
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Tangram: Bridging Immutable and Mutable
Abstractions for Distributed Data Analytics
Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu,

Zhanhao Liu, and Shuo Tu, The Chinese University of Hong Kong

https://www.usenix.org/conference/atc19/presentation/huang

Tangram: Bridging Immutable and Mutable Abstractions
for Distributed Data Analytics

Yuzhen Huang∗, Xiao Yan∗, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu, Zhanhan Liu, Shuo Tu
The Chinese University of Hong Kong

Abstract
Data analytics frameworks that adopt immutable data abstrac-
tion usually provide better support for failure recovery and
straggler mitigation, while those that adopt mutable data ab-
straction are more efficient for iterative workloads thanks to
their support for in-place state updates and asynchronous
execution. Most existing frameworks adopt either one of
the two data abstractions and do not enjoy the benefits of
the other. In this paper, we propose a novel programming
model named MapUpdate, which can determine whether a
distributed dataset is mutable or immutable in an application.
We show that MapUpdate not only offers good expressive-
ness, but also allows us to enjoy the benefits of both mutable
and immutable abstractions. MapUpdate naturally supports
iterative and asynchronous execution, and can use different
recovery strategies adaptively according to failure scenarios.
We implemented MapUpdate in a system, called Tangram,
with novel system designs such as lightweight local task man-
agement, partition-based progress control, and context-aware
failure recovery. Extensive experiments verified the benefits
of Tangram on a variety of workloads including bulk process-
ing, graph analytics, and iterative machine learning.

1 Introduction

Existing offline data analytics frameworks can be roughly
classified into two categories according to their data abstrac-
tions: immutable or mutable. The choice of data mutability
results in two sets of fundamentally different system features
and complex trade-offs between efficiency and robustness 1.

MapReduce [17] and Spark [70] are representative systems
that adopt immutable data abstractions, where data accesses
are bulk data movements. MapReduce and Spark provide ef-
fective straggler mitigation (by speculative execution) and
efficient failure recovery (by recomputing only the lost par-
titions), which are critical for large-scale production deploy-

∗Co-first-authors ordered alphabetically.
1We refer robustness to efficient failure recovery and straggler mitigation.

ment. As their immutable data abstractions imply a bulk syn-
chronous parallel (BSP) execution model and lack support
for in-place update, MapReduce and Spark do not perform
well for workloads that benefit from fine-grained state access
and asynchronous execution 2, e.g., sparse logistic regression
and single source shortest path (SSSP).

There are also many systems that adopt mutable data ab-
stractions to accelerate iterative workloads, such as vertex-
centric graph systems (e.g., Pregel [36], GraphLab [34, 35],
PowerGraph [21]) and machine learning systems based on
the parameter server architecture (e.g., Parameter Server [31],
Petuum [60], TensorFlow [1]). Mutable abstractions enable
features such as fine-grained state access and asynchronous
execution, which result in enhanced performance for iterative
graph analytics and machine learning workloads. However,
mutable abstractions make failure recovery and straggler mit-
igation more challenging. In these systems, failure recovery
usually relies on a full restart from the latest checkpoint, and
straggler mitigation with speculative execution is not sup-
ported as the backup tasks will conduct repetitive updates.

In general, immutable data abstraction leads to efficient
failure recovery and effective straggler mitigation, while mu-
table data abstraction supports a richer set of features at the
expense of weaker robustness. We discuss in greater details
the interplay among data abstractions, system features and
robustness in Section 2. In summary, a clear distinction in
existing systems is that they support either mutable or im-
mutable data abstraction, and lack a mechanism to choose
which abstraction to use according to a given workload. Our
analysis on the trade-offs between the two data abstractions
leads to the following questions: Can we model both mutable
and immutable data abstractions under a unified framework?
Can the system determine which abstraction to use according
to the workloads? Is it possible to provide efficient failure
recovery and straggler mitigation under mutable abstraction?

2Compared with BSP, asynchronous execution by stale synchronous par-
allel (SSP) [24,60] or asynchronous parallel (ASP) [49,58] allows the machi-
nes/objects to have different progresses in iterative applications. The progress
differences among the machines are bounded in SSP but unbounded in ASP.

USENIX Association 2019 USENIX Annual Technical Conference 191

We propose a distributed data analytics system, called Tan-
gram, to bridge the gap between mutable and immutable
data abstractions. Tangram adopts a new programming model,
MapUpdate, which is used in the form A.map(B).update(C),
where A, B and C are distributed data collections. Similar to
MapReduce, the map tasks in MapUpdate are coarse-grained
and side-effect-free, which allows speculative execution for
straggler mitigation and failure recovery by only recomputing
the lost partitions. However, the side-input (i.e., collection
B) is read on a per-record basis and the update tasks conduct
in-place update on states (i.e., collection C) to make recent
updates visible to the map tasks. On this basis, MapUpdate
also inherently supports iterative and asynchronous execution.

MapUpdate provides a simple rule to determine whether a
collection should be mutable (Section 3), thus enabling the
system to use mutable or immutable data abstraction for each
collection adaptively according to a given workload. With this
adaptability, Tangram provides elegant implementations for
workloads including bulk processing, vertex-centric graph an-
alytics and iterative machine learning (Section 4). In addition
to good expressiveness, the ability to determine data mutabil-
ity also enables the system to apply different failure recovery
strategies for immutable and mutable collections, providing
similar robustness as immutable systems (Section 5).

Tangram translates a MapUpdate plan (i.e., an invocation of
“A.map(B).update(C)”) into a number of map and update tasks.
To reduce the overhead of centralized scheduling, Tangram
uses a lightweight local task management strategy to schedule
the execution of the tasks and to resolve access conflicts on
each machine. A partition-based progress control mechanism
is introduced to support iterations and asynchronous execu-
tion (Section 5). To achieve high efficiency, Tangram also
incorporates optimizations such as delay combiner, process
cache, and local zero-copy communication.

Our experiments show that Tangram provides efficient fail-
ure recovery and effective straggler mitigation. We also imple-
mented a variety of workloads (e.g., bulk processing, machine
learning, graph analytics, distributed crawler) on Tangram
and compared their performance with specialized systems
and highly optimized low-level MPI implementations. We
found that Tangram can concisely express these workloads in
an intuitive manner and the experiments show that Tangram’s
performance is comparable with that of specialized systems.
Tangram’s expressiveness and efficiency are especially useful
for pipelined workloads consisting of multiple types of tasks
as it eliminates context switch overheads.

Our main contributions can be summarized as follows:

• An in-depth analysis of the interplay among data abstrac-
tion, system features and robustness in existing systems.
(Section 2)

• A novel programming model that can determine data
mutability and can model both mutable and immutable
data abstractions, resulting in good expressiveness. (Sec-
tions 3 and 4)

• A set of novel designs (e.g., partition-based progress
control) and optimizations (e.g., delay combiner) that
support different workloads efficiently on a common
runtime. (Section 5)

• A comprehensive evaluation of Tangram’s performance
on a variety of workloads. (Section 6)

2 Immutable and Mutable Abstractions

We review related systems and analyze the complex interplay
among their data abstractions, key features, failure recovery
and straggler mitigation strategies. For convenience of discus-
sion, we refer to systems that adopt an immutable/mutable
data abstraction as immutable/mutable systems. We give a
summary in Table 1 and discuss the details below.

Data-parallel analytics frameworks such as MapRe-
duce [17], DryadLINQ [68] and Spark [70] are typical ex-
amples of immutable systems. They use functional dataflow
graphs to model the dependency among datasets and break a
job into multiple stages with dependency. The parallel tasks
in each stage are independent and the stages are executed in a
synchronous manner in which a stage can only start after its
predecessors finish. This execution model enables straggler
mitigation with speculative execution, which has been widely
adopted and optimized in practice [3–5, 17, 71].

Immutable systems also provide efficient lineage-based
failure recovery, for which only the lost data partitions are re-
constructed from their parent partitions in the lineage graph.
Compared with checkpoint-based recovery, lineage-based re-
covery can distinguish failure scenarios and does not need to
roll back to the latest checkpoint upon every failure. For ex-
ample, in K-means, if a machine holding a part of the training
samples fails (i.e., narrow dependency), Spark only needs to
reload the lost samples in parallel and recompute their updates
to the centers. Only in cases such as PageRank, when the rank
values of some vertices are lost (i.e., wide dependency), a
full re-computation from the latest checkpoint is required.
Moreover, Spark only checkpoints/reloads datasets that have
a long lineage graph containing wide dependency (e.g., the
rank RDD in the above example), which is more efficient than
checkpointing all RDDs involved in computation.

Immutable systems are inherently stateless and only sup-
port BSP. However, many iterative workloads have intuitive
stateful representations (e.g., the rank values in PageRank, and
the model parameters in sparse logistics regression) and can
benefit from asynchronous execution. For example, machine
learning algorithms such as stochastic gradient descent (SGD)
converge faster under SSP and ASP [24, 49, 69], and it has
also been proven that a number of asynchronous graph algo-
rithms have faster convergence compared to their synchronous
counterparts [49, 73]. Therefore, many specialized mutable
systems such as vertex-centric graph systems [21, 35, 36] and
parameter-server-based machine learning systems [31, 60]
support in-place state updates and asynchronous execution.

192 2019 USENIX Annual Technical Conference USENIX Association

Table 1: The data abstractions and key features of some representative systems

Category Systems
Usability Abstraction System Support

Programming
Model

State
Representation

Access Pattern
(Shuffle)

Execution
Model

Straggler
Handling

Failure
Recovery

Stateless
Dataflow

MapReduce [17], DryadLINQ [68],
Spark [70] functional immutable coarse-grained BSP

speculative
execution

lineage and
checkpoint

Distr. Shared
Mem. Piccolo [46] push/pull mutable kv table fine-grained BSP task stealing checkpoint

Parameter
Server based

Parameter Server [31] push/pull mutable kv table fine-grained BSP/SSP/ASP N/A replication

Petuum [60] push/pull mutable kv table fine-grained BSP/SSP/ASP N/A checkpoint

Distributed
Graph

Pregel [36] vertex-program mutable state coarse-grained BSP N/A
checkpoint or

message replay

GraphLab [34, 35], PowerGraph [21] vertex-program mutable state fine-grained BSP/ASP N/A checkpoint

Tangram functional map
in-place update immutable/mutable partition-based BSP/SSP/ASP

partition
migration

lineage and
checkpoint

Asynchronous execution also makes mutable systems more
robust to micro stragglers 3 as fewer barriers are enforced. In
contrast, immutable systems are prone to micro stragglers as
their BSP execution model enforces a synchronization barrier
in every iteration.

However, mutable systems only provide sub-optimal
system-level solutions to straggler mitigation and failure re-
covery. Most of the mutable systems in Table 1 rely on the
nature of the applications for straggler mitigation and do not
provide a system-level support. For example, graph systems
such as Pregel [36] and PowerGraph [21] rely on graph par-
titioning to ensure a balanced workload distribution among
workers. Parameter Server [31], Petuum [60], GRACE [58]
and Maiter [73] utilize the asynchronous nature of the ap-
plication algorithms to mitigate micro stragglers. Mutable
systems do not support speculative execution as updates are
conducted in a fine-grained manner and it is costly to keep
track of the committed writes in order to avoid repetitive up-
dates. Instead, mutable systems typically use task stealing to
handle stragglers [23, 46].

For fault tolerance, mutable systems usually require a full
restart from the latest checkpoint (e.g., Petuum, Pregel), or
use expensive replication when recovery time is critical (e.g.,
Parameter Server). Contrary to immutable systems, mutable
systems often recompute everything from the latest check-
point. In addition, any failure would cause these systems to
discard and reload all data. The key problem is that these
systems do not distinguish the mutable and immutable parts
in an application. Although existing mutable systems can be
modified individually to support more efficient fault tolerance,
we offer a unified mechanism to solve this problem, which
is especially useful for pipelined workloads where datasets
can change between mutable and immutable status (e.g., the
TF-IDF vectors in the pipelined workload in Section 6.2).

3Micro stragglers are transiently stalling workers and may be caused by
packet loss, system cron jobs, etc. Macro stragglers are slow due to more
persistent reasons, such as workload imbalance and resource contention.

3 Programming Model

In this section, we introduce our MapUpdate programming
model and discuss its differences from MapReduce and
stream processing frameworks.

3.1 MapUpdate

The basic data abstraction in our MapUpdate programming
model is collection, which contains a set of objects (or records)
and is usually kept in memory. A collection is divided into
partitions and partitions are distributed across machines in
the cluster (with hash partitioner by default, but configurable
by users). The MapUpdate programming model is typically
used in the form of

A.map(B, map_func).update(C, update_func),
in which A, B, and C are map collection, side-input collec-

tion, and update collection, respectively. The map_func has a
signature (T, [S, . . .]) => seq(K,V), which takes in an object
of type T in the map collection and (optionally) handler(s) S
to the side-input collection(s), and generates some key/value
(K/V) pairs. The update_func has a signature (U∗,V) => nil,
which takes in a pointer U∗ to an object in the update collec-
tion and an update value V , and returns nothing.

To execute a MapUpdate command (also called a plan), a
machine launches parallel map tasks on its local partitions of
the map collection, where each map task performs map_func
on the objects in one partition of A to generate intermediate
results. The map_func may use the information (parameters)
provided in the side-input collection B. The intermediate re-
sults (of a map task) are then shuffled according to their keys
and committed to the corresponding objects in update col-
lection C with the update_func. By default, the retrieval of
the objects in the side-input collection is fine-grained (i.e.,
on a per-key basis), while the shuffle of intermediate results
and modification to the update collection are conducted on
a per-partition basis. MapUpdate associates progress with
each partition and allows different partitions to have differ-

USENIX Association 2019 USENIX Annual Technical Conference 193

ent progresses, and state access is also progress dependent
(Section 5.2). This partition-based state access pattern of
MapUpdate is different from the coarse-grained state access
pattern in dataflow systems (e.g., Spark), in which all parti-
tions have the same progress (i.e., BSP). Task execution in
the Tangram system is also partition-based, i.e., a partition is
the granularity of task execution.

MapUpdate has an explicit side-input collection. In con-
trast, without the side-input, existing systems (e.g., Spark)
may use broadcast for state sharing, which is inefficient for
large and sparse states (e.g., sparse logistic regression). Some
other systems (e.g., Google Dataflow [2]) also support the
side-input collection but require it to be small and immutable.
MapUpdate does not have such constraints, enabling it to suc-
cinctly and efficiently express workloads that have intuitive
stateful representations (see examples of machine learning
and graph analytics applications in Section 4). MapUpdate
also does not require A, B and C to be different collections.
When A =C or B =C, by default, MapUpdate does not make
a copy of C for read. Instead, MapUpdate reads and writes the
same collection, which enables the map tasks to see the latest
(maybe inconsistent) updates. As we will show in Section 4,
this is important for the asynchronous execution of workloads
such as distributed crawler as they can tolerate inconsistent
states and benefit from fewer synchronization barriers.

MapUpdate ensures consistency 4 if a plan (e.g., word
count) does not write/read the same collection. For plans that
write/read the same collection, consistency is not guaranteed.
This is not problematic because applications such as SGD can
trade consistency for efficiency without sacrificing correct-
ness, and many specialized systems deliberately incorporate
designs to benefit from that. When strict consistency is re-
quired, users can create another copy of the read collection for
write as in Spark and Piccolo. MapUpdate does not enforce
any order when committing the updates of the map tasks,
and the results of a plan may not be deterministic for some
applications (e.g., SGD based logistic regression). In the face
of failure, MapUpdate ensures that each update is committed
exactly once.

In general, the map collection A contains the input data,
such as samples in machine learning and documents in word
count, while the side-input collection B provides informa-
tion needed in computation, such as model parameters in
machine learning. The update collection C holds the com-
putation results, e.g., the final count values in word count.
The side-input collection can be omitted, for example, a user
can write docs.map(map_func).update(count, update_func)
for word count. Instead of a single collection and function,
users can provide multiple side-input collections, update col-
lections, and update functions. Users can easily specify how
a plan is executed using the configurations in Table 2, for ex-
ample, A.map(B).update(C).setIter(100).setStaleness(2) will

4At iteration t, a read on data sees all updates from iteration smaller than
t but not updates from iteration equal or larger than t.

Table 2: Configurations in MapUpdate

Configuration Description
setIter(int n) Run for n iterations

setStaleness(int s) Set staleness to s
setCombine(func) Register combiner

setCheckpointInterval(int n) Set checkpoint interval

conduct the MapUpdate plan for 100 iterations using SSP
with staleness = 2. Additionally, setCombine(func) provides
a function to combine the map outputs before shuffling for
communication reduction, and setChecktpointInterval(n) con-
figures the checkpoint interval in an iterative application. We
will show how these flexibilities of MapUpdate translate into
good expressiveness in Section 4.

3.2 Comparison with Existing Frameworks
We highlight the main differences between MapUpdate and
MapReduce [17], Flink [10] and Spark Structured Stream-
ing [6] in this section.
MapReduce. MapUpdate differs from MapReduce in sev-
eral important aspects. First, while map in MapUpdate is
functional (similar to map in MapReduce), update allows
for asynchronous in-place modification to the stateful collec-
tion. Second, MapUpdate allows the side-input collections
to be specified explicitly and access to the side-input col-
lections is fine-grained, which improves efficiency in many
applications such as machine learning and graph analytics.
Third, with designs to be introduced in Section 5, MapUp-
date provides support for iteration and consistency protocols
including BSP, SSP and ASP (configurable by setStaleness).
Although there are attempts to support key-value-style up-
date (IndexedRDD [26]) and iteration (HaLoop [9], itera-
tive MapReduce [18], Map-Reduce-Update [8]) under the
MapReduce framework, MapUpdate is fundamentally dif-
ferent as these systems do not support in-place updates and
asynchronous execution due to their data immutability.

The most important contribution of MapUpdate, however,
is that it provides a simple mechanism for the system to
determine whether a collection is mutable in a plan from
the API call: the update collection is mutable, and other
collections, if different from the update collection, are con-
sidered immutable. For example, a MapUpdate plan train-
ing a logistic regression model may be expressed as sam-
ples.map(param).update(param), and the system can infer
that collection param (storing the parameters) is mutable
and collection samples (storing data samples) is immutable.
The ability to determine data mutability allows the system
to distinguish failure scenarios and provides efficient failure
recovery strategies accordingly as in immutable systems. For
example, when a machine fails, the system can determine
whether the failed machine holds partitions of param. If not,
only the lost partitions of samples need to be reloaded. Other-
wise, the system rolls back to the latest checkpoint for param,
but the partitions of samples on the healthy machines do not

194 2019 USENIX Annual Technical Conference USENIX Association

need to be reloaded.
To support speculative execution, MapUpdate restricts up-

dates to be conducted on a per-partition basis, in which up-
dates from a map partition are committed together. This per-
partition update strategy enables Tangram to record which
partition has already committed update and is crucial for spec-
ulative execution.

Stream Processing Frameworks. Modern stream process-
ing systems such as Flink and Spark Structured Streaming
also support both mutable and immutable abstractions but
with restricted applicability. We discuss how MapUpdate is
different from them here.

First, states in MapUpdate are shared and can be accessed
globally, which allows Tangram to support workloads such
as machine learning and graph analytics more efficiently. In
contrast, states in Flink are bounded with operators and states
in Spark Structured Streaming are restricted to key groups. In
fact, states in Flink and Spark Structured Streaming are mainly
designed for maintaining states across streaming records (e.g.,
for session tracking). Thus, they are not efficient for read/write
in machine learning and graph analytics workloads, which
introduce loops in the computation graph. Specifically, using
loops in Flink requires to limit the input rate of the input
stream to avoid deadlocks caused by cyclic backpressure [20],
while Spark Structured Streaming does not allow loops in the
dataflow graph, which is necessary when using the stateful
operators for iterative workloads. In contrast, MapUpdate
naturally supports iteration and in-place update.

Second, checkpointing in Flink and Spark Structured
Streaming is more complicated (as they are designed for
stream processing), while Tangram is designed for batch
processing and only checkpoints mutable collections. Spark
Structured Streaming uses checkpointing and write-ahead
logs for fault tolerance. Flink also needs to restart from the
latest checkpoint for any failure.

4 Applications

Programming with MapUpdate to construct data-parallel ap-
plications is simple: users define the collections, construct the
MapUpdate plan by providing the map/update functions and
specify the plan configurations. Low-level system issues such
as parallelism and fault tolerance are hidden from users. In
this section, we demonstrate how MapUpdate can be used to
implement a wide range of applications.

4.1 Bulk Processing
MapUpdate can easily implement the bulk processing work-
loads targeted by MapReduce, which are usually stateless,
non-iterative and involve only bulk data movement. We il-
lustrate by the word count example, which is similar to the
one in Spark: the map function generates (word, count) pairs
when scanning local documents, while the update function

aggregates the (word, count) pairs for final counts. Note that
in the plan of word count, there is no side-input collection.

// Doc: (word1, word2...): (string, string...)
// WordCount: (word, count): (string, int)
// docs: collection<Doc>
// wordcount: collection<WordCount>
docs.map(doc => (w, 1) for each word w in doc)

.update(wordcount, (wc, c) => wc.count += c)

4.2 Iterative Machine Learning
Iterative machine learning algorithms repeatedly refine a set
of model parameters with updates computed from the training
samples. These algorithms (e.g., SGD) are usually robust to
asynchronous execution, in which update is calculated us-
ing outdated or inconsistent model parameters. Parameter-
sever-based systems (e.g., Parameter Server [31], Petuum
Bösen [60]) are widely used for distributed machine learn-
ing and support SSP and ASP to benefit from asynchronous
execution. Tangram can model parameter server by using
the model parameters as both the side-input collection and
update collection. We show an example of training logistic
regression using SGD with SSP (s = 2). The map function
calculates the stochastic gradient of local samples using the
model parameters, while the update function commits the
gradient updates to the model parameters. Iteration and asyn-
chronous execution can be configured using the setIter and
setStalenss commands in Table 2. Note that when setStalenss
is not configured, Tangram uses BSP by default.

// Sample: (label,(k,v)..): (int, (int,float)..)
// Param: (k,v): (int, float)
// data: collection<Sample>
// params: collection<Param>
map_func(Sample sample, Params params, Output o):

grad = CalcGrad(sample, params)
o <- grad // grad: ((k,v)...)

update_func(Param param, float update):
param.val -= learning_rate * update

data.map(params, map_func)
.update(params, update_func)
.setIter(100).setStalenss(2)

4.3 Vertex-Centric Graph Analytics
Vertex-centric graph analytics systems (e.g., Pregel [36], Pow-
erGraph [21]) usually update vertex states iteratively accord-
ing to the states of neighboring vertexes. Tangram can model
vertex-centric graph processing by using the vertex state col-
lection as both map collection and update collection 5. We
use PageRank as an example. The map function calculates
the contribution of a vertex’s PageRank value to its out-
neighbors, while the update function merges the contributions
from the in-neighbors. The ranks and the links collection are

5Using vertex state as side-input and update collection is also feasible.

USENIX Association 2019 USENIX Annual Technical Conference 195

co-partitioned (by using the same partitioner) to reduce com-
munication overhead. Similarly, Tangram can also implement
the edge-centric model [51].

// Rank: (id, pr): (int, float)
// Link: (id, nb1, nb2...): (int, int, int...)
map_func(Rank r, Links links, Output o):
for each neighbor nb in links[r.id]:
o <- (nb.id, 0.85 * r.pr/len(links[r.id]))

update_func(Rank r, float contrib):
r.pr += contrib

ranks.map(links, map_func)
.update(ranks, update_func)
.setIter(30)

4.4 Distributed Crawler
Tangram supports crawler by using urls as both the map col-
lection and update collection. The map function downloads
the web page pointed by the current url and extracts new
urls, while the update function inserts the new urls into the
urls collection and marks the processed urls as visited. Note
that there is no side-input collection. setIter(-1) keeps execut-
ing the iteration (i.e., keep crawling), while setStaleness(-1)
means using ASP.

// Url: (url, status): (string, ToFetch/Done)
map_func(Url url, Output o):
if url.status is ToFetch:
new_urls = DownloadAndExtractNewUrls(url)
for each new_url in new_urls:
o <- (new_url, ToFetch)

o <- (url, Done)

update_func(Url url, Status s):
if url.status is not Done:
url.status = s

urls.map(map_func)
.update(urls, update_func)
.setIter(-1).setStaleness(-1)

In the above applications, we use different combinations of
the three collections (A,B,C) to achieve different computation
patterns. Tangram also supports many other applications (e.g.,
Nomad [69] and graph matching [12]) that are hard to be
implemented in existing systems.

4.5 Pipelined Workloads
MapUpdate is especially useful for pipelined workloads. In
fact, the Tangram project was motivated by production data
analytics workloads that are common in companies such as
Alibaba, which consist of pipelines involving different types
of tasks. Typical pipelines begin with MapReduce-style data
processing, then conduct various advanced analytics (e.g.,
parameter-server-style model training), and end with testing
and verification. We briefly describe a user classification
pipeline and a fraud detection pipeline as examples.

In a user classification pipeline, users are divided into
groups according to their purchase records to generate la-
bels. The basic information (e.g., age, gender and location),
search history and activity patterns (e.g., log-in frequency,
active time period) are gathered from multiple tables using
MapReduce-style join to produce features. Then, various ma-
chine learning models (e.g., logistic regression, SVM) are
trained using a parameter-server-based framework to clas-
sify users into different purchase pattern groups. Lastly, the
models are tested on a held-out dataset to select the best-
performing one for use. We remark that user classification is
only a component of the much larger item recommendation
pipeline, which involves a more diverse set of workloads such
as graph analytics and matrix factorization.

In a fraud detection pipeline, the goal is to find malicious
sellers who use fake transactions to bump up their scales
records [47]. The static relationship among users (i.e., buyers
or sellers) and the dynamic payment activities are first pro-
cessed, and a graph is extracted from the pre-processed data
to model the buyer-seller interaction. Then, graph matching is
applied to find interaction patterns that match some predefined
templates corresponding to fraud patterns. Finally, these inter-
actions are verified by further analysis and the results are used
to update the fraud template library. The verification process
typically involves MapReduce (e.g., joins to obtain details of
suspected users) and graph analytics such as computing the
distances from suspected users to blacklisted users.

As we will show in the experiments, processing different
tasks in a pipeline with respective specialized systems intro-
duces expensive context switch overheads for dumping/load-
ing output/input data by the systems. Using many systems for
a single pipeline also hurts robustness because different sys-
tems provide different fault tolerance semantics and require
engineers to learn/tune all the systems. With the expressive
API of MapUpdate, unified fault tolerance semantics and high
efficiency, Tangram (our system that implements MapUpdate)
can handle the entire pipeline in a unified framework and
thus completely remove the context switch overheads. More-
over, the unified MapUpdate API also significantly reduces
development costs without users’ need to learn many systems.

5 System Design

Designing a system to support the MapUpdate API is chal-
lenging in the following aspects: (1) As tasks in MapUp-
date have complicated interactions and dependencies (e.g.,
read/write conflicts, requiring remote data transfer), a low-
overhead task management and scheduling strategy is crucial
for efficiency. (2) MapUpdate supports iterative plans and flex-
ible consistency control, which requires a distributed progress
control protocol that enables various execution models (i.e.,
BSP, SSP and ASP) under a unified framework. (3) To achieve
efficient failure recovery, effective mechanisms are needed
to distinguish failure scenarios and apply different recovery

196 2019 USENIX Annual Technical Conference USENIX Association

strategies accordingly as analyzed in Section 2.
Tangram adopts a master-worker architecture. The master

is responsible for DAG scheduling (coordinating the work-
ers to execute runnable plans), progress tracking (managing
progress and collecting execution statistics from workers for
fault tolerance and straggler mitigation), and partition man-
agement (keeping track of the location of the partitions by
maintaining the master copy of the partition map). The work-
ers serve as the distributed in-memory storage for the parti-
tions and each worker uses a local controller to manage local
task execution. For scheduling, the master only issues control
commands (start, update progress, migrate, recover, etc.) to
workers and the local controller is responsible for scheduling
its own tasks. The local controller also synchronizes the local
copy of the partition map and the execution progress with the
master. This design reduces centralized scheduling overhead
and is crucial for scaling to large clusters.

5.1 Local Task Management

The local controller in each machine manages three kinds of
tasks, i.e., map task, respond task, and update task. A map
task runs the user-defined map function for every object in a
local map partition, combines the intermediate results locally
if a combine function is provided, serializes the (combined)
results and adds the results to the sender, which will send
them to remote machines (according to the partition map)
for update. A map task invokes a fetcher if it needs to fetch
some records (e.g., parameters in machine learning) in the
side-input collection. The requested records are indexed by
keys and the fetcher splits these keys into multiple subsets,
each corresponding to a partition of the side-input collection.
Then the fetcher sends out the fetch requests to the remote con-
trollers holding the records and blocks the map task. The fetch
request will invoke a respond task in the remote controller
and the map task will be unblocked when all the responses
are received. An update task updates a local partition with
the received intermediate results (from a map task) using the
update function, while a respond task answers a fetch request
using a local partition of the side-input collection.

Different from the pull-based shuffle mechanism in
MapReduce-like systems (where reducers pull intermediate
results from mappers), a push-based shuffle mechanism is
used in Tangram, in which updates are pushed to the update
partitions on a per-partition basis. Push-based shuffle can
overlap network communication with the computation of map
tasks, but the system needs to handle more complex read/write
conflicts between tasks. To resolve the read/write conflicts
for a partition, the controller enforces a simple access con-
trol strategy. It assumes that map and respond tasks read a
partition, while update tasks write a partition. The controller
ensures that writes to a partition are exclusive while reads are
not. If there is an ongoing update task on a partition, then map
tasks, respond tasks and other update tasks on the same parti-

tion will be blocked. If there is an ongoing map or respond
task on a partition, then other map and respond tasks on this
partition can still run but update tasks will be blocked.

The execution of a plan starts when the global scheduler
instructs the local controller to push a number of map tasks to
the map thread pool. When the controller receives a fetch/up-
date request, it invokes a respond/update task. The respond/up-
date task is pushed to the thread pool for execution if it satis-
fies the access control policy; otherwise, it will be inserted into
a pending buffer. Once a task finishes, the controller will be
notified and it will check the pending buffer to find tasks sat-
isfying the access control policy and push them to the thread
pool for execution. The local controller is implemented as a
single-thread event loop and manages the pending buffer and
all control-related data structures. The event-loop simplifies
the implementation logic by avoiding complex locking.

5.2 Partition-Based Progress Control

As a partition is the granularity of task execution in Tan-
gram, each partition can have its own progress. Therefore,
Tangram uses a partition-based progress control mechanism
to support the BSP, SSP and ASP execution models. Different
from parameter-server-based systems, in which progress is
associated with a worker, Tangram associates progress with a
partition. The local controller records the map progresses of
the local map partitions and the update progresses of the local
update partitions. Note that when the map collection and the
update collection are the same (e.g., in PageRank), a partition
has both map progress and update progress. We will show
that partition-based progress control also ensures correctness
upon failure and improves recovery efficiency in Section 5.3.

At the start of a plan, the map progresses and the update pro-
gresses are initialized as zero. When a map task finishes, the
map progress of the corresponding partition is incremented
by one, and the update requests generated by this map task
also carry the map progress (before increment). For an up-
date partition, the local controller uses a bitmap (for each
map progress) to record the map partitions for which update
has already been committed. The controller sets the update
progress of a partition as the minimum progress for which
there are still missing updates. The controller assumes that
a map partition will generate update for all partitions in the
update collection and can confirm that all update requests are
committed using the bitmap.

The controller sets its local progress as the minimum update
progress of its partitions and reports it to the global scheduler.
The global scheduler regards the minimum progress among
workers as the global progress and broadcasts it to all workers
upon changes. If the staleness is k and the global progress is
m, the local controller will only schedule map tasks for its
partitions with a progress no larger than m+ k. An example
of progress control is provided in Figure 1. Partition P1 in
worker 0 has an update progress of 2 as it has not received

USENIX Association 2019 USENIX Annual Technical Conference 197

4

3

0 1 2 3

map partition id

pr
og

re
ss

P0

4

3

2

0 1 2 3

map partition id

pr
og

re
ss

5

4

3

0 1 2 3

map partition id

pr
og

re
ss

P1

progress = 3 progress = 2 progress = 3

Worker 0

local progress: 2

Master

<worker, progress>
<0, 2>, <1, 3>

global progress: 2

P2

Worker 1

local progress: 3

Figure 1: Example of progress management. Dark squares
denote the received updates for each update collection.

the update with progress 2 from map partition 3. The local
progress of worker 0 is 2 as the update progress of P0 and P1
are 3 and 2, respectively. Collecting the local progresses from
worker 0 and worker 1, the master sets the global progress as
2. Once the update with progress 2 from map partition 3 is
committed to P1, both the local progress of worker 0 and the
global progress will be updated to 3.

Assume that there are M map partitions in total and a ma-
chine hosts n update partitions, the machine needs O(MnT)
memory to store the bitmap for a plan, where T is the number
of active iterations (iterations for which there are uncommitted
updates) and is usually small. We reduce the memory con-
sumption of the bitmaps by deleting the bitmap for which all
update requests have been committed and creating a bitmap
only when receiving a new map progress. As the number of
partitions is usually not large, the cost of progress control is
acceptable as we will show in our experiments.

5.3 Context-Aware Failure Recovery
Tangram distinguishes two failure scenarios, i.e., local failure
and global failure, and applies different recovery strategies.

Local failure is the case that the failed machines do not
hold update partitions. Local failure does not directly affect
the task execution on the healthy machines and is similar
to losing RDDs with narrow dependency in Spark. In this
case, Tangram only reloads the lost partitions on the healthy
machines in parallel and sets their progresses as the current
global progress. Some of the updates from the lost partitions
may have been committed to the update collection and setting
their progresses as the global progress may result in repetitive
map tasks. Tangram rejects the repetitive updates generated
by these map tasks using the bitmap.

Global failure happens when the failed machines contain
partitions of the update collection. Examples include losing
machines holding the model parameters in logistic regression
or the rank values in PageRank. Global failure directly af-
fects the computation on all machines and is similar to losing
RDDs with wide dependency in Spark. In this case, Tangram
reloads the lost mutable collection from the latest checkpoint
and resets the global progress and the progresses of all parti-
tions to the latest checkpoint. But for immutable collections,

such as the graph links in PageRank, Tangram only reloads
the lost partitions. The master assigns the tasks of loading
the lost partitions to the healthy machines in a balanced man-
ner so that the machines can recover from failure in parallel.
Moreover, Tangram also respects the co-partitioning relation
of the collections in failure recovery.

Tangram infers which collection is mutable and check-
points only the mutable collections. Checkpointing is con-
ducted in an asynchronous manner and on a per-partition
basis, so that the execution of the entire plan does not need to
be stopped. When the progress of an update partition reaches
the checkpoint iteration, write access is blocked and a copy
is written to disk along with the bitmap. Note that this check-
point may be inconsistent, as the partition may have seen
updated from iterations larger than the checkpoint iteration
(under ASP or SSP). The bitmap is used to reject repetitive
updates from these iterations during recovery. For pipelines
that involve multiple plans, Tangram also checkpoints the mu-
table collections once a plan finishes so that failure recovery
can be conducted inside a plan. Tangram only handles worker
failures, while the master failure can be handled by a standby
master (similar to the standby master in Spark [55]) but is not
implemented in the current version.

5.4 Straggler Mitigation

Tangram uses partition migration for straggler handling. As
update tasks and respond tasks are relatively lightweight, Tan-
gram focuses on balancing the workload of map tasks by
migrating map partitions. For non-iterative workloads (e.g.,
word count), the master monitors the number of ongoing and
pending map tasks on each machine. If some machines do
not have map tasks to run, the master migrates some of the
map partitions from the heavily loaded machines to them. We
allow the system to migrate map partitions with ongoing map
tasks, which resembles speculative execution in Spark. Mi-
gration does not necessarily require data transfer from slow
machines, as will be discussed later.

For iterative workloads, Tangram only handles macro strag-
glers, while micro stragglers can often be handled by asyn-
chronous execution. By default (tunable by users), Tangram
considers a machine as a macro straggler if its per-iteration
time is more than 1.1 times of the median (of all machines)
in three consecutive iterations or more than 1.5 times of
the median in one iteration. Tangram also respects the co-
partitioning relation among the collections to avoid high com-
munication overhead after migration.

Tangram adopts different migration strategies for im-
mutable and mutable partitions. For immutable partitions,
the destination machines just load them from a shared stor-
age system like HDFS rather than asking the source machine
for transfer, since the source machine is already overloaded.
For mutable partitions, Tangram uses a migration procedure
similar to the two-stage migration in Piccolo [46].

198 2019 USENIX Annual Technical Conference USENIX Association

The load of the system may be unbalanced due to skewed
partition size (e.g., due to improper hash function). Currently,
Tangram does not support online re-partitioning for workload
redistribution. Similar to other systems, skewed partitions
can be addressed by either fine-grained sharding (setting the
number of partitions to be much larger than the number of
machines) or providing a tailored partitioning function.

5.5 Communication Optimizations
Delay Combiner. In Tangram, combining the updates from
many map tasks leads to higher compression ratio, but sending
out the updates immediately reduces latency. We provide a
delay combiner, in which users can specify the granularity of
combining with a combine_timeout. Setting combine_timeout
to 0 sends out the updates immediately, while setting com-
bine_timeout to kMaxCombineTimeout combines all local
map outputs in an iteration.
Process Cache. The process cache in Tangram is similar
to the one in Petuum. Previously fetched records of the side-
input collection and their versions are kept in the cache. A new
fetch request will not be sent if the records with the required
version are already in the cache.
Local Zero-Copy Communication. Tangram utilizes local
zero-copy communication whenever possible: if an update
request is to be sent to a local partition, it will be moved to
the local controller and can be directly accessed by the update
task. Similarly, zero-copy communication is also used for
fetching local objects.

6 Experiments

We implemented Tangram in about 16K lines of C++ code.
The communication module was built using ZeroMQ [72] and
libhdfs3 [32] was used to exchange data with HDFS without
the JNI overhead. Source code for the system and the appli-
cations in Section 4 can be found at https://github.com/
Yuzhen11/tangram/. We evaluated Tangram on a cluster of
20 machines connected with 1 Gbps Ethernet. Each machine
is equipped with two 2.0GHz E5-2620 Intel(R) Xeon(R) CPU
(12 physical cores in total), 48GB RAM, a 450GB SATA disk
(6Gb/s, 10k rpm, 64MB cache), running on 64-bit CentOS
release 7.2. We optimized the number of partitions for both
Tangram and the systems we compared in the experiments.

6.1 Failure Recovery & Straggler Mitigation
Failure recovery and straggler mitigation are critical for data
analytics in production. In this set of experiments, we show
that Tangram achieves efficient failure recovery and effective
straggler mitigation, even for workloads with mutable states,
by distinguishing immutable and mutable collections.
Failure Recovery. We used two experiments to simulate dif-
ferent failure scenarios. In the first experiment, we unplugged

0

10

20

30

3 4 5 6 7 8 9

It
e

ra
ti

o
n

 T
im

e
 (

s)

Iteration

Recovery

Before Failure

(a) Local Failure

0

5

10

15

3 4 5 6 7 8 9

It
e

ra
ti

o
n

 T
im

e
 (

s)

Iteration

Recovery

Before Failure

(b) Global Failure

Figure 2: Performance of failure recovery

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

It
e

ra
ti

o
n

 T
im

e
 (

s)

Iteration

No Migration Diff. Migration Normal Migration

Figure 3: Performance of straggler handling

one machine holding the training data for K-means, which is a
local failure according to Section 5.3. The second experiment
unplugged one machine for PageRank, which corresponds to
global failure.

We report the failure recovery performance under the two
scenarios in Figure 2. For clearer presentation, we only plot
the performance of Tangram, while we report the performance
of Spark in text as a baseline. For local failure, Tangram took
17.8 seconds to reload the lost training data (∼6 GB) and
finish the 7th iteration, while Spark took around 40 seconds to
recover. Both Tangram and Spark did not restart the job from
the latest checkpoint, but performed re-computation only on
the lost partitions. In contrast, most of the mutable systems
such as Petuum, PowerGraph and Naiad, would have to roll
back to the latest checkpoint in case of any failure.

For the global failure (occurred at the 7th iteration), Tan-
gram rolled back to the latest checkpoint (taken at the 5th
iteration) and continued by re-executing the 6th iteration. The
roll-back is necessary because some partitions of the (muta-
ble) rank collection are lost. The longer recovery bar at the
6th iteration in Figure 2b includes the normal execution time
for the iteration and another 5.2 seconds to reload the muta-
ble collection (∼50 MB) and the lost immutable partitions
(∼1 GB). In total, Tangram took 29 seconds to finish the 7th
iteration, while Spark took 47 seconds. We note that Spark
also requires a full re-computation from checkpoint in this
case (i.e., long lineage with wide dependency [70]).

To provide a better picture of Tangram’s failure recovery
performance, we also implemented the baseline strategies
(e.g., full reload, full checkpoint) in Tangram for a fair com-
parison. A full reload (as used in existing mutable systems)
needs to load 121GB and 23GB data, and took 56.8 and 15.7
seconds (vs. Tangram’s 17.8 and 5.2 seconds) for K-means
and PageRank, respectively. In addition, distinguishing the
immutable and mutable parts also results in more efficient
checkpointing for PageRank, as checkpointing only the ranks

USENIX Association 2019 USENIX Annual Technical Conference 199

https://github.com/Yuzhen11/tangram/
https://github.com/Yuzhen11/tangram/

(∼1GB) took 5 seconds, while a full checkpoint (∼23GB)
took 127 seconds. Tangram also supports asynchronous back-
ground checkpointing, which makes a copy of the mutable
collection and writes the checkpoint in the background. With-
out background checkpointing, each checkpoint would take
an extra 5 seconds for PageRank.
Straggler Mitigation. To test the performance of straggler
mitigation, we used cpulimit tool to restrict one Tangram
worker to have only 600% of the total 2400% cpu shares in
the PageRank job at the 4th iteration, and the per-iteration
time is reported in Figure 3. Diff. migration asks the straggler
only for mutable partitions, while Normal migration asks the
straggler for both mutable and immutable partitions. Both
strategies were implemented in Tangram. The result shows
that partition migration effectively reduces per-iteration time
as an iteration took about 14.5 seconds without migration,
but only 8.4 seconds with migration. In addition, distinguish-
ing immutable and mutable collections also speeds up the
migration. Diff. migration only requires the straggler to trans-
fer the mutable partitions (ranks: ∼50MB) and reloads the
immutable partitions (links: ∼ 1GB) from HDFS, which im-
proves migration speed by approximately 38% (10 seconds
vs. 16 seconds) compared with Normal migration.

6.2 Expressiveness and Efficiency
We have shown that the MapUpdate API is flexible and can
express a wide variety of workloads in Section 4. In this set
of experiments, we show that Tangram achieves comparable
performance as specialized systems.
Bulk Processing. For non-iterative bulk processing work-
loads, e.g., MapReduce-style workloads, we tested word count
and TF-IDF6, and compared with Spark [70] (version 2.2.0).
We replicated the Wikipedia corpus [19] to test the scalability
of the systems and report the running time in Figure 4.

Tangram achieved slightly better performance compared
with Spark for word count, but is 2x faster for TF-IDF. For
fair comparison, we ensured that Spark does not write in-
termediate results to disk before shuffle. Both Tangram and
Spark have high CPU utilization (over 80% for all cores over-
time) and low disk utilization (less than 20% at most) for the
two applications, similar to the results reported in [44]. We
also tested the systems on a faster 10-Gbps network and on a
single machine, and Tangram’s performance advantage over
Spark on TF-IDF is consistent in both settings, which shows
that network communication is not the key factor that affects
the performance of the systems on TF-IDF. We believe the
language (C++ vs. Scala) and other system overheads are the
main reasons for the performance difference. Tangram also
achieves almost linear scaling when increasing dataset size.
Iterative Machine Learning. For iterative machine learning
workloads, we tested K-means [54] and SGD based logistic
regression (LR). We used a dense dataset (mnist8m [33]) for

6https://en.wikipedia.org/wiki/Tf-idf

55

103

210

49

97

182

0

50

100

150

200

250

50GB 100GB 200GB

Ti
m

e
 (

s)

Spark

Tangram

(a) Word Count

66

118

198

37
65

114

0

50

100

150

200

250

50GB 100GB 200GB

Ti
m

e
 (

s)

Spark

Tangram

(b) TF-IDF

Figure 4: Running time for word count and TF-IDF

70

35

18

54

29

15

0

20

40

60

80

100

5 10 20

It
e

ra
ti

o
n

 T
im

e
 (

s)

Machines

Petuum

Tangram

(a) K-means

7.6

4.4

2.6

5.5

3.4
2.6

0

2

4

6

8

10

5 10 20

It
e

ra
ti

o
n

 T
im

e
 (

s)

Machines

Petuum

Tangram

(b) LR

Figure 5: Per-iteration time for K-means and LR

K-means and a sparse dataset (webspam [59] with a sparsity
of 2.24× 10−4) for LR, in order to test Tangram’s perfor-
mance under different data sparsity. We replicated the datasets
10 times for better scalability tests. BSP was used for K-
means, while SSP (s = 2) was used for LR. We compared
Tangram with the state-of-the-art parameter server system,
Petuum Bösen [60]. We did not compare with Spark as it has
been shown to be inefficient for iterative machine learning
workloads compared with Petuum [29, 62].

Figure 5 reports the per-iteration time obtained by aver-
aging 20 iterations, while varying the numbers of machines.
Tangram’s performance is very competitive compared with
Petuum, as Tangram also supports optimizations generally
used in parameter server based systems, such as process cache
and message combining (Section 5.5). The scaling perfor-
mance of Tangram and Petuum is better for K-means than for
LR since K-means is CPU-bound, while LR is network-bound
due to the large model.
Graph Analytics. For graph analytics workloads, we com-
pared with GraphX [22], PowerGraph [21] and Power-
Lyra [13]. GraphX is built on Spark and adopts immutable
data abstraction, while PowerGraph and PowerLyra use mu-
table abstraction and support fine-grained state access. We
tested PageRank and single source shortest path (SSSP), in
BSP mode. We used the webuk graph [7], which has 133M
vertices and 5.5B edges.

We report the per-iteration time for PageRank and the total
running time for SSSP in Figure 6. Tangram achieves better
performance than even the specialized systems. We found that
this is because both PageRank and SSSP are network-bound,
and message combining in Tangram (edge-cut + delay com-
biner) is more effective in reducing communication than other
systems (vertex/hybrid-cut + combiner). GraphX outperforms
PowerGraph and PowerLyra on PageRank as the workload is
heavy and balanced in each iteration. In contrast, the access

200 2019 USENIX Annual Technical Conference USENIX Association

https://en.wikipedia.org/wiki/Tf-idf

8

16
20

15

0

10

20

30

Ti
m

e
 (

s)

(a) PageRank

158

449
330

0
200
400
600
800

1000

Ti
m

e
 (

s)

6620

(b) SSSP

Figure 6: Comparison on PageRank and SSSP

1 2 5 10 15 20
0

5

10

15

20

25

30

M
B

yt
es

/s

Machines

(a) Crawler

1

1.3

1.6

1.9

2.2

2.5

2.8

0 20 40 60 80 100

Tr
ai

n
in

g
R

M
SE

Time (s)

NOMAD
DSGD++
Tangram

(b) Nomad

Figure 7: Performance of distributed crawler and Nomad

0 50 100 150 200 250

Tangram

Spark

Spark + Glint

Spark + Petuum

Time (s)

TFIDF Context Switch LR

Figure 8: Completion time of the pipelined workload

pattern of SSSP is more sparse, and thus the lack of support
for in-place updates renders GraphX inefficient.
Other Workloads. We also evaluated the performance of
Tangram on a wider variety of computation patterns using
distributed crawler and Nomad [69].

Figure 7a reports the download speed of Tangram-based
crawler. The download speed of the crawler scales almost
linearly with the number of machines and quickly consumes
the download bandwidth of the whole cluster and reaches a
plateau, which is similar to Piccolo-based crawler [46].

Nomad is an efficient SGD-based asynchronous algorithm
for matrix factorization (MF) and has a complex computation
pattern that migrates item latent factors among machines. We
used the Yahoo! Music dataset [63] and compared Tangram-
based Nomad with MPI-based Nomad [69] and DSGD++ [56]
(another state-of-the-art MF algorithm). Figure 7b reports
their training root mean square errors (RMSE). Tangram per-
forms slightly worse than MPI-based Nomad initially but
catches up later. Compared with MPI-based DSGD++, Tan-
gram has better performance most of the time. Although the
MPI-based implementations are efficient, Tangram offers very
competitive performance and more user-friendly API.
Pipelined Workload. We implemented a simple pipelined
workload that computes TF-IDF vectors with 218 features
from the 50GB English Wikipedia dataset and trains an LR
model using gradient descent for 30 iterations. We compared

Table 3: Overhead of Task Management & Progress Control
App Controller CPU % Bitmap size

WordCount 1.12% 636KB
PageRank 0.99% 638KB

LR 0.29% 341KB
K-means 0.02% 4KB
Nomad 3.38% 153KB

Tangram with Spark, Spark + Glint [28], and Spark + Petuum.
Glint is a built-in parameter server for Spark, and thus Spark
+ Glint uses Spark for TF-IDF and Glint for LR. Spark +
Petuum uses Petuum for LR. Other systems (e.g., Naiad [39])
can also handle such a pipeline, but they mainly target at
streaming workloads and have more expensive fault tolerance
mechanisms. This experiment was conducted using a faster
10-Gbps network but the relative performance of the systems
is consistent when running on a 1-Gbps network.

We report the execution time of the pipeline in Figure 8.
Tangram used much less time than Spark mainly because
Spark is not efficient for machine learning workloads [29,62].
However, Spark + Petuum took even longer time, even though
Petuum was much faster than Spark (29 seconds vs. 75 sec-
onds) for LR. This is because there is a costly context switch
overhead when moving from Spark to Petuum (around 170
seconds for dumping and loading the 45GB TF-IDF vectors) 7.
Spark + Glint removes the context-switch overhead and the
performance is slightly better than Spark. However, adding
dependencies (e.g., Glint) in Spark violates Spark’s unified
abstraction and breaks Spark’s fault tolerance semantics.

We also tested Flink [10], but LR was an order of magnitude
slower on Flink compared with Spark 8. Thus, we do not
report the details of Flink’s results. In comparison to these
popular systems, the performance of Tangram in Figure 8
demonstrates its benefits as a general and efficient system for
processing pipelined workloads.

6.3 Evaluation of System Designs
This set of experiments evaluates the effects of the system
designs on the performance of Tangram. We first examine
the average CPU consumption of the local controller on each
worker and the total size of the bitmap used for progress
control. Table 3 shows that the CPU consumption of the lo-
cal controller is consistently low and the bitmap has a small
memory footprint for all workloads. Nomad has the high-
est controller overhead as the algorithm needs to handle the
frequent migration of item latent vectors. K-means has the
smallest bitmap size because a single partition is used for
the centers. In general, both controller CPU consumption and
bitmap size increase with the number of partitions. Empiri-
cally, setting the number of partitions to 1-3 times the number

7Although in-memory caching systems like RAMCloud [41] or optimized
distributed file systems like Tachyon [30] may reduce the context switch cost,
the cost of dumping and loading the datasets is still non-negligible.

8The per-iteration time of LR using Flink Machine Learning library and
using Flink DataSet API is 97x and 21x of that of Spark, respectively.

USENIX Association 2019 USENIX Annual Technical Conference 201

0

1

2

3

100 200 400 800 1600

R
e

la
ti

ve
 R

u
n

ti
m

e

Partitions

delay = 0

delay = 500ms

delay = max

(a) K-means

0

1

2

3

4

100 200 400 800 1600

R
el

at
iv

e
R

u
n

ti
m

e

Partitions

delay = 0
delay = 500ms
delay = max

(b) PageRank

Figure 9: Effects of partitioning and delay combiner

of cores achieves good performance. Thus, the cost of local
task control and progress management is acceptable.

Next we examine the effect of the number of partitions.
Figure 9 shows that the per-iteration time (as a ratio to the
optimal setting) of K-means first decreases and is then stabi-
lized as the number of partitions increases. This is because
increasing the number of partitions improves the parallelism,
until the cores are fully occupied (the cluster has 480 vir-
tual cores). Beyond that point, using more partitions does not
improve performance. For PageRank, the per-iteration time
first slightly decreases and then increases with the number of
partitions. This is because PageRank is network-bound and
thus using more partitions results in more communication.
The delay combiner in Section 5.5 can be used to reduce the
communication overhead by merging the map outputs from
multiple local partitions. By setting the combine timeout to
maximum, the per-iteration time of PageRank stays almost
constant when increasing the number of partitions beyond
400. For K-means, as it is CPU-bound due to a small number
of parameters, using the delay combiner has almost no effect.

7 Related Work

Programming Model. MapReduce [17] has inspired the de-
velopment of many data-parallel analytics frameworks with
two coarse-grained high-order functions, map and reduce.
Map-Reduce-Merge [67] extended MapReduce with a Merge
phase to support the join of multiple heterogeneous datasets.
HaLoop [9], Twister [18] and Map-Reduce-Update [8]
adapted MapReduce for iterative computation. Other frame-
works, e.g., Dryad [27], FlumeJava [11], Spark [70], Tez [52],
etc., generalized the coarse-grained functional model by in-
troducing dataflow graph, which enables easy construction of
pipelines involving multiple stages. CIEL [40] and Ray [38]
further support dynamic task graph. Flink [10] and Naiad [39]
support the dataflow model on top of their streaming execution
engines. Tensorflow [1] adopts dataflow graph to represent
machine learning pipelines.

Some systems adopt the distributed shared memory (DSM)
model. Piccolo [46] allows user-defined kernels to read and
update distributed key-value tables in parallel. Parameter
server systems, e.g., DistBelief [16], Project Adam [14], Pa-
rameter Server [31], Petuum [60,62], FlexPS [25], incorporate
machine learning specialized optimizations such as bounded

delay execution. DSM is flexible but the push/pull API is con-
sidered more low-level than the functional API in the dataflow
model. Husky [66] adopts an object-oriented API to model
different computational frameworks. GraphLab [34, 35] uses
a data graph to represent computational structure and data de-
pendencies for some machine learning problems. Graph pro-
cessing frameworks [12,15,21,22,34,36,50,51,61,64,65,74]
usually expose vertex/edge/subgraph-centric programming
models and incorporate graph specific optimizations.

Execution Model. Popular dataflow systems, e.g., Tez [52],
DryadLINQ [68], and Spark [70], adopt a BSP execution
model, in which a stage waits for its predecessors to finish.
Specialized systems often adopt execution models tailored
for their target workloads. GraphLab [34, 35] allows asyn-
chronous vertex execution and uses distributed locking to
resolve access conflict. Parameter server systems, e.g., Param-
eter Server [31], Petuum [60], adopt a bounded delay model
(SSP) in which the progress differences among workers are
bounded by a user-defined threshold. Maiter [73] and Pow-
erGraph [21] support asynchronous execution optimized for
graph workloads. In comparison, Tangram supports BSP, SSP
and ASP, enabling it to efficiently process various types of
workloads such as graph analytics, machine learning, etc.

Scheduling Model. Recent work [37, 43, 45, 53] observed
that centralized scheduling is the bottleneck for scaling out
when there are a large number of short-lived tasks. To reduce
the control plane overhead, Drizzle [57] and Nimbus [37]
cache the scheduling decision, while MonoSpark [42] and
Canary [48] use local/distributed scheduler. Tangram avoids
the centralized scheduling overhead by relying on the local
controllers to schedule their own tasks. The global scheduler
only launches plans and manages progress.

8 Conclusions

We proposed a programming model called MapUpdate to de-
termine data mutability according to workloads, which not
only brings good expressiveness but also enables a rich set of
system features (e.g., asynchronous execution) and provides
strong fault tolerance. We developed Tangram to support Ma-
pUpdate with novel designs such as partition-based progress
control and context-aware failure recovery. We also incor-
porate optimization techniques such as process cache and
partition migration. Our experiments show that Tangram is ex-
pressive and efficient, and achieves comparable performance
with specialized systems for a wide variety of workloads. Our
work demonstrates that we do not have to choose either muta-
ble or immutable abstraction, but can embrace both of them
in one unified framework to enjoy the best of both worlds.
Acknowledgments. We thank the reviewers and our shepherd
Animesh Trivedi for their constructive comments that help
improved the quality of the paper. This work was supported
in part by ITF 6904945, and GRF 14208318 & 14222816.

202 2019 USENIX Annual Technical Conference USENIX Association

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A
system for large-scale machine learning. In OSDI, pages
265–283, 2016.

[2] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, and S. Whittle. The dataflow model:
A practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data
processing. PVLDB, 8(12):1792–1803, 2015.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-
ica. Effective straggler mitigation: Attack of the clones.
In NSDI, pages 185–198, 2013.

[4] G. Ananthanarayanan, M. C. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu. GRASS: trimming stragglers
in approximation analytics. In NSDI, pages 289–302,
2014.

[5] G. Ananthanarayanan, S. Kandula, A. G. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the
outliers in map-reduce clusters using mantri. In OSDI,
pages 265–278, 2010.

[6] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin,
A. Ghodsi, I. Stoica, and M. Zaharia. Structured stream-
ing: A declarative API for real-time applications in
apache spark. In SIGMOD, pages 601–613, 2018.

[7] P. Boldi, M. Santini, and S. Vigna. A large time-aware
graph. SIGIR Forum, 42(2):33–38, 2008.

[8] V. R. Borkar, Y. Bu, M. J. Carey, J. Rosen, N. Polyzotis,
T. Condie, M. Weimer, and R. Ramakrishnan. Declar-
ative systems for large-scale machine learning. IEEE
Data Eng. Bull., 35(2):24–32, 2012.

[9] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
Haloop: Efficient iterative data processing on large clus-
ters. PVLDB, 3(1):285–296, 2010.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache flinkTM: Stream
and batch processing in a single engine. IEEE Data Eng.
Bull., 38(4):28–38, 2015.

[11] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. Flumejava:
easy, efficient data-parallel pipelines. In SIGPLAN,
pages 363–375, 2010.

[12] H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and J. Cheng.
G-miner: an efficient task-oriented graph mining system.
In EuroSys, pages 32:1–32:12, 2018.

[13] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: differ-
entiated graph computation and partitioning on skewed
graphs. In EuroSys, pages 1:1–1:15, 2015.

[14] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanara-
man. Project adam: Building an efficient and scalable
deep learning training system. In OSDI, pages 571–582,
2014.

[15] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One trillion edges: Graph processing
at facebook-scale. PVLDB, 8(12):1804–1815, 2015.

[16] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A.
Tucker, K. Yang, and A. Y. Ng. Large scale distributed
deep networks. In NIPS, pages 1232–1240, 2012.

[17] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150,
2004.

[18] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae,
J. Qiu, and G. C. Fox. Twister: a runtime for iterative
mapreduce. In HPDC, pages 810–818, 2010.

[19] Enwiki Dump. https://dumps.wikimedia.org/
enwiki/.

[20] Flink Parameter Server Limitations. https://github.
com/gaborhermann/flink-parameter-server#
limitations.

[21] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30,
2012.

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. Graphx: Graph processing in a
distributed dataflow framework. In OSDI, pages 599–
613, 2014.

[23] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B.
Gibbons, G. A. Gibson, and E. P. Xing. Addressing the
straggler problem for iterative convergent parallel ML.
In SoCC, pages 98–111, 2016.

[24] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. R. Ganger, and E. P. Xing. More
effective distributed ML via a stale synchronous parallel
parameter server. In NIPS, pages 1223–1231, 2013.

USENIX Association 2019 USENIX Annual Technical Conference 203

https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
https://github.com/gaborhermann/flink-parameter-server#limitations
https://github.com/gaborhermann/flink-parameter-server#limitations
https://github.com/gaborhermann/flink-parameter-server#limitations

[25] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li,
Y. Guo, and J. Cheng. Flexps: Flexible parallelism con-
trol in parameter server architecture. PVLDB, 11(5):566–
579, 2018.

[26] IndexedRDD for Apache Spark. https://github.
com/amplab/spark-indexedrdd.

[27] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequen-
tial building blocks. In EuroSys, pages 59–72, 2007.

[28] R. Jagerman, C. Eickhoff, and M. de Rijke. Computing
web-scale topic models using an asynchronous parame-
ter server. In SIGIR, pages 1337–1340, 2017.

[29] J. Jiang, B. Cui, C. Zhang, and L. Yu. Heterogeneity-
aware distributed parameter servers. In SIGMOD, pages
463–478, 2017.

[30] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In SoCC, pages 6:1–6:15, 2014.

[31] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B. Su. Scaling distributed machine learning with the
parameter server. In OSDI, pages 583–598, 2014.

[32] libhdfs3. https://github.com/
Pivotal-DataFabric/attic-libhdfs3.

[33] G. Loosli, S. Canu, and L. Bottou. Training invariant
support vector machines using selective sampling. In
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, edi-
tors, Large Scale Kernel Machines, pages 301–320. MIT
Press, Cambridge, MA., 2007.

[34] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Graphlab: A new framework for
parallel machine learning. In UAI, pages 340–349, 2010.

[35] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed GraphLab: A frame-
work for machine learning in the cloud. PVLDB,
5(8):716–727, 2012.

[36] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In SIGMOD, pages
135–146, 2010.

[37] O. Mashayekhi, H. Qu, C. Shah, and P. Levis. Execution
templates: Caching control plane decisions for strong
scaling of data analytics. In ATC, pages 513–526, 2017.

[38] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica. Ray: A distributed framework for emerging
AI applications. In OSDI, pages 561–577, 2018.

[39] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: a timely dataflow
system. In SOSP, pages 439–455, 2013.

[40] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. CIEL: A universal
execution engine for distributed data-flow computing.
In NSDI, 2011.

[41] J. K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan, G. M.
Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The case for ramclouds: scalable high-
performance storage entirely in DRAM. Operating
Systems Review, 43(4):92–105, 2009.

[42] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker.
Monotasks: Architecting for performance clarity in data
analytics frameworks. In SOSP, pages 184–200, 2017.

[43] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman,
R. Xin, S. Ratnasamy, S. Shenker, and I. Stoica. The
case for tiny tasks in compute clusters. In HotOS, 2013.

[44] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and
B. Chun. Making sense of performance in data analytics
frameworks. In NSDI, pages 293–307, 2015.

[45] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: distributed, low latency scheduling. In SOSP,
pages 69–84, 2013.

[46] R. Power and J. Li. Piccolo: Building fast, distributed
programs with partitioned tables. In OSDI, pages 293–
306, 2010.

[47] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and
J. Zhou. Real-time constrained cycle detection in large
dynamic graphs. PVLDB, 11(12):1876–1888, 2018.

[48] H. Qu, O. Mashayekhi, C. Shah, and P. Levis. Decou-
pling the control plane from program control flow for
flexibility and performance in cloud computing. In Eu-
roSys, pages 1:1–1:13, 2018.

[49] B. Recht, C. Re, S. J. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In NIPS, pages 693–701, 2011.

[50] A. Roy, L. Bindschaedler, J. Malicevic, and
W. Zwaenepoel. Chaos: scale-out graph process-
ing from secondary storage. In SOSP, pages 410–424,
2015.

[51] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
edge-centric graph processing using streaming parti-
tions. In SOSP, pages 472–488, 2013.

204 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/amplab/spark-indexedrdd
https://github.com/amplab/spark-indexedrdd
https://github.com/Pivotal-DataFabric/attic-libhdfs3
https://github.com/Pivotal-DataFabric/attic-libhdfs3

[52] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. C.
Murthy, and C. Curino. Apache tez: A unifying frame-
work for modeling and building data processing appli-
cations. In SIGMOD, pages 1357–1369, 2015.

[53] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large
compute clusters. In EuroSys, pages 351–364, 2013.

[54] D. Sculley. Web-scale k-means clustering. In WWW,
pages 1177–1178, 2010.

[55] Standby Masters with ZooKeeper. https://spark.
apache.org/docs/latest/spark-standalone.
html#standby-masters-with-zookeeper.

[56] C. Teflioudi, F. Makari, and R. Gemulla. Distributed
matrix completion. In ICDM, pages 655–664, 2012.

[57] S. Venkataraman, A. Panda, K. Ousterhout, M. Arm-
brust, A. Ghodsi, M. J. Franklin, B. Recht, and I. Stoica.
Drizzle: Fast and adaptable stream processing at scale.
In SOSP, pages 374–389, 2017.

[58] G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asyn-
chronous large-scale graph processing made easy. In
CIDR, 2013.

[59] S. Webb, J. Caverlee, and C. Pu. Introducing the webb
spam corpus: Using email spam to identify web spam
automatically. In CEAS, 2006.

[60] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger,
P. B. Gibbons, G. A. Gibson, and E. P. Xing. Managed
communication and consistency for fast data-parallel
iterative analytics. In SoCC, pages 381–394, 2015.

[61] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei,
H. Lin, Y. Dai, and L. Zhou. Gram: scaling graph com-
putation to the trillions. In SoCC, pages 408–421, 2015.

[62] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A new
platform for distributed machine learning on big data.
In SIGKDD, pages 1335–1344, 2015.

[63] Yahoo! Webscoope. http://webscope.sandbox.
yahoo.com/.

[64] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-
centric framework for distributed computation on real-
world graphs. PVLDB, 7(14):1981–1992, 2014.

[65] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective techniques
for message reduction and load balancing in distributed
graph computation. In WWW, pages 1307–1317, 2015.

[66] F. Yang, J. Li, and J. Cheng. Husky: Towards a more ef-
ficient and expressive distributed computing framework.
PVLDB, 9(5):420–431, 2016.

[67] H. Yang, A. Dasdan, R. Hsiao, and D. S. P. Jr. Map-
reduce-merge: simplified relational data processing on
large clusters. In SIGMOD, pages 1029–1040, 2007.

[68] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: A system for
general-purpose distributed data-parallel computing us-
ing a high-level language. In OSDI, pages 1–14, 2008.

[69] H. Yun, H. Yu, C. Hsieh, S. V. N. Vishwanathan, and
I. S. Dhillon. NOMAD: nonlocking, stochastic multi-
machine algorithm for asynchronous and decentralized
matrix completion. PVLDB, 7(11):975–986, 2014.

[70] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In NSDI, pages
15–28, 2012.

[71] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,
and I. Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI, pages 29–42,
2008.

[72] ZeroMQ. http://zeromq.org/.

[73] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: An
asynchronous graph processing framework for delta-
based accumulative iterative computation. IEEE Trans.
Parallel Distrib. Syst., 25(8):2091–2100, 2014.

[74] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
computation-centric distributed graph processing sys-
tem. In OSDI, pages 301–316, 2016.

USENIX Association 2019 USENIX Annual Technical Conference 205

https://spark.apache.org/docs/latest/spark-standalone.html#standby-masters-with-zookeeper
https://spark.apache.org/docs/latest/spark-standalone.html#standby-masters-with-zookeeper
https://spark.apache.org/docs/latest/spark-standalone.html#standby-masters-with-zookeeper
http://webscope.sandbox.yahoo.com/
http://webscope.sandbox.yahoo.com/
http://zeromq.org/

	Introduction
	Immutable and Mutable Abstractions
	Programming Model
	MapUpdate
	Comparison with Existing Frameworks

	Applications
	Bulk Processing
	Iterative Machine Learning
	Vertex-Centric Graph Analytics
	Distributed Crawler
	Pipelined Workloads

	System Design
	Local Task Management
	Partition-Based Progress Control
	Context-Aware Failure Recovery
	Straggler Mitigation
	Communication Optimizations

	Experiments
	Failure Recovery & Straggler Mitigation
	Expressiveness and Efficiency
	Evaluation of System Designs

	Related Work
	Conclusions

