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Abstract

We present LANCET, a self-correcting tool designed to mea-
sure the open-loop tail latency of µs-scale datacenter appli-
cations with high fan-in connection patterns. LANCET is self-
correcting as it relies on online statistical tests to determine
situations in which tail latency cannot be accurately measured
from a statistical perspective. The workload configuration,
the client infrastructure, or the application itself could, un-
der circumstances, prevent accurate measurement. Because
of its design, LANCET is also extremely easy to use. In fact,
the user is only responsible for (i) configuring the workload
parameters, i.e., the mix of requests and the size of the client
connection pool, and (ii) setting the desired confidence inter-
val for a particular tail latency percentile. All other parameters,
including the length of the warmup phase, the measurement
duration, and the sampling rate, are dynamically determined
by the LANCET experiment coordinator.

When available, LANCET leverages NIC-based hardware
timestamping to measure RPC end-to-end latency. Otherwise,
it uses an asymmetric setup with a latency-agent that leverages
busy-polling system calls to reduce the client bias.

Our evaluation shows that LANCET automatically identi-
fies situations in which tail latency cannot be determined
and accurately reports the latency distribution of workloads
with single-digit µs service time. For the workloads studied,
LANCET can successfully report, with 95% confidence, the
99th percentile tail latency within an interval of ≤ 10µs. In
comparison with state-of-the-art tools such as Mutilate and
Treadmill, LANCET reports a latency cumulative distribution
that is ∼20µs lower when the NIC timestamping capability is
available and ∼10µs lower when it is not.

1 Introduction

Today’s webscale datacenter applications such as search,
social networking, and e-commerce all rely extensively on
the decomposition of online, data-intensive queries into
smaller subqueries that process data directly from the memory

of hundreds or thousands of tightly-interconnected servers
to ensure service-level objectives, scalability and availabil-
ity [4,11,12,33,34]. The combined advancements in hardware
technology (e.g., 10-100Gbps NICs, cut-through switches,
NVMe), system software (e.g., dataplanes [6, 49]), and data
management systems (e.g., in-memory databases and key-
value stores [17, 47, 48, 55]) now allow µs-scale interactions
between application components [5]. The increased number
of components involved in a single query and the extensive
use of high fan-in, high fan-out patterns have shifted the per-
formance focus to tail-latency considerations [11].

This emerging µs-scale computing era is characterized by
new key performance metrics such as the tail-latency service-
level objective (SLO), e.g., 99th percentile ≤ 500µs [6, 29].
To put this into perspective, 500µs is one order of magnitude
longer than an in-memory relational database processing TPC-
C [55] and two-to-three orders of magnitude longer than basic
operations on a key-value store [17, 35, 48]. Yet, it is shorter
than an operating system quantum, a TCP retransmission time-
out, or the DVFS governor’s reaction time [36]. This requires
complete rethinking of traditional assumptions about systems,
stacks, protocols, and applications [5,17,48,53]. A large body
of research focuses on the systematic characterization and
reduction of tail latency effects [6,13,14,23,27–29,34,36,50].

While throughput can easily be measured, tail latency is
harder to capture and characterize in a statistically meaning-
ful manner, as it depends on a number of factors beyond the
workload itself. These factors include the choice of a tool with
overheads and biases, its precise configuration, and the exper-
imental methodology. The literature describes many pitfalls
specific to latency, e.g., Treadmill [58] discusses situations in
which: (i) the inter-arrival request distribution does not match
the production environment; (ii) the measuring methodology
silently masks some tail behaviors; (iii) the measuring tool
affects the measured end-to-end latency because the measur-
ing granularity is too coarse-grained or because the clients
are overloaded.

This matches our own experience in building and evaluat-
ing multiple research systems for µs-scale computing [6, 30,
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50, 51], which used either modified versions of Mutilate [33]
or home-grown latency-measurement and load-generation
tools. While these tools measured the tail latency of our sys-
tems as a function of the load, we were required to unsci-
entifically tweak a large number of workload and system
parameters in an ad-hoc manner by: (i) repeatedly increasing
the number of load-generating clients until stability; (ii) re-
peatedly increasing the number of outstanding requests (e.g.,
number of connections) until the tail-latency diverges at satu-
ration, as expected in an open-loop process; (iii) and last, but
not least, running each experiment “longer” with the hope of
reducing result jitter.

This paper introduces LANCET, a self-correcting latency
measurement tool designed to measure, in a statistically sound
manner, the end-to-end tail latency of remote procedure calls
in a testing environment. LANCET is self-correcting as it relies
on on-line statistical tests to determine situations in which tail
latency cannot be accurately measured. This includes situa-
tions when (i) the workload configuration, and in particular
the number of client connections, leads to closed-loop behav-
ior; (ii) the infrastructure (e.g., number of machines) cannot
generate the desired load without introducing client bias; (iii)
the service time of the workload itself is heavy-tailed dis-
tributed.

Because it relies on statistical methods within its control
system, LANCET is also easier to use than existing tools.
While the scientist specifies the infrastructure used for an
experiment (e.g., number of client machines), and the work-
load itself (e.g., mix reads and writes, distribution of keys
and values, number of client connections, maximum number
of outstanding requests per connection etc.), LANCET then
automatically determines, using statistical tests, what can be
measured and at which confidence interval. LANCET’s con-
trol system internally sets additional experimental parameters
such as the duration of the experiment and its warmup phase.

Finally, LANCET relies on state-of-the-art, hardware-based
measurement techniques that combine NIC timestamping in
hardware and userlevel matching of packets to RPCs. This
approach noticeably eliminates the client bias, and increases
the accuracy of individual measurements without creating a
long-term dependency on immature kernel-bypass protocols
stacks and libraries.

This paper contributes the methodology, design, and imple-
mentation of LANCET, with the following novel features:

• LANCET measures the open-loop tail latency of a work-
load using only two user-provided parameters: the target
load level and the desired confidence interval at the tar-
get tail percentile. For this, it relies on proven statistical
methods such as hypothesis testing to configure the ex-
periment methodology parameters.

• LANCET is self-correcting and reports “N/A” when no
statistically-sound tail latency can be measured. This can
be due to limitations in workload specification, client

infrastructure, or because the service time distribution
has high variability.

• LANCET clearly separates (i) the methodological con-
siderations, implemented by the LANCET controller, (ii)
the measurement tool, implemented by a combination
of agents, and (iii) the workloads and application-level
protocol support, implemented in an extensible manner
by the LANCET agent’s internal API.

• LANCET is designed with stability and production de-
ployment in mind, with a focus on Ethernet-based pro-
tocols. It therefore uses exclusively the standard Linux
kernel-based implementations of networking protocols.
For applicable NICs, LANCET supports hardware-based
timestamping to measure TCP-based RPC latencies
for improved measurement accuracy. Our work demon-
strates that kernel-bypass is not necessary to achieve
precise µs-scale client-side measurements.

Our evaluation of LANCET with workloads with synthetic
service times demonstrates that it (i) automatically identifies
the right number of samples necessary for the target experi-
ment accuracy and result convergence; (ii) accurately reports
the latency distributions for workloads with service time as
short as S̄ = 1µs; and (iii) provides substantially more accu-
rate results than Treadmill [58] and Mutilate [33], state-of-
the-art tail latency measurement tools.

LANCET is open-source and can be found at
https://github.com/epfl-dcsl/lancet-tool. The
rest of the paper is structured as follows. We discuss the
necessary background (§2), analyze a latency experiment
(§3), and discuss the design (§4) and implementation of
LANCET (§5). We then evaluate LANCET (§6) and compare
our methodology to existing tools (§7), and conclude (§8).

2 Background

The accurate measurement of the latency of any software ap-
plication serving RPCs requires the appropriate combination
of metrics, tools, workloads and experimental methodology:
(i) the metrics determine which type of latency is being mea-
sured for a certain load, whether mean, median, tail (e.g., 99th

percentile), or the empirical cumulative distribution function
(ECDF); (ii) the choice of tool determines the precision of the
benchmark; (iii) the choice of workload determines the degree
of realism, generality, and relevance of the experiment; (iv)
the choice of methodology determines the overall soundness
of the results, their accuracy, and reproducibility.

The high-level process is straightforward: the tool acts as an
RPC client which generates requests for the system(s) under
test. The tool timestamps requests and corresponding replies
to determine the end-to-end latency. The requests themselves
are determined in a workload-specific manner (e.g., a mix of
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get and set with a specific distribution of keys). The indi-
vidual request inter-arrival time typically follows a Poisson
process for a given rate λ. For a fixed rate λ, scientists typi-
cally report the full ECDF or the complementary cumulative
distribution or tail distribution (CCDF), often on a log scale,
to highlight the tail latency levels (99th, 999th, etc.). To study
the impact of load on latency, scientists repeat the fixed-rate
experiment for different λ and report the tail latency as a func-
tion of the load [6, 14, 22, 29, 29, 33, 37, 50, 58]. Finally, for
dynamic experiments that mimic daily datacenter patterns,
the tool dynamically adjusts λ according to a diurnal (or ac-
celerated) time pattern [4, 6, 51, 56].

2.1 Taxonomy of tools

We attempt to make a taxonomy of the existing tools for
generating load and measuring latency, the techniques used
and the main design decision.

Packet vs. RPC generators: At the highest level, latency
measuring tools can be easily classified into packet generators,
which measure a network device or a network function, and
application RPC generators, which measure a server.

Packet generators use stateless network packets to measure
the throughput and the latency of datacenter network equip-
ment such as switches and routers as defined in RFCs [7, 39].
These tools can be implemented to achieve different levels of
precision in software. For example, MoonGen [19], TRex [8],
and netperf [46], rely on hardware timestamping facilities
in modern NICs (e.g., MoonGen) or use custom hardware
appliances such as Spirent [54] or IXIA [24].

Application RPC generators measure the latency of client-
server interactions using protocols such as http or mem-
cached’s binary protocol, typically implemented on top
of TCP or RDMA connections. These tools provide ad-
vanced workload-generation capabilities. For example, Muti-
late [33, 45] can model Facebook’s various uses of key-value
stores [4], YCSB [10, 57] can generate a Zipfian distribution
of keys, and CloudSuite [9, 20] offers a mix of applications.
For the rest of the paper, we will focus on RPC generators.

Open-loop vs. Closed loop: There are two main ways to con-
trol the flow of requests to the target. An open-loop system
models n=∞ clients that send requests to the target according
to a rate λ and an inter-arrival distribution, e.g., Poisson. A
closed-loop system bounds the maximum number of possi-
ble outstanding requests at any given time. The distinction
between an open and a closed loop system is a property of
a specific deployment and the same system can be deployed
under different scenarios, e.g., a key-value store may serve
only a few blocking clients (i.e., closed-loop) or thousands
of application servers, which is best modelled as open-loop.
Testing for the right scenario is crucial because open-loop sys-
tems can lead to large queuing, and thus longer tail latencies,

whereas closed-loop tail latencies are typically bounded by
the number of possible outstanding requests. Tools such as
Treadmill and Mutilate are open-loop systems, while others
such as YCSB are closed-loop systems.

Generating the necessary load: Precise tools are typically
used to evaluate the benefit of innovations in new hard-
ware, protocol designs, kernel bypass architectures, network-
ing stacks, operating system configurations, or applications.
Leading research systems today can deliver high-throughput
solutions that easily scale to millions of requests per sec-
ond, even on commodity hardware. As a consequence, the
load-generation and latency-measuring tools, which typically
run on reference vanilla Linux infrastructure, must be dis-
tributed on multiple client machines to saturate a single
server [6, 33, 50].

Multi-machine setups follow two basic design patterns.
First, in symmetric generators, all client machines generate
load and measure latency. Then, an external agent accumu-
lates and processes the collected results to report the ag-
gregated verdict. This category includes YCSB [10], Tread-
mill [58], CloudSuite [20], memaslap [43], etc. Unfortunately
the open-source versions of these tools provide no coordinator
or aggregator script to run them in a distributed fashion.

Second, the asymmetric design splits the client machines
between load-generating and latency-measuring. The bulk of
the load is generated by client machines that generate requests
according to a specific inter-arrival distribution, e.g., Poisson,
in an open-loop manner without measuring latency, while a
separate, dedicated client machine makes closed-loop requests
to the same server and measures its latency. By reducing
the system load on the latency-generating thread, such tools
reduce client bias in the measurement. Mutilate [33] is the
most well-known tool in that category.

Point of measurement: Latency can be measured at different
points in the system resulting in different levels of accuracy.
This includes the actual wire, the NIC, the Ethernet driver,
the in-kernel socket layer, or the application itself. The point
of measurement has a large impact on precision. Accord-
ing to Primorac et al. [52], (i) the packet generators using
hardware-based NIC timestamping such as MoonGen can ac-
curately measure the latency of stateless network functions up
to the 99.99th percentile whereas (ii) the best software solu-
tion relying on kernel bypass can only measure up to the 99th

percentile, and (iii) the solutions relying on the traditional
networking stack should not be used at all for µs-scale latency
measurements.

NIC-based timestamping is available on mainstream NICs.
Intel NICs, such as 10Gbe 82599 and x54, or 40Gbe x710,
implement hardware timestamping only to support IEEE 1588
Precision Time Protocol [18]. This restricts the type and
amount of packets that can be hardware-timestamped. The
MoonGen packet generator takes advantage of this precise, yet
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restrictive mechanism. The Mellanox NICs, e.g., ConnectX-
4 [42] or newer, offer general-purpose hardware timestamping
support to all incoming and outgoing packets. The Linux ker-
nel provides support for hardware timestamping via the Linux
socket interface, yet deriving RPC timestamps from packet
timestamps is challenging, as later described.

Another way to increase precision and reduce jitter is to
leverage kernel bypass and NIC polling at the client. Tools
such as MoonGen and T-Rex use the DPDK [16] toolkit
for better performance and precision. Unfortunately, kernel
bypass limits application and protocol support, and requires
using less-proven protocol stacks as part of the experiment.

Reporting results: From a methodology perspective, most
tools depend on histograms to compute latency percentiles,
thus avoiding keeping all the recorded latency samples. His-
tograms with fixed bucket sizes, as used by Mutilate, can
affect the reported results by masking tail phenomena, if not
configured properly. Some tools such as Treadmill [58] pro-
pose a user-defined calibration phase to determine the bucket
allocation. Other tools, such as TailBench [29], use dynamic
histograms, whose bucket sizes change over the execution of
the experiment. Finally, few tools, e.g., Mutilate, allow col-
lecting all latency samples and save them in a file to be used
for plotting the ECDF.

2.2 Configuration burden

Load generators put the methodological burden on the scien-
tist who configures it. For example, a scientist using Mutilate
must first determine the time for each load experiments (de-
fault=5s), which must be long enough to be statistically sound;
then specify the number of machines, threads and overall num-
ber connections for the load-generating agents, and the max-
imum number of outstanding requests per connection; and
finally specify the configuration of the latency-measurement
agent, which operates as a closed-loop with one outstanding
request a time.

This configuration setup has subtle implications as (i) in-
creasing the number of machines reduces client bias [58]; (ii)
increasing the number of open sockets reduces the through-
put of the server because of operating system overheads [6];
(iii) increasing the maximum number of outstanding requests
per socket allows for batching and increases throughput; (iv)
the product of the number of connections × the number of
outstanding requests must be larger than the bandwidth-delay
product of the workload if the scientist wishes to measure the
open-loop tail latency of the service.

Figure 1 illustrates the challenge via the study of an out-
of-the-box memcached/Linux deployment with Mutilate con-
figured with 320 and 144 connections with one outstanding
request each. We report the 99th tail latency as a function of
the load. The orange curve (144 Connections) operates as a
closed-loop, with the clients unable to generate the target rate,
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Figure 1: 99th percentile latency for memcached USR mea-
sure with Mutilate with 144 and 320 connections with 1 out-
standing request per connection.

and without ever saturating the server. The lower reported
tail latency is merely a reflection of the limited number of
outstanding requests. This experiment can lead to false con-
clusions, e.g., on the maximum throughput that meets a SLO
(e.g., ≤ 300µs).

2.3 Statistics Background

This section provides the sufficient background to understand
our use of statistical methods in LANCET.

Hypothesis testing: Statistical testing follows a specific
thought process. Initially, the statistician formulates a null
hypothesis implying that there is no relation between two pop-
ulations and the observations are the results of pure chance.
She then identifies a test statistic that can assess the truth of
the null hypothesis and computes the p-value. p-value gives
the probability of the given test statistic resulting in the ob-
served value if the null hypothesis is true. The smaller the
p-value, the stronger the evidence against the null hypothesis.
Finally, she compares the p-value to the α value, which cor-
responds to the level of confidence. If the p-value is less than
α, she rejects the hypothesis and therefore conclude that the
effect she observed was not due to random chance.

LANCET uses the following tests. First, the Anderson-
Darling test checks whether a group of samples comes from
a certain probability distribution and was chosen because
it is less sensitive to outliers compared to similar tests, e.g.,
the Kolmogorov-Smirnov test [31]. We use that to validate
the inter-arrival request distribution. Second, the Augmented
Dickey Fuller test [15] checks a series of samples for station-
arity. We use the ADF test to determine the duration of the
warm-up phase and whether the experiment results change
over time. Finally, we use the Spearman rank correlation
coefficient and the associated p-value to check if a series of
samples is autocorrelated when checking for iid-data.

IID-data: Most types of hypothesis testing or general sta-
tistical processing, such as the calculation of confidence in-
tervals, require samples that are independent and identically
distributed (iid). When running a latency experiment, latency

884    2019 USENIX Annual Technical Conference USENIX Association



Latency Experiment Concerns
Workload Methodology Measuring Tool

transport protocol connection balance system stability workload-compliant
application protocol open/closed queueing unbiased result processing methodology-compliant
request types and ratio outstanding requests/connection result convergence measuring bias free
connection count inter-arrival distribution distribution coverage

Table 1: Classification of concerns related to running a latency experiment into workload, methodology, and measuring tool-
specific components. We advocate that the Workload column has to be user defined, while Methodology and Measuring Tool
columns have to be handled systematically by the measuring framework.

samples are naturally identically distributed since they come
from the same target server. Sample independence, though, is
challenging to meet because of queuing effects. The end-to-
end latencies of two requests that are queued back-to-back are
dependent because the latency of the latter request includes
the service time of the prior. While independence cannot be
taken for granted, it can be tested, with autocorrelation be-
ing the standard way to check independence for a series of
samples.

Confidence Intervals: We focus here on the confidence in-
tervals for tail latency of a single execution, assuming that
the system environment remains identical and stable during
the entire experiment. The confidence intervals for a distri-
bution’s percentiles can be computed in closed form when
the data are iid. The formula identifies, with a certain level of
confidence, two threshold values that belong to the collected
samples, between which the value for the specific percentile
is expected to be found. Formulas 1, 2 give the indices of
those two threshold values in the sorted of collection of sam-
ples [31] for a certain confidence level γ.

j ≈ bnp−η
√

np(1− p)c (1)

k ≈ dnp+η
√

np(1− p)e+1 (2)

where n is the number of samples, p is the percentile, and η

is defined as N0,1 =
1+γ

2 . For example, for 10,000 iid samples
(n = 10000), the confidence interval for the 99-th percentile
with 95% confidence (γ = 0.95, so η = 1.96) will be between
the values with indices j = 9880 and k = 9921.

Note that determining confidence across different execu-
tions of the same experiment is challenging as the system’s
boot-time and application initialization can have a persistent
effect on performance, leading to the hysteresis problem de-
scribed in Treadmill [58].

3 Experiment Decomposition

Our goal is to build a latency-measuring tool that is precise
and simplifies the configuration burden discussed in §2.2,
with the explicit objective to identify situations in which the
configuration cannot lead to a statistically meaningful result.

Table 1 classifies concerns related to a latency experiment
into three main categories: workload, methodology, and mea-
suring tool. These concerns often correspond to user-defined
parameters in most of the existing tools and can be easily
misconfigured. This decomposition will guide the design of
modular, self-correcting latency-measuring tools. We claim
that the workload-specific parameters have to be user de-
fined, otherwise the experiment is insufficiently described.
The methodology and measuring tool concerns have to be sys-
tematically managed by the measuring framework to reduce
the pitfalls induced by the user misconfiguration.

Workload: The first aspect of a latency experiment is the ac-
tual workload and a large set of the configuration parameters
refer to the workload specification. The experiment workload
is both application- and deployment-specific, meaning that
the same application should be tested differently if the deploy-
ment environment is also different. The workload includes the
application specific parameters (e.g., get:set ratio, request
size distributions, TPC-C request mix, etc.), the application-
level protocol (e.g., HTTP, binary memcached, etc.) and the
network-level protocol (e.g., UDP vs. TCP). The definition
of the workload also includes the client assumptions, i.e., the
number of expected client connections, the maximum number
of outstanding requests per connection, and whether clients
operate in an open- or a closed-loop system.

Critically, the specification of the workload is independent
of the measuring tool , but affects the results, which could lead
to unrealistic or wrong conclusions. For example, one cannot
meaningfully report the open-loop tail latency of a workload
with an insufficient number of connections, or insufficient
outstanding requests per connection.

Measuring methodology: The second aspect of a latency ex-
periment is the methodology, which describes how the latency
samples are collected and processed. Examples of configura-
tion parameters that are relevant to the methodology are the
experiment duration, the number of collected samples, and
the number and size of the histogram buckets. Reducing the
number of configuration parameters related to methodology
is a major goal of our design.

Regarding the latency sample collection, a good method-
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Figure 2: Lancet’s architecture depicting a coordinator (C),
throughput agents (TA), latency agents (LA), symmetric
agents (SA), and the target server under test. The dashed
arrows correspond to the LANCET API while the solid ones
are application RPCs

ology should first ensure that the system under test is in a
steady state to avoid measuring transient phenomena. Then it
should ensure that the collected results converge and that all
desired tail behaviors are covered. Finally, during the result
processing, it should avoid adding statistical bias, e.g., by the
misconfiguration of histograms.

Measuring tool: Finally, the last part of a latency experi-
ment is the actual client software used to collect the latency
samples. Examples of parameters related to the tool are the
number of client machines or threads used in the experiment,
and whether hardware or software timestamping is used. The
tool should be able to implement the specific methodology,
generate the target workload accurately, and measure latency
without adding too much client bias.

4 Design

4.1 LANCET infrastructure

Figure 2 shows the basic LANCET overview, which splits
the methodology from the actual measuring tool and work-
load generator according to §3. LANCET is a by-design dis-
tributed tool that consists of a coordinator (C) and various
measuring agents. The coordinator is in charge of the exper-
iment methodology (see §4.3) and communicates with the
agents over the LANCET API (Table 2). The measuring agents
drive the workload via application RPCs generated based on
application-specific random distributions. The agents also
measure latency precisely, identify cases of workload viola-
tions, and run statistical tests.

Figure 3 describes a typical agent state transitions triggered
by the coordinator via the API for a fixed-load experiment.
From an idle state (Idle), the agent transitions into the loading
phase (Load), where it attempts to issue l requests per second
to the server. During that period the agent does not record
latency. The agent eventually transitions into the measure-
ment phase (Measure) specified by a sampling rate (sr) and
a number of latency samples to collect (s). The agent can

Request Type Request Params Reply
start_load load (rps) ACK

start_measure
#samples
sampling rate(sr) ACK

get_throughput None
Throughput (rps)
Correct IA (T/F)

get_latency None
Latency CI
Stationary (T/F)
IID (T/F, sr)

exit None ACK

Table 2: The LANCET coordinator API with the information
returned by the agents on each call. For the get_throughput
and get_latency requests, the agents also reply information
related to the Inter-Arrival distribution (IA), the latency Con-
fidence Intervals (CI), and whether the collected samples are
stationary and iid. If they are not iid, the reply contains the
target sampling rate necessary to get iid data.

Idle

Measure
Load

Terminate

load(l)

exit

measure(s,sr)

measure(s,sr)

exit

Figure 3: Lancet agent’s state transition. Arrows represent
messages from the coordinator.

stay in that state while the sr and s parameters can change.
Finally, the coordinator decides to terminate the experiment
(Terminate) via an exit message. At any point in time, while
the agent is in the Load or Measure phase the coordinator can
ask for the current throughput and latency.

4.2 Measurement options

Figure 2 shows that LANCET implements three agent types,
selected to match the capabilities of the available hardware,
the measuring methodology and the target experiment granu-
larity. This way LANCET can support both symmetrical and
asymmetrical deployments described in § 2.1.

LANCET uses the asymmetrical model when the latencies
are captured in software. This model reduces jitter by dedi-
cating cores and even machines to only measure latency. The
drawback is that the experiment collects fewer samples per
time period. Furthermore, special care must be taken to ensure
that the collected samples are representatives of the workload.
For example, a latency agent should open multiple connec-
tions (i.e., emulate multiple clients) to ensure that a server
configured with an RSS NIC will use all cores.

LANCET uses the symmetrical model when the NIC offers
the capability to timestamp all incoming and outgoing Ether-
net frames and the Linux operating system exposes the infor-
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mation to userspace (v4.14+ kernels). LANCET associates the
hardware timestamping of packets to the end-to-end latency
of RPCs. This is not straightforward because of the inherent
mismatch between the stream-oriented TCP protocol and the
message-oriented RPCs. Implementation details follow in §5.

4.3 LANCET’s self-correcting methodology
LANCET’s primary contribution is its novel, self-correcting
methodology which follows the experiment decomposition
and split of concerns described in Table 1, and tries to system-
atically and based on statistics, identify: (i) when the server
is in a stable state to start measuring latency (managed by
the user-defined warm-up time in other tools); (ii) if the col-
lected latency samples converge and whether tail phenomena
are fully covered (controlled by the user-defined experiment
duration in other tools); (iii) how to process the collected
samples and report latency without introducing statistical bias
(histograms are mainly used for that purpose in other tools);
(iv) the confidence intervals of the latency results (unlike most
tools which simply report latency percentiles).

Figure 4 illustrates the state machine transitions of the
coordinator when measuring the open-loop tail-latency of a
server under a certain load. To run such an experiment, the
scientist needs to provide, apart from the necessary workload
specification (first column in Table 1), the following:

• the target load (l).

• the target confidence interval for a specific latency per-
centile, e.g., 10µs interval for the 99th percentile with
95% confidence.

The output of such an experiment will be either the tail-
latency percentiles with the corresponding confidence inter-
vals or an indication that the specific experiment cannot be
executed because some of the assumptions are violated, e.g.,
the target load cannot be reached, the service time has high
variability and the computed latency confidence interval is
wider than the target, the client does not respect the workload
specifications, etc.

System Stability: Initially, the methodology ensures that the
target load can actually be reached before starting measur-
ing latency, thus eliminating transient phenomena. Then, the
methodology ensures that agents load the server while respect-
ing the workload’s specified inter-arrival distribution. This
second confirmation is essential to avoid reporting misleading
latencies. For this, every agent records the inter-transmission
intervals of requests by recording request transmissions, ide-
ally in hardware, but if necessary at the socket interface. Ev-
ery agent runs an Anderson-Darling test to check whether the
inter-transmission intervals follow the target inter-arrival dis-
tribution, e.g., exponential in the case of Poisson inter-arrival.
The controller exits the system stability step only when the

load is reached according to the correct inter-arrival distribu-
tion.

Unbiased Result Processing: Each agent collects, according
to the parameters (s,sr) set by the controller, s samples, each
randomly sampled among the RPCs at rate of sr, e.g., collect-
ing 10,000 samples with a 1:20 sampling rate would require
∼200K RPCs. Sampling is necessary because the collected
samples need to be iid to compute the confidence interval
correctly. Computing confidence intervals on non-iid data
will underestimate their size.

The iid-ness is confirmed or rejected by computing the
autocorrelation of the collected latency samples sorted by
their transmission time. To do so, latency-measuring agents
compute the Spearman correlation of the collected latency
samples shifted over time. We leverage the associated p-value
to determine whether the correlation is significant or not. This
correlation being significant implies that data that are close in
time depend on each other, which is the result of them being
queued back to back in the servers queue.

A way to reduce the autocorrelation is to decrease the
sampling rate. The LANCET built-in parameters initialize the
measuring phase with 10,000 collected samples with a first
sampling rate of 1:5. If the autocorrelation is non-significant,
the latency measuring agents report that the samples are iid.
Otherwise, they report how much to reduce the sampling rate
to achieve non-significant correlation. The latency measuring
agents report the Pearson correlation co-efficient back to the
coordinator as part of their latency results. To do so, the agents
compute the autocorrelation for different lags and report the
one that leads to a non-significant correlation. Based on the
agents’ replies, the coordinator decides whether to proceed
to the next state or reduce the sampling rate accordingly if it
fails to confirm iid-ness.

Result Stationarity: The methodology needs to identify
whether the number of samples collected is sufficient for
the results to converge to a stable distribution of latencies
that does not change over time. To ensure stationarity, the
methodology leverages an Augmented Dickey Fuller test [15].
Each latency-measuring agent sorts the collected latency re-
sults based on their transmission timestamp and runs the test.
Again, the latency measuring agents report the result of the
test to the coordinator. In cases where lack of stationarity is
detected, the coordinator decides to increase the number of
samples by 10,000 and retry. Otherwise it proceeds with the
next check.

Determine the confidence interval: Finally, the methodol-
ogy has to check if the results converge within the target
confidence interval size. For that, we use the Formulas 1 and
2. Each latency measuring agent reports the confidence in-
tervals for the latency percentiles to the coordinator. The
coordinator ensures that the intervals from different agents
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Figure 4: LANCET’s experiment methodology implemented by the coordinator. Dark grey boxes correspond to messages from
the coordinator to the agents. Light grey boxes show the experiment end.

are overlapping and computes their average. If the final con-
fidence interval is wider than the user-selected target, the
coordinator increases the number of samples by 10,000 and
continues the experiment.

Termination: If the target confidence is reached, the coor-
dinator finishes the experiment and reports the final latency
percentiles with the equivalent confidence intervals. If the
coordinator cannot reach the target confidence after a fixed
number of failed retries, or if the experiment duration is above
a certain threshold, it terminates the experiment, and reports
that the specific experiment is not conclusive, the reasons why,
along with the collected results so far.

5 Implementation

In addition to the design goals of §4, LANCET was imple-
mented with robustness and long-term relevance in mind.
LANCET is therefore built purely on functionality provided
by the Linux kernel, using built-in drivers and protocol stacks.
During development we identified some inconsistencies re-
garding hardware timestamping in the Linux kernel; our patch
was merged in Linux kernel 4.19.4 [38].

The LANCET coordinator (Figure 2) is in charge of deploy-
ing the agents, communicating with them over sockets, driving
their state machine according to Figure 3, and implementing
the methodology of Figure 4. The coordinator is implemented
in Golang. It relies on goroutines for easy distributed co-
ordination and failure management, and consists of ∼1000
lines of code. From those lines, ∼300 of them implement
the methodology described in § 4.3 and the rest implemented
the LANCET API to communicate with the agents, manage
collected results, etc. Thus, implementing a new coordina-

tor logic for different experiment methodologies is relatively
easy.

We implemented three different agents that can be used
according to the available hardware, the measuring methodol-
ogy, and the necessary experiment granularity. Our agents can
achieve better measuring granularity compared to previous
tools and can be used in both a symmetrical and asymmetrical
deployment, independently of the available hardware. The
agents are implemented in a combination of C and Python,
and can be easily extended with new transport and application
protocols.

Figure 5 depicts the structure of a multi-threaded LANCET
agent. Each agent is split between a Python control plane
and a C data plane communicating over shared memory. The
Python control plane is in charge of communicating with
the coordinator and performing the statistical computations.
The choice of Python allowed us to take advantage of the
rich Python ecosystem using libraries such as NumPy and
SciPy. The choice of C for dataplane gave us direct access
to low level socket APIs and reduced the client overhead.
LANCET lancet currently supports TCP, UDP, and R2P2 [30]
as transports, and Memcached, Redis, and HTTP as applica-
tion protocols.

Throughput Agent: This agent leverages epoll_wait to
manage connections and is in charge of loading the server
without measuring latencies. It is used only in asymmetrical
deployments in cooperation with one of the two following
agents that can measure RPC latency.

Latency SW-timestamping Agent: This agent depends on
software timestamping and does not have any hardware
dependencies. It improves the measuring precision over
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Figure 5: The structure of a LANCET agent. The grey part
corresponds to the Python control plane, while the white part
corresponds to the C dataplane communicating over shared
memory (SHM).

other software-based tools, though, by leveraging the busy
polling functionality introduced in Linux 3.11. Specifically,
the SO_BUSY_POLL socket option allows blocking system
calls to poll the NIC instead of depending on interrupts. While
still dependent on userspace timestamping, this agent reduces
client bias and measures latency with similar accuracy to
kernel-bypass approaches. The blocking nature of this agent
limits the load and the inter-arrival distribution of requests the
agent can achieve. Consequently, this agent can only be used
in asymmetric setups in conjunction with throughput agents
that generate the necessary target system load according to
the expected inter-arrival distribution.

Symmetric HW-timestamping Agent: Finally, we imple-
mented a symmetric agent that leverages hardware timestamp-
ing to measure RPC end-to-end latency. This agent depends
on the Linux kernel functionality for hardware timestamp-
ing added in kernel 4.14 for TCP. It also requires a NIC
that timestamps all the incoming and outgoing packets, e.g.,
the Mellanox ConnectX-4 [42]. The preferred deployment
is based on symmetric HW-timestamping agents, as they im-
prove on the latency agent in terms of precision and they
can scale throughput while the coordinator can symmetrically
collect results from all client machines, thus increasing the
experiment accuracy.

The most challenging part of the implementation was the
attribution of RPC latencies when requests and replies are
layered on top of the stream-based TCP protocol, as used in
the popular protocols, such as Memcached.

For TX timestamps, the Linux kernel provides an asyn-
chronous API to collect timestamps, returning asynchronously
one timestamp for each sendmsg system call. The notification
is propagated to the userspace through an EPOLERR for the
equivalent socket that is handled by epoll_wait. Along with
the timestamp, the kernel also returns the number of the last
transmitted byte this timestamp corresponds to. For example,
if the first request has a size of 20 bytes, the notification will
mention that this timestamp is associated with byte 20. For the
second request of the same size, the notification will mention
byte 40, etc. The same information is maintained by LANCET
in userspace for validation purposes, and to deal with cases
of coalescing or resubmissions.

The kernel provides a synchronous API to retrieve the RX

timestamp: the RX timestamp is part of the metadata to the
recvmsg system call, and corresponds to the receive times-
tamp of the frame that carried the last byte returned by the
system call. The LANCET application-parsing logic leverages
this information to associate timestamps to replies of vari-
able sizes: if the content returned by recvmsg consists of an
incomplete reply, that timestamp is ignored; if the content
contains the replies to multiple requests (which is possible be-
cause of TCP’s streaming nature and coalescing in the socket
layer), LANCET only considers the timestamp for the last reply
returned in that call. The Linux kernel coalesces sk_buffs
internally and keeps a single timestamp per sk_buff corre-
sponding to the last arrival. Consequently, earlier received
responses might appear to have later receive timestamps.

Our contribution to the kernel 4.19.4 [38] guarantees that
each recvmsg system call will return the hardware timestamp
that corresponds to the last byte read. Previously, this was
only the case for software in-kernel timestamping.

6 Evaluation

Our evaluation aims to answer three fundamental questions:
(i) how does LANCET compare with existing RPC load-
generating tools such as Mutilate and Treadmill (ii) how does
LANCET’s self-correcting methodology work in practice (iii)
how LANCET performs in characterizing a server’s behavior
across different loads.

We answer these questions using a methodology in which
the server’s execution time is explicitly controlled. Doing
so enables comparing the client-side measurements made
by the tools to an idealized queueing theoretic model. We
leverage an RPC server with synthetic service times follow-
ing well-known distributions. Specifically, we tried a fixed,
an exponential, and a bimodal distribution where 10% of
the requests take ∼10× longer to execute. To further reduce
server-side overheads, our server uses the open-source IX
operating system [6] configured with 1 CPU and adaptive
batching disabled. The operating system overhead is ∼1µs
of CPU execution time per request, which includes driver
and network processing overheads. As baselines we use the
opensource versions of Mutilate [1] and Treadmill [3]. For
Treadmill, we had to make changes in order to build it for our
setup.

To be able to compare with other tools, our synthetic server
uses the ascii-memcached protocol. Clients submit get
requests with for a 19-byte key (similarly to Facebook’s
USR [4]), the server spins for a configurable amount of
time, and replies that that key was not found. We chose
ascii-memcached because it is the only protocol supported
by both Treadmill and Mutilate.

The idealized models correspond to the expected latency
distribution, as determined by a discrete event simulation, as-
suming zero operating system overheads, zero network prop-
agation delays, and zero client-side measurement overheads.
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Figure 6: Latency ECDF for an M/D/1 model and three deterministic workloads at 20% load.

For all of our experiments, we configure each client ma-
chine with 15 threads and 4 connections per thread with 1
outstanding request per connection. Also, we consider a Pois-
son inter-arrival distribution of requests.

6.1 Experimental setup
Our experimental setup uses 5 clients and one server machine
connected by a Quanta/Cumulus 48x10GbE switch with a
Broadcom Trident+ ASIC. The client machines are equipped
with a Xeon E5-2637 @ 3.5 GHz and a Mellanox Connect-X4
NIC. The machines run an Ubuntu LTS 16.04 distribution
running Linux kernel version 4.19.4. The systems are tuned
to reduce jitter: all power management features, including
CPU frequency governors and TurboBoost, and support for
transparent huge pages, are disabled. The server is a Xeon
E5-2665 @ 2.4 GHz with an Intel x520 NIC running the IX
operating system.

6.2 Benefits of hardware timestamping
First, we compare the measuring granularity of LANCET with
the measuring granularity achieved by Mutilate and Treadmill.
For LANCET we consider both the hardware timestamping,
symmetrical setup and the asymmetrical one based on the
busy-polling agent. LANCET and Mutilate provide a way to
run an experiment based on multiple machines, but for Tread-
mill there is no opensource coordinator script. Thus, we run
one Treadmill instance on each client that contributes 1/5 of
the load. Also, we modified Treadmill to save the collected
latencies at the end of the experiment.

From a methodology perspective, we plot the latency CCDF
for a deterministic service time distribution with different
average service times. The load is set at 20% of the theoretical
saturation, we range the average service time from S̄ = 1µs
to S̄ = 100µs. We collected 1M samples for each tool.

Figure 6 summarizes the experiment results. We observe
that LANCET, for both configurations and in all three exper-
iments, achieves lower measuring granularities when com-
pared to the other tools because it reduces the client measuring

overheads. Specifically, for S̄ = 1µs hardware timestamping
measures a 99th percentile tail of 14.1µs and the LANCET
polling agent one of 27.3µs. Mutilate measures 40µs and
Treadmill reports 63µs. Figure 6a also shows that Mutilate’s
line is not smooth because of the µs reported granularity, as
opposed to nanoseconds reported by the other tools. Also,
we see that LANCET aligns better with the theoretic results.
For example, with S̄ = 10µs, the blue line nicely tracks the
model; the offset between the two (∼10µs) is essentially due
to the operating system overhead and the propagation delay.
Finally, Figure 6c shows that the tools make a difference even
for coarser grain tasks (S̄ = 100), where the operating system
and propagation delay overheads are comparatively small.

For the rest of our evaluation we will focus on the sym-
metric hardware-timestamping agent as it reports the most
accurate results.

6.3 LANCET self-controlling dynamics

In the next series of benchmarks, we want to identify the
impact of the self-correcting methodology and how the co-
ordinator controls the experiment parameters based on the
different service time distributions and the system load. To
do so, we run the three different service time distributions
across a variety of loads and we collect the necessary level
of sampling to achieve iid-ness, and the number of samples
necessary for a target confidence interval size of 10µs.

Figure 7a shows the sampling rate that is necessary to the
unbiased processing of the results caused by queuing effects.
We observe that high-dispersion workloads (e.g., bimodal)
and higher load levels require lower sampling rates. This is
expected as increasing either service time dispersion or load
level leads to more queuing, thus more dependent samples.

In Figure 7b, we set the size of the target confidence in-
terval for the 99th percentile latency to be 10µs with 95%
confidence. The figure shows the number of collected sam-
ples, as decided by the coordinator, that are required to satisfy
the result target. We observe that more samples are neces-
sary to fulfill the constraint as the load increases, since higher
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Figure 7: Dynamics of LANCET’s self-correcting methodology based on load for three service time distributions with S̄ = 10µs

system load leads to higher latency variability.
The bimodal distribution shows an interesting behavior of

the tool: With load> 70%, execution stops after the maximum
number iterations (N = 10) but the target CI expectations can
not be met. Our experiment logs showed that the collected
99th percentile latency at 75% load is 411.333µs [-5.87µs,
7.56µs ] at 95% confidence; this interval is > 10µs.

We also tested LANCET’s self-correcting behavior with the
lognormal distribution, which is a heavy tailed distribution.
LANCET terminates without ever being able to confirm results
convergence(CI < 10µs for the 99-th percentile latency), even
at a low load of 20%. Thus, LANCET is effective in detecting
heavy-tailed service time distributions.

6.4 Inter-Arrival distribution Impact
In the following experiment we try to showcase the impact
of the inter-arrival distribution on the latency results and how
LANCET identifies cases of inter-arrival distribution violations.
We use the fixed synthetic time distribution with S̄ = 10µs and
we run a latency experiment across a variety of loads with dif-
ferent number of connections. We disable LANCET’s checks
for inter-arrival distribution and we only report whether there
is a workload violation. To eliminate any system interference
we configure LANCET with one connection per thread, and
add connections by adding client machines.

Figure 8 shows the 99-th percentile latency as a function
of throughput for the different connection count configura-
tions. The vertical lines correspond to the load level that the
equivalent configuration started violating the inter-arrival dis-
tribution. We observe that once LANCET reports a violation
the curves start deviating. This experiment shows that cases
as the one described in Figure 1 can be avoided by LANCET’s
self-correcting methodology.

6.5 Server characterization
Figure 9 shows the 99th-percentile tail latency as a function
of the load for three workloads. We compare LANCET with
Mutilate as well as the idealized, zero-overhead theoretical
model. Both tools use 5 machines – necessary to achieve the

45 connections 30 connections 15 connections

10 20 30 40 50 60 70 80 90

kRPS

0

20

40

60

80

100

9
9
th

 L
a
te

n
c
y
 (

u
s
)

Figure 8: Impact of the inter-arrival distribution to tail-latency
for a fixed with S̄ = 10µs. Vertical lines correspond to the
load levels where Lancet reports inter-arrival distribution vio-
lations

high loads required. For LANCET, we additionally report the
confidence interval of each measurement. This experiment
does not include Treadmill as Treadmill’s open-source dis-
tribution does not support multi-machine deployments. Note
that because of system overheads, the IX server cannot get
close to the expected maximum load for Figure 9a which
would be 1M RPS, thus we do not plot the theoretic curve.

We observe that LANCET reports latencies that closely
match the idealized model across the entire load spectrum, to
the point that it accurately reflects the two inflection points of
the binomial distribution. We also observe how the size of the
confidence intervals change across different distributions and
system loads. For low loads and low service time dispersion,
the interval is shorter than the maximum configured (10µs).
For the bimodal distribution, the reported confidence interval
is at its maximum configuration even for low loads.

7 Related Work

LANCET is one of the many contributions towards enabling
reproducibility and accurate experimentation in systems re-
search [25, 40].

µs-scale computing: Recent research focuses on µs-scale
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Figure 9: Latency vs throughput graphs for a 5-client experiment with average service time of S̄ = 1 and S̄ = 10

computing [5] both in operating systems and networking and
either aim to optimize [6,26,35,49,50], or attribute the sources
of tail-latency [29, 33, 34, 52, 58]. LANCET does not attempt
to attribute the sources of the jitter. Instead, it provides a tool
to measure µs tail latency precisely on an end-to-end basis to
be used in similar research efforts.

Precise measurements: RPC generators [10, 20, 33, 43, 58]
use software timestamping. However, researchers need more
accurate tools to evaluate system’s latency, e.g., ZygOS used
a modified version of Mutilate based on DPDK [16], and
MICA [35] used a custom version of YCSB on DPDK.
Software-based packet generators [8, 19, 46] also used DPDK
for increased precision [52]. Hardware-based packet gener-
ators [24, 54] provide sub µs-scale precision with little jit-
ter [52]. Some tools repurposed the IEEE PTP feature of stan-
dard NICs to measure packet latencies [19,32,44]. LANCET is
the first tool that leverages hardware-based NIC timestamping
for capturing latency for RPCs over TCP with even higher
precision. In addition, LANCET uses the standard Linux net-
working stack for all experiments, proving a more realistic
simulation environment. While we used Mellanox ConnectX-
4 NICs in our experiments, hardware timestamping of all
packets is also available on Solarflare NICs [2].

Methodology: Although tail-latency is a widely used system
metric, there is no widely accepted experiment methodology
for measuring it, and usually tools are bounded to specific
methodologies. LANCET attempts to split the methodology
from the actual tool and reason about them separately. Mea-
surement bias from non-determinism can be avoided via setup
randomization [21, 41, 58]. Repeated runs eliminate hystere-
sis effects in systems [58]. Distributed benchmarking tools
seek to minimize client side queuing bias by reducing the
client load, in asymmetric e.g., Mutilate [33], or symmetric
setups [58]. LANCET’s use of hardware timestamping elimi-
nates client bias in the point of measurement. Treadmill [58]
avoids issues of imbalance by leveraging a symmetric mea-
surement model, and bias from outliers by computing inter-
ested metrics on individual instances and combining them

using aggregation functions. LANCET also supports the sym-
metric setup to detect imbalance across client machines. Most
tools use histograms to capture latencies. Treadmill deter-
mines bucket ranges during a calibration phase. YCBS [10]
and Tailbench [29] have dynamic range histograms. LANCET
relies on on-line sampling but keeps all sampled results to
determine both the CCDF and the confidence intervals. Con-
fidence intervals can also be used to determine statistical
convergence of results [21,41]. LANCET’s self-correcting con-
troller relies on statistical tests to ensure stability and results
convergence similarly to [40].

8 Conclusion

LANCET is a new latency-measuring tool designed with the ex-
plicit goal to accurately measure µs-scale tail-latencies while
reducing methodological pitfalls in a principled manner. Its
self-correcting methodology uses proven statistical methods
to detect situations where application tail latency cannot be
reliably measured. LANCET’s agents uniquely leverage NIC-
based timestamping to measure the end-to-end latency of
TCP-based applications, completely eliminating client bias.
LANCET measures latency distributions with more accuracy
than popular tools such as Mutilate and Treadmill. Our eval-
uation with µs-scale workloads shows that it robustly self-
corrects as a function of the load for workloads with challeng-
ing service time distributions.
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