera-
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tions, the QAT-accelerated gzip in ZFS can provide about
2x performance enhancement. On average, the QAT config-
uration brings a 3.91x cost-efficiency improvement over the
software-implemented gzip. Especially, the cost-efficiency
enhancement is up to 5.57x for the sorting operation because
it is a complicated operation that creates many intermediate
data files and repeatedly involves reading (decompression)
and writing (compression) actions.

The total stress from the one heavy client (eight threads in
each workload process) is up to 75GB/35s=2143MB/s (the
viewing operation), which equals the stress from 17 to 171
ordinary clients (100Mbps to 1Gbps each).

5.4.2 Separate Deployment Mode

We first evaluated QZFS with one client that remotely ac-
cesses two OSSes and then increased the client number to
two. In each client sever, eight scientific workload processes
ran in parallel and each workload process with a fixed eight
threads was set to read/write 9.5GB data.

In the three-node cluster with different operations, as shown
in Figure 10a, the QAT configuration on average reduces
63.10% execution time and achieves more than 6x cost-
efficiency compared with the QAT configuration. Like the
shared deployment mode, the QAT-accelerated gzip in ZFS
still shows a high performance enhancement (68.95% reduc-
tion of the execution time) for the converting operation. A
notable phenomenon is that the biggest cost-efficiency en-
hancement (9.11x) is witnessed on the viewing operation
because it does not need to write data back to the remote stor-
age (i.e., reduced CPU resource consumption on the costly
network stack).

For the case of four-node cluster with double stress from
two heavy clients, as shown in Figure 10b, the overall per-
formance results are similar to the case of three-node cluster.
In comparison to the software-implemented gzip in ZFS, the
QAT acceleration on average provides a 63.14% reduction of
execution time and a 6.26x improvement of cost-efficiency.
It demonstrates that QZFS has a good scalability to provide
stable and effective compression services as the scaling of
clients. The total stress from the two heavy clients is up to
150GB/75s=2000MB/s (the viewing operation), which equals
the stress from 16 to 160 ordinary clients (100Mbps to 1Gbps
each).

6 Bottleneck Analysis

This section analyzes the performance bottleneck in QZFS.
We use the experiment result of RandW in Figure 7a for anal-
ysis, which shows the highest I/O throughput (4680MB/s)
for the QAT configuration. In this case, the average CPU
utilization in the two OSSes is 20.2%, which means CPU
resources are still abundant. The compression ratio is 3.55
and the actual NVMe SSD I/O throughput is 4680/3.55 =

1318MB/s, which means the NVMe SSD is not the bottle-
neck as the compression OFF configuration can achieve a
storage I/O throughput of 3314MB/s. The network through-
put for each physical server is about 4680/2 = 2340MB/s =
18.72Gpbs, which is only half of the hardware limit of 40GbE
NIC. The QAT compression throughput in each Lustre OSS
is also about 18.72Gpbs, which reaches nearly 80% of the
hardware limit (24Gpbs [21]) of a DH8950 QAT card. In
summary, the I/O throughput (4680MB/s) does not achieve
the hardware limit of the testbed system while this through-
put cannot be further enhanced even if we launch more FIO
threads in clients to generate more RandW jobs in parallel.

Actually, the main performance bottleneck may reside in
the ZFS software stack. Although ZFS is designed to auto-
matically leverage multi-core resources, the number of ZFS
worker threads that can offload (de)compression operations to
QAT is restricted by: the number of CPU cores and the number
of available QAT instances. What’s more, the worker thread
interacts with QAT in a synchronous mode, which means
the worker cannot submit the next (de)compression request
until the completion and consumption of the first one. As a
result, the use of more FIO threads at the application layer
cannot give rise to more concurrent/parallel (de)compression
requests sent to QAT.

An approach to overcome this bottleneck is to optimize the
way the worker thread interacts with QAT to increase the uti-
lization of the underlying QAT accelerator. QAT provides an
inherently non-blocking interface with the request/response
mechanism. If we can enable asynchronous offload mode in
ZFS, a single worker thread then has the ability to concur-
rently offload multiple (de)compression operations to QAT
and the QAT hardware limit can be easily reached with only
several threads. However, the enabling of asynchronous of-
fload mode is a hard work, involving the design of (1) asyn-
chronous support in all layers of ZFS software stack to cor-
rectly handle an uncompleted (de)compression block and
(2) efficient pause (context saving) and resumption (context
restoring) of an offload job. One can refer to our previous
work [20] on how to enable high-performance asynchronous
crypto offload framework for TLS servers/terminators.

7 Related Work

Hardware-assisted data compression techniques has been well
studied in the literature by using general-purpose accelerators.
Patel et al. proposed a parallel algorithm and implemented
a bzip2-like lossless data compression scheme on GPU ar-
chitecture [39]. Their implementation enabled the GPU to
become a co-processor of data compression, which lightened
the computing burden of CPU by using idle GPU cycles.
Ozsoy et al. [38] presented a pipelined parallel LZSS com-
pression algorithm for GUGPU. Li et al. proposed an efficient,
scalable GPU-accelerated OLAP system which tackled the
bandwidth discrepancy using compression and an optimized
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data transfer path [31]. Abdelfattah et al. utilized the Open
Computing Language to implement high-speed gzip compres-
sion on an FPGA, which achieved higher throughput over
standard compression benchmark, with equivalent compres-
sion ratio [1]. Kim et al. presented high throughput Xpress
FPGA compressor to achieve CPU resource saving and high
power efficiency [26]. Fowers et al. detailed a scalable fully
pipelined FPGA accelerator that performs LZ77 compression
and static Huffman encoding at rates up to 5.6 GB/s [15].
Pekhimenko et al. employed FPGA and GPU accelerators
to implement Base-Delta encoding data compression algo-
rithms in stream processing [40]. In comparison, our QZFS
leverages the emerging ASIC accelerator for compression
offloading and integrates it into the layer of file system to
provide transparent, high-performance and cost-efficient com-
pression service.

8 Conclusions

High storage I/O performance and low Total Cost of Owner-
ship (TCO) are two important optimization objectives, which
are hard to be obtained at the same time. Data compression
is considered as an effective solution, but the compression
tasks incur high computing resource consumption and likely
impact the running of application workloads. Instead of di-
rectly accelerating compression tasks in applications, this
paper investigated the data compression offloading at the file
system level. QZFS (QAT accelerated ZFS) was proposed
to integrate Intel R© QAT accelerator into ZFS file system to
provide application-agnostic and cost-efficient data storage.
The evaluation has validated that QZFS can effectively save
CPU resources and further enhance the performance of big
data processing workloads in comparison with the software-
implemented gzip in ZFS or traditional gzip acceleration for
applications.
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