
Scaling Large Production Clusters
with Partitioned Synchronization

Yihui Feng*, Zhi Liu*†, Yunjian Zhao†, Tatiana Jin†, Yidi Wu†,

Yang Zhang, James Cheng† , Chao Li, Tao Guan

Alibaba Group †The Chinese University of Hong Kong

*Co-first-authors ordered alphabetically.
†This work was done when the authors were visiting Alibaba.

Scale of computer clusters

100k
machines

Billions
of tasks

2

Scale of computer clusters

100k
machines

Billions
of tasks

Resource
utilization

Cluster
upgrade

3

Job/task statistics in Alibaba

4

Single-master architecture

• The scheduler can be overloaded with heartbeat messages from
numerous workers

• The large number of tasks in our current production cluster
exceeds the capability of a single scheduler

5

Scheduling objectives

• Scheduling efficiency, or scheduling delay

• Scheduling quality

• Fairness and priority between jobs and users

• Resource utilization

6

Scheduling objectives

• Scheduling efficiency, or scheduling delay

• Scheduling quality

• Fairness and priority between jobs and users

• Resource utilization

7

Engineering objectives

• Robustness

• Backward compatibility

• Transparent-to-user upgrade

8

Shared-state architecture

• Malte Schwarzkopf, Andy
Konwinski, Michael Abd-El-Malek,
John Wilkes. Omega: flexible,
scalable schedulers for large
compute clusters. (EuroSys 2013)

9

Shared-state architecture: benefits

• Each scheduler can run different
scheduling strategies programmed
in separate code bases for different
types of jobs

• Each scheduler has a global view of
the cluster

• Each scheduler can assign tasks to
any machine in the cluster instead
of a fixed subset of partitions

10

Shared-state architecture: limitations

• Omega assumes no synchronization overhead

• However, in our production system, there is a gap between
consecutive synchronizations as our scheduler can be overloaded
with network communication:
• Frequent communication with application masters, a large number of

worker machines in different racks, and a massive number of front-end
requests

• Large state in scheduling algorithms

11

Conflict modeling

• The expectation of the number of conflicts Yi at slot i, where Sidle is
the number of idle slots, N is the number of schedulers and NK is
the number of tasks to be scheduled:

• The expectation of the total number of conflicts for all the slots,
where S is the number of slots:

12

Light weight simulation

…

…
S slots

N schedulers

scheduling

Master state

G: synchronization gap

R: Task submission rate

Tasks

V: the quality of slots

13

Light weight simulation

• An extreme case: the task submission rate and the resource needs
of the tasks match with the total amount of resources in a cluster

• Ideal setting w/o any conflict: N schedulers → 0 scheduling delay

• When conflicts happen, we need extra schedulers and/or slots

14

Light weight simulation: results

15

Light weight simulation: results

16

Observation

• Scheduling delay increases
disproportionally within the gap G
• When the state is synchronized, the

scheduling has fewer conflicts
• When the state is outdated, the scheduling

results in more conflicts

• Most of the delay is caused by the staler
view of the state in the later interval of the
gap

G

Staler state
More conflict

17

ParSync

• The master state is divided
into P = 8 parts

• There are N = 4 schedulers

• Synchronization continues in
a round-robin manner

Scheduler

1

Scheduler

2

Master

State

1

2

3

45

6

7

8

18

ParSync

• The master state is divided
into P = 8 parts

• There are N = 4 schedulers

• Synchronization continues in
a round-robin manner

Master

State

1

2

3

45

6

7

8

Scheduler

1

Scheduler

2 19

Effects of synchronization strategies

20

Adaptive scheduling strategy

21

Quality-first Latency-first Adaptive StateSync

Prioritize
choosing of
high-quality

slots

Prioritize
choosing of
slots with

fresher state

Hybrid of
quality-first and

latency-first

Synchronize
entire state
each time

DiffSync

Adaptive scheduling strategy

22

Conclusions

ParSync

• Increases the scheduling capacity of our production cluster

• Reduces conflicts in contending resources to achieve low
scheduling delay and high scheduling quality

• Allows us to maintain user transparency and backward
compatibility

23

Thank you!

Q & A

If you have any question about our work, please contact

{ zliu, yjzhao, tjin } @cse.cuhk.edu.hk

