Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload
at a Large Cloud Provider

Mohammad Shahrad, Rodrigo Fonseca, Ifiigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo Laureano,
Colby Tresness, Mark Russinovich, and Ricardo Bianchini

A Microsoft Azure Microsoft Research

July 15, 2020

What is Serverless?

*Very attractive abstraction:
*® Pay for Use
* Infinite elasticity from 0 (and back)
* No worry about servers

®* Provisioning, Reserving, Configuring, patching, managing

* Most popular offering: Function-as-a-Service (FaaS)

®* Bounded-time functions with no persistent state among invocations

* Upload code, get an endpoint, and go

For the rest of this talk, Serverless = Serverless Faa$S

What is Serverless?

Bare Metal VMs (laaS) Containers Functions (FaaS)
Unit of Scale Server VM Application/Pod Function
Provisioning Ops DevOps DevOps Cloud Provider
Init Time Days ~1 min Few seconds Few seconds
Scaling Buy new hardware Allocate new VMs 1 to many, auto 0 to many, auto

Typical Lifetime
Payment

State

Years
Per allocation

Anywhere

Hours
Per allocation

Anywhere

Minutes
Per allocation

Anywhere

O(100ms)
Per use

Elsewhere

Serverless

“...more than 20 percent of global enterprises will have deployed serverless computing
technologies by 2020.”
Gartner, Dec 2018

1 Reasons

Why Serverless is the Future

claudiobernasconi.ch

- Sam Kroonenburg
Oct 21,2015 . 7 min read

» 5 (4)

Ptem\oer 2019

s
of software and aPP
re

fioh=c

ot Survey Shows More than 75% Use or Plan to Use

in Next 18 Months Serverless

THENEWSTACK

Serverless

serverless

| -
@) {
Y . .
.'C-U‘ ALGORITHMIA <f> & > BINARIS||cLoubFLARE g’é & 18M Cloud Functions *'\éf netlify
_ Alibaba Cloud) Workers e CIota] HUAWEI Functions
a Function Compute AWS Lambda Azure Functions FunctionStage
()] niv & o ¥ ™ . (Standard [/ j @ twilio A ZEIT
|llbe“a spotinst ’ Library)
-'(7; J lN UWEba . o o PubNub p R Functions
Oracle Functions FU NCT]ONSd Serveriess Cloud Function
@) G
L
) ‘
-8 g &5 Camel &APA?HE AppScale . fission % fn 0 ® Kubeless
— LlC_) OpenWhisk I Knative
-g E W@ PipelineAl| — f
c O ‘%clio P~ -4 ®\og® r_l B
— Kyma OPENFAAS Virtual Kubelet

Source: CNCF Cloud Native Interactive Landscape

https://landscape.cncf.io/format

https://landscape.cncf.io/format=serverless

Serverless

Steps Back
Serverless Computing: One Step Forward, Two Step
erv

i i kanti,
ier-Smith, Vikram Sree
in, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Sm
llerstein, Jos ,
Joseph M. He

Alexey Tumanov and Chenggang Wu
UC Berkeley)
: s e ikrame atisemnc ~e-
{hellerstein,jmfaleiro,jegonzal, jssmith.vikram

Fless Platforms -
Behind the Curtains of Serverless
Peeking Be

|
3 Michael Swift
2 Thomas Ristenpart”, Mic
an Li 2, Yingian Zhang =,
I Mengyu R
Liang Wang -,

. iversity,
ison, 2Ohio State University.
1UW-Madison, [

“Cloud Programming Simplified:
A Berkeley Vi puting

3Cornell Tech

1eW on Serverlesg Com

Eric Jonas
Anurag Khandelwa)
Karl Krauth

Johann Schleier-Smit}
Qifan Py
Neeraja Yadwadkar

Ion Stoica

Vikram Sreekanti

Vaishaal Shankar
Joseph E. Gonzalez R
David A. Patterson

ucC Berkeley

Chia-Che Tgaj
Joao Carreira
aluca Ada Popa

Serverlessvi ew@berkeley. edu

So what are people doing with FaaS?

* Interesting Explorations

®* MapReduce (pywren)
* Many simple things

® Linear Algebra (numpywren)

[]
ETL workloads e ExCamera

* |oT data collection / processing e gg “burst-parallel” functions apps

* Stateless processing e ML training
* Image / Video transcoding .. .
* Limitations
® Translation
® Communication
® Check processing

® Latency
* Serving APIs, Mobile/Web Backends

® Locality (lack)

¢ State management

What is Serverless?

*Very attractive abstraction:
* Pay for Use

* Infinite elasticity from 0 (and back)

* No worry about servers

® Provisioning, Reserving, Configuring, patching, managing

‘ ! N _,’.? 7 \ \\
. £gl 5/ sgmme 1 i %
:‘\ g I i
aAPb|g chaIIenge o | T e
///7 By ‘ e : . = s ’
Wy i You do worry about servers| P -
" / P Provnsmnlng, scallng/ ,,Iocatlng, securlug, I}sol-atmg s |SeL
| ® |llusion of infinite scalab'rzty : - T {1 A
1 Opti e g&&; i = S
1l / ptimize resource use | » m?_, i | . S — -
- | / ™ =y » ‘k& - A
/|| ° Fierce competition L \ o L DR
: : ;s V ® M****%#&*&aﬁ.s*aé&n
| 7= * A bigger opportunlty LK e

_~ ~*Finegrained resource packing

* Great space for innovating, and capturing new applications, new markets

Cold Starts

Worker : Functions
Functions ;
becomes) loaded into Code runs
2o runtime resets
specialized memory
Files mounted Function.json
to worker

files read
App settings Extensions Azure Functions
applied loaded

Start

v
Code downloaded

l

Containfr starts C O | d S t a r t

Azure allocates

unspecialized
server

Starting the container

Runtime bootstrapped

Initializing the action l

I —
- e} Warm start

OpenWhisk ‘

End

AWS Lambda
®Typically range between 0.2 to a few seconds’?

Ihttps://levelup.gitconnected.com/1946d32a0244 9 2https://mikhail.io/serverless/coldstarts/big3/

https://levelup.gitconnected.com/1946d32a0244
https://mikhail.io/serverless/coldstarts/big3/

Wasted
Memory

Cold Starts and Resource Wastage

A . . .
x Keeping functions in
memory indefinitely.

?

e

Removing function instance from
memory after invocation.

—>

Cold Starts

10

Stepping Back: Characterizing the Workload

* How are functions accessed
* What resources do they use

* How long do functions take

2 weeks of all invocations to Azure Functions in July 2019

First characterization of the workload of a large serverless provider

Subset of the traces available for research:
https://github.com/Azure/AzurePublicDataset

11

https://github.com/Azure/AzurePublicDataset

Invocations per Application™

-
o

O e
~ ® 00)
]]]

Fraction of Apps

o
N
1

o
o

10 10° 10" 10° 10°
Daily Invocations per App

This graph is from a representative subset of the workload. See paper for details.

Illlq mrrrrmm T Illlllq rmrrrrm T Illlllq rmrrrrm T Illlllq LILELLAL

12

Invocations per Application

Average Interval Between Invocations

1d12h 13015 5 1min 1s
1.0 | | | | | | | |
2 0.8 -
<QE-
S 0.6 -
C
S 04-
O
T
= 0.2
10° 10° 10" 10° 10°

Daily Invocations per App

This graph is from a representative subset of the workload. See paper for details.

13

Invocations per Application

Average Interval Between Invocations

1d12h 13015 5 1min 1s
1.0 | | | | | | | |
2 0.8 -
<QE-
S 0.6 -
C
S 04-
O
T
= 0.2
10° 10° 10" 10° 10°

Daily Invocations per App

This graph is from a representative subset of the workload. See paper for details.

14

Invocations per Application

Average Interval Between Invocations

1d12h 13015 5 1min 1s
1.0 | | | | | | | |
2 0.8 -
<QE-
S 0.6 -
C
S 04-
O
T
= 0.2
10° 10° 10" 10° 10°

Daily Invocations per App

This graph is from a representative subset of the workload. See paper for details.

15

Invocations per Application

Average Interval Between Invocations

1d12h 13015 5 1min 1s
1.0 | | | | | | | |
2 0.8 -
<QE-
S 0.6 -
C
S 04-
O
T
= 0.2
10° 10° 10" 10° 10°

Daily Invocations per App

This graph is from a representative subset of the workload. See paper for details.

16

Invocations per Application

1.0 -

0.8

0.6

0.4 1

0.2 -

0.0

Cumulative Fraction of Invocations

Percentage of Most Popular Apps

This graph is from a representative subset of the workload. See paper for details.

0.001% 0.01% 0.1% 1% 10%

100%

17

Invocations per Application

18% >1/min 82% <1/min
99.6% of invocations! 0.4% of invocations
& p A —t——y
S 1.0 -
©
O
E 0.8 -
©
(- 06 7
O
©
© 0.4 -
LL
()
2 0.2 -
©
=
0.0 LR LI L L L L L LRI o
-]
@) 0.001% 0.01% 0.1% 1% 10% 100%

Percentage of Most Popular Apps
18

This graph is from a representative subset of the workload. See paper for details.

Apps are highly heterogeneous

12
.
2 20min o o e o o0 e 660 0 00 00 00 0 e 0 0 0 e o e e e e e e e e e e e e
TJ
E Imin
5 12
E 1
. 1h
g £ 20min
= v . 2, XL L R SN PP
g 1min S N
m = R R R Y Y h S N e S e B T W EEE AR AEXY]
S T T T T T T " cee . s LREERE) .. . sss s 000 s
06-03 06 06-03 08 06-03 10 06-03 12 06-03 14 06-03 16 £ g oo f‘f:j:_‘:’“:“
Arrival Time I * oot
]
E
06-03 00 06-03 02 06-03 04 06-03 06 06-03 08 06-03 10 06-03 12 06-03 14 06-03 16 06-03 18
Arrival Time
134
1h ‘ .
= 20min ., - e oeuene
. .
E 1min a - ” - “u-'\‘:
g i s ;
E 1 L] popt
= .
S .
&
m
e @ 20min .,
06-03 03 06-03 06 06-03 09 06-03 12 060315 g 1min
Arrival Time 5
Eos H .
s t i i N i i ' .
£ . H . Y ¢
e . . : .] .
] . .
£ Ims .
.
1A 06-03 18 06-03 19 06-03 20 06-03 21 06-03 22
_ Arrival Time
£ 20min
E .
v .
E 1min .
s
s
E 1s
I
T
£
ms T T T u T c. . .
06-03 18 06-03 19 06-03 20 06-03 21 £ 06mm2] .o e,
Arrival Time ° . o et . o
E 1min o % e
E .
= .
s
E 1s .
s
] .
£
- .
Ims T T T T T T T T T T
06-03 06 19 060308 06-03 10 06-03 12 06-03 14 06-03 16 06-03 18 06-03 20 06-03 22 06-04 00

Arrival Time

What about memory?

If we wanted to keep all apps warm...

1.04
0.8 1

0.6 - ,,
’ Allocated Memory
. = Physical Memory

o

~

\
\

o
N
\
\
\

- -
-

o
o
\

f

Cumulative Fraction of Total Memory

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Least Invoked Apps

20

What about memory?

If we wanted to keep all apps warm...

£ 1.0 :
= |
[} I
E 0.8 1 [
< I
= ;
— /
(o] /
c ~ Allocated Memory
% g - Physical Memory
@ -
2
E 0.2 1
>
82% of apps -> -
0.4% of invocations -> Q3 0.01

40% of all physical memory, 0.0 0.2 0.4 0.6 0.8
; :
60% of virtual memory Fraction of Least Invoked Apps

90% of apps ->
1.05% of invocations -> 50% of all physical memory
21

Function Execution Duration

1.00 -
0.90 1
0.75 1
» =Minimum
a — Average
8 050 = Maximum
- - LogNormal Fit
0.25 A
0.10 1
0.00 A
®* Executions are short 1ms 100ms 1?r' (1)Os im 10m 1h
iImel(s

* 50% of apps on average run for <= 0.67s

® 75% of apps on run for <= 10s max

*Times at the same scale as cold start times!2 2
lhttps://levelup.gitconnected.com/1946d32a0244 2https://mikhail.io/serverless/coldstarts/big3/

https://levelup.gitconnected.com/1946d32a0244
https://mikhail.io/serverless/coldstarts/big3/

Key Takeaways

* Highly concentrated accesses

* 82% of the apps are accessed <1/min on average
® Correspond to 0.4% of all accesses

® Butin aggregate would take 40% of the service memory if kept warm

* Arrival processes are highly variable

®* Execution times are short

®* Same OOM as cold start times

23

Cold Starts and Resource Wastage

Wasted
Memory

¢

e

Keeping functions in
memory indefinitely.

?

Cold Starts

—>

ry

Cumulative Fraction of Total Memo
o o o o o

.2 0.4 0.6 0.
Fraction of Least Invoked Apps

CDF

uuuuuuu

1.00 e
0.90 v
7
75 3
= /
o
»
0.50 o
B
.
," + =Minimum
. }
25 o ‘4 ” Average
-" 4'4. t'
- » .
- N
1h

s 10s
Time(s)

Removing function instance from
memory after invocation.

24

1.0

0.8

0.6

0.4

Cold start probability

0.2

0.0

What do serverless providers do?

Amazon Lambda

Fixed 10-minute
keep-alive.

Azure Functions

1.0
> 08 < >
E
3 06 .
o Fixed 20-minute
S :
- ” t . keep-alive.
. R
Time since <
S 0.2
0 0 5 10 15 25 30

Time since last invocation (mins)

Mikhail Shilkov, Cold Starts in Serverless Functions, https://mikhail.io/serverless/coldstarts/

25

https://mikhail.io/serverless/coldstarts/

Fixed Keep-Alive Policy

Results from simulation of the entire workload for a week.

1.00 -

0.75 A

F

8 0.50 -

0.254

——

No Unloading
120-min
90-min
60-min
45-min
30-min
20-min
10-min

. 5-min

0.00

0 25

50
App Cold Start (%)

75 100

130 A > Fixed

§ ' » 120-min

o v 90-min

ig 120 - : A 60-min
' 4 < 45-min

g ® 30-min

)] :

v m 20-min

Z 110 - : ;

3 Lon er . B # 10-min

g ¢ 5-min

© .

= keep-alive \

D 100 - "

N

©

£

<]

< 190 ¢

0 20 40 60 80 100

e — —— gy 3rd Quartile App Cold Start (%)

26

Fixed Keep-Alive Won't Fit All

8 mins 8 mins
A A
4 Y4 A\
" >
Time
11 mins 11 mins

v
v
‘J

10-minute
Fixed
Keep-alive

" Cold Start

Warm Start

27

Fixed Keep-Alive Is Wasteful

8 mins 8 mins 10-minute
r A A4 A A Fixed
" Keep-alive
>
Time
" Cold Start
Function image kept in Warm Start

memory but not used.

28

Hybrid Histogram Policy

Adapt to each application
Pre-warm in addition to keep-alive

Lightweight implementation

29

A Histogram Policy To Learn Idle Times

Idle Time (IT): 8 mins 8 mins 10-minute
e A N\ A N Fixed
" Keep-alive
>
N Time
> " Cold Start
-
Q
>
o Warm Start
LC

ldle Time (IT)

A Histogram Policy To Learn Idle Times

Keep-alive

Pre-warm /\

>

e

Frequency

N
(0¢
(\o

Idle Time (IT)

A Histogram Policy To Learn Idle Times

Pre-warm Keep-alive

l l| l l|
| |
| |
| |
> | |
O] 2
=1 |
Q r=d gl
= g 3!
O -t b
Q — | q_)|
b 8_: Q.:
L s | :3“
| |
1, 9|
| |
| |
| |
B '

| |

\ J

Y

Minute-long bins

Idle Time (IT)

Limited number of bins
(e.g., 240 bins for 4-hours)

32

The Hybrid Histogram Policy

Pre-warm Keep-alive

I_.—

Out of Bound
(OOB)

Frequency
5th percentile

| ____99" percentile .

Idle Time (IT)

We can afford to run complex predictors given the low arrival rate.

A histogram might be too wasteful.]]
Time Series Forecast

33

The Hybrid Histogram Policy

Pattern

No Yes Use IT distribution

Significant (histogram)
Update
New ,
. .~ app’sIT :
Invocation .. : Be conservative
distribution

(standard keep-alive)

‘ Time-series forecast
(ARIMA)

ARIMA: Autoregressive Integrated Moving Average

More Optimal Pareto Frontier

130 1 ' Fixed
=¥ » 120-min
— A v 90-min
R 1201 A 60-min
(0] < H
£ - <4 45-min
= ® ® 30-min
gno— ~1.5X m 20-min
g i # 10-min
= E ¢ 5-min
8 ~2.5X _
» 100 >%
©
=
©
N
E 90 1 Hybrid .
o + 4-hr L
= ¢ 3-hr &
80| « 2-hr| |
® 1-hr
0 20 40 60 80 100

3rd Quartile App Cold Start (%)

Implemented in OpenWhisk

Y

APACHE

OpenWhisk™

®* Open-sourced industry-grade
(IBM Cloud Functions)

® Functions run in docker containers

® Uses 10-minute fixed keep-alive

® Built a distributed setup with 19 VMs

Distributed
Database

P

REST

Interface

v

Controller

Load
Balancer

Y

Distributed
Messaging

Invoker

{ \

Invoker

{

Container

Invoker

{

Container

Container

36

Simulation 4-Hour Hybrid Histogram Experimental

1.00 A I 1.00 A
0.75 A 0.75
S 0.50 S 0.50
0.25 A 0.25 A
] Hybrid [Hybrid
[Fixed (10-min) 1 Fixed (10-min)
0-00 I I I 1 000 T T T T
0 25 50 75 100 0 25 50 75 100
App Cold Start (%) App Cold Start (%)
Average exec time reduction: 32.5% Container memory reduction: 15.6%

99th—percentile exec time reduction: 82.4% Latency overhead: < 1ms (835.7s)

Closing the loop
» First serverless characterization from a provider’s point of view

» A dynamic policy to manage serverless workloads more efficiently
(First elements now running in production.)

> Azure Functions traces available to download:

https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsDataset2019.md

38

https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsDataset2019.md

