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What is Serverless?

*Very attractive abstraction:
*® Pay for Use
* Infinite elasticity from 0 (and back)
* No worry about servers

®* Provisioning, Reserving, Configuring, patching, managing

* Most popular offering: Function-as-a-Service (FaaS)

®* Bounded-time functions with no persistent state among invocations

* Upload code, get an endpoint, and go

For the rest of this talk, Serverless = Serverless Faa$S



What is Serverless?

Bare Metal VMs (laaS) Containers Functions (FaaS)
Unit of Scale Server VM Application/Pod Function
Provisioning Ops DevOps DevOps Cloud Provider
Init Time Days ~1 min Few seconds Few seconds
Scaling Buy new hardware Allocate new VMs 1 to many, auto 0 to many, auto

Typical Lifetime
Payment

State

Years
Per allocation

Anywhere

Hours
Per allocation

Anywhere

Minutes
Per allocation

Anywhere

O(100ms)
Per use

Elsewhere




Serverless

“...more than 20 percent of global enterprises will have deployed serverless computing
technologies by 2020.”
Gartner, Dec 2018
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Why Serverless is the Future
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Oct 21,2015 . 7 min read
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So what are people doing with FaaS?

* Interesting Explorations

®* MapReduce (pywren)
* Many simple things

® Linear Algebra (numpywren)

[ ]
ETL workloads e ExCamera

* |oT data collection / processing e gg “burst-parallel” functions apps

* Stateless processing e ML training
* Image / Video transcoding .. .
* Limitations
® Translation
® Communication
® Check processing

® Latency
* Serving APIs, Mobile/Web Backends

® Locality (lack)

¢ State management



What is Serverless?

*Very attractive abstraction:
* Pay for Use

* Infinite elasticity from 0 (and back)

* No worry about servers

® Provisioning, Reserving, Configuring, patching, managing




‘ ! N _,’.? 7 \ \\
. £gl 5/ sgmme 1 i %
:‘\ g I i
aAPb|g chaIIenge o | T e
///7 By ‘ e : . = s ’
Wy i You do worry about servers| P -
" / P Provnsmnlng, scallng/ ,,Iocatlng, securlug, I}sol-atmg s |SeL
| ® |llusion of infinite scalab'rzty : - T {1 A
1 Opti e g&&; i = S
1l / ptimize resource use | » m?_, i | . S — -
- | / ™ =y » ‘k& - A
/|| ° Fierce competition L \ o L DR
: : ;s V ® M****%#&*&aﬁ.s*aé&n
| 7= * A bigger opportunlty LK e

_~ ~*Finegrained resource packing

* Great space for innovating, and capturing new applications, new markets




Cold Starts

Worker : Functions
Functions ;
becomes ) loaded into Code runs
2o runtime resets
specialized memory
Files mounted Function.json
to worker

files read
App settings Extensions Azure Functions
applied loaded

Start

v
Code downloaded

l

Containfr starts C O | d S t a r t

Azure allocates

unspecialized
server

Starting the container

Runtime bootstrapped

Initializing the action l

I —
- e} Warm start

OpenWhisk ‘

End

AWS Lambda
®Typically range between 0.2 to a few seconds’?

Ihttps://levelup.gitconnected.com/1946d32a0244 9 2https://mikhail.io/serverless/coldstarts/big3/
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Wasted
Memory

Cold Starts and Resource Wastage

A . . .
x Keeping functions in
memory indefinitely.

?

e

Removing function instance from
memory after invocation.

—>

Cold Starts
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Stepping Back: Characterizing the Workload

* How are functions accessed
* What resources do they use

* How long do functions take

2 weeks of all invocations to Azure Functions in July 2019

First characterization of the workload of a large serverless provider

Subset of the traces available for research:
https://github.com/Azure/AzurePublicDataset
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This graph is from a representative subset of the workload. See paper for details.
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Invocations per Application

Average Interval Between Invocations
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Invocations per Application
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Invocations per Application
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Invocations per Application
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This graph is from a representative subset of the workload. See paper for details.



Apps are highly heterogeneous
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What about memory?

If we wanted to keep all apps warm...

1.04
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Fraction of Least Invoked Apps
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What about memory?

If we wanted to keep all apps warm...
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82% of apps -> -
0.4% of invocations -> Q3 0.01

40% of all physical memory, 0.0 0.2 0.4 0.6 0.8
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60% of virtual memory Fraction of Least Invoked Apps

90% of apps ->
1.05% of invocations -> 50% of all physical memory
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Function Execution Duration

1.00 -
0.90 1
0.75 1
» =Minimum
a — Average
8 050 = Maximum
- - LogNormal Fit
0.25 A
0.10 1
0.00 A
®* Executions are short 1ms 100ms 1?r' (1)Os im 10m  1h
iImel(s

* 50% of apps on average run for <= 0.67s

® 75% of apps on run for <= 10s max

*Times at the same scale as cold start times!2 2
lhttps://levelup.gitconnected.com/1946d32a0244 2https://mikhail.io/serverless/coldstarts/big3/
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Key Takeaways

* Highly concentrated accesses

* 82% of the apps are accessed <1/min on average
® Correspond to 0.4% of all accesses

® Butin aggregate would take 40% of the service memory if kept warm

* Arrival processes are highly variable

®* Execution times are short

®* Same OOM as cold start times

23



Cold Starts and Resource Wastage

Wasted
Memory

¢
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Keeping functions in
memory indefinitely.
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Cold Starts
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memory after invocation.
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Cold start probability
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0.0

What do serverless providers do?

Amazon Lambda

Fixed 10-minute
keep-alive.

Azure Functions

1.0
> 08 < >
E
3 06 .
o Fixed 20-minute
S :
- ” t . keep-alive.
. R
Time since <
S 0.2
0 0 5 10 15 25 30

Time since last invocation (mins)

Mikhail Shilkov, Cold Starts in Serverless Functions, https://mikhail.io/serverless/coldstarts/
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Fixed Keep-Alive Policy

Results from simulation of the entire workload for a week.
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Fixed Keep-Alive Won't Fit All

8 mins 8 mins
A A
4 Y4 A\
" >
Time
11 mins 11 mins

v
v
‘J

10-minute
Fixed
Keep-alive

" Cold Start

Warm Start
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Fixed Keep-Alive Is Wasteful

8 mins 8 mins 10-minute
r A A4 A A Fixed
" Keep-alive
>
Time
" Cold Start
Function image kept in Warm Start

memory but not used.

28



Hybrid Histogram Policy

Adapt to each application
Pre-warm in addition to keep-alive

Lightweight implementation
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A Histogram Policy To Learn Idle Times

Idle Time (IT): 8 mins 8 mins 10-minute
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A Histogram Policy To Learn Idle Times

Keep-alive

Pre-warm /\
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A Histogram Policy To Learn Idle Times

Pre-warm Keep-alive
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The Hybrid Histogram Policy

Pre-warm Keep-alive

I_.—

Out of Bound
(OOB)

Frequency
5th percentile

| ____99" percentile .

Idle Time (IT)

We can afford to run complex predictors given the low arrival rate.

A histogram might be too wasteful. ] ]
Time Series Forecast
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The Hybrid Histogram Policy

Pattern

No Yes Use IT distribution

Significant (histogram)
Update
New ,
. .~ app’sIT :
Invocation .. : Be conservative
distribution

(standard keep-alive)

‘ Time-series forecast
(ARIMA)

ARIMA: Autoregressive Integrated Moving Average




More Optimal Pareto Frontier
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Implemented in OpenWhisk

Y

APACHE

OpenWhisk™

®* Open-sourced industry-grade
(IBM Cloud Functions)

® Functions run in docker containers

® Uses 10-minute fixed keep-alive

® Built a distributed setup with 19 VMs

Distributed
Database

P

REST

Interface

v

Controller

Load
Balancer

Y

Distributed
Messaging

Invoker

{ \

Invoker

{

Container

Invoker

{

Container

Container
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Simulation 4-Hour Hybrid Histogram Experimental

1.00 A I 1.00 A
0.75 A 0.75
S 0.50 S 0.50
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] Hybrid [ Hybrid
[ Fixed (10-min) 1 Fixed (10-min)
0-00 I I I 1 000 T T T T
0 25 50 75 100 0 25 50 75 100
App Cold Start (%) App Cold Start (%)
Average exec time reduction: 32.5% Container memory reduction: 15.6%

99th—percentile exec time reduction: 82.4% Latency overhead: < 1ms (835.7s)



Closing the loop
» First serverless characterization from a provider’s point of view

» A dynamic policy to manage serverless workloads more efficiently
( First elements now running in production. )

> Azure Functions traces available to download:

https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsDataset2019.md
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