
This paper is included in the Proceedings of the 
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the 
2019 USENIX Annual Technical Conference 

is sponsored by USENIX.

Alleviating Garbage Collection Interference 
Through Spatial Separation in All Flash Arrays

Jaeho Kim, Virginia Tech; Kwanghyun Lim, Cornell University; Youngdon Jung  
and Sungjin Lee, DGIST; Changwoo Min, Virginia Tech; Sam H. Noh, UNIST

https://www.usenix.org/conference/atc19/presentation/kim-jaeho



Alleviating Garbage Collection Interference

through Spatial Separation in All Flash Arrays∗

Jaeho Kim Kwanghyun Lim
‡

Young-Don Jung
†

Sungjin Lee
†

Changwoo Min Sam H. Noh
⋆

Virginia Tech
‡
Cornell University

†
DGIST

⋆
UNIST

Abstract

We present SWAN, a novel All Flash Array (AFA) manage-

ment scheme. Recent flash SSDs provide high I/O bandwidth

(e.g., 3-10GB/s) so the storage bandwidth can easily surpass

the network bandwidth by aggregating a few SSDs. How-

ever, it is still challenging to unlock the full performance

of SSDs. The main source of performance degradation is

garbage collection (GC). We find that existing AFA de-

signs are susceptible to GC at SSD-level and AFA software-

level. In designing SWAN, we aim to alleviate the perfor-

mance interference caused by GC at both levels. Unlike

the commonly-used temporal separation approach that per-

forms GC at idle time, we take a spatial separation approach

that partitions SSDs into the front-end SSDs dedicated to

serve write requests and the back-end SSDs where GC is per-

formed. Compared to temporal separation of GC and appli-

cation I/O, which is hard to be controlled by AFA software,

our approach guarantees that the storage bandwidth always

matches the full network performance without being inter-

fered by AFA-level GC. Our analytical model confirms this if

the size of front-end SSDs and the back-end SSDs are prop-

erly configured. We provide extensive evaluations that show

SWAN is effective for a variety of workloads.

1 Introduction

With the advent of the IoT and big data era, the amount of

data generated, manufactured, and processed is expected to

grow at rates that were previously unimaginable [20, 25, 36,

44, 52]. Such explosive growth of data will impose consid-

erable stress on storage systems in data centers. All Flash

Array (AFA) storage, which solely uses an array of SSDs,

seems to be a viable storage solution that is capable of satis-

fying such a high demand. AFA has been recently receiving

a lot of attention because of its high performance, low power

consumption, and high capacity per volume.

While flash SSD is relatively new and its characteristics

are different from HDD, the overall architecture of an AFA

system is not much different from traditional HDD-based

∗This work was initiated while Jaeho Kim was a postdoc at UNIST.

Figure 1: Performance of AFA consisting of eight SSDs un-

der random write workloads. Performance fluctuation starts

to occur (at around 1000 seconds) when the size of user write

request approaches the capacity of AFA, roughly 1 TB in this

configuration.

storage servers [9, 18, 21, 30, 35, 58]. This is because, in-

stead of architecting a new SSD-based storage server from

scratch, existing HDD-based storage servers have evolved to

embrace high-speed SSDs. For example, an array of SSDs

inside an AFA are grouped by variants of RAID architec-

tures (e.g., RAID4, RAID5, or Log-RAID, which is based

on log-structured writing that we describe in more detail in

Section 2).

This naive AFA design, which replaces HDDs with SSDs,

is not adequate to take full advantage of high-speed SSDs

in two reasons. First, we observe significant performance

drop as we run the FIO tool [6] that generates 8 KB ran-

dom writes. Figure 1 shows the throughput of AFA with

eight SATA SSDs (Samsung’s 850 PRO) grouped as Log-

RAID [9, 10, 21], where each SSD exhibits an effective

write throughput of 140 MB/s. We find that garbage collec-

tion (GC) of AFA interfere with user I/O. Specifically, for

the first 1,000 seconds, the system maintains high through-

put that is close to the accumulated throughput of the eight

SSDs. However, after 1,000 seconds, owing to interference

with GC, the throughput drops considerably and oscillates

between 300 MB/s and 750 MB/s, which is much lower than

its full performance for 8 KB random I/Os.

USENIX Association 2019 USENIX Annual Technical Conference    799



Table 1: Comparison of All-Flash-Array products

EMC NetApp HPE Hynix

XtremIO [1] SolidFire [4] 3PAR [2] AFA [22]

SSD Array
Capacity 36∼144TB 46TB 750TB 552TB

# of SSDs 18∼72 12 120 (max) 576

Network
Network Ports 4∼8×10Gb iSCSI 2×25Gb iSCSI 4∼12×16Gb FC 3×Gen3 PCIe

Aggr. Network Throughput 5∼10 GB/s 6.25 GB/s 8∼24 GB/s 48 GB/s

Second, we find that storage bandwidth and network band-

width are unbalanced. Typically, AFA is composed of mul-

tiple bricks, which is a 1U storage node to scale out capac-

ity. As shown in Table 1, each brick is composed of a large

number of SSDs and multiple network ports. Given the stor-

age capacity and the number of installable SSDs, the aggre-

gated write throughput of SSDs easily surpasses the aggre-

gated network throughput. Taking EMC’s XtremIO in Ta-

ble 1 as an example, its 10GB/s network throughput can be

easily saturated with four high-end SSDs with 2.5GB/s write

throughput [48] out of the 18∼72 SSDs. This matches with

observations of other recent work [12, 15, 37, 40].

The above two observations lead us to propose a new ar-

chitecture for AFA systems. Given the maximum network or

user-required throughput, our goal is to derive a balanced

AFA system that satisfies the required throughput all the

time without being interfered with foreground GC. To this

end, we present SWAN, which stands for Spatial separation

Within an Array of SSDs on a Network. In contrast to RAID

that manages all the SSDs in parallel, SWAN manages the

SSDs through several spatially separated groups. That is,

only some spatially segregated SSDs out of all the SSDs, are

in use at a single point in time to serve write requests over

the network.

The rationale behind such segregated management is that,

even if a large number of SSDs are available in the system,

all the SSDs are not necessary to fully saturate the network

bandwidth of the AFA. Using more SSDs in parallel does not

help the clients in terms of performance. However, even with

such a small number of SSDs being used, providing ideal,

consistent performance is impossible with GC interference.

The only way to achieve such ideal performance is hiding the

GC effect. To hide the GC effect in SWAN, we partition the

SSDs in the array into two spatially exclusive groups, that

is, the front-end and the back-end SSDs, of which the front-

end is composed of enough SSDs to saturate the bandwidth

specification of an AFA. Then, SWAN manages these SSDs

such that all writes are sequentially written to the front-end

SSDs and those SSDs are never involved in GC. While the

front-end SSDs are busy handling the user writes, the back-

end SSDs perform GC in the background. Once the front-end

SSDs become full with user data, the cleaned back-end SSDs

become the new front-end to keep serving the user writes

without foreground GC. By so doing, performance interfer-

ence due to GC can be hidden.

This unique organization and operational behavior of

SWAN gives us insight in deriving its balanced design. The

number of SSDs belonging to the front-end SSDs should

be large enough to fully saturate the required throughput. If

not, users’ performance demand cannot be satisfied. To give

enough time for back-end SSDs to be completely cleaned up

before they become frond-end SSDs, we should provision

enough SSDs in the front-end and back-end SSD pool. Oth-

erwise, foreground GC becomes unavoidable. The number

of SSDs in the frond-end and back-end groups can be esti-

mated by referring to the required throughput and worst-case

GC cost models [31, 38, 53].

In summary, this paper makes the following contributions:

• We present a two-dimensional SSD organization as a

new AFA architecture, which we refer to as SWAN. We

show that such an organization allows for spatial sepa-

ration of arrays of SSDs so that consistent throughput

that is not influenced by GC can be provided.

• We provide an analytic model that decides the best

number of SSDs in the frond-end SSD group and in

the back-end SSD group. This provides guidance on de-

riving a balanced system when designing SWAN-based

AFAs.

• We conduct comprehensive evaluations using various

workloads, including both synthetic and realistic work-

loads, and demonstrate that SWAN outperforms exist-

ing storage management techniques such as RAID0,

RAID4, RAID5, and Log-RAID [9, 10, 21]

The remainder of this paper is organized as follows. In

the next section, we review existing AFA systems. Then, in

Section 3, we present the design of SWAN in detail and an

analytic model to completely hide the performance interfer-

ence by GC. After discussing the implementation issues of

SWAN in Section 4, we describe our experimental setup and

present detailed results with various workloads in Section 5.

We discuss the influence on SWAN on SSD design and other

relevant issues in Section 6, . We review prior studies related

to this work, comparing them with SWAN in Section 7. Fi-

nally, we conclude the paper with a summary in Section 8.

2 Background: All Flash Array

Existing AFA systems can be roughly categorized into two

types depending on their write strategies, in-place write

AFAs and log write AFAs, as summarized in Table 2.

800    2019 USENIX Annual Technical Conference USENIX Association



Table 2: Comparison of existing approaches for managing All-Flash-Array storage

Write Strategy GC Interference Media type Modification Disk Organization

Harmonia [30] In-place write SSDs Array controller RAID-0

HPDA [35] In-place write SSDs & HDDs Host layer RAID-4

GC-Steering [58] In-place write SSDs Host layer RAID-4/5

SOFA [9] Log write SSDs Host layer Log-RAID

SALSA [21] Log write SSDs & SMR Host layer Log-RAID

Purity [10] Log write SSDs Host layer Log-RAID

SWAN (proposed) Log write SSDs Host layer 2D Array

GC Interference: Interference between GC of SSD/AFA-level and user’s I/O : Heavy interference : Alleviated interference

In-place Write AFAs. Approaches with the in-place write

strategy heavily rely on the traditional RAID architecture,

but attempts have been made to improve performance by

modifying data placement and the GC mechanism. The most

well-known ones are Harmonia [30], HPDA [35], and GC-

Steering [58].

Harmonia is based on the RAID0 architecture that groups

all SSDs in an array in parallel without any parity disks [30].

To minimize high I/O fluctuation caused by SSD-level GC

that independently happens in individual SSDs, it proposes a

globally-coordinated GC algorithm that synchronizes the GC

invocations across all the SSDs in the array. If GC is invoked

in one SSD, it intentionally triggers GC in all the others, so

that all the SSDs in the array are garbage collecting. This

approach minimizes user-perceived I/O fluctuation through

frequent GC invocations, but cannot completely eliminate

performance interference by GC.

HPDA (Hybrid Parity-based Disk Array) takes an SSD-

HDD hybrid architecture based on RAID4 [35]. By using

a few HDDs as temporary storage to keep parity informa-

tion, it mitigates performance and lifetime degradations of

SSDs caused by frequent updates of parity data. While it is

effective in lowering parity overhead, it does not propose any

technique to hide GC interference.

GC-Steering is similar to SWAN [58]. It spatially ded-

icates few SSDs, called staging disks, to absorb the host

writes while the other SSDs are busy performing GC. Since

host writes can be served by staging disks, GC-Steering can

prevent clients from being influenced by GC. However, once

the staging disks become full and run out of free space to ser-

vice host writes, foreground GC becomes unavoidable. To be

more specific, it differs from SWAN in that it inherits the lim-

itation of a cache. The staging space is divided into read and

write regions, and hot data needs to be migrated to the space

for read requests. Space constraints in the staging space not

only make it impossible for all reads to avoid collision with

GC, but it also causes migration overhead.

Log Write AFAs. While using the traditional RAID archi-

tecture (e.g., RAID4 or 5) for the purpose of fault-tolerance,

some studies adopt log-structured writing, fundamentally

changing its storage management policy, so as to generate se-

quential write requests that are more suitable for flash-based

SSDs. To distinguish them from traditional ones, in this pa-

per, we call AFA systems with log writing a log-structured

RAID (Log-RAID).

SOFA is one of the first attempts to use the log-structured

approach for AFAs [9]. SOFA integrates volume manage-

ment, flash translation layer (FTL), and RAID logic together

and runs them all in the host level. This integration enables

global management of GC and wear-leveling, resulting in

overhead associated with storage maintenance tasks being

considerably reduced.

SALSA is similar to SOFA in that it offloads almost all of

the functions that are typically performed inside storage de-

vices to the host level [21]. However, unlike SOFA, SALSA’s

primary aim is in building a general-purpose storage plat-

form that supports various types of storage media that are

incapable of supporting in-place updates such as SSD and

SMR.

Purity is an AFA appliance developed by Pure Stor-

age [10]. Purity adopts log-structured indexes and data lay-

outs that are based on the LSM-tree algorithm [43] to en-

sure that data is written in large sequential chunks. For better

utilization of disk capacity, it also incorporates compression

and deduplication algorithms into their system.

SWAN shares the same advantages of the aforementioned

techniques as it runs its log-structured storage management

logic at the host level. However, SWAN takes it one step fur-

ther by minimizing the performance interference caused by

GC while considering an AFA design that balances storage

media and network interface performance.

3 Design of SWAN

3.1 Design Goal and Approach

The primary design goal of SWAN is to provide sustainable

high performance for All Flash Array (AFA). More specifi-

cally, so that storage does not become the bottleneck, we aim

to guarantee AFA storage performance to always be higher

than or equal to the network interface bandwidth of AFA.

At a glance, this looks easy to achieve by simply using a

RAID of multiple SSDs because even consumer-grade SSDs

provide more than 1 GB/s bandwidth. As shown in Fig-

ure 2(a), RAID can be used to improve performance and

reliability of AFA by composing multiple SSDs in parallel.

USENIX Association 2019 USENIX Annual Technical Conference    801



Garbage collection

(a) RAID

Garbage collection

(b) Log-structured writing on RAID (c) SWAN

SSD
write

operation

read

operation

frontend

R-group

read

request

backend

R-group

write

request

Application

IO

Management

IO

Figure 2: Comparison of All Flash Array (AFA) design. Existing AFA roughly follow either (a) RAID or (b) log-structured

writing on RAID (Log-RAID) approaches. We propose (c) SWAN, a spatial separation approach to AFA.

However, its design is susceptible to gradual performance

degradation due to high GC overhead inside SSDs. In fact,

it turns out that such SSD-level GC can significantly degrade

performance and incur latency spikes in AFA [30, 51].

To mitigate the internal SSD-level GC overhead, log-

structured writing on RAID (Log-RAID), as depicted in Fig-

ure 2(b), has been widely adopted in AFA [9, 10, 21]. It gen-

erates SSD-friendly write requests by transforming small,

random write requests to a bulk, sequential write stream

thereby reducing the internal GC overhead in SSDs. How-

ever, the I/O operations for AFA-level GC (not SSD-level)

may significantly interfere with application I/O and degrade

performance by constantly issuing read/write requests. In

particular, if an application tries to read a sector on an SSD

where AFA-level GC is in progress, read latency could in-

crease by several orders of magnitude [21, 23, 51]. A com-

mon approach to mitigate such interference is to perform

AFA-level GC at idle time by temporally separating appli-

cation I/O and AFA-level GC I/O, that is, segregate the two

I/Os in terms of time. However, temporal separation of appli-

cation I/O and AFA-level GC I/O is hard to control in reality

because high performance AFAs are designed to handle mul-

tiple concurrent clients.

The key idea of our approach is the spatial separation of

application I/O and AFA-level GC I/O to minimize such in-

terference by organizing the SSDs into a two-dimensional

array as depicted in Figure 2(c). Like Log-RAID, we adopt

log-structured writing on RAID to minimize the perfor-

mance degradation caused by heavy SSD-level GC while

providing high performance and reliability using RAID.

However, unlike Log-RAID, we spatially separate SSDs into

two pools, the front-end and back-end pools. The front-

end pool will serve write requests from applications in a

log-structured manner, while the back-end pool is used for

SWAN-level GC, which is GC that occurs only at the back-

end pool. Thus, SWAN-level GC does not interfere with ap-

plication write requests. When the front-end pool SSDs be-

come full, a pool of SSDs from the back-end becomes the

front-end and the old front-end SSDs return to the back-end.

This design also has the advantage that application read re-

quests are less interfered by SWAN-level GC operations. Re-

call that as SWAN uses commodity SSDs, it does not have

direct control over SSD-level GC. However, we take a best

effort approach given the conventional SSD interface.

3.2 Flash Array Organization

SWAN exposes linear 4KB logical blocks such that upper-

level software just considers SWAN as a large block device.

The SWAN software module is implemented as a part of the

Linux kernel in the block I/O layer, where a logical volume

manager or a software RAID layer is implemented. SWAN

groups multiple SSDs into a single physical volume, which is

then divided into fixed-size segments. It manages each seg-

ment in a log-structured manner, with new data always being

sequentially appended. A segment is the unit for writing a

chunk of data as well as for cleaning of obsolete data. Similar

to other log-structured systems, therefore, SWAN manages

mapping between logical blocks and segments, and, when

necessary, it performs GC to secure free segments.

The overall architecture of SWAN is like a big host-

level FTL supporting multiple SSDs, but it is the manage-

ment mechanism in SWAN that differs from typical sys-

tems. Typical RAID systems manage an SSD array in a one-

dimensional manner, that is, all the SSDs are arranged hor-

izontally and incoming writes are evenly striped over all of

them. Unlike RAID, in SWAN, an array of SSDs is orga-

nized as a two-dimensional array. Then, SSDs belonging to

the same column are grouped in a RAID manner and are

used in parallel. This group of SSDs is called a RAID group

(R-group) as this is where redundancy is manifested to pre-

vent data loss in the event of hardware or power failure. The

R-group is also where the size can be set such that its aggre-

gate throughput surpasses the network interface provided by

AFA. That is, for AFA providing higher network interface

bandwidth, we can increase the number of SSDs within the

802    2019 USENIX Annual Technical Conference USENIX Association



w
1

R-group 0

w
3

r
12

R-group 1 R-group 2

r
27

w
1

w
3

r
12

r
27

... ...

... ...

Logical 

Volume

segment

w
3

w
1

Physical 

Volume

SSD 

Array

<w
1
, r

12
, w

3
, r

27
>

Logging

Block

Interface

Figure 3: Example of handling read/write requests in SWAN

where R-group 0 is the front-end R-group and R-groups 1

and 2 are in the back-end pool. SWAN appends writes to

the log and issues write requests to the front-end R-group in

segment units. Read requests will be served by any R-group

holding the requested blocks.

R-group to match the network bandwidth. We further discuss

optimizing the configuration of SWAN in Section 3.5.

3.3 Handling Application I/O Requests

As discussed, SWAN organizes SSDs into two or more R-

groups, and each R-group is either a front-end or belongs to

the back-end pool at a certain point in time. SWAN manages

the movement of the R-groups such that each R-group takes

turns being the front-end R-group, while the rest belong to

the back-end pool.

Only the front-end R-group serves the incoming writes in

a log-structured manner, consuming its free space. Once free

space of SSDs in the R-group in the front-end pool is ex-

hausted, SWAN moves this R-group to the back-end pool

and selects a new R-group in the back-end pool that has

enough free space to become the front-end R-group to serve

writes coming in from the network. Incoming read requests

are served by any SSD holding the requested blocks.

Figure 3 shows an example of how SWAN handles the

I/O sequence < w1,r12,w3,r27 > arriving from the network,

where wi and ri are the write and read of block i, respectively.

The writes are appended to a segment, but are actually dis-

tributed across SSDs in the front-end R-group and are writ-

ten in parallel. Reads, in contrast, will be served by any of

the three R-groups. To alleviate read delays due to GC, we

can employ methods such as RAIN as suggested by Yan et

al. [60], which we do not consider in this study and leave for

future work. However, as we show later, even without such

optimizations, SWAN read performance does not suffer from

delays as it is always given highest priority. Thus, read per-

formance is comparable with conventional methods, while

write performance is significantly improved.

3.4 Garbage Collection in SWAN

SWAN performs GC to secure free segments like other log-

structured systems. SWAN chooses victim segments from

one of the back-end R-groups and writes valid blocks within

the chosen R-group. That is, GC is performed internally

within a single back-end R-group. Also, while any victim

selection policy could be used [13, 16], in this paper, we use

the greedy policy that chooses a segment that has the least

number of valid blocks as the victim. Such GC creates a free

segment in the chosen R-group. When the front-end R-group

becomes full, SWAN chooses an R-group in the back-end to

be the next front-end, then moves the old front-end to the

back-end group. SWAN completely decouples normal I/O

from GC I/O by spatially separating SSDs into the front-end

R-group and the back-end R-groups, so as to eliminate inter-

ference by GC I/O upon user writes.

3.5 Optimizing SWAN Configuration

The key insight behind the SWAN design is that given the

many SSDs in AFA, only a portion of these SSDs (which

forms the R-group) are sufficient to saturate the network

interface bandwidth of an AFA. However, to realize and

achieve sustainable high performance in SWAN, it is impor-

tant to properly decide the configuration knobs: 1) the num-

ber of SSDs in an R-group and 2) the minimum number of

R-groups in an SSD array.

Determining the number of SSDs in an R-group. The

aggregated throughput of the SSDs in one R-group must

be high enough to fully saturate the AFA network interface

bandwidth. Thus, we determine the number of SSDs in an

R-group such that the aggregated write throughput1 of the

SSDs in an R-group is higher than the aggregated AFA net-

work interface bandwidth. For example, using an AFA con-

figuration such as the EMC XtremIO in Table 1, given the

aggregate network throughput of 10 GB/s and assuming the

maximum write throughput of an SSD to be 2.5 GB/s [48],

four SSDs (three for data and one for parity) must be as-

signed to the R-group to support RAID4 in SWAN.

Determining the minimum number of R-groups. Besides

the raw aggregated throughput of an R-group, another im-

portant factor to decide the maximum write throughput of

SWAN is GC overhead. If consuming a segment in a front-

end R-group is faster than generating a free segment in the

back-end R-groups, SWAN-level GC will be a performance

bottleneck, limiting its performance. Thus, the number of the

back-end R-groups should be large enough for SWAN-level

GC not to fall behind. We provide an analytic model to cal-

culate the minimum number of R-groups, which determines

the number of back-end R-groups, to avoid cases where GC

falls behind the front-end writing. In our analytic model, we

only consider operations that dominate the execution time

1We consider only the write throughput of an SSD because read is faster

than write.

USENIX Association 2019 USENIX Annual Technical Conference    803



such as read, write, and garbage collection and do not con-

sider SSD-level optimizations such as the write buffer in the

SSD that could further improve SSD performance.

Since SWAN manages the SSD array in a log-structured

fashion, it divides the SSD space into fixed-size segments,

and all the write and cleaning operations are done in segment

units. Let Tw and Tr denote the elapsed times for writing and

reading a segment to and from an SSD, respectively. Let Te

be the time for erasing flash blocks in a segment when all the

data in it are invalid.

SWAN writes new data over the network to a front-end R-

group. Once the front-end R-group fills up, it is moved to the

back-end. To perform GC for a segment that has both valid

and invalid pages in the back-end, the valid pages must first

be read and then written to a free segment. Of course, all

flash blocks in the free segment must be erased before writ-

ing valid pages. Therefore, time to finish GC of an R-group

is S · (Te + u · (Tr +Tw)) where S is the number of segments

in an R-group and u is the ratio of valid pages in a segment

(i.e., segment utilization). After finishing GC of an R-group,

we will have S · (1−u) free space for this R-group. That R-

group will be moved to the front-end later at some time. It

will take S · (1−u) ·Tw to completely consume the free seg-

ments in that R-group.

In SWAN, all R-groups are independent of each other; ei-

ther they service writes and reads as the one in the front-end

or they perform GC and reads as ones in the back-end. Once

an R-group is moved to the back-end pool, it will not be cho-

sen as a front-end R-group until all previous R-groups in the

back-end are consumed. This implies that, after an R-group

moves to the back-end pool, it will return as the front-end

R-group after (N − 1) · (S · (1− u) ·Tw) time at the earliest,

where N is the number of R-groups in a SWAN array. This is

when data are written to the front-end R-group SSDs at max-

imum throughput; it will take longer to return if the through-

put is lower.

This tells us that, if the GC time of an R-group is equal to

or shorter than the time that R-group is recycled, SWAN can

finish GC of an R-group before moving it to the front-end.

Conversely, if the above condition is not met, SSDs in the

front-end R-group may need to delay writes as it waits for

free segments to become available.

Consequently, the condition

S · (Te +u · (Tr +Tw))≤ (N −1) ·S · (1−u) ·Tw

must hold to guarantee that SWAN-level GC does not inter-

fere application writing at the front-end. This can be simpli-

fied as follows:

Te +u · (Tr +Tw)≤ (N −1) · (1−u) ·Tw

From here, we get

Te

Tw

·
1

1−u
+

(

Tr

Tw

+1

)

·
u

1−u
+1 ≤ N (1)

Note that Equation 1 is independent of the number of

SSDs per R-group and dependent on the specifications of

the SSDs and the utilization. Previous studies [31, 38, 53]

have shown that in a log-structured scheme, ud = u−1
lnu

holds,

where ud is the disk utilization. This tells us that even for

heavy loaded storage systems where the disk utilization (ud)

is 60% to 70%, u will be below 0.5.

Let us now consider applying the model. Given an array of

SSDs, let Te, Tw = tw ·B, and Tr = tr ·B be constants, where

Te, tw, tr, and B are the time to erase a segment, write a block,

read a block, and the number of blocks in a segment, respec-

tively. From our AFA prototype, our measurements show that

segment erase time is roughly 4 milliseconds, block read and

write time is 15.6 and 19.5 microseconds, respectively, and

the number of blocks per segment is 256. Taking these num-

bers and with a storage device that is (ud =) 60% utilized,

which results in roughly u = 0.33, then we can calculate

N to be roughly 1.89. This tells us that with SWAN com-

posed of two R-groups, we will be able to sustain the full

network interface bandwidth performance and see no GC af-

fects throughout its services. We believe that the modeling

results based on our measurement-based parameter estima-

tions effectively reflects the underlying system architecture

as the impact of realistic factors such as queuing delays and

resource contention are being reflected in the measured pa-

rameters.

Applying these results to a realistic setting, let us, once

again, take a configuration such as EMC’s XtremIO in Ta-

ble 1, assuming an SSD with 2.5 GB/s write bandwidth. If

we can configure each R-group to be of four SSDs, which

is enough to saturate the network bandwidth, then we have,

in the smallest configuration case (18 SSDs), three back-end

R-groups (plus two spare SSDs), which will be more than

sufficient to allow full sustained write performance.

One factor that we did not consider in our analysis is the

bandwidth consumed by read requests to the back-end R-

group. However, in reality, as the number of back-end R-

groups are sufficiently high, these reads will not have a real

effect on GC time needed to return as a front-end R-group.

Our analysis shows that with our SWAN approach, once

we have set the number of SSDs within the R-group to match

the network bandwidth, the total number of SSDs to maintain

high, sustained performance can be determined. Also, extra

SSDs for larger capacity will further ensure that SWAN-level

GC will not interfere user writes at the front-end.

4 Implementation

We implement SWAN and Log-RAID in the block I/O layer,

where the I/O requests are redirected from the host to the

storage devices, in Linux kernel-3.13.0. For our implemen-

tation, we extend the SSD RAID Cache implementation in

the Device Mapper (DM) [42] to accommodate AFA storage.

To implement RAID0, RAID4, and RAID5, we use mdadm,

which is a GNU/Linux utility used to manage and monitor

804    2019 USENIX Annual Technical Conference USENIX Association



software RAID devices [54].

4.1 Metadata Management

SWAN and Log-RAID maintain basically the same meta-

data. They manage two types of metadata: 1) a mapping ta-

ble from the logical volume to the physical volume mapping

table (L2P) for address translation, and 2) the segment sum-

mary information. Each entry in the table, which takes up 5

bytes, corresponds to a 4 KB block in an SSD array. Thus,

the metadata size for the mapping table is roughly 0.12% of

the total storage capacity (i.e., 5 bytes per 4 KB).

The segment summary metadata contains information

about each segment such as the segment checksum, sequence

number, and the physical to logical mapping (P2L) for GC.

It is located in the last block of a segment taking up 4 KB

per segment. The metadata overhead for segment summary

depends on SWAN’s configuration. For example, for a 1 MB

segment size, which is the size used in our experiments, seg-

ment summary takes up 0.39% of the storage space (i.e.,

4 KB per 1 MB).

In the SWAN and Log-RAID prototypes, we maintain the

entire metadata structures in DRAM, assuming that their

contents are backed up by built-in batteries in the server. Ow-

ing to their huge size, however, keeping all of the data struc-

tures in DRAM could be burdensome, in terms of cost and

energy. To address this, on-demand mapping that only keeps

popular mapping entries in DRAM while storing the rest in

SSDs can be considered. However, we do not consider this

in this study.

4.2 Optimizing GC using TRIM

TRIM is used to further optimize GC. Once valid pages in a

victim segment are written back to the new segment, then the

victim segment is TRIMmed. This is efficient as the writing

of the segments occur in a sequential manner and also, as the

TRIM unit is large. With large segments being TRIMmed,

the SSD firmware will perform erasures in an efficient man-

ner. Thus, it helps SWAN achieve high performance regard-

less of SSD manufacturer.

5 Evaluation

In this section, we first present the evaluation results of

micro-benchmarks to see how our design choices affect the

behavior of SWAN and help to avoid GC interference. We

then present the evaluation results of real-world workloads

and compare the performance of SWAN to the traditional

RAID0, RAID4, RAID5, and Log-structured management

schemes (Log-RAID0 and 4) for an array of SSDs.

We evaluate SWAN on a Dell R730 server equipped with

two Xeon E5-2609 CPUs and 64GB DRAM. We use 120GB

Samsung 850 PRO SSDs of which measured peak read and

write throughput is roughly 500MB/s and 400MB/s, respec-

tively. The number of SSDs used differ from experiment to

experiment as we describe later. We measure performance

at the host system. Before any experiments for a particular

0

200

400

600

800

1000

RAID0 Log-RAID0 SWAN0

T
h
ro

u
g
h
p
u
t 

(M
B
/s

)

(a)

0

200

400

600

800

1000

Log-RAID0 SWAN0

T
h
ro

u
g
h
p
u
t 

(M
B
/s

)

3 SSDs 6 SSDs 9 SSDs

(b)

Figure 4: (a) Performance comparison of RAID0, Log-

RAID0 and SWAN0 with 8 SSDs with SWAN0 configured

as 4R-2SSD and (b) performance trend for Log-RAID0 and

SWAN0 with 3, 6, 9 SSDs with SWAN configured as 3 R-

groups with 1, 2, and 3 SSDs.

configuration, we go through a systematic cleaning and ag-

ing process; each SSD is first cleaned through formatting and

TRIMming, and then the SSD is aged by making random

writes to roughly 60% of the storage capacity.

5.1 Micro-benchmarks

We compare the performance of SWAN with two other AFA

schemes, RAID and Log-RAID, all with RAID0 configura-

tions. We denote each of these configurations as SWAN0,

RAID0, and Log-RAID0, and the convention of attaching

the suffix number representing the RAID type to the con-

figuration will be used throughout hereafter. To understand

their behavior especially under heavy GC, we make use of

the FIO [6] benchmark issuing 8 KB random write (only)

requests. To observe the raw performance, we disable any

caching layers and directly issue writes to each scheme. Each

experiment is conducted for two hours and its total footprint

is roughly 12 TBs. Each experiment is performed more than

3 times and all results are within 6% of each other.

Figure 4(a) shows the results with 8 SSDs and SWAN

configured as 4 R-groups of 2 SSDs each, which we denote

as 4R-2SSD. Hereafter, this numbering convention will be

used to represent SWAN configurations. The results show

that RAID0 shows worst performance because it generates

random writes and incurs high GC overhead inside the SSD.

While Log-RAID0 transforms random writes to bulk, se-

quential writes, its performance is slower than SWAN0. The

reason is Log-RAID0 requires GC to reuse log space, which

issues read and write operations to all SSDs as illustrated in

Figure 2. These GC related operations significantly degrade

normal I/O operations. In contrast, SWAN0 shows close to

full SSD throughput.

We then compare the performance of Log-RAID0 and

SWAN0 with varying number of SSDs to understand how

our partial aggregation of SSDs affects performance. We

make use of 3, 6, 9 SSDs to configure Log-RAID0 and

SWAN0, which, in turn, is configured as 3R-1SSD, 3R-

2SSDs, and 3R-3SSDs using 3, 6, and 9 SSDs, respectively.

As Figure 4(b) shows, surprisingly, the throughput of Log-

USENIX Association 2019 USENIX Annual Technical Conference    805



(a) Log-RAID0 (8-SSD) (b) SWAN0 (4R-2SSD)

Figure 5: Throughput of Log-RAID0 and SWAN0 over time

RAID0 degrades as more SSDs are used, while performance

of SWAN0 improves. The reason behind this can be ex-

plained by the results shown in Figure 5, which shows (a)

8 SSDs configured as Log-RAID0 and (b) SWAN0 as 4R-

2SSD. The results in this figure show that even with only

2 SSDs for SWAN, performance is actually better than Log-

RAID0 with 8 SSDs. Furthermore, it shows that the through-

put of Log-RAID0 fluctuates significantly, while SWAN0

shows high, sustained write performance that is proportional

to the 2 SSDs in the R-group. The reason for throughput

degradation with Log-RAID is that normal I/O and GC I/O

interfere with each other. When normal I/O and GC I/O re-

quests are being served by the same SSD, the latency of

each I/O operation increases. As more SSDs get involved,

the throughput of Log-RAID0 degrades because GC perfor-

mance is limited by the slowest SSD [18].

5.2 Analysis of GC Behavior

We further analyze the performance degradation caused by

AFA-level GC. For the random write workload of Figure 5,

we plot the read/write throughput of each SSD for Log-

RAID0 and SWAN0 in Figure 6. Note that all reads here are

those issued for GC, and thus, we can observe the negative

effect on overall performance due to such read operations.

Figure 6(a) shows the results for Log-RAID0. We see that

all SSDs are involved in write operations throughout its ex-

ecution. GC operations of Log-RAID begins from a in the

figure, and performance starts to fluctuate from that point.

This is also the point where read maintains a steady band-

width overhead. (Though there is a line for read before this

point, the value is 0.) The total amount of write requests up

to this point closely coincides with the total RAID capacity.

Once disk space becomes exhausted, GCs are triggered, and

we observe performance deterioration and fluctuation. This

observation lasts until the end of our experiment.

Figure 6(b) shows the performance for SWAN0. Here, in

contrast to those of Figure 6(a), we see that the throughput

of SSDs 1 and 2 that comprise the front-end R-group is close

to 400MB/s, the maximum throughput of the SSD, as they

are the ones receiving the write requests. The performance

offered to the user is the aggregate of the two SSDs, which

is roughly 800MB/s. Once the free segments in the first two

SSDs are exhausted, SSD 3 and 4 become the front-end R-

Table 3: I/O characteristics of YCSB benchmark

YCSB Load
Run

A B C D

Read - 32GB 60GB 64GB 60GB

Update - 32GB 3GB - -

Insert 64GB - - - 3GB

R:W ratio 0:100 50:50 95:5 100:0 95:5

group and the old front-end R-group becomes the back-end.

When SSD 7 and 8 become the front-end R-group, SWAN

starts performing GC by selecting the SSDs with victim seg-

ments based on the greedy policy. In the figure, the R-group

denoted by b is the front-end and the one denoted c is

the selected back-end R-group that is performing GC. Note

from c (and the magnified circle) that only SSDs performing

garbage collection is incurring reads. All other SSDs nei-

ther incur reads or writes (except the ones of the front-end

R-group). These front-end and back-end transitions are re-

peated throughout the experiments.

To quantitatively understand how SWAN GC behaves in

runtime, we analyze the utilization of victim segments (i.e.,

the ratio of valid pages in a victim segment) and the num-

ber of free segments in the SWAN array for 80 minutes. Re-

call that as our workload continuously writes to the front-end

R-group and GC on the back-end must continuously be per-

formed in the background to maintain stable performance.

From Figure 6(b), we observe that starting from around 800

seconds, GC starts to occur. Figure 7 shows that initially the

utilization of the selected victim segments are 0, but then

start to increase. The results show that, eventually, the uti-

lization of the victim segment and the number of free seg-

ments are converging. This is because data is being overwrit-

ten and thus, the back-end R-group is likely to have many ob-

solete data. Such convergence shows that free segment gen-

eration through GC in SWAN is stable and does not interfere

with the writes occurring in the front-end R-group.

5.3 Real-world Workload

To see how effective SWAN is in a real-world setting, we ex-

periment with the YCSB benchmark [11] on RocksDB [5].

For these experiments, we use RAID4 and 5 configurations,

which is different from previous sections, to test SWAN in

a more realistic setting. In particular, we use 9 SSDs with

RAID4, RAID5, Log-RAID4, and SWAN4, which is config-

ured as 3R-3SSD with 2 data SSDs and 1 parity SSD per

R-group.

The workload characteristics of YCSB is summarized in

Table 3, which includes the amount of data accessed by three

different operations, Read, Update, and Insert, as well as the

read/write ratios. Note that all the YCSB benchmarks con-

sist of two phases: load and run phases. The load phase is re-

sponsible for creating the entire data set in the database, thus

involves a large number of Insert operations. The run phase

806    2019 USENIX Annual Technical Conference USENIX Association



a

T
h

ro
u

g
h

p
u

t 
(M

B
/s

e
c)

Time (Sec)

600 1200 1800 2400 3000 3600

(a) Log-RAID0

b

c

T
h

ro
u

g
h

p
u

t 
(M

B
/s

e
c)

Time (Sec)

SSD 1

SSD 2

SSD 3

SSD 4

SSD 5

SSD 6

SSD 7

SSD 8

USER

600 1200 1800 2400 3000 3600

(b) SWAN0

Figure 6: Throughput of Log-RAID0 and SWAN0 for random write workload used in Figure 5. Top eight rows are the write

throughput for each SSD and they include not only user requests but also GC incurred by each scheme. The bottom row shows

the aggregate throughput of each scheme. The blue (upper) line denotes write throughput and the red (lower) line denotes the

read incurred by GC. The SWAN configuration here is the same as that of Figure 5.

(a) Utilization of a victim segment (b) Number of free segments

Figure 7: Utilization of a victim segment and the number

of free segments for SWAN0 with 8KB size random write

workload for 80 minutes

executes a specific workload (YCSB-A through YCSB-D)

with different I/O patterns on the created data set.

Overall Performance: Figure 8 shows the overall through-

put results. The results show that SWAN4 outperforms

RAID4, RAID5, and Log-RAID for all the workloads. In

the Load phase where almost all of the requests are writes,

SWAN exhibits over 4× higher throughput compared to

RAID-4/5 and even performs 17% better than Log-RAID.

This is due to the fact that SWAN4 maintains sufficient free

space to serve incoming writes immediately without interfer-

ence by GC. In particular, for the YCSB-A workload where

the workload is composed of reads and updates, SWAN4 per-

forms significantly better than the other schemes, including

Log-RAID4. Even in the other workloads, which are read

dominant, SWAN4 performs slightly better or similar com-

0

10

20

30

40

50

60

70

80

YCSB-Load YCSB-A YCSB-B YCSB-C YCSB-D

T
h

ro
u

g
h

p
u

t 
(K

o
p

s
/s

e
c
)

RunLoad

Figure 8: Throughput comparison for RAID4, RAID5, Log-

RAID4, and SWAN4 for YCSB benchmark.

pared to the other schemes. As read is more latency-sensitive,

we now further analyze read latency.

Read Latency: We now consider the effect of SWAN on

read latency. As shown in Figure 9, the average read la-

tency of SWAN is similar to or better than the other schemes.

Moreover, as illustrated in Figure 10, SWAN exhibits much

shorter tail latency compared to others across all of the

YCSB benchmarks. This is because, in RAID4/5 and Log-

RAID4, read requests are often blocked by AFA-level or

SSD-level GC. In particular, we find that even under read-

dominant workloads (YCSB-C and YCSB-D), SWAN4 ex-

hibits shorter read latency. The reason for this is due to back-

ground GC. More specifically, recall that in all our experi-

ments we include a systematic cleaning and aging process

for the array of SSDs. We find that AFA-level GC (for Log-

RAID4 and SWAN4) continues for a considerable length of

time (roughly 15 minutes), while SSD-level GC [55] contin-

USENIX Association 2019 USENIX Annual Technical Conference    807



0

0.2

0.4

0.6

0.8

1

1.2

YCSB-Load YCSB-A YCSB-B YCSB-C YCSB-D

A
v
g

. 
re

a
d

la
te

n
c
y
 (

m
s
e

c
) RunLoad

Figure 9: Average read latency comparison for RAID4,

RAID5, Log-RAID4 and SWAN4 for YCSB benchmark

Table 4: Read requests in SWAN for YCSB-A workload

# of requests (million) Avg. latency (usec)

Front-end 20.3 98

Back-end (Idle) 25.9 88

Back-end (GC) 3.93 103

ues even further, which interfere with read requests. Fortu-

nately, SWAN spatially separates GC so that it occurs only

in one R-group, which enables us to effectively hide inter-

ference by GC. This argument is supported by Figure 11,

which depicts the latency distribution of read requests for

YCSB-C. Unlike the other schemes where we observe high

latency spikes, SWAN shows fairly stable and consistent read

latency.

To further understand SWAN’s impact on read latency in

more detail, we measure the latency of reads served by three

different types of R-groups in SWAN: the frond-end, the idle

back-end (that does not perform GC), and the busy back-

end (that is performing GC), as shown in Table 4. As ex-

pected, the idle back-end provides the shortest read latency.

The frond-end, on the other hand, is responsible for handling

user writes, and thus it provides longer read latency than the

idle back-end. Finally, the read latency on the busy back-end

shows worst performance as it is more likely to be delayed

by the erase and the write operations incurred by GC.

Table 4 also shows the number of reads handled by the

three R-groups with the YCSB-A workload. We observe that

92% of the read requests are serviced by the idle back-end

(52%) and the front-end (40%). Only 8% of the reads are

destined for the busy back-end group that is performing GC.

This skewed data access is due to YCSB’s I/O pattern model

that is based on the Zipf distribution, which is typically ob-

served in many data-center applications [8, 14]. We find that,

under the Zipf distribution with temporal locality, the front-

end and the idle back-end R-groups are likely to receive more

reads because they hold recently written data as we delay GC

of R-groups as much as possible (as depicted in Figure 6).

The frond-end receives a relatively smaller number of read

requests than the idle back-end because many read requests

are hit and served by the OS page cache holding data that

were recently written but have not yet been evicted to the

front-end R-group. The busy back-end contains old data, so

only few read requests are directed to that R-group.

5.4 Analysis with an open-channel SSD

In AFA systems with RAID, I/O requests can be unexpect-

edly delayed if SSD-level GC is triggered. In particular, GC-

blocked read I/Os are considered to be the root cause of long

tail latency [60]. Unlike existing AFA systems, SWAN suf-

fers less from SSD-level GC because it writes all the data in

an append-only manner, thereby avoiding valid page copies

for GC inside an SSD.

In this section, we quantitatively analyze the benefits of

SWAN on individual SSDs, in terms of tail latency. Since

we cannot modify and analyze the internals of off-the-shelf

SSDs, we implement a custom page-level FTL scheme on

an open-channel SSD [34]. From two different settings,

SWAN0 and RAID0 with six SSDs, we collect block I/O

traces of FIO random read/write workloads, and then replay

the traces atop our open-channel SSD. We integrate a perfor-

mance profiler with the custom FTL and monitor and collect

detailed FTL activity statistics including page reads/writes,

block erasures, as well as elapsed times for serving host reads

and writes.

Figure 12 depicts the latency CDF measured in the open-

channel SSD. The read and write latencies of NAND chips

in the open-channel SSD is around 100us and 500us, respec-

tively. SWAN0 shows shorter latency and shorter tail com-

pared to RAID0 throughout its execution. This indicates that

I/O performance of RAID0 is deteriorated by the extra page

copies for internal GC. Consequently, the results confirms

that SWAN is effective in reducing SSD-level GC overhead.

6 Discussion
Benefits with simpler SSDs: The main design principle of

SWAN is minimizing the performance interference caused

by SSD-level GC and AFA-level GC. We think this opens

opportunities to save cost and power consumption without

compromising performance by adopting SSDs with simpler

design. We expect that the main benefits of the simpler SSD

will come from 1) smaller DRAM size, 2) FTL implemented

on a low-power ARM core or hardware, and 3) smaller over-

provisioning space (OPS).

A high-end modern SSD today requires an FTL (SSD

firmware), a large amount of DRAM (e.g., 0.5-16 GB for

mapping tables [45, 49]), high-end processors to run its

space management and garbage collection algorithm (e.g.,

multi-core ARM processor [19]) along with additional over-

provisioning space (OPS) (e.g., extra 6.7% to 28% of flash

capacity just for OPS [46, 47]) to reduce garbage collection

overhead. However, SWAN does not rely on such a sophisti-

cated, powerful FTL. SWAN sequentially writes data to seg-

ments and TRIMs a large chunk of data in the same segment

at once. This implies that an SSD receives sequential write

808    2019 USENIX Annual Technical Conference USENIX Association



 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

C
D

F

Time (msec)

SWAN4
RAID5

RAID4
Log-RAID4

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00

(a) YCSB-A read

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

Time (msec)

SWAN4
RAID5

RAID4
Log-RAID4

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00

(b) YCSB-B read

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

Time (msec)

SWAN4
RAID5

RAID4
Log-RAID4

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00

(c) YCSB-C read

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

Time (msec)

SWAN4
RAID5

RAID4
Log-RAID4

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00

(d) YCSB-D read

Figure 10: CDF of read latency for YCSB benchmark. The tail latency of SWAN is shortest in all workloads. In particular, at

99.9th or higher latency, SWAN shows much shorter latency than others.

(a) RAID4 (b) RAID5

(c) Log-RAID4 (d) SWAN4

Figure 11: Read latency distribution of YCSB-C

streams all the time from the host, which will be obsolete to-

gether later. Under such workloads, it is only necessary for

an SSD to carry out block erasures to reclaim fully invali-

dated flash blocks, and thus complicated media management

algorithms like address remapping and garbage collection

are not needed. On the SSD side, actually, a simple block-

level FTL is sufficient to support SWAN’s workloads. By

making the design of FTL simpler, we can reduce cost for

DRAM and the processor inside the SSD and save power

consumption as well. For example, a page-level FTL scheme

requires roughly 1 GB of memory for a 1 TB SSD to manage

the mapping information [45]. However, in our experience of

implementing the block-level FTL for SWAN, only 8 MB of

DRAM is required for address mapping. Also, for SSDs de-

ployed with SWAN, they do not require a powerful processor

to run sophisticated FTL algorithms such as hot-cold sepa-

ration and multi-streamed I/O management [27] that are de-

signed to reduce GC overhead. We expect a single low-power

ARM core or even hardware logic to be enough to manage

NAND flash with SWAN. Finally, SSDs used in SWAN do

not need to reserve large OPS, which is critical to reduce

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  50  100  150  200
C

D
F

Time (msec)

SWAN0 RAID0

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0  10  20  30  40  50

(a) Read

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  50  100  150  200  250  300  350  400

C
D

F

Time (msec)

SWAN0 RAID0

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0  20  40  60  80  100

(b) Write

Figure 12: Latency CDF of FIO random read/write work-

loads measured in open-channel SSD for RAID0 and

SWAN0

GC overhead. This has the benefit of improving the effective

storage capacity provided to users.

Effect of NVRAM: As a remedy for GC overhead,

one might argue that NVRAM could be used as a write

buffer to accommodate incoming writes while the underly-

ing SSDs are busy doing GC. Using NVRAM, however, is

costly because it requires expensive battery-backed DRAM.

Thus, even high-end AFA controllers have only few GBs

of NVRAM (e.g., 8-64 GB [3]) and use it to improve data

persistence and consistency, for example, by keeping user

data for a few seconds before a new consistency point

starts [56]. However, considering various factors such as

cost of NVRAM, the high bandwidth of the AFA network,

the ever-increasing working-set size, as well as the lim-

ited DIMM slots, we think using NVRAM to buffer large

amounts of user data for an extended period of time to main-

tain high throughput and hide SSD-level GC is not an easily

acceptable solution.

7 Related Work

Reducing GC overhead: Considerable effort have been

made at various layers in the storage stack to reduce GC

overhead in flash storage, including at the file system [32,

39, 41], the I/O scheduler [24, 29], buffer replacement [26],

and the SSD itself [17, 27, 28]. These efforts, likewise, alle-

viate GC overhead through reduced write amplification, but

USENIX Association 2019 USENIX Annual Technical Conference    809



do not completely remove or hide GC overhead.

The recently proposed TTFlash almost eliminates GC

overhead by exploiting a combination of current SSD tech-

nologies including a powerful flash controller, the Redundant

Array of Independent NAND (RAIN) scheme, and the large

RAM buffer in SSD internals [60]. By making use of the

timely technologies in SSD, Tiny-tail handles I/O requests

with almost no-GC scenario, with the caveat that the copy-

back operation must be supported. While Tiny-tail is an SSD

internal approach, it is different from what we propose as,

first, we target an array of SSDs and second, we can make use

of any commodity SSD, though a SWAN optimized, simpler

SSDs would be most efficient.

GC preemption: Preemption is another way to decouple

GC impact from user requests. GC preemption is a means

of virtually postponing GC to avoid conflicts between GC

and user requests. A number of studies, including an industry

standard, have been conducted in this direction [33, 57, 59].

However, GC preemption is prone to failure for various rea-

sons such as excessive write requests or ill-chosen GC poli-

cies [60].

Array of Flash/SSDs: There have been studies to address

GC impact in arrays of SSDs. Flash on Rails [51] and Har-

monia [30] are SSD-based array schemes suggested to re-

solve the GC problem. Flash on Rails separates read and

write requests on different physical disks to separate the read

request handling SSD from the GC handling SSD. This is a

similar approach as our work, with the difference being that

we consider a large scale, network connected storage system

while Flash on Rails maintain at least one replica SSD for

servicing read requests. It basically differs from SWAN in

physical data placement and redundancy level. In large ca-

pacity storage devices such as an AFA system, this doubling

of space is subject to deployment constraints. In contrast, in

Harmonia, the host OS synchronizes the GC of all SSDs to

prevent request blocking from unaligned GC for an array of

SSDs. This approach does not remove or hide GC, but syn-

chronizes GC to reduce its negative effect.

Gecko: The work most similar to ours is Gecko, which was

designed for an array of HDDs [50]. Gecko is similar to

SWAN in that it views the chain of HDDs as a log with new

writes being made to the tail of the log to reduce disk con-

tention by GC. SWAN advances this idea especially in the

context of AFA, which is SSD-based. The key differences

between Gecko and SWAN in terms of storage media can be

summarized are as follows. 1) SWAN provides a guide to or-

ganizing of an array of SSDs based on the analytical model

that reflects the characteristics of commercial SSD devices.

2) SWAN introduce the most efficient way to use SSDs in

AFA through writing large amount of data sequentially and

trimming, which is an SSD-only feature. 3) GC preemption

is employed for serving read requests. 4) SWAN provides

implications for a cost effective SSD design for AFA.

In terms of system organization, unlike Gecko, which uses

a one-dimensional array of HDDs, SWAN manages SSDs

in two dimensions to spatially separate GC writes from

first-class writes and to achieve higher aggregated storage

throughput than the network throughput. Also, Gecko has

to prevent interference by read operations because it targets

HDDs, where a read operation can also move the disk head.

Exposing flash to host: LightNVM [7] and Application-

managed Flash [34] attempt to eliminate GC overhead by

letting the host software manage the exposed flash channel.

These approaches are similar to our method in that GC is

being managed by the host, but they are different in that they

do not decouple the I/Os for GC and those requested by user

applications. Hence, even though these approaches reduce

GC impact by directly controlling the flash devices from the

host, GC is required in managing the flash device. SWAN, on

the other hand, hides GC overhead through host controlled

GC in an array of SSDs.

8 Conclusion

We presented a novel all flash array management scheme,

named SWAN (Spatial separation Within an Array of SSDs

on a Network). Our work was motivated by key observations

that aggregating a number of SSDs is sufficient to surpass

the network bandwidth. However, burdensome garbage col-

lection together with all flash array software prevented us

from realizing optimal performance by making it difficult

to fully saturate the peak network bandwidth. In an attempt

to overcome this problem, SWAN decoupled GC I/Os from

normal ones by partitioning the SSD array into two mutu-

ally exclusive groups and by using them for different pur-

poses in a serial manner: 1) serving incoming writes or 2)

performing GC in the background. This spatial separation

of SSDs enabled us to hide costly GC overheads, provid-

ing GC free performance to the applications. Moreover, us-

ing an analytical model, we confirmed that SWAN guaran-

teed no GC interference I/Os at all times if two mutually

exclusive groups were properly partitioned. Our evaluation

results showed that SWAN offered consistent I/O throughput

at close to the maximum network bandwidth and that read

latency also improved.

Acknowledgment

We would like to thank our shepherd Patrick P. C. Lee and

the anonymous reviewers for their constructive comments.

This work was supported by in part by the National Research

Foundation of Korea(NRF) grant funded by the Korea gov-

ernment(MSIT) (No. 2019R1A2C2009476), by the Institute

for Information & communications Technology Promotion

(IITP) grant funded by the Korea government (MSIT) (No.

2014-3-00035), and by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MSIT)

(NRF-2017R1E1A1A01077410). Sam H. Noh is the corre-

sponding author.

810    2019 USENIX Annual Technical Conference USENIX Association



References

[1] EMC XtremIO X2 Specification.

https://www.dellemc.com/resources/en-us/asset/data-

sheets/products/storage-2/h16094-xtremio-x2-specification-sheet-

ss.pdf.

[2] HPE 3PAR StoreServ Specification.

https://h20195.www2.hpe.com/V2/GetDocument.aspx?docname=4AA3-

2542ENW.

[3] NetApp All Flash FAS. https://goo.gl/1D9dmT.

[4] NetApp SolidFire Specification. https://www.netapp.com/us/

media/ds-3773.pdf.

[5] RocksDB: A persistent key-value store. https://rocksdb.org/.

[6] AXBOE, J. FIO: Flexible I/O Tester. https://github.com/axboe/

fio.

[7] BJÃŽRLING, M., GONZALEZ, J., AND BONNET, P. LightNVM: The

Linux Open-Channel SSD Subsystem. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST) (2017), pp. 339–

353.

[8] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive Analytical Pro-

cessing in Big Data Systems: A Cross-industry Study of MapReduce

Workloads. Proceedings of the VLDB Endowment 5, 12 (Aug. 2012),

1802–1813.

[9] CHIUEH, T.-C., TSAO, W., SUN, H.-C., CHIEN, T.-F., CHANG, A.-

N., AND CHEN, C.-D. Software Orchestrated Flash Array. In Pro-

ceedings of International Conference on Systems and Storage (SYS-

TOR) (2014), pp. 14:1–14:11.

[10] COLGROVE, J., DAVIS, J. D., HAYES, J., MILLER, E. L., SANDVIG,

C., SEARS, R., TAMCHES, A., VACHHARAJANI, N., AND WANG,

F. Purity: Building Fast, Highly-Available Enterprise Flash Storage

from Commodity Components. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (2015), pp. 1683–

1694.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,

AND SEARS, R. Benchmarking Cloud Serving Systems with YCSB.

In Proceedings of the ACM Symposium on Cloud Computing (SoCC)

(2010), pp. 143–154.

[12] DAVIS, R. The Network is the New Storage Bot-

tleneck. https://www.datanami.com/2016/11/10/

network-new-storage-bottleneck/, 2016.

[13] DESNOYERS, P. Analytic Models of SSD Write Performance. ACM

Transactions on Storage 10, 2 (Mar. 2014), 8:1–8:25.

[14] DI, S., KONDO, D., AND CAPPELLO, F. Characterizing Cloud Ap-

plications on a Google Data Center. In Proceedings of International

Conference on Parallel Processing (ICPP) (2013), pp. 468–473.

[15] EDSALL, T., KASER, R., MEYER, D., SEQUEIRA, A.,

AND WARFIELD, A. Networking is Fast Becoming the

Bottleneck for Storage and Compute, How Do We Fix

It? https://www.onug.net/town-hall-meeting-\

networking-is-fast-becoming-the-bottleneck-for-\

storage-and-compute-how-do-we-fix-it/, Open Network

User Group, 2016.

[16] GAL, E., AND TOLEDO, S. Algorithms and Data Structures for Flash

Memories. ACM Computing Survey 37, 2 (2005), 138–163.

[17] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: a Flash Transla-

tion Layer Employing Demand-based Selective Caching of Page-level

Address Mappings. In Proceedings of the International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) (2009), pp. 229–240.

[18] HAO, M., SOUNDARARAJAN, G., KENCHAMMANA-HOSEKOTE,

D., CHIEN, A. A., AND GUNAWI, H. S. The Tail at Store: A Reve-

lation from Millions of Hours of Disk and SSD Deployments. In Pro-

ceedings of the USENIX Conference on File and Storage Technologies

(FAST) (2016), pp. 263–276.

[19] HITACHI. Hitachi Accelerated Flash 2.0. https:

//www.hitachivantara.com/en-us/pdf/white-paper/

hitachi-white-paper-accelerated-flash-storage.pdf.

[20] IDC. The Digital Universe of Opportunities: Rich Data and the In-

creasing Value of The Internet of Things. https://www.emc.com/

leadership/digital-universe/2014iview/index.htm, 2014.

[21] IOANNOU, N., KOURTIS, K., AND KOLTSIDAS, I. Elevating com-

modity storage with the SALSA host translation layer. In Proceedings

of the 26th IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS)

(2018), pp. 277–292.

[22] JIN, Y. T., AHN, S., AND LEE, S. Performance Analysis of NVMe

SSD-Based All-flash Array Systems. In Proceedings of the IEEE In-

ternational Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS) (2018), pp. 12–21.

[23] JUNG, M., CHOI, W., SHALF, J., AND KANDEMIR, M. T. Triple-A:

A Non-SSD Based Autonomic All-flash Array for High Performance

Storage Systems. In Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) (2014), pp. 441–454.

[24] JUNG, M., CHOI, W., SRIKANTAIAH, S., YOO, J., AND KAN-

DEMIR, M. T. HIOS: A Host Interface I/O Scheduler for Solid State

Disks. In Proceedings of the Annual International Symposium on

Computer Architecuture (ISCA) (2014), pp. 289–300.

[25] KAISLER, S., ARMOUR, F., ESPINOSA, J. A., AND MONEY, W.

Big Data: Issues and Challenges Moving Forward. In Proceedings of

the 46th Hawaii International Conference on System Sciences (ICSS)

(2013), pp. 995–1004.

[26] KANG, D. H., MIN, C., AND EOM, Y. I. An Efficient Buffer Re-

placement Algorithm for NAND Flash Storage Devices. In Proceed-

ing of the 22nd IEEE International Symposium on Modelling, Anal-

ysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS) (2014), pp. 239–248.

[27] KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The Multi-

streamed Solid-State Drive. In Proceedings of the USENIX Workshop

on Hot Topics in Storage and File Systems (HotStorage) (2014).

[28] KIM, H., AND AHN, S. BPLRU: A Buffer Management Scheme for

Improving Random Writes in Flash Storage. In Proceedings of the

USENIX Conference on File and Storage Technologies (FAST) (2008),

pp. 16:1–16:14.

[29] KIM, J., OH, Y., KIM, E., CHOI, J., LEE, D., AND NOH, S. H. Disk

Schedulers for Solid State Drives. In Proceedings of the Seventh ACM

International Conference on Embedded Software (EMSOFT) (2009),

pp. 295–304.

[30] KIM, Y., ORAL, S., SHIPMAN, G. M., LEE, J., DILLOW, D. A.,

AND WANG, F. Harmonia: A Globally Coordinated Garbage Collec-

tor for Arrays of Solid-State Drives. In Proceedings of the IEEE Sym-

posium on Mass Storage Systems and Technologies (MSST) (2011),

pp. 1–12.

[31] KWON, H., KIM, E., CHOI, J., LEE, D., AND NOH, S. H. Janus-

FTL: Finding the Optimal Point on the Spectrum between Page and

Block Mapping Schemes. In Proceedings of the International Confer-

ence on Embedded Software (EMSOFT) (2010), pp. 169–178.

[32] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2FS: A New File

System for Flash Storage. In Proceedings of the USENIX Conference

on File and Storage Technologies (FAST) (2015), pp. 273–286.

[33] LEE, J., KIM, Y., SHIPMAN, G. M., ORAL, S., AND KIM, J. Pre-

emptible I/O Scheduling of Garbage Collection for Solid State Drives.

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 32, 2 (2013), 247–260.

[34] LEE, S., LIU, M., JUN, S., XU, S., KIM, J., AND ARVIND.

Application-Managed Flash. In Proceedings of the USENIX Confer-

ence on File and Storage Technologies (FAST) (2016), pp. 339–353.

USENIX Association 2019 USENIX Annual Technical Conference    811



[35] MAO, B., JIANG, H., WU, S., TIAN, L., FENG, D., CHEN, J., AND

ZENG, L. HPDA: A Hybrid Parity-based Disk Array for Enhanced

Performance and Reliability. ACM Transactions on Storage 8, 1 (Feb.

2012), 4:1–4:20.

[36] MARJANI, M., NASARUDDIN, F., GANI, A., KARIM, A., HASHEM,

I. A. T., SIDDIQA, A., AND YAQOOB, I. Big IoT Data Analytics:

Architecture, Opportunities, and Open Research Challenges. IEEE

Access 5 (2017), 5247–5261.

[37] MARRIPUDI, G., AND LLKER CEBELI. How Networking Affects

Flash Storage Systems. Flash memory summit 2016.

[38] MENON, J. A Performance Comparison of RAID-5 and Log-

structured Arrays. In Proceedings of the IEEE International Sympo-

sium on High Performance Distributed Computing (HPDC) (1995),

pp. 167–178.

[39] MIN, C., KIM, K., CHO, H., LEE, S.-W., AND EOM, Y. I. SFS: Ran-

dom Write Considered Harmful in Solid State Drives. In Proceedings

of the USENIX Conference on File and Storage Technologies (FAST)

(2012), pp. 139–154.

[40] NANAVATI, M., SCHWARZKOPF, M., WIRES, J., AND WARFIELD,

A. Non-volatile storage. ACM Queue 13, 9 (2015), 20:33–20:56.

[41] OH, Y., KIM, E., CHOI, J., LEE, D., AND NOH, S. H. Optimizations

of LFS with Slack Space Recycling and Lazy Indirect Block Update.

In Proceedings of the Annual Haifa Experimental Systems Conference

(SYSTOR) (2010), pp. 2:1–2:9.

[42] OH, Y., LEE, E., HYUN, C., CHOI, J., LEE, D., AND NOH, S. H.

Enabling Cost-Effective Flash Based Caching with an Array of Com-

modity SSDs. In Proceedings of the Annual Middleware Conference

(Middleware) (2015), pp. 63–74.

[43] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The Log-

structured Merge-tree (LSM-tree). Acta Informatica 33, 4 (1996),

351–385.

[44] REINSEL, D., GANTZ, J., AND RYDNING, J. Data Age 2025: The

Evolution of Data to Life-Critical. https://www.seagate.com/

our-story/data-age-2025/, 2017.

[45] SAMSUNG. 960PRO SSD Specification. https://www.samsung.

com/semiconductor/minisite/ssd/product/consumer/

ssd960/.

[46] SAMSUNG. Over-provisioning: Maximize the Lifetime and Per-

formance of Your SSD with Small Effect to Earn More. http://

www.samsung.com/semiconductor/minisite/ssd/downloads/

document/Samsung_SSD_845DC_04_Over-provisioning.pdf.

[47] SAMSUNG. Samsung NVMe SSD. http://www.samsung.

com/semiconductor/minisite/ssd/downloads/document/

SAMSUNG_Memory_NVMe_Brochure_web.pdf.

[48] SAMSUNG. SSD 970 EVO NVMe M.2

1TB. https://www.samsung.com/us/

computing/memory-storage/solid-state-drives/

ssd-970-evo-nvme-m-2-1tb-mz-v7e1t0bw/.

[49] SAMSUNG. PM1633a NVMe SSD. https://goo.gl/PkRpKf,

2016.

[50] SHIN, J.-Y., BALAKRISHNAN, M., MARIAN, T., AND WEATHER-

SPOON, H. Gecko: Contention-oblivious Disk Arrays for Cloud Stor-

age. In Proceedings of the USENIX Conference on File and Storage

Technologies (FAST) (2013), pp. 285–298.

[51] SKOURTIS, D., ACHLIOPTAS, D., WATKINS, N., MALTZAHN, C.,

AND BRANDT, S. Flash on Rails: Consistent Flash Performance

through Redundancy. In Proceedings of the USENIX Annual Tech-

nical Conference (ATC) (2014), pp. 463–474.

[52] THE ECONOMIST. Data is giving rise to a new econ-

omy. https://www.economist.com/news/briefing/

21721634-how-it-shaping-up-data-giving-rise-new-economy,

2017.

[53] WANG, W., ZHAO, Y., AND BUNT, R. HyLog: A High Performance

Approach to Managing Disk Layout. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST) (2004), pp. 145–

158.

[54] WIKIPEDIA. mdadm. https://en.wikipedia.org/wiki/Mdadm.

[55] WIKIPEDIA. Write amplification. https://en.wikipedia.org/

wiki/Write_amplification.

[56] WOODS, M. Optimizing Storage Performance and

Cost with Intelligent Caching (NetApp’s White Paper).

https://logismarketpt.cdnwm.com/ip/elred-netapp-virtual-storage-

tier-optimizing-storage-performance-and-cost-with-intelligent-

caching-929870.pdf, 2010.

[57] WU, G., AND HE, X. Reducing SSD Read Latency via NAND Flash

Program and Erase Suspension. In Proceedings of the USENIX Con-

ference on File and Storage Technologies (FAST) (2012), pp. 10–10.

[58] WU, S., ZHU, W., LIU, G., JIANG, H., AND MAO, B. GC-Aware

Request Steering with Improved Performance and Reliability for SSD-

Based RAIDs. In Proceedings of IEEE International Parallel and

Distributed Processing Symposium (IPDPS) (2018), pp. 296–305.

[59] WU, W., TRAISTER, S., HUANG, J., HUTCHISON, N., AND

SPROUSE, S. Pre-emptive Garbage Collection of Memory Blocks,

Jan. 7 2014. US Patent 8,626,986.

[60] YAN, S., LI, H., HAO, M., TONG, M. H., SUNDARARAMAN,

S., CHIEN, A. A., AND GUNAWI, H. S. Tiny-Tail Flash: Near-

Performance Elimination of Garbage Collection Tail Latencies in

NAND SSDs. In Proceedings of the USENIX Conference on File and

Storage Technologies (FAST) (2017), pp. 15–28.

812    2019 USENIX Annual Technical Conference USENIX Association


	Introduction
	Background: All Flash Array
	Design of SWAN
	Design Goal and Approach
	Flash Array Organization
	Handling Application I/O Requests
	Garbage Collection in SWAN
	Optimizing SWAN Configuration

	Implementation
	Metadata Management
	Optimizing GC using TRIM

	Evaluation
	Micro-benchmarks
	Analysis of GC Behavior
	Real-world Workload
	Analysis with an open-channel SSD

	Discussion
	Related Work
	Conclusion

