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Abstract
We present the design of an alternative runtime system for
improved scalability and reduced latency in actor applications
called PARTISAN. PARTISAN provides higher scalability by al-
lowing the application developer to specify the network over-
lay used at runtime without changing application semantics,
thereby specializing the network communication patterns to
the application. PARTISAN reduces message latency through a
combination of three predominately automatic optimizations:
parallelism, named channels, and affinitized scheduling. We
implement a prototype of PARTISAN in Erlang and demon-
strate that PARTISAN achieves up to an order of magnitude in-
crease in the number of nodes the system can scale to through
runtime overlay selection, up to a 38.07x increase in through-
put, and up to a 13.5x reduction in latency over Distributed
Erlang.

1 Introduction
Building distributed applications remains a difficult task for
application developers today due to the challenges of con-
currency, state management, and parallelism. One promising
approach to building these types of applications is by using
distributed actors; the actor-based programming paradigm is
one where actors can live on different nodes and communicate
transparently to actors running on other nodes. Actor-based
programming is well suited to the challenges of distributed
systems; actors encapsulate state, allowing controlled, serial
access for state manipulation. A single machine can typically
run hundreds of thousands of actors, allowing efficient use of
resources per machine and thereby enabling high-scalability
and high-concurrency by elastically scaling the number of
machines in a cluster. Taken together with the fact that actors
communicate through unidirectional asynchronous message
passing with no shared memory between them, the actor-
based programming paradigm is well suited to the nature of
distributed systems. In addition to providing developers of
distributed systems with a convenient programming model,
distributed actor systems can also be efficiently implemented,

which has resulted in significant adoption and large-scale
success in many areas of industry.

There exist three primary industrial-grade distributed actor
systems; Distributed Erlang [31], Akka [21] (for Scala) and
Microsoft’s Orleans [8, 10] (for C#). Distributed Erlang has
been used as the underlying infrastructure for message bro-
kers [2, 25], distributed databases [4, 6, 18], and has provided
infrastructure for the chat functionality for applications like
WhatsApp, Call of Duty, and League of Legends. [14, 15, 27]
Similarly, Akka has been used by Netflix for the manage-
ment of time series data [23], and Microsoft’s Orleans has
been used as the underlying infrastructure for Microsoft’s
popular online multiplayer games, Halo and Gears of War
for the Xbox [24]. In all of these cases, these applications
have benefited from both the state encapsulation and perva-
sive concurrency that actors provide and the fault isolation
of actors by reducing the use of shared memory. However,
these distributed actor systems are still limited in terms of
both scalability and latency.

Scalability. Compared to other distributed frameworks
which can support hundreds to thousands of nodes, these
production-grade distributed actor systems are still limited in
the number of nodes that they can support. Distributed Erlang,
for instance, has not been operated on clusters larger than 200
nodes [1], whereas one of the more popular applications built
on Distributed Erlang, the distributed database Riak, has been
demonstrated to not scale beyond 60 nodes [15]. As we will
later show, this limited scalability is related to the rigidity of
the overlay network—the communication pattern between the
nodes in the application—used in the runtime system. This
rigidity has been the subject of previous research on alterna-
tive designs to improve the scalability of the system [11], and
efforts to find a “one-size-fits-all” overlay, which can equally
serve all types of distributed applications, have not been suc-
cessful [28]. Thus, especially in the context of Distributed
Erlang, scalability is still a major challenge.

Latency. Due to their underlying model of computation—
unidirectional asynchronous message passing between ac-

USENIX Association 2019 USENIX Annual Technical Conference    63



tors with independent queues that are multiplexed onto a
single queue between nodes—distributed actor systems fre-
quently suffer from the problem of head-of-line blocking.
For example, the distributed database Riak avoids using Dis-
tributed Erlang for background data synchronization (e.g.,
hinted and ownership handoff) to avoid head-of-line blocking
in the read/write request path. While alleviating head-of-line
blocking has been the subject of much research [12, 30] and
remains a relevant problem in today’s large-scale systems [9],
the general solution of introducing more queues and partition-
ing communication across those queues does not necessarily
yield better performance without a priori knowledge of the
application’s workload.

Application-specific information exists that can be used
to reduce the effects of head-of-line blocking. Given (i) the
knowledge of the identities of the actors that are sending
messages, (ii) the identities of the recipients, and (iii) the
knowledge that actors will process their messages sequen-
tially, this application-specific information can be provided in
the form of a small number of lightweight annotations to the
runtime. These annotations can help the runtime to separate
network traffic over specialized channels (e.g., cluster mainte-
nance, high-priority application behavior, failure detection),
in turn leading to the reduction of head-of-line blocking in an
application-specific manner.

In this paper, we present the design of an alternative run-
time system for improving the scalability and performance
of distributed actor systems, along with an implementation
of this runtime called PARTISAN. PARTISAN enables greater
scalability by allowing the application developer to specialize
the overlay network to the communication pattern required
by the application at runtime without altering application se-
mantics. PARTISAN facilities lower latency by providing the
application developer with three ways to customize messaging
behavior, without altering application semantics or requiring
changes to application code. PARTISAN enables the applica-
tion developer to (i) customize parallelism (for increasing
the number of communication channels between nodes), (ii)
utilize named channels (for separating different types of mes-
sages sent between actors), and (iii) affinitize scheduling (for
partitioning traffic across communication channels depending
on message source, destination and type).

We implement PARTISAN using Erlang without requiring
changes to the Erlang VM, in an effort to make these scalabil-
ity and latency benefits immediately available to production
Erlang applications with minimal changes to application code.
We provide a detailed experimental evaluation which, be-
yond microbenchmarks, includes a port of an existing widely-
deployed Erlang distributed computing framework to take
advantage of PARTISAN’s optimizations. In our evaluation,
we demonstrate that the use of each of these optimizations in-
dependently results in latency reduction, but the combination
of these techniques yields significant reductions in latency.

The contributions of this paper are the following:

• We present the design of the PARTISAN runtime system
that enables the runtime selection of overlay, enabling
greater scalability by specializing the overlay to the ap-
plication’s communication patterns (Sections 3 & 5);

• We present a collection of predominantly automatic op-
timizations for latency reduction, realized in PARTISAN,
that enable more efficient scheduling of messages on
the network, specifically by exploiting (i) parallelism,
(ii) named channels, and (iii) affinitized scheduling (Sec-
tions 4 & 5);

• We provide an open source implementation of PARTI-
SAN that supports the runtime selection of overlay with
implementations of four different overlay networks (Sec-
tion 5);

• We port an existing widely-deployed open source dis-
tributed computing framework, Riak Core, from Dis-
tributed Erlang to PARTISAN, and provide an analysis of
the process (Section 6);

• We present a detailed empirical evaluation of PARTISAN
on (i) microbenchmarks, (ii) an industrial-grade actor-
based distributed programming framework (Riak Core),
and (iii) a research framework for distributed program-
ming over replicated shared state (Lasp). We go on to
show that PARTISAN demonstrates greater scalability (in
some experiments, an order of magnitude increase in
the number of nodes the system can scale to) through
runtime overlay selection and lower latency (in some
experiments, up to a 38.07x increase in throughput, and
a 13.5x reduction in latency) through latency reduction
optimizations (Section 6).

2 Background: Distributed Actors
Actors provide a simple programming model for building
highly concurrent applications. Programming with actors in-
volves two primary concepts: actors: lightweight processes
that act sequentially, respond to messages from other actors,
and sent messages to other actors; and asynchronous mes-
sage passing: unidirectional, asynchronous messages that are
sent between actors. Applications built using the actor model
typically achieve their task through the cooperation of many
actors sending messages to one another. No state is shared
between actors: the only way for data to be shared between
actors is through message passing1. Actors are designed to be
extremely lightweight and typically implementations allow
for ten to hundreds of thousands of actors per machine. As
no data is shared, and actors are relatively independent with
loose coupling to other actors – strictly through message pass-
ing – if a particular actor happens to fail, the fault remains
isolated to that actor. Actors are not static: actors are allowed
to “spawn” other actors as the system is running.

1Pony is a unique exception here, which uses a capability system to know
when it is safe to share memory. However, this is an implementation detail as
the programming model remains that of message passing.
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Actors are a popular mechanism for building highly con-
current applications as they allow both users and user actions
to be modeled as actors themselves. For instance, in the afore-
mentioned Halo and Call of Duty examples, actors are use
for modeling the presence service for the online functionality
of the game. Therefore, a single actor, dynamically created,
is used to model a connection to the service for a single user.
In the Riak distributed database, an actor is spawned for ev-
ery single read or write request made to the database. As
the number of actors can range several orders of magnitude
higher than the parallel computing capacity of a single ma-
chine, preemptive (e.g., Erlang) or cooperative scheduling
(e.g., Orleans) is used for actor scheduling within the runtime.

Distributed actor systems extend the actor functionality
from a single machine to a cluster of machines. Distribution
adds a number of complexities to the model: (i) failure de-
tection: actors may be unavailable under network partitions
or crash failures of remote machines; (ii) message omission:
messages are no longer guaranteed to arrive at a destination
due to failure; (iii) membership: or what nodes are currently
members of the cluster and how the membership overlay is
organized; (iv) binding: the location of actors may not be
known at runtime when actors are dynamically created; (v)
contention: contention for access to network resources may
slow down actors; (vi) congestion: and the varying location
of actors results in non-uniform latency with inter-actor mes-
saging when actors are located on different machines.

2.1 Framework Commonalities
These concerns are addressed by the contemporary industrial
distributed actor systems through various mechanisms. Each
of these mechanisms introduces additional network overhead
that the application developer may not be aware of, contribut-
ing to reduced scalability and higher latencies.

Failure detection. Actors may become unreachable due to
crash failures or network partitions. To detect failures, nodes
typically send heartbeat messages to the other nodes in the
cluster. When a node is suspected as failed, it’s assumed that
the actors that were running on that node failed.

Message omission. Distributed actor systems try to address
the problem of message omission by using TCP. With a single
connection, TCP ensures FIFO ordering of messages between
pairs of actors and best-effort delivery using retransmission
based on sequence numbers and acknowledgements.

However, as failure detection is imperfect and nodes may
be disconnected and reconnected under network partitions
or crash failures, message delivery is not guaranteed by the
runtime system. Therefore, distributed actor systems typically
require the user to program as if message omission is always a
possibility. Put more generally, TCP connections are session-
oriented and in these frameworks delivery guarantees do not
hold across sessions.

Membership. Membership determines which nodes are
part of the cluster and are available for hosting actors. Failure
detection is combined with membership to determine who the
active members of the cluster are at any given moment.

Binding. When sending a message from one actor to an-
other, the location of that actor may or may not be known at
a given time. Most of these systems encode a node identifier
into the process identifier, or leverage a replicated, global pro-
cess registry, for determining the location of an actor by a
registered name instead of a process identifier.

2.2 Challenges

The problems of both network contention and network con-
gestion remain challenges for distributed actor systems.

Network contention. All of the aforementioned actor sys-
tems support inter-machine communication through the use of
a single TCP connection, therefore multiplexing actor-to-actor
communication on a single channel. Not only does actor-to-
actor communication (data) use this channel, but background
communication from the membership and failure detection
systems (control) also contribute to congestion on this link.
Taken together with CPU-intensive activities that may block
access to the socket (message serialization/deserialization,
for example) and non-uniform distribution of message load
(slow-senders vs. fast-senders), the possibility for contention
increases, which in turn increases latency and reduces through-
put of the system. This is further exacerbated by certain over-
lays; for example, the full-mesh overlay must perform failure
detection from all nodes to all other nodes.

Network congestion. Network congestion, in the form of
latency or congestion control, may further impact perfor-
mance. Under situations where the frequency of message
sends exceeds what can be transmitted over the network, caus-
ing queueing delays on these multiplexed connections be-
tween nodes, other senders on the same node may be penal-
ized and forced to wait for other senders to transmit.

3 Overlay Networks
To address the problems that arise from a fixed overlay, PARTI-
SAN supports the selection of overlay at runtime. PARTISAN’s
API exposes an overlay agnostic programming model – only
asynchronous messaging and cluster membership operations
– that easily allows programmers to build applications that
can operate over any of the supported overlays. Selection of
the overlay at runtime only affects the performance of the
application, and does not change the application semantics.
Selection of the overlay is done with a configuration parame-
ter specified at runtime; therefore, changing the overlay does
not require recompilation and the selection is fixed for the
lifetime of the application.
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PARTISAN supports four overlays and exposes an API for
developers to extend the system with their own overlays:
static, full-mesh, client-server, and peer-to-peer.

3.1 Static, Full-mesh, Client-server Overlays
The static, full-mesh, and client-server overlays are similar.
Each overlay uses a single connection for communication
between each node in the cluster. Failure detection is per-
formed by monitoring this connection; when this connections
is dropped, the node is reported as down.

With the static overlay, membership is fixed at runtime
whereas with the full-mesh overlay, membership is dynamic
and can be altered while the system is running. With the
client-server overlay, connections are only maintained be-
tween servers and from servers to clients, similar to a tradi-
tional hub-and-spoke topology.

3.2 Peer-to-peer Overlay
The peer-to-peer overlay builds upon the HyParView [20]
membership protocol and the Plumtree [19] broadcast proto-
col, both of which use a two-phase approach to pair an effi-
cient dissemination protocol with a resilient repair protocol
used to ensure operation during network partitions.

HyParView. HyParView is an algorithm that provides a re-
silient membership protocol by using partial views to provide
global system connectivity in a scalable way. Using partial
views ensures scalability; however, since each node only sees
part of the system, it is possible that node failures break con-
nectivity. To overcome this, HyParView uses two different
partial views that are maintained with different strategies.

Plumtree. Plumtree is an algorithm that provides reliable
broadcast by combining a deterministic tree-based broadcast
protocol with a gossip protocol. The tree-based protocol con-
structs and uses a spanning tree to achieve efficient broadcast.
However, it is not resilient to node failures. The gossip proto-
col is able to repair the tree when node failures occur.

Semantics. However, with partial views, nodes may want to
message other nodes that are not directly connected. To main-
tain the existing semantics of existing actor systems, PAR-
TISAN needs to support messaging between any two nodes
in a cluster. To achieve this, PARTISAN’s peer-to-peer mem-
bership backend uses an instance of the Plumtree protocol to
compute a spanning tree rooted at each node. When sending
to a node that is not directly connected, the spanning tree is
used to forward the message down the leaves of the tree in a
best-effort method for delivering the message to the desired
node. This is similar to the approach taken by Cimbiosys [26]
to prevent livelocks in their anti-entropy system.

4 Latency Reduction
In Section 2, we discussed a number of features of distributed
actor systems that operate in the background to maintain
cluster operation. These included binding, membership, and

failure detection. Each of these features of actor systems can
be expensive in terms of network traffic and contributes to in-
creasing the overall message latency by delaying application-
specific messaging behind cluster maintenance messaging. In
addition to background traffic, it’s also possible that one type
of application-specific messaging may also delay different
types of application-specific messaging, as in the case where a
slow sender is arbitrarily delayed behind a fast sender. These
are all specific cases of head-of-line blocking.

To alleviate these issues, we provide the application devel-
oper with three ways to customize messaging behavior in a
distributed actor system; by (i) customizing parallelism, (ii)
utilizing named channels, and (iii) affinitized scheduling.

4.1 Parallelism
To reduce the effects of head-of-line blocking with a single
message queue, additional message queues can be introduced
in an attempt to parallelize as much work as possible. We refer
to this mechanism as parallelism. With little input from the
application developer—only a specification of the number of
queues to operate at each node for each destination node—the
system can either use random or round-robin scheduling to
assign work to queues. In most cases, the system can optimally
choose this parameter based on available system resources.

4.2 Named Channels
While parallelism serves to increase the amount of work per-
formed in parallel, background messages may be queued in
front of application-specific messages, resulting in diminish-
ing returns if this is the only technique used to reduce latency.

If we further classify these message queues as either queues
for background messaging or application-specific messaging,
we can be more intelligent in our scheduling. This can be
achieved using named channels, and it is similar to Quality-of-
Service (QoS) present in many modern networking systems.
This mechanism only requires the application developer to
annotate what type of message is being sent, and dedicated
queues based on type are used for scheduling these messages.
This mechanism allows the system to automatically place
background messaging on a queue where it will not interfere
with application-specific messaging.

4.3 Affinity
While named channels prevent background messaging from
directly interfering with application-specific messaging,
application-specific messaging may still suffer from inter-
ference between actors that send at different rates.

Under the assumption that multiple outgoing queues are
available (parallelism), random or round-robin scheduling
may still produce schedules that lead of head-of-line blocking
issues. With the knowledge that actors have (i) a distinct iden-
tity (unique references which point to each actor and which
can itself be exchanged), (ii) and act sequentially, we can fur-
ther refine our message scheduling algorithm by selecting an
outgoing message queue based on the sending actor’s identity.
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Feature API Analogous Call (Erlang)

Join node to cluster join(Node) net_kernel:connect_node(Node)
Remove self from the cluster leave() net_kernel:stop()
Return locally known peers members() nodes()
Forward message to registered name forward(Node, Name, Msg, Opts) erlang:send({Name, Node}, Msg)
Forward message to process id forward(Pid, Msg, Opts) erlang:send(Pid, Msg)

Table 1: PARTISAN’s API

call(Dst, Msg, Timeout) ->

Dst ! Msg,

receive
Response ->

Response
after
Timeout ->

{error, timeout}
end

end.

(a) Distributed Erlang

call(Dst, Msg, Timeout) ->

partisan_pluggable_peer_service_manager:forward(Dst, Msg, []),

receive
Response ->

Response
after

Timeout ->
{error, timeout}

end
end.

(b) PARTISAN

Listing 1: Sending messages using Distributed Erlang and PARTISAN. PARTISAN’s API is designed to be a drop-in replacement
for Distributed Erlang.

%% Use `N' to partition with affinitized scheduling.
partisan_pluggable_peer_service_manager:forward(

Dst, Msg, [ {partition_key, N} ])

%% Use `Channel' to partition by channel.
partisan_pluggable_peer_service_manager:forward(

Dst, Msg, [ {channel, Channel} ])

Listing 2: Sending messages using PARTISAN. PARTISAN’s
API allows both affinitized scheduling and channels to be
specified for a single message send.

This scheduling technique is known as affinitized scheduling
and results in a further reduction in latency for network in-
tensive processes by avoiding interference between different
actors that send messages at different rates—for example, two
actors on the same node sending at different rates to the same
remote actor can be scheduled on different queues.

The application developer can take advantage of affinitized
scheduling either by enabling affinitized scheduling for all
messages, where a partition key is automatically derived by
the system, or by annotating individual message sends with
a partition key. This partition key is then concatenated with
the identity of the recipient and, using a hash function, is
used to select the appropriate queue. By hashing both the
sender and the recipient together, the system will attempt
to collocate pairwise communication between the same two
actors together, providing best-effort FIFO when the system
is not operating under failure.

5 PARTISAN
PARTISAN is a runtime system that enables greater scala-
bility and reduced latency for distributed actor applications.
PARTISAN improves scalability by allowing the application
developer to specialize the overlay network to the applica-
tion’s communication patterns. PARTISAN achieves lower
latency by leveraging several predominately automatic opti-
mizations that result in the efficient scheduling of messages.
PARTISAN is the first distributed actor system to expose this
level of control to the application developer, improving the
performance of existing actor application and enabling new
types of actor applications.

5.1 Design
All three industrial-grade actor systems follow the same un-
derlying assumptions that define the actor model. The de-
sign of PARTISAN is therefore based upon a lowest-common-
denominator view of distributed actor systems. In all cases:

• actors will act sequentially, sending and receiving unidi-
rectional, asynchronous messages;

• actors can be located on any node on the network, known
only at runtime, and the system will be able to locate,
though a system specific mechanism, on which machine
an actor is located;

• message delivery is not guaranteed and node failures
will be detected eventually.

PARTISAN follows this lowest-common-denominator view
of distributed actor systems for the sake of portability of these
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ideas; the same principles behind our work can be applied to
realizations of PARTISAN for the other industrial-grade actor
systems, such as Akka and Orleans. Applying these ideas
to Akka would be straightforward, given the programming
model is directly inspired by Erlang. Orleans has a slightly
different programming model involving remote method in-
vocations, but the underlying execution model is composed
of unidirectional, asynchronous message sends and receives,
the same as the Erlang programming model (and, extremely
similar to Erlang’s included RPC abstraction.)

Based on this view of actor systems, PARTISAN adds (i)
the runtime selection of overlay network, and (ii) a collection
of predominantly automatic latency reduction optimizations.

Latency Reduction Optimizations. PARTISAN applies the
above three optimizations, parallelism, named channels, and
affinitized scheduling (Section 4) to this lowest-common-
denominator view of actor systems to achieve sometimes
significant latency reduction (demonstrated in Section 6).

While some of these ideas for latency reduction have been
explored in the context of networking, these optimizations are
not exposed to the developer in distributed actor systems–this
work is the first to do so, to the best of our knowledge.

In order to enable the application developer to directly take
advantage of these optimizations when it makes sense for
their application, application developers only need to specify
the number of outgoing message queues (parallelism) and the
types of messages that are being sent (named channels); affini-
tized scheduling is automatically performed by the runtime.

5.2 API
PARTISAN is designed to be a drop in replacement for Dis-
tributed Erlang, with each API command in PARTISAN pro-
viding a 1-to-1 correspondence with Distributed Erlang. The
API of PARTISAN, and its corresponding calls in Distributed
Erlang, is provided in Table 1 and an example of the trans-
formation of a program from using Distributed Erlang to
PARTISAN is provided in Listing 1. Performing this 1-to-1
transformation converts a Distributed Erlang application to
use PARTISAN with optimizations disabled.

Like all distributed actor systems, PARTISAN’s API pro-
vides both membership operations, that are used for join-
ing/removing nodes from the cluster, and messaging oper-
ations, that are used for asynchronously sending messages.
PARTISAN’s programming model is both overlay-agnostic and
asynchronous. Therefore, all operations return immediately
and have overlay-specific behavior.

5.3 Implementation
PARTISAN is implemented as a library for Erlang and requires
no modifications to the Erlang VM. This was in an effort to
make PARTISAN’s scalability and latency benefits immedi-
ately available to production Erlang applications with mini-
mal changes to application code. PARTISAN is implemented
in 6.7 KLOC and is available as an open source project on

{partisan, [%% Enable affinity scheduling for all messages.
{affinity, enabled},

%% Enable parallel connections.
{parallel, enabled},

%% Optional: override default.
{parallel_connections, 16},

%% Specify available channels.
{channels, [vnode, gossip, broadcast]},

%% Selection of overlay.
{membership_strategy,
partisan_full_mesh_membership_strategy}]}.

Listing 3: Riak Core configuration for PARTISAN using op-
tions in Table 2 for experiments run in Section 6.2.

GitHub. This implementation of PARTISAN has several indus-
try adopters and a growing community.

5.4 Configuration
Configuration options to select overlay, enable parallelism,
and specify named channels are outlined in Table 2. List-
ing 3 demonstrates a configuration used in our Riak Core
evaluation which enables parallelism, named channels, and
affinitized scheduling for all messages. Users can choose to
annotate message sends with a channel for targeted use of
named channels and affinitized scheduling can be enabled for
all messages or for an individual message; these options are
demonstrated in Listing 2.

If the number of parallel connections is not specified by
the user, the system will default to a reasonable value for this
parameter based on the number of Erlang schedulers avail-
able. Under a default configuration of the Erlang VM, a single
scheduler maps to a single vCPU. This default configura-
tion and heuristic is discussed in detail in our experimental
evaluation. (Section 6.1).

5.5 Bring Your Own Overlay
PARTISAN exposes an API for users to implement their
own overlays; application developers must simply implement
the membership_strategy interface for handling messages.
PARTISAN automatically uses this membership strategy for
processing incoming and outgoing messages to the system –
the application developer only needs to handle internal state
transitions and supplying the system with an updated list of
members. PARTISAN automatically sets up required connec-
tions, serializes and deserializes messages, performs failure
detection, and message forwarding. This makes it possible to
implement protocols with very little code; our implementation
of the full-mesh membership protocol is 152 LOC.

6 Experimental Evaluation
To evaluate PARTISAN, we designed a set of experiments to
answer the following questions:
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Feature Configuration Option

Enable parallelism with default number of connections {parallel, enabled}
Specify number of N connections to each peer {parallel_connections, N}
Open N parallel connections for each of the named channels {channels, [Channel1, Channel2]}
Enable affinitized scheduling for all messages {affinity, enabled}
Specification of overlay {membership_strategy, MembershipStrategy}

Table 2: PARTISAN’s configuration options

• RQ1: What are the benefits of affinitizing actor messag-
ing across a number of parallel TCP connections?

• RQ2: Can these optimizations be used on real-world
applications to achieve reduction in message latencies?

• RQ3: Does the selection of the overlay at runtime pro-
vide better scaling properties for the application?

We begin with a set of microbenchmarks (Section 6.1),
where we seek to examine the benefits of affinitizing actor
communication across a number of parallel connections. We
demonstrate that PARTISAN’s optimizations can provide re-
ductions in latency for workloads containing large objects, or
when deployed in high latency scenarios.

Next, we examine the applicability of these optimizations
on real-world applications (Section 6.2). Using a real-world
distributed programming framework with an example key-
value store, we show a significant reduction in latency under
both high latency scenarios (datacenter-to-datacenter com-
munication) and large object workloads through the use of a
combination of optimizations: parallelism, named channels,
and affinitized scheduling.

Finally, we explore the selection of the overlay on scaling
to larger clusters (Section 6.3). We demonstrate that we can
scale to order-of-magnitude larger clusters while maintaining
the same application semantics by specializing the overlay at
runtime to the application.

6.1 Microbenchmarks
To evaluate the optimizations in PARTISAN around latency
reduction (RQ1), we set out to answer the following questions:
(i) what is the effect of affinitizing actors; (ii) how does one
know how many parallel connections to use when affinitizing
actors; (iii) does affinitized parallelism benefit workloads in
high latency scenarios; and (iv) does affinitized parallelism
benefit workloads with large object sizes? We present a set of
microbenchmarks that address each of these questions.

Experimental Setup. For the microbenchmarks, we used
a single Linux virtual machine with 16 vCPUs with 64 GB of
memory. On this machine, we ran two instances of the Erlang
VM that communicate with one another using TCP with either
a simulated RTT latency of 1ms (RTT within a single AWS
availability zone) or 20ms (RTT between two availability
zones in the same AWS region.) A single Linux VM is used
for hosting both instances of the Erlang VM to ensure no

interference from the external network and to guarantee a
fixed latency during the duration of the experiment. This
virtual machine is purposely kept underloaded, as to not see
the effects of resource contention inside the Linux VM on
latency. Each Erlang VM is configured to run 16 schedulers
with kernel polling enabled.

Each of the microbenchmarks runs multiple configurations
of PARTISAN under both increasing latency and payload size,
with a fixed number of 10,000 messages per actor, per ex-
periment. We consider PARTISAN with parallelism disabled,
PARTISAN with parallelism, and PARTISAN with affinitized
parallelism. We do not consider named channels in the mi-
crobenchmarks, as named channels and affinitized parallelism
serve the same function: partitioning communication across a
number of TCP connections either automatically or by using
a user-specified partitioning key.

At the start of each experiment, N actors are spawned on
each of two instances of the Erlang VM (unless otherwise
specified, as in Figure 2), based on the desired concurrency
level. Each actor will send a single message to an actor on the
other node and wait for acknowledgement before proceeding.
Experiments were run using the full-mesh overlay, but the
optimizations are implemented for all overlays. Latency is
reported as the time to send a single message from the source
to the destination.

Results. We start by showing a baseline configuration of
Distributed Erlang compared with PARTISAN in Figure 1. Our
results show that leveraging additional connections and affini-
tizing communication increases performance regardless of
concurrency. With 128 actors, 512KB payload, and 1ms RTT,
PARTISAN with affinitized parallelism performs 1.69x better
than Distributed Erlang. Considering parallelism, but with-
out affinity, yields a 1.90x performance improvement. With a
uniform workload and without the network as a bottleneck,
affinitized scheduling yields a performance benefit over Dis-
tributed Erlang, but introduces a slight performance penalty
when compared to purely random scheduling.

In Figure 1, the number of parallel connections is specified
as 16; however, picking this number is not necessarily trivial!
Figure 2 shows the effects on outliers based on the number of
connections the system needs to maintain to its peers. Here,
we demonstrate that 16 connections is a good choice for
connections (and, the number selected as our best case in all
experiments.) But why 16? 16 is selected using the heuristic
that each Erlang VM is running 16 schedulers, one mapped
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Figure 1: Performance of Distributed Erlang and PARTI-
SAN broken out by optimization.

Figure 2: Effects of scaling connections with the number
of actors on outliers.

Figure 3: Performance of Distributed Erlang and PAR-
TISAN broken out by optimization under a high latency
workload: round trip time between actors is set at 20ms,
object size is set at 512KB.

Figure 4: Performance of Distributed Erlang and PARTI-
SAN broken out by optimization under a large payload
workload: round trip time between actors is set at 1ms,
object size is set at 8MB.

to a particular vCPU, and when the system needs to maintain
more connections than available schedulers, context switching
penalties manifest themselves as outliers (shown in Figure 2).

Focusing on these outliers, we might ask how bad does it
get? With 128 actors, 512KB payload, and 1ms RTT, moving
from 16 connections to 128 connections increases outliers
from a max value of 176ms to 1791ms, a 10.17x increase!

In Figure 3, we turn our attention to the question of net-
work conditions. In our first experiment (Figure 1), we chose
a 1ms RTT to explore performance in a scenario where we
can assume our application is running within a single AWS

availability zone. But what happens if we don’t have such fa-
vorable network conditions? What if our application is spread
out between two AWS availability zones and suffers from
RTTs closer to 20ms instead? Figure 3 shows the effects of
running our earlier experiment this time with a 20ms RTT
latency between actors located on different nodes. As we can
see, as the latency increases, the system can take advantage of
more communications channels to parallelize inter-actor com-
munication on the network. With 128 actors, 512KB payload,
and 20ms RTT, PARTISAN with parallelism performs 10.92x
better than Distributed Erlang. By affinitizing parallelism, per-
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formance increases to 13.50x better than Distributed Erlang.
In the Erlang community, large message sizes are not un-

common. Consider again Riak, the distributed key-value store
which could contain user-stored and arbitrary-sized data. An
Erlang message then could contain a user-provided piece
of data megabytes in size. However, it’s well-known in the
Erlang community that Distributed Erlang doesn’t handle
large message sizes well. In fact, the Riak documentation
suggests to avoid storing objects larger than 1-2MB due to
the performance degradation that occurs due to Distributed
Erlang [5,15]. Cognizant of this, we turn our attention to ques-
tion of how large payload size affects performance in PAR-
TISAN. Can PARTISAN overcome some of the performance
issues faced by Distributed Erlang with large payloads?

Figure 4 explores the effects of increasing payload size
on PARTISAN as compared to Distributed Erlang. Keeping
in line with the community-observed limits of Distributed
Erlang, we vary the message size from 512kb (below the 1MB
performance degradation threshold) to 8MB (far above the
1MB performance degradation threshold). With 128 actors,
8MB payload, and 1ms RTT, PARTISAN with parallelism
performs 1.20x better than Distributed Erlang! By affinitizing
parallelism, performance increases to 2.63x.

Discussion. So far, we’ve seen that PARTISAN outperforms
Distributed Erlang in all of our microbenchmarks. We’ve
shown that the collection of optimizations made available to
Erlang applications by PARTISAN (that is, leveraging addi-
tional connections, and affinitizing work to those connections
based on the type of message and the node that the message
is being sent to), can drastically improve performance by
reducing latency, in some cases by over 30x.

But what does this mean practically? From these experi-
ments, it’s clear that Distributed Erlang was designed when
the sort of applications being written was limited as compared
to what we would like to write today; i.e., applications that
send small payloads within a single data center.

As we have shown in these experiments, PARTISAN goes
beyond this, and seems to be well-suited for enabling new
types of applications, such as: (i) applications that operate
with large data-centric workloads; (ii) applications that oper-
ate at a geo-distributed scale; (iii) the combination of both.

6.2 Evaluation: Latency Reduction in Riak
To determine the applicability of these optimizations to real-
world programs (RQ2), we asked the following questions:
(i) is it possible to modify existing application code to take
advantage of the PARTISAN optimizations through the use of
PARTISAN’s API, and (ii) do these optimizations result in the
reduction of latency for these programs?

To answer these, we ported the distributed systems frame-
work, Riak Core, to PARTISAN and built two example applica-
tions: (i) a simple echo service – an application that’s designed
to only be bound by the speed of the actor receiving messages
and the network itself; and (ii) a memory-based key-value

store that operates using read/write quorums – more represen-
tative of a workload where more data is being transmitted and
more CPU work has to occur.

6.2.1 Background: Riak Core
Riak Core is a distributed programming framework written
in Erlang and based on the Amazon Dynamo [13] system
that influenced the design of the distributed database Riak,
Apache Cassandra, and the distributed actor framework Akka.

In Riak Core, a distributed hash table is used to partition a
hash space across a cluster of nodes. These virtual nodes—the
division of the hash space into N partitions—are claimed by a
node in the cluster, and the resulting ownership is stored in a
data structure known as the ring that is periodically gossiped
to all nodes in the cluster. Requests for a given key are routed
to a node in the cluster based on the current partitioning of
virtual nodes to cluster nodes in the ring structure using con-
sistent hashing, which minimizes the impact of reshuffling
when nodes join and leave the cluster. Background processes
are used for cluster maintenance; ownership handoff, (trans-
ferring virtual node ownership) metadata anti-entropy (an
internal KVS for configuration metadata) and ring gossip (in-
formation about the cluster’s virtual node to node mapping.)

In our experimental configuration we use 1,024 virtual
nodes, the largest possible ring configuration for Riak Core.
This ring size requires the largest amount of system resources
– we account for this in our experiment – however, provides
the most fine-grained partitioning for individual requests.

6.2.2 Modifications to Riak Core to Support PARTISAN

To perform our evaluation of PARTISAN using Riak Core, it
was necessary to modify the existing application to take ad-
vantage of PARTISAN’s APIs. Our changeset to Riak Core in
order to use PARTISAN instead of Distributed Erlang is fairly
minimal: 290 additions and 42 removals including additional
logging for debugging, additional tests, and configuration.

The authors of Riak Core already realized that request
traffic and background traffic could be problematic, so one
mechanism inside of Riak Core—ownership handoff, respon-
sible for moving data between virtual nodes when partitioning
changes—already manages it’s own set of connections. This
mechanism alone contains roughly 900 LOC for connection
maintenance – code that could be eliminated and replaced
with calls to the PARTISAN API.

6.2.3 Echo Service
Experimental Setup. Our first application is a simple echo
service, implemented on a three node Riak Core cluster. For
each request, we generate a binary object, uniformly select a
partition to send the request to, and wait for a reply containing
the original message before issuing the next request. For each
request, we draw a key from a uniform distribution over 1,024
keys – matching the ring size of the cluster – and run the
key through Riak Core’s consistent hashing algorithm for
placement of the request. Requests originate at all of the nodes
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Figure 5: Performance of Distributed Erlang and PARTI-
SAN with affinitized parallelism using the echo service /
low latency workload: round trip time between actors is
set at 1ms, object size varies 1, 512, and 8192KB.

Figure 6: Performance of Distributed Erlang and PARTI-
SAN with affinitized parallelism using the echo service /
high latency workload: round trip time between actors is
set at 20ms, object size varies 1, 512, and 8192KB.

Figure 7: Performance of Distributed Erlang and PAR-
TISAN with affinitized parallelism using the KVS / low
latency workload: round trip time between actors is set at
1ms, object size varies 1, 512, and 8192KB.

Figure 8: Performance of Distributed Erlang and PAR-
TISAN with affinitized parallelism using the KVS / high
latency workload: round trip time between actors is set at
20ms, object size varies 1, 512, and 8192KB.

in the cluster, and based on the key placement, are routed to
the node responsible for handling the request. To ensure we
can compare the results between runs, we wait for the cluster
to stabilize before beginning the experiment.

Binary objects are generated for three payload sizes, 1KB,
512KB and 8192KB. Concurrency is increased during the
test execution and parallelism is configured at 16. We test two
latency configurations: 1ms, shown in Figure 5, and 20ms,
shown in Figure 6. We run a fixed duration of 120 seconds.

Results. Figure 5 demonstrates that with 128 actors, 1ms
RTT, and large payloads (8MB), PARTISAN is 2.84x faster
than Distributed Erlang. With medium (512KB) and small
payloads (1KB), PARTISAN is on par with Distributed Erlang
(0.95x - 1.00x).

Figure 6 demonstrates that with 128 actors, 20ms RTT,
and larger payloads (8MB), PARTISAN is 38.07x faster than

Distributed Erlang (which achieves only 5 ops/second before
reaching peak throughput). With medium payloads (512KB),
PARTISAN is 7.25x faster than Distributed Erlang. With small
payloads (1KB), PARTISAN is on par with Distributed Erlang
(0.99x).

6.2.4 Key-Value Store
Experimental Setup. Our second application is a memory-
based key-value store, similar to the Riak database, imple-
mented on a three node Riak Core cluster.

Each key is hashed and mapped to a virtual node using the
ring structure that is gossiped in the cluster. The virtual node
that the key is hashed to, along with that virtual nodes’ two
clockwise neighbors on the ring, represent the three virtual
nodes that contain the three replicas for the data item. Each
request (either a get operation or put operation) to the key-
value store uses a quorum request pattern, where requests are
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made to these three replicas, and the response is returned to
the user when a majority (2 out of 3) replicas reply.

This pattern involves multiple nodes in the request path,
and each partition simulates a 1ms storage delay in the request
path. We reuse the aforementioned benchmarking strategy:
test execution is fixed at 120 seconds.

For each request, we draw a key from a normal distribu-
tion across 10,000 keys and run the key through Riak Core’s
consistent hashing algorithm for placement. The consistent
hashing placement algorithm aims for uniform partitioning of
keys across the cluster. Requests originate at all of the nodes
in the cluster, and based on the key placement, are routed to
the node(s) responsible for handling the request. To ensure we
can compare the results between runs, we wait for the cluster
to stabilize before beginning the experiment. We use a 10:1
read/write ratio for the experimental workload. Concurrency
is varied in our experiments (x-axis) and parallelism is con-
figured at 16. We test two latency configurations: 1ms, shown
in Figure 7, and 20ms, shown in Figure 8.

Results. Figure 7 demonstrates that with 128 actors, 1ms
RTT, and both medium (512KB) and small (1KB) payloads,
PARTISAN performs on par with Distributed Erlang (0.99x-
1.00x). With larger payloads (8MB), PARTISAN is 1.42x faster
than Distributed Erlang.

Figure 8 demonstrates that with 128 actors, 20ms RTT,
and small (1KB) payloads, PARTISAN performs on par with
Distributed Erlang (0.98x). With medium payloads (512KB),
PARTISAN is 1.50x faster than Distributed Erlang. With large
payloads (8MB), PARTISAN far exceeds the performance of
Distributed Erlang, achieving 102 ops/second; Distributed
Erlang only completes 1 operation during the entire 120s
execution.

6.2.5 Discussion
As we have shown in these experiments, PARTISAN is not only
well-suited as a replacement for Distributed Erlang, given its
similar performance under workloads that Distributed Erlang
was designed for, but PARTISAN also enables new classes of
applications in distributed actor frameworks. Our experiments
have shown increased throughput in applications with large
data-centric workloads: an example of this would be the Riak
distributed database without 1MB storage limitations.

6.3 Evaluation: Improving Scalability in Lasp
In our previous experiment on latency reduction in Riak Core,
we demonstrated optimizations for latency reduction in a dis-
tributed database that communicates with all of the nodes in
the cluster. This is one example of an application that benefits
from the full-mesh overlay. However, not all applications ben-
efit from, nor require, the full-mesh model that is default case
in Distributed Erlang. In this section, we address the question
of whether or not an application can benefit from selection of
the overlay at runtime (RQ3): specifically, the client-server
and peer-to-peer overlays.

Figure 9: Comparison of data transmission for Lasp deployed
on the client-server and peer-to-peer overlays for different
cluster sizes (32 to 1024 nodes).

In order to understand the effect of overlay on scalability,
we focus on how many nodes we can scale our application to
under each overlay for an advertisement counter application
implemented with Lasp.

6.3.1 Lasp
Lasp [22] is a programming framework designed for large
scale coordination-free programming. Applications in Lasp
are written using shared state; this shared state is stored in
an underlying key-value store and is replicated between all
nodes. Applications modify their own replica and propagate
the effects of their changes to their peers. Lasp ensures that ap-
plications converge to the same result on every node through
the use of data structures known as Conflict-Free Replicated
Data Types [29], combined with monotone programming [3].

For our Lasp evaluation, the application is a simulated ad-
vertisement counter, modeled after the Rovio counter scenario
for Angry Birds [22]. In this application, each client keeps a
replica of a distributed counter that is incremented every time
an advertisement is displayed to the user and whose state is
periodically propagated to other peers in the system. When a
certain number of impressions is reached, the advertisement
is disabled and no longer displayed to the user.

The distributed counter used was a particular type of CRDT:
a Grow-Only Counter (G-Counter). The G-Counter maps
node identifiers at each of the clients to a monotonically in-
creasing counter. Clients increment their position in the map
and when merging state propagated from other nodes in the
system, the pair-wise maximum is taken for each component
in the map. To determine when an advertisement can be dis-
abled, a lower bound is checked according to the sum of the
components in the map: this represents a lower bound on the
total number of times an advertisement has been displayed.

Experimental Setup. For this evaluation, a total of 70
m3.2xlarge Amazon EC2 instances in the same region and
availability zone. Mesos [16], is used to subdivide each of
these machines into smaller, fully-isolated machines. Each
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container in Mesos represents a single Lasp node that com-
municates with other nodes in the cluster using PARTISAN.

The increment interval for each counter was fixed at 10s,
and the propagation interval for the counter was fixed at 5s.
The total number of impressions was configured to ensure that
the experiment would run for 30 minutes under all configura-
tions. The evaluation is performed on both the client-server
and peer-to-peer overlays for different cluster sizes, ranging
from 32 all the way up to 1,024 node clusters. For both over-
lays, the system propagates the full state of the counter to the
node’s peers at each propagation interval.

Note that since the Rovio advertisement counter scenario
was designed for mobile applications, we do not run the full-
mesh topology because it would be unrealistic. That is, in
the context of mobile apps, clients would not connect to all
other nodes, nor will they have knowledge of who all of the
clients in the system are. Rather, either mobile apps will com-
municate with some number of nearby peers (peer-to-peer) or
they will communicate through a server (client-server). Client-
server also serves as the standard model of deploying mobile
applications today. Thus, we designed our experiments to re-
flect this—we examine client-server and peer-to-peer overlays
for this application in our experiments.

Results. Figure 9 presents the total data transmission re-
quired for the experiment to finish as we scale the size of
the cluster from 32 to 1024 nodes. For smaller clusters of
nodes, client-server is the more efficient overlay in terms of
the amount of data that must be transmitted to finish the ex-
periment. However, this improved efficiency comes at a cost:
the client-server configuration is unable to scale beyond 256
nodes. More specifically, the experiment fails to complete
because of a crash failure of the server. This crash failure oc-
curs because of unbounded message queues: when the server
is unable to process the incoming messages from the clients
quickly enough, the Erlang VM allocates all available memory
for storage of the message queue. This unbounded allocation
results in termination of the Erlang by the Linux OOM killer
once the instance runs out of available memory.

Peer-to-peer is more resilient in the face of a node failure
allowing it to support larger clusters of nodes—up to 1024!
However, peer-to-peer is less efficient due to this—the redun-
dancy of communication links used by the overlay causes it
to transmit more data in order to complete the experiments.

Discussion. Perhaps the most interesting takeaway from
the results of this real-world large-scale experiment is that
the experiment was even possible at all with Erlang. As Dis-
tributed Erlang permits one to only use a full-mesh overlay,
it’s possible that the previous results observed by Ericsson [1]
on the maximum size of Erlang clusters–only 200 nodes–are
due to this full-mesh-only restriction.

This experiment suggests that PARTISAN may enable the
development of new applications with actors systems that
have not been previously possible by enabling the application

developer to, at runtime, change the pattern of communication
between nodes, without altering application semantics. Per-
haps the lack of mobile applications or even IoT applications
written using distributed actor systems is a symptom of the
full-mesh-only restriction.

7 Related Work
Head-of-line blocking is a well-known issue in the systems
and networking community, especially in systems that use
multiplexed connections. Facebook’s TAO [9] relies on multi-
plexed connections but allows out-of-order responses to pre-
vent head-of-line blocking issues. Riak CS [7], an S3-API
compatible object storage system build on Riak, arbitrarily
chunks data into 1MB segments to prevent head-of-line block-
ing. Geo-replicated Riak [6] contains an ad hoc implementa-
tion of node-to-node messaging to avoid Distributed Erlang at
cross-region latencies. Distributed Erlang now includes a fea-
ture for arbitrarily segmenting messages into smaller chunks
to reduce the impact of head-of-line blocking [17].

Ghaffari et al. [15] identified several factors limiting Er-
lang’s scalability: (i) increasing payload size and (ii) head-
of-line blocking with Erlang’s RPC mechanism – two of the
limiting factors in Riak 1.1.1’s ≈ 60 node limit on scalabil-
ity. Chechina et al. [11] proposed partitioning the graph of
nodes into subgraphs and using supernodes for connecting
the groups, avoiding the problems of full-mesh connectivity.

8 Conclusion
We presented PARTISAN, an alternative runtime system for
improved scalability and reduced latency in actor applications.
PARTISAN provides higher scalability by allowing the applica-
tion developer to specify the network overlay used at runtime
without changing application semantics, thereby specializ-
ing the network communication patterns to the application.
PARTISAN reduces message latency through a combination
of three predominately automatic optimizations: parallelism,
named channels, and affinitized scheduling. We implemented
PARTISAN in Erlang and showed that PARTISAN achieves up
to an order of magnitude increase in the number of nodes the
system can scale to through runtime overlay selection, up to
a 38.07x increase in throughput, and up to a 13.5x reduction
in latency over Distributed Erlang.
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Availability
PARTISAN is available at https://github.com/
lasp-lang/partisan. Instructions for reproducing our re-
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partisan-usenix-atc-2019.
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