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Job/task statistics in Alibaba
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Single-master architecture

* The scheduler can be overloaded with heartbeat messages from
numerous workers

* The large number of tasks in our current production cluster
exceeds the capability of a single scheduler



Scheduling objectives

* Scheduling efficiency, or scheduling delay
* Scheduling quality
* Fairness and priority between jobs and users

* Resource utilization
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Engineering objectives
* Robustness

* Backward compatibility

* Transparent-to-user upgrade



Shared-state architecture
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Shared-state architecture: benefits

Shared state

* Each scheduler can run different
scheduling strategies programmed
IN separate code bases for different
types of jobs

* Each scheduler has a global view of r
the cluster full state

* Each scheduler can assign tasks to
any machine in the cluster instead
of a fixed subset of partitions

optimistic
concurrency

(transactions)
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Shared-state architecture: imitations

* Omega assumes

* However, In our production system, there Is
as our scheduler can be overloaded
with network communication:

* Frequent communication with application masters, a large number of
worker machines in different racks, and a massive number of front-end
requests

* Large state in scheduling algorithms



Conflict modeling

* The expectation of the number of conflicts Y; at slot I, where Sy, is
the number of idle slots, N is the number of schedulers and NK is
the number of tasks to be scheduled:
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* The expectation of the total number of contlicts for all the slots,

where S is the number of slots:
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Light weight simulation
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Light weight simulation

* An extreme case: the task submission rate and the resource needs
of the tasks match with the total amount of resources in a cluster

* |deal setting w/o any conflict: N schedulers = 0 scheduling delay

* When conflicts happen, we need extra schedulers and/or slots



Light weight simulation: results
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(a) Task submission rate (R)  (b) Synchronization gap (G) (c) Variance of slot scores (V)
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Observation

* Scheduling delay increases
disproportionally within the gap G
* When the state is synchronized, the
scheduling has fewer conflicts

* When the state Is outdated, the scheduling
results In more conflicts

* Most of the delay Is caused by the staler
view of the state in the later interval of the

gap



Parsync !
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Effects of synchronization strategies
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Adaptive scheduling strategy

StateSync

Prioritize Prioritize Hybrid of Synchronize
choosing of choosing of quality-first and entire state
high-quality slots with latency-first each time

slots fresher state

DiffSync



Adaptive scheduling strategy
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Conclusions

ParSync
* Increases the scheduling capacity of our production cluster

* Reduces conflicts in contending resources to achieve low
scheduling delay and high scheduling quality

* Allows us to maintain user transparency and backward
compatibility



Thank you!

Q&A

If you have any question about our work, please contact
{ zliu, yjzhao, tjin } @cse.cuhk.edu.nk



