
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

ElasticBF: Elastic Bloom Filter with Hotness
Awareness for Boosting Read Performance

in Large Key-Value Stores
Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu,

University of Science and Technology of China

https://www.usenix.org/conference/atc19/presentation/li-yongkun

ElasticBF: Elastic Bloom Filter with Hotness Awareness for Boosting Read
Performance in Large Key-Value Stores

Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, Yinlong Xu
University of Science and Technology of China

Abstract

LSM-tree based key-value (KV) stores suffer from severe
read amplification because searching a key requires to check
multiple SSTables. To reduce extra I/Os, Bloom filters are
usually deployed in KV stores to improve read performance.
However, Bloom filters suffer from false positive, and simply
enlarging the size of Bloom filters introduces large memory
overhead, so it still causes extra I/Os in memory-constrained
systems. In this paper, we observe that access skewness is
very common among SSTables or even small-sized segments
within each SSTable. To leverage this skewness feature, we
develop ElasticBF, a fine-grained heterogeneous Bloom filter
management scheme with dynamic adjustment according to
data hotness. ElasticBF is orthogonal to the works optimizing
the architecture of LSM-tree based KV stores, so it can be
integrated to further speed up their read performance. We
build ElasticBF atop of LevelDB, RocksDB, and PebblesDB,
and our experimental results show that ElasticBF increases
the read throughput of the above KV stores to 2.34×, 2.35×,
and 2.58×, respectively, while keeps almost the same write
and range query performance.

1 Introduction
With the exponential growth of data volume, traditional rela-
tional database meets challenges in scalability in dealing with
extremely large-scale data. As an alternative, key-value (KV)
store is widely used as the fundamental storage infrastructure
in many applications, such as cloud systems [25], advertis-
ing [8, 16], social networks [3, 37], search indexing [8, 21],
online gaming [13], etc. According to the used index struc-
tures, KV stores can be categorized into hash index based
design [12,13,26], B-tree based design [20,31] and LSM-tree
based design [27, 30, 32, 36]. Because hash index based de-
sign requires large memory and can not well support range
query, and B-tree based design involves an abundance of
random writes, so most modern KV stores use LSM-tree,
e.g., LevelDB [21] at Google, RocksDB [16] at Facebook,
Dynamo [14] at Amazon, and Cassandra [1] at Apache.

An LSM-tree based KV store is typically composed of two
components, and we take LevelDB as an example to illustrate.
One resides in memory to cache KV pairs, and it includes a
MemTable and an Immutable MemTable. The other is stored
in secondary storage, which is divided into multiple levels
consisting of multiple SSTables. Each SSTable contains a

set of sorted KV pairs and necessary metadata. When a level
reaches its size limit, its SSTables will be compacted into the
next level via compaction, which first reads out the SSTables
in the two levels, then performs a merge sort, and finally
writes back the new SSTables into the next level. As a result,
compaction induces severe write amplification [27, 32].

Various designs are recently proposed to mitigate the com-
paction overhead [5, 27, 32, 42]. The most recent work Peb-
blesDB [32] proposes a novel data structure called Frag-
mented Log-Structured Merge-Trees (FLSM), which follows
the LSM-tree structure, but relaxes the fully sorted constraint
in each level. Thus, compaction just needs to append data
to multiple fragments in the next level, and there is no need
to merge with the SSTables in the next level. Therefore,
PebblesDB can greatly reduce the write amplification. How-
ever, sacrificing the sorted nature of KV pairs in each level,
PebblesDB inevitably degrades the read performance.

On the other hand, LSM-tree based KV stores also suffer
from severe read amplification [27, 31, 39]. This is because
when lookup a KV pair, KV store needs to check multiple
SSTables from the lowest level to the highest level until the
key is found or all levels have been checked. Furthermore, it
is required to read multiple metadata blocks to really check
whether a KV pair exists in one SSTable. Thus, read am-
plification can reach a factor of over 300× [27]. To reduce
extra I/Os induced by checking multiple SSTables, modern
designs use Bloom filters in KV stores [35] to quickly check
the existence of a KV pair in an individual SSTable. However,
Bloom filters suffer from false positive, so they may return
a positive result even when a KV pair does not exist in the
SSTable, and this incurs unnecessary I/Os. We also conduct
experiments to measure the impact of false positive by us-
ing Bloom filters with four bits-per-key in a 100GB KV
store. Other parameter settings and system configurations are
presented in §4.1. Results show that a key lookup incurs 7.6
inspections to SSTables on average, but 1.3 disk accesses are
needless and induced by false positive.

Allocating more bits for each key can reduce the false
positive rate, but the volume of all Bloom filters also increases,
e.g., a 10TB KV store with 100B KV pairs requires 128GB
Bloom filters under 10 bits-per-key setting. If the volume
of Bloom filters exceeds the memory capacity, some filters
will be swapped out to secondary storage, which induces extra
I/Os and increases the read amplification.

It is a consensus that data access is usually skewed in real

USENIX Association 2019 USENIX Annual Technical Conference 739

applications [4, 9]. Some KV pairs are hot and frequently
accessed, while most KV pairs are seldom accessed. Thus, if
we allocate more bits to the Bloom filters for hot KV pairs,
then we can reduce the overall false positive rate in the whole
process of running an application, while still limit the vol-
ume of all Bloom filters. However, it is not an easy task to
dynamically adjust the setting of Bloom filters in KV stores
due to the following reasons, which are revealed by our ex-
periments. First, different levels exhibit significantly different
access unevenness. Even though KV pairs in a lower level
are usually more frequently accessed, there are still a con-
siderable proportion of SSTables in a higher level that are
evidently hotter than SSTables in a lower level. Second, even
for KV pairs within the same SSTable, the access unevenness
is also serious. Last but not least, the hotness of KV pairs
dynamically changes during the running time of applications.
Monkey [10] proposes a heterogeneous scheme which allo-
cates more bits to Bloom filters in lower levels, but it uses
the same setting for all filters in the same level and fails to
dynamically adjust the setting according to data hotness.

In this paper, we propose ElasticBF, a fine-grained and
elastic Bloom filter management scheme. Its basic idea is
assigning multiple small-sized Bloom filters to each small
group of KV pairs when building SSTables, and these Bloom
filters reside in secondary storage and are dynamically loaded
into memory to activate according to the hotness of KV pairs.
However, to realize dynamical allocation of Bloom filters, the
following key issues must be addressed: (1) How to accu-
rately measure and record the hotness of KV pairs with low
storage and CPU overheads? (2) How to dynamically change
the ability of Bloom filters based on hotness with low memory
and computation overheads? (3) How to efficiently inherit the
hotness of SSTables with low metadata overhead when SSTa-
bles are reorganized during compaction? ElasticBF carefully
addresses the above issues by developing multiple techniques
to limit its overhead, including fine-grained allocation, hot-
ness inheritance and in-memory management optimization.

We emphasize that ElasticBF is orthogonal to existing
works focusing on the optimization of KV store structures, so
it can be combined with these designs to further accelerate
the lookup of KV pairs. To demonstrate its efficiency, we
carefully build ElasticBF atop three commonly used or state-
of-the-art KV stores, LevelDB, RocksDB and PebblesDB.
Experiments show that for all of the above KV stores,
ElasticBF increases the read throughput to 2.34×, 2.35×,
and 2.58×, respectively, while keeps almost the same write
performance. Also, for workloads with mixed reads and
writes, ElasticBF reduces read latency by 38.9% - 51.8%
without affecting writes. Compared with Monkey, which is
the state-of-the-art heterogeneous Bloom filter management
scheme, ElasticBF achieves up to 2.20× throughput. In
summary, our contributions are as follows.

• Fine-grained allocation. We find that the hotness of
KV pairs varies significantly in different ranges within

the same SSTable. So we divide each SSTable into
different segments, measure and record their hotness
with acceptable storage and CPU overheads, so as to
receive relatively accurate hotness estimation and enable
fine-grained Bloom filter allocation.

• Hotness inheritance. We design an effective scheme to
estimate the access frequencies of new SSTables during
compaction by inheriting from the outdated SSTables.
So ElasticBF can preserve the hotness during the whole
execution process of applications, and avoids frequent
cold start of hotness due to compaction and consistently
improves read performance.

• In-memory management optimization. We propose a
Multi-Queue to manage the in-memory Bloom filters,
and use parallel I/Os to accelerate the adjustment. Thus,
we can dynamically adjust the Bloom filters in memory
according to the hotness of KV pairs with negligible
CPU overhead.

The rest of this paper is as follows. §2 introduces LSM-
tree based KV stores and shows our observations on access
skewness to motivate this work. §3 presents the design details
of ElasticBF and §4 evaluates its performance. Finally, §5
reviews related work and §6 concludes this paper.

2 Background & Motivation
In this section, we first briefly introduce LSM-tree, then ana-
lyze the read amplification in LSM-tree based KV stores, and
finally present our observations about data access locality in
KV stores to motivate this work.

2.1 Log-Structured Merge Trees
Figure 1 illustrates the structure of an LSM-tree based KV
store, which mainly consists of two components. One is
in memory, which includes a MemTable and an Immutable
MemTable. The other is in secondary storage, which is divided
into multiple levels, say L0, L1, · · ·, Lk, where k depends on
the KV store size. Besides, the size limit of level Li is usually
m times of that of level Li−1 for 1 ≤ i ≤ k, e.g., m = 10 in
LevelDB by default.

Now we illustrate how data is stored. Specifically, KV
pairs are first written to the MemTable which works as a
cache. When MemTable is filled up, it will be converted to
an Immutable Memtable, which can not be written any more.

Figure 1: Structure of LSM-tree based KV store.

740 2019 USENIX Annual Technical Conference USENIX Association

Later, Immutable Memtable will be packed into an SSTable
and appended into L0 in the secondary storage. Note that keys
in each SSTable are sorted, but they are not sorted between
SSTables in L0 so as to make the writes to disk fast. Thus,
this write policy degrades read performance, so the size of
L0 is usually limited, e.g., it is limited as 12 SSTables in
LevelDB. To balance read and write performance, SSTables
are organized into a multi-level tree, and if one level (say
Li−1) is filled up, its SSTables will be merged into its higher
level (say Li) by compaction, which merges all KV pairs in
Li−1 into Li, so data are sorted in every level except for L0.

To find a key in the secondary storage, we need to search
it level by level from L0 to Lk. Note that we should check
all SSTables in L0 because they are not sorted, while we only
need to check one SSTable in each of the other levels until
we find the key or all levels are checked. Thus, we usually
need to read multiple SSTables to find a key, which induces
read amplification, and Bloom filters are commonly used to
reduce the read amplification. As a result, besides KV pairs,
each SSTable also includes Bloom filters and other metadata
(see Figure 1). For performance consideration, the Bloom
filters are usually required to be also buffered in memory.

However, Bloom filters suffer from false positive because
of hash collision, and thus incur extra I/Os to read out data
from SSTables for key comparison. The false positive rate of
a Bloom filter is (1− e−k/b)k, where b is the number of bits
allocated to each key, i.e., bits-per-key, and k means the
number of hash functions [24]. Since (1 − e−k/b)k is min-
imized when k = ln2 · b, false positive rate can be simply
represented as 0.6185b. Thus, the value of b directly deter-
mines the memory usage of a Bloom filter. We can reduce
the false positive rate by allocating more bits-per-key for
Bloom filters, but allocating more bits to each keys will in-
crease the volume of all Bloom filters and thus consumes
more memory. Even worse, if the volume of all Bloom fil-
ters exceeds the memory capacity, some Bloom filters will be
swapped out to secondary storage, and this will induce extra
I/Os and further aggravate read amplification.

2.2 Motivation
Uneven accesses are still very common in KV stores [9, 22],
where only a small proportion of the KV pairs are frequently
accessed, while the majority of the KV pairs are seldom
accessed. Therefore, if we allocate more bits to the Bloom
filters for hot KV pairs and fewer bits for cold ones, then the
overall positive false rate during the whole execution process
of applications will be reduced. Clearly, we will face to a
series of challenges to realize such heterogeneous Bloom
filters and enable dynamic adjustment. In this subsection, we
present our observations on the access skewness of KV stores
to motivate this work. The detailed design of ElasticBF will
be presented in §3.

We run experiments with RocksDB to validate the access
unevenness in KV stores. We use YCSB [9] to load a 256GB

1x107

1x106

100000

10000

 1000

 100

 10

A
cc

e
ss

 F
r e

q u
e
n
ci

e
s

uniform

1x107

1x106

100000

10000

 1000

 100

 10
 1 10 1000 100

SSTable ID

zipf 1.2

Figure 2: File access frequencies under different workloads.

database in the experiments, where the size of each SSTable is
set as 64MB, which is the default configuration, and the size
of each key value pair is 1KB. Note that the maximum size of
L1 is configured as 256MB in RocksDB, and the size of Li is
10 times of that in Li−1 (i ≥ 2), therefore 5 levels are enough
to keep 256GB data. We then generate two representative
workloads with uniform and Zipfian distributions, and each
workload contains ten million Get requests. Note that there
are about 4400 SSTables in the tested KV store, so issuing
ten million Get requests is enough to study the access pattern.
To make the evaluation of the hotness of SSTables and the
hotness of different regions in the same SSTable accurate, we
disable the Bloom filters in these experiments. That is, we
search the keys level by level, and at each level, we compare
the target key with the key ranges of SSTables. If the key falls
into the range of an SSTable, we will read the data out and
check whether the key exists or not until the key is found or
all levels are checked.

We first show the file-level access characteristics, and Fig-
ure 2 shows the access frequency of each SSTable. The x-axis
represents the identities of SSTables which are numbered se-
quentially from the lowest level to the highest level, and the
y-axis shows the number of accesses to each SSTable. From
the results, we can have two observations. First, on average,
the access frequencies of SSTables in lower levels are higher
than those in higher levels. This is because lookup always
flows from lower levels to higher levels. Second, if we zoom
in one particular level, we can find that the access frequencies
vary very significantly from SSTables, i.e., some SSTables
are much hotter than others within each level. Besides, when
we compare the access frequencies of SSTables in adjacent
two levels, we can find that it is very common to have some
SSTables in level Li+1 which are even hotter than some SSTa-
bles in level Li, especially for the skewed workload with Zipf
distribution. That is, SSTables in higher levels may also be
hotter than those in lower levels. For example, 21% of SSTa-
bles in L4 is even hotter than 11% of SSTables in L3. More
importantly, since more than 98% SSTables are stored in
the highest two levels, i.e., L3 and L4 in this example, we
can conclude that the hotness of most SSTables can not be

USENIX Association 2019 USENIX Annual Technical Conference 741

 0
10
20
30
40
50
60
70
80

 1 10 100 1000

R
a
ti
o
:

(m
a
x
-m

in
)/

a
v
g

SSTable ID

zipf 1.2

Figure 3: The ratio of the difference between the maximum and the
minimum access frequencies of different regions to their average
access frequency within each file.

accurately characterized according to which level they are
placed. This observation implies that Monkey’s level-based
coarse-grained heterogeneous Bloom filters can not take full
advantage of the access skewness, and finer-grained Bloom
filter design is necessary.

Since the size of an SSTable may still be configured to be
large to leverage sequential I/O bandwidth, e.g., RocksDB
uses 64MB or even larger SSTables, the access skewness
may still be serious within each SSTable. Note that it will
bring very large memory and CPU overheads to record the
hotness of each KV pair, so we divide each 64MB SSTable
into 64 regions, each of which has 1MB, and record the access
frequencies of different regions in each SSTable. Figure 3
shows the ratio of the difference between the maximum and
the minimum access frequencies of all regions in the same
SSTable to their average access frequency. We can see the
ratio value is very large for many SSTabes, e.g., greater than
10 for 73% SSTables. So the access unevenness is very serious
even within the same SSTable.

In summary, access skewness is very serious among dif-
ferent SSTables, and even among different regions within
the same SSTable. This offers an opportunity to develop
finer-grained heterogeneous Bloom filters by allocating more
bits-per-key for hot SSTables or regions so as to reduce
the overall false positive rate without increasing the volume
and memory overhead of Bloom filters.

3 Design
The main idea of ElasticBF is to construct multiple Bloom
filters for each SSTable, but allocate less bits-per-key to
each filter. Note that the Bloom filters in SSTables are stored
in secondary storage, and they are just reserved for future use.
That is, Bloom filters become active only after being loaded
into memory, which is a dynamical process according to the
hotness of SSTables. If an SSTable becomes hot, we will
load more of its Bloom filters into memory, and we may also
disable some of its Bloom filters in memory when it becomes
cold. Thus, we can dynamically adjust Bloom filters while
avoiding heavy I/O and CPU overheads for computing the
hash functions when we change Bloom filters according to
the hotness of SSTables. Thanks to the dynamic allocation
and adjustment of Bloom filters, we can reduce the overall
false positive rate, while keeping the same memory usage.

Figure 4: The architecture of ElasticBF.

3.1 Overview
Figure 4 depicts the architecture of ElasticBF, which mainly
contains three components, fine-grained Bloom filter alloca-
tion, hotness identification and inheritance, and Bloom filter
management in memory. For the design of fine-grained Bloom
filter allocation, we mainly face to the problems of how many
Bloom filters should be allocated to each SSTable and how
many bits should be assigned to each filter so as to achieve
low false positive rate and low memory usage. We also need
to carefully design the data structure and management scheme
with low I/O overhead. For hotness identification, our goal
is to achieve relatively accurate estimation of hotness with
low overhead. Finally, hotness inheritance is designed to
avoid cold start of hotness identification after compaction,
and Bloom filter management in memory is to efficiently
adjust Bloom filters according to hotness.

Remarks: ElasticBF realizes an elastic Bloom filter man-
agement scheme with little extra memory usage and small
CPU and I/O overheads. It is orthogonal to existing works
focusing on optimizing the structure of KV stores and can
be integrated to accelerate their read performance. Besides,
ElasticBF may also be applied in other scenarios to improve
object lookups, and the management technique for hot/cold
adaption is applicable to other summary data structures.

3.2 Fine-grained Bloom Filter Allocation
The read performance of KV stores can be improved by
reducing the I/Os caused due to false positive of Bloom filters.
In the following, we first analyze the expected false positive
rate by dynamically activating Bloom filters according to
hotness, then we describe how to construct multiple Bloom
filters for SSTables to realize fine-grained allocation.

Construction of multiple Bloom filters. ElasticBF gener-
ates multiple Bloom filters for each SSTable by using different
and independent hash functions. Each filter is allocated with
less bits-per-key, and we call it a filter unit. All filter
units assigned to an SSTable are named as a filter group, as
shown in Figure 5. Since the multiple filters within a filter
group are independent, a key is certainly not in an SSTable
as long as one filter unit returns a negative answer. That is, if
multiple filter units are enabled, then only when all enabled

742 2019 USENIX Annual Technical Conference USENIX Association

1 0 0 0 0 0 � 0 0 1

0 1 0 0 0 0 � 1 0 0

0 0 1 0 0 0 � 1 0 0

Figure 5: Construction of multiple Bloom filters.

filter units indicate the existence of a key, we need to read out
the SSTable to search the key.

As pointed out in [24], the false positive rate of a filter
group is equivalent to a single Bloom filter which has the
same bits-per-key to all filter units within the filter group.
We call this feature separability, which can be further justified
as follows. Assume that a filter group consists of n filter units,
each of which is a b/n bits-per-key filter, then the false
positive rate of each filter unit is 0.6185b/n. Since the filter
units in a group are generated by different independent hash
functions, the false positive rate of n filter units in a group is
(0.6185b/n)n = 0.6185b, which is exactly the same with that
of a single Bloom filter with b bits-per-key.

Based on the separability feature, we should determine
b and n to optimize the setting of multiple Bloom filters.
As we should enable all the filter units in a group for the
hottest SSTables such that the false positive rate 0.6185b

closes to zero, in our configuration, we set b = 24 with
a false positive rate of about 0.001%. On the other hand,
n indicates the maximum number of hotness categories
to distinguish different SSTables. Increasing n will more
accurately differentiate the hotness of SSTables, but it needs
more I/Os to load filter units to achieve low false positive
rate. Thus, we set n = 6, i.e., a filter group has 6 filter units,
each is allocated with 4 bits-per-key. We will analyze
the impact of bits-per-key of each filter unit on the read
performance in §4. Notice that ElasticBF allocates multiple
filter units to SSTables, which induces extra storage usage.
Assuming that the size of KV pairs is 1KB, thus one group
of filter units cost about 192KB storage, which is only 0.3%
of a 64MB SSTable, and the filters are stored in secondary
storage, so the storage overhead of ElasticBF is negligible.

Benefit analysis. Now we analyze the benefit of using
multiple Bloom filters. Suppose that there are N SSTables,
s1, s2, ..., sN , in a KV store, and we use static setting to set
b bits-per-key for all SSTables, i.e., the memory usage
to reside Bloom filters is b bits for each key. Suppose that
a workload needs to access SSTable si with pi times, then
the expected number of times to really read out data from all
SSTables due to false positive with static setting is

Rstatic =
∑N

i=1
pi · 0.6185b. (1)

In a contrary, if we dynamically set multiple Bloom filters
with the same memory usage as the static setting, and suppose

uniform zipf 0.90 zipf 0.99 zipf 1.10 zipf 1.20N
u
m

b
e
r

o
f
I/
O

s
 (

×
1
M

)

0

5

10
static dynamic

Figure 6: Number of I/Os caused due to false positive.

we load n′i filter units for SSTable si according to its hotness,
each allocates b′ bits-per-key, then under the assumption
of the same memory usage with static setting, the expected
number of times to read out data from SSTables is

Rdynamic =
∑N

i=1
pi ·
(
0.6185b

′
)n′

i

, (2)

subject to
∑N

i=1
n′i × b′ ≤ Nb,

where the inequality
∑N

i=1 n
′
i× b′ ≤ Nb represents the same

memory usage constraint.
To better understand why dynamical allocation can reduce

I/Os, i.e., Rdynamic < Rstatic, we count the number of
I/Os due to false positive by conducting experiments on
RocksDB. We set the average bits-per-key as 4 for both
Bloom filter allocation schemes. For the dynamical allocation
scheme, we generate 6 filter units for each SSTable and still
use 4 bits-per-key for each filter unit. We first issue ten
million Get requests on a 100GB database using static setting
of Bloom filters, half of the Get operations request non-
existent items, and we count the real number of I/Os issued
due to false positive as Rstatic. Then we classify SSTables
into 7 categories (C0, C1, ..., C6) according to their access
frequencies, and initially load i filter units for SSTables in
Ci in the dynamical allocation. We use this configuration
to replay the ten million Get requests and count Rdynamic.
Figure 6 shows the results under different workloads, we find
that with the same memory usage, dynamic setting of Bloom
filters reduces the number of I/Os caused due to false positive
under different workloads by 55.9% - 89.7% compared to
static setting, and the reduction becomes larger for more
skewed workloads. Note that in practical systems, Bloom
filters may be configured with larger bits-per-key so as to
achieve very low false positive rate, dynamical allocation still
has its benefit, e.g., it can use much less memory to achieve
similar false positive rate.

Finer-grained design with chunking. As mentioned in
Section 2.2, access unevenness is still serious within an
SSTable. So we may further reduce the false positive rate by
differentiating the hotness of keys within the same SSTable.
However, this will bring too large extra overheads of memory
usage and CPU for recording the hotness of individual keys.
To balance the accuracy of measuring hotness and the extra

USENIX Association 2019 USENIX Annual Technical Conference 743

Figure 7: Segments in one SSTable.

overheads to KV stores, we further divide each SSTable into
multiple regions called segments and record the hotness at the
granularity of the segment. Each segment is then allocated
a group of filter units, as shown in Figure 7. From §2.2,
we know the hotness of different segments still significantly
varies, so we are still expected to reduce the false positive
rate by differentiating the hotness of segments.

The challenging issue is to optimize the size of segments,
as large segment can not accurately reflect the hotness of
different KV pairs in an SSTable and small segment will
bring large overhead to KV stores. Our rule to configure the
size of segment is to make the size of each Bloom filter be
close to the device block size, e.g., 4KB, so as to reduce the
I/O overhead when loading Bloom filters. We will analyze
the impact of segment size on the read performance in §4.

Finally, since we only need several bytes to record the
hotness for each segment, the memory overhead is smaller
than 1% of the Bloom filter size. For storage overhead, if the
KV pair size is 1KB and ElasticBF uses 4 bits-per-key

for each filter unit, then one filter unit only costs around 2KB
storage space, which is only 0.05% of a 4MB segment.
Remarks: All Bloom filters allocated to an SSTable are
stored in its metadata area and kept in secondary storage.
Upon reading an SSTable, the default number of Bloom filters
are also loaded into memory, so loading Bloom filters at
initialization does not induce extra I/Os.

3.3 Hotness Identification and Inheritance

Hotness identification. The hotness of a segment is deter-
mined by its access frequency and the time duration since
its last access. Specifically, we propose an expiring policy
to differentiate hot/cold segments. We maintain a global
variable named currentTime, which is defined as the total
number of Get requests issued to the whole KV store so
far, and we also associate a variable named expiredTime

with each segment to denote the time point at which
the segment will be “expired”. Precisely, expiredTime

is defined as lastAccessedTime + lifeTime, where
lastAccessedTime denotes the time of the most recent
access to the segment and lifeTime is a fixed constant.
Note that the “time” concept here means logical time
which is actually represented by the number of accesses.
Each time when a segment is accessed, we increase the
currentTime by one and update the expiredTime of this

Figure 8: Hotness inheritance after compaction.

segment by setting lastAccessedTime as the updated value
of the currentTime. We define a segment as “expired” if
currentTime already becomes larger than expiredTime.
The physical meaning of the above policy is that if a segment
is not accessed during a fixed number of Get requests which
is defined by lifeTime, then it is expired and considered as
cold. Note that the time complexity to update the hotness
metadata of a segment is only O(1). Besides, the memory
overhead is also small, e.g., for a 100GB KV store, there are
around 25K segments whose size is 4MB, assume that 4 bytes
are used to record the expireTime of each segment, then the
total memory overhead is only around 100KB.

Hotness inheritance after compaction. Compaction will
trigger merge sort between SSTables to generate new SSTa-
bles. So the segments in new SSTables are also newly
generated and their hotness should be changed. If we set
the hotness of new segments as 0, then ElasticBF will face to
cold start of hotness and this may degrade the performance
of future read from the new segments. To inherit the
hotness, ideally, we can accurately estimate the hotness of
new segments based on the hotness of all keys within it, but
this will bring into KV stores too large overhead.

Instead, ElasticBF uses the hotness of old segments to
estimate the hotness of new segments. Specifically, as
illustrated in Figure 8, when a new segment is generated,
we first find out the old segments which are involved in
the procedure of generating the new segment and also have
overlapped key ranges, then we estimate the hotness value of
the new segment by simply using the mean of the hotness of
all old segments. At last, we enable some filter units for the
new segment accordingly. Experiments in §4 show that this
simple scheme is efficient to improve the read performance
for workloads with mixed reads and writes in KV stores.

3.4 Bloom Filter Management in Memory

Now the final issue is to determine how many filter units
should be enabled for each segment. Although we can
address this issue by formulating an optimization problem to
minimize the overall false positive rate, but this will consume
lots of CPU resources. Besides, every access changes the
access frequency of some segment, so it needs to recompute
the optimal solution and incurs lots of I/Os to adjust the
optimal configuration. To address this issue, ElasticBF
develops a lightweight and efficient adjustment scheme.

744 2019 USENIX Annual Technical Conference USENIX Association

Bloom filter adjusting rule. We use a metric which is
defined as the expected number of I/Os caused by false
positive to guide the adjustment, and we denote this amount
of extra I/Os as E[Extra IO], which can be expressed as

E[Extra IO] =
∑M

i=1
fi × ri, (3)

where M means the total number of segments in the KV store,
fi denotes the access frequency of segment i, ri denotes the
false positive rate and it is determined by the number of filter
units loaded in memory for segment i. Here, the rule of thumb
is to adjust the number of filter units, and thus changes ri, so
as to make E[Extra IO] be decreased.

The procedure of adjusting Bloom filters is as follows.
Each time when a segment is accessed, we update its access
frequency and the E[Extra IO], then we check whether
E[Extra IO] could be decreased if we enable one more filter
unit for this segment and disable one unit for other segment to
guarantee the same memory usage. If the E[Extra IO] could
be decreased, then we apply the adjustment, otherwise, we
do nothing. Note that in this adjusting procedure, one key
issue is to find out which filter unit should be disabled, and
we address this problem by maintaining an in-memory index
based on Multi-Queue, which will be described later.

Realizing dynamic adjustment with Multi-Queue. Recall
that the challenging issue in the adjust procedure is to decide
which filter unit should be disabled. We extend Multi-Queue
(MQ) [33,46] to address this problem. Specifically, ElasticBF
maintains multiple in-memory Least-Recently-Used (LRU)
queues to manage the metadata of each segment as shown
in Figure 9. We denote these queues as Q0,...,Qn, where
n is equal to the maximum number of filter units allocated
to each segment. Each element of a queue corresponds to
one segment, and it manages the filter units enabled for the
segment. Precisely, each element in queue Qi indicates that
i filter units are enabled for the corresponding segment, i.e.,
only these i filter units are used to check the existence of keys.
To keep the LRU feature of each queue, each time when a
segment is accessed, we move the corresponding element to
the MRU side within the same queue.

To find out which filter unit should be disabled and then
removed from memory, we use the hotness information
defined by the expiring policy described in §3.3. Specifically,
we search “expired” segments from Qn to Q1, and for
each queue, we search from the LRU side to the MRU
side, since an “expired” segment must be the least recently
used one. When we find an “expired” segment, and if the
E[Extra IO] can be decreased when we disable one filter
unit of this segment, we then downgrade it to the next
lower-level queue to release one filter unit. Note that the
access frequency of the “expired” segment does not change,
while the E[Extra IO] could be decreased because of the
change of false positive rates by adjusting the Bloom filters
in corresponding segments. If there is no “expired” segment,

MRULRU

…

…

…

…… … ……

…

Figure 9: The in-memory Multi-Queue in ElasticBF.

we skip the Bloom filter adjustment this time, this is a
conservative strategy to prevent us from degrading the lookup
efficiency of possible hot segments (which are not “expired”),
and combined with checking if E[Extra IO] (which is related
to the access frequency) can be decreased, the adjustment
overhead is limited as the adjustment frequency is limited,
we also analyze the adjusting overhead in §4. On the other
hand, we set lifeTime as the same order of magnitude as
the total number of segments. The rationale is that if there
is no “expired” segment, it means almost all the segments
have been accessed recently, so they may have similar hotness
during that time and we do not need to do the adjustment.

3.5 Implementation Issues
We implement ElasticBF on top of various commonly used
KV stores, including LevelDB, RocksDB and PebblesDB.
Here, we briefly describe the issues in the implementation.

ElasticBF keeps multiple filter units for each segment in
each SSTable, to make minimum changes to SSTables, each
filter unit is treated as a meta block in original SSTable
organization, and the offset information in the file are
recorded in meta index block. Besides, as generating multiple
Bloom filters may add latency to writes, ElasticBF leverages
multi-threading via threadpool to generate multiple filter units
simultaneously so as to further reduce the computation time.
On the other hand, ElasticBF maintains a background thread
to manage Multi-Queue, so loading filter units and fetching
data from secondary storage can be done in parallel, therefore
the device bandwidth can be efficiently exploited.

4 Evaluation
In this section, we evaluate ElasticBF to validate its efficiency.
We build ElasticBF atop LevelDB [21], RocksDB [16], and
PebblesDB [32], and compare the performance of these
systems with and without ElasticBF so as to study how
much improvement ElasticBF can achieve. We point out
that LevelDB is the classical LSM-tree based design, and
RocksDB further improves the performance of LevelDB with
multiple optimizations. Both of them are widely used as
baselines for performance comparison [27, 32]. Besides,
PebblesDB is developed based on the new and state-of-the-art
index called fragmented LSM-tree, so we also take it as a
baseline to demonstrate the effectiveness of ElasticBF. We

USENIX Association 2019 USENIX Annual Technical Conference 745

emphasize that since ElasticBF is orthogonal to the works
optimizing architecture of KV stores, it can also be integrated
to other KV stores to further speedup their read performance.
In the evaluation, we try to address the following questions.

• How much improvement does ElasticBF achieve to
speedup the read performance of KV stores? (§4.2)

• How is the performance of ElasticBF under the work-
loads of YCSB benchmark? (§4.3)

• What is the performance impact of dynamically allocat-
ing bits to Bloom filters in ElasticBF, as compared to
the static heterogeneous scheme in Monkey? (§4.4)

• What is the performance impact of different configura-
tions on ElasticBF? (§4.5)

4.1 Experiment Setup
We run experiments on a Dell PowerEdge R730 with an 12-
cores Intel Xeon CPU E5-2650 v4 with 2.20GHz processor,
64GB RAM, and Ubuntu 16.04 OS with Linux 4.15 kernel.
The testbed is equipped with one 500GB SSD and one 1TB
7200RPM HDD. By default, we run experiments on the SSD.
We build ElasticBF on top of LevelDB (v1.20), RocksDB
(v5.14) and PebblesDB. As RocksDB and PebblesDB use
64MB or larger SSTables as their default configuration, we
also set the SSTable size by modifying max file size to 64MB
in LevelDB. To make a fair comparison, only the management
strategy of Bloom filters was changed accordingly, while the
memory usage is limited as the same and other parameters
are also set as the same with the default values.

In the experiment, we use the benchmark YCSB-C [31,34],
which is the C++ version of YCSB [9] with low overhead.
Unless specifically mentioned, we use the following default
configuration. We set the size of each KV pair as 1KB, and
load a 100GB database with randomly generated distinct
keys. For the benchmarked workload, we generate 10M
Get operations by following the Zipf distribution with a
Zipfian constant 0.99 by default. Note that there is no
warm up phase, i.e., we immediately issue the benchmarked
workload to the randomly loaded database. We also point
out that the performance is already stable after issuing 10M
operations. By default, we assume that half of the Get
operations request non-existent items (i.e., zero lookup),
mainly because lookups of non-existent KV pairs are very
common in practical systems [6, 23, 35, 38]. As many KV
stores provide their own cache mechanisms, thus we enable
direct I/O [19] to better manage memory. For the default
setting, we disable the block cache [17] to minimize the
influence of cache. This represents the scenario in which a KV
store runs within a memory-constrained environment [11,25],
we also show the performance impact of block cache size
in §4.5. For ElasticBF, the segment size of each SSTable
is set as 4MB, and the lifeTime is set as 10K as there are
around 30K segments in total. The average Bloom filter space

for each key (i.e., bits-per-key) is set as four bits, this
is because allocating a large number of bits for each key is
not cost-efficient and it may be impractical in very large KV
stores. Cassandra [2] also uses a similar setting of about 5
bits-per-key by configuring the Bloom filter to have the
false positive rate of 0.1 in its LeveledCompactionStrategy.
We also study the impact of different system configurations
on the performance of ElasticBF in §4.5.

4.2 Micro-benchmarks
We first evaluate the performance of ElasticBF with micro-
benchmarks. To evaluate the read performance, we consider
both read-only workload and mixed workloads with different
read/write ratios so as to validate the effectiveness of the
hotness inheritance technique in ElasticBF. Finally, we also
show the performance impact on writes and range queries.
Read-only workload. We use one thread to run the YCSB
benchmark to perform 10M Get requests. Figure 10(a)-(c)
show the results of read throughput, average read latency, and
total number of I/Os. We can see that ElasticBF improves
the read performance of different KV stores. Specifically,
the read throughput with ElasticBF is increased to 2.08×,
2.15× and 2.17× compared to the results without ElasticBF
under LevelDB, RocksDB and PebblesDB, respectively. For
average read latency, ElasticBF can reduce the latency of
LevelDB, RocksDB and PebblesDB by 51.9%, 54.0% and
55.8%, respectively. The improvement of ElasticBF is mainly
because the reduction of extra I/Os caused by false positive of
Bloom filters. To validate this, we also count the total number
of I/Os generated to serve the Get requests, and the results
are shown in Figure 10(c). We can see ElasticBF reduces the
number of I/Os issued under different KV stores by 59.1% -
63.8%. As a result, ElasticBF can further improve the read
performance of KV stores. To validate the effectiveness of
the expiring policy and the adjusting rule, we count the total
number of I/Os issued by loading filter units, it is only about
1% of the total number of I/Os generated to serve the Get
requests, thus the adjusting overhead is small.

We further study the concurrent read performance of
ElasticBF by using 16 threads to run the YCSB benchmark,
and each thread performs 1M Get requests. Since we observe
similar results for throughput, latency and total number of
I/Os, we only show the throughput results in Figure 10(d) for
the interest of space. In particular, ElasticBF increases the
read throughput to 2.34× - 2.58× in these KV stores. Note
that the improvement is slightly larger than that in single-
threaded scenario, this is because multi-threaded reads can
better utilize the I/O bandwidth.
Mixed workloads. Now we show the performance of
ElasticBF under mixed workloads with different read/write
ratios. The goal of this experiment is to validate that ElasticBF
can still achieve a consistent improvement for reads due
to the hotness inheritance design, even though compaction
continuously generates new SSTables.

746 2019 USENIX Annual Technical Conference USENIX Association

LevelDB RocksDB PebblesDB

K
O

P
S

0

5

10 w/o ElasticBF with ElasticBF

(a) Throughput

LevelDB RocksDB PebblesDB

L
a

te
n

c
y
 (

u
s
)

0

100

200

300

400 w/o ElasticBF with ElasticBF

(b) Latency

LevelDB RocksDB PebblesDBN
u

m
b

e
r

o
f

I/
O

s
 (

×
1

M
)

0

5

10

15

20

25
w/o ElasticBF with ElasticBF

(c) Total number of I/Os

LevelDB RocksDB PebblesDB

K
O

P
S

0

20

40

60 w/o ElasticBF with ElasticBF

(d) Multi-threaded throughput

Figure 10: Read performance of KV stores with and without ElasticBF under read-only workload.

LevelDB RocksDB PebblesDB

R
e
a
d
 L

a
te

n
c
y
 (

u
s
)

0

500

1000

w/o ElasticBF with ElasticBF

(a) Read latency (50% reads)

LevelDB RocksDB PebblesDBN
u

m
b

e
r

o
f

I/
O

s
 (

×
1

M
)

0

5

10

15
w/o ElasticBF with ElasticBF

(b) Number of I/Os (50% reads)

LevelDB RocksDB PebblesDB

R
e

a
d

 L
a

te
n

c
y
 (

u
s
)

0

200

400

600
w/o ElasticBF with ElasticBF

(c) Read latency (90% reads)

LevelDB RocksDB PebblesDB

N
u
m

b
e
r

o
f
I/
O

s
 (

×
1
M

)

0

5

10

15

20
w/o ElasticBF with ElasticBF

(d) Number of I/Os (90% reads)

Figure 11: Read performance of KV stores with and without ElasticBF under mixed workloads.

Figure 11 (a)-(b) show the results under the workload
with 50% reads and 50% writes, and Figure 11 (c)-(d) show
the results under the workload with 90% reads and 10%
writes. Note that the total number of requests in the workload
is 10M. We can see that ElasticBF can help reduce the
read latency by 48.2%, 28.4%, and 54.8% for LevelDB,
RocksDB and PebblesDB, respectively, under the workload
with 50% reads, and the corresponding reduction ratios are
51.8%, 38.9% and 48.8% under the workload with 90%
reads. We also count the total number of I/Os issued by Get
operations. Specifically, ElasticBF reduces 66.8% (61.1%),
49.1% (46.7%), and 73.3% (60.7%), for LevelDB, RocksDB
and PebblesDB, respectively, for workloads with 50% (90%)
reads. Note that the reduction of read latency is smaller than
that under read-only workload, the reason is that different
KV stores use different compaction strategies, e.g., RocksDB
enables multiple threads to do compaction and PebblesDB
reduces compaction I/Os by avoiding rewriting SSTables to
the same level, so the background compaction I/Os that are
competed with the foreground Get I/Os are varied from KV
stores. Note that the write performance does not decrease,
and we will evaluate the write performance later.

Write and range query performance. Now we study the
impact on write and range query performance. For different
KV stores, we first randomly load a 100GB database and then
issue 10M scan requests. We compare the time of loading
the database and performing scan requests to evaluate the
write and range query performance, and the results are shown
in Figure 12. We can see that both the write and range query
performance keep almost the same (the difference is less than
1%) even when ElasticBF is integrated in KV stores. The
main reason is that Bloom filters are organized into blocks in
SSTables, and ElasticBF also uses multi-threading to speedup
the generation of Bloom filters. For range query, since it needs
to fetch all blocks overlapped with the given range, Bloom
filters are not involved in this procedure. Thus, ElasticBF has
negligible impact on write and range query performance.

LevelDB RocksDB PebblesDBL
o
a
d
 T

im
e
 (

×
1
0
0
0
s
)

0

5

10

15
w/o ElasticBF with ElasticBF

(a) Time to load the KV store

LevelDB RocksDB PebblesDB

K
O

P
S

0

0.1

0.2

0.3

0.4
w/o ElasticBF with ElasticBF

(b) Throughput of range query

Figure 12: Put and Scan performance.

4.3 YCSB Benchmarks

Now we evaluate the performance of ElasticBF with YCSB
benchmarks, which provide a set of six workloads with differ-
ent combinations of KV operations. Specifically, Workload
A consists of 50% reads and 50% updates, Workload B
consists of 95% reads and 5% updates, Workload C consists
of 100% reads, Workload D consists of 95% reads and 5%
inserts, Workload E consists of 95% scans and 5% inserts,
and Workload F consists of 50% reads and 50% read-modify-
writes. Note that Workload D uses the Latest distribution [9],
while others follow Zipfian distribution. Each of the six
workloads consists of 10M operations, which are issued on a
100GB database, and other settings are the same as before.

We first compare the performance of LevelDB, RocksDB
and PebblesDB with and without ElasticBF. Figure 13(a),
13(b) and 13(c) show the throughput results. We can see that
ElasticBF improves the performance for all workloads except
for Workload E (95% scans), this is because Workload E is a
scan-dominated workload, and ElasticBF does not affect the
performance of write and scan. In particular, for read-only
Workload C, ElasticBF achieves 1.99× - 2.11× throughput in
different KV stores due to the optimized Bloom filter design.
For Workload A (50% reads) and Workload B (95% reads),
ElasticBF improves the throughput by 7.4% - 36.8% and
52.6% - 71.5% for different KV stores, respectively. The
reason why the improvement under Workload A and B is
smaller than that under Workload C is because the request
keys are Zipfian distributed, and the updates make most of

USENIX Association 2019 USENIX Annual Technical Conference 747

A B C D E F

K
O

P
S

0

20

40
w/o ElasticBF with ElasticBF

(a) LevelDB

A B C D E F

K
O

P
S

0

10

20

30 w/o ElasticBF with ElasticBF

(b) RocksDB

A B C D E F

K
O

P
S

0

20

40
w/o ElasticBF with ElasticBF

(c) PebblesDB

A B C D E F

K
O

P
S

0

5

10 w/o ElasticBF with ElasticBF

(d) MongoDB

Figure 13: Performance comparison of different KV stores with and w/o ElasticBF under YCSB benchmarks.

zipf 0.99 zipf 1.10 zipf 1.20

K
O

P
S

0

10

20

30
Monkey ElasticBF

(a) Thpt. under 100GB database

zipf 0.99 zipf 1.10 zipf 1.20N
u

m
b

e
r

o
f

I/
O

s
 (

×
1

M
)

0

1

2

3

4
Monkey ElasticBF

(b) Total number of I/Os

0% 25% 50% 75% 100%

K
O

P
S

0

5

10

15 Monkey ElasticBF

(c) Impact of zero lookup ratio

zipf 0.99 zipf 1.10 zipf 1.20

K
O

P
S

0

10

20

30
Monkey ElasticBF

(d) Thpt. under 400GB database

Figure 14: Performance compared with Monkey under micro-benchmarks.

the accessed keys issued by Get are stored in lower levels,
and thus leads to a smaller number of SSTables that need to
be checked during read than that in read-only Workload C,
so ElasticBF has a smaller improvement. The above reason
also leads to the results under Workload F which has 50%
reads and 50% read-modify-writes, and ElasticBF improves
the throughput by 7.8% - 46.6%. Finally, for Workload D,
ElasticBF increases the throughput by 47.9% - 93.0%.

We also study the performance impact of ElasticBF on
MongoDB [29], which is a popular open-source NoSQL
database using WiredTiger [41] and RocksDB as its stor-
age engine. Since WiredTiger is not based on LSM-tree,
we choose RocksDB as the storage engine, and evaluate
the performance improvement when integrate ElasticBF in
MongoDB. The client of YCSB benchmark is running on
the same machine with the MongoDB server. Figure 13(d)
shows the results. We find that the improvements are only
about 11% - 15% except for the scan-dominated Workload
E. This is because the YCSB workloads issue only one
read/update/insert per request, while MongoDB adds a lot
of latency in the critical path of read operations, e.g., the
query planner, and thus the latency induced by RocksDB
accounts for only about 20% of the total latency. As a result,
optimization in the KV storage layer does not result in a large
improvement, and this is also observed in PebblesDB [32].
However, we point out that MongoDB may issue batch reads
to hide extra latency in real-world scenarios, and in this case,
ElasticBF must bring in larger improvement.

4.4 Comparison with Monkey
Now we compare the performance of ElasticBF with Monkey
[10], both are built atop LevelDB. As Monkey mainly focuses
on zero lookups, which are very common in practice, e.g.,
the insert-if-not-exist queries, we also assume that all Get
operations request non-existent items in the experiments.

We first evaluate the performance of micro-benchmarks.
We conduct the evaluation by issuing 10M Get requests to
100GB KV stores. Figure 14(a) shows the results. We can

A B C D E F
K

O
P

S
0

20

40
Monkey ElasticBF

(a) Throughput with Zipf 0.99

A B C D E F

K
O

P
S

0

50

100 Monkey ElasticBF

(b) Throughput with Zipf 1.2

Figure 15: Compared with Monkey under YCSB benchmarks.

see that ElasticBF increases the throughput to 1.39× - 2.20×
across different workloads. In particular, the improvement
ratio increases if the workload is more skewed, and this
validates the efficiency of taking into account data locality.
However, the performance of Monkey is flat across workloads,
the reason is that each zero lookup will traverse all levels of
the LSM-tree regardless of the access skewness, thus the
number of I/Os caused by each Get request due to false
positive keeps almost the same under the static setting in
Monkey. To further justify, we also count the total number
of I/Os issued by Get operations. As shown in Figure 14(b),
ElasticBF reduces the number of I/Os by 36.9% - 80.9%
compared with Monkey. We then study the impact of zero
lookup ratio, and Figure 14(c) shows the result by fixing the
Zipfian constant as 0.99. ElasticBF improves the throughput
to 1.16× - 1.39×. In particular, as the number of I/Os to find
the relevant items accounts for a higher proportion when there
are fewer zero lookups, ElasticBF results in smaller benefits
in the case of lower zero lookup ratio. Finally, we also study
the performance impact on 400GB KV stores, as shown in
Figure 14(d), ElasticBF preserves similar improvement, e.g.,
it increases the throughput to 1.36× - 2.15×.

Next, we study the performance of ElasticBF under the
YCSB benchmarks with four threads, each workload of
YCSB issues 10M operations on a 100GB KV store. To
consider the impact of access skewness, we conduct two sets
of experiments by setting the Zipfian constant as 0.99 and 1.2,
respectively. Figure 15(a) and Figure 15(b) show the results.
We can see that ElasticBF outperforms Monkey for all read-
dominated workloads. In particular, for Workload C (100%

748 2019 USENIX Annual Technical Conference USENIX Association

LevelDB RocksDB PebblesDB

O
P

S

0

50

100

150

200 w/o ElasticBF with ElasticBF

(a) Performance under HDD

0% 25% 50% 75% 100%

K
O

P
S

0

5

10

15 w/o ElasticBF with ElasticBF

(b) Impact of zero lookup ratio

0MB 4MB 16MB 64MB

K
O

P
S

0

5

10

15
w/o ElasticBF with ElasticBF

(c) Impact of block cache size

1KB 512B 256B 128B

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(d) Impact of KV pair size

100GB 200GB 300GB 400GB

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(e) Impact of database size

256KB 1MB 4MB 16MB 64MB

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(f) Impact of segment size

10K 20K 30K 40K 50K

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(g) Impact of lifeTime

2bit 3bit 4bit 5bit 6bit

K
O

P
S

0

5

10
w/o ElasticBF with ElasticBF

(h) Impact of filter unit size

Figure 16: Read throughput under different system and parameter configurations.

reads) and Workload D (95% reads and 5% inserts), when
the Zipfian constant is 0.99, ElasticBF obtains 1.29× and
1.20× throughput, respectively, and the improvement ratios
increase to 1.99× and 1.89× when the workload becomes
more skewed. For other workloads, such as Workload A,
B and F, the improvement of ElasticBF is small, this is
because the updates in these workloads make most of the
keys requested by Get be at lower levels, and Monkey can
gain the benefits even with a level-based static scheme, and
thus the further improvement of ElasticBF is small.

ElasticBF performs better than Monkey mainly because
of the finer-grained hotness identification strategy, i.e., the
segment-level hotness identification and Bloom filter adjust-
ment. We will further evaluate the impact of the granularity of
hotness identification in details by varying the segment size in
the next subsection. Besides the performance improvement,
ElasticBF is also a more general Bloom filter management
scheme, e.g., it can be deployed in KV stores which use
complicated compaction strategies [15, 18], while in these
cases, the LSM-tree structure becomes hard to predict, so it is
hard for Monkey to find the optimal setting of Bloom filters,
and Monkey also fails to dynamically adjust the setting when
the structure of the LSM-tree changes.

4.5 Impact of Different Configurations

In this subsection, we study the performance impact of
different configurations on ElasticBF. We use one thread
to run YCSB benchmark, and issue 10M Get requests to
a 100GB database. Due to page limit, we only show the
performance improvement over LevelDB, and improvements
over RocksDB and PebblesDB are also similar.
Performance under HDD. Figure 16(a) shows the read
throughput under HDD. We can see that ElasticBF achieves
2.31× - 2.38× better throughput for LevelDB, RocksDB and
PebblesDB. Besides, we also note that the improvement ratio
is similar to that under SSD. That is, ElasticBF can improve
the read performance of KV stores for all the main-stream
storage devices, including both SSD and HDD.

Impact of zero lookup ratio. Figure 16(b) studies the impact
of different ratios of non-existent items. Specifically, the
x-axis represents the ratio of Get requests which access
non-existent keys, i.e., zero lookup. Specifically, ElasticBF
increases the read throughput to 1.65× - 3.08× when the zero
lookup ratio increases from 0% to 100%. Besides, we can
see that with the increasing of zero lookup ratio, ElasticBF
achieves larger improvement. This is because looking up non-
existent keys leads to the search of all levels in the KV store,
and so it needs to check more SSTables. Thus, optimizing
the Bloom filter can bring larger benefit to reduce the I/Os, so
ElasticBF can get a larger improvement from zero lookups.
Impact of block cache size. We study the impact of cache
size. As mentioned before, we enable direct I/O in the
experiments. Figure 16(c) shows the results with different
block cache sizes, note that the default block cache size is
8MB [17], and we set its size as 64MB which is slightly
larger than the amount of Bloom filters (50MB). We can see
that with a larger block cache, the read performance improves.
Besides, ElasticBF still improves the performance when cache
is enabled, e.g., it increases the throughput to 1.43× - 2.08×.
Impact of KV pair size and database size. Figure 16(d)
studies the impact of KV pair size. ElasticBF increases the
read throughput for different KV pair sizes, e.g., it increases
the throughput to 1.99× - 2.08× when we vary the KV pair
size from 1KB to 128B. Similarly, Figure 16(e) shows that
ElasticBF consistently increases the read throughput for large
databases, e.g., it increases the throughput to 2.00× - 2.08×
when we vary the database size from 100GB to 400GB.
Impact of segment size, lifeTime length and filter unit
size. Finally, we study the impact of configuration parameters
on the read performance of ElasticBF. First, we consider
the impact of segment size, and Figure 16(f) shows the read
throughput versus the segment size. Note that the SSTable
size is 64MB, if the segment size is also set as 64MB, then
it means that we measure hotness and adjust Bloom filters in
unit of an SSTable. The results show that the improvement is
the largest under the 4MB setting, e.g., the throughput under

USENIX Association 2019 USENIX Annual Technical Conference 749

the 4MB setting is 17.8% higher than that under the 64MB
setting. The reason is that as the segment size decreases,
ElasticBF can perform a finer-grained hotness recognition,
so it can gain more benefits from the adjustment of Bloom
filters. This also demonstrates the effectiveness of the finer-
grained design in ElasticBF. However, if the size of each
filter unit is too small (e.g., less than a block size), then
each load of the filter unit is wasting for the I/Os, so the
throughput drops. Second, from the results in Figure 16(g),
which show the impact of lifeTime length, we can see that
and the performance improvement has no big difference. That
is, ElasticBF is not sensitive to the lifeTime parameter, e.g.,
we can simply set lifeTime according to the total number of
segments. Finally, Figure 16(h) shows the impact of filter unit
size, the x-axis represents the bits-per-key of each filter
unit, and we configure the total bits-per-key of a filter
group as 24 (or 25 for 5bit). The improvement is the largest
when using 4bit. This is because if each filter unit uses fewer
bits-per-key, then it can have more filter units for each
SSTable, and this implies to have more hotness categories,
but too many categories will also require more I/Os to load
enough filter units to achieve low false positive rate.

To summarize this section, we find that ElasticBF can
effectively boost the read performance of various KV stores
under different storage mediums and database scales, but
it mainly focuses on the memory-constrained environment.
That is, if the memory capacity is not a bottleneck, then one
can simply allocate more bits to each Bloom filter and keeps
all of them in memory, in this case, the false positive rate can
be very small and the benefit of ElasticBF is limited.

5 Related Work
In recent years, many studies have proposed new designs
based on LSM-tree [30]. WiscKey [27] reduces the com-
paction I/Os by using key-value separation technique to
manage keys and metadata in LSM-tree, while stores values
into an appended-only log. HashKV [7] further optimizes the
value management for key-value separation based design by
using hash-based data organization. LSM-trie [42] focuses
on small key value pairs, and organizes data into a hash-
based trie structure to reduce write amplification. bLSM [35]
uses a new merge scheduler to reduce the impact of the
compaction on the front-end write performance, and also uses
Bloom filters to help efficient lookup. TRIAD [5] reduces
write I/Os by leveraging the skewed data popularity and
delayed compaction strategy. PebblesDB [32] reorganizes
the storage layout inspired from skip lists, thereby avoiding
data rewriting in the same level to reduce the compaction
overhead. We point out that these works mainly focus on
improving the write performance, and they still follow the
basic structure of LSM-tree and require Bloom filter, so our
work is orthogonal to them, and can be used to further improve
the read performance by adaptively adjusting Bloom filters.

Some other studies aim to better utilize the features of

emerging storage devices to improve the performance of KV
stores. For example, RocksDB [16] utilizes the parallelism
of SSDs by scheduling multiple compaction operations con-
currently. LOCS [40] leverages the multi-channel of SSDs to
exploit the abundant parallelism for efficient compaction and
data access. NVMKV [28] cooperates with FTL by mapping
KV pairs in physical address space to decrease the redundant
work between the store layer and the device layer. HiKV [43]
also leverages NVRAM by using a hybrid index. In contract,
ElasticBF mainly focuses on the Bloom filter design, and it
can improve the read performance on both HDDs and SSDs.

At last, there are also several works considering Bloom
filter optimization. In particular, RocksDB [15] uses prefix
Bloom filter to reduce read amplification on range queries.
SuRF [44] is based on a succinct data structure to reduce I/Os
by filtering requests of point queries and range queries. Het-
erogeneous Bloom filter design is also considered to configure
different Bloom filters for different levels or files [10, 45].
However, Monkey [10] adopts a coarse-grained scheme which
allocates the same number of filters for SSTables within the
same level and also fails to dynamically adjust according
to hotness. ElasticBF further leverages the access locality
in a finer granularity with dynamical adjustment, and our
extensive experiments demonstrate its benefit, especially
for skewed workloads. Finally, compared with our previ-
ously published workshop paper [45], we also make multiple
novel optimizations: (1) we develop a fine-grained hetero-
geneous scheme by further differentiating segments within
each SSTable, (2) we propose a hotness inheritance scheme to
quickly obtain the accurate hotness information of the newly
generated SSTables during compaction, (3) we implement
ElasticBF on top of various KV stores and conduct extensive
experiments to demonstrate its efficiency and generality, and
(4) we also leverage multi-threading and parallel I/Os in the
implementation for performance optimization.

6 Conclusion
In this paper, we developed a fine-grained heterogeneous
Bloom filter management scheme called ElasticBF by lever-
aging the access skewness within workloads. ElasticBF mea-
sures the hotness information with a lightweight method and
also supports dynamic adjustment of Bloom filters at a fine
granularity. As a result, ElasticBF can greatly reduce the
expected overall false positive rate without increasing the vol-
ume and memory overhead of Bloom filters, and thus speeds
up the read performance in KV stores. Finally, we also con-
ducted extensive experiments to demonstrate the efficiency
of ElasticBF by building it atop of various KV stores.

Acknowledgements
The work was supported by National Key R&D Program
of China under Grant No. 2018YFB1003204, National Na-
ture Science Foundation of China (61772484, 61832011, and
61772486).

750 2019 USENIX Annual Technical Conference USENIX Association

References
[1] Apache. Cassandra. http://cassandra.apache.

org/.

[2] Apache. Tuning Bloom filters. http:

//cassandra.apache.org/doc/4.0/operating/

bloom_filters.html, 2018.

[3] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. LinkBench: A
Database Benchmark based on the Facebook Social
Graph. In Proceedings of the 2013 ACM SIGMOD In-
ternational Conference on Management of Data. ACM,
2013.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. In ACM SIGMETRICS
Performance Evaluation Review, volume 40, pages 53–
64. ACM, 2012.

[5] Oana Maria Balmau, Diego Didona, Rachid Guerraoui,
Willy Zwaenepoel, Huapeng Yuan, Aashray Arora,
Karan Gupta, and Pavan Konka. TRIAD: Creating Syn-
ergies Between Memory, Disk and Log in Log Struc-
tured Key-Value Stores. In USENIX ATC 17, 2017.

[6] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry C Li, et al. TAO:
Facebook’s Distributed Data Store for the Social Graph.
In USENIX Annual Technical Conference, pages 49–60,
2013.

[7] Helen HW Chan, Yongkun Li, Patrick PC Lee, and
Yinlong Xu. HashKV: Enabling Efficient Updates in KV
Storage via Hashing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association,
2018.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM
Transactions on Computer Systems (TOCS), 26(2):4,
2008.

[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[10] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal Navigable Key-Value Store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data. ACM, 2017.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[12] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flash-
Store: High Throughput Persistent Key-Value Store.
Proceedings of the VLDB Endowment, 3(1-2):1414–
1425, 2010.

[13] Biplob Debnath, Sudipta Sengupta, and Jin Li. SkimpyS-
tash: RAM Space Skimpy Key-Value Store on Flash-
based Storage. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data,
pages 25–36. ACM, 2011.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. In ACM SIGOPS operating sys-
tems review. ACM, 2007.

[15] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, and Tony Savor. Optimizing Space
Amplification in RocksDB.

[16] Facebook. RocksDB. http://rocksdb.org/.

[17] Facebook. Block Cache. https://github.com/

facebook/rocksdb/wiki/Block-Cache, 2017.

[18] Facebook. Universal Compaction. https:

//github.com/facebook/rocksdb/wiki/

Universal-Compaction, 2017.

[19] Facebook. Direct IO. https://github.com/

facebook/rocksdb/wiki/Direct-IO, 2018.

[20] Peter Frühwirt, Marcus Huber, Martin Mulazzani, and
Edgar R Weippl. InnoDB Database Forensics. In 2010
24th IEEE International Conference on Advanced Infor-
mation Networking and Applications. IEEE, 2010.

[21] Sanjay Ghemawat and Jeff Dean. LevelDB. https:

//github.com/google/leveldb, 2011.

[22] Tyler Harter, Dhruba Borthakur, Siying Dong, Ami-
tanand S Aiyer, Liyin Tang, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. Analysis of HDFS un-
der HBase: A Facebook Messages Case Study. In FAST,
2014.

[23] Yangwook Kang, Rekha Pitchumani, Thomas Marlette,
and Ethan L Miller. Muninn: A Versioning Flash Key-
Value Store Using an Object-based Storage Model. In
Proceedings of International Conference on Systems
and Storage, pages 1–11. ACM, 2014.

[24] Adam Kirsch and Michael Mitzenmacher. Less Hashing,
Same Performance: Building a Better Bloom Filter. In
ESA, volume 6, pages 456–467. Springer, 2006.

[25] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin,
Guangyu Sun, Zhenyu Hou, Can Cui, and Jason Cong.
Atlas: Baidu’s Key-Value Storage System for Cloud
Data. In Mass Storage Systems and Technologies

USENIX Association 2019 USENIX Annual Technical Conference 751

http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/doc/4.0/operating/bloom_filters.html
http://cassandra.apache.org/doc/4.0/operating/bloom_filters.html
http://cassandra.apache.org/doc/4.0/operating/bloom_filters.html
http://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/Block-Cache
https://github.com/facebook/rocksdb/wiki/Block-Cache
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Direct-IO
https://github.com/facebook/rocksdb/wiki/Direct-IO
https://github.com/google/leveldb
https://github.com/google/leveldb

(MSST), 2015 31st Symposium on, pages 1–14. IEEE,
2015.

[26] Guanlin Lu, Young Jin Nam, and David HC Du. Bloom-
Store: Bloom-Filter based Memory-efficient Key-Value
Store for Indexing of Data Deduplication on Flash. In
Mass Storage Systems and Technologies (MSST), 2012
IEEE 28th Symposium on, pages 1–11. IEEE, 2012.

[27] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
WiscKey: Separating Keys from Values in SSD-
Conscious Storage. In FAST, pages 133–148, 2016.

[28] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, Raju Rangaswami, Sushma Devendrappa,
Bharath Ramsundar, and Sriram Ganesan. NVMKV: A
Scalable and Lightweight Flash Aware Key-Value Store.
In HotStorage, 2014.

[29] MongoDB. MongoDB. https://www.mongodb.

com/.

[30] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and
Elizabeth O’Neil. The Log-Structured Merge-Tree
(LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[31] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design
and Implementation of a Fast and Efficient Scale-up
Key-value Store. In USENIX ATC, pages 537–550,
2016.

[32] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores using Fragmented Log-Structured Merge Trees.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 497–514. ACM, 2017.

[33] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bian-
chini. Page Placement in Hybrid Memory Systems. In
Proceedings of the international conference on Super-
computing, pages 85–95. ACM, 2011.

[34] J. REN. YCSB-C. https://github.com/

basicthinker/YCSB-C, 2015.

[35] Russell Sears and Raghu Ramakrishnan. bLSM: A Gen-
eral Purpose Log Structured Merge Tree. In Proceedings
of the 2012 ACM SIGMOD International Conference
on Management of Data. ACM, 2012.

[36] Pradeep Shetty, Richard P Spillane, Ravikant Malpani,
Binesh Andrews, Justin Seyster, and Erez Zadok. Build-
ing Workload-Independent Storage with VT-Trees. In
FAST, pages 17–30, 2013.

[37] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg,
Chinmay Soman, and Sam Shah. Serving Large-scale
Batch Computed Data with Project Voldemort. In Pro-
ceedings of the 10th USENIX conference on File and
Storage Technologies, pages 18–18. USENIX Associa-
tion, 2012.

[38] Guido Urdaneta, Guillaume Pierre, and Maarten
Van Steen. Wikipedia Workload Analysis for Decentral-
ized Hosting. Computer Networks, 53(11):1830–1845,
2009.

[39] Hoang Tam Vo, Sheng Wang, Divyakant Agrawal, Gang
Chen, and Beng Chin Ooi. LogBase: A Scalable Log-
structured Database System in the Cloud. Proceedings
of the VLDB Endowment, 5(10):1004–1015, 2012.

[40] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-tree based Key-
Value Store on Open-Channel SSD. In Proceedings of
the Ninth European Conference on Computer Systems,
page 16. ACM, 2014.

[41] WiredTiger. WiredTiger. http://www.wiredtiger.

com/.

[42] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang.
LSM-trie: An LSM-tree-based Ultra-Large Key-Value
Store for Small Data. In USENIX ATC 15, pages 71–82.
USENIX Association, 2015.

[43] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-
NVM Memory Systems. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), pages 349–362,
2017.

[44] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G
Andersen, Michael Kaminsky, Kimberly Keeton, and
Andrew Pavlo. SuRF: Practical Range Query Filtering
with Fast Succinct Tries. In Proceedings of the 2018 In-
ternational Conference on Management of Data, pages
323–336. ACM, 2018.

[45] Yueming Zhang, Yongkun Li, Fan Guo, Cheng Li, and
Yinlong Xu. ElasticBF: Fine-grained and Elastic Bloom
Filter Towards Efficient Read for LSM-tree-based KV
Stores. In USENIX HotStorage 18, 2018.

[46] Yuanyuan Zhou, James Philbin, and Kai Li. The Multi-
Queue Replacement Algorithm for Second Level Buffer
Caches. In USENIX Annual Technical Conference, Gen-
eral Track, pages 91–104, 2001.

752 2019 USENIX Annual Technical Conference USENIX Association

https://www.mongodb.com/
https://www.mongodb.com/
https://github.com/basicthinker/YCSB-C
https://github.com/basicthinker/YCSB-C
http://www.wiredtiger.com/
http://www.wiredtiger.com/

	Introduction
	Background & Motivation
	Log-Structured Merge Trees
	Motivation

	Design
	Overview
	Fine-grained Bloom Filter Allocation
	Hotness Identification and Inheritance
	Bloom Filter Management in Memory
	Implementation Issues

	Evaluation
	Experiment Setup
	Micro-benchmarks
	YCSB Benchmarks
	Comparison with Monkey
	Impact of Different Configurations

	Related Work
	Conclusion

