INfaas

Automated Model-less Inference Serving

Francisco Romero’, Qian Li’,
Neeraja |. Yadwadkar, and Christos Kozyrakis

€ PLATFORMLAB I

Stanford MAST

Model Registration

a

User

Register
a model

Model
Repository

Today’s Inference Serving

Use

\

Invoke a Model

r(s)

Inference

Today’s

Inference Serving

Select a model

Hardware architecture
atre

dlelf: (@) E{OJE
T i
CcPUs GPUs FPGAs

Framework

.

Optimizer

0= TVM
Lf: -

Diverse application requirements C\% &@

Accuracy Latency

I 1 Objec‘:t [Social Media
. Detection -
- ey
L . E mmmm) Face é
Recognition
Accuracy Cost
Example: Face Recognition - Navigation for
visually impaired person

Applications evolve over time

The performance penalty can be up to 100x

Today’s Inference serving Model-less Inference serving

Prediction task,

Invoke a Model App Regs

Model-less
Inference Serving

Today’s

User(s) User(s)

Inference Serving

Inference

Inference
s N\ A o o
Select a model Framework Prediction task:
Y -ResNet S @xnet “Face Recognition”
Caffe2
Y -SqueezeNet PYTORCH App Reqs:
_ J \L J

w Target accuracy

p
Hardware architecture

R E '. - i
J=k 183 £o @
Tl i

CPUs GPUs FPGAs ASICs

y
Optimizer

Target latency

-

‘_-': TensorRT z TVM
LF

—

\. \. J

Today’s Inference serving Model-less Inference serving

Prediction task,

Invoke a Model App Regs

Today’s Model-less
U
ser(s) Inference Serving User(s) Inference Serving

Inference Inference

Easy-to-use: Automatically and efficiently select a model and hardware

Cost Efficient: Share the hardware as well as models across users

|n @@s INFerence-as-a-Service system

INFaa$S provides a model-less API to inference queries that abstracts
(a) Model Selection and (b) Resource Provisioning from users.

INFaasS is open-source!
https://stanford-mast.github.io/INFaaS/

https://stanford-mast.github.io/INFaaS/

Goals & Requirements

Ease-of-use: Automatically
select a model and hardware

Challenges

Novice and expert users
Diverse user requirements
Large search space
Decision overhead

INFaaS overview

Query: 4 ™\
J INFaa$S
[
% ,| [|Controller Worker T |
= r ; | |- ' Hardware |i
Recognize face [V 'g ! Dispatcher , D tch I |
in 200ms, >70% | Model-Variant : ' _ _IEan_ _C_ ?E L IEX_e_Cl_,It_o_r_ X
accuracy b~ Selection Polic Py
S L Model-Autoscaler
Result: I e VM-Autoscaler Model-Variant
“H i N Selection Policy
omer Simpson q
Model Registrar Monitoring Daemon | [

V4

| § | §
Metadata Store
E!NENX .pbtxt| [T _/f\[,(/_/:ﬁ ﬁ

Variant-Profiler

Register Model

N

Model Repository

<: Variant-Generator
- J

Ilo K”

INFaaS overview

Recognize face
in 200ms, >70%

accuracy

-
V4

Result:

“Homer Simpso

| N |
ONNX .pbtxt

”

Register Model

IIO K”

Model Registrar

Metadata Store

S |

(=

Variant-Profiler

N

Variant-Generator

Model Repository

OUsers register models

INFaaS overview

Query:

in 200ms, >70%
accuracy

Result:

“Homer Simpsong

| N |
ONNX .pbtxt

Register Model

Recognize face V|

Front-End

uo Kn <:|

OUsers register models

OThe user submits a query using
INFaaS’ user API

Front-end

* Goal: need to map query requirements to models and resources

* Affects user APl, metadata organization, model-variant
selection, and autoscaling

* Challenge: needs to be intuitive

The model-less abstraction

bert-pytorch-cpu

Registered model II-

resnet50-tf-cpu
resnet50-caffe2-gpu

The model-less abstraction

[translation]

Prediction task II‘

[face-detection]

[bert-pytorch-cpu]
—) resnet50-tf-cpu)

[resnet50-caffe2-gpu }

13

The model-less abstraction 0 Latency target

[face-detection I

[bert-pytorch-cpu]
—) resnet50-tf-cpu)

[resnet50-caffe2-gpu }

Prediction task I

14

INFaaS overview

OUsers register models

Query:
OThe user submits a query using
INFaaS’ user API

Recognize face [V : Dispatcher
in 200ms, >70% ! Model-Variant
1

accuracy Selection Policy
. @A The Controller selects a model-
Result: _
ey St variant, then selects a worker to
— 2 process the query
ONNX r.]::txt

Register Model

”O Kn <:|

INFaaS overview

Query:

o

Recognize fac
in 200ms, >70%

accuracy

i

e

Result:

“Homer Simpson”

EHE

ONNX

A
r.]::txt

Register Model

Ilo KH

(=

\
INFaaS
[

Contoler @ | werker @) Firrie
S | Dispatcher 1 ' !
5 | Wodervariant] || | Dispatcher {5} Executor
i lection Polj 1y
Sk >election Policy R Model-Autoscaler
= VM-Autoscaler Model-Variant

Selection Policy
Model Registrar Monitoring Daemon | |
Metadata Store é ﬁ
Variant-Profiler y
Model Repositor
Variant-Generator P y
_ J

OUsers register models

OThe user submits a query using
INFaaS’ user API

@A The Controller selects a model-
variant, then selects a worker to
process the query

®The query proceeds to run on the
variant’s target hardware platform

INFaaS overview

Query: 4
-
_l/

Recognize face
in 200ms, >70%
accuracy

Result: @ -

“Homer Simpson”

EHE

| |
‘.pbtxt

ONNX

Register Model

uo Kn <:|

\
INFaaS
[

Contoler @ | werker @) Firrie
S | Dispatcher 1 ' !
5 | Wodervariant] || | Dispatcher {5} Executor
i lection Polj 1y
Sk >election Policy R Model-Autoscaler
= VM-Autoscaler Model-Variant

Selection Policy
Model Registrar Monitoring Daemon | |
Metadata Store é ﬁ
Variant-Profiler y
Model Repositor
Variant-Generator P y
_ _J

OUsers register models

OThe user submits a query using
INFaaS’ user API

@A The Controller selects a model-
variant, then selects a worker to
process the query

®The query proceeds to run on the
variant’s target hardware platform

®Upon completion, the result is
returned to the user

Ease-of-use and cost efficiency

- N)
Select a model Framework
S @net

Caffe2

Y -SqueezeNet | X -Inception PYTHORCH
- y
p

\. J

,
Optimizer

N

o0 ¢ 10 i

7ok f89 fo {0 [

oo @] e =] = = ——

T = T @:' TVM
J

Hardware architecture

CPUs GPUs FPGAs ASICs

J

INFaaS removes the system configuration burden and

improves ease-of-use

Goals & Requirements Challenges

Autoscaling: allocate just * Query load and pattern changes
enough resources, meet SLOs, * Heterogeneous hardware & models

minimize cost * Scalability

Existing systems

* Static provisioning (TensorFlow Serving, Triton Inference Server)

- based on peak load
* Meet SLOs but expensive

* Woaste resources at low load

20

Existing systems

* Static provisioning (TensorFlow Serving, Triton Inference Server)
- based on peak load
* Meet SLOs but expensive
* Woaste resources at low load

* Replica-only (Clipper, SageMaker, Al Platform) - replicate

individual variants
* Lower costs but high start-up latency

* Fail to leverage heterogeneous resources / variants

21

Autoscaling

Query:

Recognize face
in 200ms, >70%
accuracy

3 types of scaling

Result:

“Homer Simpson”

VM-Autoscaler

(FiLE B N
.pbtxt| [T

ONNX

Model-Autoscaler

Model-Variant
Selection Policy

Metadata Store

Monitoring Daemon

Register Model

“OK” <:]

* Model-horizontal scaling

* Model-vertical scaling
-> (Our contribution)

* VM-autoscaling

Division of responsibility

Autoscaling

in 200ms, >70%
accuracy

Result: <j

“Homer Simpson”

| § |
E\TNX r.]::txt Ej

Register Model

VM-Autoscaler

“OK” <:]

Metadata Store

Model-Autoscaler

Model-Variant
Selection Policy

3 types of scaling

Monitoring Daemon

* Model-horizontal scaling

* Model-vertical scaling
-> (Our contribution)

* VM-autoscaling

Division of responsibility

23

Model-Autoscaler at each worker

* Goal: Decide the type and number of model-variants to meet the load
and requirements, while minimizing cost
* Formulate as an Integer Programming problem

min Cost(action) = Hardware Cost + A Loading Latency

4

{load, unload} variant instances

Model-Autoscaler at each worker

* Goal: Decide the type and number of model-variants to meet the load
and requirements, while minimizing cost
* Formulate as an Integer Programming problem

min Cost(action) = Hardware Cost + A Loading Latency

4

{load, unload} variant instances

Constraints:

(1) With the chosen scaling action, INFaaS supports the incoming query load.
(2) The newly-loaded instances satisfy applications’ SLOs.
(3) Do not exceed the total system resources.

(4) The number of running instances is non-negative.

Model-Autoscaler at each worker

* Respond to changes in load and meet SLOs by: 1) model-horizontal
scaling and 2) model-vertical scaling

Worker

2-CPU
Model-

Autoscaler

* Load (Reqgs/sec)

 SLO violations

Model-Autoscaler at each worker

* Respond to changes in load and meet SLOs by: 1) model-horizontal
scaling and 2) model-vertical scaling

Worker
s_CPU 2-CPU
Model-
Autoscaler 2-CPU

* Load ('Req§/seC) Model-horizontal
* SLO violations scaling (replication)

Model-Autoscaler at each worker

Respond to changes in load and meet SLOs by: 1) model-horizontal

scaling and 2) model-vertical scaling

Worker

Model-
Autoscaler

—

>-Inferentia
batch 1 S

* Load (Reqgs/sec)

 SLO violations

Model-vertical
scaling (upgrading)

Evaluation

* Baselines:
e CLIPPER™ (Clipper, TIS and TFS): preloaded and persisted beefy variants
* CLIPPERT gp, and CLIPPER 5,

e SMT™ (InferlLine, SageMaker, and Al Platform): model-horizontal scaling,

replicated light-weight variants on/across worker
¢ SM+GPU and SM+CPU

Evaluation

* We deployed INFaaS on AWS EC2
* GPU worker has 1 NVIDIA V100 GPU
* Inferentia worker has 1T AWS Inferentia accelerator
* Controller / CPU worker / client are CPU-only machines

How well does INFaaS scale with load?
] ClippergPU || SMé_PU || Clipperépu || SM&LPU % INFaaS

30

low load

=N
o O

Images/s

800,

26007

high load & 490
C
£ 200

(-

0

0 20 40 60
Time (s)

GO

1 2 3 45
Strategy

INFaaS achieved load while minimizing cost

31

How well does INFaaS scale with load?
] ClipperérPU || SMgPU || ClippergPU || SM(J}FPU % INFaaS

Fluctuating, spiky load

Images/s

Norm cost

0 100 200 0" 53 1 &

Time (s) Strategy

INFaaS reduced cost by 3x by leveraging CPU/Inferentia variant;

if limited to CPU/GPU variants, still |.7x cheaper

Putting it all together

* Real workload: Twitter trace (diurnal pattern + spikes) 175 model-variants
* Compared to CLIPPER" and SM*;

* |.Ix,1.3x higher throughput versus CLIPPER*, SM*

* |.6x,2.5x fewer SLO violations compared to CLIPPER", SM*

* |.23x lower cost by leveraging CPU, GPU, Inferentia machines

INFaaS achieved high performance, better resource utilization,

lower SLO violations, and reduced cost

33

Conclusion

Query: 4 N
INFaaS
[
N Controller Worker Shaalalaieleieta
. : C) Tt Tt | |F----c---- . | Hardware
ecognize face 'c:: : Dispatcher I ' Di tch @ !
in 200ms, >70% w i Model-Variant T _'f'?a_ _C_ ?[) - E)ie_Cl_JEO_r_ :"I
e 2| 2election Policy | I/ Model-Autoscaler
o N _
Result: <_ i VM-Autoscaler SMlodgl-VaPria}nt
B . N election rFolicy
Homer Simpson Model Registrar Monitoring Daemon | |
[S |
N Metadata Store | _{}
ONNX| |.pbtxt| EZ°> —
Register Model Variant-Profiler y
: Model Repositor
i <: Variant-Generator s Y
OK \)

https://stanford-mast.github.io/INFaaS/

{faromero,qianl15,neerajay,kozyraki}@stanford.edu

Contact us:

INfaas

34

https://stanford-mast.github.io/INFaaS/

