
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Direct Access, High-Performance Memory
Disaggregation with DirectCXL

Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung, Computer
Architecture and Memory Systems Laboratory, Korea Advanced Institute of Science

and Technology (KAIST)

https://www.usenix.org/conference/atc22/presentation/gouk

Direct Access, High-Performance Memory Disaggregation with DIRECTCXL

Donghyun Gouk, Sangwon Lee, Miryeong Kwon, Myoungsoo Jung
Computer Architecture and Memory Systems Laboratory,

Korea Advanced Institute of Science and Technology (KAIST)
http://camelab.org

Abstract
New cache coherent interconnects such as CXL have recently
attracted great attention thanks to their excellent hardware
heterogeneity management and resource disaggregation capa-
bilities. Even though there is yet no real product or platform
integrating CXL into memory disaggregation, it is expected
to make memory resources practically and efficiently disag-
gregated much better than ever before.

In this paper, we propose directly accessible memory dis-
aggregation, DIRECTCXL that straight connects a host pro-
cessor complex and remote memory resources over CXL’s
memory protocol (CXL.mem). To this end, we explore a practi-
cal design for CXL-based memory disaggregation and make
it real. As there is no operating system that supports CXL,
we also offer CXL software runtime that allows users to uti-
lize the underlying disaggregated memory resources via sheer
load/store instructions. Since DIRECTCXL does not require
any data copies between the host memory and remote memory,
it can expose the true performance of remote-side disaggre-
gated memory resources to the users.

1 Introduction

Memory disaggregation has attracted great attention thanks
to its high memory utilization, transparent elasticity, and re-
source management efficiency [1–3]. Many studies have ex-
plored various software and hardware approaches to realize
memory disaggregation and put significant efforts into making
it practical in large-scale systems [4–16].

We can broadly classify the existing memory disaggrega-
tion runtimes into two different approaches based on how they
manage data between a host and memory server(s): i) page-
based and ii) object-based. The page-based approach [4–10]
utilizes virtual memory techniques to use disaggregated mem-
ory without a code change. It swaps page cache data resid-
ing on the host’s local DRAMs from/to the remote mem-
ory systems over a network in cases of a page fault. On the
other hand, the object-based approach handles disaggregated
memory from a remote using their own database such as a
key-value store instead of leveraging the virtual memory sys-
tems [11–16]. This approach can address the challenges im-
posed by address translation (e.g., page faults, context switch-
ing, and write amplification), but it requires significant source-
level modifications and interface changes.

While there are many variants, all the existing approaches
need to move data from the remote memory to the host mem-
ory over remote direct memory access (RDMA) [4, 5, 11–13,
15, 16] (or similar fine-grain network interfaces [7, 9, 10, 17]).
In addition, they even require managing locally cached data
in either the host or memory nodes. Unfortunately, the data
movement and its accompanying operations (e.g., page cache
management) introduce redundant memory copies and soft-
ware fabric intervention, which makes the latency of disaggre-
gated memory longer than that of local DRAM accesses by
multiple orders of magnitude. In this work, we advocate com-
pute express link (CXL [18]), which is a new concept of open
industry standard interconnects offering high-performance
connectivity among multiple host processors, hardware accel-
erators, and I/O devices [19]. CXL is originally designed to
achieve the excellency of heterogeneity management across
different processor complexes, but both industry and academia
anticipate its cache coherence ability can help improve mem-
ory utilization and alleviate memory over-provisioning with
low latency [20–22]. Even though CXL exhibits a great po-
tential to realize memory disaggregation with low monetary
cost and high performance, it has not been yet made for pro-
duction, and there is no platform to integrate memory into a
memory pooling network.

We demonstrate DIRECTCXL, direct accessible disaggre-
gated memory that connects host processor complex and
remote memory resources over CXL’s memory protocol
(CXL.mem). To this end, we explore a practical design for
CXL-based memory disaggregation and make it real. Specifi-
cally, we first show how to disaggregate memory over CXL
and integrate the disaggregated memory into processor-side
system memory. This includes implementing CXL controller
that employs multiple DRAM modules on a remote side. We
then prototype a set of network infrastructure components
such as a CXL switch in order to make the disaggregated
memory connected to the host in a scalable manner. As there
is no operating system that support CXL, we also offer CXL
software runtime that allows users to utilize the underlying
disaggregated memory resources through sheer load/store in-
structions. DIRECTCXL does not require any data copies
between the host memory and remote memory, and therefore,
it can expose the true performance of remote-side disaggre-
gated memory resources to the users.

In this work, we prototype DIRECTCXL using many cus-

USENIX Association 2022 USENIX Annual Technical Conference 287

tomized memory add-in-cards, 16nm FPGA-based processor
nodes, a switch, and a PCIe backplane. On the other hand, DI-
RECTCXL software runtime is implemented based on Linux
5.13. To the best of our knowledge, this is the first work that
brings CXL 2.0 into a real system and analyzes the perfor-
mance characteristics of CXL-enabled disaggregated memory
design. The results of our real system evaluation show that
the disaggregated memory resources of DIRECTCXL can ex-
hibit DRAM-like performance when the workload can enjoy
the host processor’s cache. When the load/store instructions
go through the CXL network and are served from the disag-
gregated memory, DIRECTCXL’s latency is shorter than the
best latency of RDMA by 6.2×, on average. For real-world
applications, DIRECTCXL exhibits 3× better performance
than RDMA-based memory disaggregation, on average.

2 Memory Disaggregation and Related Work

2.1 Remote Direct Memory Access
The basic idea of memory disaggregation is to connect a host
with one or more memory nodes, such that it does not restrict
a given job execution because of limited local memory space.
For the backend network control, most disaggregation work
employ remote direct memory access (RDMA) [4, 5, 11–13,
15,16] or similar customized DMA protocols [7,9,10]. Figure
1 shows how RDMA-style data transfers (one-sided RDMA)
work. For both the host and memory node sides, RDMA needs
hardware support such as RDMA NIC (RNIC [23]), which
is designed toward removing the intervention of the network
software stack as much as possible. To move data between
them, processes on each side first require defining one or
more memory regions (MRs) and letting the MR(s) to the
underlying RNIC. During this time, the RNIC driver checks
all physical addresses associated with the MR’s pages and
registers them to RNIC’s memory translation table (MTT).
Since those two RNICs also exchange their MR’s virtual
address at the initialization, the host can simply send the
memory node’s destination virtual address with data for a
write. The remote node then translates the address by referring
to its MTT and copies the incoming data to the target location
of MR. Reads over RDMA can also be performed in a similar
manner. Note that, in addition to the memory copy operations
(for DMA), each side’s application needs to prepare or retrieve
the data into/from MRs for the data transfers, introducing
additional data copies within their local DRAM [24].

2.2 Swap: Page-based Memory Pool
Page-based memory disaggregation [4–10] achieves memory
elasticity by relying on virtual memory systems. Specifically,
this approach intercepts paging requests when there is a page
fault, and then it swaps the data to a remote memory node in-
stead of the underlying storage. To this end, a disaggregation
driver underneath the host’s kernel swap daemon (kswapd)
converts the incoming block address to the memory node’s

����

����

�����	

����

�����	 ��

���	�	�����
�������

��
����
������
�������

����

����

���	

��� ��������
	
���

��������

���
�������
�����

����

�����	��

���	�	�����
�������

��
����
������
��������

����

���	

Figure 1: Data movement over RDMA.

virtual address. It then copies the target page to RNIC’s MR
and issues the corresponding RDMA request to the mem-
ory node. Since all operations for memory disaggregation is
managed under kswapd, it is easy-to-adopt and transparent
to all user applications. However, page-based systems suffer
from performance degradation due to the overhead of page
fault handling, I/O amplifications, and context switching when
there are excessive requests for the remote memory [16].

Note that there are several studies that migrate locally
cached data in a finer granular manner [4–7] or reduce the
page fault overhead by offloading memory management (in-
cluding page cache coherence) to the network [8] or memory
nodes [9,10]. However, all these approaches use RDMA (or a
similar network protocol), which is essential to cache the data
and pay the cost of memory operations for network handling.

2.3 KVS: Object-based Memory Pool

In contrast, object-based memory disaggregation systems
[11–16] directly intervene in RDMA data transfers using their
own database such as key-value store (KVS). Object-based
systems create two MRs for both host and memory node sides,
each dealing with buffer data and submission/completion
queues (SQ/CQ). Generally, they employ a KV hash-table
whose entries point to corresponding (remote) memory ob-
jects. Whenever there is a request of Put (or Get) from an
application, the systems place the corresponding value into
the host’s buffer MR and submit it by writing the remote
side of SQ MR over RDMA. Since the memory node keeps
polling SQ MR, it can recognize the request. The memory
node then reads the host’s buffer MR, copies the value to
its buffer MR over RDMA, and completes the request by
writing the host’s CQ MR. As it does not lean on virtual mem-
ory systems, object-based systems can address the overhead
imposed by page swap. However, the performance of object-
based systems varies based on the semantics of applications
compared to page-based systems; kswapd fully utilizes local
page caches, but KVS does not for remote accesses. In addi-
tion, this approach is unfortunately limited because it requires
significant source-level modifications for legacy applications.

3 Direct Accessible Memory Aggregation

While caching pages and network-based data exchange are
essential in the current technologies, they can unfortunately
significantly deteriorate the performance of memory disaggre-
gation. DIRECTCXL instead directly connects remote mem-
ory resources to the host’s computing complex and allows
users to access them through sheer load/store instructions.

288 2022 USENIX Annual Technical Conference USENIX Association

��������

�	�

��	

�
�
��
�� �
�����

��

���������� ��� ����

����
��� �����	
��

�
�
��
��

��
��

�������
�� �������
��
��
�������
��

��

���

��
��

��

���

��
��

�
	

��
�
��
�
�

�
��
�
�
�
�

����� �����

�
�

�����

���
�
��

�
�

�����
�

�

�

�

��

���

��
���
����

�
�
��
��
�
�
	

�
�

�
�
��

���	�

�

����

�����
�����

�
�
�	

�
��
�
�

��

� ��!���

���������	
��

��������

����	
��

�������

�������

�����
�������

��
�

��

��"��	������

����������	��
��

���	
��

�

�������
���������	�

��������
	
���

��������
��� �

�
��
���

�����
	�#�

�����
	�#�

�
��

��$������

�
�
�
�
�

%!!
��&
�'�

���������	
�

�
	

�
�
�
��
�

����

%!!
��

����

��	���� ��	"�����

��������������

� �

�

�
�
�
��
�
�
�
�
	

�

�
�
�

�
�
�

��
��
�
�	
��

�
��
������������

�

Figure 2: DIRECTCXL’s connection method. (a) CXL virtual hierarchy. (b) CXL switch.
Figure 3: DIRECTCXL’s network and switch.

Figure 4: DIRECTCXL software
runtime.

3.1 Connecting Host and Memory over CXL
CXL devices and controllers. In practice, existing memory
disaggregation techniques still require computing resources
at the remote memory node side. This is because all DRAM
modules and their interfaces are designed as passive peripher-
als, which require the control computing resources. CXL.mem
in contrast allows the host computing resources directly ac-
cess the underlying memory through PCIe buses (FlexBus); it
works similar to local DRAM, connected to their system buses.
Thus, we design and implement CXL devices as pure passive
modules, each being able to have many DRAM DIMMs with
its own hardware controllers. Our CXL device employs mul-
tiple DRAM controllers, connecting DRAM DIMMs over the
conventional DDR interfaces. Its CXL controller then exposes
the internal DRAM modules to FlexBus through many PCIe
lanes. In the current architecture, the device’s CXL controller
parses incoming PCIe-based CXL packets, called CXL flits,
converts their information (address and length) to DRAM
requests, and serves them from the underlying DRAMs using
the DRAM controllers.
Integrating devices into system memory. Figure 2 shows
how CXL devices’ internal DRAMs are mapped (exposed)
to a host’s memory space over CXL. The host CPU’s sys-
tem bus contains one or more CXL root ports (RPs), which
connect one or more CXL devices as endpoint (EP) devices.
Our host-side kernel driver first enumerates CXL devices by
querying the size of their base address register (BAR) and
their internal memory, called host-managed device memory
(HDM), through PCIe transactions. Based on the retrieved
sizes, the kernel driver maps BAR and HDM in the host’s
reserved system memory space and lets the underlying CXL
devices know where their BAR and HDM (base addresses)
are mapped in the host’s system memory. When the host CPU
accesses an HDM system memory through load/store instruc-
tion, the request is delivered to the corresponding RP, and the
RP converts the requests to a CXL flit. Since HDM is mapped
to a different location of the system memory, the memory
address space of HDM is different from that of EP’s internal
DRAMs. Thus, the CXL controller translates the incoming ad-
dresses by simply deducting HDM’s base address from them
and issues the translated request to the underlying DRAM
controllers. The results are returned to the host via a CXL
switch and FlexBus. Note that, since HDM accesses have no
software intervention or memory data copies, DIRECTCXL
can expose the CXL device’s memory resources to the host
with low access latency.

Designing CXL network switch. Figure 3a illustrates how
DIRECTCXL can disaggregate memory resources from a host
using one or more and CXL devices, and Figure 3b shows
our CXL switch organization therein. The host’s CXL RP is
connected to upstream port (USP) of either a CXL switch
or the CXL device directly. The CXL switch’s downstream
port (DSP) also connects either another CXL switch’s USP or
the CXL device. Note that our CXL switch employs multiple
USPs and DSPs. By setting an internal routing table, our CXL
switch’s fabric manager (FM) reconfigures the switch’s cross-
bar to connect each USP to a different DSP, which creates a
virtual hierarchy from a root (host) to a terminal (CXL de-
vice). Since a CXL device can employ one or more controllers
and many DRAMs, it can also define multiple logical devices,
each exposing its own HDM to a host. Thus, different hosts
can be connected to a CXL switch and a CXL device. Note
that each CXL virtual hierarchy only offers the path from one
to another to ensure that no host is sharing an HDM.

3.2 Software Runtime for DirectCXL
In contrast to RDMA, once a virtual hierarchy is established
between a host and CXL device(s), applications running on
the host can directly access the CXL device by referring to
HDM’s memory space. However, it requires software run-
time/driver to manage the underlying CXL devices and ex-
pose their HDM in the application’s memory space. We thus
support DIRECTCXL runtime that simply splits the address
space of HDM into multiple segments, called cxl-namespace.
DIRECTCXL runtime then allows the applications to access
each CXL-namespace as memory-mapped files (mmap).

Figure 4 shows the software stack of our runtime and how
the application can use the disaggregated memory through
cxl-namespaces. When a CXL device is detected (at a PCIe
enumeration time), DIRECTCXL driver creates an entry de-
vice (e.g., /dev/directcxl) to allow users to manage a
cxl-namespace via ioctl. If users ask a cxl-namespace to
/dev/directcxl, the driver checks a (physically) contiguous
address space on an HDM by referring to its HDM segment
table whose entry includes a segment’s offset, size, and refer-
ence count (recording how many cxl-namespaces that indicate
this segment). Since multiple processes can access this table,
its header also keeps necessary information such as spinlock,
read/write locks, and a summary of table entries (e.g., valid
entry numbers). Once DIRECTCXL driver allocates a seg-
ment based on the user request, it creates a device for mmap
(e.g., /dev/cxl-ns0) and updates the segment table. The user

USENIX Association 2022 USENIX Annual Technical Conference 289

��������	�
����

����	�
�
�
�
��
�
��
	

������
�
���	�

��

����������������

�����
��	������

��������	�

����
����	�

��������

��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������

��	
��

��	
�

���

		�

	����

���
����
���

��	

�����

��������

(a) Network topology. (b) Implementation.
Figure 5: CXL-enabled cluster.

application can then map the cxl-namespace to its process
virtual memory space using mmap with vm_area_struct.

Note that DIRECTCXL software runtime is designed for
direct access of CXL devices, which is a similar concept to the
memory-mapped file management of persistent memory de-
velopment toolkit (PMDK [25]). However, it is much simpler
and more flexible for namespace management than PMDK.
For example, PMDK’s namespace is very much the same idea
as NVMe namespace, managed by file systems or DAX with
a fixed size [26]. In contrast, our cxl-namespace is more sim-
ilar to the conventional memory segment, which is directly
exposed to the application without a file system employment.

3.3 Prototype Implementation
Figure 5a illustrates our design of a CXL network topology
to disaggregate memory resources, and the corresponding im-
plementation in a real system is shown in Figure 5b. There
are n numbers of compute hosts connected to m number of
CXL devices through a CXL switch; in our prototype, n and
m are four, but those numbers can scale by having more CXL
switches. Specifically, each CXL device prototype is built on
our customized add-in-card (AIC) CXL memory blade that
employs 16nm FPGA and 8 different DDR4 DRAM modules
(64GB). In the FPGA, we fabricate a CXL controller and eight
DRAM controllers, each managing the CXL endpoint and
internal DRAM channels. As yet there is no processor archi-
tecture supporting CXL, we also build our own in-house host
processor using RISC-V ISAs, which employs four out-of-
order cores whose last-level cache (LLC) implements CXL RP.
Each CXL-enabled host processor is implemented in a high-
performance datacenter accelerator card, taking a role of a
host, which can individually run Linux 5.13 and DIRECTCXL
software runtime. We expose four CXL devices (32 DRAM
modules) to the four hosts through our PCIe backplane. We
extended the backplane with one more accelerator card that
implements DIRECTCXL’s CXL switch. This switch imple-
ments FM that can create multiple virtual hierarchies, each
connecting a host and a CXL device in a flexible manner.

To the best of our knowledge, there are no commercialized
CXL 2.0 IPs for the processor side’s CXL engines and CXL
switch. Thus, we built all DIRECTCXL IPs from the ground.
The host-side processors require advanced configuration and
power interface (ACPI [27]) for CXL 2.0 enumeration (e.g.,
RP location and RP’s reserved address space). Since RISC-V
does not support ACPI yet, we enable the CXL enumeration
by adding such information into the device tree [28]. Specifi-
cally, we update an MMIO register designated as a property of

the tree’s node to let the processor know where CXL RP exists.
On the other hand, we add a new field (cxl-reserved-area)
in the node to indicate where an HDM can be mapped. Our
in-house softcore processors work at 100MHz while CXL
and PCIe IPs (RP, EP, and Switch) operate at 250MHz.

4 Evaluation

Testbed prototypes for memory disaggregation. In addition
to the CXL environment that we implemented in Section 3.3
(DirectCXL), we set up the same configuration with it for our
RDMA-enabled hardware system (RDMA). For RDMA, we use
Mellanox ConnectX-3 VPI InfiniBand RNIC (56Gbps, [29])
instead of our CXL switch as RDMA network interface card
(RNIC). In addition, we port Mellanox OpenFabric Enterprise
Distribution (OFED) v4.9 [30] as an RDMA driver to enable
RNIC in our evaluation testbed. Lastly, we port FastSwap [1]
and HERD [12] into RISC-V Linux 5.13.19 computing envi-
ronment atop RDMA, each realizing page-based disaggregation
(Swap) and object-based disaggregation (KVS).

For better comparison, we also configure the host proces-
sors to use only their local DRAM (Local) by disabling all
the CXL memory nodes. Note that we used the same testbed
hardware mentioned above for both CXL experiments and
non-CXL experiments but differently configured the testbed
for each reference. For example, our testbed’s FPGA chips
for the host (in-house) processors and CXL devices use all
the same architecture/technology and product line-up.
Benchmark and workloads. Since there is no microbench-
mark that we can compare different memory pooling tech-
nologies (RDMA vs. DirectCXL), we also build an in-house
memory benchmark for in-depth analysis of those two tech-
nologies (Section 4.1). For RDMA, this benchmark allocates a
large size of the memory pool at the remote side in advance.
This benchmark allows a host processor to send random mem-
ory requests to a remote node with varying lengths; the re-
mote node serves the requests using the pre-allocated memory
pool. For DirectCXL and Local, the benchmark maps cxl
namespace or anonymous mmap to user spaces, respectively.
The benchmark then generates a group of RISC-V memory
instructions, which can cover a given address length in a
random pattern and directly issues them without software
intervention. For the real workloads, we use Facebook’s deep
learning recommendation model (DLRM [31]), an in-memory
database used for the HERD evaluation (MemDB [12]), and
four graph analysis workloads (MIS [32], BFS [33], CC [34],
and BC [35]) coming from Ligra [36]. All their tables and data
structures are stored in the remote node, while each host’s lo-
cal memory handles the execution code and static data. Table
1 summarizes the per-node memory usage and total data sizes
for each workload that we tested.

4.1 In-depth Analysis of RDMA and CXL
In this subsection, we compare the performance of RDMA
and CXL technologies when the host and memory nodes are

290 2022 USENIX Annual Technical Conference USENIX Association

1K 4K
16K

64K
256K 1M 4M

16M
64M

256M 1G
1

10
100

1k
10k

0 300 2400 2700
Latency (cycles)

PCIe Memory
Network CPU cache

RDMA

Dire
ct

CXL

DMA

x8.3 faster

DMA

6412
8

25
6

51
2

1K 2K 4K

0
4k
8k

12k
16k

B
re

a
k
d

o
w

n
(c

y
c
le

s
)

Payload (bytes)

L
ib

ra
ry

C

o
p

y

M
e

m
o

ry

N
e

tw
o

rk

6412
8

25
6

51
2

1K 2K 4K

0

1k

2k

B
re

a
k
d

o
w

n
(c

y
c
le

s
)

Payload (bytes)

M
e

m
o

ry
P

C
Ie

C

P
U

 C
a

c
h

e

L
a

te
n

c
y
 (

c
y
c
le

s
)

Working set size

L
o

c
a

l
R

D
M

A

D
ire

c
tC

X
L

L1D (4)
L2 (24)

Local (60)

CXL (328)

RDMA (2027~2042 cycles)

x5.5
x510.5

x34

Figure 6: RDMA vs. CXL.
(a) RDMA breakdown. (b) CXL breakdown.

Figure 7: Sensitivity tests. Figure 8: Memory hierarchy performance.

configured through a 1:1 connection. Figure 6 shows latency
breakdown of RDMA and DirectCXL when reading 64 bytes of
data. One can observe from the figure that RDMA requires two
DMA operations, which doubles the PCIe transfer and mem-
ory access latency. In addition, the communication overhead
of InfiniBand (Network) takes 78.7% (2129 cycles) of the
total latency (2705 cycles). In contrast, DirectCXL only takes
328 cycles for memory load request, which is 8.3× faster than
RDMA. There are two reasons behind this performance differ-
ence. First, DirectCXL straight connects the compute nodes
and memory nodes using PCIe while RDMA requires proto-
col/interface changes between InfiniBand and PCIe. Second,
DirectCXL can translate memory load/store request from
LLC into the CXL flits whereas RDMA must use DMA to
read/write data from/to memory.
Sensitivity tests. Figure 7a decomposes RDMA latency into es-
sential hardware (Memory and Network), software (Library),
and data transfer latencies (Copy). In this evaluation, we in-
strument two user-level InfiniBand libraries, libibverbs and
libmlx4 to measure the software side latency. Library is
the primary performance bottleneck in RDMA when the size of
payloads is smaller than 1KB (4158 cycles, on average). As
the payloads increase, Copy gets longer and reaches 28.9% of
total execution time. This is because users must copy all their
data into RNIC’s MR, which takes extra overhead in RDMA. On
the other hand, Memory and Network shows a performance
trend similar to RDMA analyzed in Figure 6. Note that the actual
times of Network (Figure 7a) do not decrease as the payload
increases; while Memory increases to handle large size of data,
RNIC can simultaneously transmit the data to the underlying
network. These overlapped cycles are counted by Memory in
our analysis. As shown in Figure 7b, the breakdown analysis
for DirectCXL shows a completely different story; there is
neither software nor data copy overhead. As the payloads
increase, the dominant component of DirectCXL’s latency is
LLC (CPU Cache). This is because LLC can handle 16 con-
current misses through miss status holding registers (MSHR)
in our custom CPU. Thus, many memory requests (64B) com-
posing a large payload data can be stalled at CPU, which
takes 67% of the total latency to handle 4KB payloads. PCIe
shown in Figure 7a does not decrease as the payloads increase
because of a similar reason of RDMA’s Network. However, it

Per-node usage Total
usage

Data stored in
remote memoryLocal Remote

DLRM [31] Less than
100MB

17GB 68GB Embedding tables.
MemDB [12] 4GB 16GB Key-value pairs and tree structure.
Ligra [36] 7GB 28GB Deserialized graph structure.

Table 1: Memory usage characteristic of each workload.

is not as much as what Network did as only 16 concurrent
misses can be overlapped. ote that PCIe shown in Figures 6
and 7b includes the latency of CXL IPs (RP, EP, and Switch),
which is different from the pure cycles of PCIe physical bus.
The pure cycles of PCIe physical bus (FlexBus) account for
28% of DirectCXL latency. The detailed latency decomposi-
tion will be analyzed in Section 4.2.
Memory hierarchy performance. Figure 8 shows latency
cycles of different components in the system’s memory hier-
archy. While Local and DirectCXL exhibits CPU cache by
lowering the memory access latency to 4 cycles, RDMA has neg-
ligible impacts on CPU cache as their network overhead is
much higher than that of Local. The best-case performance of
RDMA was 2027 cycles, which is 6.2× and 510.5× slower than
that of DirectCXL and L1 cache, respectively. DirectCXL
requires 328 cycles whereas Local requires only 60 cycles in
the case of L2 misses. Note that the performance bottleneck
of DirectCXL is PCIe including CXL IPs (77.8% of the total
latency). This can be accelerated by increasing the working
frequency, which will be discussed shortly.

4.2 Latency Distribution and Scaling Study
Latency distribution. In addition to the latency trend (av-
erage) we reported above, we also analyze complete latency
behaviors of Local, RDMA, and DirectCXL. Figure 9 shows
the latency CDF of memory accesses (64B) for the different
pooling methods. RDMA shows the performance curve, which
ranges from 1790 cycles to 4006 cycles. The reason why there
is a difference between the minimum and maximum latency
of RDMA is RNIC’s MTT memory buffer and CPU caches for
data transfers. While RDMA cannot take the benefits from di-
rect load/store instruction with CPU caches, its data transfers
themselves utilize CPU caches. Nevertheless, RDMA cannot
avoid the network accesses for remote memory accesses, mak-
ing its latency worse than Local by 36.8×, on average. In
contrast, the latency behaviors of DirectCXL are similar to
Local. Even though the latency of DirectCXL (reported in
Figures 6 and 7b) is the average value, its best performance
is the same as Local (4∼24 cycles). This is because, as we
showed in the previous section, DirectCXL can take the ben-
efits of CPU caches directly. The tail latency is 2.8× worse
than Local, but its latency curve is similar to that of Local.
This is because both DirectCXL and Local use the same
DRAM (and there is no network access overhead).
Speed scaling estimation. The cycle numbers that we re-
ported here are measured at each host’s CPU using register-
level instrumentation. We believe it is sufficient and better

USENIX Association 2022 USENIX Annual Technical Conference 291

0
200

1800
2000

2200

0
25
50
75

100

C
D

F
 (

%
)

Latency (cycles)

L
o

c
a

l
R

D
M

A

D
ire

c
tC

X
L

 L1D
L2

Local

CXL

4006

Figure 9: Memory-level
latency CDF (64B).

Measurement
clock domain →

DIRECTCXL PCIe 5.0 x8 (Estimated)

CPU (100MHz) CPU (1.2GHz) Time delay

L1/L2 cache 30 30 25 ns
CXL IPs (2.0)* 165 287 239 ns

PCIe FlexBus 91 69 57 ns
DRAM controller 42 126 105 ns

Total 328 512 426 ns
*Including RP, EP, and Switch Unit: cycles

Table 2: Latency breakdown and
estimated 64B load latency.

DLRM

MemDB
0.0

0.5

1.0

N
o

rm
.

E
x
e

c
.

T
im

e Swap KVS DirectCXL

M
IS

B
F

S
C

C
B

C

0.0

0.5

1.0

S
w

a
p

K
V

S
C

X
L0.0

0.5

1.0

N
o

rm
.

E
x
e

c
.

T
im

e

RDMA Software Workload

DLRM

S
w

a
p

K
V

S
C

X
L

Mem
DB

S
w

a
p

C
X

L

MIS

S
w

a
p

C
X

L

BFS

S
w

a
p

C
X

L

CC

S
w

a
p

C
X

L

BC

(a) Execution Time. (b) Execution breakdown.
Figure 10: Real workload performance.

than a cross-time-domain analysis to decompose the system
latency. Nevertheless, we estimate a time delay in cases where
the target system accelerates the frequency of its processor
complex and CXL IPs (RP, EP, and Switch) by 1.2GHz and
1GHz, respectively. Table 2 decomposes DirectCXL’s latency
of a 64B memory load and compares it with the estimated time
delay. The cycle counts of L1/L2 cache misses are not differ-
ent as they work in all the same clock domain of CPU. While
other components (FlexBus, CXL IPs, and DRAM controller)
speed up by 4× (250MHz → 1GHz), the number of cycles
increases since CPU gets faster by 12×. Note that, as the
version of PCIe is changed and the number of lanes for PCIe
increases by double, FlexBus’s cycles decrease. The table in-
cludes the time delays corresponding to the estimated system
from the CPU’s viewpoint. While the time delay of FlexBus is
pretty good (∼60ns), the corresponding CXL IPs have room
to improve further with a higher working frequency.

4.3 Performance of Real Workloads

Figure 10a shows the execution latency of Swap, KVS, and
DirectCXL when running DLRM, MemDB, and four work-
loads from Ligra. For better understanding, all the results in
this subsection are normalized to those of Swap. For Ligra, we
only compare DirectCXL with Swap because Ligra’s graph
processing engines (handling in-/out-edges and vertices) is
not compatible with a key-value structure. KVS can reduce the
latency of Swap as it addresses the overhead imposed by page-
based I/O granularity to access the remote memory. However,
it has two major issues behind KVS. First, it requires signif-
icant modification of the application’s source codes, which
is often unable to service (e.g., MIS, BFS, CC, BC). Sec-
ond, KVS requires heavy computation such as hashing at the
memory node, which increases monetary costs. In contrast,
DirectCXL without having a source modification and remote-
side resource exhibits 3× and 2.2× better performance than
Swap and even KVS, respectively.

To better understand this performance improvement of
DirectCXL, we also decompose the execution times into
RDMA, network library intervention (Software), and appli-
cation execution itself (Workload) latencies, and the results
are shown in Figure 10b. This figure demonstrates where
Swap degrades the overall performance from its execution;
51.8% of the execution time is consumed by kernel swap
daemon (kswapd) and FastSwap driver, on average. This is
because Swap just expands memory with the local and remote
based on LRU, which makes its page exchange frequent. The

reason why KVS shows performance better than Swap in the
cases of DLRM and MemDB is mainly related to workload
characteristics and its service optimization. For DLRM, KVS
loads the exact size of embeddings rather than a page, which
reduces Swap’s data transfer overhead as high as 6.9×. While
KVS shows the low overhead in our evaluation, RDMA and
Software can linearly increase as the number of inferences
increases; in our case, we only used 13.5MB (0.0008%) of
embeddings for single inference. For MemDB, as KVS stores
all key-value pairs into local DRAM, it only accesses remote-
side DRAM to inquiry values. However, it spends 55.3% and
24.9% of the execution time for RDMA and Software to han-
dle the remote DRAMs, respectively. In contrast, DirectCXL
removes such hardware and software overhead, which ex-
hibits much better performance than Swap and KVS. Note that
MemDB contains 2M key-value pairs whose value size is
2KB, and its host queries 8M Get requests by randomly gen-
erating their keys. This workload characteristic roughly makes
DirectCXL’s memory accesses be faced with a cache miss
for every four queries. Note that Workload of DirectCXL is
longer than that of KVS, because DirectCXL places all hash
table and tree for key-value pairs whereas KVS has it in local
DRAM. Lastly, all the four graph workloads show similar
trends; Swap is always slower than DirectCXL. They require
multiple graph traverses, which frequently generate random
memory access patterns. As Swap requires exchanging 4KB
pages to read 8B pointers for graph traversing, it shows 2.2×
worse performance than DirectCXL.

5 Conclusion
In this paper, we propose DIRECTCXL that connects host
processor complex and remote memory resources over CXL’s
memory protocol (CXL.mem). The results of our real system
evaluation show that the disaggregated memory resources
of DIRECTCXL can exhibit DRAM-like performance when
the workload can enjoy the host-processor’s cache. For real-
world applications, it exhibits 3× better performance than
RDMA-based memory disaggregation, on average.

6 Future Work and Acknowledgement
The authors are extending the kernel for efficient CXL mem-
ory management and consider having an SoC silicon as fu-
ture work of DirectCXL. This work is protected by one or
more patents. The authors would like to thank the anonymous
reviewers for their comments, and Myoungsoo Jung is the
corresponding author (mj@camelab.org).

292 2022 USENIX Annual Technical Conference USENIX Association

mailto:mj@camelab.org

References

[1] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K Aguilera, Aurojit
Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems,
pages 1–16, 2020.

[2] Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun
Bae, and Yanzhao Wu. Memory disaggregation: Re-
search problems and opportunities. In 2019 IEEE 39th
International Conference on Distributed Computing Sys-
tems (ICDCS), pages 1664–1673. IEEE, 2019.

[3] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F Wenisch. System-level implications of
disaggregated memory. In IEEE International Sympo-
sium on High-Performance Comp Architecture, pages
1–12. IEEE, 2012.

[4] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G Shin. Efficient memory dis-
aggregation with infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 649–667, 2017.

[5] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, et al. Remote regions: a simple abstraction for
remote memory. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 775–787, 2018.

[6] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D Bond, Ravi Netravali,
Miryung Kim, and Guoqing Harry Xu. Semeru: A
memory-disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 261–280, 2020.

[7] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti,
Panos Koutsovasilis, Andrea Reale, Kostas Katrinis,
and H Peter Hofstee. Thymesisflow: a software-
defined, hw/sw co-designed interconnect stack for rack-
scale memory disaggregation. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 868–880. IEEE, 2020.

[8] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
Mind: In-network memory management for disaggre-
gated data centers. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
488–504, 2021.

[9] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In Proceedings
of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 417–433, 2022.

[10] Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 79–92, 2021.

[11] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 33–48, 2020.

[12] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
pages 295–306, 2014.

[13] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the
25th symposium on operating systems principles, pages
54–70, 2015.

[15] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
Latency-tolerant software distributed shared memory. In
2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 291–305, 2015.

[16] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguil-
era, and Adam Belay. Aifm: High-performance,
application-integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 315–332, 2020.

[17] Gen-Z Consortium. Gen-Z Final Specifications. https:
//genzconsortium.org/specifications/.

[18] CXL Consortium. Compute Express Link Specification
Revision 2.0. https://www.computeexpresslink.
org/download-the-specification.

USENIX Association 2022 USENIX Annual Technical Conference 293

https://genzconsortium.org/specifications/
https://genzconsortium.org/specifications/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification

[19] CXL Consortium. Compute Express
Link™ 2.0 White Paper. https://www.
computeexpresslink.org/_files/ugd/0c1418_
14c5283e7f3e40f9b2955c7d0f60bebe.pdf.

[20] Navin Shenoy. A Milestone in Moving Data. https:
//newsroom.intel.com/editorials/milestone-
moving-data.

[21] Debendra Das Sharma. CXL: Coherency, Memory,
and I/O Semantics on PCIe Infrastructure. https:
//www.electronicdesign.com/technologies/
embedded-revolution/article/21162617/cxl-
coherency-memory-and-io-semantics-on-pcie-
infrastructure.

[22] Patrick Kennedy. Compute Express Link
or CXL What it is and Examples. https:
//www.servethehome.com/compute-express-
link-or-cxl-what-it-is-and-examples/.

[23] Hari Subramoni, Ping Lai, Miao Luo, and Dha-
baleswar K Panda. Rdma over ethernet—a preliminary
study. In 2009 IEEE International Conference on Clus-
ter Computing and Workshops, pages 1–9. IEEE, 2009.

[24] Philip Werner Frey and Gustavo Alonso. Minimizing the
hidden cost of rdma. In 2009 29th IEEE International
Conference on Distributed Computing Systems, pages
553–560. IEEE, 2009.

[25] Intel. Persistent Memory Developer Kit Version v1.11.0.
https://pmem.io/.

[26] Intel. NVDIMM Namespace Specification.
https://pmem.io/documents/NVDIMM_Namespace_
Spec.pdf.

[27] UEFI Forum, Inc. Advanced Configuration and Power
Interface (ACPI) Specification Version 6.4. https://
uefi.org/specs/ACPI/6.4/, 2021.

[28] Linaro. The devicetree specification. https://www.
devicetree.org/.

[29] Mellanox. Mellanox ConnectX-3 FDR (56Gbps) Infini-
Band VPI. https://www.mellanox.com/related-
docs/prod_adapter_cards/PB_ConnectX3_VPI_
Card_Dell.pdf.

[30] Xilinx. Mellanox OpenFabrics Enterprise Distri-
bution. https://www.mellanox.com/products/
infiniband-drivers/linux/mlnx_ofed.

[31] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey
Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vi-
jay Rao, Bill Jia, Liang Xiong, and Misha Smelyan-
skiy. Deep learning recommendation model for per-
sonalization and recommendation systems. CoRR,
abs/1906.00091, 2019.

[32] Michael Luby. A simple parallel algorithm for the max-
imal independent set problem. SIAM journal on com-
puting, 15(4):1036–1053, 1986.

[33] Alan Bundy and Lincoln Wallen. Breadth-first search.
In Catalogue of artificial intelligence tools, pages 13–13.
Springer, 1984.

[34] Fan Chung and Linyuan Lu. Connected components in
random graphs with given expected degree sequences.
Annals of combinatorics, 6(2):125–145, 2002.

[35] Ulrik Brandes. A faster algorithm for betweenness cen-
trality. Journal of mathematical sociology, 25(2):163–
177, 2001.

[36] Julian Shun and Guy E Blelloch. Ligra: a lightweight
graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
135–146, 2013.

294 2022 USENIX Annual Technical Conference USENIX Association

https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://newsroom.intel.com/editorials/milestone-moving-data
https://newsroom.intel.com/editorials/milestone-moving-data
https://newsroom.intel.com/editorials/milestone-moving-data
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.servethehome.com/compute-express-link-or-cxl-what-it-is-and-examples/
https://www.servethehome.com/compute-express-link-or-cxl-what-it-is-and-examples/
https://www.servethehome.com/compute-express-link-or-cxl-what-it-is-and-examples/
https://pmem.io/
https://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
https://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
https://uefi.org/specs/ACPI/6.4/
https://uefi.org/specs/ACPI/6.4/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX3_VPI_Card_Dell.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX3_VPI_Card_Dell.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX3_VPI_Card_Dell.pdf
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed

	Introduction
	Memory Disaggregation and Related Work
	Remote Direct Memory Access
	Swap: Page-based Memory Pool
	KVS: Object-based Memory Pool

	Direct Accessible Memory Aggregation
	Connecting Host and Memory over CXL
	Software Runtime for DirectCXL
	Prototype Implementation

	Evaluation
	In-depth Analysis of RDMA and CXL
	Latency Distribution and Scaling Study
	Performance of Real Workloads

	Conclusion
	Future Work and Acknowledgement

