usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

SmartDedup: Optimizing Deduplication
for Resource-constrained Devices

Qirui Yang, Runyu Jin, and Ming Zhao, Arizona State University

https://www.usenix.org/conference/atc19/presentation/yang-qirui

This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.
July 10-12, 2019 « Renton, WA, USA
ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference
is sponsored by USENIX.

SmartDedup: Optimizing Deduplication for Resource-constrained Devices

Qirui Yang
Arizona State University

Abstract

Storage on smart devices such as smartphones and
the Internet of Things has limited performance, capacity,
and endurance. Deduplication has the potential to ad-
dress these limitations by eliminating redundant I/Os and
data, but it must be considered under the various resource
constraints of the devices. This paper presents Smart-
Dedup, a deduplication solution optimized for resource-
constrained devices. It proposes a novel architecture that
supports symbiotic in-line and out-of-line deduplication
to take advantage of their complementary strengths and
allow them to be adapted according to a device’s cur-
rent resource availability. It also cohesively combines
in-memory and on-disk fingerprint stores to minimize the
memory overhead while achieving a good level of dedu-
plication. SmartDedup is prototyped on EXT4 and F2FS
and evaluated using benchmarks, workloads generated
from real-world device images, and traces collected from
real-world devices. The results show that SmartDedup
substantially improves I/O performance (e.g., increases
write and read throughput by 31.1% and 32%, respec-
tively for an FIO experiment with 25% duplication ratio),
reduces flash writes (e.g., by 70.9% in a trace replay ex-
periment with 75.8% duplication ratio), and saves space
usage (e.g., by 45% in a DEDISbench experiment with
46.1% duplication ratio) with low memory, storage, and
battery overhead, compared to both native file systems
and related deduplication solutions.

1 Introduction

Smart devices such as smartphones and the Internet of
Things (IoT) are becoming pervasively used. The high
volume and velocity of data produced by the growing
applications and sensors on these devices present serious
challenges to the on-device flash storage, which has lim-
ited performance, capacity, and endurance. Deduplication

Runyu Jin
Arizona State University

Ming Zhao
Arizona State University

has the potential to address these limitations by reduc-
ing the I/Os and storage caused by duplicate data. But
adopting deduplication on smart devices must address
their unique resource constraints. In particular, the lim-
ited memory on the devices presents a difficult trade-off
between the speed of deduplication and the amount of du-
plicates that it can find. The limited storage performance
and endurance require the deduplication operations to
incur minimal additional I/Os. For many devices with
limited power and energy capacity, the design of dedu-
plication also needs to be aware of its power and energy
usage.

To address these challenges, this paper presents Smart-
Dedup, a deduplication solution optimized for smart de-
vices considering their various resource constraints. The
architecture of SmartDedup is designed to support the
symbiotic in-line and out-of-line deduplication. It em-
ploys in-line deduplication in the foreground to reduce
redundant writes and runs out-of-line deduplication in the
background to find duplicates missed by in-line dedupli-
cation. These two techniques work together cooperatively
by sharing the fingerprint stores and information (e.g.,
fingerprints) about the I/O requests.

SmartDedup employs cohesively designed in-memory
and on-disk fingerprint stores to minimize memory over-
head while achieving a good level of deduplication. The
small in-memory fingerprint store provides fast finger-
print lookup and effective write reduction; the on-disk
fingerprint store supports complete data deduplication.
Fingerprints migrate between the two stores dynamically
based on data access patterns. SmartDedup also embod-
ies several techniques to make efficient use of the two
fingerprint stores. To further reduce the overhead, both
fingerprint stores share the same indexing data struc-
ture to save memory usage; fingerprints are evicted from
memory in groups to reduce the involved I/Os and wear-

USENIX Association

2019 USENIX Annual Technical Conference 633

out.

To support this study, we collected file system images
and long-term (2-6 months) traces from real-world smart-
phones. The data confirms that there is a good level of
duplication in real-world workloads: the average duplica-
tion ratio is 33% in the data from the images, and ranges
from 22% to 48% among the writes in the traces. The
specific applications and types of files that contribute the
most duplicates differ by device, so a holistic system-
level deduplication solution is needed to fully exploit
these I/O and data reduction opportunities.

We prototyped SmartDedup on OSs (Android and
Raspbian) and file systems (EXT4 and F2FS) commonly
used by smart devices. We evaluated it on two represen-
tative devices, a Nexus 5X smartphone and a Raspberry
Pi 3 device, using intensive benchmark (FIO [12]) and
realistic workloads generated by DEDISbench [20] from
sampling real-world smartphone images and by replaying
real-world smartphone I/O traces. The results show that
SmartDedup achieves substantial improvements in perfor-
mance, storage utilization, and flash endurance compared
to both the native file systems and related solutions.

For example, on Nexus, SmartDedup outperforms na-
tive EXT4 by 16.9% in throughput and 18.5% in 95th
percentile latency for writes, and 38.2% in throughput
and 18.7% in 95th percentile latency for reads, for in-
tensive FIO workloads with only 25% duplicates; and
it improves the write latency by 25.5% for a trace seg-
ment with a 47.9% duplication ratio. In terms of space
saving, SmartDedup saves 45% of space (after factor-
ing in its own space overhead) compared to EXT4 when
the duplication ratio is 46.1% in a DEDISbench exper-
iment. In terms of reducing the wear-out, SmartDedup
reduces 70.9% of writes from EXT4 (after factoring in
its own write overhead) in a trace replay with a duplica-
tion ratio of 75.8%. SmartDedup also outperforms the
state-of-the-art related works Dmdedup [16,23] by 1.5X
in throughput and 57.1% in 95th percentile latency in
an FIO write experiment with 25% duplicates, and CA-
FTL [9] by 37.7% in average write latency in a trace
replay with 75.8% duplication ratio. All the improve-
ments are achieved with low resource usage. In these
experiments, SmartDedup uses less than 3.5MB of mem-
ory, and it actually reduces the battery usage by up to
7.7% and 49.2% for intensive workloads on Nexus and
Pi, respectively.

2 Analysis of Real-world Device Data

To confirm the potential of deduplication for smart de-
vices, we collected and analyzed I/O traces and file sys-
tem images from smartphones used by different real users.

ID| Total |Read/| # | Unique |Unique| Dup-
I/Os | write | of |addresses| data | lication
(GB) | ratio |days| (GB) (GB) |ratio (%)

2096.8| 7.5 | 173 148.2 192.7 21.9
7736 | 34 | 85 36.3 96.2 45.3
4267 | 4.8 | 73 34.6 56.5 23.2

2385.6| 5.8 | 145 101.2 184.2 47.5

1119.7| 34 | 92 126.7 148.6 41.6

67659 | 34 | 72 23.9 124.8 28.3

N | W=

Table 1: File system traces from real-world smartphones.
For each trace, the table shows the total amount of data
requests (4KB each), the ratio between reads and writes,
the total number of days, the total amount of writes with
unique addresses, the total amount of writes with unique
data, and the total percentage of duplicate writes.

Top 3 duplicate contributors
(file type, % of writes, duplication ratio (%))
Trace 1 2 3

1 (res, 12, 15) (db, 10, 15) (exe, 39, 13)
2 (tmp, 3, 73) (exe, 36, 65) (res, 27, 62)
3 (res, 17, 65) |(media, 3,19)| (db, 11, 17)
4 (exe, 29, 78) (tmp, 4, 77) | (media, 24, 49)
5 | (media, 76, 48) | (res, 2, 34) (exe, 12, 25)
6 (res, 19, 45) (exe, 35, 36) | (media, 9, 31)

Table 2: The file types that contribute the most amount
of duplicates in the file system traces collected from smart-
phones used by real users. For each top contributor, the
table shows the file type, the percentage of writes that it
contributes to the trace’s total write volume, and the per-
centage of duplicate writes within only this type of files.

First, we studied the long-term file system I/O traces [4]
collected from six smartphones (from VFS and EXT4 on
Android) used by six users from four countries who are
between 20 to 40 years old, which recorded the finger-
prints of writes when they were flushed from the page
cache to flash storage. Commonly used applications in-
clude chat (WhatsApp and WeChat), video (Youtube),
and social network (Facebook and Weibo) applications.
As summarized in Table 1, these traces confirm that: 1)
real-world device workloads are indeed quite intensive,
and do have a significant impact on the performance
and endurance of devices. The average daily I/O volume
ranges from 4.2GB to 17.6GB, and the amount of writes
ranges from 0.7GB to 3.5GB; and 2) a good level of
deduplication can be achieved on the writes captured in
the traces. Considering the entire traces, the percentage
of duplicate writes ranges from 21.9% to 47.5%; and on
a daily basis, on average between 16.6% and 37.4% of
writes are also duplicates.

To understand where the duplicates came from, we fur-
ther analyzed the effectiveness of deduplication within

634 2019 USENIX Annual Technical Conference

USENIX Association

the writes to each type of files. We classified the files
into several categories (resource files, database files, ex-
ecutables, temporary files, and multimedia), following
the methodology in [14]. | Table 2 shows that the file
types that contribute the most duplicates vary across the
traces collected from different users’ devices. This ob-
servation suggests that applying deduplication only to
specific types of files, or even more narrowly, only to
specific applications [17], is insufficient. Although not
shown in the figure, our results also reveal that whole-file-
based deduplication [3] is also insufficient as over 80%
of the duplicates are from files that are not completely
duplicate.

To complement the above trace analysis, we also stud-
ied file system images collected from 19 real-world smart-
phones, which on average have 10.4GB of data stored on
the device and 33% duplicates in the data. The analysis
also confirms that there is a good amount of duplicate
data stored on the devices. We also analyzed the effec-
tiveness of deduplication on different types of files, and
as in the trace analysis, we did not find any pattern—the
file types that contribute the most to deduplication differ
across the devices. For example, on one image, a large
percentage of duplicates is found within database files
(69.1%) and apk files (74.8%), but this percentage is low
on the other images; on another image, thumbnail files
have a duplication ratio of 99.0% whereas on another
image this ratio is only 0.9%.

Overall the above analysis of real-world device traces
and images shows strong evidence for the potentials of
deduplication on devices. They also suggest that a holis-
tic, system-level solution is necessary to fully exploit the
deduplication opportunities.

3 Design and Implementation

3.1 Design Overview

Overall the design of SmartDedup is based on the follow-
ing key principles:

I The storage on smart devices has limited bandwidth,
capacity, and endurance, so deduplication should be
applied as much as possible to improve its perfor-
mance, utilization, and lifetime.

IT The available memory on devices is often limited, so
the use of in-memory data structures should be kept
as low as possible. To complement the low memory

10ur results show that the writes to database-related files account
for 21.9% of the total amount of writes, which is much lower than the
90% observed by [14]. We believe that this discrepancy is because
the related work considered only writes from Facebook and Twitter,
whereas we analyzed system-wide writes.

footprint, disk space should also be leveraged to
keep additional data structures.

III Many smart devices are power or energy constrained
(e.g., limited battery life), and deduplication should
work adaptively according to the current power or
energy availability.

While following these general principles, we also cau-
tiously design the data structures and operations used by
deduplication so that its overhead is as low as possible.
The rest of this section presents first an overview and
then details of this design.

Deduplication can be performed at different layers (file
system or block layer) of the storage stack. SmartDedup
chooses the design of file system level deduplication,
which allows it to exploit useful semantics and improve
efficiency (e.g., avoid deduplicating unallocated blocks or
processing files that have not been modified). Although
hints can be passed from the file system to the block
layer [16], they may not be sufficient (e.g., for providing
the above semantics), and the file system’s unawareness
of deduplication also leads to inefficiencies. For example,
the file system either cannot exploit the space saved by
deduplication or has to assume a fixed deduplication ratio
which does not always hold for the actual workload.

According to Design Principle I, SmartDedup consid-
ers both in-line and out-of-line deduplication to maxi-
mize the effectiveness of deduplication. In-line dedupli-
cation removes duplicate writes before they reach the
disk, and can thereby quickly reduce the data and avoid
the wear-out caused by duplicates. But it needs to run
in the I/O path at all times; otherwise, it may miss many
deduplication opportunities. Out-of-line deduplication
works in the background to remove duplicates already
stored on disk, and can use fingerprints stored both in
memory and on disk to identify duplicates. Although
out-of-line deduplication can be integrated with garbage
collection to reduce wear-out [10], it is not as effective
as the in-line method which removes duplicates before
they reach the disk. Therefore, SmartDedup combines
in-line and out-of-line deduplication to take advantage of
their complementary strengths, and optimizes their uses
for resource-constrained devices. In particular, these two
deduplication procedures share the same fingerprint store
to reduce the resource overhead (per Design Principle II);
and both procedures can be dynamically enabled or dis-
abled and dynamically change the processing rate based
on a device’s current power or energy status (per Design
Principle III).

According to Design Principle II, to address the mem-
ory limitations of smart devices, SmartDedup adopts co-
hesively designed two-level in-memory and on-disk fin-

USENIX Association

2019 USENIX Annual Technical Conference 635

gerprint stores. The fingerprint store is the core data
structure of a deduplication solution: it maintains the fin-
gerprints of existing data so that it can determine whether
new data is duplicate or not by comparing the fingerprint
to existing ones. In SmartDedup, the in-memory finger-
print store supports fast deduplication of commonly used
data with low memory cost; the on-disk fingerprint store
keeps fingerprints that are not in memory and supports
more thorough data deduplication; and fingerprints can
dynamically migrate between these two stores. Together,
these two fingerprint stores support the efficient operation
of both in-line and out-of-line deduplication.

The rest of this section explains the various compo-
nents of SmartDedup and how they function together.
Our core designs, including cooperative in-line and out-
of-line deduplication and tiered fingerprint stores are
applicable to different types of file systems. We use our
prototypes for EXT4 [18], which is the de facto file sys-
tem on Android devices, and F2FS [15], a new flash-
optimized file system increasingly used by smart devices,
to explain SmartDedup.

3.2 Two-level Fingerprint Stores

In-memory Fingerprint Store. SmartDedup uses only
a small amount of memory to store important fingerprints
(and the corresponding PBNs) and support fast dedupli-
cation, while the other less important fingerprints are
kept on disk. When the in-memory fingerprint store gets
full, some of the fingerprints are demoted to the on-disk
fingerprint store to make room for new ones.

To support fast fingerprint search at low memory cost,
the store uses a prefix tree (implemented using a Linux
radix tree [8]) as the fingerprint index (Figure 1). To
conserve memory, different from typical indexes which
provide direct locations of individual fingerprints, our
index provides the locations of fingerprint groups—the
fingerprints in each group shares the same prefix. For
example, with an 18-bit index, all the fingerprints that
share the same 18-bit prefix are grouped together. This de-
sign also facilitates the group-based fingerprint eviction
and on-disk fingerprint lookup discussed later in this sec-
tion. Within each group, the fingerprints are indexed by a
linked list. The list is sorted by the fingerprints’ remain-
ing bits, which allows misses to be determined sooner
than using an unsorted list. Moreover, the length of such
a list is generally short because 1) the in-memory finger-
print store is typically small, and 2) the cryptographic
hash function used for fingerprinting tends to distribute
the fingerprints evenly across the different groups. Exper-
iments from replaying our traces confirm that the average
length of these lists is 9 (maximum length is 63).

In-memory On-disk
Fingerprint Store Fingerprint Stor:
: T ondsk
FP index m Hig fingerprint group
PBNx
[EomntonE| [Seosdeh] FPh | PBNh
econ: its econ its " -
FPi | PBN
ol T3 " [olil - b3 Leen
prefix=0 prefix=129 FPk | PBNKk
Leaf
PBNy
:) FPm | PBNm
In-memory fingerprint group§ FPn | PBNn
i [FPalFeo| [FPgl:
© [PBNa|PBND] [PBNgG| FPs [PBNs

Figure 1: SmartDedup’s two-level fingerprint stores.

With the above design, the space overhead of the in-
memory fingerprint store is kept low. If we use 1% of
the device’s memory (40MB of a 4GB memory) to store
MD5-based fingerprints, we can take the first 18 bits of
each fingerprint as the prefix index and limit the height
of the tree to three. Under this setting, the fingerprint
index uses 2.03MB of memory. Considering the data
structure overhead, the in-memory store can keep 1.3
million fingerprints for 5GB of unique data. For SHA1-
based fingerprints, the number of fingerprints that the
store can hold is 1.12 million.

The in-memory fingerprint store is used by both in-
line and out-of-line deduplication as explained later. By
allowing them to share this store, SmartDedup further re-
duces its memory usage on resource-constrained devices.

On-disk Fingerprint Store. The on-disk fingerprint
store maintains the fingerprints that are evicted from
memory due to the limited space of the in-memory fin-
gerprint store. It allows SmartDedup to make full use of
the existing fingerprints for providing thorough dedupli-
cation, and supports the promotion of fingerprints from
disk to memory when they become important to the cur-
rent workload. It is implemented as a sparse file on disk
where the fingerprints are stored sequentially along with
the PBNs. The size of the sparse file grows and shrinks,
block by block, on demand with the number of finger-
prints in the store for space efficiency. For 256GB of
device storage, the total number of fingerprints that need
to be stored on disk is 22 in the worst case, assuming all
the data is unique, which requires 2GB of disk space. In
comparison, deduplicating merely 1% of 256GB of data
saves 2.6GB of space and can already compensate the
overhead of the on-disk store.

To enable fast search of on-disk fingerprints, Smart-
Dedup also needs an index in memory, but it reuses the
same fingerprint index—the prefix tree—described above
for the in-memory store to reduce its memory usage (Fig-
ure 1). In fact, it adds only an address to each leaf node

636 2019 USENIX Annual Technical Conference

USENIX Association

of the index, which is the starting PBN of the on-disk
group of fingerprints with the same prefix as the finger-
prints of the in-memory fingerprint group. Each group of
fingerprints is stored in an array on disk, which is sorted
by its remaining fingerprint bits and stored sequentially
from this PBN address in one or multiple disk blocks.
In this way, the same fingerprint index is shared by both
in-memory and on-disk fingerprint stores, and each leaf
node can point to both an in-memory fingerprint group
and an on-disk fingerprint group that share the same pre-
fix. For a three-level tree that indexes an 18-bit prefix,
the addition of the PBN in each leaf node adds at most
IMB of memory usage.

This scheme allows efficient operations on on-disk fin-
gerprints. To search for a fingerprint on disk, SmartDedup
looks for the corresponding leaf node in the fingerprint
index. If the node does not exist in the prefix tree, Smart-
Dedup knows immediately that the fingerprint does not
exist on disk. If the node exists and contains a valid PBN,
SmartDedup loads the whole group from that address into
memory and searches for the given fingerprint in memory
using binary search. The I/O overhead for accessing the
on-disk groups is small because the size of each group is
generally small. Assuming each group shares the 18-bit
prefix, for 256GB of device storage with no duplicate
data blocks, there are about 256 fingerprints per group,
requiring only one to two 4KB blocks to store them. For
even larger disks, we can increase the length of the prefix
to bound the group size.

As discussed above, our proposed fingerprint index
provides the functionality of a Bloom filter; in compari-
son, employing a separate Bloom filter incurs additional
time and space overhead. For example, using a Bloom
filter to determine whether a group of fingerprints exists
or not would require 0.92MB of memory and applying
five hash functions. In addition, it needs to deal with the
difficulty of fingerprint deletions [7, 11].

Fingerprint Migration. Fingerprints evicted from the
in-memory store are moved to the on-disk store; con-
versely, when an on-disk fingerprint is matched by new
data, it is promoted from disk to memory. When deciding
which fingerprints to evict, the in-memory fingerprint
store tries to keep the fingerprints that are important to
the current workload. Our evaluation results show that a
simple policy such as least recently used (LRU) achieves
good deduplication ratios (Section 4.2).

But the I/O overhead of fingerprint migrations is an im-
portant consideration for devices. Evicting a fingerprint
from memory to disk requires two I/Os for loading the
corresponding fingerprint group from disk and storing the
updated group back to disk. To reduce disk I/O overhead,

instead of evicting one fingerprint at a time, SmartDedup
evicts a group of fingerprints at a time, so that a number
of slots are freed up at once in the in-memory fingerprint
store and can be used to store a number of fingerprints
from the future requests. With the design of a prefix-tree-
based index, the fingerprints linked to the same leaf node
share the same prefix and automatically form an eviction
group. Note that when migrating fingerprints from disk
to memory, SmartDedup still promotes one fingerprint,
instead of a whole group, at a time, since there is limited
locality within each group. Moreover, with a small group
size (9 on average), the deduplication ratio is also not
compromised much by evicting the whole group together.

To implement a group-based eviction policy, Smart-
Dedup keeps an LRU list for all the groups in the finger-
print index. Whenever a fingerprint is matched to a new
request, its group is brought to the head of the LRU list.
When eviction is needed, the entire group of fingerprints
that is at the tail of the LRU list is evicted. Since both the
in-memory and on-disk fingerprint stores share the same
index, fingerprints that are evicted together from the in-
memory fingerprint store also belong to the group that
shares the same prefix in the on-disk fingerprint store, so
they can be inserted into the on-disk group using a single
read-merge-write operation.

3.3 Hybrid Deduplication

In-line Deduplication happens when the file system han-
dles a write request, and it removes a duplicate write
by modifying the file system’s logical block to physi-
cal blocks mappings. Specifically, in our prototypes, the
write paths of EXT4 and F2FS are modified in the follow-
ing manner to make sure that the deduplication procedure
does not violate the basic design principles of modern
file systems. First, SmartDedup achieves deduplication
by changing the one-to-one mappings that the file sys-
tem maintains from logical blocks to physical blocks
to many-to-one. Second, SmartDedup performs in-line
deduplication when the file system writes back buffered
data to disk; by doing so, it saves itself from processing
repeated writes to buffered data, which does not hurt ei-
ther performance or endurance. SmartDedup also handles
direct I/Os, but the discussion here focuses on buffered
I/Os since they dominate common device workloads.

In-line deduplication may not be able to find a match
for a request even if there is a duplicate block on the
file system, because the in-memory fingerprint store is
not large enough to hold all the existing fingerprints. For
such requests, in-line deduplication hands them over to
out-of-line deduplication, which searches the on-disk
fingerprint store in the background without slowing down
the foreground application.

USENIX Association

2019 USENIX Annual Technical Conference 637

Shared Fingerprint Index

RN

1. Fingerprinting
2. Search in-memory

fingerprint store
3. Miss; put fingerprint In-memory ® On-disk
to skipped buffer Fingerprint Fingerprint
4. Search on-disk Store Store
fingerprint store ®
5. Promote a fingerprint
to In-memory
fingerprint store

o)

6. In-memory fingerprint|

store full, evict a group Skipped Buffer I—'®

of fingerprints
Figure 2: SmartDedup operations.

Out-of-line Deduplication works in the background on
data that is not processed by in-line deduplication, which
may be still in the page cache waiting to be written back
or be already stored on disk. When processing a block of
data, it looks for the fingerprint in both the in-memory
and on-disk stores. When a match is found for a logi-
cal block, it changes the mappings between the logical
block and physical block and, if needed, deallocates the
redundant physical block to perform deduplication.

For efficiency, SmartDedup avoids processing data
blocks that have not been modified since the last time
they were processed by either in-line or out-of-line dedu-
plication. It uses an in-memory buffer, called skipped
buffer, which stores the list of blocks skipped by in-line
deduplication, either because the latter is disabled or is
enabled but cannot find fingerprint matches in the in-
memory store. Each entry in this buffer stores a skipped
block’s information (inode number, LBN, and fingerprint
(if available)) for the out-of-line deduplication to process
the block quickly. It is implemented using an array-based
hash table, indexed by inode and LBN. When the finger-
print of a data block is updated, the previous content of
the hash table entry is replaced by the new one.

The size of the skipped buffer is kept small and is also
adjustable depending on the device’s current memory
availability. For example, with 0.5MB of memory, the
skipped buffer can store the information of 22K requests
and 65K requests with and without their fingerprints,
respectively. If the buffer does get full, SmartDedup con-
verts it to store only the inode numbers of modified files
so that out-of-line deduplication processes only these
files. As the inode number requires only 4 bytes, the
buffer rarely overflows in practice.

3.4 Putting Everything Together

Read and Write Path. When handling a write, Smart-
Dedup fingerprints the request, searches for it in the fin-

gerprint store(s), and deduplicates it if a match is found,
as discussed above and illustrated in Figure 2. The read
path in the file system is also modified to make use of
deduplication to improve read performance. Because the
page cache is indexed by each file’s LBNs, a read that
cannot find its LBN in the page cache cannot be avoided
even if the requested data duplicates another logical block
that is already in the cache.

To address this limitation, SmartDedup employs a
page cache index which maps from PBNs to their corre-
sponding pages in the page cache. For a read that cannot
find a match in the page cache by its LBN, SmartDedup
searches the index using its PBN, before considering it a
miss as the native file system does. If a match is found, it
means that the requested data already exists in the page
cache, and there is no need to perform the actual read I/O.
SmartDedup directly copies the data from the duplicate
page in the cache. The size of this index is bounded by the
size of page cache, and it can be further restricted when
SmartDedup indexes only the important set of pages (e.g.,
the most recently used ones) in the cache.

Handling Data Updates and Deletions. A complica-
tion to the above write process is that when handling an
update to or deallocation of an existing block, the finger-
print stores need to be consistently updated. SmartDedup
needs to find the original fingerprint of the block so that
it can update the reference count (the number of logical
blocks deduplicated by this fingerprint) and delete the
fingerprint if the reference count drops to zero. But Smart-
Dedup does not have the original data’s fingerprint; it has
only the new request’s LBN (and from there the PBN). To
address this problem, SmartDedup maintains a reverse in-
dex (a sparse file) on disk for the fingerprint stores, which
maps from a fingerprint’s PBN to its corresponding leaf
node in the fingerprint index of the fingerprint store us-
ing an array where the PBN is the index and the entries
store the leaf node addresses. The leaf node represents
a group of fingerprints either in memory or on disk, and
SmartDedup can search this group to quickly locate the
fingerprint. Compared to mapping from PBNs directly to
the locations of the fingerprints, this design reduces the
overhead of the reverse index because when a fingerprint
migrates between the in-memory and on-disk stores, the
leaf node that the fingerprint belongs to does not change
and the index does not have to be updated.

Adaptive Deduplication. To further reduce the overhead
of deduplication, SmartDedup can adapt its processing
rate based on the current resource availability. For out-
of-line deduplication, SmartDedup adapts the number of
blocks that it processes per period of time (e.g., every
minute). For in-line deduplication, it adapts the process-

638 2019 USENIX Annual Technical Conference

USENIX Association

ing rate by selectively processing n out of the N write re-
quests that it receives—n /N defines the selectivity. Con-
sidering CPU and I/O load, SmartDedup automatically
reduces its processing rate whenever it detects that the
CPU or disk is fully utilized. Considering battery usage,
SmartDedup reduces its processing rate proportionally
to the remaining battery life, and completely disables
deduplication when the device enters low-power mode.
Similar policies for other resource constraints can also
be easily specified and carried out by SmartDedup using
this adaptive deduplication mechanism.

To further reduce resource usage, SmartDedup can
also adapt its processing rate (by adjusting the selectiv-
ity) based on the level of data duplication observed in
the workload. When the observed duplication level is
low in the previous time window, SmartDedup gradu-
ally reduces its processing rate, but it quickly restores its
processing rate when it detects an increasing duplication
level in the current workload.

File System Consistency. Because the LBN-to-PBN
mapping is already kept consistent by the native file sys-
tem, the only metadata that SmartDedup needs to safe-
keep is the reference counts of the fingerprints—it relies
on the reference counts to decide when to free a data
block and when to perform copy-on-write. SmartDedup
stores the reference counts persistently as part of the on-
disk reverse index (together with the leaf node addresses
of the corresponding fingerprints as described above).

To ensure consistency, on EXT4, SmartDedup jour-
nals the modifications to the reverse index as part of
the file system journaling. The design of the reverse in-
dex helps reduce the overhead from its journaling. The
entries in the index are sorted by the PBNs, so consecu-
tive updates to the reference counts of adjacent physical
blocks can be aggregated into much fewer updates to the
reverse index blocks—a 4KB block stores 512 entries.
Experiments using our traces confirm that the amount of
additional writes to the reverse index is less than 0.5%
of the total write volume. After a crash, the file system
can be brought back to a consistent state by replaying
the latest valid journal transaction. Similarly, on F2FS,
SmartDedup ensures that modifications to the reverse
index and on-disk fingerprint store are captured by the
file system checkpoint so that they can always be brought
to a valid state after the file system’s crash recovery. The
overhead of recovery is also small as it requires only up-
dating the affected reference counts using the journal or
checkpoint.

All other data structures that SmartDedup maintains
can be safely discarded without affecting file system con-
sistency. The in-memory fingerprint store will be warmed

Nexus 5X Raspberry Pi 3
CPU Qualcomm Broadcom
Snapdragon 808 BCM2837
RAM 2 GB 1 GB
Storage 32GB eMMC | 16GB SDHC UHS-1

Operating System | Android Nougat | Raspbian Stretch Lite
Kernel Version Linux 3.10 Linux 4.4
File System EXT4 F2FS

Table 3: Specifications of the testing devices.

up again after the system recovers. The page cache index
will be reconstructed as the page cache warms up again.
The loss of the skipped buffer will make SmartDedup
miss the requests that have not been processed by out-of-
line deduplication. For a 0.5MB skipped buffer, at most
254MB of data will be missed (assuming that the buffer
stores only the inode and LBN of each request). To re-
duce this impact, SmartDedup periodically checkpoints
the inodes and LBN's from the skipped buffer.

4 Evaluation

We evaluated SmartDedup based on prototypes imple-
mented on EXT4 and F2FS. Testing devices include a
Nexus 5X phone and a Raspberry Pi 3 device (Table 3).
We considered the following workloads to provide a com-
prehensive evaluation:

e FIO [12]: We used FIO to create intensive I/0O work-
loads with different access patterns and levels of
duplication.

o Trace Replay: We replayed our collected real-world
smartphone traces (Table 1), which helps us under-
stand the performance of SmartDedup for real-world
workloads of smart devices.

e DEDISbench [20]: We used DEDISbench to scan
our collected real-world Android images and then
generate workloads that reflect the data duplication
characteristics (such as the distribution of reference
counts) of these images.

We compared SmartDedup to two related solutions:
Dmdedup [16,23] and CAFTL [9]. Dmdedup is a block-
level in-line deduplication solution that supports flexible
metadata management policies. It can use a copy-on-
write B-tree to store metadata and provide a consistency
guarantee by flushing metadata periodically. To provide a
fair comparison, we further enhanced Dmdedup by pass-
ing hints from the file system and allowing it to flush
metadata only at journal commit times.

CAFTL implements both in-line and out-of-line dedu-
plication at the flash translation layer (FTL), with sev-
eral techniques designed for the resource constraints at
this layer. Sampling hashing fingerprints only one data

USENIX Association

2019 USENIX Annual Technical Conference 639

block in a request that has multiple blocks to reduce
overhead. Lightweight pre-hashing applies CRC32 to
pre-hash data blocks and filter out the unmatched ones
to save fingerprinting overhead. Dynamic switches dy-
namically enable and disable deduplication based on the
available cache space. For a fair comparison, we imple-
mented sampling hashing and lightweight pre-hashing in
the EXT4 writeback path, but dynamic switches are not
necessary because the page cache supports rate limiting.

In all the experiments, the memory usage was capped
at 3.5MB for all the evaluated solutions (unless otherwise
noted). SmartDedup used 3MB for in-memory finger-
print store, which used a 14-bit prefix, and 0.5MB for the
skipped buffer, which stored full information and never
overflowed during the experiments. All the experiments
were started with empty in-memory and on-disk finger-
print stores. Both in-line and out-of-line deduplication
were used in the experiments (unless otherwise noted);
adaptive deduplication was enabled and evaluated only
in Section 4.4. SmartDedup uses fingerprints generated
by cryptographic hash functions [19,21] to find dupli-
cates. The overhead for fingerprinting one 4KB block
of data on Nexus 5X is about 9us if using SHA1 and
16us if using MD5, and on Pi is about 30us for both. Due
to limited space, we present only the MDS5 results here.
Each experiment was repeated at least five times.

4.1 FIO

We ran FIO with three threads, each issuing random
4KB reads or writes, using buffered I/Os (which is what
real-world applications typically use). For all FIO ex-
periments, the total read or write size was set to 2GB
on Nexus and 1GB on Pi. We varied the percentage
of duplicates in the workloads; at 0%, SmartDedup’s
in-memory fingerprint store can hold 20% and 10% of
total fingerprints for the 1GB and 2GB experiments, re-
spectively. The read experiments were performed using
random reads on the data written by FIO in the write
experiments (after the page cache was dropped).

Nexus 5X Results. Figure 3a and 3b show the write per-
formance on Nexus 5X. The worst case for SmartDedup
is when there is no duplicate, where SmartDedup has
only 3.8% overhead in throughput and 1.1% overhead
in 95th percentile latency compared to EXT4, including
all the overhead from fingerprinting and operations on
in-memory and on-disk fingerprint stores. In compari-
son, Dmdedup has a much higher overhead, 62.8% in
throughput and 1.1X in 95th percentile latency, which we
believe is due to 1) deduplication at the block layer adds
another level of LBN-to-PBN mapping and additional
overhead; 2) to guarantee consistency, the copy-on-write

200

EXT4 == —
=3 SmartDedup Ez= ng 60
Dmdedup =z =120
2 CAFTL & 9
= g 80
3 S 40
£ 0 0
25 50 75 100 0 25 50 75 100
Percentage of Duplicates Percentage of Duplicates
(a) Write throughput (b) Write latency
300 7
il e
= 200 Es
= > 4
2 23
© L2
> ©
° a1
£ 00 25 50 75 100 70 25 50 75 100
Percentage of Duplicates Percentage of Duplicates
(c) Read throughput (d) Read latency

Figure 3: FIO on EXT4 using Nexus 5X. Figures 3a and 3¢
show the average write and read throughput, respectively,
with the error bars showing the standard deviations. Fig-
ures 3b and 3d illustrate the write and read latency re-
sults, respectively, using box and whisker plots, where the
whiskers indicate the S5th and 95th percentiles.

B-tree requires more metadata I/Os. For this experiment,
Dmdedup introduces 75.6% more metadata writes than
EXT4, whereas SmartDedup introduces only 9% more.
CAFTL has less overhead than SmartDedup (1.4% less in
throughput and 3.2% less in 95th percentile latency) be-
cause, with no duplicates in the workload, its pre-hashing
can save substantial fingerprinting.

As the percentage of duplicates in the workload grows,
the performance of SmartDedup quickly improves and ex-
ceeds EXT4. With 25% duplicates, SmartDedup already
outperforms EXT4 by 16.9% in throughput and 18.5%
in 95th percentile latency. Dmdedup has an overhead of
52.8% in throughput and 90.2% in 95th percentile latency.
CAFTL outperforms EXT4 by only 3.1% in throughput
and 6.5% in 95th percentile latency. We found out that us-
ing pre-hashing hurts deduplication performance—since
requests are filtered out by pre-hashing, CAFTL does
not have their fingerprints and cannot deduplicate future
requests that have the same data. To verify this observa-
tion, we tried removing pre-hashing from CAFTL and
the deduplication ratio indeed increases (by 14% for FIO
with 25% duplicates). Without pre-hashing, CAFTL is
still slower than SmartDedup (6.7% in throughput and
9.3% in 95th percentile latency), because 1) its out-of-
line deduplication works only when the system is idle
and cannot help much; 2) its reference-count-based evic-
tion policy cannot exploit temporal locality in fingerprint
accesses (further discussed in Section 4.2).

Figure 3c and 3d compare the read performance. Even
in the worst case with no duplicates, the overhead of
SmartDedup is small, merely 0.6% in throughput and
2.7% in median read latency, which is mainly from main-

640 2019 USENIX Annual Technical Conference

USENIX Association

% 80f SmartDedup &

= 60 Dmdedup E=a

>

£ 40

g

320

£ olEEn 0

= 0 1 0 25 50 75 100

Percentage of Duplicates Percentage of Duplicates

(a) Write throughput (b) Write latency

— 4

©500 ‘

@ —

S 400 Q g3

5 =2 2

g g £d &3

=) 21

3 ©

o I - 0

= 070 25 50 75 100 0 25 50 75 100

Percentage of Duplicates Percentage of Duplicates

(c) Read throughput (d) Read latency

Figure 4: FIO on F2FS using Raspberry Pi. Figure 4a
and 4c represent the average write and read throughput,
respectively, and the error bars represent the standard de-
viations. Figure 4b and 4d illustrate the write and read
latency results, respectively, using box and whisker plots,
where the whiskers indicate the 5th and 95th percentiles.

taining the page cache index. As the percentage of du-
plicates increases, the performance of SmartDedup rises
accordingly, as expected, and SmartDedup substantially
outperforms EXT4, improving the throughput by up to
13.4X and reducing the 95th percentile latency by up to
93%, owing to the page cache index which allows Smart-
Dedup to use cached data to satisfy read requests for
different logical blocks but with the same content (as dis-
cussed in Section 3.4). In comparison, both Dmdedup and
CAFTL are slower than EXT4. CAFTL has up to 23%
and 64.1% overhead in throughput and 95th percentile
latency, respectively, which we believe is due to the frag-
mentation induced by deduplication [13]. SmartDedup’s
use of page cache index helps compensate for this over-
head; additional techniques [22] can also be adopted to
address this problem as discussed in Section 4.5.

Raspberry Pi Results. Figure 4 compares the FIO per-
formance on Raspberry Pi which has even fewer re-
sources than Nexus 5X. The results show that Smart-
Dedup also achieves substantial improvements compared
to the native file system (F2FS) and the related solu-
tion (Dmdedup). For example, SmartDedup achieves a
speedup of 31.1% and 32% in throughput for the write
and read workloads with 25% duplicates, respectively
compared to F2FS. Compared to Dmdedup, the through-
put improvement is 2.8X and 34.5% for write and read, re-
spectively. Although the improvement of 95th percentile
latency is not as significant as in the Nexus results, Smart-
Dedup still improves the 99.5th percentile latency sub-
stantially. Compared to F2FS, SmartDedup reduces the
write tail latency by 30.4% and the read tail latency by

EXT4 (SmartDedup) =8

F2FS &
0 FS (SmartDedup)
5
0
5
0™ i 1 Mix 2
(a) CPU load (b) Battery usage
Figure 5: Resource usage of FIO.
Write size | Duplication | Read/Write | Source
(MB) ratio (%) ratio Trace #
Segment 1| 17612.8 75.8 1.5 4
Segment 2| 12697.6 479 22 6
Segment 3| 9318.4 26.4 6.8 2
Segment 4 65.8 46.1 51.3 4
Segment 5 78.5 19.4 69.8 4

Table 4: Trace segment statistics.

15.7%; and it outperforms Dmdedup by 85.4% in write
and 18.7% in read.

Resource Usage. To understand the resource usage un-
der realistic settings, we used FIO with different mixes of
reads and writes to mimic the composition of real-world
workloads. In our traces, the percentage of reads varies
from 77.4% to 88% and the percentage of duplicates
varies from 21.9% to 47.5%. For power measurement,
we used the Trepn profiler [24] (for Nexus) and Watts Up
Pro [5] (for Pi). Figure 5 shows the results. In Mix 1, the
workload has 4GB of I/Os with 50% reads and 25% dupli-
cates. SmartDedup’s CPU overhead on EXT4 and F2FS
is 3.3% and 2.2%, respectively, which are both reasonably
small. For battery usage, SmartDedup has 4% overhead
on EXT4 and uses 21.2% less battery on F2FS. In Mix 2,
the workload consists of 6GB of I/Os with 66% reads and
25% duplicates. In this setting, SmartDedup’s CPU over-
head is merely 1.7% on EXT4 and 5.5% on F2FS; but it
actually saves 7.7% of battery usage on EXT4 and 49.2%
on F2FS because its saving on FIO runtime outweighs its
overhead in power consumption. SmartDedup achieves
these results while using only 0.2% (3.5MB out of 2GB)
of the device’s memory. Therefore, it is reasonable to
believe that for typical device workloads, SmartDedup
does not incur much resource overhead, and can in fact
save the battery usage of the devices.

4.2 Trace Replay

The above FIO results give us insight into SmartDedup’s
performance and overhead under highly intensive set-
tings. In the following two sections, we consider more
realistic workloads using traces and images collected
from real-world smartphones.

Replay on Real Devices. We replayed several represen-

USENIX Association

2019 USENIX Annual Technical Conference 641

Deduplication ratio =2
Write speedup E&
Storage saving &
Write reduction

Seg 1 Seg 2 Seg 3

(b) CAFTL
Figure 6: Trace replay on EXT4 using Nexus 5X.

(a) SmartDedup

tative segments of the traces as summarized in Table 4
(Segments 1 to 3) using the real implementation of Smart-
Dedup and CAFTL on the Nexus 5X device. These seg-
ments have different levels of duplication and all have
a substantial amount of writes. Therefore, they can well
represent the characteristics of the entire traces.

Figure 6 shows the results of the trace replay, including
the achieved deduplication ratio and the speedup and
the space and write savings compared to EXT4. The
deduplication ratio reported here as well as the rest of
the evaluation is computed using only the duplicates
discovered by in-line deduplication. SmartDedup delivers
a good speedup, up to 51.1%. It also achieves a high
level of write reduction, up to 70.9%, after factoring in
its own overhead in journaling and managing the on-
disk data structures, e.g., 24.8 MB and 127.9 MB data
were written to the reverse index and on-disk fingerprint
store, respectively, during the replay of Segment 1. But
there is not much space saving here, mainly because
these trace segments are dominated by updates to existing
data on the file system. During the replay of Segment
2,34.2 MB and 12.5 MB disk space were used by the
on-disk fingerprint store and reverse index, respectively.
In comparison, CAFTL achieves less improvement (up
to 13.4% and 38.7% in speedup and write reduction,
respectively).

Since navigation is one of the typical applications on
IoT devices [1, 2], we extracted the Google Map I/Os
from our smartphone traces and replayed them (Segments
4 and 5 in Table 4) on the Raspberry Pi. As shown in
Figure 7, SmartDedup also achieves good write speedup
(up to 30.9%) and reduction (up to 47%) on the Pi.

Replay on Simulator. We also replayed three entire
traces listed in Table 1 on a simulator of SmartDedup.
The simulator implements SmartDedup’s data structures
and operations in user space and allows us to replay these
months-long traces within a reasonable amount of time.
Even though it does not model real-time performance, it
allows the study of several important aspects of Smart-
Dedup by replaying the entire traces.

First, we used the simulator to study the impact of
our group-based fingerprint eviction (G-LRU) versus the

standard, individual fingerprint eviction (LRU). Figure 8
shows that for different traces, G-LRU achieves a dedu-
plication ratio that is at most 3% lower than LRU, which
confirms that group-based eviction does not compromise
the effectiveness of deduplication while saving substan-
tial I/O overhead (on average 87%).

Next, we compared our recency-based fingerprint re-
placement, which replaces the least recently used finger-
print, to CAFTL’s reference-count-based replacement,
which replaces the fingerprint with the smallest refer-
ence count. As discussed in Section 4.1, pre-hashing is
detrimental to deduplication ratio; here we considered
the modified CAFTL that does not use pre-hashing. The
results confirm the importance of exploiting temporal lo-
cality which allows SmartDedup to achieve 41.8% higher
deduplication ratio than CAFTL.

We also studied the effectiveness of SmartDedup’s in-
memory fingerprint store design, which uses a prefix tree
to index the fingerprints, by comparing its results to Dm-
dedup, which uses a copy-on-write B-tree as the index.
We varied the amount of memory that each solution is
allowed to use from 1MB to 40MB. The results show
that SmartDedup’s memory-conserving designs allow it
to achieve higher deduplication ratios (by up to 35.7%),
especially when the available memory is limited.

Finally, we evaluated the effectiveness of our two-level
fingerprint store design by comparing the deduplication
ratio of G-LRU with (G-LRU) and without (G-LRU (in-
line only)) the on-disk fingerprint store. As expected,
when the in-memory fingerprint store is small (1IMB),
the availability of an on-disk store and out-of-line dedu-
plication improves the deduplication ratio from 6.7%
to 12.1% (Trace 1). With a larger in-memory fingerprint
store, the use of an on-disk fingerprint store still increases
the deduplication ratio from 36.7% to 43.1% (Trace 2).
These results prove that our designs for synergistic in-line
and out-of-line deduplication with two-level fingerprint
stores work well for real-world workloads, and they are
particularly important for devices with limited memory
capacity.

4.3 DEDISbench

In addition to using real traces, we also created additional
workloads by sampling real-world smartphone images us-
ing DEDISbench [20]. We chose two of the smartphone
images that we collected, with duplication ratios of 46.1%
and 19.4%, and used DEDISbench to generate workloads
that represent the data duplication characteristics of these
images. All experiments were done on Nexus 5X using
four threads and a total of 2GB of random 4KB reads or
writes (SmartDedup’s in-memory fingerprint store can

642 2019 USENIX Annual Technical Conference

USENIX Association

Deduplication ratio =3
y Write speedup &
Storage saving E2
Write reduction

Dmdedup =X -
G-LRU (inline only) -©
CAFTL (w/o pre-hashing) ——

Deduplication ratio ==
Write speedup &

o

] 3 40
3 In-memory fingerprint
[a] store size (MB)

(a) Tracel

Figure 7: Trace replay on Figure 8: Deduplication ratio from different migration
F2FS using Pi policies.

0

= 5 60

=600 =3
56 S 40
22 4001 EXT4 | 7o
nC_> £ 200+ SmartDedup (ba§ic) —+| 3T}

2 0 SmartDedup (adaptive) =% 8

8 o 120 160 % 20 40 60 80 100

80
Time (s) Time (s)

(a) Power consumption (b) Deduplication ratio

Figure 10: Adaptive deduplication based on duplication

level

hold 20% of all the fingerprints during these experiments).
The write experiment was done in the peak mode (the
more intensive mode of DEDISbench) with the hotspot
I/0O distribution (which DEDISbench uses to model real-
world workloads with hotspot regions in their requests).
The read experiment was done by reading from what
DEDISbench generated in the write experiment (after the
page cache was dropped).

Figure 9 shows the deduplication ratio achieved by
SmartDedup and its I/O speedups, storage savings, and
write reduction compared to EXT4. The write and read
speedups are both significant, up to 54.4% and 33.6%,
respectively, and largely follow the deduplication ratio of
the workload. The read speedup is lower than the write
speedup, because not all duplicate data can be found in
the page cache due to cache evictions.

The space and write savings are also substantial, up to
45.0% and 41.6%, respectively. Note that these savings
are computed after SmartDedup’s overhead—the space
and writes used for its on-disk data structures (including
the on-disk fingerprint store and the reverse index and
its journal)—is factored in. These results confirm the
effectiveness of our techniques (Sections 3.2 and 3.4)
for reducing the I/O overhead of deduplication.

4.4 Adaptive Deduplication

Next, we evaluated the effectiveness of adaptive dedupli-
cation described in Section 3.4 by replaying trace seg-

ments on Nexus 5X. The first experiment studied the
effectiveness of adapting deduplication selectivity based

on the level of duplication observed in the workload. Fol-

lowing the general strategy described in Section 3.4, the
specific algorithm used by SmartDedup is as follows. It

1 3, . 40
In-memory fingerprint
store size (MB)

(b) Trace2

1 3. . 40
In-memory fingerprint 0%
store size (MB)

(c) Trace3

Figure 9: DEDISbench

% 800 S-otw oo 5 8
= 600 BxTa o | BE O
“;’-9 400F SmartDedup (basic) —+ .9 40
S 200} SmartDedup (adaptive) =% §§ 20+

o 0

0

Consumpti

0 50 100 150 200 250 300
Time (s)

(b) Deduplication ratio

0 50 100 150 200 250 300
Time (s)
(a) Power consumption
Figure 11: Adaptive deduplication based on available
battery.

computes the deduplication ratio of the last window—the
last 150 write requests—and compares it to the average
ratio from the past 30 windows. If the former is lower,
it indicates that the current workload has fewer dupli-
cates, and SmartDedup slowly reduces the percentage of
requests that it fingerprints in-line in the next window
(by 10% until it reaches a lower bound of 30%). But
if the deduplication ratio of the last window is higher,
SmartDedup quickly increases the percentage of requests
that it fingerprints in-line in the next window (by 30%
until it is back to 100%). How quickly SmartDedup ad-
justs its selectivity offers a tradeoff between performance
and battery usage. We omit the sensitivity study’s results
due to lack of space. With the setting mentioned above,
SmartDedup reduces its power consumption overhead
(compared to EXT4) by up to 14% at the cost of 8% loss
in deduplication ratio (as shown in Figure 10).

The second experiment evaluated adaptive deduplica-
tion based on the available battery level (Figure 11). We
replayed a 12-hour long trace segment and assumed that
the device’s battery level was 100% (when it was fully
charged) at the start of the replay and dropped to 20%
(when it entered low-power mode) at the end. With adap-
tive deduplication, SmartDedup automatically increased
the selectivity of fingerprinting as the available battery
reduced. The power consumption overhead (compared
to EXT4) dropped from 8%, when the battery level is
100%, to 0.3% when the battery level is 20%, at the cost
of reducing the deduplication ratio from 51% to 32%.

4.5 Fragmentation Resistance

Deduplication usually brings fragmentation to disk and
can hurt I/O performance. Even though flash storage is

USENIX Association

2019 USENIX Annual Technical Conference 643

[es]
o

Threshold = 1 ==
Threshold = 2 &=
Threshold = 4 &g

D
o
n

N
o

Ratio (%)

n
o

Increase of
Fragmentation (X)

o

Deduplication

<
2
<
|

sl

Xl

Trace 4 Trace

o

A <]
Trace 6 Trace4 Trace5 Trace6

(a) Deduplication ratio (b) Increase of fragmenta-
result tion w.r.t. EXT4

Figure 12: Fragmentation-resistant deduplication.

much less affected by fragmentation than HDDs, Hahn
et al. [13] showed that flash devices still suffer from frag-
mentation due to increased I/O stack overhead. To ad-
dress fragmentation, we leveraged the filtering technique
from iDedup [22], which applies deduplication only to
a physically contiguous sequence of writes that are du-
plicates. It sets a threshold on the length of a duplicate
sequence, and filters out all sequences shorter than this
threshold.

To evaluate the effectiveness of this filtering technique
in SmartDedup, we replayed three complete traces listed
in Table 1 on our simulator while varying the value of
the threshold from one to four (when the threshold is one,
the filtering is essentially disabled). We evaluated the
impact on fragmentation, by measuring the total number
of extents created by the workload. The results in Fig-
ure 12 confirm that by integrating the filtering technique,
SmartDedup can reduce fragmentation without hurting
the effectiveness of deduplication. For example, as the
threshold increases from one to four, the deduplication
ratio of SmartDedup drops by 6.0% while the increase in
fragmentation (compared to native EXT4) reduces from
1.5X to 1.06X for Trace 6.

5 Related Work

There are several related deduplication solutions de-
signed for resource-constrained systems. As mentioned
in Section 4.1, CAFTL includes several techniques de-
signed for deduplication on flash device controllers. The
key differences of SmartDedup are its symbiotic use of
in-line and out-of-line deduplication and the synergistic
combination of in-memory and on-disk fingerprint stores
for low-overhead and effective deduplication. In com-
parison, CAFTL relies mainly on in-line deduplication,
while its out-of-line deduplication plays only a minor
role and is completely separate from the former.

A recent study [17] proposed per-application, in-line
deduplication for smartphones. It groups the fingerprints
by applications, loads only the group for the foreground
application, and swaps it out to disk when the application
is switched to the background. As discussed in Section 2,
per-application deduplication can miss many duplicates

that exist across different applications. Moreover, migrat-
ing applications’ entire fingerprint sets between memory
and disk can be expensive when they become large. For
example, our traces show that commonly used applica-
tions such as Gmail and Youtube have over 20MB of
fingerprints and Weibo has 40MB. In comparison, Smart-
Dedup supports system-wide deduplication with fine-
grained fingerprint migration, and performs well with
much lower memory usage.

Hybrid use of in-line and out-of-line deduplication
has been studied in other related works. For example,
DDFEFS [6,25] employs both in-line and out-of-line dedu-
plication for backup systems, and like CAFTL, they are
not well integrated as in SmartDedup. DDFS caches
fingerprints in memory to reduce on-disk fingerprint
lookups, but unlike SmartDedup’s in-memory fingerprint
store, it is not designed for memory-constrained scenar-
ios. For example, DDFS requires complex data structures
to organize fingerprints that are grouped by their spatial
locality. This design is important for deduplication on
high-performance backup systems, but is unnecessary
and costly for deduplicating the primary storage of low-
end devices.

6 Conclusions and Future Work

This paper presents a deduplication solution optimized
for smart devices. The novelties of this work lie in a new
architectural design that synergistically integrates in-line
with out-of-line deduplication and in-memory with on-
disk fingerprint stores. The entire solution is cautiously
designed and optimized considering the various resource
constraints of smart devices. An extensive experimen-
tal evaluation based on intensive workloads and smart-
phone images and 1/O traces confirms that SmartDedup
can achieve substantial improvement in performance, en-
durance, and storage utilization with low memory, disk,
and battery overhead. In our future work, we will fur-
ther study the effectiveness of SmartDedup in other types
of resource-constrained environments such as various
Internet of Things and embedded storage controllers.

7 Acknowledgements

We thank the anonymous reviewers and our shepherd,
Geoff Kuenning, for their thorough reviews and insightful
suggestions. We also acknowledge Wenji Li and other
colleagues at the ASU VISA research lab for their help
in collecting the traces. This research is sponsored by
the National Science Foundation CAREER award CNS-
1619653 and awards CNS-1562837, CNS-1629888, I1S-
1633381, and CMMI-1610282.

644 2019 USENIX Annual Technical Conference

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Android auto.
auto/.

https://www.android.com/

Apple car play. https://www.apple.com/ios/
carplay/.

Apple file system (APFS). https://developer.
apple.com/wwdc/.

VISA lab traces.
traces.

http://visa.lab.asu.edu/

Watts Up Pro power meter. https://www.
vernier.com/products/sensors/wu-pro/.

Yamini Allu, Fred Douglis, Mahesh Kamat, Philip
Shilane, Hugo Patterson, and Ben Zhu. Backup to
the future: How workload and hardware changes
continually redefine Data Domain file systems.
Computer, 50(7):64-72, 2017.

Burton H Bloom. Space/time trade-offs in hash
coding with allowable errors. Communications of
the ACM, 13(7):422-426, 1970.

Daniel P Bovet and Marco Cesati. Understand-
ing the Linux Kernel: From I/O ports to process
management. O’Reilly Media, Inc., 2005.

Feng Chen, Tian Luo, and Xiaodong Zhang. CA-
FTL: A content-aware flash translation layer en-
hancing the lifespan of flash memory based solid
state drives. In Proceedings of USENIX Conference
on File and Storage Technologies (FAST), 2011.

Fred Douglis, Abhinav Duggal, Philip Shilane, Tony
Wong, Shiqin Yan, and Fabiano Botelho. The logic
of physical garbage collection in deduplicating stor-
age. In Proceedings of USENIX Conference on
File and Storage Technologies (FAST), pages 29—
44, Santa Clara, CA, 2017.

Li Fan, Pei Cao, Jussara Almeida, and Andrei Z
Broder. Summary cache: A scalable wide-area web
cache sharing protocol. IEEE/ACM Transactions
on Networking (TON), 8(3):281-293, 2000.

FIO — Flexible I/O tester synthetic benchmark.
http://git.kernel.dk/?p=fio.git.

Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-
Pin Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue,
and Jihong Kim. Improving file system perfor-
mance of mobile storage systems using a decoupled

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

defragmenter. In Proceedings of USENIX Annual
Technical Conference (ATC), pages 759-771, Santa
Clara, CA, 2017.

Sooman Jeong, Kisung Lee, Seongjin Lee, Seoung-
bum Son, and Youjip Won. I/O stack optimization
for smartphones. In Proceedings of USENIX An-
nual Technical Conference (ATC), pages 309320,
2013.

Changman Lee, Dongho Sim, Joo Young Hwang,
and Sangyeun Cho. F2FS: A new file system for
flash storage. In Proceedings of 13th USENIX Con-
ference on File and Storage Technologies (FAST),
pages 273-286, 2015.

Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun
Shastry, Philip Shilane, Sun Zhen, Vasily Tarasov,
and Erez Zadok. Using hints to improve inline
block-layer deduplication. In Proceedings of 14th
USENIX Conference on File and Storage Technolo-
gies (FAST), pages 315-322, 2016.

Bo Mao, Suzhen Wu, Hong Jiang, Xiao Chen, and
Weijian Yang. Content-aware trace collection and
I/O deduplication for smartphones. In Proceed-
ings of 33rd International Conference on Massive
Storage Systems and Technology (MSST), 2017.

Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The new EXT4 filesystem: Current status
and future plans. In Proceedings of the Linux sym-
posium, pages 21-33, 2007.

FIPS PUB NIST.
1995.

180-1: Secure hash standard,

Joao Paulo, Pedro Reis, Jose Pereira, and Antonio
Sousa. DEDISbench: A benchmark for dedupli-
cated storage systems. In Proceedings of Con-
federated International Conferences On the Move
to Meaningful Internet Systems, pages 584—601.
Springer, 2012.

Ronald Rivest. The MD5 message-digest algorithm.
RFC 1321, Internet Request For Comments, 1992.

Kiran Srinivasan, Timothy Bisson, Garth R Good-
son, and Kaladhar Voruganti. iDedup: Latency-
aware, inline data deduplication for primary stor-
age. In Proceedings of 12th USENIX Conference on
File and Storage Technologies (FAST), pages 1-14,
2012.

USENIX Association

2019 USENIX Annual Technical Conference 645

https://www.android.com/auto/
https://www.android.com/auto/
https://www.apple.com/ios/carplay/
https://www.apple.com/ios/carplay/
https://developer.apple.com/wwdc/
https://developer.apple.com/wwdc/
http://visa.lab.asu.edu/traces
http://visa.lab.asu.edu/traces
https://www.vernier.com/products/sensors/wu-pro/
https://www.vernier.com/products/sensors/wu-pro/
http://git.kernel.dk/?p=fio.git

[23] Vasily Tarasov, Deepak Jain, Geoff Kuenning, trepn-power-profiler/.
Sonam Mandal, Karthikeyani Palanisami, Philip
Shilane, Sagar Trehan, and Erez Zadok. Dmdedup:
Device mapper target for data deduplication. In
Proceedings of Linux Symposium, 2014.

[25] Benjamin Zhu, Kai Li, and R Hugo Patterson.
Avoiding the disk bottleneck in the Data Domain
deduplication file system. In Proceedings of 6th

[24] Trepn power profiler. https:// USENIX Conference on File and Storage Technolo-
developer.qualcomm.com/software/ gies (FAST), pages 1-14, 2008.

646 2019 USENIX Annual Technical Conference USENIX Association

https://developer.qualcomm.com/software/trepn-power-profiler/
https://developer.qualcomm.com/software/trepn-power-profiler/
https://developer.qualcomm.com/software/trepn-power-profiler/

	Introduction
	Analysis of Real-world Device Data
	Design and Implementation
	Design Overview
	Two-level Fingerprint Stores
	Hybrid Deduplication
	Putting Everything Together

	Evaluation
	FIO
	Trace Replay
	DEDISbench
	Adaptive Deduplication
	Fragmentation Resistance

	Related Work
	Conclusions and Future Work
	Acknowledgements

