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Abstract

Optimizing scheduling and communication of distributed data
processing for resource and data characteristics is crucial for
achieving high performance. Existing approaches to such op-
timizations largely fall into two categories. First, distributed
runtimes provide low-level policy interfaces to apply the op-
timizations, but do not ensure the maintenance of correct
application semantics and thus often require significant effort
to use. Second, policy interfaces that extend a high-level ap-
plication programming model ensure correctness, but do not
provide sufficient fine control.

We describe Apache Nemo, an optimization framework for
distributed dataflow processing that provides fine control for
high performance, and also ensures correctness for ease of
use. We combine several techniques to achieve this, includ-
ing an intermediate representation, optimization passes, and
runtime extensions. Our evaluation results show that Nemo
enables composable and reusable optimizations that bring
performance improvements on par with existing specialized
runtimes tailored for a specific deployment scenario.

1 Introduction

It is becoming increasingly important to optimize schedul-
ing and communication for different characteristics of re-
sources and data in distributed data processing. Examples of
such characteristics widely discussed in recent literature are
geographically-distributed resources [19, 33,44, 45], cheap
transient resources [37,38,42,47,48], disk-based large data
shuffle [35, 36, 51], and skewed data [22, 24, 25, 34]. Re-
searchers have shown that the existing scheduling and com-
munication methods, unaware of these characteristics, often
suffer from substantial performance degradation.

Distributed runtimes such as Dryad [20], Tez [40], and the
Spark runtime [4] provide low-level interfaces to plug in com-
putation scheduler and data channel policies to optimize for
such diverse deployment scenarios. These policy interfaces
have direct access to control messages and data elements,
and can apply optimizations such as placing computations on
specific types of resources and performing in-memory data
shuffle. Unfortunately, runtime policy developers must ex-
ercise care to ensure that the policies they build and apply
maintain correct application semantics. The main reason is
that runtime interfaces are designed to be general, and allow
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Figure 1: Nemo optimizes scheduling and communication of
distributed data processing.

for arbitrary modifications to scheduling and communication
methods.

On the other hand, policy interfaces integrated with a high-
level application programming model offer indirect control
over runtime execution. For example, Optimus [22] integrates
with the DryadLLINQ programming model to enable speci-
fying alternative DryadLLINQ subqueries. This ensures cor-
rect application semantics as long as the specified subqueries
compute the same results, and thus reduces the effort re-
quired to build different optimization policies. However, such
application-level interfaces do not provide sufficient fine con-
trol over distributed scheduling and communication, because
application programming models are designed to hide dis-
tributed execution from application developers.

To overcome the limitations of existing interfaces, we be-
lieve it is critical to introduce a new policy interface that pro-
vides both fine control for high performance, and also ensures
correct application semantics for ease of use. In this work
we take a middle ground between the existing runtime and
application-level interfaces. We design a policy interface that
transforms an intermediate representation (IR) of applications
to express indirect but fine-grained control over distributed
scheduling and communication.

There are three main challenges to designing an optimiza-
tion framework that embodies this middle ground approach.
First, the framework should define the IR transformation meth-
ods that provide fine control and also ensure correctness.
Second, the framework should enable the development of
reusable and composable user-defined optimization policies
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that transform the IR. Third, the framework should apply the
transformations of the IR in the distributed execution of the
application.

Figure 1 depicts our Nemo optimization framework that
addresses the challenges. Specifically, its IR directed-acyclic
graph (DAG), optimization passes, and runtime extensions
address the three challenges, respectively. Nemo integrates
with high-level application programming model libraries, and
compatible distributed runtimes.

First, the Nemo IR DAG represents a data processing ap-
plication with vertices representing logical operations and
edges representing data dependencies. To ensure that the
transformed IR DAG produces the same outputs as the origi-
nal IR DAG, we provide two types of transformation methods:
reshaping and annotation. Reshaping methods can insert a
set of utility vertices whose semantics are known to Nemo,
such as a vertex that samples data. Annotation methods set
execution properties of each vertex and edge to configure
fine-grained scheduling and communication, such as specu-
lative cloning and data persistence strategies. Nemo ensures
correctness using the information about the communication
patterns (e.g., shuffle) of edges, and the information about the
configured utility vertices and execution properties.

Second, the Nemo optimization pass abstraction enables
expressing optimizations as a function that takes as input
an IR DAG and calls its transformation methods. Because a
pass is a simple function, different combinations of passes
can be applied across different applications. We show that
optimization techniques previously employed in specialized
runtimes, such as Iridium [33] and Pado [48], can be expressed
as optimization passes with concise lines of code.

Third, the Nemo runtime extensions integrate with the un-
derlying runtime to apply the IR DAG transformations. Run-
times typically provide a runtime DAG abstraction to run com-
putations on a cluster of machines [4,20,40]. Our scheduler
extension applies various scheduling policies when schedul-
ing the IR vertices of an IR DAG through a runtime DAG. It
also rewrites the runtime DAG during job execution to apply
run-time optimizations. Our data channel extension applies
the optimized data communication within the runtime DAG.

We have implemented Nemo, and also a distributed run-
time that is compatible with Nemo. At present, Nemo pro-
vides full support for Beam [1] applications and a subset of
Spark RDD [50] applications. Our runtime integrates with
REEF [46] to run on Hadoop YARN [2] and Mesos [18] clus-
ters. We have evaluated Nemo in a cluster of Amazon EC2
instances using different optimization passes, datasets, and
resource environments. Evaluation results show that each op-
timization pass brings performance improvements on par with
existing specialized runtimes, and combinations of passes fur-
ther improve performance for scenarios with a combination of
different resource and data characteristics. Nemo is currently
an Apache Incubator project [3].

class TreeAggregate implements ConnectionManager {
void onUpstreamVertexEvent (event) {
mapVertexGroups = analyzeLocationsAndSizes(event)
aggregateVertices = newVertices(mapVertexGroups)
connect (mapVertexGroups, aggregateVertices)

}

¥

class Repartition implements ConnectionManager {
void onUpstreamVertexEvent (event) {
desiredPartitions = analyzeDataStatistics(event)
modifyPartitionVertices(desiredPartitions)
modifyReduceVertices(desiredPartitions)

}

}

Figure 2: Pseudocode of Dryad policies. The Dryad policy
interface provides fine control over distributed scheduling and
communication, but does not ensure correctness.

2 Background

We first discuss in detail the existing runtime policy interfaces
and application-level policy interfaces using concrete code ex-
amples. Specifically we describe the interfaces of Dryad [20]
and Optimus [22].

The Dryad policy interface allows for arbitrary modifica-
tions to its directed-acyclic graph (DAG) representation of
applications. In a Dryad DAG, a vertex represents a unit of
work performed on a machine and an edge represents a data
transfer from a vertex to another. For example, a map-reduce
application can be represented in Dryad as a number of map
vertices fully connected with a number of reduce vertices. The
Dryad runtime coordinates the scheduling and communica-
tion of the vertices on a cluster of machines.

Figure 2 shows the pseudocode of two example Dryad poli-
cies [5]. Here, ConnectionManager is a callback-based ab-
straction that listens to events from the configured upstream
vertices. First, TreeAggregate builds an aggregation tree
with a goal to use network bandwidth resources more ef-
ficiently. Suppose TreeAggregate listens to the map ver-
tices in a map-reduce application, to obtain the information
on the locations and sizes of map vertex outputs. Using the
information, TreeAggregate groups map vertices, creates
intermediate aggregation vertices, and then connects each
map vertex group to an aggregation vertex. Second, Repar-
tition dynamically distributes data with a goal to handle
data skew. Suppose the map-reduce application additionally
has bucketizer vertices that consume sample output data from
the map vertices, and partition vertices that partition the orig-
inal map vertex outputs prior to transferring the data to the
reduce vertices. Then, Repartition can be used to monitor
the bucketizer vertices, and modify the partition and reduce
vertices with the goal to evenly distribute the map outputs.
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// Application code
mulA = defineMatMulSubqueryA(matrixX, matrixY)
mulB = defineMatMulSubqueryB(matrixX, matrixY)

// Policy code
stats = collectDataStatistics(matrixX, matrixY)
rewriter.registerAlternatives(stats, mulA, mulB)

Figure 3: Pseudocode of an Optimus policy. The application-
level Optimus policy interface ensures correctness, but pro-
vides coarse-grained control of substituting subqueries.

As shown by these examples, runtime policies can configure
various scheduling and communication methods.

However, the flexibility of runtime interfaces comes at a
cost: the policy developer must exercise care to ensure appli-
cation correctness when developing, reusing, and composing
different policies [4, 20, 22, 40]. First, the interface allows
for a bug in TreeAggregate to miss connecting one of the
map vertices to an intermediate aggregation vertex, making
the optimized DAG produce partial results. Second, Repar-
tition can break application semantics when applied on a
random vertex in a different DAG that does not use bucketizer
and partition vertices. Third, applying both TreeAggregate
and Repartition on the same DAG can lead to conflicting
executions that produce incorrect results. Manually building
a combined policy can require a significant effort for com-
plex policies, such as the DrDynamicAggregateManager in
Dryad that consists of 1.3K lines of C++ code [5]. As a con-
sequence, runtime policies have been mostly hard coded in
runtimes and data processing application compilers such as
the DryadLINQ compiler [22,49], and the Hive compiler [43].
The authors of Optimus also report that their system-level
optimization policies are hard-coded in the DryadLINQ com-
piler, maintaining the DAG property and operator semantics
for the pre-defined operators in DryadLINQ [22].

In contrast to runtime interfaces, Optimus provides an
application-level policy interface that ensures correctness,
by restricting the interface to substituting DryadLINQ sub-
queries. Figure 3 shows the pseudocode for optimizing a
matrix multiplication application described in the original Op-
timus paper [22]. The code defines two alternative subqueries
for multiplying two matrices, and a policy for selecting a sub-
query to use for the execution. Note that as long as the two
subqueries produce the same results, changing the policy code
does not alter the semantics of the application. However, as
this example shows, such application-level policy interfaces
lack fine-grained control over scheduling and communication
like selecting the types of resources to run specific computa-
tions on. The main reason is that application programming
models are designed to hide distributed execution from appli-
cation developers.

3 System Design

The goal of the Nemo optimization framework is to support
fine control over distributed execution of data processing ap-
plications, and at the same time maintain correct application
semantics. Concretely, given a DAG representation of a data
processing application with deterministic operations and a
user-defined policy P where DAG' = P(DAG), Nemo aims to
provide the following properties.

« Correctness: Given the same inputs the optimized DAG’
should produce the same outputs as the DAG, even when
P is applied while the DAG is being executed. This en-
sures that the optimizations maintain correct application
semantics.

Reusability: The same P should be applicable to differ-
ent DAGs. This enables reusing the same policy across
different data processing applications, although the ef-
fects may differ between applications.

» Composability: If P and P’ do not override optimiza-
tions specified by the other policy then enable composing
different policies like P” = (Po P'). If the policies do
have a conflict, then automatically detect it for analysis.
This enables distinct policies that each optimizes for a
different resource or data characteristic to be incorpo-
rated into a single policy.

We show how Nemo combines an intermediate representa-
tion (IR) DAG, optimization passes, and runtime extensions to
ensure these properties. First, the IR DAG provides reshaping
and annotation methods for specifying optimizations (Sec-
tion 3.1). Second, optimization passes define functions that
operate on the IR DAG methods (Section 3.2). Third, runtime
extensions apply the optimizations in the underlying runtime
(Section 3.3).

3.1 Intermediate Representation

The Nemo IR DAG aims to provide the desired DAG repre-
sentation of an application. The main challenge in design-
ing the IR DAG is defining the methods for transforming it.
For Nemo to ensure the desired properties, we make explicit
both the intention and the effect of the optimization for each
method invocation. For example, instead of providing a single
method to insert arbitrary computations, we provide multiple
higher-level methods such as those specifically for increasing
parallelism, speculative cloning, and sampling. We describe
the IR DAG reshaping and annotation methods that embody
this approach, and in particular how those methods enable en-
suring correctness. We then discuss the types of applications
and runtimes supported by our IR DAG design.
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Relay(f: x —x),e VU{v},E\{e}U{e.comm(e.src — v),oneToOne(v — e.dst)}
IR DAG Reshuffle(f: x —x),e VU{v} E\{e}U{e.comm(e.stc = v),shuf fle(v — e.dst)}
Reshaping: Sampling(f: x — sv.f(x)),sv, rate VU{v},EU{e.comm(e.src = v)|e € E Ne.dst = sv}
irdag.insert() Trigger(f: x — udf(x)),udf,e VU{v},EU{oneToOne(e.src — v)}
(V/E = original vertex/edge set, v = 1nserted vertex, f = function of v, e.comm = oneToOne/shuffle/broadcast)
Parallelism/Integer sets the number of tasks for executing v
;;(quttiz’;: SpeculativeCloning /T hresholds sets the thresholds for determining and cloning straggler tasks
v.set() ResourceSite/Map(Index, Site) sets the geographical sites of the resources to place tasks on
ResourcePriority/ Enum(Transient) sets the priority of the resources to place tasks on
DataFlow / Enum(Pull, Push) e.dst is scheduled after e.src finishes, or scheduled concurrently
IR Edge DataStore | Enum(Memory, Disk) e.src tasks store output data for e in memory, or disk
Annotation: NumPartitions/Integer sets the number of partitions that e.src tasks create for e
e.set() PartitionSets/List(Set (Index)) sets the partitions that each e.dst task fetches for e
Persistence | Enum(Keep, Discard) sets whether to keep or discard data after e.dst processes e

Table 1: Example IR DAG transformation methods for optimizing scheduling and communication. Reshaping methods take as
input a utility vertex and additional arguments. Annotation methods take as input a key/value execution property.

3.1.1 Transforming an IR DAG

The Nemo IR DAG represents a data processing application
with vertices representing logical operations and edges rep-
resenting data dependencies. When executed, an IR vertex is
translated into parallel tasks that run on multiple nodes. An
IR edge can be translated into key-partitioned data blocks
that are produced by tasks. The initial IR DAG translated
from an application, such as an RDD [50] and Beam [1] ap-
plication, typically consists of vertices containing functions
defined by the application, and edges with the information on
communication patterns (one-to-one, shuffle, broadcast).

Table 1 shows example reshaping and annotation meth-
ods Nemo provides to transform the IR DAG. The reshaping
methods specify a new utility vertex to insert into the IR DAG,
and Nemo inserts new edges to connect the specified vertex
with the existing vertices in the IR DAG. Table | specifies
four utility vertices. Relay and Reshuffle simply apply an
identity function to forward data from an upstream vertex to
a downstream vertex, connecting with the downstream vertex
with the one-to-one and the shuffle dependency, respectively.
Sampling vertex applies the same function as an existing
vertex, and consumes the same data that the existing vertex
consumes. During the execution, Nemo schedules only a sub-
set of Sampling tasks according to the given sampling rate.
Trigger vertex applies a user-defined function on interme-
diate data. When a Trigger vertex executes and completes,
Nemo collects the results of the user-defined function to gen-
erate a message. Nemo then halts the execution of the job,
and uses the message to trigger a corresponding run-time
optimization pass, which we describe in Section 3.2. The IR
DAG also supports deleting the inserted utility vertices.

The annotation methods configure scheduling and commu-
nication of vertices and edges by annotating specified execu-
tion properties. Table | specifies nine execution properties.
For scheduling, we have execution properties for deciding

how, where, and when to schedule tasks. Parallelism and
SpeculativeCloning configure how many tasks to sched-
ule. ResourceSite and ResourcePriority specify where
to schedule the tasks. DataFlow determines whether or not to
schedule source and destination tasks concurrently. For com-
munication, we enable configuring the medium to store inter-
mediate data with DataStore, the persistence method with
Persistence, and data partitioning strategies with NumPar-
titions and PartitionSets. Combinations of different ex-
ecution properties can express optimizations that can require
significant efforts to implement with runtime policy interfaces.
For example, we can configure upfront task cloning with a per-
sistent in-memory data shuffle that pushes data eagerly from
transient resources to reserved resources, through simply an-
notating appropriate SpeculativeCloning, ResourcePri-
ority, Persistence, DataStore, and DataFlow proper-
ties on two vertices and a shuffle edge that connects them.
The IR DAG also supports looking up the execution properties
annotated on vertices and edges.

3.1.2 Ensuring Correctness

The reshaping methods ensure correctness, because Nemo
connects the newly inserted utility vertex with existing ver-
tices correctly. As shown in Table 1, only the outputs of the
Relay and Reshuffle vertices are consumed by existing
vertices, and these outputs are equivalent to the data that the
existing vertices originally consumed. The other utility ver-
tices, on the other hand, do not reach data sinks and thus do
not affect the final results that the IR DAG produces. When a
utility vertex is specified to be deleted, Nemo reverts appro-
priate changes.

The annotation methods ensure correctness through en-
abling Nemo to examine the configured execution properties.
For each vertex in the IR DAG, Nemo checks its execution
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properties and the execution properties of its neighboring
edges and vertices, while also examining the communica-
tion patterns of the edges. This ensure correctness because
execution properties do not use and modify computation se-
mantics [17,21,52] inside each vertex, and also do not have
direct access to control messages and data elements in the
runtime. For example, Nemo checks that the sets in the Parti-
tionSets are disjoint and together contain all offsets for the
NumPartitions, to read each partition exactly once. Nemo
also checks that PartitionSets and NumPartitions are
set on shuffle edges, and that vertices connected with an one-
to-one edge have the same Parallelism. Persistence, for
example, is not checked, because discarded intermediate data
can always be recomputed from the source data when needed.

Our transformation methods ensure correctness even when
invoked during the execution of the IR DAG. Because the
IR DAG is decoupled from the underlying runtime, Nemo
ensures correctness by controlling when to apply the trans-
formations of the IR DAG in the runtime. Specifically, we
define that a vertex is being executed when its tasks are being
executed, and an edge is being executed when its source or
destination vertex is being executed. First, if the transformed
vertices and edges have not yet been executed, then we apply
the changes immediately, such that the changes are used when
they are executed. Second, if they are being executed, then
we delay applying the changes until they finish execution to
ensure correctness. Third, if they have already finished exe-
cution, then we apply the changes immediately, such that the
changes are used when they are re-executed due to reasons
such as faults.

3.1.3 Supported Applications and Runtimes

The current design of the IR DAG supports data processing
applications that can be represented as a DAG of data-parallel
and deterministic operators that process bounded data. Many
real-world applications, such as Beam and RDD batch ap-
plications and also higher-level domain-specific applications
like machine learning and SQL applications, meet this as-
sumption. The current IR DAG would need to be extended to
support other types of applications, such as those that have
cyclic dependencies and process unbounded data [31].

The IR DAG assumes an underlying distributed runtime
that supports configuring and applying utility vertices and
execution properties. Existing runtimes can be enhanced to
provide full support for the IR DAG optimizations through in-
troducing additional features. For example, new data channels
in addition to the existing ones (FIFO, File, TCP Pipe) can be
introduced in Dryad [20] to provide support for various com-
binations of the DataStore, DataFlow, and Persistence
execution properties. Similarly, a feature to dynamically add
computations to a running application can be introduced in
Tez [40] and the Spark runtime [4] to apply utility vertices
inserted at run time.

3.2 Optimization Passes

Nemo optimization passes aim to provide the desired user-
defined policy abstraction P. A pass is a function that receives
an input IR DAG and produces a transformed IR DAG. We
first describe how to develop and compose passes. We then
describe how Nemo applies the given passes on the IR DAG.

3.2.1 Developing and Composing Passes

We describe the rationale and the algorithm for several exam-
ple passes to demonstrate how to develop and compose new
passes. We can write two types of passes: compile-time and
run-time. Compile-time passes take as input only an IR DAG,
and are run prior to job execution. Run-time passes addition-
ally receive a message produced by a Trigger vertex during
job execution.

Geo-distributed data analytics: We aim to cope with the
low and variable capacity of WAN links when processing data
that are geographically distributed [19, 33,44, 45]. To reduce
network bottlenecks, we formulate the problem of placing
computations to geographically distributed sites as a linear
program (LP), similar to specialized scheduler extensions like
Iridium [33]. Here, we use bandwidth information and data
size estimations. We also use an off-the-shelf linear solver
library, since Nemo allows using external libraries when writ-
ing a pass. The pseudocode of this algorithm is as follows.

CompileTimePass GeoDistPass(irdag):

solution = solveLP(bwInfo(), sizeEstimates(irdag))
for v in irdag.vertices:

v.set (newResourceSite(solution.get(v)))

Harnessing transient resources: We aim to reduce recom-
putation costs when using transient resources that are cheap
but frequently evicted [37,38,42,47,48]. Based on the com-
munication patterns, we identify operations that incur large
recomputation costs and place them on reserved resources.
We place the other operations on transient resources. We
also quickly move intermediate data produced on transient to
reserved resources. This applies key scheduling and commu-
nication optimizations employed in specialized runtimes like
Pado [48]. The pseudocode of this algorithm is as follows.

CompileTimePass TransientResourcePass(irdag) :
for v in irdag.vertices.topologicallySorted():
if (allOneToOneFromReserved(v.inEdges)
|| existsNonOneToOne(v.inEdges)):
v.set (ResourcePriority.Reserved)
else:
v.set (ResourcePriority.Transient)
for e in v.inEdges:
if fromTransientToReserved(e.src, v):
e.set(DataFlow.Push)

Large-scale data shuffle: We aim to reduce random disk
read overheads that can grow quadratically with data size
when shuffling data, similar to specialized shuffle systems
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like Sailfish [35] and Riffle [51]. We insert a Relay vertex
to specify shuffling data in memory as soon as produced and
writing the data as-is to a local disk. We also ensure that
the in-memory data are discarded once transferred, to avoid
running into out of memory errors. Following computations
sequentially read the data from the local disk, after the shuffle
completes. The pseudocode of this algorithm is as follows.

CompileTimePass LargeShufflePass(irdag) :

for e in irdag.edges.filter(isShuffleEdge()):
rv = newRelayVertex()
irdag.insert(rv, e)
rv.inEdge.set(DataFlow.Push, DataStore.Memory)
rv.inEdge.set (Persistence.Discard)
rv.outEdge.set(DataFlow.Pull, DataStore.Disk)

Mitigating data skew: We aim to assign the same amount
of data across parallel computations to prevent stragglers. We
first set the number of partitions for the data to be shuffied.
We then insert a Trigger vertex with a function for obtaining
the set of data partition sizes. We also ensure that the shuffle
receiver is executed after the the shuffle sender and the Trig-
ger vertex complete, at which point we will have obtained the
statistics and optimized the execution of the shuffle receiver.
The pseudocode of this algorithm is as follows.

CompileTimePass SkewCTPass(irdag):
for e in irdag.edges.filter(isShuffleEdge()):
e.set(newNumPartitions(e), DataFlow.Pull)
irdag.insert (newOptVertex(), sizeFunction(), e)

At run time, when the Trigger vertex completes and
makes available the set of size numbers, we partition the set
into subsets such that the sum of the numbers in the subsets
are as equal as possible. We then assign each subset to a dis-
tinct shuffle receiver task. The pseudocode of this algorithm
is as follows.

RunTimePass SkewRTPass(irdag, message):
subsets = partition(message)
message.edge.set (newPartitionSets(subsets))

Finally, we can compose multiple passes to build an op-
timization policy like the following example. Registering a
run-time pass requires specifying a compile-time pass that
inserts Trigger vertices, which produce the same type of
message the run-time pass uses.

policyBuilder.register(LargeShufflePass)
policyBuilder.register (SkewRTPass, SkewCTPass)
policy = policyBuilder.build()

3.2.2 Applying Passes

Given an IR DAG and a policy composed of passes, Nemo
first applies the compile-time passes on the IR DAG in the
same order as they were registered. The optimized IR DAG
output by the last compile-time pass is executed. As the exe-
cution progresses, each Trigger vertex completes execution
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Figure 4: A policy composed of the LargeShufflePass
and the TransientResourcePass, and another policy com-
posed of the LargeShufflePass and the SkewCompli-
eTimePass are applied on an input IR DAG.

and produces a message. For each message, Nemo runs the
corresponding run-time pass to transform the IR DAG. Nemo
runs the passes for different messages serially.

After applying each pass, Nemo checks whether the IR
DAG produced by the pass is correct as described in Sec-
tion 3.1.2, and also whether the pass has encountered a conflict
with a previous pass. A conflict occurs when a pass overwrites
the value of an execution property set by a previous pass to a
different value, or deletes a utility vertex inserted by a previ-
ous pass. Nemo throws an error and refuses to execute in case
of a check failure after running a compile-time pass. Upon
a check failure of a run-time pass, Nemo just ignores the IR
DAG output by the pass and logs the failure, as stopping an
already running application can be costly.

Figure 4 shows how Nemo runs two example policies. Both
policies first apply the LargeShufflePass, which inserts a
Relay vertex between V1 and V3, and annotates E5 and E4.
The first policy then applies the TransientResourcePass,
which performs annotations without any conflict with the
previous pass. The second policy applies the SkewCTPass,
which inserts a Trigger vertex, and tries to annotate E5 with
the pull DataFlow. However, the SkewCTPass encounters a
conflict as the push DataFlow has already been set for E5 by
the previous LargeShufflePass.

Fundamentally, the conflict in the second policy occurs
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Figure 5: Nemo runtime extensions (bold) apply optimiza-
tions in a distributed runtime.

because the LargeShufflePass tries to shuffle data eagerly
in memory, whereas the SkewCTPass tries to use the statis-
tics of the data before the downstream computations start
to consume the data. If undetected, this conflict results in a
pull-based in-memory data shuffle, where the outputs of all
V1 tasks are stored in memory before the Relay tasks start
fetching the data. Although this configuration avoids disk
seek overheads and also handles data skew at the same time,
it can cause out of memory errors for large input data.

Because Nemo detects such conflicts explicitly, we can
quickly address the issue. In this case, we design a
new SkewSamplingPass that avoids the conflict with the
LargeShufflePass. This new compile-time pass clones the
IR DAG using Sampling vertices, and first runs the clone to
obtain the statistics of sampled data. Our third policy with the
LargeShufflePass and the SkewSamplingPass can be ap-
plied together on the IR DAG to optimize for both large data
shuffle and data skew. However, compared to the SkewCT-
Pass, the SkewSamplingPass incurs the cost of executing
additional vertices and using the statistics of sampled data
rather than the entire data.

Next, we describe how these various transformations of the
IR DAG are reflected in the distributed execution.

3.3 Runtime Extensions

We use a Nemo-compatible runtime depicted in Figure 5 to
describe how the Nemo runtime extensions apply the IR DAG
transformations in the distributed runtime. Upon job launch,
the runtime starts a master process and executor processes
on user-specified resources. In the master, the NemoSched-
uler extension operates on the task DAG abstraction that
the runtime provides for scheduling tasks to executors. Ex-
ecutors spawn a thread to run each scheduled task, and uses
the NemoChannel extension to communicate data between
the tasks. In the rest of the section we describe how these
extensions apply optimizations.

First, we set up the initial task DAG using the IR DAG
optimized by compile-time passes (1). Here, we merge neigh-

boring IR vertices into the same tasks as much as possible
to minimize data communication overheads, while consid-
ering communication patterns of the IR edges and related
execution properties such as the Resource properties and the
Parallelism property. In case of a Trigger vertex, we also
register a callback handler to collect the results produced by
the corresponding tasks from executors as a message. Upon
job start, we select candidate tasks for scheduling, which are
the source tasks and their children tasks connected with the
push DataFlow (2). For each candidate task, we select can-
didate executors by comparing the corresponding Resource
properties of the task with the information on the executors.
We then schedule the task to a candidate executor with the
least number of running tasks (3).

When a task emits a data element, we write it to the corre-
sponding DataStore implementation, creating a data block
when all data elements for the channel are written (4). If the
corresponding edge is shuffle, then the block is partitioned
into NumPartitions. When a task reads input data elements,
we look for the locations of the input data blocks, blocking
the call when looking for blocks that are not yet available. We
fetch the input data elements from the local and remote Data-
Stores, while applying PartitionSets for shuffle edges
(5-6). Once all of the downstream tasks successfully read a
block, we decide to either keep or discard the block based on
the Persistence property.

Upon learning about task progress and executor status,
we schedule new tasks, restart tasks to recover from failures
and evictions, and clone tasks based on the Speculative-
Cloning property (7-8). When a message is produced for a
Trigger vertex, we postpone scheduling new tasks, invoke
the corresponding run-time pass (9), rewrite the task DAG
based on the new IR DAG output by the run-time pass at the
correct timing described in Section 3.1.2 (10), and resume
scheduling.

4 Implementation

We have implemented Nemo and a distributed runtime that is
compatible with Nemo in around 32K lines of Java code. Our
Nemo implementation consists of the following three com-
ponents similar to Musketeer [15] and LLVM [26]: frontend,
optimizer, and backend.

The frontend translates applications such as Beam and
RDD applications into an IR DAG (Section 3.1). At present,
our frontend provides translation support for all Beam [1]
operators, and a subset of RDD [50] operators such as map, re-
duce, collect, broadcast, and cache. The main reason
for not fully supporting RDDs is that the current iterator im-
plementation used in Nemo is not readily compatible with
the various RDD implementations. In the future we plan to
modify our iterator implementation to address this limitation.
The optimizer applies optimization passes on the IR DAG
(Section 3.2). The backend configures the underlying runtime
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with the optimizer and the runtime extensions (Section 3.3).

Existing Beam applications can run on Nemo by modifying
the line importing the Beam PipelineRunner implementa-
tion to our implementation of the runner. The frontend con-
verts each Beam PTransform to an IR vertex, and PCollec-
tion to an IR edge. The frontend also obtains the information
on communication patterns during the translation. For exam-
ple, it specifies shuffle edges for the incoming PCollections
of the GroupByKey PTransforms.

Similar to Beam, existing RDD applications can run on
Nemo with simple modifications to the lines importing the
implementations of SparkSession and SparkContext to
our implementations of the classes. Each RDD becomes an IR
edge, and each user-defined function that generates an RDD
becomes an IR vertex. Our frontend also aims to respect all
of the user-specified parameters on RDDs such as parallelism
and data caching, by setting the execution properties on the
translated IR DAG accordingly.

Our runtime implementation is built on top of REEF [46],
and consists of master and executor processes similar to the
Nemo-compatible runtime described in Section 3.3. A REEF
job consists of the driver that obtains containers from a re-
source manager, and evaluators that provide runtime environ-
ments on containers. To take advantage of the abstractions
provided by REEF, the runtime master runs as the REEF
driver and the runtime executors run as the REEF evalua-
tors. Through the integration with REEF [46], our runtime
runs on resource managers such as Hadoop YARN [2] and
Mesos [18].

5 Experimental Evaluation

We evaluate Nemo on the following three dimensions. First,
we evaluate how Nemo applies fine control under different
resource and data characteristics. Second, we evaluate how
different combinations of optimization passes optimize the
same application. Third, we evaluate how the same Nemo
policy optimizes different applications.

We run data processing applications with different combina-
tions of following resource and data characteristics: geograph-
ically distributed resources, transient resources, large-shuffle
data, and skewed data. We run each application five times, and
we report the mean values with error bars showing standard
deviations.

We use hl.4xlarge Amazon EC2 instances, each of which
provides 16 vCPUs, 64 GiB memory, two 2 TB HDDs, and
10 Gbps network. We use different numbers of instances for
different experiments. On each instance, one of the two disks
is used by a Hadoop Distributed File System [2] cluster that
we set up on the instances, and the other is used as a scratch
disk for maintaining intermediate data. Input datasets are
stored in HDFS, and fetched by the systems at the beginning
of each job.
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Figure 6: JCT for different cross-site network bandwidths,
and CDF of shuffle read blocked time of tasks under the high
cross-site network bandwidth heterogeneity.

5.1 Fine Control

In this experiment, we evaluate how Nemo applies fine control
under different resource and data characteristics. For compari-
son we run Spark 2.3.0 [4], because it is an open-source, state-
of-the-art system. We also run a specialized runtime for each
deployment scenario. Specifically, we run Iridium [33] for
geo-distributed resources, Pado [48] for transient resources,
and Hurricane [12] for data skew. We examine the results of
Beam applications on Nemo and Pado, Spark RDD applica-
tions on Spark and Iridium, and a Hurricane application on
Hurricane.

We confirm that the baseline performance is comparable
for Beam and basic RDD applications on Nemo. We also
confirm that the baseline performance is comparable for Spark
and Nemo with the DefaultPass, which configures pull-
based on-disk data shuffle with locality-aware computation
placement similar to Spark. We observe that the overhead of
running the compile-time passes on Nemo is roughly 200ms.
We also measure and report run-time overheads of the Relay
vertex, Trigger vertex, and SkewRTPass in this section.

Geo-Distributed Resources: To set up geo-distributed re-
sources and heterogeneous cross-site network bandwidths, we
use Linux Traffic Control [6] to control the network speed
between instances, as described in Iridium [33]. Each site is
configured with 2Gbps uplink network speed, and a specific
downlink network speed between 25Mbps and 2Gbps. We
experiment with Low, Medium, and High bandwidth hetero-
geneity with the fastest downlink outperforming the slowest
downlink by 10x, 41 x, and 82 x. With this, we use 20 EC2
instances as resources scattered across 20 sites. To evaluate
data shuffle under heterogeneous network bandwidths, we
use a workload that joins two partitions of 373GB Caida [8]
network trace dataset and computes network packet flow statis-
tics.

The job completion time (JCT) of Iridium, Spark, and
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Figure 7: JCT and ratio of re-completed tasks to original tasks
for different mean times to eviction on transient resources.

Nemo optimized with the GeoDistPass, are shown on Fig-
ure 6 (a). Spark degrades significantly with larger bandwidth
heterogeneity, since tasks that fetch data through slow net-
work links become stragglers. In contrast, Iridium and Nemo
are stable across different network speeds. Figure 6 (b) shows
that the cumulative distributive function (CDF) of shuffle
read time has a long tail for Spark compared to Iridium and
Nemo. Iridium and Nemo show comparable performance with
similar largest shuffle read blocked times, although Iridium
shows overall better shuffle read blocked times using a more
sophisticated linear programming model.

Transient Resources: Based on existing works [42,47,48],
we classify resources that are safe from eviction as reserved
resources and those prone to eviction as transient resources.
We set up 10 EC2 instances for providing transient resources
and 2 instances for reserved resources. When an executor
running on transient resources is evicted, we allow the sys-
tem to immediately re-launch a new executor using the tran-
sient resources to replace the evicted executor as described in
Pado [48]. To evaluate handling long and complex DAGs with
transient resources, we run an Alternating Least Squares [23]
(ALS) workload, an iterative machine learning recommenda-
tion algorithm, on 10GB Yahoo! Music user ratings data [10]
with over 717M ratings of 136K songs given by 1.8M users.
We use 50 ranks and 15 iterations for the parameters. By
varying the mean time to eviction for transient resources, we
show how systems deal with the different eviction frequencies.
The distribution of the time to eviction is approximated as an
exponential distribution, similar to TR-Spark [47].

Figure 7 (a) shows the JCT of Pado, Spark and Nemo opti-
mized with the TransientResourcePass for different mean
times to eviction. With the 40-minute and 20-minute mean
time to eviction, Spark is unable to complete the job even after
running for an hour, at which point we stop the job. The main
reason is heavy recomputation of intermediate data across
multiple iterations of the ALS algorithm, which is repeatedly
lost in recurring evictions. On the other hand, Nemo and Pado
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Figure 8: JCT for different input data sizes, and mean through-
put of scratch disks for maintaining intermediate data when
processing the 2TB input data.

successfully finish the job in around 20 minutes, as both sys-
tems are optimized to retain a set of selected intermediate
data on reserved resources. Figure 7 (b) shows the ratio of
re-completed tasks to original tasks for different mean times
to eviction. It shows that Nemo and Pado re-complete sig-
nificantly fewer tasks compared to Spark, leading to a much
shorter JCT. Nemo and Pado show comparable performance
although Nemo re-completes more tasks, because the tasks
that both systems re-complete are executed quickly and do
not cause cascading recomputations of parent tasks.

Large-Shuffle Data: We evaluate how Nemo and Spark
handle large shuffle operations using 512GB, 1TB, and 2TB
data of the Wikimedia pageview statistics [7] from 2014 to
2016, as the datasets provide sufficiently large amount of real-
world data. We use a Map-Reduce application that computes
the sum of pageviews for each Wikimedia project. We choose
the ratio of map to reduce tasks to 5:1, similar to the ratios
used in Riffle [51] and Sailfish [35], and use 20 EC2 instances
to run the workload.

The JCT of Spark and Nemo optimized with the
LargeShufflePass are shown on Figure 8 (a). Both show
comparable performance for the 512GB dataset, but Nemo
outperforms Spark with larger datasets. To understand the
difference, we measured the mean throughput of the disks
used for intermediate data. Figure 8 (b) illustrates the mean
disk throughput of scratch disks used for intermediate data
when running the 2TB workload. Here, a spike in the write
throughput is followed by a spike in the read throughput,
which illustrates disk writes during the map stage followed
by disk reads during the reduce stage while performing the
shuffle operation. For Spark, the disk read throughput during
the reduce stage is as low as about 10 MB/s, indicating severe
disk seek overheads. In contrast, the throughput is as high
as 45 MB/s for Nemo, as the LargeShufflePass enables
sequential read of intermediate data by the following reduce
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Figure 9: JCT for different input data skewness, and CDF of
reduce task completion time when processing the 30%-Top10
skewed data. Each vertical line in the CDF graph denotes the
completion time of the slowest reduce task.

tasks, which minimizes the disk seek overhead.

To measure the overhead of the Relay vertex inserted
by the LargeShufflePass before the reduce operation,
we have also run the 2TB workload on Nemo without the
LargeShufflePass. The reduce operation begins 56 sec-
onds earlier without the LargeShufflePass and the Relay
vertex, where 56 seconds represent 2.05% of the JCT of Nemo
with the LargeShufflePass.

Skewed Data: To experiment with different degrees of data
skewness, we generate synthetic 200GB key-value datasets
with two different key distributions: Zipf and Top10. For the
Zipf distribution, we use parameters 0.8 and 1.0 with 1 million
keys [12]. Datasets with Top10 distribution have heaviest 10
keys that represent 20% and 30% of the total data size. We run
a Map-Reduce application that computes the median of the
values per key on 10 EC2 instances. Because this application
is non commutative-associative, for evaluating Hurricane we
use an approximation algorithm similar to Remedian [39] to
fully leverage its task cloning optimizations [12]. The Hur-
ricane application also uses 4MB data chunks and uses its
own storage to handle input and output data, similar to the
available example application code.

Figure 9 (a) shows the JCT of Hurricane, Spark, and Nemo
optimized with the SkewCTPass and the SkewRTPass. Per-
formance of Spark degrades significantly with increasing
skewness. Especially, Spark fails to complete the job with
the 1.0 Zipf parameter, due to the load imbalance in reduce
tasks with skewed keys which leads to out-of-memory er-
rors. In contrast, both Nemo and Hurricane handle data skew
gracefully. In particular, Nemo achieves high performance,
and at the same computes medians correctly without using an
approximation algorithm.

Figure 9 (b) shows the CDF of reduce task completion time
when processing the 30%-Top10 dataset. The CDF for Spark
shows that reduce tasks with popular keys take a significant

Skewed data on Large Shuffle Large Shuffle
Geo-distributed on Transient with Skewed
DP: OOM DP: 100m DP: OOM
GDP: OOM TP: OOM LSP: OOM
SKP: 27.2m LSP: 100m SSP: OOM
GDP + SKP: TP + LSP: LSP + SSP:
14.9m 48.2m 31.4m

Table 2: JCT when using different combinations of Default-
Pass (DP), GeoDistPass (GDP), SkewCTPass (SKP),
TransientResourcePass (TP), LargeShufflePass
(LSP), and SkewSamplingPass (SSP).

amount of time to finish compared to other tasks. In contrast,
the slowest task completes much quicker for Hurricane and
Nemo. We have observed short-lived tasks alongside with
longer tasks in Hurricane with its task cloning optimization,
and longer tasks with balanced completion times for Nemo
with its data repartitioning optimization.

To measure the overhead of the Trigger vertex inserted
by the SkewCTPass, we also run the 30%-Top10 workload on
Nemo without the SkewCTPass and the SkewRTPass. The re-
duce operation begins 35 seconds earlier without the Trigger
vertex, where 35 seconds represent 5.52% of the JCT of Nemo
configured with the SkewCTPass and the SkewRTPass.

These results for each deployment scenario show that each
optimization pass on Nemo brings performance improve-
ments on par with specialized runtimes tailored for the specific
scenario.

5.2 Composability

We now evaluate combinations of different optimization
passes. Table 2 summarizes the results.

Skewed Data on Geo-distributed Resources: In this ex-
periment, we use the same 1.0-Zipf workload for the skew
handling experiment in Section 5.1, because the workload
showed the largest load imbalance. We use 10 EC2 instances
representing geo-distributed sites with heterogeneous network
speed in between 25Mbps to 2Gbps. Here, DP and GDP run
into out-of-memory errors due to the reduce tasks with skewed
keys that are requested to process excessively large portions
of data. SKP and GDP+SKP both successfully complete the
job with the skew handling technique in SKP, but GDP+SKP
outperforms SKP by also benefiting from the scheduling opti-
mizations in GDP.

Large Shuffle on Transient Resources: For this experi-
ment, we use the same 1TB workload for the large shuffle
experiment in Section 5.1, to use sufficiently large data that
incurs disk seek overheads. In this case, we use 10 reserved
instances and 10 transient instances with the 20-minute mean
time to eviction setting.

Most notably, DP and LSP fail to complete even after 100
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minutes, at which point we stop the job, and TP runs into
out-of-memory errors. We have observed that heavy recom-
putation caused by frequent resource eviction significantly
slows down the DP and LSP cases. We have also found out
that the LSP optimization makes the application much more
vulnerable to resource evictions compared to DP. The main
reason is that with LSP, eviction of a single receiving task in
the shuffle boundary leads to the entire recomputation of the
sending tasks of the shuffle operation, to completely re-shuffle
the intermediate data in memory. In contrast, DP does not
need to recompute shuffle sending tasks whose output data
are not evicted and stored in local disks. TP by itself also
is not sufficient, as it leads to out-of-memory errors while
pushing large shuffle data in memory from transient resources
to reserved resources.

TP+LSP is the only case that successfully completes the
job by leveraging both optimizations in TP and LSP. With
TP+LSP, the job pushes the shuffle data from transient to
reserved resources, and also streams them to local disks on
reserved resources that are safe from evictions. This allows
TP+LSP to handle frequent evictions on transient resources,
and also to utilize disks for storing large shuffle data with
minimum disk seek overheads. However, TP+LSP incurs the
overhead of using only half of the resources (transient or
reserved) for each end of the data shuffle. As a result, the JCT
for TP+LSP with transient resources is around twice the JCT
for LSP without using transient resources, which is displayed
in Section 5.1. Nevertheless, we believe that this overhead is
worthwhile, taking into account that transient resources are
much cheaper than reserved resources from the perspective
of datacenter utilization [38,48].

Large Shuffle with Skewed Data: For this experiment,
we generate a synthetic key-value dataset with a skewed key
distribution that is around 1TB in size, as the datasets used
in Section 5.1 for skew handling are not sufficiently large to
incur disk seek overheads. This dataset has the distribution
where heaviest 20 keys represent 30% of the total data size.
Using this dataset, we run the same application that we have
used for the skewed data experiment in Section 5.1 on 20 EC2
instances.

In this experiment, only SSP+LSP successfully completes
the job, whereas all other cases run into out-of-memory errors.
DP and LSP fails to complete the job, due to particular tasks
assigned with excessively large portions of data, incurring out-
of-memory errors. SSP by itself also runs into out-of-memory
errors although it repartitions data across the receiving tasks
of the shuffle boundary. We have observed that with large
data size, the absolute size of the heaviest keys is significantly
larger compared to smaller scale experiments with skewed
data shown in Section 5.1. Without the LSP optimization, this
problem is combined with random disk read overheads that de-
grade the running time of the shuffle receiving tasks, leading
to out-of-memory errors. In contrast, SSP+LSP successfully
completes the job by leveraging both of the optimizations

from SSP and LSP.

These various results confirm that Nemo can apply com-
binations of distinct optimization passes to further improve
performance for deployment scenarios with a combination of
different resource and data characteristics.

5.3 Reusability

Finally, we evaluate how the same Nemo policy optimizes
different applications. In addition to different applications
used in prior experiments, we apply the policies on several
ad-hoc BeamSQL [1] TPC-H [9] queries (Q) with different
scale factors (SF), as they are widely used for benchmarking
distributed data processing systems. Here, 1 SF is approx-
imately 1GB of input data. We specifically use workloads
that handle smaller input and intermediate data compared to
the previous experiments, and thus are much less affected by
the issues that occur in the specific scenarios like disk-seek
overheads and resource evictions.

First, using 20 nodes with the LargeShufflePass, we ob-
serve 20.8 minute JCT for SF1000 Q3 that is 25% smaller
than the JCT without the optimization, but no significant per-
formance improvements for SF1000 Q14. We also observe
41.1 minute JCT for SF3000 Q12 that brings 22% perfor-
mance improvements. Second, we do not observe meaningful
performance improvements for SF100 Q4 and Q13 with the
SkewCTPass on 10 nodes, as the dataset is not skewed. Fi-
nally, using 8 transient nodes with the 10-minute expected
eviction rate and 2 reserved resources, we apply the combina-
tion of the TransientResourcePass and the LargeShuf -
flePass on SF100 Q4 and Q14. For the respective queries,
we observe JCTs of 8.2 minutes and 3.4 minutes, which are
smaller than when not applying the optimizations by 9% and
15%.

These results as well as the results of different workloads
in previous experiments confirm that the same optimization
passes on Nemo can speed up different workloads instantly,
with varying degrees of effectiveness.

6 Related Work

Nemo builds on many years of research in dataflow process-
ing, relational database, and compiler optimizations. Never-
theless, we believe the set of trade-offs we have chosen to
design the IR DAG, optimization passes, and runtime exten-
sions for optimizing distributed dataflow processing makes
Nemo a unique system.

Dataflow processing: Nemo differentiates itself from the
existing application-level [22] and runtime-level [4, 20, 22,
40] approaches to dataflow scheduling and communication
optimizations by taking a middle ground approach. Nemo
provides a policy interface that transforms an intermediate
representation (IR) of applications to express indirect but fine
control over distributed scheduling and communication.
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Our decoupled system design and our DAG-based IR are
similar to Musketeer [15]. However, our work is complemen-
tary to Musketeer, as we focus on providing fine control over
physical scheduling and communication in our IR, whereas
Musketeer focuses on dynamically mapping its IR to a range
of different execution runtimes.

The SparkSQL Catalyst optimizer [11] takes as input a
SparkSQL application and outputs a Spark RDD application,
which Nemo can take as input. Compared to Nemo, Catalyst
has more information about application semantics (e.g., ‘Add’
‘1’ and ‘2’), but has less fine control over scheduling and
communication (e.g., speculative task cloning).

Recently proposed dynamic query optimizers [28,29] for
distributed dataflow processing runtimes operate on high-level
logical plans for SQL queries. Leveraging the semantics of
SQL queries and the runtime information, these optimizers
focus on choosing an optimal logical plan, for example by
finding an optimal join order. Nemo operates on a lower-level
IR DAG that supports general dataflow processing applica-
tions, and provides the methods to configure scheduling and
communication methods of each data-parallel operation in
the applications.

Weld [32] takes as input code that composes imperative
libraries such as Pandas [30] and Numpy [41], creates a com-
bined Weld IR program, and outputs optimized assembly code
using LLVM. Weld can reduce data movement overheads
across such imperative libraries, but it is not designed to opti-
mize distributed scheduling and communication like Nemo.

Relational databases: Many of the optimizations in Nemo,
such as parallelization and distributed scheduling optimiza-
tions, can be traced to research in parallel databases [14, 16].
Nemo enables expressing and composing various types of
such optimizations for distributed dataflow processing appli-
cations, by introducing a policy interface that provides fine
control and at the same time ensures correctness.

Our idea of annotating operators with execution proper-
ties is similar to using query hints in relational databases to
influence the optimizer [13]. Nevertheless, these works fo-
cus on restricting the search space of SQL query execution
plans, whereas Nemo focuses on tuning the scheduling and
communication of dataflow processing applications.

Compilers: Our approach of expressing optimizations as
passes that transform an IR is similar to LLVM [26]. How-
ever, in contrast to the LLVM IR that represents assembly
code, the Nemo IR explicitly captures the dependencies and
the communication patterns of coarse-grained, data-parallel
operations. This enables passes on Nemo to express various
distributed scheduling and communication optimizations.

Verified compilers, such as CompCert [27], aim to ensure
the correctness of optimized assembly code using formal
verification methods. Nemo aims to ensure the correctness
of optimized distributed execution of dataflow processing
applications, by introducing utility vertices and execution
properties that make it simple to ensure correctness.

7 Discussion

Nemo provides a programming interface for building correct,
reusable, and composable optimization policies. We discuss
several directions to extend the interface and further facilitate
the development of new policies.

Ensuring resource constraints: Although Nemo provides
execution properties to specify where to place computations
and data, Nemo relies on the runtime to determine the actual
resources to acquire. To ensure that the resource constraints
are met in the execution, we can incorporate the information
into the IR DAG on the resource availability and acquisition.

Declaring optimizations ahead of time: To enable
compile-time analysis of run-time pass conflicts and opti-
mizations, we can provide the option to declare intended
optimizations ahead of time. For example, we can receive
more explicit information on the predicates (e.g., is a shuffle
edge) and actions (e.g., store in memory) that a run-time pass
intends to use.

Leveraging historical information: We can enable passes
to use information on previous executions of the same appli-
cation, and employ more sophisticated techniques such as
machine learning to determine how to transform the IR DAG.
To facilitate this, we can maintain a database that stores the
information of the executed IR DAGs and their performance
metrics, and provide an interface for passes to access the
information in the database.

8 Conclusion

We presented Nemo, an optimization framework that provides
fine control over distributed scheduling and communication
of data processing applications, and at the same time ensures
correct application semantics. We hope Nemo serves as a
platform for dataflow optimization research and development.
Nemo is available at https://nemo.apache.org.
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