
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Insider: Designing In-Storage Computing System
for Emerging High-Performance Drive

Zhenyuan Ruan, Tong He, and Jason Cong, UCLA

https://www.usenix.org/conference/atc19/presentation/ruan

INSIDER: Designing In-Storage Computing System for Emerging
High-Performance Drive

Zhenyuan Ruan∗ Tong He Jason Cong
University of California, Los Angeles

Abstract
We present INSIDER, a full-stack redesigned storage sys-

tem to help users fully utilize the performance of emerging
storage drives with moderate programming efforts. On the
hardware side, INSIDER introduces an FPGA-based recon-
figurable drive controller as the in-storage computing (ISC)
unit; it is able to saturate the high drive performance while
retaining enough programmability. On the software side, IN-
SIDER integrates with the existing system stack and provides
effective abstractions. For the host programmer, we introduce
virtual file abstraction to abstract ISC as file operations; this
hides the existence of the drive processing unit and minimizes
the host code modification to leverage the drive computing
capability. By separating out the drive processing unit to the
data plane, we expose a clear drive-side interface so that drive
programmers can focus on describing the computation logic;
the details of data movement between different system com-
ponents are hidden. With the software/hardware co-design,
INSIDER runtime provides crucial system support. It not only
transparently enforces the isolation and scheduling among
offloaded programs, but it also protects the drive data from
being accessed by unwarranted programs.

We build an INSIDER drive prototype and implement its
corresponding software stack. The evaluation shows that IN-
SIDER achieves an average 12X performance improvement
and 31X accelerator cost efficiency when compared to the ex-
isting ARM-based ISC system. Additionally, it requires much
less effort when implementing applications. INSIDER is open-
sourced [5], and we have adapted it to the AWS F1 instance
for public access.

1 Introduction
In the era of big data, computer systems are experiencing an
unprecedented scale of data volume. Large corporations like
Facebook have stored over 300 PB of data at their warehouse,
with an incoming daily data rate of 600 TB [62] in 2014. A
recent warehouse-scale profiling [42] shows that data analytics
has become a major workload in the datacenter. Operating
on such a data scale is a huge challenge for system designers.
Thus, designing an efficient system for massive data analytics
has increasingly become a topic of major importance [23, 27].

The drive I/O speed plays an important role in the overall
data processing efficiency—even for the in-memory comput-
ing framework [68]. Meanwhile, for decades the improve-

∗Corresponding author.

ment of storage technology has been continuously pushing
forward the drive speed. The two-level hierarchy (i.e., chan-
nel and bank) of the modern storage drive provides a scal-
able way to increase the drive bandwidth [41]. Recently, we
witnessed great progress in emerging byte-addressable non-
volatile memory technologies which have the potential to
achieve near-memory performance. However, along with the
advancements in storage technologies, the system bottleneck
is shifting from the storage drive to the host/drive intercon-
nection [34] and host I/O stacks [31, 32]. The advent of such
a "data movement wall" prevents the high performance of the
emerging storage from being delivered to end users—which
puts forward a new challenge to system designers.

Rather than moving data from drive to host, one natural
idea is to move computation from host to drive, thereby avoid-
ing the aforementioned bottlenecks. Guided by this, existing
work tries to leverage drive-embedded ARM cores [33,57,63]
or ASIC [38, 40, 47] for task offloading. However, these ap-
proaches face several system challenges which make them
less usable: 1) Limited performance or flexibility. Drive-
embedded cores are originally designed to execute the drive
firmware; they are generally too weak for in-storage comput-
ing (ISC). ASIC, brings high performance due to hardware
customization; however, it only targets the specific workload.
Thus, it is not flexible enough for general ISC. 2) High pro-
gramming efforts. First, on the host side, existing systems
develop their own customized API for ISC, which is not com-
patible with an existing system interface like POSIX. This
requires considerable host code modification to leverage the
drive ISC capability. Second, on the drive side, in order to
access the drive file data, the offloaded drive program has to
understand the in-drive file system metadata. Even worse, the
developer has to explicitly maintain the metadata consistency
between host and drive. This approach requires a significant
programming effort and is not portable across different file
systems. 3) Lack of crucial system support. In practice, the
drive is shared among multiple processes. Unfortunately, ex-
isting work assumes a monopolized scenario; the isolation
and resource scheduling between different ISC tasks are not
explored. Additionally, data protection is an important con-
cern; without it, offloaded programs can issue arbitrary R/W
requests to operate on unwarranted data.

To overcome these problems, we present INSIDER, a full-
stack redesigned storage system which achieves the following
design goals.

USENIX Association 2019 USENIX Annual Technical Conference 379

Saturate high drive rate. INSIDER introduces the FPGA-
based reconfigurable controller as the ISC unit which is able
to process the drive data at the line speed while retaining pro-
grammability (§3.1). The data reduction or the amplification
pattern from the legacy code are extracted into a drive program
which could be dynamically loaded into the drive controller on
demand (§3.2.2). To increase the end-to-end throughput, IN-
SIDER transparently constructs a system-level pipeline which
overlaps drive access time, drive computing time, bus data
transferring time and host computing time (§3.5).

Provide effective abstractions. INSIDER aims to provide
effective abstractions to lower the barrier for users to leverage
the benefits of ISC. On the host side, we provide virtual file
abstraction which abstracts ISC as file operations to hide the
existence of the underlying ISC unit (§3.3). On the drive
side, we provide a compute-only abstraction for the offloaded
task so that drive programmers can focus on describing the
computation logic; the details of underlying data movement
between different system components are hidden (§3.4).

Provide necessary system support. INSIDER separates
the control and data planes (§3.2.1). The control plane is
trusted and not user-programmable. It takes the responsibili-
ties of issuing drive access requests. By performing the safety
check in the control plane, we protect the data from being
accessed by unwarranted drive programs. The ISC unit, which
sits on the data plane, only intercepts and processes the data
between the drive DMA unit and storage chips. This compute-
only interface provides an isolated environment for drive pro-
grams whose execution will not harm other system compo-
nents in the control plane. The execution of different drive
programs is hardware-isolated into different portions of FPGA
resources. INSIDER provides an adaptive drive bandwidth
scheduler which monitors the data processing rates of differ-
ent programs and provides this feedback to the control plane
to adjust the issuing rates of drive requests accordingly (§3.6).

High cost efficiency. We define cost efficiency as the ef-
fective data processing rate per dollar. INSIDER introduces a
new hardware component into the drive. Thus, it is critical to
validate the motivation by showing that INSIDER can achieve
not only better performance, but also better cost efficiency
when compared to the existing work.

We build an INSIDER drive prototype (§4.1), and imple-
ment its corresponding software stack, including compiler,
host-side runtime library and Linux kernel drivers (§4.2). We
could mount the PCIe-based INSIDER drive as a normal stor-
age device in Linux and install any file system upon it. We
use a set of widely used workloads in the end-to-end sys-
tem evaluation. The experiment results can be highlighted
as follows: 1) INSIDER greatly alleviates the system inter-
connection bottleneck. It achieves 7X∼11X performance
compared with the host-only traditional system (§5.2.1). In
most cases, it achieves the optimal performance (§5.2.2). 2)
INSIDER achieves 1X∼58X (12X on average) performance
and 2X∼150X (31X on average) cost efficiency compared

to the ARM-based ISC system (§5.5). 3) INSIDER only re-
quires moderate programming efforts to implement applica-
tions (§5.2.3). 4) INSIDER simultaneously supports multiple
offloaded tasks, and it can enforce resource scheduling adap-
tively and transparently (§5.3).

2 Background and Related Work
2.1 Emerging Storage Devices: Opportunities

and Challenges
Traditionally, drives are regarded as a slow device for the sec-
ondary persistent storage, which has the significantly higher
access latency (in ms scale) and lower bandwidth (in hundreds
of MB per second) compared to DRAM. Based on this, the
classical architecture for storage data processing presented in
Fig. 3a has met users’ performance requirements for decades.
The underlying assumptions of this architecture are: 1) The
interconnection performance is higher than the drive perfor-
mance. 2) The execution speeds of host-side I/O stacks, includ-
ing the block device driver, I/O scheduler, generic block layer
and file system, are much faster than the drive access. While
these were true in the era of the hard-disk drive, the landscape
has totally changed in recent years. The bandwidth and la-
tency of storage drives have improved significantly within the
past decade (see Fig. 1 and Fig. 2). However, meanwhile, the
evolution of the interconnection bus remains stagnant: there
have been only two updates between 2007 and 2017.1

For the state-of-the-art platform, PCIe Gen3 is adopted
as the interconnection [66], which is at 1 GB/s bidirectional
transmission speed per link. Due to the storage density2 and
due to cost constraints, the four-lane link is most commonly
used (e.g., commercial drive products from Intel [7] and Sam-
sung [14]), which implies the 4 GB/s duplex interconnec-
tion bandwidth. However, this could be easily transcended
by the internal bandwidth of the modern drive [24, 33, 34].
Their internal storage units are composed of multiple chan-
nels, and each channel equips multiple banks. Different from
the serial external interconnection, this two-level architec-
ture is able to provide scalable internal drive bandwidth—a
sixteen-channel, single-bank SSD (which is fairly common
now) can easily reach 6.4 GB/s bandwidth [46]. The grow-
ing mismatch between the internal and external bandwidth
prevents us from fully utilizing the drive performance. The
mismatch gets worse with the advent of 3D-stacked NVM-
based storage which can deliver comparable bandwidth with
DRAM [35, 54]. On the other hand, the end of Dennard scal-
ing slows down the performance improvement of CPU, mak-
ing it unable to catch the ever-increasing drive speed. The
long-established block layer is now reported to be a major

1Although the specification of PCIe Gen 4 was finalized at the end of 2017,
there is usually a two-year waiting period for the corresponding motherboard
to be available in the market. Currently there is no motherboard supporting
PCIe 4.0, and we do not include it in the figure.

2CPU has limited PCIe slots (e.g., 40 lanes for an Xeon CPU) exposed
due to the pin constraint. Using more lanes per drive leads to low storage
density. In practice, a data center node equips 10 or even more storage drives.

380 2019 USENIX Annual Technical Conference USENIX Association

Figure 1: The bandwidth evolution of storage drives. Data are taken from
[18] [4] [1] [8] [13] [16] in chronological order. This figure also presents the
bandwidth evolution of PCIe (in 4 lanes and 8 lanes).

Figure 2: The latency evolution of storage drives. Data are taken from [15]
[3] [9] [8] [10] [11] in chronological order. Meanwhile the latency of the
host storage stack is about 20 µs [32], and the PCIe RTT (which includes the
latency of bus and controller) is about 1 µs [50].

bottleneck of the storage system [28], and less than half raw
drive speed is delivered to the end user [31, 56].

On the latency side, the state-of-the-art SSD delivers R/W
latency below 10 µs [14], and the future NVM-based storage
can potentially deliver sub-microsecond latency [30]. Mean-
while, the round-trip latency of PCIe still remains at about 1
µs [50], and the host-side I/O stack latency is even more than
20 µs [31, 32]. This implies that the latencies of host-side I/O
stack are going to dominate the end-to-end latency.

In summary, the emerging storage devices bring hope—
along with great challenges—to system designers. Unless the
“data movement wall” is surpassed, high storage performance
will not be delivered to end users.

2.2 Review of In-Storage Computing
In order to address the above system bottlenecks, the in-
storage computing (ISC) architecture is proposed [48, 61],
shown in Fig. 3b. In ISC, the host partially offloads tasks into
the in-storage accelerator which can take advantage of the
higher internal drive performance but is relatively less pow-
erful compared to the full-fledged host CPU. For tasks that
contain computation patterns like filtering or reduction, the
output data volume of the accelerator, which will be trans-
ferred back to host via interconnection, is greatly reduced so
that bottlenecks of interconnection and host I/O stacks are
alleviated [33, 57, 63]. With customized IO stacks, the system
bypasses the traditional OS storage stacks to achieve lower
latency. With ISC, considerable performance and energy gains
are achieved [25].

Historically, the idea of ISC was proposed two decades

Host

Drive
Firmware

Storage Chips

User Application
File System
Block Layer

Driver

Interconnection

(a) Classical.

Host

Interconnection
Drive

Firmware
Storage Chips

Accelerator

User Application

Driver

Customized
IO Stack

(b) In-storage computing.

Figure 3: Drive data processing architecture.

ago [43, 59], but did not become popular at that time. The
reasons are twofold: 1) For the technology at that time, it
was too expensive to integrate computing unit with storage
drive; 2) More importantly, the drive performance was much
lower than the performance of the host/drive bus, so in-storage
computing could only bring limited performance benefits.

However, with the great improvement of VLSI technology
in the past two decades, integration expense is greatly reduced.
In fact, currently, every high-end SSD equips one or even
multiple embedded CPUs. Meanwhile, the drive performance
consistently increases, and goes beyond the performance of
host/drive interconnection (see Fig. 1 and Fig. 2). This gap
validates the motivation of ISC. Therefore, in recent years,
we witness the revival of in-storage computing [49]. Most
of the recent work focuses on offloading user-defined tasks
to drive-embedded CPUs, which are originally designed to
execute the firmware code, e.g., flash translation layer (FTL).
However, this approach faces the following limitations.

Limited computing capability. Drive-embedded CPUs
are usually fairly weak ARM cores which can be up to 100X
slower compared to the host-side CPU (Table 3 in [63]). Based
on this, offloading tasks to drive may lead to a decreased data
processing speed by a factor of tens [33]. A recent work [48]
proposes a dynamic workload scheduler to partition tasks be-
tween host and drive ARM processor. However, the optimal
point they found is very close to the case in which all the tasks
are executed at the host; this emphasizes that embedded cores
are too feeble to provide a distinguishable speedup.

No effective programming abstractions. Existing work
does not provide effective abstractions for programmers. On
the host side, they develop their own customized API for ISC
which is not compatible with an existing system interface like
POSIX. This requires considerable host code modification to
leverage the drive ISC capability. On the drive side, the drive
program either manages the drive as a bare block device with-
out a file system (FS), e.g., [48], or has to carefully cooperate
with the host FS to access the correct file data, e.g., [32]. This
distracts drive programmers from describing the computing
logic and may not be portable across different FSes. It is im-
portant to provide effective abstractions to lower the barrier
for users to leverage the benefits of ISC [26].

Lack of crucial system support. Naturally, the drive is
shared among multiple processes, which implies the scenario
of concurrently executing multiple ISC applications. This is

USENIX Association 2019 USENIX Annual Technical Conference 381

CPU DriveMem
PCIe

User Application

File System

Block Layer

Driver

ISC
runtime
library

Kernel Space

User Space

ISC Driver

ISC HW Runtime (outer)
Programmable
Region (inner)

App
Slot Data

Mux

Data Demux

Storage Unit

DMA

Controller
Firmware

Accelerator
Cluster

Data path
Ctrl path

App
Slot
App
Slot

App
Slot

Data plane
Ctrl plane

Figure 4: System architecture of INSIDER. INSIDER separates the control plane and the data plane; accelerator cluster sits on the data plane (black box) while
the host-side library and drive-side firmware sit on the control plane (gray box).

especially important for the emerging storage drive since a
single application may not fully saturate the high drive speed.
It is crucial to provide support for protection, isolation and
bandwidth scheduling. Without data protection, the malicious
or erroneous ISC task may operate on unwarranted data; with-
out isolation, the execution of one ISC task may harm the
execution of other ISC tasks, or even the firmware execution;
without bandwidth scheduling, some ISC tasks may forcibly
occupy the drive, hampering fairness and liveness. However,
existing work, e.g., [33, 34, 48], does not respond to these
issues by assuming a monopolized execution environment.

Finally, another line of research equips the drive with an
ASIC, which is the customized hardware chip designed for spe-
cific workloads. For instance, YourSQL [40] and Biscuit [38]
equip a hardware IP with a key-based pattern matcher; work
in [47] adopts a special hardware for database join and scan
operations, etc. While ASIC-based solutions can achieve even
much better performance compared to the high-end host CPU
in their targeting applications, they are too specific to support
other tasks. It requires the design of N chips to support N
different applications; this introduces N times manufactur-
ing, area size and energy cost. Thus, ASIC solutions are too
inflexible to support general ISC.

3 INSIDER System Design
To overcome the problems above, we redesign the storage sys-
tem across all layers, from the user layer down to the hardware
layer. The design of INSIDER is introduced below.

3.1 FPGA-Based ISC Unit
The scenario of ISC puts forth several requirements to the
in-drive processing unit.

High reconfigurability. As mentioned earlier, ASIC-based
solutions can only target specific workloads. We wish the
processing unit to be flexible enough to support general ISC.

Support massive parallelism. We analyze the computa-
tion patterns of data analytic workloads (§5.2) that are suitable
for ISC. These applications expose abundant pipeline-level
and data-level parallelism. The processing unit should have a
proper architecture to capture those inherent parallelisms.

High energy efficiency. The storage drive is an energy-
efficient device whose power consumption is just about 10 W

GPU ARM X86 ASIC FPGA
Programmability Good Good Good No Good
Data-level
parallelism Good Poor Fair Best Good

Pipeline-level
parallelism No No No Best Good

Energy efficiency Fair Fair Poor Best Good

Table 1: Evaluating five candidates of ISC unit.

[14]. The processing unit should not significantly compromise
the energy efficiency of the drive.

Given those requirements, we evaluate several candidates
of ISC unit (see Table 1). FPGA comes out to be the best fit
in our scenario. First, FPGA is generally reconfigurable and
can form customized architectures for the targeted workloads.
Second, through customization, FPGA can efficiently capture
the inherent parallelism of applications. The data-level paral-
lelism can be seized by replicating the processing elements to
construct SIMD units [69]; the pipeline-level parallelism can
be leveraged by constructing a deep hardware pipeline [60].
Finally, FPGA could achieve high energy efficiency between
microprocessors and ASICs [58].

3.2 Drive Architecture
Fig. 4 presents the system architecture of INSIDER. We focus
on introducing the drive-side design in this subsection.
3.2.1 Separating Control and Data Planes
The INSIDER drive controller consists of two decoupled com-
ponents: the firmware logic and the accelerator cluster (i.e.,
the FPGA-based ISC unit). The firmware cooperates with the
host-side ISC runtime and the ISC driver to enforce the control
plane execution (marked in Fig. 4). It receives the incoming
drive access requests from host, converts their logical block
addresses into physical block addresses, and finally issues the
requests to the storage unit. The accelerator cluster is sepa-
rated out into the data plane. It does not worry about where
to read (write) data from (to) the storage chip. Instead, it in-
tercepts and processes the data between the DMA controller
and the storage chip.

By separating control and data plane, we expose a compute-
only abstraction for the in-drive accelerator. It does not proac-
tively initiate the drive accessing request. Instead, it only pas-
sively processes the intercepted data from other components.
The control plane takes the responsibilities of conducting file
permission check at host and issuing drive accessing requests;

382 2019 USENIX Annual Technical Conference USENIX Association

it prevents the drive data from being accessed by unwarranted
drive programs. In addition, the compute-only abstraction
brings an isolated environment for the accelerator cluster; its
execution will not harm the execution of other system compo-
nents in the control plane. The execution of different offloaded
tasks in the accelerator cluster is further hardware-isolated
into different portions of FPGA resources.
3.2.2 Accelerator Cluster
As shown in the rightmost portion of Fig. 4, the accelerator
cluster is divided into two layers. The inner layer is a pro-
grammable region which consists of multiple application slots.
Each slot can accommodate a user-defined application accel-
erator. Different than the multi-threading in CPU, which is
time multiplexing, different slots occupy different portions of
hardware resources simultaneously, thus sharing FPGA in spa-
tial multiplexing. By leveraging partial reconfiguration [44],
host users can dynamically load a new accelerator to the spec-
ified slot. The number of slots and slot sizes are chosen by
the administrator to meet the application requirements, i.e.,
number of applications executing simultaneously and the re-
source consumption of applications. The outer layer is the
hardware runtime which is responsible for performing flow
control (§3.5) and dispatching data to the corresponding slots
(§3.6). The outer layer is set to be user-unprogrammable to
avoid safety issues.

3.3 The Host-Side Programming Model
In this section we introduce virtual file abstraction which is
the host-side programming model of INSIDER. A virtual file
is fictitious, but pretends to be a real file from the perspective
of the host programmer—it can be accessed via a subset of
the POSIX-like file I/O APIs shown in Table 2. The access
to virtual file will transparently trigger the underlying system
data movement and the corresponding ISC, creating an illu-
sion that this file does really exist. By exposing the familiar
file interface, the effort of rewriting the traditional code into
the INSIDER host code is negligible.

We would like to point out that INSIDER neither imple-
ments the full set of POSIX IO operations nor provides the
full POSIX semantics, e.g., crash consistency. The argument
here is similar to the GFS [37] and Chubby [29] papers: files
provide a familiar interface for host programmers, and ex-
posing a file-based interface for ISC can greatly alleviate the
programming overheads. Being fully POSIX-compliant is not
only expensive but also unnecessary in most use cases.
3.3.1 Virtual File Read
Listing 1 shows a snippet of the host code that performs virtual
file read. We will introduce the design of virtual file read based
on the code order. Fig. 5 shows the corresponding diagram.

System startup During the system startup stage, IN-
SIDER creates a hidden mapping file .USERNAME.insider
in the host file system for every user. The file is used to store
the virtual file mappings (which will be discussed soon). For
security concerns, INSIDER sets the owner of the mapping file
to the corresponding user and sets the file permission to 0640.

// register a virtual file
string virt = reg_virt_file(real_path ,acc_id);
// open the virtual file
int fd = vopen(virt.c_str(),O_RDONLY);
if (fd != -1) {

// send drive program parameters (if there are any)
send_params(fd, param_buf , param_buf_len);
int rd_bytes = 0;
// read virtual file
while (rd_bytes = vread(fd, buf, buf_size)) {

// user processes the read data
process(buf, rd_bytes);

}
// close virtual file, release resources
vclose(fd);

}

Listing 1: Host-side code of performing virtual file read.

1). int vopen(const char *path, int flags)

2). ssize_t vread(int fd, void *buf, size_t count)

3). ssize_t vwrite(int fd, void *buf, size_t count)

4). int vsync(int fd)

5). int vclose(int fd)

6). int vclose(int fd, size_t *rfile_written_bytes)

7). string reg_virt_file(string file_path, string acc_id)

8). string reg_virt_file(tuple<string, uint, uint> file_sg_list, string acc_id)

9). bool send_params(int fd, void *buf, size_t count)

Table 2: INSIDER host-side APIs. vwrite, vsync will be discussed in §3.3.2
while others will be discussed in §3.3.1.

Registration. The host program determines the file data
to be read by the in-drive accelerator by invoking reg_virt_file
(method 7 in Table 2); it takes the path of a real file plus an
application accelerator ID, and then maps them into a virtual
file. Alternatively, reg_virt_file (method 8) accepts a vector
of <file name, offset, length> tuples to support the gather-
read pattern.3 This allows us to create the virtual file based
on discrete data from multiple real files. During the registra-
tion phase, the mapping information will be recorded into
the corresponding mapping file, and the specified accelerator
will be programmed into an available slot of the in-drive re-
configurable controller. INSIDER currently enforces a simple
scheduling policy: it blocks when all current slots are busy.

File open. After registration, the virtual file can be opened
via vopen. The INSIDER runtime will first read the mapping
file to know the positions of the mapped real file(s). Next, the
runtime issues the query to the host file system to retrieve
the accessing permission(s) and the ownership(s) of the real
file(s). Then, the runtime performs the file-level permission
check to find out whether the vopen caller has the correct ac-
cess permission(s); in INSIDER, we regard the host file system
and INSIDER runtime as trusted components, while the user
programs are treated as non-trusted components. If it is an
unauthorized access, vopen will return an invalid file descrip-
tor. Otherwise, the correct descriptor will be returned, and the
corresponding accelerator slot index (used in §3.6) will be

3Currently INSIDER operates drive data at the granularity of 64 B, there-
fore the offset and length fields have to be multiples of 64 B. It is a limitation
of our current implementation rather than the design.

USENIX Association 2019 USENIX Annual Technical Conference 383

1) System
startup

File system

.USERNAME.
Insider

cr
ea

te

2) Registration

File system

.USERNAME.
Insider

Real
File

Drive

2.
1

up
da

te

2.2 program
 slot

3) File open

File system

.USERNAME.
Insider

Real
File

3.
1

re
al

 fi
le

 in
fo

<name, off, len> 3.
4

ex
ten

ts
in

fo
fro

m
 fi

lef
ra

g3.2 check

perm
ission

3.3 set append-
only attribute

Drive

Drive
Program

3.5 runtim
e

param
s

Firm-
ware

5) File close

5.1 unset
append-only

Host
Resource

fd, buffers, ...

5.2 release

5.3 reset

4) File read

Real file

Virt file Drive
Prog.

4.
1

vr
ea

d

4.2 intercepts

4.3 output DM
A

DriveFile system

.USERNAME.
Insider

Figure 5: The system diagram of performing virtual file read. Only major steps are shown in this figure, see the text description in §3.3.1 for details.

sent to the INSIDER drive. After that, the INSIDER runtime
asks the INSIDER kernel module to set the append-only at-
tribute (if it is not already set by users before) on the mapped
real file(s); this is used to guarantee that the current blocks
of the real file(s) will not be released or replaced during the
virtual file read.4 Later on, INSIDER retrieves the locations of
real file extents via the filefrag tool and transfers them to the
drive. Finally, the host program sends runtime parameters of
the accelerator program (discussed in §3.4), if there are any,
via send_params to the drive.

File read. Now the host program can sequentially read
the virtual file via vread. It first triggers the INSIDER drive
to read the corresponding real file extents. The accelerator
intercepts the results from the storage chips and invokes the
corresponding data processing. Its output will be transferred
back to the host via DMA, creating an illusion that the host is
reading a normal file (which actually turns out to be a virtual
file). The whole process is deeply pipelined without stalling.
The detailed design of pipelining is discussed in §3.5. It seems
to be meaningless to read the ISC results randomly, thus we
do not implement a vseek interface.

File close. Finally, the virtual file is closed via vclose. In
this step, the INSIDER runtime will contact the INSIDER kernel
module to clear the append-only attribute if it was previously
set in vopen. The host-side resource (e.g., file descriptor, the
host-side buffer for DMA, etc.) will be released. Finally, the
runtime sends the command to the INSIDER drive to reset the
application accelerator to its initial state.

Virtual file read helps us to alleviate the bandwidth bot-
tleneck in the drive → host direction. For example, for the
feature selection application [64], the user registers a virtual
file based on the preselected training data and the correspond-
ing accelerator. The postselected result could be automatically
read via vread without transferring the large preselected file
from drive to host. Thus, the host program can simply use the
virtual file as the input file to run the ML training algorithm.

3.3.2 Virtual File Write
Virtual file write works mostly in the same way but reverses
the data path direction. We focus on describing the difference.

Registration. Virtual write requires users to preallocate
enough space for the real file(s) to store the write output. If
users leverage the fallocate system call to preallocate the file,
they have to make sure to clear the unwritten flag on the file

4With the append-only attribute, ftruncate will fail to release blocks, and
the file defragmentation tool, e.g., xfs_fsr will ignore these blocks [21].

extents.5 Otherwise, later updates on the real file may only be
perceived via the INSIDER interface but not the OS interface.

File open. Besides the steps in §3.3.1, INSIDER runtime
invokes f sync to flush dirty pages of the real file(s) to drive
if there are any. This guarantees the correct order between
previous host-initiated write requests and the upcoming IN-
SIDER drive-initiated write requests.

File write. In the file write stage, users invoke vwrite to
write data to the virtual file. The written data is transferred
to INSIDER drive through DMA, and then will be intercepted
and processed by the accelerator. The output data will be
written into the corresponding real file blocks. INSIDER also
provides vsync (method 4 in Table 2), which can be used by
users to flush in-core vwrite data to the INSIDER drive.

File close. Besides the steps in §3.3.1, INSIDER runtime
will drop the read cache of the real file(s), if there are any, to
guarantee that the newly drive-written data can be perceived
by the host. This is conducted via calling posix_fadvise with
POSIX_FADV_DONTNEED. Via invoking a variant of vclose
(method 6 in Table 2), users can know the number of bytes
written to the real file(s) by the underlying INSIDER drive.
Based on the returned value, users may further invoke ftrun-
cate to truncate the real file(s).

Virtual file write helps us alleviate the bandwidth bottle-
neck in the host→ drive direction, since less data needs to
be transferred through the bus (they then gets amplified in
drive). For example, the user can register a virtual file based
on a compressed real file and a decompression drive program.
In this scenario, only compressed data needs to be transferred
through the bus, and the drive performs in-storage decompres-
sion to materialize the decompressed file.

Since the virtual file write is mostly symmetric to the virtual
file read, in the following we will introduce other system
designs based on the direction of read to save space.
3.3.3 Concurrency Control
In INSIDER, a race condition might happen in the following
cases: 1) Simultaneously a single real file is being vwrite
and vread; 2) Simultaneously a real file is being vwrite by
different processes; 3) A single real file is being vread, and
meanwhile it is being written by a host program. In these
cases, the users may encounter non-determinate results.

5In Linux, some file systems, e.g., ext4, will put the unwritten flag over
the file extents preallocated by fallocate. Any following read over the extents
will simply return zero(s) without actually querying the underlying drive;
this is designed for security considerations since the preallocated blocks may
contain the data from other users.

384 2019 USENIX Annual Technical Conference USENIX Association

Figure 6: A simple example of the INSIDER drive accelerator code.

The problem also applies to Linux file systems: for example,
different host processes may write to a same file. Linux file
systems do not automatically enforce the user-level file concur-
rency control and leave the options to users. INSIDER makes
the same decision here. When it is necessary, users can reuse
the Linux file lock API to enforce the concurrency control by
putting the R/W lock to the mapped real file.

3.4 The Drive-Side Programming Model
In this section we introduce the drive-side programming
model. INSIDER defines a clear interface to hide all details of
data movements between the accelerator program and other
system components so that the device programmer only needs
to focus on describing the computation logic. INSIDER pro-
vides a drive-side compiler which allows users to program
in-drive accelerators with C++ (see Fig. 6 for a sample pro-
gram). Additionally, the INSIDER compiler also supports the
traditional RTL (e.g., Verilog) for experienced FPGA pro-
grammers. As we will see in §5.2, only C++ is used in the
evaluation, and it can already achieve near-optimal perfor-
mance in our scenario (§5.2.2).

Drive program interface consists of three FIFOs—data in-
put FIFO, data output FIFO and parameter FIFO, as shown
in the sample code. Input FIFO stores the intercepted data
which is used for the accelerator processing. The output data
of the accelerator, which will be sent back to host and acquired
by vread, is stored into output FIFO. The host-sent runtime
parameters are stored in parameter FIFO. The input and the
output data are wrapped into a sequence of flits, i.e., struct
APP_Data (see Fig. 6). The concept of flit is similar to the
"word size" in host programs. Each flit contains a 64-byte
payload, and the eop bit is used for marking the end of the
input/output data. The length of data may not be multiples of
64 bytes, the len field is used to indicate the length of the last
flit. For example, 130-byte data is composed by three flits; the
last flit has eop = true and len = 2.

The sample program first reads two parameters, upper
bound and lower bound, from the parameter FIFO. After that,
in each iteration, the program reads the input record from the
input FIFO. Then the program checks the filtering condition
and writes the matched record into the output FIFO. Users
can define stateful variables which are alive across iterations,
e.g., line 11 - line 13 in Fig. 6, and stateless variables as well,
e.g., line 22. These variables will be matched into FPGA reg-

isters or block RAMs (BRAMs) according to their sizes. The
current implementation does not allow placing variables into
FPGA DRAM, but it is trivial to extend.

INSIDER supports modularity. The user can define mul-
tiple sub-programs chained together with FIFOs to form a
complete program, as long as it exposes the same drive accel-
erator interface shown above. Chained sub-programs will be
compiled as separate hardware modules by the INSIDER com-
piler, and they will be executed in parallel. This is very similar
to the dataflow architecture in the streaming system, and we
can build a map-reduce pipeline in drive with chained sub-
programs. In fact, most applications evaluated in §5.2 are im-
plemented in this way. Stateful variables across sub-programs
could also be passed through the FIFO interface.

3.5 System-Level Pipelining
Logically, in INSIDER, vread triggers the drive controller to
fetch storage data, perform data processing, and transfer the
output back to host. After that, the host program can finally
start the host-side computation to consume the data. A naive
design leads to the execution time t = tdrive_read +tdrive_comp.+
tout put_trans.+ thost_comp. As we will see in §5.2, this leads to a
limited performance.

INSIDER constructs a deep system-level pipeline which in-
cludes all system components involved in the end-to-end pro-
cessing. It happens transparently for users; they simply use
the programming interface introduced in §3.3 and §3.4. With
pipelining, the execution time is decreased to max(tdrive_read ,
tdrive_comp., tout put_trans., thost_comp).

Overlap tdrive_read with tdrive_comp. We carefully design
the INSIDER hardware logic to ensure that it is fully pipelined,
so that the storage read stage, computation stage and output
DMA stage overlap one another.

Overlap drive, bus and host time We achieve this by 1
Pre-issuing the file access requests during vopen which would
trigger the drive to perform the precomputation; 2 Allocat-
ing the host memory in the INSIDER runtime to buffer the
drive precomputed results. With 1 , the drive has all the posi-
tion information of the mapped real file, and it can perform
computation at its own pace. Thus, the host-side operation
is decoupled from the drive-side computation. 2 further de-
couples the bus data transferring from the drive-side compu-
tation. Now, each time that the host invokes vread, it simply
pops the precomputed result from host buffers. To prevent the

USENIX Association 2019 USENIX Annual Technical Conference 385

Firmware

Original

ISC

Mux

Accelerator
Cluster

dispa-
tcher

Slot 0

SIF

req

(req, slot #)

normal
 IO data

ISC data

ISC data

Drive Data

Slot 1

Slot 2

Credits

Figure 7: The drive architecture for supporting simultaneous multiple tasks.

drive from overflowing host buffers when host lags behind,
INSIDER enforces credit-based flow control for each opened
virtual file.

3.6 Adaptive Bandwidth Scheduler
Naturally, the drive is shared among multiple processes, which
implies the scenario of parallel execution of multiple appli-
cations. For example, a single application may not fully satu-
rate the high internal drive bandwidth so that the remaining
bandwidth can be leveraged by others to improve the drive
utilization. There are two concerns that should be addressed
to support simultaneous multiple applications: 1) Given the
fact that the drive is multiplexed among accelerators, we need
a mechanism to dispatch drive data to the corresponding ac-
celerator correctly. 2) Different accelerators have different
data processing rates which can change dynamically. We need
to implement a dynamic weighted fair queueing policy to
schedule the drive bandwidth among accelerators adaptively.

Multiplexing. We develop a moderate extension to the
original drive firmware (i.e., the one that does not support
simultaneous multiple applications) to support multiplexing:
we add an ISC unit and a multiplexer, see Fig. 7. The original
firmware is used for handling the normal drive I/O requests as
usual, while the ISC unit is used for handling the ISC-related
drive requests. The ISC unit receives the file logical block
addresses and the accelerator slot index from the INSIDER host
runtime. The multiplexer will receive the request from both the
ISC unit and the original firmware. The received request will
be forwarded to the storage unit (not drawn in the figure), and
its slot index will be pushed into the Slots Index FIFO (SIF).
The slot 0 is always locked for the pass-through logic, which
is used for the normal drive read request since it does not
need any in-storage processing. Thus, for the request issued
by the original firmware, the MUX will push number 0 into
SIF. After receiving the drive read data, the dispatcher of
the accelerator cluster will pop a slot index from SIF and
dispatch the data to the application FIFO connected to the
corresponding application slot.

Adaptive Scheduling. The ISC unit maintains a set of
credit registers (initialized to R) for all offloaded applications.
The ISC unit will check registers of applications that have
pending drive access requests, in a round-robin fashion. If the
register of an application is greater than 0, the ISC unit will
issue a drive access request in size C with its slot index, and
then decrement its credit register. For the application with a
higher data processing rate, its available FIFO size is going to

FPGA

Drive ControllerStorage Chip
Controller

DRAM
16 GiB

DRAM
16 GiB

DRAM
16 GiB

DRAM
16 GiB

Delay
Unit

Throttle
Unit

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

DDR4

DMA Controller

Delay
Unit

Throttle
Unit

Accelerator
Cluster

Firmware

Orig. ISC

Request Queue

DDR4

DDR4

DDR4

Figure 8: The diagram of the INSIDER drive prototype.

be decreased more quickly, which brings us feedback informa-
tion for performing the adaptive drive bandwidth scheduling.
Each time data is dispatched to the application FIFO, the dis-
patcher will check the available space of that FIFO. If it is
greater than C, the dispatcher will release one credit to the
corresponding credit register in the ISC unit.

In practice, we choose the drive access request size C to
be the minimal burst size that is able to saturate the drive
bandwidth, and choose R to be large enough to hide the drive
access latency. Ideally, we could solve an optimization prob-
lem to minimize the FPGA buffer size which equals to R ·C.
We leave out the details here.

4 Implementation
The implementation of INSIDER contains 10K lines of C/C++
code (including the traditional host code and the FPGA HLS
code), 2K lines of Verilog code and 2K lines of script code.
The FPGA-side implementation is done based on the ST-
Accel framework [60]. We have already adapted both the
drive prototype and the software stack to the AWS F1 (FPGA)
instance for public access, see [5].

4.1 The INSIDER Drive Prototype
So far there is no such a drive device on the market yet. We
build an INSIDER drive prototype ourselves based on an FPGA
board, see Fig. 8. The drive is PCIe-based and its implemen-
tation contains three parts: storage chip controller, drive con-
troller and DMA controller. We implement a simple firmware
logic in the drive controller; it is responsible for handling
host-sent drive access commands, and the functionalities of
performing wear-leveling and garbage collection have not
been implemented yet. The remaining FPGA resource is used
to accommodate the logics of drive programs. To emulate
the performance of an emerging storage drive, our prototype
should connect to multiple flash chips. However, there is no
FPGA board in the market that has enough U.2 or M.2 flash
connectors to meet our requirements. Therefore, in our proto-
type, we use four DRAM chips to emulate the storage chips.
We add a set of delay and throttle units into the storage chip
controller and DMA controller; they are configurable via our
host-side API, therefore we could dynamically configure them
to change the performance metrics (i.e., bandwidth and la-
tency) of our emulated storage chips and interconnection bus.

386 2019 USENIX Annual Technical Conference USENIX Association

Application Description Comment Data Size
(GiB) Parameter Devel.Time

(Person-Day)
LoC6

Host Drive

Grep [38] String matching. Fully offloaded. Virtual file read. 60 983040 rows, 65536-byte row.
32-byte search string. 3 51 193

KNN [59] K-nearest neighbors.
Offload the distance calculation into
drive, and put K-partial sort in host.
Virtual file read.

56.875 K = 32, 14680064 training
cases, 4096 dims, 1-byte weight. 2 77 72

Bitmap file
decompression

Decompress the
bitmap file.

Offload run-length decoding into
drive. Other preparation steps like
header parsing and format checking
are put in host. Virtual file write.

3.3
Compression ratio is about 7,
width = 187577, height = 129000,
planes = 1, depth = 8.

4 94 145

Statistics [55, 63] Statistical calculation
per input row.

Offload the row-level data reduction
operations into drive, and put the
computation over the reduced row
data in host. Virtual file read.

48 65536 rows, 196608 numbers
per row, 4-byte number. 3 65 170

SQL query [40, 65]
A query consists of
select, sum, where,
group by, and order by.

Offload data filtering into drive,
and put sorting and grouping in host.
Virtual file read.

60 2013265920 records
32-byte record. 5 97 256

Integration [48] Combine data from
different sources. Fully offloaded. Virtual file read. 61 1006632960 records, 64-byte

record, 32-byte query. 5 41 307

Feature Selection [64] Relief algorithm to
prune features. Fully offloaded. Virtual file read. 61 15728640 hit records,

15728640 miss records, 256 dims. 9 50 632

Table 3: A descriptions of applications used in the evaluation. We present the experimental data sizes and application parameters. Additionally, we show the
developing effort by listing the lines of code and the development time.

4.2 The INSIDER Software Stack
This section briefly introduces the software stack of INSIDER.
We have omitted the details due to space constraints.

Compiler. INSIDER provides compilers for both host and
drive. The host-side compiler is simply a standard g++ which,
by default, links to the INSIDER runtime. The front-end of
the drive-side compiler is implemented on LLVM, while its
back-end is implemented on Xilinx Vivado HLS [22] and a
self-built RTL code transformer.

Software Simulator. FPGA program compilation takes
hours, which greatly limits the iteration speed of the pro-
gram development. INSIDER provides a system-level sim-
ulator which supports both the C++-level and RTL-level sim-
ulation. The simulator reduces the iteration time from hours
into (tens of) minutes.

Host-side runtime library. The runtime library bypasses
the OS storage stack and is at the user space. When necessary,
it will use the POSIX I/O interface to interact with the host
file system. Its implementation contains the drive parameter
configuring API plus all methods in Table 2. Additionally, the
runtime library cooperates with the drive hardware to support
the system-level pipelining and the credit-based flow control.

Linux kernel drivers. INSIDER implements two kernel
drivers. The first driver registers the INSIDER drive as a block
device in Linux so that it could be accessed as a normal stor-
age drive. The second driver is ISC related: it manages the
DMA buffer for virtual file operations and is responsible for
setting/unsetting the append-only attribute to the real file(s)
in vopen/vclose.

5 Evaluation
5.1 Experiment Setup
We refer to the performance metrics of the current high-end
SSDs to determine the drive performance used in our evalua-
tion. On the latency side, the current 3D XPoint SSD already
achieves latency less than 10 µs [6, 39]. On the throughput
side, the high-end SSD announced in 2017 [17] could achieve

Host

Operating System Linux LTS 4.4.169
RAM 128 GB
CPU 2*Intel Xeon E5-2686 v4

File System XFS

Drive

FPGA Xilinx Virtex XCVU9P
Capacity 64 GB
Latency 5 µs

Sequential R/W 16 GB/s (i.e., 14.9 GiB/s)
Random 4K R/W 1200 KOPS

Host/Drive Int. Speed PCIe Gen3 x8 or x16
Number of Slots 3

Table 4: Experiment setup.

13.0 / 9.0 GB/s sequential R/W performance. We project these
numbers (according to the trend in Fig. 1, 2) to represent the
performance of the next-generation high-performance drive.
Table 4 provides details of our experiment setup. We use 32
CPU cores in the evaluation.

5.2 Applications
We choose applications used in the existing work to evaluate
the INSIDER system (see Table 3). We implement them by
ourselves. All drive programs are implemented in C++.

5.2.1 Speedup and Its Breakdown
See Fig. 9 for the performance comparison of seven appli-
cations. We choose the traditional host-only implementa-
tion which uses the POSIX interface as the baseline. It uses
OpenMP to parallelize the computation to take advantage of
32 CPU cores. The first optimization is to replace the POSIX
interface with the ISC interface to bypass overheads of the
host I/O stack. This is conducted by registering the virtual file
based on the real file and the pass-through (PT) program. The
PT program simply returns all the inputs it receives as outputs.
Thus, by invoking vread over the virtual file, we acquire the
data of the real file. In Fig. 9, Host-bypass is the abbreviation
for this version, while the suffix x8 and x16 stand for using
PCIe Gen3 x8 and x16 as the interconnection, respectively.
With the host-side code refactoring, we can conduct pipelin-
ing to overlap the computation time and the file access time;

6It does not include empty lines, comments, logging, timer, etc.

USENIX Association 2019 USENIX Annual Technical Conference 387

 0

 2

 4

 6

 8

 10

 12

Grep KNN Statistics SQL Integration Feature selection Bitmap

S
pe

ed
up

Host-bypass/x8
Host-bypass/x16

Host-bypass-pipeline/x8
Host-bypass-pipeline/x16

INSIDER/x8
INSIDER/x16

Figure 9: Speedup of optimized host-only versions and INSIDER version compared to the host-only baseline (§5.2.1).

 0

 2

 4

 6

 8

 10

 12

Grep KNN
Statistics SQL

Intergration

Feature Sel.
Bitmap

S
pe

ed
up

customized IO stack pipeline & offload data reduction

(a) INSIDER/x8 (i.e, the bus-limited case).

 0

 2

 4

 6

 8

 10

 12

Grep KNN
Statistics SQL

Integration

Feature Sel.
Bitmap

S
pe

ed
up

customized IO stack pipeline & offload data reduction

(b) INSIDER/x16 (i.e, the bus-ample case).

Figure 10: The breakdown of the speedup achieved by INSIDER compared with the host-only baseline (§5.2.1).

this corresponds to Host-bypass-pipeline in Fig. 9. Finally,
we leverage the ISC capability to offload computing tasks
to the drive. For this version we largely reuse code from the
baseline version since the virtual file abstraction allows us
to stay at the traditional file accessing interface (§3.3) and
INSIDER transparently constructs the system-level pipeline
(§3.5). This corresponds to INSIDER in Fig. 9.

Note that the end-to-end execution time here includes the
overheads of INSIDER APIs like vopen, vclose, but it does
not include the overhead of reconfiguring FPGA, which is in
the order of hundreds of milliseconds and is proportional to
the region size [67]. We envision that in practice the appli-
cation execution has time locality so that the overheads of
reconfiguring will be amortized by multiple following calls.

The speedup of version INSIDER is derived from three as-
pects: 1) customized I/O stack (§4.2), 2) task offloading (§3.4)
and system-level pipelining (§3.5), and 3) reduced data vol-
ume (which leads to lower bus time). See Fig. 10 for the
speedup breakdown in these three parts. In the x8 setting,
which has lower bus bandwidth, data reduction is the major
source of the overall speedup. By switching from x8 to x16,
the benefit of data reduction decreases, which makes sense
since now we use a faster interconnection bus. Nevertheless, it
still accounts for a considerable speedup. Meanwhile, pipelin-
ing and offloading contribute to a major part of the speedup.

As we discussed in §2.1, four-lane (the most common)
and eight-lane links are used in real life because of storage
density and cost constraints. INSIDER/x16 does not represent
a practical scenario at this point. The motivation for showing
both the results of x8 and x16 is to compare the benefits of
data reduction in both bus-limited and bus-ample cases.
5.2.2 Optimality and Bottleneck Analysis
Table 5 shows the performance bottleneck of different exe-
cution schemes for seven applications. For Host-bypass, lim-

Host-
bypass/x8

Host-
bypass/x16

INSIDER/x8 INSIDER/x16

Grep PCIe PCIe Drive Drive
KNN PCIe Comp. Drive Drive
Statistics PCIe PCIe Drive Drive
SQL query PCIe Comp. Comp. Comp.
Integration PCIe PCIe Drive Drive
Feature selec-
tion

Comp. Comp. PCIe Drive

Bitmap de-
compression

PCIe PCIe Drive Drive

Table 5: The end-to-end performance bottleneck of different executing
schemes over seven different applications. Here PCIe, Drive and Comp.
indicate that the bottleneck is PCIe performance, drive chip performance and
the host-side computation performance, respectively (§5.2.2).

ited PCIe bandwidth is the major bottleneck for the overall
performance. In contrast, after enabling the in-storage pro-
cessing, even in the PCIe x8 setting, there is only one case
in which PCIe becomes the bottleneck (see INSIDER/x8). For
most cases in INSIDER, the overall performance is bounded
by the internal drive speed, which indicates that the optimal
performance has been achieved. For some cases, like KNN
and feature selection, host-side computation is the perfor-
mance bottleneck for Host-bypass. This is alleviated in IN-
SIDER since FPGA has better computing capabilities for the
offloaded tasks. For INSIDER, SQL query is still bottlenecked
by the host-side computation of the non-offloaded part.

5.2.3 Development Efforts
Table 3 also presents the developing efforts of implementing
these applications in terms of lines of code (column LoC) and
the developing time (column Devel. Time). With virtual file
abstraction, all host programs here only require less than half
an hour to be ported to the INSIDER; The main development
time is spent on implementing the drive accelerator which
requires drive programmers to tune the performance. This
time is expected to be reduced in the future with continuous
improvements on the FPGA programming toolchain. Addi-

388 2019 USENIX Annual Technical Conference USENIX Association

 0
 2
 4
 6
 8

 10
 12
 14
 16

0.5 1 1.5 2 2.5

B
an

dw
id

th
 (

G
B

/s
)

Time (s)

statistics SQL pass-through

Figure 11: Data rates of accelerators that are executed simultaneously in
drive. The drive bandwidth is 16 GB/s, and the bandwidth requested by statis-
tics, SQL and pass-through are 12 GB/s, 6.4 GB/s and 8 GB/s, respectively.
statistics starts before time 0 s and ends at about time 1.5 s. SQL starts at
about time 0.4 s and ends at about time 2.4 s. Pass-through starts at about
time 0.8 s and ends at about time 2.6 s.

LUT FF BRAM DSP
Grep 34416 24108 1 0
KNN 9534 11975 0.5 0
Statistics 14698 15966 0 0
SQL query 9684 14044 1 0
Integration 40112 6497 14 0
Feature selection 41322 44981 24 48
Bitmap decompression 60837 13676 0 0
INSIDER framework 68981 120451 309 0
DRAM and DMA IP cores 210819 245067 345.5 12

XCVU9P [19] 1181768 2363536 2160 6840
XC7A200T [2] 215360 269200 365 740

Table 6: The top half shows the FPGA resource consumption in our experi-
ments. Generally, an FPGA chip contains four types of resources: look-up
tables (LUTs), flip-flops (FFs), block RAMs (BRAMs, which are SRAM-
based), digital signal processors (DSPs). The bottom half shows the initial
available resource in FPGA XCVU9P and XC7A200T.

tionally, since INSIDER provides a clear interface to separate
the responsibilities between host and drive, drive programs
could be implemented as a library by experienced FPGA de-
velopers. This can greatly lower the barrier for host users
when it comes to realizing the benefits of the INSIDER drive.

Still, the end-to-end developing time is much less compared
to an existing work. Table 1 in work [61] shows that WILLOW
requires thousands of LoC and one-month development time
to implement some basic drive applications like simple drive
I/O (1500 LoC, 1 month) and file appending (1588 LoC, 1
month). WILLOW is definitely an excellent work, and here
the main reason is that WILLOW was designed at a lower
layer to extend the semantics of the storage drive, while IN-
SIDER focuses on supporting ISC by exposing a compute-only
interface at drive and file APIs at host.

5.3 Simultaneous Multiprocessing
In this section we focus on evaluating the effectiveness of
the design in §3.6. We choose statistics, SQL query, and
pass-through as our offloaded applications. On the drive
accelerator side, we throttle their computing speeds below
the drive internal bandwidth so that each of them cannot
fully saturate the high drive rate: BWdrive = 16 GB/s,BWstat =
12 GB/s,BWSQL = 6.4 GB/s,BWPT = 8 GB/s. The host-side
task scheduling has already been enforced by the host OS, and
our goal here is to evaluate the effectiveness of the drive-side
bandwidth scheduling. Hence, we modify the host programs
so that they only invoke INSIDER APIs without doing the

host-side computation. In this case, the application execution
time is a close approximation of the drive-side accelerator
execution time. Therefore, the data processing rate for each
accelerator can be calculated as rate = ∆size(data)/∆time.

Fig. 11 presents the runtime data rate of three accelera-
tors that execute simultaneously in drive. As we can see, IN-
SIDER will try best to accommodate the bandwidth requests
of offloaded applications. When it is not possible to do so, i.e.,
the sum of total requested bandwidth is higher than the drive
bandwidth, INSIDER will schedule bandwidth for applications
in a fair fashion.

5.4 Analysis of the Resource Utilization
Table 6 presents the FPGA resource consumption in our ex-
periments. The end-to-end resource usage consists of three
parts: 1 User application logic. Row Grep to row Bitmap de-
compression correspond to this part. 2 INSIDER framework.
Row INSIDER framework corresponds to this part. 3 I/O IP
cores. This part mainly comprises the resource for the DRAM
controller and the DMA controller. Row DRAM and DMA IP
cores correspond to this part.

We note that 3 takes the major part of the overall resource
consumption. However, these components actually already ex-
ist (in the form of ASIC hard IP) in modern storage drives [33],
which also have a built-in DRAM controller and need to inter-
act with host via DMA. Thus, 3 only reflects the resource use
that would only occur in our prototype due to our limited eval-
uation environment. The final resource consumption should be
measured as 1 + 2 . Row XCVU9P [19] and row XC7A200T
show the available resource of a high-end FPGA (which is
used in our evaluation) and a low-end FPGA 7, respectively.
We notice that in the best case, the low-end FPGA is able to
simultaneously accommodate five resource-light applications
(grep, KNN, statistics, SQL, integration). The key insight here
is that, for the ISC purpose, we only need to offload code snip-
pet involving data reduction (related to the virtual file read) or
data amplification (related to the virtual file write), therefore
the drive programs are frugal in the resource usage.

5.5 Comparing with the ARM-Based System
Methodology. We assume that only the FPGA-based ISC unit
is replaced by the ARM CPU, and all other designs remain
unchanged. We extract the computing programs from the
traditional host-only implementation used in §5.2. Since we
assume the system-level pipelining (§3.5) is also deployed
here, the final end-to-end time of the ARM-based platform
could be calculated as Te2e = max(Thost ,Ttrans,TARM), where
Thost denotes the host-side processing time and Ttrans denotes
the host/drive data transferring time. Here, Thost and Ttrans
are taken from the measured data of INSIDER at §5.2. We
target Cortex-A72 (using parameters in [12]), which is a high-
end quad-core three-way superscalar ARM processor. We
conduct runtime profilings over an ARM machine to extract

7We do not directly use XC7A200T in the evaluation since we cannot find
a low-end FPGA board with large DRAM, which forces us to use XCVU9P.

USENIX Association 2019 USENIX Annual Technical Conference 389

101

102

103

104

Grep KNN
Statistics SQL

Integration

Feature Sel.
Bitmap

T
hr

ou
gh

pu
t (

M
iB

/s
)

ARM-1C ARM-2C ARM-3C ARM-4C INSIDER

Figure 12: End-to-end data processing rates of INSIDER and the ARM-based
platforms. ARM-NC means to use N core(s).

 0

 100

 200

 300

 400

Grep KNN
Statistics SQL

Feature Sel.

Integration
Bitmap

C
os

t E
ffi

ci
en

cy
 (

M
iB

/$
)

ARM INSIDER

Figure 13: Cost efficiency (defined as data processing rates per dollar) of
INSIDER and the ARM-based platforms. We do not include the cost of storage
drive, whose price varies significantly across configurations.

the number of program instructions. The program execution
time is then calculated optimistically by assuming that it has
perfect IPC and perfect parallelism over multiple cores.

Fig. 12 (in log scale) shows the end-to-end data processing
rates of INSIDER and the ARM-based platform. The speedup
of INSIDER is highly related to the computation intensity of
examined applications, but on average, INSIDER could achieve
12X speedup. For KNN, which is the most compute-intensive
case, INSIDER could achieve 58X speedup; while for SQL
query, which has the least computation intensity, the ARM-
based platform could achieve the same performance.

We further present the cost efficiency of the ARM and
INSIDER platforms, which is defined as the data processing
rate per dollar. As discussed in §5.4, FPGA XC7A200T is
already able to meet our resource demand; thus we use it in
this evaluation. The wholesale price of FPGA is much less
compared to its retail price according to the experience of
Microsoft [36]. For a fair comparison, we use the wholesale
prices of FPGA XC7A200T ($37 [20]) and ARM cortex-A72
($95 [12]). We did not include the cost of storage drive in
this comparison. Fig. 13 shows the cost efficiency results.
Compared with the ARM-based platform, INSIDER achieves
31X cost efficiency on average. Specifically, it ranges from
2X (in SQL query) to 150X (in KNN).

6 Future Work
In-storage computing is still in its infancy. INSIDER is our
initial effort to marry this architectural concept with a practical
system design. There is a rich set of interesting future work,
as we summarize in the following.

Extending INSIDER for a broader scenario. First, from
the workload perspective, an extended programming model is

desired to better support the data-dependent applications like
key-value store. The current programming model forces host
to initiate the drive access request, thus it cannot bypass the
interconnection latency.

Second, from the system perspective, it would be useful to
integrate INSIDER with other networked systems to reduce the
data movement overheads. Compared to PCIe, performance of
the network is further constrained, which creates yet another
scenario for INSIDER [45]. The design of INSIDER is mostly
agnostic to the underlying interconnection. By changing the
DMA part into RDMA (or Ethernet), INSIDER can support the
storage disaggregation case, helping cloud users to cross the
“network wall” and take advantage of the fast remote drive.
Other interesting use cases include offloading computation to
HDFS servers and NFS servers.

Data-centric system architecture. Traditionally, the com-
puter system is designed to be computing-centric, in which
the data from IO devices are transferred and then processed by
CPU. However, the traditional system is facing two main chal-
lenges. First, the data movement between IO devices and CPU
has proved to be very expensive [53], which can no longer be
ignored in the big data era. Second, due to the end of Den-
nard Scaling, general CPUs can no longer catch up with the
ever-increasing speed of IO devices. Our long-term vision is
to refactor the computer system into being data-centric. In the
new architecture, CPU is only responsible for control plane
processing, and it offloads data plane processing directly into
the customized accelerator inside of IO devices, including
storage drives, NICs [50, 52], memory [51], etc.

7 Conclusion
To unleash the performance of emerging storage drives, we
present INSIDER, a full-stack redesigned storage system. On
the performance side, INSIDER successfully crosses the “data
movement wall” and fully utilizes the high drive performance.
On the programming side, INSIDER provides simple but effec-
tive abstractions for programmers and offers necessary system
support which enables a shared executing environment.

Acknowledgements

We would like to thank our shepherd, Keith Smith, and other
anonymous reviewers for their insightful feedback and com-
ments. We thank Wencong Xiao and Bojie Li for all technical
discussions and valuable comments. We thank the Amazon F1
team for AWS credits donation. We thank Janice Wheeler for
helping us edit the paper draft. This work was supported in
part by CRISP, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA,
the NSF NeuroNex award #DBI-1707408, and the funding
from Huawei, Mentor Graphics, NEC and Samsung under the
Center for Domain-Specific Computing (CDSC) Industrial
Partnership Program. Zhenyuan Ruan is also supported by a
UCLA Computer Science Departmental Fellowship.

390 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Anobit Announces Best-in-Class Flash
Drives for Enterprise and Cloud Applications.
https://www.businesswire.com/news/
home/20110914005522/en/Anobit-
Announces-Best-in-Class-Flash-
Drives-Enterprise-Cloud.

[2] Artix-7 FPGA Product Table. https://www.
xilinx.com/products/silicon-devices/
fpga/artix-7.html#productTable.

[3] CES 2009: pureSilicon 1TB Nitro SSD.
https://www.slashgear.com/ces-2009-
puresilicon-1tb-nitro-ssd-1230084/.

[4] DTS. http://www.storagesearch.com/dts.
html.

[5] INSIDER Github Repository. https://github.
com/zainryan/INSIDER-System.

[6] Intel Optane SDD 900P Series. https:
//www.intel.com/content/www/us/
en/products/memory-storage/solid-
state-drives/gaming-enthusiast-
ssds/optane-900p-series/900p-280gb-
aic-20nm.html.

[7] Intel Optane SSD DC P4800X. https://www.
intel.com/content/www/us/en/solid-
state-drives/optane-ssd-dc-p4800x-
brief.html.

[8] Intel Solid-State Drive 910 Series Product Specifica-
tion. https://ark.intel.com/products/
67009/Intel-SSD-910-Series-800GB-12-
Height-PCIe-2_0-25nm-MLC.

[9] Intel X25-M 80GB SSD Drive Review. http://www.
the-other-view.com/intel-x25.html.

[10] Lite-On SSD News. http://www.liteonssd.
com/m/Company/news_content.php?
id=LITE-ON-INTRODUCES-THE-NEXT-
GENERATION-EP2-WITH-NVME-PROTOCOL-
AT-DELL-WORLD-2015.html.

[11] Memory and Storage / Solid State Drives / Intel
Enthusiast SSDs / Intel Optane SSD 900P Series.
https://www.intel.com/content/www/
us/en/products/memory-storage/solid-
state-drives/gaming-enthusiast-
ssds/optane-900p-series/900p-280gb-
2-5-inch-20nm.html.

[12] Microprocessors - MPU QorIQ Layerscape. https:
//www.mouser.com/ProductDetail/
NXP-Freescale/LS1046ASN8T1A?
qs=sGAEpiMZZMup8ZLti7BNCxtNz7%
252BF43hzZlkvLaqOJ8c%3D.

[13] Samsung Demos Crazy-Fast PCIe NVMe SSD
At 5.6 GB Per Second At Dell World. https:
//hothardware.com/news/samsung-
demos-crazy-fast-pcie-nvme-ssd-at-
56-gb-per-second-showcases-16tb-ssd-
at-dell-world.

[14] Samsung NVMe SSD 960 Pro. https://www.
samsung.com/us/computing/memory-
storage/solid-state-drives/ssd-960-
pro-m-2-512gb-mz-v6p512bw/.

[15] SanDisk:Solid State Disk Drive. https://www.
anandtech.com/show/2151/4.

[16] Seagate announces 64TB NVMe SSD, Updated Nytro
NVMe and SAS Lineup at FMS 2017. https://
www.custompcreview.com/news/seagate-
announces-64tb-nvme-ssd-updated-
nytro-nvme-sas-lineup-fms-2017/.

[17] Seagate Nytro 5910 NVMe SSD. https:
//www.seagate.com/files/www-content/
datasheets/pdfs/nytro-5910-nvme-
ssdDS1953-4-1804US-en_US.pdf.

[18] Storage news - 2007, October week 3. http://www.
storagesearch.com/news2007-oct3.html.

[19] UltraScale+ FPGAs Product Tables and Prod-
uct Selection Guide. https://www.xilinx.
com/support/documentation/selection-
guides/ultrascale-plus-fpga-product-
selection-guide.pdf.

[20] XC7A200T-1FFG1156C(IC Embedded FPGA Field
Programmable Gate Array 500 I/O 1156FCBGA).
https://www.alibaba.com/product-
detail/XC7A200T-1FFG1156C-IC-
Embedded-FPGA-Field_60730073325.html.

[21] XFS defragmentation tool will ignore the file
which has append-only or immutable attribute set.
https://kernel.googlesource.com/pub/
scm/fs/xfs/xfsprogs-dev/+/v4.3.0/
fsr/xfs_fsr.c#968.

[22] Xilinx Vivado HLS. https://www.xilinx.
com/products/design-tools/vivado/
integration/esl-design.html.

USENIX Association 2019 USENIX Annual Technical Conference 391

https://www.businesswire.com/news/home/20110914005522/en/Anobit-Announces-Best-in-Class-Flash-Drives-Enterprise-Cloud
https://www.businesswire.com/news/home/20110914005522/en/Anobit-Announces-Best-in-Class-Flash-Drives-Enterprise-Cloud
https://www.businesswire.com/news/home/20110914005522/en/Anobit-Announces-Best-in-Class-Flash-Drives-Enterprise-Cloud
https://www.businesswire.com/news/home/20110914005522/en/Anobit-Announces-Best-in-Class-Flash-Drives-Enterprise-Cloud
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
https://www.slashgear.com/ces-2009-puresilicon-1tb-nitro-ssd-1230084/
https://www.slashgear.com/ces-2009-puresilicon-1tb-nitro-ssd-1230084/
http://www.storagesearch.com/dts.html
http://www.storagesearch.com/dts.html
https://github.com/zainryan/INSIDER-System
https://github.com/zainryan/INSIDER-System
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-aic-20nm.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html
https://ark.intel.com/products/67009/Intel-SSD-910-Series-800GB-12-Height-PCIe-2_0-25nm-MLC
https://ark.intel.com/products/67009/Intel-SSD-910-Series-800GB-12-Height-PCIe-2_0-25nm-MLC
https://ark.intel.com/products/67009/Intel-SSD-910-Series-800GB-12-Height-PCIe-2_0-25nm-MLC
http://www.the-other-view.com/intel-x25.html
http://www.the-other-view.com/intel-x25.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
http://www.liteonssd.com/m/Company/news_content.php?id=LITE-ON-INTRODUCES-THE-NEXT-GENERATION-EP2-WITH-NVME-PROTOCOL-AT-DELL-WORLD-2015.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series/900p-280gb-2-5-inch-20nm.html
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://hothardware.com/news/samsung-demos-crazy-fast-pcie-nvme-ssd-at-56-gb-per-second-showcases-16tb-ssd-at-dell-world
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/
https://www.anandtech.com/show/2151/4
https://www.anandtech.com/show/2151/4
https://www.custompcreview.com/news/seagate-announces-64tb-nvme-ssd-updated-nytro-nvme-sas-lineup-fms-2017/
https://www.custompcreview.com/news/seagate-announces-64tb-nvme-ssd-updated-nytro-nvme-sas-lineup-fms-2017/
https://www.custompcreview.com/news/seagate-announces-64tb-nvme-ssd-updated-nytro-nvme-sas-lineup-fms-2017/
https://www.custompcreview.com/news/seagate-announces-64tb-nvme-ssd-updated-nytro-nvme-sas-lineup-fms-2017/
https://www.seagate.com/files/www-content/datasheets/pdfs/nytro-5910-nvme-ssdDS1953-4-1804US-en_US.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/nytro-5910-nvme-ssdDS1953-4-1804US-en_US.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/nytro-5910-nvme-ssdDS1953-4-1804US-en_US.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/nytro-5910-nvme-ssdDS1953-4-1804US-en_US.pdf
http://www.storagesearch.com/news2007-oct3.html
http://www.storagesearch.com/news2007-oct3.html
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://kernel.googlesource.com/pub/scm/fs/xfs/xfsprogs-dev/+/v4.3.0/fsr/xfs_fsr.c#968
https://kernel.googlesource.com/pub/scm/fs/xfs/xfsprogs-dev/+/v4.3.0/fsr/xfs_fsr.c#968
https://kernel.googlesource.com/pub/scm/fs/xfs/xfsprogs-dev/+/v4.3.0/fsr/xfs_fsr.c#968
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

[23] Nitin Agrawal and Ashish Vulimiri. Low-Latency Ana-
lytics on Colossal Data Streams with SummaryStore. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 647–664, New York,
NY, USA, 2017. ACM.

[24] Duck-Ho Bae, Jin-Hyung Kim, Sang-Wook Kim,
Hyunok Oh, and Chanik Park. Intelligent SSD: a turbo
for big data mining. In Proceedings of the 22nd ACM
international conference on Conference on information
and knowledge management, CIKM ’13, pages 1573–
1576, New York, NY, USA, 2013. ACM.

[25] R. Balasubramonian and B. Grot. Near-Data Processing
[Guest editors’ introduction]. IEEE Micro, 36(1):4–5,
Jan 2016.

[26] Antonio Barbalace, Anthony Iliopoulos, Holm Rauch-
fuss, and Goetz Brasche. It’s Time to Think About an
Operating System for Near Data Processing Architec-
tures. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, HotOS ’17, pages 56–61,
New York, NY, USA, 2017. ACM.

[27] Laurent Bindschaedler, Jasmina Malicevic, Nicolas
Schiper, Ashvin Goel, and Willy Zwaenepoel. Rock You
like a Hurricane: Taming Skew in Large Scale Analytics.
In Proceedings of the Thirteenth European Conference
on Computer Systems, EuroSys ’18, 2018.

[28] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux Block IO: Introducing Multi-
queue SSD Access on Multi-core Systems. In Proceed-
ings of the 6th International Systems and Storage Con-
ference, SYSTOR ’13, pages 22:1–22:10, New York, NY,
USA, 2013. ACM.

[29] Mike Burrows. The chubby lock service for loosely-
coupled distributed systems. In 7th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2006.

[30] Adrian M. Caulfield, Joel Coburn, Todor Mollov, Arup
De, Ameen Akel, Jiahua He, Arun Jagatheesan, Rajesh K.
Gupta, Allan Snavely, and Steven Swanson. Under-
standing the Impact of Emerging Non-Volatile Mem-
ories on High-Performance, IO-Intensive Computing. In
Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–11, Washington,
DC, USA, 2010. IEEE Computer Society.

[31] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I.
Mollow, Rajesh K. Gupta, and Steven Swanson. Mon-
eta: A High-Performance Storage Array Architecture for
Next-Generation, Non-volatile Memories. In Proceed-
ings of the 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO ’43, pages
385–395, Washington, DC, USA, 2010. IEEE Computer
Society.

[32] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner,
Arup De, Joel Coburn, and Steven Swanson. Providing
Safe, User Space Access to Fast, Solid State Disks. In
Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 387–400,
New York, NY, USA, 2012. ACM.

[33] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan
Kim, Youngmin Yi, and Gregory R. Ganger. Active
Disk Meets Flash: A Case for Intelligent SSDs. In Pro-
ceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13,
pages 91–102, New York, NY, USA, 2013. ACM.

[34] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik
Park, Kwanghyun Park, and David J. DeWitt. Query
Processing on Smart SSDs: Opportunities and Chal-
lenges. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’13, pages 1221–1230, New York, NY, USA, 2013.
ACM.

[35] P. Fernando, S. Kannan, A. Gavrilovska, and K. Schwan.
Phoenix: Memory speed hpc i/o with nvm. In 2016 IEEE
23rd International Conference on High Performance
Computing (HiPC), pages 121–131, Dec 2016.

[36] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure accelerated networking: Smartnics in the pub-
lic cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
51–66, Renton, WA, 2018. USENIX Association.

[37] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Principles,
pages 20–43, Bolton Landing, NY, 2003.

[38] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A Framework
for Near-data Processing of Big Data Workloads. In

392 2019 USENIX Annual Technical Conference USENIX Association

Proceedings of the 43rd International Symposium on
Computer Architecture, ISCA ’16, pages 153–165, Pis-
cataway, NJ, USA, 2016. IEEE Press.

[39] F. T. Hady, A. Foong, B. Veal, and D. Williams. Plat-
form Storage Performance With 3D XPoint Technology.
Proceedings of the IEEE, 105(9):1822–1833, Sep. 2017.

[40] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk
Kang, Sangyeun Cho, Daniel D. G. Lee, and Jaeheon
Jeong. YourSQL: A High-performance Database System
Leveraging In-storage Computing. Proc. VLDB Endow.,
9(12):924–935, August 2016.

[41] Myoungsoo Jung and Mahmut Kandemir. Revisiting
Widely Held SSD Expectations and Rethinking System-
level Implications. In Proceedings of the ACM SIG-
METRICS/International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’13,
pages 203–216, New York, NY, USA, 2013. ACM.

[42] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a Warehouse-scale
Computer. In Proceedings of the 42Nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’15,
pages 158–169, New York, NY, USA, 2015. ACM.

[43] Kimberly Keeton, David A. Patterson, and Joseph M.
Hellerstein. A Case for Intelligent Disks (IDISKs). SIG-
MOD Rec., 27(3):42–52, September 1998.

[44] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,
Michael Wei, Eric Schkufza, and Christopher J. Ross-
bach. Sharing, Protection, and Compatibility for Re-
configurable Fabric with AmorphOS. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 107–127, Carlsbad, CA, 2018.
USENIX Association.

[45] Byungseok Kim, Jaeho Kim, and Sam H. Noh. Man-
aging Array of SSDs When the Storage Device Is No
Longer the Performance Bottleneck. In 9th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 17), Santa Clara, CA, 2017. USENIX Asso-
ciation.

[46] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun
Cho, and Sang-Won Lee. Fast, energy efficient scan
inside flash memory SSDs. In Proceeedings of the Inter-
national Workshop on Accelerating Data Management
Systems (ADMS), 2011.

[47] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun
Cho, Sang-Won Lee, and Bongki Moon. In-storage
Processing of Database Scans and Joins. Inf. Sci.,
327(C):183–200, January 2016.

[48] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Kr-
ishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven Swan-
son, and Murali Annavaram. Summarizer: Trading Com-
munication with Computing Near Storage. In Proceed-
ings of the 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-50 ’17, pages 219–
231, New York, NY, USA, 2017. ACM.

[49] Philip Kufeldt, Carlos Maltzahn, Tim Feldman, Chris-
tine Green, Grant Mackey, and Shingo Tanaka. Eusocial
Storage Devices: Offloading Data Management to Stor-
age Devices that Can Act Collectively. ;login:, 43(2),
2018.

[50] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 137–152, New York,
NY, USA, 2017. ACM.

[51] Shuangchen Li, Dimin Niu, Krishna T. Malladi,
Hongzhong Zheng, Bob Brennan, and Yuan Xie. DRISA:
A DRAM-based Reconfigurable In-Situ Accelerator. In
Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-50 ’17,
pages 288–301, New York, NY, USA, 2017. ACM.

[52] Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong
Xiao, Bojie Li, Jiansong Zhang, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. Memory efficient loss re-
covery for hardware-based transport in datacenter. In
Proceedings of the First Asia-Pacific Workshop on Net-
working, APNet 2017, Hong Kong, China, August 3-4,
2017, pages 22–28, 2017.

[53] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and
Rachata Ausavarungnirun. Processing data where it
makes sense: Enabling in-memory computation. Micro-
processors and Microsystems, 2019.

[54] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M.
Swift, Haris Volos, and Kimberly Keeton. An Analysis
of Persistent Memory Use with WHISPER. In Proceed-
ings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 135–148, New
York, NY, USA, 2017. ACM.

[55] Jian Ouyang, Shiding Lin, Zhenyu Hou, Peng Wang,
Yong Wang, and Guangyu Sun. Active SSD Design
for Energy-efficiency Improvement of Web-scale Data
Analysis. In Proceedings of the 2013 International Sym-
posium on Low Power Electronics and Design, ISLPED
’13, pages 286–291, Piscataway, NJ, USA, 2013. IEEE
Press.

USENIX Association 2019 USENIX Annual Technical Conference 393

[56] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: Software-
defined Flash for Web-scale Internet Storage Systems.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 471–484, New
York, NY, USA, 2014. ACM.

[57] D. Park, J. Wang, and Y. S. Kee. In-Storage Comput-
ing for Hadoop MapReduce Framework: Challenges
and Possibilities. IEEE Transactions on Computers,
PP(99):1–1, 2016.

[58] A. Putnam. (Keynote) The Configurable Cloud - Ac-
celerating Hyperscale Datacenter Services with FPGA.
In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pages 1587–1587, April 2017.

[59] Erik Riedel, Garth A. Gibson, and Christos Faloutsos.
Active Storage for Large-Scale Data Mining and Mul-
timedia. In Proceedings of the 24rd International Con-
ference on Very Large Data Bases, VLDB ’98, pages
62–73, San Francisco, CA, USA, 1998. Morgan Kauf-
mann Publishers Inc.

[60] Z. Ruan, T. He, B. Li, P. Zhou, and J. Cong. St-accel: A
high-level programming platform for streaming applica-
tions on fpga. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 9–16, April 2018.

[61] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A User-
Programmable SSD. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 67–80, Broomfield, CO, 2014. USENIX
Association.

[62] Cassidy R. Sugimoto, Hamid R. Ekbia, and Michael
Mattioli. Big Data Is Not a Monolith. The MIT Press,
2016.

[63] Devesh Tiwari, Simona Boboila, Sudharshan Vazhkudai,
Youngjae Kim, Xiaosong Ma, Peter Desnoyers, and Yan

Solihin. Active Flash: Towards Energy-Efficient, In-
Situ Data Analytics on Extreme-Scale Machines. In
Presented as part of the 11th USENIX Conference on
File and Storage Technologies (FAST 13), pages 119–
132, San Jose, CA, 2013. USENIX.

[64] Ryan J Urbanowicz, Melissa Meeker, William LaCava,
Randal S Olson, and Jason H Moore. Relief-based fea-
ture selection: introduction and review. arXiv preprint
arXiv:1711.08421, 2017.

[65] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex
- An Intelligent Storage Engine with Support for Ad-
vanced SQL Off-loading. PVLDB, 7(11):963–974, 2014.

[66] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh,
Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita
Shayesteh, and Vijay Balakrishnan. Performance Analy-
sis of NVMe SSDs and Their Implication on Real World
Databases. In Proceedings of the 8th ACM International
Systems and Storage Conference, SYSTOR ’15, pages
6:1–6:11, New York, NY, USA, 2015. ACM.

[67] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu,
Bojie Li, Peng Cheng, Guo Chen, and Thomas Mosci-
broda. The feniks fpga operating system for cloud com-
puting. In Proceedings of the 8th Asia-Pacific Workshop
on Systems, APSys ’17, pages 22:1–22:7, New York, NY,
USA, 2017. ACM.

[68] Peipei Zhou, Zhenyuan Ruan, Zhenman Fang, Megan
Shand, David Roazen, and Jason Cong. Doppio: I/O-
Aware Performance Analysis, Modeling and Optimiza-
tion for In-Memory Computing Framework. In IEEE
International Symposium on Performance Analysis of
Systems and Software, ISPASS ’18, 2018.

[69] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda,
and S. Matsuoka. Evaluating and Optimizing OpenCL
Kernels for High Performance Computing with FPGAs.
In SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage

and Analysis, pages 409–420, Nov 2016.

394 2019 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Related Work
	Emerging Storage Devices: Opportunities and Challenges
	Review of In-Storage Computing

	Insider System Design
	FPGA-Based ISC Unit
	Drive Architecture
	Separating Control and Data Planes
	Accelerator Cluster

	The Host-Side Programming Model
	Virtual File Read
	Virtual File Write
	Concurrency Control

	The Drive-Side Programming Model
	System-Level Pipelining
	Adaptive Bandwidth Scheduler

	Implementation
	The Insider Drive Prototype
	The Insider Software Stack

	Evaluation
	Experiment Setup
	Applications
	Speedup and Its Breakdown
	Optimality and Bottleneck Analysis
	Development Efforts

	Simultaneous Multiprocessing
	Analysis of the Resource Utilization
	Comparing with the ARM-Based System

	Future Work
	Conclusion

