
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

FlexGroup Volumes:
A Distributed WAFL File System

Ram Kesavan, Google; Jason Hennessey, Richard Jernigan, Peter Macko,
Keith A. Smith, Daniel Tennant, and Bharadwaj V. R., NetApp

https://www.usenix.org/conference/atc19/presentation/kesavan

FlexGroup Volumes: A Distributed WAFL File System

Ram Kesavan*, Jason Hennessey, Richard Jernigan, Peter Macko,

Keith A. Smith, Daniel Tennant, and Bharadwaj V. R., NetApp, Inc.

Abstract

The rapid growth of customer applications and datasets has
led to demand for storage that can scale with the needs of
modern workloads. We have developed FlexGroup volumes
to meet this need. FlexGroups combine local WAFL® file
systems in a distributed storage cluster to provide a single
namespace that seamlessly scales across the aggregate re-
sources of the cluster (CPU, storage, etc.) while preserving
the features and robustness of the WAFL file system.

In this paper we present the FlexGroup design, which in-
cludes a new remote access layer that supports distributed
transactions and the novel heuristics used to balance load
and capacity across a storage cluster. We evaluate Flex-
Group performance and efficacy through lab tests and field
data from over 1,000 customer FlexGroups.

1 Introduction

With each new generation of hardware, computers become
faster and more powerful. CPUs have more cores, memory is
cheaper, networks are faster, and storage devices hold more
data. Despite these advances, however, many modern ap-
plications require far more resources than a single machine
can provide, leading to an explosion in the use of distributed
applications and systems.

Network-attached storage solutions have evolved simi-
larly from single-node to distributed systems. NetApp®

Write Anywhere File Layout (WAFL) [11] was launched
more than 20 years ago as a single-node, single-volume file
system. Over time, we increased WAFL flexibility and scale
by allowing many file systems per node [7], and by scaling
performance with increasing core counts [5]. Today we have
hundreds of thousands of storage controllers at customers’
sites. But like other file systems, our single-node scale and
performance have been limited by the resources (storage,
memory, CPU, network) of a single machine.

This paper describes FlexGroups, a new feature that auto-
matically balances capacity and load across the nodes of our

*Ram Kesavan is currently at Google.

storage cluster. A FlexGroup combines volumes from multi-
ple nodes of a cluster into a single client-visible namespace
and allows any directory entry to point to any inode on any
of the member volumes. The FlexGroup selects a location
for each new file or directory using heuristics that attempt to
balance capacity and load. The result is a single file system
that scales across the resources of an entire storage cluster.

Within a storage cluster, FlexGroups use a new Remote
Access Layer (RAL) to perform transactional updates across
multiple member volumes (for example, a directory entry on
one node and the target inode on a different node). Because
operations that span multiple FlexVols® necessarily intro-
duce overhead, the FlexGroup heuristics dynamically adjust
the levels of remote inode placement to minimize that over-
head while still achieving a balanced system.

FlexGroups impose performance overhead on metadata
operations that create or traverse cross-node links in the
namespace. But the more costly of these operations, such
as MKDIR, are relatively rare, and the overheads are modest
compared to the larger latencies of I/O to SSDs or HDDs.
On large mixed workloads, a FlexGroup performs compara-
bly to a similarly sized group of individual volumes while
providing the benefits of automatic scaling and balancing of
the data and load across nodes.

This paper makes several contributions. We present a scal-
able distributed file system architecture that builds on an un-
derlying single-node file system while preserving all of its
features. We describe low-cost heuristics that dynamically
balance load and capacity with little performance overhead.
Finally, we analyze more than 1,000 customer FlexGroup de-
ployments to evaluate our load balancing heuristics, under-
stand challenging use cases, and identify improvements to
FlexGroup heuristics.

2 The Building Blocks

A FlexGroup is a distributed file system built from a clus-
ter of nodes running our storage operating system, NetApp
Data ONTAP®, which includes WAFL [11], our proprietary
copy-on-write (COW) file system. A FlexGroup is com-

USENIX Association 2019 USENIX Annual Technical Conference 135

Clients

Node 1A

NBlade

DBlade

Node 1B

NBlade

DBlade

Node 2A

NBlade

DBlade

Node 2B

NBlade

DBlade

HA Pair 1 HA Pair 2

Figure 1: Arrows indicate some possible routing paths for opera-
tions. The NBlade in node 2A may route a request to the DBlade on
the same node, on the HA partner node (2B), or to another node in
the cluster (1B).

posed of multiple single-node file systems called FlexVols;
a FlexVol [7] is an exportable WAFL file system. As in other
COW file systems [24, 30], every modified block of data or
metadata in WAFL is written to a new location; only the su-
perblock is ever written in place. The file system supports
many enterprise features, such as snapshots [18, 19], repli-
cation [29], storage efficiency (compression, deduplication,
etc.), and encryption.

A cluster of ONTAP [25] nodes is organized as multiple
high-availability (HA) pairs of nodes. Each pool of stor-
age is accessible by a different HA pair. A node is com-
posed primarily of two software modules [8]: an NBlade
and a DBlade. The NBlade is composed of the networking
and protocol stacks (NFS, SMB, iSCSI, NVMe, etc.) that
communicate with clients. The DBlade is composed of the
WAFL file system, RAID [2, 9] module, and storage drivers
to interact with the storage media. The storage pool dedi-
cated to an HA pair is partitioned into aggregates, each of
which can house hundreds of FlexVols. The storage devices
in an aggregate are collected into RAID groups to protect
against device failures [28]. Each aggregate is managed in
an active-passive manner by the nodes of its HA pair. Thus
the DBlade on each node serves requests for one or more ag-
gregates while also acting as a standby to take over the HA
partner’s aggregates if the partner fails.

ONTAP exports file system namespaces over virtual in-
terfaces (VIFs) that are mapped to nodes in the cluster. A
client accesses the namespace within a FlexVol over NFS or
SMB by connecting to a node via the corresponding VIF [8].
As illustrated in Fig. 1, each request is routed from the re-
ceiving node’s NBlade to the DBlade of the node owning
the FlexVol that contains the requested data. The NBlades
consult a consistent, replicated database of volume informa-
tion, which maps volume IDs to DBlades. Responses are
routed back from a DBlade to the client via the NBlade that
is connected to the client. Any operation that is routed to a
different node pays a small latency penalty compared to one

that is routed to the same node [8].
WAFL accelerates performance by placing a write-ahead

log in NVRAM [11, 33] and provides a fast failover capa-
bility by mirroring this log to its HA partner’s NVRAM. If
a node (1A) fails, the HA partner (1B) takes ownership of its
network interfaces and storage, replays its NVRAM log (aka
NVLog), and starts servicing operations to those FlexVols
almost instantly, thereby minimizing client outage. Even in
the rare event that NVLog is lost—for example, if one node
“panics” and the NVRAM devices on both nodes of the HA-
pair are damaged—the COW nature of updates guarantees
the consistency of the persistent file systems on the failed
node [11, 24, 30]; only state from operations logged in the
last few seconds is lost. In other words, no (fsck-style) repair
of the file system is needed in such cases.

3 FlexGroup Volumes

ONTAP with FlexVols had been commercially successful
with a wide customer deployment for several years before
we tackled the problem of building a distributed names-
pace that seamlessly scales across the storage pools and
compute resources of all nodes in a cluster. ONTAP al-
ready allowed the administrator to manually junction to-
gether multiple FlexVols in a cluster to export a namespace
that spanned multiple nodes, but it was impossible to build an
efficient junctioned namespace because avoiding conditions
of imbalance—storage capacity or load—required a priori
knowledge of future behavior of the applications. Customer
deployments need directory namespaces to autonomously
consume capacity and compute resources from nodes in the
cluster with minimal administrator involvement.

Customers have high requirements of an enterprise-grade
distributed file system: resiliency, availability, ease of ad-
ministration, and other “standard” features, such as snap-
shots, replication, cloning, compression, deduplication, and
encryption. Adding this comprehensive list of features into
an existing open-source file system or creating a new feature-
rich distributed file system would have been prohibitively ex-
pensive in terms of engineering resources and time.

Because these features had been baked into FlexVols over
decades, building FlexGroups out of a collection of FlexVols
was the obvious and prudent approach. It greatly simpli-
fied several aspects of our design. For example, the ability
to nondisruptively move FlexVols between nodes is particu-
larly useful for coarse-grained rebalancing without embed-
ding any forward pointers in the file system; for more on this
topic, see Sec. 3.3. Moreover, the NVLog, together with the
transactional semantics of FlexVols [2, 7, 9, 17, 20, 29] pro-
vides the atomicity and reliability for maintaining metadata
necessary for the distributed namespace.

More importantly, this choice simplified existing cus-
tomers’ workflows—a FlexGroup looks much like a FlexVol
to the administrator and NFS or SMB clients—which was

136 2019 USENIX Annual Technical Conference USENIX Association

key to its rapid adoption. FlexGroups also allow “upgrad-
ing” an existing FlexVol to a FlexGroup, on-the-fly addition
of member FlexVols, presentation of a FlexGroup as a single
volume for all administrative tasks, and other management
features. Such details are outside of the scope of this paper.

3.1 Design Considerations
Data distribution comes at a cost. Typically, spreading data
across nodes requires either a metadata server or internal
pointers to redirect from one location to another. Maintain-
ing this metadata costs additional CPU, network, and stor-
age. Coarse-grained distribution of large directory subtrees
minimizes metadata costs, but makes it harder to achieve bal-
ance between nodes. A distributed system can achieve better
balance with a finer-grained distribution, but that comes with
the additional cost of more pointers.

Because both fine- and coarse-grained distribution have
drawbacks, a promising approach would be to offer a mech-
anism that can adaptively change distribution granularities
based on need—using fine-grained distribution when nec-
essary to ensure the use of all resources, while reverting to
coarse-grained distribution when possible for higher overall
performance.

An alternative approach to achieve fine-grained distribu-
tion without metadata overhead is to use hash-based algo-
rithms to place each file on a pseudo-random node. We ruled
this approach out for two reasons. First, hash-based place-
ment causes a large fraction, (n− 1)/n, of requests to pay
the cost of a network hop (NBlade to DBlade) in an n-node
system. More intelligent placement of files can reduce hops;
for example, files within a directory could be colocated in the
common case. Hash-based placement also prevents dynamic
placement decisions based on current conditions; for exam-
ple, avoiding new file creation on a node that is experiencing
high load.

Ideally, a system should be capable of reacting to imbal-
ance in load and storage space availability. Retroactive data
movement has two serious challenges—picking the content
to be moved and doing it in a nondisruptive fashion to the
clients (i.e., no remounts). The latter requires inserting re-
mote pointers in the file system to avoid invalidating file
handles that were previously issued to clients.1 However,
the proliferation of these pointers over time creates an ever-
increasing drag on overall system performance. Addition-
ally, although centralizing metadata in one server simplifies
some aspects, it leads to obvious performance bottlenecks.

We explored two less-successful designs before Flex-
Groups. In our first design, all data files were striped (based
on file offset and range) across member FlexVols. Subse-
quently, metadata (directories and inode tables) were also
striped and decentralized. A distributed ticketing mechanism
was used to maintain cross-FlexVol consistency. However,

1NFS requires long-lived file handles.

the resultant fine-grained synchronization generated a high
performance tax. In addition, increase in CPU core count
in nodes and scaling improvements to the WAFL parallelism
model [5] enabled concurrent execution of dozens of read
and write operations to a single file, which obviated the need
to stripe “hot” files.

The second design stored an inode indirection layer in a
master FlexVol, which pointed to data files that were placed
in other FlexVols based on simple round-robin policies. The
design traded the extra FlexVol hop paid by each operation
to consult and follow the indirection for the ease of moving
data and metadata across the member FlexVols in response
to imbalance in load or storage capacity. However, the de-
sign was unable to prevent the master FlexVol (hosting the
indirection layer) from becoming a performance bottleneck.

To demonstrate the overhead of this indirection-based
scheme, we benchmarked it against FlexGroups, which, as
explained later in this section, have several important dif-
ferences. FlexGroups use pointers rather than indirection to
locate remote files and try to place each file in the same node
as its parent directory so that most operations avoid an ex-
tra NBlade-to-DBlade hop. Finally, FlexGroup members are
symmetric; no node or FlexVol necessarily handles more (or
less) data, metadata, or traffic than its peers.

We ran SPEC SFS 2014 SWBUILD [35] on both a Flex-
Group and the indirection-based approach using a mid-range
HA pair.2 The operational throughput (ops/s) of FlexGroups
was more than 4 times that of the indirection approach. At
low load points, both were easily able to handle the work-
load, but the average request latency of the indirection ap-
proach was 1.9 times higher than that of FlexGroups, reflect-
ing the extra network hop required by every request.

This pattern continued at higher load points until the mas-
ter FlexVol became a bottleneck in the indirection-based sys-
tem. Queue lengths grew rapidly with increasing load, until
a 20-fold increase in time spent to resolve indirection which
caused the operational throughput to collapse in spite of the
fact that almost half of the available CPU cores remained
idle. In contrast, FlexGroup performance continued to scale
until the cores on both nodes were almost fully utilized. Note
that this test was performed on a 2-node cluster. The indirec-
tion bottleneck is more acute in a larger cluster.

3.2 Fusing FlexVols via Remote Hardlinks
FlexGroups distribute both data and metadata across mul-
tiple FlexVols by allowing directory entries to be remote
hardlinks to inodes on other member FlexVols, as illustrated
in Fig. 2. A client can connect to any node in the cluster, and
the NBlade routes its requests to the appropriate FlexVol and
DBlade.

FlexGroups perform most data distribution during ingest:
an intelligent, immediate, and permanent placement decision

2Each node had 16 cores and 96 GiB of DRAM.

USENIX Association 2019 USENIX Annual Technical Conference 137

Keith Smith

Node 1A

FlexVol A

.

..
dir1

Node 1B

FlexVol B

.

..
dir2

Node 2A

FlexVol C

.

..
dir3

Node 2B

FlexVol D

.

..

file1

000101011…

Inode 1 Inode 2 Inode 3 Inode 4

Inode 12

Inode 25

L2R:

R2L:

L2R:25 à D:4

D:4 à 25

4 à C

Figure 2: An example of a FlexGroup (DBlades only) that consists
of member FlexVols in four nodes, along with hardlinks following
/dir1/dir2/dir3. L2R and R2L are local-to-remote and remote-
to-local databases. FlexVol C contains inode 25, which is a cached
version of inode 4 from FlexVol D.

is taken when creating a new file or directory, thereby as-
signing the new object to one of the FlexVol members of the
FlexGroup. FlexGroups adjust the granularity of distribution
from the directory level down to individual files as necessary.

As explained in Sec. 3.1, striping individual files was
not necessary to achieve our performance goals. Therefore,
FlexGroups do not stripe individual files or directories across
member FlexVols; each object lives entirely in one FlexVol.
This greatly simplifies the design and allows all data opera-
tions (reads and writes) to be executed with the same latency
and throughput. In other words, remote hardlinks are not
traversed when servicing such operations; an additional net-
work hop is incurred only if the NBlade connected to the
client and DBlade in which the data resides are on differ-
ent nodes. Only metadata operations that resolve or modify
remote hardlinks incur additional latency for the extra inter-
node communication.

The FlexVol identifier and the inode identifier are encoded
within the opaque file handle that WAFL returns to oper-
ations such as LOOKUP and OPEN. An NFS client resolves
/dir1/dir2/foo by starting at the root located in FlexVol
A. Suppose that the client connects to Node 1A and sends a
LOOKUP operation for dir1 to that NBlade. This operation is
directed to the same node’s DBlade, which contains the root
directory, and the remote hardlink for dir1 is located. The
NFS handle returned to the client has B:2 encoded within it.
The client then sends a LOOKUP for dir2 using this opaque
handle, which the NBlade forwards to FlexVol B (Node 1B).
The NFS handle returned to the client now embeds C:3. A
LOOKUP for file foo returns a file handle that encodes the
FlexVol (which could even be A) and the inode for that file.
All subsequent reads and writes on that file get routed by the
NBlade of Node 1A directly to the correct DBlade with no
further access of the remote hardlinks. Thus, as mentioned
earlier, every data operation costs the same and is indepen-

dent of the number of remote hardlinks that led to it.
Unlike NFS, the SMB client sends the entire pathname,

starting from the root. For example, an SMB client may
OPEN /dir1/dir2/foo, whereas an NFS client sends a se-
ries of LOOKUP operations that walk down to foo. NBlades
accelerate these SMB operations by maintaining in-memory
pathname-to-FlexVol tables that can be used to resolve an
entire pathname to a FlexVol, similar to Sprite prefix ta-
bles [41]. Depending on the state of the table, the OPEN op-
eration may avoid resolving some or all remote hardlinks in
the pathname when it gets routed to a FlexVol. The resolved
hardlinks are added to this table. Much as with NFS, once
OPENed all subsequent reads and writes to that file are routed
directly to the correct DBlade.

3.3 Load Balancing

Based on experience with prior designs and customer work-
loads we realized that remote hardlinks with ingest-based
placement yield a close-to-optimal trade-off by reducing the
necessary synchronization overhead even while reducing the
likelihood of imbalances in storage capacity and load across
member FlexVols. Sec. 3.5 explains how placement heuris-
tics are based on both the recent IOPS load imbalance and
the capacity imbalance across member FlexVols. Obviously,
these heuristics cannot predictably avoid load imbalances in
the future. For example, it is possible that data written aptly
at ingest time to one (or a few) member FlexVols becomes
“hot” several hours or days later due to some application
workflow. As explained earlier, nondisruptive, retroactive,
and fine-grained data redistribution requires creating perma-
nent remote markers that will regress the overall file sys-
tem performance over time. Instead, such a pathologically
imbalanced FlexGroup is fixed efficiently and expeditiously
by coarse-grained movement of “hot” member FlexVols to
nodes that are sustaining less IOPS load. This is done by
leveraging the Volume Move feature [26], which leaves no
residual remote markers in the file system namespace of the
FlexGroup.3

3.4 The Remote Access Layer

FlexGroup volumes work by having one member FlexVol
take responsibility for executing an entire operation, updat-
ing its own state, and coordinating the state changes with
the other members. Each time an operation needs to cre-
ate, delete, or access a remote hardlink, control passes to
the Remote Access Layer (RAL). The RAL is responsible for
managing and updating remote hardlinks in a transactional

3Movement is accomplished by taking periodic snapshots of the FlexVol
and incrementally transferring all changes to the destination node. The fre-
quency of these transfers increases as the movement catches up with the
most recent version of the FlexVol at which point the volume information
database consulted by the NBlades is atomically updated.

138 2019 USENIX Annual Technical Conference USENIX Association

manner and allowing the existing file system code to operate
on remote metadata as if it were local. The RAL is also re-
sponsible for recovering hardlink state after crashes and for
dealing with network slowness and outages between nodes.

Conceptually, the RAL is a delegation service. When an
operation accesses a remote hardlink, the RAL requests the
corresponding metadata from the remote FlexVol and places
it in a metadata cache where it can be accessed by the lo-
cal operation. This caching represents a delegation from an
origin FlexVol to the caching FlexVol. A delegation may
be released proactively by the caching FlexVol or revoked
by the origin FlexVol. Because the objects being cached are
files or directories, each cache entry is conveniently stored in
an inode at the caching FlexVol; the inode is freed when the
caching relationship (and delegation) cease to exist.

The RAL persists its cached metadata to ensure that it
is not lost in the event of a node failure. As described in
Sec. 2, when a node fails, its HA partner takes over all of
its FlexVols, replays logged operations, and resumes service
of those FlexVols almost immediately. The RAL metadata
caches benefit from this same high availability by persist-
ing their state to metadata files in the FlexVols. This makes
delegations fault tolerant and therefore simplifies the RAL
design.

There are other approaches for tracking and maintain-
ing distributed state, such as remote hardlinks. Porting and
leveraging well-known services, such as ZooKeeper [15] or
etcd [4], to maintain this state was tempting for reasons
such as speed of implementation. However, building the
RAL transactional mechanisms within our file system pro-
vided two major advantages: (1) low transactional over-
head, because RAL bookkeeping occurs in the context of
the client operation; and (2) resilient transaction tracking,
because RAL bookkeeping leverages the enterprise-quality
transactional semantics provided by WAFL.

The next three subsections explain the transactional infras-
tructure for creating and managing remote hardlinks.

3.4.1 RAL Caches

As summarized above, the RAL is a write-back metadata
cache of remote inodes. The caching FlexVol creates (if
necessary) and uses delegations cached in local inodes from
one or more origin FlexVols to execute file system opera-
tions. These inodes may contain read-only (RO) or read-
write (RW) caches. In other words, for any given object, its
origin FlexVol can grant at most one exclusive RW cache to
another FlexVol or multiple RO caches to multiple FlexVols.

The cached inodes are stored persistently in the regular in-
ode table and are used by local file system operations much
like regular inodes. Because they are stored in the local
file system, updates to cached inodes are protected by the
NVLog. This ensures that the delegations represented by
cache entries are not lost in the event of node failures.

The combination of HA pairs with the mirrored NVLog,
as described in Sec. 2, ensures that node failures appear, at
worst, as transient delays to the RAL. When a node fails,
its partner quickly takes over, replaying operations from the
NVLog to recreate the RAL metadata state that had not yet
been persisted to storage.

The caches are managed using local-to-remote (L2R) and
remote-to-local (R2L) maps, which are implemented as B+
trees and stored in each FlexVol as hidden files. The L2R
maps store two kinds of information: (1) the map from lo-
cally cached inodes to the corresponding remote inode num-
ber and origin FlexVol ID; and (2) the map of local inodes
that are cached by other FlexVols. The R2L maps store the
reverse mapping of the first type of L2R map data. For ex-
ample, in Fig. 2, inode 25 on FlexVol C is a cached version
of inode 4 on FlexVol D.

RAL caches are not intended as long-term storage, and
are primarily used as (1) a temporary measure to complete
metadata operations that choose to locate newly created con-
tent in a remote member; and (2) a mechanism for providing
crash-consistent transactional semantics.

Caches can be evicted proactively by the caching FlexVol
or revoked by the origin FlexVol. A background scrub pro-
cess periodically walks and reclaims all caches, because
caches are only needed temporarily. In fact, to improve per-
formance, most read-write caches are aggressively evicted
after their use, so that they don’t have to be evicted when a
later operation needs to create a cache of the inode in a differ-
ent FlexVol. The scrub also reclaims all wasteful or stale out-
standing references. The origin FlexVol can evict read-write
caches of its inodes by examining its L2R map to find the
set of caching FlexVols, sending them REMOTE WRITEBACK
messages to write back the dirty data, and then evicting the
entries.

3.4.2 Example

We use an NFS MKDIR request—a sufficiently complex
operation—to illustrate how RAL is used. Suppose that sub-
directory dir3 is created under dir2, that dir2 is stored on
FlexVol C, and that the placement logic decides to store the
contents of dir3 on FlexVol D. Fig. 2 illustrates this exam-
ple.

1. FlexVol C suspends local processing of the MKDIR oper-
ation when it determines that it needs a remote hardlink.

2. FlexVol C sends a RAL RETRIEVE message to FlexVol
D, asking for the creation of a new inode and a copy of
it for read-write caching.

3. FlexVol D allocates the new inode (4 in the figure), tags
it as being cached elsewhere in the RW manner, and
creates the corresponding L2R entry.

4. FlexVol D responds to FlexVol C by sending a
RAL STORE message to store the cached copy of this in-
ode in FlexVol C.

USENIX Association 2019 USENIX Annual Technical Conference 139

5. FlexVol C processes the RAL STORE message by allo-
cating a local inode (25 in the figure), tags it as a RW
cache, creates the appropriate L2R and R2L entries, and
adds it to the pool of cached inodes for FlexVol D.

6. FlexVol C restarts the local MKDIR operation.

The MKDIR operation finds the cached inode in the pool
and proceeds to completion using it as the proxy for dir34.
The MKDIR operation now creates the remote hardlink direc-
tory entry in dir2 pointing to dir3, converts the inode C:25
into a directory type, populates the . and .. entries in it, and
marks the RW cache entry as “dirty.”

If the client now sends a CREATE command to create a new
file in dir3, that request gets routed to FlexVol D. When the
operation executes, it notices the tag on dir3’s inode that
marks it as being in an RW cache elsewhere. The FlexVol
suspends the operation, consults the L2R map to determine
that it is cached in FlexVol C, and starts the eviction process.
FlexVol C writes back the dirty RW cache to FlexVol D, re-
moves it from the cache, and FlexVol D then marks the inode
as a valid subdirectory with no RW caches. The CREATE op-
eration is then resumed in FlexVol D.

As the MKDIR example illustrates, the DBlade of the
caching FlexVol takes ownership of executing the client op-
eration atomically, but only after it has created local RW
caches from an origin FlexVol. We now briefly describe
an example RENAME operation, which is more complex and
may involve two origin FlexVols. A RENAME mv dirA/foo
dirB/bar operation is routed to the DBlade that hosts dirB.
Suppose that dirA is in FlexVol A, dirB is in FlexVol B,
and foo is a hardlink from dirA to inodeC in FlexVol C.
FlexVol B first acquires two RW caches5—one from FlexVol
A for dirA and one from FlexVol C for inodeC—and then
executes the RENAME as a regular WAFL operation that uses
the two RW caches. The execution of the RENAME deletes bar
if one already exists, creates a new local bar that hardlinks
to inodeC, and deletes foo in the RW cache for dirA. The
persistent RW cache entries are left in a “dirty” state; the
origin FlexVols are modified when these cache entries are
eventually flushed back.

Some operations require read-only (RO) caches; for ex-
ample, an SMB OPEN operation creates RO caches for any
traversed remote inodes while resolving a file pathname.

3.4.3 Consistency and Recovery

The FlexGroup consistency model builds on the transac-
tional semantics of the underlying COW WAFL file system

4In theory, the MKDIR operation could find a RW cache entry in that pool
on its first execution. That RW cache entry might have been created due to a
RAL RETRIEVE operation to member D initiated by a different operation. In
that case, on resumption that operation kicks off yet another RAL RETRIEVE
operation to populate the pool.

5Each cache is acquired using the RAL RETRIEVE and RAL STORE hand-
shake.

with its NVLog. A client operation is acknowledged only
after it has been recorded in the NVLog of both the node and
its HA partner. All RAL operations are similarly recorded
to NVLog before they are acknowledged. After a node fail-
ure, NVLog replay returns the affected member FlexVols to
a state representing a valid phase of any ongoing RAL trans-
action. It must be noted that the ONTAP HA-pair model
(together with our RAID and WAFL software) is specifically
engineered to be highly reliable6, which informs the rest of
this section.

For example, in the case of the MKDIR example, the node
containing FlexVol D processes the RAL RETRIEVE message,
records the message and result in its NVLog, and responds to
FlexVol C. If FlexVol D’s node fails before the correspond-
ing updates are persisted to the local file system, its HA part-
ner replays the RAL RETRIEVE message, recreating the inode.

If the node that hosts FlexVol C fails during the RAL STORE
phase, its HA partner may choose a different location for cre-
ating dir3 when it replays MKDIR. FlexVols D and C may be
left with stale or unused cache entries or temporary inodes.
This is the only allowed form of inconsistency after a node
failure; it is eventually resolved by the background scrub
process, which periodically walks and reclaims all caches,
including all wasteful or stale outstanding references7. The
continued existence of these stale references is safe and does
not compromise the consistency of the file system.

Any dirty state left in the cache inode (25 in the MKDIR ex-
ample) is recreated by replaying MKDIR if C fails after MKDIR
is logged but before the subsequent file system transaction
completes. Although a formal proof is not provided for lack
of space, we conclude that RAL usage for FlexGroup is crash
consistent.

Sec. 2 explains that no fsck-style repair is required if a
node fails or even in the rare case that NVLog in both nodes
of an HA pair is lost. When a member node in a FlexGroup
fails, its HA partner replays its NVLog and recreates the file
system state, including the RAL state. However, the loss of
NVLog of one member FlexVol may result in inconsistencies
between it and other members. Additional mechanisms were
built to accomplish automatic on-the-fly repair when such an
inconsistency is detected by an operation. In brief, the op-
eration is suspended while a high-priority WAFL message
investigates the inconsistency, fixes it, syslogs it, and restarts
the original operation. For example, suppose that a LOOKUP
consults a directory entry foo, which is a remote hardlink to
an inode in FlexVol B that does not exist because FlexVol B
suffered a failure followed by a loss of its NVLog. On-the-
fly repair would be kicked off once the RAL RETRIEVE fails,

6The availability of our customers’ systems is routinely measured at 5 to
6 nines; that is, annual system downtime between 3 and 30 seconds.

7The WAFL file system includes a time-tested background scanner in-
frastructure used to walk and operate on various file system metadata. The
infrastructure paces itself based on current system load, thereby ensuring
negligible (less than 2%) impact to client operations. There are about 20
different scan types, and the FlexGroup scrub is one of them.

140 2019 USENIX Annual Technical Conference USENIX Association

which would eventually delete the entry foo. The restarted
LOOKUP now finds no corresponding entry. A detailed dis-
cussion of on-the-fly repair techniques is beyond the scope
of this paper.

3.5 Ingest Heuristics
As mentioned earlier, all placement decisions are made dur-
ing ingest before the new inode is allocated. The heuristics
balance two competing goals: distributing load (IOPS) and
capacity among member FlexVols versus reducing the oper-
ational overhead associated with remote hardlinks.

Creating a remote hardlink to an idle member almost im-
mediately brings traffic to it, which shifts some traffic to idle
members and increases overall performance. Additionally,
creating a remote hardlink to an underutilized FlexVol al-
most certainly causes it to fill up a little more, which helps
bring its usage in line with that of its peers. This is more
important when the member volumes are closer to full, and
remote hardlinks can help get to every last byte of storage.
Therefore, as the FlexVols become more and more full, the
FlexGroup should employ more remote hardlinks.

On the other hand, every time the FlexGroup creates a
new remote hardlink, there is a small performance penalty,
both at the time of creation and in the future when access-
ing the remote hardlink. The penalties accumulated across
too many remote hardlinks increase average request latency
and reduce overall performance. However, too few remote
hardlinks may mean a failure to use all available resources.
Thus, the primary goal of ingest heuristics is to achieve the
right balance while using as few remote hardlinks as possi-
ble.

3.5.1 Input to Heuristics

To minimize the overhead of heuristics, each node makes
independent allocation decisions based on the following in-
formation about each member FlexVol:

• Block usage: The ratio of consumed to total storage
space of the FlexVol.

• Inode usage: The ratio of the number of locally allo-
cated inodes to the maximum number of inodes allowed
for the FlexVol.

• Recent ingest load: The recent frequency with which it
has created new files and directories (maintained by us-
ing a sliding window average across several seconds)8.

The member FlexVols periodically exchange this informa-
tion by using an asynchronous and lightweight viral refresh
process provided by ONTAP. Each node propagates infor-
mation about its local member FlexVols as well as informa-
tion received from other nodes. Each node sends out a mes-

8Sec. 3.3 explains the handling of unpredictable future imbalance in load
across the member FlexVols.

sage to each peer every second and uses timestamps to decide
the staleness of the received information. An asynchronous
model suffices because the heuristics are reacting to trends
in load and storage consumption rather than making instan-
taneously optimal decisions.

3.5.2 Heuristic Probability Tables

Each node consults a set of probability tables during inode
allocation. The tables are recomputed approximately every
second, using any new information that is received from the
refresh process. The table in each FlexVol consists of two
arrays:

• RP[c]: An array of remote preference—a value between
0 and 1 indicating the probability of remote allocation
for objects of various categories, such as files and sub-
directories at various depths from the root directory.

• AT [m]: An array of remote allocation target probability
values for member FlexVol m; the sum of values across
the array is 1.

When making an inode allocation decision, the FlexVol
generates a random number between 0 and 1 and compares
it to the corresponding value in RP for that category. If the
randomly generated number is larger, it processes the al-
location locally; otherwise it uses a weighted round-robin
scheme to determine the FlexVol for remote allocation: Each
remote member is assigned a target percentage based on its
AT value, and each allocation selects the remote FlexVol that
is furthest behind its target percentage compared to its peers.

3.5.3 Computing Heuristic Probability Tables

The probability tables are recomputed by comparing the
properties of all member FlexVols and looking for trends and
problem conditions. As mentioned earlier, each node com-
putes these tables independently based on the information
from the most recent refresh process. First, two intermediate
values—Urgency and Tolerance—are computed.

Urgency biases the heuristics to react to imbalance in the
FlexGroup. It is computed as a linear interpolation of each
member’s usage and each node’s ingest load within their re-
spective high and low thresholds, which are precomputed
based on the FlexGroup configuration. An Urgency of 1 in-
dicates that at least one member volume is critically low on
one of these resources. Values between 0 and 1 indicate es-
calating degrees of concern.

Tolerance indicates how much disparity in load or usage
among member volumes is acceptable. A low value tells the
heuristics to react more strongly to disparities between mem-
ber FlexVols. A FlexGroup that is empty with no load will
have maximum Tolerance. As a FlexGroup gets closer to full
capacity, Tolerance goes down, and the heuristics allow less
disparity among the members.

USENIX Association 2019 USENIX Annual Technical Conference 141

Computing Remote Allocation Target (AT) Proba-
bilities: First a hypothetical usage goal is computed—
somewhere between the highest current capacity usage
(combining both blocks and inodes) on any member and the
maximum capacity of any member. The heuristics assign
each member an allocation target based on the difference be-
tween that member’s usage goal and its current usage. In
essence, the heuristics select targets such that if all alloca-
tions were remote and all new files were exactly the same
size, the remote members would then fill up at exactly the
rates needed to reach their usage goals at the same time.

A non-zero Urgency affects this calculation significantly.
A member that contributes to the non-zero Urgency is given
a much lower target. For example, a member with the max-
imum Urgency value of 1 is assigned only 1% of its target.
Once target values are assigned to each member, the values
are normalized into AT [m] as probabilities summing to 1.

Computing Remote Preference (RP) Probabilities: The
heuristics iterate over each allocation category for a member
FlexVol. Some categories are easily computed. For example,
allocating a new subdirectory in the root directory is always
a remote allocation to ensure that this new branch of content
lands on the member with the least capacity usage or load.
But for most categories, the calculation is more complex and
uses the recent ingest load data from all members.

First, the heuristics compare the recent request load for
an allocation category to the target load specified by the
volume’s allocation target (AT). If the recent load is below
the target, then RP[c] is set to 0, indicating a desire for the
FlexVol to satisfy new allocations locally. However, if the
recent load is above the target then RP[c] is computed as the
proportion of the load that is in excess of the target. For ex-
ample, if a member with a target of 8% has recently received
10% of the overall allocations in a category, then that cate-
gory is assigned a RP of 0.2 so it can attain its target. As
an optimization, RP is reduced for members that have ex-
ceeded their target by less than the current Tolerance value,
optimistically allowing them to keep a higher percentage of
local traffic for local placement.

Again, a non-zero Urgency value for a member increases
its RP values. As a member FlexVol or node runs low on re-
sources, the allocations are more likely to happen on remote
peers.

4 Topics in Practice

Building a scale-out file system required meeting customer
expectations of the features, performance, and robustness
that they were accustomed to with FlexVols. This section
touches on a few selected topics related to satisfying those
expectations.

Snapshots: Several features of ONTAP depend on the
ability to efficiently create consistent snapshots. A Flex-
Group snapshot is a collection of snapshots, one per member

FlexVol, that are created in a coordinated fashion. First, each
member FlexVol fences all new client operations and evicts
all RW caches. Then each member FlexVol independently
creates a snapshot and drops its fence. Because very few
RW caches are outstanding at any point in time, this fenc-
ing creates no noticeable disruption to client performance
(both latency and throughput of client operations). The de-
sign choice to evict all RW caches was made to avoid extra
implementation work in various internal file system opera-
tions to understand, handle, and traverse RAL information
when accessing snapshots. Eviction is not really necessary
because the L2R and R2L metadata is consistently captured
in each member FlexVol snapshot, and could be used to ser-
vice reads of the FlexGroup snapshot image. The metadata
can also be reactivated in the case of a restore of the entire
FlexGroup to that coordinated image.

Quotas: Tracking and enforcement of user, directory, and
group quotas must treat the entire FlexGroup as a single en-
tity. Any incoming operation must fail when a quota rule is
violated. Caches created by the RAL infrastructure count to-
ward quota consumption. Quota credits are pro-actively dis-
tributed across member FlexVols to allow efficient, indepen-
dent, and per-operation granular enforcement of the rules.
In the worst case, an operation may be suspended while the
FlexVol communicates with other members to borrow cred-
its; the design makes such scenarios extremely rare.

Unreachable Member FlexVols: One or more members
may become temporarily unreachable; for example, due to
network problems. All client and RAL operations directed
to those FlexVols will time out and get retried. Meanwhile,
access to data in other FlexVols continues as usual. ON-
TAP clustering services indicate whether the FlexVols still
exist, whether the outage is temporary, and whether retries
will eventually succeed. If the problem is not transient or
if clustering services indicate that FlexVols have been de-
stroyed, either the FlexGroup can be restored to its most re-
cent coordinated snapshot9 or on-the-fly repair will eventu-
ally fix RAL metadata that point to the lost FlexVols. Both
approaches recover file system consistency but result in data
loss. The former is typically preferred because the loss is
recent and predictable; all mutations after the snapshot are
lost.

Testing: Enterprise-grade quality implies continuous val-
idation; 102 different test suites are executed, totaling 160
hours of runtime daily. These tests use both NFS and SMB
clients to specifically stress cross-member code paths that
use RAL. Many of the suites also inject errors, such as drop-
ping RAL operations, forcing node panics to trigger HA
events, discarding NVLog during HA-events, and artificially
creating memory pressure. There are also suites that explic-
itly create inconsistencies in the persisted RAL metadata to
test on-the-fly repair mechanisms that correct them.

9Snapshots can be replicated to and restored from remote nodes by using
NetApp SnapMirror® [29].

142 2019 USENIX Annual Technical Conference USENIX Association

5 Evaluation

This section shows that the load-balancing automation of
FlexGroups compares well to an ideal FlexVol in three areas:
overhead, scale, and balance. It is not practical to formu-
late an apples-to-apples comparison of FlexGroup to other
well-known distributed file systems, due to the difference in
configurations, sizes, and associated feature sets. Instead,
this section compares FlexGroup performance to ideal and
worst-case scenarios that are manually configured (as ex-
plained below). Experiments to measure FlexGroup over-
head (Sec. 5.1) and scale (Sec. 5.2) were completed using a
cluster of up to 8 nodes, each with two 6-core Intel Broad-
well DE processors, 64 GiB of DRAM, and a shelf of 24
SSDs. Capacity balancing was validated with data collected
from customer deployments (Sec. 5.3).

5.1 Overhead

Automatic redirection of files and directories between
FlexVols in a manner that is consistent in the face of faults
adds two major sources of overhead: RAL (Sec. 3.4) intro-
duces additional overhead for metadata operations, and some
operations incur an additional network communication cost
when the client sends a request to an NBlade that cannot be
satisfied by the local DBlade. We measure these overheads
by comparing the performance of FlexGroups to two man-
ually created configurations with FlexVols, neither of which
incur the overhead of RAL: (1) FlexVol-Local is an ideal
configuration in which operations are routed by each NBlade
to the DBlade on the same node. (2) FlexVol-Remote is a
configuration in which operations are always routed by each
NBlade to a DBlade on a different node.

Even though we used a single HA pair in these exper-
iments, the results in these two cases are independent of
the number of nodes: Either none (FlexVol-Local) or all
(FlexVol-Remote) operations involve inter-node processing,
and this does not change with the number of nodes. In the
case of FlexGroups, the remote-to-local ratio might increase
with the number of nodes, but no other are latencies added.

5.1.1 Overhead of NFS Operations

We measured overhead by generating a metadata load using
mdtest [14] to a single HA pair. We used a single mdtest
client connected by using NFSv3 to one of the nodes, with
no other load on the system. We report the latencies of the
individual metadata operations, measured on the storage sys-
tems. We configured mdtest to create approximately 2 mil-
lion directories and 2 million 256KB files; the maximum
NFS transfer size was set to 64KB.

Fig. 3 shows the normalized results. We observe that in the
FlexGroup case, data is spread approximately evenly across
the two DBlades. Read-only metadata operations that use

NFS file handles, namely ACCESS and GETATTR, exhibit per-
formance that is almost exactly halfway between the local
and remote cases because there is no RAL overhead. Sat-
isfying the request incurs additional communication across
the cluster interconnect approximately 50% of the time. The
LOOKUP operation incurs additional latency when resolving
a name in a directory that happens to be a remote hardlink,
because it creates a RO cache of the looked-up inode on the
same node as its parent directory10. Metadata update oper-
ations, such as CREATE, MKDIR, REMOVE, and RMDIR, show
the overhead of RAL and of communicating over the cluster
interconnect, each occurring roughly 50% of the time.

Even though many of these metadata operations incur an
overhead, they are relatively infrequent compared to data op-
erations. Read operations exhibit performance that is ap-
proximately halfway between the local and remote cases.
Write operations perform comparably worse than read opera-
tions because they require updating file inodes; for example,
to extend the file lengths and to update mtime. As shown
later in this section, the overall impact on performance is
minimal when looking at the operations in aggregate.

5.1.2 Application and Data Benchmarks

Fig. 4 shows the performance of our application benchmarks,
expressed as normalized operations per second. (Higher is
better.) The figure presents two sets of results: random and
sequential read and write benchmarks, and selected SPEC
SFS 2014 benchmarks [35], which evaluate a realistic mix-
ture of file system operations.

We generated the random and sequential results for reads
and writes by using an internal benchmark that increases the
load to find the maximum throughput possible while placing
data in accordance with the configuration (FlexVol-Local,
FlexVol-Remote, or FlexGroup). Unlike in the mdtest ex-
periment, in which only one NBlade and one DBlade were
active at any given time, in the FlexVol-Local case, we used
several clients to saturate both nodes with requests. The re-
sults indicate that throughput for FlexGroups achieves a bal-
ance somewhere between the best (FlexVol-Local) and worst
(FlexVol-Remote) cases.

SFS [35] is a standard file system workload generation
tool that comes with profiles generated from real-world ex-
amples. We use three SFS profiles representing differ-
ent mixes of metadata requests and data throughput [37]:
SWBUILD, heavy metadata similar to Linux kernel builds;
EDA, a balance of metadata and data throughput repre-
sentative of electronic design automation applications; and
VDA, streaming writes and few metadata operations, similar
to a video recording system. Our goal in these benchmarks
is to determine peak operations/second, not to produce com-
pliant SFS numbers as defined by SPEC [36].

10The performance of LOOKUP is independent of the path length because
NFSv3 resolves each pathname component separately.

USENIX Association 2019 USENIX Annual Technical Conference 143

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

2.
13

2.
25

2.
29

4.
25

2.
60

 3.
52

2.
38

1.
45

1.
43

2.
88

1.
71

3.
29

3.
00

1.
64

1.
74

1.
49

1.
85

1.
48

 -

 1.00

 2.00

 3.00

 4.00

 5.00

ACCESS CREATE GETATTR LOOKUP MKDIR REMOVE RMDIR READ-64KB WRITE-64KB

N
or

m
al

iz
ed

 L
at

en
cy

FlexVol-Local FlexGroup FlexVol-Remote

Figure 3: Server-side latency for select NFS operations generated by a single mdtest client, reported relative to FlexVol-Local latencies.
Lower scores indicate better performance.

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
79

0.
88

0.
79

0.
85

0.
90

0.
89

0.
92

0.
65

0.
82

0.
46

 0.
78

0.
78

0.
86

0.
86

 -
 0.20
 0.40
 0.60
 0.80
 1.00
 1.20
 1.40

Random Read Random Write Sequential Read Sequential Write SFS EDA SFS SWBUILD SFS VDA

N
or

m
al

iz
ed

 o
ps

/s
ec

FlexVol-Local FlexGroup FlexVol-Remote

Figure 4: Operations per second for application and data benchmarksrelative to FlexVol-Local. Higher scores indicate better performance.

For the EDA and VDA workloads, FlexGroup per-
formance fell almost exactly between FlexVol-Local and
FlexVol-Remote, showing that the load-balancing heuristics
achieved a balanced distribution of files across the two test
nodes and that there was negligible overhead from RAL. In
the SWBUILD test, FlexGroup performance was again be-
tween the extremes but closer to FlexVol-Remote. In this
test, 87% of requests are metadata operations, increasing
overhead due to more frequent RAL processing.

We also determined via profiling that the recomputation
of the heuristic probability tables every second by each node
adds a negligible amount of CPU cycles (less than 0.001%),
even for large customer deployments.

5.2 Workload Scaling

To examine the FlexGroup scalability under different work-
loads, we ran the three SFS profiles against 1-, 2-, 4-, 6-,
and 8-node clusters (as described at the beginning of Sec. 5).
Fig. 5 shows the scaled results. Workloads with lower meta-
data intensity (VDA) scale better than workloads with more
metadata operations, as expected due to the added transac-
tion overhead associated with RAL, discussed in Sec. 3.4.

5.3 Customer Experience

FlexGroups became available to customers in early 2017.
In this section, we share information about how customers
have used FlexGroups and about improvements made to our
heuristics based on that experience. The storage systems can

1.
00

1.
00

1.
00

1.
66

1.
50

1.
74

 2.
98

2.
57

3.
00

 4.
00

3.
23

 4.
36

5.
28

3.
64

5.
88

 -
 1.00
 2.00
 3.00
 4.00
 5.00
 6.00
 7.00

SFS EDA SFS SWBUILD SFS VDA

N
or

m
al

iz
ed

 o
ps

/s
ec

1 node 2 nodes 4 nodes 6 nodes 8 nodes

Figure 5: Scalability of FlexGroups. The max achieved opera-
tions/second for three SFS profiles, run against 1, 2, 4, 6, and 8
nodes. Each metric is reported relative to a 1-node cluster. Higher
scores indicate better performance.

“phone home” to report customer configuration and event
data [23]. This functionality is optional, but a large frac-
tion of our customers enable it. Because our customers typ-
ically configure multiple FlexGroups and other FlexVols on
the same nodes of a cluster, run dozens of applications on
any given node of the cluster at various times, and ONTAP
does not fully gather IOPS statistics on a per-FlexVol basis,
it is not possible to compute or to clearly show whether the
IOPS load stays balanced across member FlexVols over a
long period of time. On the other hand, per-FlexVol capacity
consumption is tracked for imbalance, and it also serves as a
good proxy for imbalance in load.

This data shows a steady rise in FlexGroup adoption in

144 2019 USENIX Annual Technical Conference USENIX Association

56%

13%
5% 2% 2%

22%

69% 74% 76% 78%

100%

0%

20%

40%

60%

80%

100%

0 - 1% 1 - 2% 2 - 3% 3 - 4% 4 - 5% > 5%

Coefficient of Variation Cumulative CV

Figure 6: Do the placement algorithms balance data in the real
world? This histogram shows the dispersion of FlexVol usage in
customer-deployed FlexGroups using the coefficient of variation
(CV). CV is the standard deviation normalized by dividing by the
mean (σ/µ).A smaller CV indicates lower dispersion. Only Flex-
Groups greater than 10TB in size and more than 5% utilized were
included.

the 2 years since its release. As of August 2018, hundreds of
customers have deployed thousands of FlexGroups to man-
age hundreds of petabytes of storage. Roughly half of these
FlexGroups are small (< 10TB), and we surmise that they
are being used for testing and evaluation. 25% of these Flex-
Groups are larger than 100TB, and 5% are larger than 1PB.
A handful of FlexGroups are larger than 5PB. Of the Flex-
Groups that are 10TB or larger, most (70%) have between
8 and 32 member FlexVols. 5% are larger, with the largest
containing over 150 members.

Customer data also provides insight into the effectiveness
of our ingest heuristics at balancing capacity across the mem-
bers of a FlexGroup. Standard deviation (stdev or σ) mea-
sures dispersion. However, because different FlexGroups
contain different amounts of data, the standard deviations
are not directly comparable. For example, a stdev of 105

bytes would be interpreted differently for a 1TB FlexGroup
than for a 100TB one. To normalize these numbers for com-
parison, we divide the stdev by the mean (µ), producing a
coefficient of variation (CV), or σ/µ, that gives the stdev as
a percentage of the mean.11 A FlexGroup with a CV of 1%
suggests that each FlexVol has a 95% probability of being
±0.02µ; a CV of 3% indicates a 95% probability of being
±0.06µ.

The data indicate that the FlexGroup placement algo-
rithms are working in most customer use cases, as shown
in Fig. 6. Over half (56%) of FlexGroups had a CV less than
1%, 78% of FlexGroups had a CV less than 5%, and 85%
were below 10%. Only FlexGroups larger than 10TB and
more than 5% utilized were included in this analysis. For
the 15% of FlexGroups that had a CV greater than 10%, we
found three patterns that account for most of the cases.

11CV is also known as relative standard deviation.

First there is a group of FlexGroups that have a bi-modal
usage pattern—one set of members with similar high usage
and another set with similar, but lower, usage. These appear
to be FlexGroups that customers have expanded by adding a
set of new member FlexVols, and the newer members show
lower usage than the older ones.

The second pattern includes FlexGroups that hold a small
number of very large files. An example would be a 200 TB
FlexGroup with a small number of backup archives averag-
ing 100 GB each. In these cases there aren’t enough files to
average out the effects of our ingest decisions, and the impact
of allocating (extremely large) outlier file sizes can increase
the CV of the FlexGroup.

Finally, there is a small number of FlexGroups that are
well balanced except for a single volume with much higher
usage. We believe that these cases are caused by oddities in
customer workloads: an output archive file that encompasses
an enormous amount of workload data, or a directory of log
files that were co-located when they were created, but have
grown very large over time.

It should be noted that such examples of capacity imbal-
ance do not necessarily imply imbalance in IOPS load across
the member FlexVols. In the second pattern, backup files ex-
perience sequential appends and infrequent sequential reads.
In the third pattern, output archive files experience infre-
quent bursts of append operations. The WAFL file system
is well tuned to absorb a spike in reads and writes to a sin-
gle FlexVol. And as mentioned earlier, in the worst case a
Volume Move operation can relocate such a FlexVol from a
node that happens to be overloaded.

Based on specific customer experiences, we have im-
proved the ingest heuristics over the four releases since Flex-
Groups were introduced. Early on, an interesting customer
case motivated the addition of the inode usage property to
the refresh process. Without accounting for inode usage, the
heuristics had kept several million small files in a few mem-
bers to balance out some extremely large files in the oth-
ers. The per-FlexVol limit on the number of inodes was hit,
causing out-of-space errors. Another customer experience
resulted in converting the ingest load into a sliding window
average to accommodate spikes. Other tweaks were made to
various constants used while recomputing the probability ta-
bles to prevent the heuristics from over-reacting to changes.

5.4 Applicability Beyond WAFL

The FlexGroup design builds on years of engineering invest-
ment in our WAFL file system, but could these concepts be
applied to other file systems? FlexGroups required modest
changes to WAFL, and we believe that similar enhancements
are possible to other file systems: remote hardlinks and the
ability to traverse, create, and delete them. The inputs to in-
gest heuristics are simple and should be easy to implement.

The biggest challenges may be availability and fault tol-

USENIX Association 2019 USENIX Annual Technical Conference 145

erance. A robust file system like WAFL can persist RAL
metadata locally with its reliable native consistency seman-
tics. Other file systems may require more expensive dis-
tributed consensus techniques, like two-phase commit [22]
or Paxos [21], to ensure fault tolerant updates to remote
hardlinks.

6 Related Work

Many distributed file systems have been developed by the re-
search, commercial, and open source communities. To dis-
cuss FlexGroups in the context of this large body of prior
work, we focus on file systems that share our design goals
and implementation choices. Thus we emphasize systems in
which storage devices are controlled by a single node (or two
nodes for fault tolerance) and in which nodes manage data at
the granularity of files or objects. We will not discuss shared
disk file systems such as GPFS [32] or Frangipani [38].

Distributed file systems use a variety of strategies for as-
signing files and directories to nodes. The simplest ap-
proach is a static partitioning, whereby an administrator as-
signs namespace subtrees to different servers. This strat-
egy is exemplified by systems like NFS [31], AFS [13], and
Sprite [27]. It was also the approach that ONTAP supported
prior to the introduction of FlexGroups [8].

The disadvantage of static namespace partitioning is un-
even load and capacity balancing. Dynamic distribution ad-
dresses this challenge by selecting or updating file locations
on the fly. Slice [1] compared two heuristics for dynamic
partitioning. Name hashing maximizes balancing by assign-
ing every new file and directory to a random node chosen by
hashing its name. Mkdir switching maintains namespace lo-
cality by assigning a configurable fraction of new directories
to a different node than their parent and allocating all other
files and directories on the same node as their parent.

The name hashing strategy has also been used in other dis-
tributed file systems including Vesta [3] and GlusterFS [12].
Like mkdir switching, FlexGroups aim to maintain names-
pace locality by rarely using remote links. But FlexGroups
also uses current load and capacity in deciding when to split
the namespace.

Unlike FlexGroups, many distributed file systems sepa-
rate namespace management from data storage. These de-
signs have nodes that store objects and a metadata service
that maps filenames to objects. For scalability, some systems
have multiple metadata servers, introducing the same trade-
off between load balancing and namespace locality that we
address in FlexGroups. Ceph [39] is a widely-used system of
this type. Unlike FlexGroups, Ceph repartitions the names-
pace in response to observed load. This is facilitated by
Ceph’s use of separate metadata servers; migrating a names-
pace subtree does not require moving the corresponding data
objects. Policies for migrating subtrees is an area of ongoing

research [34]. Ceph manages data placement using a hash-
based algorithm to select object storage devices [40].

PanFS [42] represents another point in the design space.
It statically partitions its namespace across metadata man-
agers and randomly places files on different object servers
(blades). Like FlexGroups it adjusts its allocation proba-
bilities to reflect disparities in free space across the object
servers. PanFS can also actively balance capacity by relocat-
ing data objects. Unlike FlexGroups, PanFS does not take
load into account during data placement.

Farsite [6] takes a unique approach to metadata partition-
ing. It spreads files across servers based on file identifiers.
But instead of using a hash, it uses a tree-structured system of
file identifiers. This supports the colocation of related files,
while avoiding the problem of directory renames forcing data
migration between servers.

Chunkfs [10] is a single-node file system with dynamic
namespace partitioning, but with different goals and imple-
mentation. Chunkfs improves fault isolation and recovery
by dividing the file system into multiple chunks, each con-
taining one or more namespace subtrees that can be checked
independently. Chunkfs uses continuation inodes to connect
subtrees across chunks, similar to remote hardlinks in Flex-
Groups, except that they are restricted to a single node.

Like Chunkfs, SpanFS [16] stitches together multiple
local file systems, called domains, into a single volume.
SpanFS provides better MP scaling because locks and other
resources are local to a single domain, allowing threads in
different domains to execute without contention.

7 Conclusion

In this paper, we presented FlexGroup volumes, a distributed
version of NetApp FlexVol volumes. FlexGroups achieve
seamless scaling across the storage cluster even while simpli-
fying the job of the storage administrator. FlexGroups lever-
age the maturity, stability, and feature richness of FlexVols.
We described the core elements of the design: the infras-
tructure for remote hardlinks and the ingest heuristics that
distribute newly created content. We evaluated FlexGroup
performance using both benchmarks and archived customer
usage data. The success of FlexGroups has been further val-
idated by rapid customer adoption.

Acknowledgements: We thank the many WAFL engi-
neers who contributed to these designs over the years; they
are too many to list. We thank the anonymous reviewers and
our the shepherd, Michael Factor, for their helpful comments
and advice. We also thank Mike Montour and Robert Franz
for their help with performance experiments, and we thank
Jessie Wood for copy editing this paper.

146 2019 USENIX Annual Technical Conference USENIX Association

References

[1] ANDERSON D.C., CHASE J.C., and VAHDAT A.M.
Interposed request routing for scalable network stor-
age. ACM Transactions on Computer Systems, 20(1),
pp. 25–48, February 2002.

[2] CORBETT P., ENGLISH B., GOEL A., GRCANAC T.,
KLEIMAN S., LEONG J., and SANKAR S. Row-
diagonal parity for double disk failure correction. In
Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST), pp. 1–14. March 2004.

[3] CORBETT P.F. and FEITELSON D.G. The Vesta par-
allel file system. ACM Transactions on Computer Sys-
tems, 14(3), pp. 225–264, August 1996.

[4] COREOS. etcd: A distributed, reliable key-value
store for the most critical data of a distributed system.
https://coreos.com/etcd/.

[5] CURTIS-MAURY M., DEVADAS V., FANG V., and
KULKARNI A. To Waffinity and beyond: A scalable ar-
chitecture for incremental parallelization of file system
code. In Proceedings of USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), pp.
419–434. November 2016.

[6] DOUCEUR J.R. and HOWELL J. Distributed directory
service in the Farsite file system. In Proceedings of
the 7th Symposium on Operating Systems Design and
Implementation (OSDI), pp. 321–334. November 2006.

[7] EDWARDS J.K., ELLARD D., EVERHART C., FAIR
R., HAMILTON E., KAHN A., KANEVSKY A.,
LENTINI J., PRAKASH A., SMITH K.A., and ZAYAS
E. FlexVol: Flexible, efficient file volume virtualiza-
tion in WAFL. In Proceedings of the 2008 USENIX
Annual Technical Conference, pp. 129–142. June 2008.

[8] EISLER M., CORBETT P., KAZAR M., and NYDICK
D.S. Data ONTAP GX: A scalable storage cluster. In
Proceedings of the 5th USENIX Conference on File and
Storage Technologies (FAST), pp. 139–152. February
2007.

[9] GOEL A. and CORBETT P. RAID triple parity. ACM
SIGOPS Operating Systems Review, 46(3), pp. 41–49,
2012.

[10] HENSON V., VAN DE VEN A., GUD A., and BROWN
Z. Chunkfs: Using divide-and-conquer to improve file
system reliability and repair. In Proceedings of the 2nd
Conference on Hot Topics in System Dependency (Hot-
Dep). November 2006.

[11] HITZ D., LAU J., and MALCOLM M. File system de-
sign for an NFS file server appliance. In Proceedings of
USENIX Winter 1994 Technical Conference, pp. 235–
246. January 1994.

[12] How GlusterFS distribution works. https:

//staged-gluster-docs.readthedocs.io/en/

release3.7.0beta1/Features/dht/.

[13] HOWARD J.H., KAZAR M.L., MENEES S.G.,
NICHOLS D.A., SATYANARAYANAN M., SIDE-
BOTHAM R.N., and WEST M.J. Scale and perfor-
mance in a distributed file system. ACM Transactions
on Computer Systems, 6(1), pp. 51–81, February 1988.

[14] HPC IO Benchmark Repository. https://github.com/

hpc/ior.

[15] HUNT P., KONAR M., JUNQUEIRA F.P., and REED B.
ZooKeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX Annual
Technical Conference, pp. 145–158. June 2010.

[16] KANG J., BENLONG, WO T., YU W., DU L., MA S.,
and HUAE J. SpanFS: A scalable file system on fast
storage devices. In Proceedings of the 2015 USENIX
Annual Technical Conference, pp. 249–261. July 2015.

[17] KESAVAN R., KUMAR H., and BHOWMIK S. WAFL
Iron: Repairing live enterprise file systems. In Proceed-
ings of the 16th USENIX Conference on File and Stor-
age Technologies (FAST), pp. 33–47. February 2018.

[18] KESAVAN R., SINGH R., GRUSECKI T., and PATEL
Y. Algorithms and data structures for efficient free
space reclamation in WAFL. In Proceedings of the 15th
USENIX Conference on File and Storage Technologies
(FAST), pp. 1–13. February 2017.

[19] KESAVAN R., SINGH R., GRUSECKI T., and PATEL
Y. Efficient free space reclamation in WAFL. ACM
Transactions on Storage, 13(3), September 2017.

[20] KUMAR H., PATEL Y., KESAVAN R., and MAKAM S.
High performance metadata integrity protection in the
WAFL copy-on-write file system. In Proceedings of
the 15th USENIX Conference on File and Storage Tech-
nologies (FAST), pp. 197–211. February 2017.

[21] LAMPORT L. The part-time parliament. ACM Trans-
actions on Computer Systems, 16(2), pp. 133–169.

[22] LAMPSON B.W. and LOMET D. A new presumed
commit optimization for two phase commit. In Pro-
ceedings of the 8th International Conference on Very
Large Data Bases (VLDB), pp. 630–640. August 1993.

USENIX Association 2019 USENIX Annual Technical Conference 147

https://coreos.com/etcd/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/dht/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/dht/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/dht/
https://github.com/hpc/ior
https://github.com/hpc/ior

[23] LANCASTER L. and ROWE A. Measuring real world
data availability. In Proceedings of the 15th Systems
Administration Conference (LISA), pp. 93–100. De-
cember 2001.

[24] MCKUSICK M.K., NEVILLE-NEIL G.V., and WAT-
SON R.N.M. The Design and Implementation of the
FreeBSD Operating System, chapter 10. Addison Wes-
ley, 2nd edition, 2015. ISBN 9780321968975.

[25] NETAPP, INC. Data ONTAP 8. http://www.netapp.

com/us/products/platform-os/data-ontap-8/, 2010.

[26] NETAPP, INC. Volume Move Express Guide.
https://library.netapp.com/ecm/ecm_download_

file/ECMLP2496251, May 2019.

[27] OUSTERHOUT J.K., CHERENSON A.R., DOUGLIS F.,
NELSON M.N., and WELCH B.B. The Sprite network
operating system. IEEE Computer, 21(2), pp. 23–36,
February 1988.

[28] PATTERSON D.A., GIBSON G., and KATZ R.H. A
case for redundant arrays of inexpensive disks (RAID).
In Proceedings of the 1988 SIGMOD International
Conference on Management of Data, pp. 109–116.
June 1988.

[29] PATTERSON H., MANLEY S., FEDERWISCH M., HITZ
D., KLEIMAN S., and OWARA S. SnapMirror: File
system based asychronous mirroring for disaster re-
covery. Proceedings of USENIX Conference on File
and Storage Technologies (FAST), pp. 117–129, Jan-
uary 2002.

[30] RODEH O., BACIK J., and MASON C. BTRFS: The
Linux B-tree filesystem. ACM Transactions on Storage,
9(3), 2013. ISSN 1553-3077. doi:10.1145/2501620.
2501623.

[31] SANDBERG R., GOLDBERG D., KLEIMAN S.,
WALSH D., and LYON B. Design and implementa-
tion of the Sun network filesystem. In Proceedings of
the USENIX Summer 1985 Technical Conference, pp.
119–130. June 1985.

[32] SCHMUCK F. and HASKIN R. GPFS: A shared-disk
file system for large computing clusters. In 1st USENIX
Conference on File and Storage Technologies (FAST),
pp. 213–244. January 2002.

[33] SELTZER M.I., GANGER G.R., MCKUSICK M.K.,
SMITH K.A., SOULES C.A.N., and STEIN C.A. Jour-
naling versus soft updates: Asynchronous meta-data
protection in file systems. In Proceedings of the
2000 USENIX Annual Technical Conference, pp. 71–
84. June 2000.

[34] SEVILLA M.A., WATKINS N., MALTZAHN C., NASSI
I., BRANDT S.A., WEIL S.A., FARNUM G., and
FINEBERG S. Mantle: A programmable metadata load
balancer for the Ceph file system. In SC ’15: Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis.
November 2015.

[35] STANDARD PERFORMANCE EVALUATION CORPO-
RATION. SPEC SFS 2014. https://www.spec.org/

sfs2014/, 2017.

[36] STANDARD PERFORMANCE EVALUATION CORPO-
RATION. SPEC SFS 2014 SP2 Run and Report-
ing Guide. https://www.spec.org/sfs2014/docs/

runrules.pdf, 2017.

[37] STANDARD PERFORMANCE EVALUATION CORPO-
RATION. SPEC SFS 2014 SP2 Users Guide. https://

www.spec.org/sfs2014/docs/usersguide.pdf, 2017.

[38] THEKKATH C.A., MANN T., and LEE E.K. Frangi-
pani: A scalable distributed file system. In Proceed-
ings of the 16th ACM Symposium on Operating Systems
Principles (SOSP), pp. 224–237. October 1997.

[39] WEIL S.A., BRANDT S.A., MILLER E.L., LONG
D.D.E., and MALTZAHN C. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th Symposium on Operating Systems Design and
Implementation (OSDI), pp. 307–320. November 2006.

[40] WEIL S.A., BRANDT S.A., MILLER E.L., and
MALTZAHN C. CRUSH: Controlled, scalable, decen-
tralized placement of replicated data. In SC ’06: Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analy-
sis. November 2006.

[41] WELCH B. and OUSTERHOUT J. Prefix tables: A sim-
ple mechanism for locating files in a distributed system.
In Proceedings of the 6th International Conference on
Distributed Computing Systems (ICDCS), pp. 184–189.
May 1986.

[42] WELCH B.B., UNANGST M., ABBASI Z., GIBSON
G.A., MUELLER B., SMALL J., ZELENKA J., and
ZHOU B. Scalable performance of the Panasas parallel
file system. In Proceedings of the 6th USENIX Con-
ference on File and Storage Technologies (FAST), pp.
17–33. February 2008.

NETAPP, the NETAPP logo, and the marks listed at
http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of
their respective owners.

148 2019 USENIX Annual Technical Conference USENIX Association

http://www.netapp.com/us/products/platform-os/data-ontap-8/
http://www.netapp.com/us/products/platform-os/data-ontap-8/
https://library.netapp.com/ecm/ecm_download_file/ECMLP2496251
https://library.netapp.com/ecm/ecm_download_file/ECMLP2496251
https://www.spec.org/sfs2014/
https://www.spec.org/sfs2014/
https://www.spec.org/sfs2014/docs/runrules.pdf
https://www.spec.org/sfs2014/docs/runrules.pdf
https://www.spec.org/sfs2014/docs/usersguide.pdf
https://www.spec.org/sfs2014/docs/usersguide.pdf
http://www.netapp.com/TM

	Introduction
	The Building Blocks
	FlexGroup Volumes
	Design Considerations
	Fusing FlexVols via Remote Hardlinks
	Load Balancing
	The Remote Access Layer
	RAL Caches
	Example
	Consistency and Recovery

	Ingest Heuristics
	Input to Heuristics
	Heuristic Probability Tables
	Computing Heuristic Probability Tables

	Topics in Practice
	Evaluation
	Overhead
	Overhead of NFS Operations
	Application and Data Benchmarks

	Workload Scaling
	Customer Experience
	Applicability Beyond WAFL

	Related Work
	Conclusion

