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Applications evolve over time

The performance penalty can be up to 100x
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Today’s Inference serving Model-less Inference serving

Prediction task,

Invoke a Model App Regs

Today’s Model-less
U
ser(s) Inference Serving User(s) Inference Serving

Inference Inference

Easy-to-use: Automatically and efficiently select a model and hardware

Cost Efficient: Share the hardware as well as models across users




|n @@s INFerence-as-a-Service system

INFaa$S provides a model-less API to inference queries that abstracts
(a) Model Selection and (b) Resource Provisioning from users.

INFaasS is open-source!
https://stanford-mast.github.io/INFaaS/



https://stanford-mast.github.io/INFaaS/

Goals & Requirements

Ease-of-use: Automatically
select a model and hardware

Challenges

Novice and expert users
Diverse user requirements
Large search space
Decision overhead
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INFaaS overview
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Front-end

* Goal: need to map query requirements to models and resources

* Affects user APl, metadata organization, model-variant
selection, and autoscaling

* Challenge: needs to be intuitive




The model-less abstraction

bert-pytorch-cpu

Registered model II-

resnet50-tf-cpu
resnet50-caffe2-gpu



The model-less abstraction
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The model-less abstraction 0 Latency target
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INFaaS overview
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OUsers register models

OThe user submits a query using
INFaaS’ user API

@A The Controller selects a model-
variant, then selects a worker to
process the query

®The query proceeds to run on the
variant’s target hardware platform

®Upon completion, the result is
returned to the user



Ease-of-use and cost efficiency
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INFaaS removes the system configuration burden and

improves ease-of-use



Goals & Requirements Challenges

Autoscaling: allocate just * Query load and pattern changes
enough resources, meet SLOs, * Heterogeneous hardware & models

minimize cost * Scalability



Existing systems

* Static provisioning (TensorFlow Serving, Triton Inference Server)

- based on peak load
* Meet SLOs but expensive

* Woaste resources at low load
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Existing systems

* Static provisioning (TensorFlow Serving, Triton Inference Server)
- based on peak load
* Meet SLOs but expensive
* Woaste resources at low load

* Replica-only (Clipper, SageMaker, Al Platform) - replicate

individual variants
* Lower costs but high start-up latency

* Fail to leverage heterogeneous resources / variants
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Autoscaling
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* Model-vertical scaling
-> (Our contribution)

* VM-autoscaling

Division of responsibility



Autoscaling
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Model-Autoscaler at each worker

* Goal: Decide the type and number of model-variants to meet the load
and requirements, while minimizing cost
* Formulate as an Integer Programming problem

min Cost(action) = Hardware Cost + A Loading Latency

4

{load, unload} variant instances



Model-Autoscaler at each worker

* Goal: Decide the type and number of model-variants to meet the load
and requirements, while minimizing cost
* Formulate as an Integer Programming problem

min Cost(action) = Hardware Cost + A Loading Latency

4

{load, unload} variant instances

Constraints:

(1) With the chosen scaling action, INFaaS supports the incoming query load.
(2) The newly-loaded instances satisfy applications’ SLOs.
(3) Do not exceed the total system resources.

(4) The number of running instances is non-negative.



Model-Autoscaler at each worker

* Respond to changes in load and meet SLOs by: 1) model-horizontal
scaling and 2) model-vertical scaling

Worker

2-CPU
Model-

Autoscaler

* Load (Reqgs/sec)

 SLO violations




Model-Autoscaler at each worker

* Respond to changes in load and meet SLOs by: 1) model-horizontal
scaling and 2) model-vertical scaling

Worker
s_CPU 2-CPU
Model-
Autoscaler 2-CPU

* Load ('Req§/seC) Model-horizontal
* SLO violations scaling (replication)




Model-Autoscaler at each worker

Respond to changes in load and meet SLOs by: 1) model-horizontal

scaling and 2) model-vertical scaling

Worker

Model-
Autoscaler

—

>-Inferentia
batch 1 S

* Load (Reqgs/sec)

 SLO violations

Model-vertical
scaling (upgrading)




Evaluation

* Baselines:
e CLIPPER™ (Clipper, TIS and TFS): preloaded and persisted beefy variants
* CLIPPERT gp, and CLIPPER 5,

e SMT™ (InferlLine, SageMaker, and Al Platform): model-horizontal scaling,

replicated light-weight variants on/across worker
¢ SM+GPU and SM+CPU



Evaluation

* We deployed INFaaS on AWS EC2
* GPU worker has 1 NVIDIA V100 GPU
* Inferentia worker has 1T AWS Inferentia accelerator
* Controller / CPU worker / client are CPU-only machines



How well does INFaaS scale with load?
] ClippergPU || SMé_PU || Clipperépu || SM&LPU % INFaaS

30

low load

=N
o O

Images/s

800,

26007

high load & 490
C
£ 200

(-

0

0 20 40 60
Time (s)

GO

1 2 3 45
Strategy

INFaaS achieved load while minimizing cost
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How well does INFaaS scale with load?
] ClipperérPU || SMgPU || ClippergPU || SM(J}FPU % INFaaS

Fluctuating, spiky load

Images/s
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INFaaS reduced cost by 3x by leveraging CPU/Inferentia variant;

if limited to CPU/GPU variants, still |.7x cheaper




Putting it all together

* Real workload: Twitter trace (diurnal pattern + spikes) 175 model-variants
* Compared to CLIPPER" and SM*;

* |.Ix,1.3x higher throughput versus CLIPPER*, SM*

* |.6x,2.5x fewer SLO violations compared to CLIPPER", SM*

* |.23x lower cost by leveraging CPU, GPU, Inferentia machines

INFaaS achieved high performance, better resource utilization,

lower SLO violations, and reduced cost
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Contact us:

INfaas
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