
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Campo: Cost-Aware Performance Optimization for
Mixed-Precision Neural Network Training

Xin He, CSEE, Hunan University & Xidian University; Jianhua Sun and Hao Chen,
CSEE, Hunan University; Dong Li, University of California, Merced

https://www.usenix.org/conference/atc22/presentation/he

Campo: Cost-Aware Performance Optimization for Mixed-Precision Neural
Network Training

Xin He
CSEE, Hunan University & Xidian University

Jianhua Sun
CSEE, Hunan University

Hao Chen
CSEE, Hunan University

Dong Li
University of California, Merced

Abstract
Mixed precision training uses a mixture of full and lower
precisions for neural network (NN) training. Applying mixed
precision must cast tensors in NN from float32 (FP32) to
float16 (FP16) or vice versa. The existing strategy greedily
applies FP16 to performance-critical operations without quan-
tifying and considering the casting cost. However, we reveal
that the casting cost can take more than 21% of NN operation
execution time, and in some cases surpasses the performance
benefit of using low precision. In this paper, we introduce
Campo, a tool that improves performance of mixed-precision
NN training with the awareness of casting costs. Campo is
built upon performance modeling that predicts the casting
cost and operation performance with low precision, and in-
troduces a cost-aware graph rewriting strategy. Campo is
user-transparent, and enables high performance NN training
using mixed precision without training accuracy loss. Evalu-
ating Campo with six NN models, we show that compared to
TensorFlow using TF_AMP (a state-of-the-art performance
optimizer for mixed precision training from Nvidia), Campo
improves training throughput by 20.8% on average (up to
24.5%) on RTX 2080 Ti GPU and by 20.9% on average
(up to 23.4%) on V100 GPU, without training accuracy loss.
Because of using the cost-aware mixed precision training,
Campo also improves energy efficiency by 21.4% on average
(up to 24.2%), compared to TensorFlow using TF_AMP.

1 Introduction

Training Neural network (NN) can be resource-demanding: it
consumes many compute cycles and requires high memory
bandwidth and capacity. One promising approach to lower
the resource requirements is to use mixed precision train-
ing [1]. Mixed precision is a computational method using
a mixture of full and lower precisions. Mixed precision can
deliver significant computational speedup by executing oper-
ations in a lower precision format as much as possible, while
storing critical information in the full-precision format to pre-
serve task-specific accuracy. The mixed precision training

has shown significant speedup over the single (full) precision
training on a variety of NN [2–4], especially with tensor cores
(TC) available on some GPU architectures.

In NN training frameworks like TensorFlow and PyTorch,
the mixed precision training is implemented via a graph
rewrite process [5]. This process casts tensors referenced
in certain operations in NN from float32 (FP32) to float16
(FP16), or vice versa. This process adopts a greedy strategy
that applies FP16 execution to performance-critical opera-
tions, most of which are matrix multiplication and convolu-
tion, based on an implicit assumption that using low precision
always leads to performance improvement, and hence the
casting cost can be always justified.

However, our detailed performance analysis reveals that the
above common assumption is not true. We observe that the
casting cost can take more than 21% of operation execution
time, depending on the input tensor size of the operation
using mixed precision. In some cases (e.g., the operation
MatMul with an input data size of (64, 1001, 1001, 2048)),
the casting cost surpasses the performance benefit of using
low precision. As a result, using mixed precision training
(even with TC) may not be performance-beneficial and even
leads to performance loss (22.7% in the example of MatMul).
Hence, the casting cost must be considered and quantified
when deciding precision for operations.

Deciding whether using low precision for an operation is
performance-beneficial is challenging, because the operation
time and casting cost are affected by input data size, whether
TC is used, and performance characterization of operation
(e.g., memory access pattern and compute intensity). Also,
using low precision should not impact NN model accuracy.
Hence, making the decision of using low precision is a multi-
dimensional problem.

In this paper, we introduce a cost-aware performance opti-
mization tool, named Campo, aiming to improve performance
of mixed-precision NN training with the awareness of casting
costs. Campo assigns the low or full computation precision
to each operation in NN to maximize performance while pre-
serving the NN model accuracy. Campo is built upon perfor-

USENIX Association 2022 USENIX Annual Technical Conference 505

mance modeling that predicts the casting cost and operation
performance with low precision. The performance modeling
is operation-specific and captures events (such as L2 cache
misses and global loads/stores on GPU) critical to the per-
formance of low precision and collected through dynamic
profiling in full precision. Using dynamic profiling, the per-
formance modeling is also able to capture the impact of input
data size on performance.

Leveraging the performance modeling, Campo introduces
a cost-aware graph rewriting strategy. This strategy avoids
applying low precision to those operations that cannot get
performance benefit, and minimizes the casting cost when
applying low precision to a group of operations. Furthermore,
Campo does not impact NN model accuracy, because it only
applies low precision to those operations identified as nu-
merical safe by the traditional algorithm for low precision
assignment. In addition, some operations can benefit from
low precision but cannot run on TC because their input data
sizes cannot meet the requirement of TC. For those operations,
Campo pads the input tensors without programmer participa-
tion to maximize the utilization of TC for high performance.

We summarize major contributions as follows.
• We conduct a comprehensive performance characterization

on operations in NN training and quantify casting costs.
In contrast to the traditional methods that decide precision
assignment without considering the casting cost, we reveal
that the casting cost can outweigh the performance benefit
of using low precision. This observation is unprecedented.

• We develop novel and practical performance modeling to
predict casting cost and the performance of operations in
low precision.

• We propose Campo, a performance optimization tool that
enables high-performance mixed precision training without
losing training accuracy. Campo uses a graph traverse al-
gorithm and performance modeling to assign low or high
precision to each operation.

• We implement Campo within TensorFlow, and evaluate
it with six NN models on Nvidia GeForce RTX 2080 Ti
and V100 GPUs. Our evaluation shows that compared to
TensorFlow using TF_AMP (a state-of-the-art performance
optimizer for mixed precision training from Nvidia), Campo
improves training throughput by 20.8% on average (up to
24.5%) on RTX 2080 Ti and by 20.9% on average (up
to 23.4%) on V100, without losing training accuracy. Be-
cause of using cost-aware mixed precision training, Campo
improves energy efficiency by 21.4% on average (up to
24.2%), compared with TensorFlow using TF_AMP.

2 Background

2.1 Mixed Precision Training
A dominant programming paradigm, commonly adopted by
machine learning frameworks such as TensorFlow and Py-

 onent Online Component

 mance

 mance

 ations

Per-node Precision
Decision

Insertion of Cast Nodes

Input Transformation

FP32 Model Graph
Profiling

Graph Rewriting

Start of Training Steps

Online Prediction

 lysis

Mixed Precision
Graph Optimizer

Automatic Loss-
scale Optimizer

FP32
Model

FP16
Capable
Model

Model with
the Same
Accuracy

Figure 1: The workflow of mixed precision training.

Torch, is to represent an NN model as a static dataflow graph,
where computation functions (e.g., Conv2D, and MatMul) in
the NN model are associated with nodes in the graph, and
input and output tensors of the computation map to edges.
The architecture of the NN model (i.e., the dataflow graph) is
defined using symbolic expressions by the programmer; The
common computation functions are defined as operations by
the machine learning framework.

The mixed precision training makes precision assignment
decisions per node. Some nodes (i.e., operations) in the
dataflow graph use full precision (i.e., FP32), and those nodes
are essential to maintain training accuracy. Other nodes use
lower precision, which is useful to save memory capacity and
bandwidth and enable faster math operations (especially on
GPUs with TC support). As a result, the mixed precision train-
ing can harvest the best of both worlds: maintaining training
accuracy and having fast execution.

In TensorFlow and PyTorch, only FP16 is considered as
lower precision for the mixed precision training because of
FP16’s commonality in various GPU architectures, although
some GPU architectures (such as Turing and Amphere) sup-
port other lower precisions, such as INT8 and INT4. Like
TensorFlow and PyTorch, we only consider FP16 as lower
precision in this paper, because of FP16’s commonality.

Figure 1 depicts the workflow of using the mixed precision
training in TensorFlow and PyTorch. In general, it includes
two steps: (1) identifying which nodes should be changed
to FP16 and inserting casts between FP32 nodes and FP16
nodes by a mixed precision graph optimizer, and (2) adding
loss scaling to preserve small gradient values by an automatic
loss-scale optimizer. We focus on (1) in this paper.

The mixed precision graph optimizer decides the assign-
ment of low precision to operations by classifying operations
into multiple lists based on operation’s numerical safety. The
numerical safety refers to how an NN model’s quality is af-
fected by the use of low precision. An operation is numerical
unsafe, if using low precision during the operation execution
leads to worse training accuracy, compared with using FP32.
In TensorFlow, there are four lists, discussed as followed.

• Allowlist: operations (e.g., MatMul and Conv2D) in this list
are considered numerically-safe for execution in FP16, and
also performance-critical. These operations are always con-
verted to use FP16.

• Denylist: operations (e.g., Exp and SoftMax) in this list
are considered numerically-dangerous in FP16 and their
effects may also be observed in a downstream operation
node. For example, using FP16 in the operation sequence
of Exp ->Add, the Add is unsafe due to the unsafe Exp.

506 2022 USENIX Annual Technical Conference USENIX Association

Add
FP32

Cast
FP32 to FP16

MatMul
FP16

BiasAdd
FP16

BatchNorm
FP32

Cast
FP32 to FP16

Cast
FP16 to FP32

SoftMax
FP32

64×1024 64×1024

1024×4096 1024×4096

64×4096 64×4096

Add
FP32

Cast
FP32 to FP16

MatMul
FP16

BiasAdd
FP16

BatchNorm
FP32

Cast
FP32 to FP16

Cast
FP16 to FP32

SoftMax
FP32

(64, 1024) (64, 1024)

(1024, 4096) (1024, 4096)

(64, 4096) (64, 4096)

FP32 Model Graph

Mixed-precision
Model Graph

Operation Nodes
(FP32)

Operation Nodes
(FP32 / FP16)

Casting-aware
Graph Rewriting

Performance
Models Tradeoff

Analysis

Mixed-precision Graph Optimizer

Figure 2: A snippet of the dataflow graph from BERT using mixed precision. The tuple on each edge represents a tensor with its
shape (i.e., the size of each dimension).

• Inferlist: operations (e.g., BiasAdd) in this list are consid-
ered numerically-safe in FP16, which may be, however,
made unsafe by an upstream denylist operation.

• Clearlist: operations (e.g., Max and Min) in this list do not
have numerically-significant effects in the sense that they
can be executed either in FP16 or in FP32.

Compared with TensorFlow, PyTorch use three lists because
the operations in the clearlist and the inferlist are classified
into a single list.

Using the above lists, the mixed precision graph optimizer
uses low precision for an operation, if any of the following
three conditions is true: (1) The operation is in the allowlist;
(2) the operation is in the clearlist, and its immediate ances-
tor(s) and immediate descendent(s) are using low precision;
(3) the operation is in the inferlist and there is no upstream
denylist operation. The mixed precision graph optimization
works online by re-writing the dataflow graph via inserting
casts before the iterative training of NN model happens.

Figure 2 shows a mixed-precision graph snippet taken from
BERT [6] (a transformer-based model). To enable FP16 for
MatMul and BiasAdd while ensuring numerical safety, two
FP32-to-FP16 cast operation nodes and one FP16-to-FP32
cast operation node are inserted into the graph. Take the FP32-
to-FP16 cast operation node with the input data size (64, 1024)
as an example. The number of scalar elements in the input
data (tensor) is 65536 (i.e., 64×1024) in this example.

2.2 Tensor Core Acceleration
Since Volta architecture, Nvidia introduces specialized
hardware arithmetic units into its GPU products, called
Tensor Cores (TC). Compared to regular CUDA cores,
TC is more performant and energy-efficient. TC is used
to accelerate FP16 matrix multiplication and convolu-
tion operations. In TensorFlow, these operations refer to
MatMul, Conv2DBackpropFilter, Conv2DBackpropInput
and Conv2D, which are usually the most fundamental and
time-consuming operations in NN models.

TC is automatically activated to run an operation when two
conditions are met: (1) the operation is either matrix multipli-
cation or convolution using FP16, and (2) the input tensors
of the operation satisfy the shape requirements. For (2), TC
requires certain dimensions of the tensor to be a multiple of
8. If the condition (1) is met, we say the operation is a TC
candidate. Such an operation can run on regular CUDA cores

with low precision when the condition (2) is not met.
Besides the above discussion on the mixed precision train-

ing and TC, we target on those NN models whose dataflow
graphs are static, which indicates that the dataflow graph does
not change its structure across training samples and hence
each training step goes through the exactly same computa-
tion graph. This implies that once the training batch size is
determined, the input data size and shape (i.e., the size of
each dimension) of operations are known before the training
happens. Such NN models are very common and have been a
research target in many recent efforts [7–13].

3 Observation and Motivation

To motivate the design of Campo, we characterize the per-
formance of operations under full precision and low preci-
sion, and study the casting cost. Table 1 shows the perfor-
mance results for six operations. These operations can be
commonly found in NN models. The first four operations
in the table (MatMul, Conv2D, Conv2DBackpropFilter, and
Conv2DBackpropInput) are candidates to run on TC. These
four operations can easily account for most of the NN training
time. For example, in ResNet50, the four operations take more
than 90% of the total training time. The four operations fall
into the allowlist, and hence are always converted for FP16
execution. The last two operations in the table (i.e., BiasAdd
and MaxPool) fall into the inferlist and clearlist, respectively,
of which the numerical precision chosen for the operations
is usually context-dependent. We do not study the operations
in the denylist because they are always executed in FP32. Be-
sides the six operations in Table 1, we study other operations
in the three lists, but do not show them in Table 1 for brevity.

We develop two microbenchmarks for each operation to
run it with FP16 and FP32 respectively. The input data sizes
for each operation are collected from Resnet-50, Inception3
and DCGAN by dlprof [14]. Among those input data sizes,
some of them meet the TC requirement on tensor shape, and
hence the corresponding operations run on TC. In our study,
we use TensorFlow 1.15 and Nvidia RTX 2080 Ti GPU. We
run each operation with each input data size 100 times and
report the average result. In Table 1, “FP16 Exe. time” and
“FP32 Exe. time” do not include casting cost.

Overall, we study the impact of data precision, TC, casting
cost, and input data size on operation performance.

USENIX Association 2022 USENIX Annual Technical Conference 507

Table 1: Performance comparison of some of the representative operations in NN training.

NN Operations Input Data Size FP16 Exe. Time (ms) FP16+Cast Exe. Time (ms) FP32 Exe. Time (ms) Using TC

MatMul
(2048, 8, 8, 1024) 0.312 0.353 0.323 yes

(64, 1001, 1001, 2048) 0.412 0.524 0.427 no
(2048, 1024, 1024, 1024) 0.414 0.584 0.888 yes

Conv2D
(64, 35, 35, 48) 2.707 2.795 3.664 yes

(64, 147, 147, 32) 28.965 29.249 29.487 no
(64, 299, 299, 3) 57.879 58.944 60.098 no

Conv2DBackpropFilter
(64, 299, 299, 3) 8.690 9.773 10.246 no

(64, 149, 149, 32) 6.013 7.988 7.011 no
(64, 35, 35, 192) 0.786 0.948 0.871 yes

Conv2DBackpropInput
(64, 37, 37, 96) 3.954 4.049 6.943 yes

(64, 149, 149, 32) 15.561 16.828 15.696 no
(64, 35, 35, 192) 5.234 5.939 10.060 yes

BiasAdd
(64, 1001, 1001) 0.252 0.317 0.255 no
(64, 4096, 4096) 0.294 0.323 0.298 no
(64, 9216, 9216) 0.299 0.342 0.311 no

MaxPool
(64, 35, 35, 288) 1.849 2.072 1.793 no
(64, 17, 17, 768) 1.399 1.542 1.402 no
(64, 8, 8, 2048) 0.825 1.128 0.981 no

1) Performance variance with different data precisions.
Table 1 shows that across operations, FP16 consistently out-
performs F32, regardless of using TC or not (and without
consideration of casting cost). For example, despite not using
TC, MatMul with FP16 performs slightly better (3.5%) than
with FP32 for the input data size (64, 1001, 1001, 2048).

Furthermore, when the input shape meets the requirement
of using TC, the performance gain of using FP16 over FP32 is
more significant. For example, Conv2DBackpropInput with
FP16 performs significantly better (48%) than with FP32 for
the input data size (64, 35, 35, 192).

Observation 1. Without TC, using F16 leads to slightly bet-
ter performance than using F32. Using TC for FP16 magnifies
the performance benefit of F16.

2) Impact of input data size on performance gains from
FP16. Training an NN model can invoke many instances of
an operation in a training step. Different instances of the oper-
ation can use different input data sizes. Table 1 shows that as
we change the input data size of an operation, the performance
gain of using FP16 over using FP32 varies significantly. For
example, for MatMul with FP16, the performance gain is 3.6%
and 114.5% for the input data sizes (64, 1001, 1001, 2048)
and (2048, 1024, 1024, 1024) respectively. In this example,
such a large performance variance comes from whether TC
is utilized. Even if TC is not utilized for TC candidate opera-
tions, we observe large performance variance across different
input data sizes. For example, Conv2DBackpropInput with
input data sizes (64, 149, 149, 32) and (64, 37, 37, 96) have
75.6% and 0.9% performance gains when using FP16.

The above observation holds true for the non-TC candidate
operations as well. For example, BiasAdd with input data
sizes (64, 9216, 9216) and (64, 1001, 1001) have 40.1% and
11.9% performance gain when using FP16.

The reason for the above result is because of smaller mem-
ory bandwidth consumption and smaller number of FP opera-
tions with smaller input data size, which offers less opportu-
nity for FP16 to tap and improve performance.

Observation 2. The performance gain of using FP16 varies
largely across input data sizes.

3) Impact of casting cost. Comparing “FP16+Cast Exe.
Time” and “FP16 Exe. Time” in Table 1, we see that the cast
operation introduces 3% - 29% overhead, diminishing the
performance benefit of FP16. As a result, using FP16 can per-
form worse than FP32. For example, considering the casting
cost, MatMul using a TC-satisfied input data size (2048, 8, 8,
1024) and a TC-unsatisfied input data size (64, 1001, 1001,
2048) with FP16 performs worse than with FP32 by 9.3%
and 22.7% respectively, and the casting cost takes 11.6% and
21.4% of the operation execution time, which is large.

The casting cost stems from (1) the time to initialize the
cast operation node in the dataflow graph, and (2) the time
to do bitcast and numerical truncation for each scalar
element in the input tensor as well as construct the output.

Observation 3. The cast operation introduces non-
negligible overhead. Considering the casting cost, it is not
always performance-profitable to convert FP32 to FP16 re-
gardless of using TC or not.

In addition to the NVIDIA GeForce RTX 2080 Ti, we get
the same three observations on Nvidia V100.

Implications of observations. The effectiveness of using
low precision for an operation is impacted by input data size,
casting cost, and the usage of TC. Optimizing the assignment
of low precision to operations is a multi-dimensional problem,
not just one dimensional problem as assumed in the existing
solutions.

508 2022 USENIX Annual Technical Conference USENIX Association

Offline Component Online Component

Operation Performance
Modeling

Candidate Hardware
Events

NN Training Operations
Profiling

Per-node Precision
Decision

Insertion of Cast Nodes

Input Transformation

FP32 Model Graph
Profiling

Graph Rewriting

Start of Training Steps

Online Prediction

Correlation Analysis

Figure 3: Overview of Campo.

4 Design

4.1 Overview

Campo includes an offline component and an online compo-
nent, as illustrated in Figure 3. The offline component is used
to build performance modeling to predict performance of op-
erations in FP16. The performance modeling is used by the
online component, and makes performance prediction using
performance events (e.g., L2 cache misses and global memory
load/store throughput) collected from operation execution in
FP32. The performance modeling uses correlation analysis
to decide which events are the most important for accurate
performance prediction. The performance modeling is based
on statistical regression modeling, which is built only once
by the offline component but repeatedly used by the online
component.

The online component includes graph profiling, graph tra-
verse to make per-node precision decision, insertion of cast
operation, and input transformation. The graph profiling uses
one iteration to run operation nodes in FP32 and collect events
needed by performance modeling. The graph traverse makes
four passes on the dataflow graph of the NN model and uses
performance modeling to decide if each operation should use
FP16 or not based on the estimation of performance benefit
and cost of using FP16. The input transformation pads the
input tensors to make TC candidates meet the requirement of
TC on input shape and thus improves the utilization of TC.
The online component is lightweight and enables cost-aware
mixed precision optimization with guarantee on performance
improvement without training accuracy loss.

4.2 Performance Modeling

We build performance modeling to decide whether low or full
precision should be employed for a given operation with a
given input data size. The performance modeling predicts (1)
the casting cost based on the input data size, and (2) execution
time of the operation with low precision.

4.2.1 Predicting Casting Cost

The casting cost for a cast operation includes two parts: (1)
the time to initialize the cast operation node in the dataflow
graph, denoted by CI , and (2) the time to do the conversion
(i.e., the cost to do bitcast and numerical truncation for
each scalar element in the input tensor as well as construct
the output tensor), denoted by CC.

CI is modeled as a constant, because CI comes from a
couple of memory allocations and variable assignments for the
object initialization of the cast operation node in the dataflow
graph. CC is proportional to the number of scalar elements in
the input tensor of the cast operation node. This proportion
is represented as a ratio, r. Given the same number of scalar
elements, we observe that there is no performance difference
between converting from FP16 to FP32 and from FP32 to
FP16.

Hence, the casting cost is modeled in Equation 1, where
tensor_size is the input data size of the cast operation node.
Taking the operation Add with an input data size (64, 1024)
for conversion as an example, tensor_size is 65536 (i.e., 64 ×
1024).

casting_cost = r ∗ tensor_size +CI (1)

To use the above model, we must know r and CI . They
are obtained using linear regression where r and CI are the
slop coefficient and intercept. In particular, by profiling 500
FP32-to-FP16 cast cases and 500 FP16-to-FP32 cast cases, we
collect a total of 1000 training samples, each of which includes
a pair of measured casting_cost and tensor_size from a cast
operation. We use the method of least squares to find the
values of r and CI that minimize the sum of the squared errors.

4.2.2 Predicting Execution Time of Operation

We adopt an operation-specific modeling method, which
means that we build a performance model for each individ-
ual operation. We do not build a general model for all the
operations to predict performance, because the operations
exhibit a variety of performance characteristics in terms of
memory access patterns and computation intensity. Building
a single, general model does not give good prediction accu-
racy. In our experience, we build a general model using the
similar method as building operation-specific models, but can
achieve only 43% prediction accuracy, which leads to 21%
longer execution time, compared with using operation-specific
models. Furthermore, although the total number of operations
in the allowlist, inferlist, and clearlist is 143, which is large,
the operation-specific performance models are built offline
for once, and then can be reused for all NN models. Hence,
operation-specific modeling is practical.

Why not using dynamic profiling to measure perfor-
mance in low precision? Our performance modeling predicts

USENIX Association 2022 USENIX Annual Technical Conference 509

the execution time of an operation using low precision on reg-
ular CUDA cores and TC (if the operation is an TC candidate).
We could use dynamic profiling to measure the execution time.
In particular, we use three training iterations of the NN model:
one iteration running all operation nodes in FP32, one running
all operation nodes in FP16 on regular CUDA cores, and one
iteration running TC candidate nodes in FP16 on TC.

However, the dynamic profiling using training iterations
has limitations. In particular, the dynamic profiling uses FP16
for many operations to measure execution time, regardless of
the impact of those operations on training convergence. To
avoid slow convergence of the training process after dynamic
profiling, one has to discard the three training iterations and
restart the training process. This complicates the training
pipeline. Even worse, for those downstream training tasks
that use a pre-trained model, the number of training iterations
is limited. Using dynamic profiling can lead to a large increase
in training time. For example, training (fine-tuning) a small
NN model Audio2Vec [15] can take about ten iterations, and
losing three iterations for dynamic profiling leads to more
than 20% increase in training time.

Modeling intuition. The performance of an operation in
FP32 and FP16 has correlation. For example, using FP16 re-
duces the working set size, compared with using FP32, which
can lead to less cache misses and in turn decrease execution
time. Our intuition is that using execution time in FP32 and
a handful of performance-critical events measured in FP32,
we can predict execution time in FP16. The parameters (co-
efficients) in our performance modeling should capture the
performance correlation between FP32 and FP16.

Performance modeling. Based on the above intuition, we
build the performance model as follows.

OPLP = OPFP32 · (
N

∑
i=1

wi ·PCi)+σ (2)

where OPLP is the execution time on either regular CUDA
cores or TC using FP16, OPFP32 is the execution time on
regular CUDA cores using FP32, PCi is a performance-critical
event measured during the execution of FP32, N is the number
of performance critical events, and wi and σ are coefficients.
Each operation has up to two performance models: one for
regular CUDA cores and the other for TC.

A performance-critical event is a model feature. We use
hardware performance counters on GPU to collect those
events. There are about 100-200 events collectable on GPU.
We choose those events that are the most correlated to the
operation performance in FP16, using the following method.

Selection of model features. We use the Spearman’s rank
correlation coefficient [16] (or Spearman’s ρ) to select events.
The Spearman’s ρ is a method to quantify how well the re-
lationship between two variables can be described using a
monotonic function [16]. The Spearman correlation between
two variables is high when observations have a similar rank

between the two variables, and low when observations have a
dissimilar rank between the two variables.

In our case, an event is a variable and the operation per-
formance using FP16 is the other variable. We make many
observations by running tests. If the observations on the event
and the observations on the F16 performance have the similar
rank (i.e., relative position label of the observations within the
event or F16 performance), then the event is monotonically
correlated (either monotonically increasing or monotonically
decreasing) with the FP16 performance. In our case, we use a
threshold of 0.75 for ρ. When |ρ| for an event is larger than
0.75, then we choose it as a model feature.

In particular, given an operation OP, we use the following
method to select features to build the performance model for
FP16 on TC. Using 1000 different TC-satisfied inputs, we
run OP in FP32 1000 times to collect execution time and each
collectable event. Then, using the same 1000 inputs, we run
OP in FP16 1000 times to collect execution time. As such, we
construct 1000 samples, each of which consists of measured
FP32 execution time, the value of each collectable event, and
FP16 execution time. For each event, we use the 1000 samples
to run the Spearman’s rank correlation analysis and calculate
ρ. If ρ is larger than the threshold, then the event is selected.

To select the features to build the performance model for
FP16 on regular CUDA cores, we use the same method as
above but the operation inputs do not necessarily meet the TC
requirement.

We select events for each operation using the above ap-
proach. We discuss the most common events across opera-
tions as follows.
• Global memory load/store throughput indicates inten-

siveness of global memory access. If an operation has
higher throughput in global memory load/store, the opera-
tion may get larger performance benefit by using FP16.

• Instruction executed per cycle indicates compute inten-
sity. Using FP16 can be helpful for those floating point
intensive operations, because of higher throughput of FP16
instructions.

• GPU occupancy indicates how many warps are able to
be active during operation execution. An operation with
low GPU occupancy will be sensitive to whether FP16 or
FP32 is used, because using FP16 or not causes difference
in global memory accesses and the operation with low GPU
occupancy has lower thread-level parallelism to hide long
global-memory access latency.

• L2 cache accesses and misses and L1 cache accesses in-
dicate memory access locality in the operation. Compared
with an operation with bad reference locality, an operation
with good reference locality can take advantage of the cache
hierarchy and is not sensitive to global memory bandwidth,
hence less sensitive to the global memory bandwidth sav-
ings due to the use of FP16.
Getting model coefficients wi and σ. For each operation-

specific performance model, we run the operation 1000 times

510 2022 USENIX Annual Technical Conference USENIX Association

with 1000 inputs with different sizes, using FP32 and FP16
respectively. That generates 1000 samples, each of which in-
cludes FP32 execution time, the values of events collected in
FP32, and FP16 execution time. Using the 1000 samples, we
use the method of least squares to find the values of coeffi-
cients wi and σ that minimize the sum of the squared errors.
To generate 1000 inputs with different sizes, we profile the
input data size of the operations from 11 NN models (includ-
ing GoogLeNet, UNet-3D, DLRM, DCIGN, BiLSTM, SSD-
MobileNet-v1, ShuffleNet, SSD, DenseNet, Mask R-CNN,
RNN-T) from the MLPerf benchmark suite [17] using 100
training steps with various batch sizes.

Building performance models for an operation is not time-
consuming. For example, building the two models for the
operation Conv2D (including generating samples to get the
model coefficients) takes about 1.5 hours. Building perfor-
mance models for 143 operations takes about 112.5 hours.

Justification of modeling method. In essence, our model-
ing method is linear regression. Before we used it, we asked
if other modeling methods (such as using a machine learning
model) can work. We built a multilayer perceptron model
(MLP) taking the same input and output as our linear regres-
sion model. The MLP has four layers (one input, one output
and two hidden layers) and has 800 neurons in total. However,
we do not see any benefit of using such a model in terms of
prediction accuracy: the prediction accuracy for the MLP is
71%, while it is 94.2% for the linear regression model. The
low prediction accuracy of using MLP is largely due to the
fact that our problem nature exhibits near-linear correlation
between features and MLP seems to be prone to get stuck in a
local optimum for this problem. Furthermore, the MLP takes
10x more training samples than the linear regression model.
Hence, we do not use MLP.

Furthermore, we asked if basic heuristics can work. In fact,
compared with using dynamic profiling (a basic heuristic),
using performance modeling reduces training time by 20%
for Audio2Vec. Compared with using the same precision
for all instances of each operation (another basic heuristic),
using performance modeling reduces training time by 35%
for BERT-large. Our performance models are repeatedly used
for NN models, which amortizes the construction cost.

Our modeling method considers the impact of operation
input on operation performance, because it uses dynamic
profiling in FP32 to measure performance with the given
operation input, based on which to make prediction for FP16
performance with the same operation input.

Furthermore, our modeling method is operation-specific,
which greatly simplifies model construction, because the op-
eration type itself provides much of implicit information on
operation characteristics. For example, the operation name
MatMul indicates strided memory accesses, and hence the
operation-specific performance model does not need to ex-
plicitly model such a memory access pattern to make perfor-
mance prediction. As a result, our performance model can

focus on capturing the correlation between the performance
of FP32 and FP16.

4.3 Runtime Graph Rewriting
The runtime graph rewriting decides (1) data precision for
each operation, and (2) which operations to be converted
together to reduce the number of cast operation nodes. By
graph rewriting, Campo aims to reach the following goals: (1)
minimizing the training time; (2) minimizing the casting cost;
and (3) no adverse impact on the numerical safety (compared
with the traditional mixed-precision training).

The graph rewriting in Campo includes graph profiling,
graph traverse to determine the precision assignments, and
insertion of cast operation nodes, discussed as follows.

Graph profiling. Given an NN model, Campo uses a sin-
gle training step (or iteration) running in FP32 to collect
execution time and events needed by performance modeling
for those operations in allowlist, inferlist, and clearlist. The
graph profiling is triggered right after the first few training
steps used by TensorFlow for warmup (i.e., determining sys-
tem configurations).

Graph traverse happens after graph profiling, and per-
forms four times on the dataflow graph. Each graph traverse
follows the data flow in the NN training to analyze opera-
tion nodes in the dataflow graph. During the graph traverses,
Campo uses two lists, allow_nodes and deny_nodes, to record
those operation nodes determined to run in FP16 and in FP32
respectively. We depict the four-time traverse as follows.

Traverse #1. During the traverse, when an operation node
is encountered, Campo checks if it is in allowlist. If yes, then
Campo uses performance modeling to decide if the casting
cost plus FP16 execution time of the operation (on regular
CUDA cores or TC) is smaller than the counterpart FP32
execution time. If yes, then the operation node is put into
allow_nodes; If no, then it is put into deny_nodes. During
the traverse, only those operations that are numerical safe in
FP16 (i.e., in allowlist) are considered, in order to maintain
the training accuracy of the NN model.

Traverse #2. During this traverse, Campo checks the re-
maining operation nodes. For each node, Campo checks if
it is either numerically-unsafe (i.e., in denylist) or on a path
from a node in denylist to another node in denylist or inferlist
through some operation nodes in inferlist or clearlist. If yes,
then the checking node is added to deny_nodes. This traverse
aims to prevent numerically-unsafe operation nodes and their
downstream operation nodes from being changed to FP16, in
order to maintain the training accuracy.

Traverse #3. During this traverse, Campo checks each re-
maining operation node. If the node (called the target node
in the remaining discussion) is in inferlist or clearlist, then
Campo put the target node into allow_nodes. After Traverse
2, such a node should be safe to use FP16. It is possible that
the immediate upstream or downstream node(s) of the target

USENIX Association 2022 USENIX Annual Technical Conference 511

node is in allow_nodes. For such a case, the cast operation
to convert target node for FP16 or FP32 is saved for higher
performance.

Traverse #4. During this traverse, Campo checks each re-
maining operation node. If the node (called the target node
in the remaining discussion) is in clearlist and connected to
a node in the allow_nodes via other nodes in clearlist, then
Campo uses performance modeling to decide whether the
casting cost is smaller than the performance benefit of using
FP16 (on regular CUDA cores or TC) for the target node and
other connecting nodes. If yes, then the target node is put into
allow_nodes.

Insertion of cast operation nodes. After the four-time
graph traverse, Campo changes the type attribute of operation
nodes according to their FP16 or F32 assignments, and then
inserts a cast operation node at the boundary between any
FP16 node and its neighbour FP32 node (or vice versa) by
using the API ChangeTypeAttrsAndAddCasts provided by
TensorFlow.

4.4 Usage of Tensor Cores

For any operation node in FP16 decided in the graph rewriting
process, Campo is able to use performance modeling to decide
if using regular CUDA cores or TC is more performance
beneficial. If using TC is better, then Campo makes the best
efforts to run the operation on TC.

In particular, in each training step, Campo checks the input
shape of each TC candidate. If the input shape of a TC candi-
date cannot meet the TC requirements, Campo pads the input
tensor by adding zero-filled rows or columns. For example,
for Conv2D, Campo pads its input to make the dimension size
of each channel a multiple of 8. Compared to the traditional
padding method recommended by dlprof, our method is im-
plemented inside the training framework, and thus transparent
to the users and does not need to modify NN models.

Overhead analysis. Zero padding adds overhead to com-
putation and memory consumption. For an operation decided
to use FP16 on TC by performance modeling, the computa-
tion overhead (with casing cost) is easily surpassed by the
performance benefit: in our evaluation, an operation decided
to use FP16 on TC by performance modeling can typically
gain about 2x performance improvement (compared with us-
ing FP32 on regular CUDA cores), while padding usually
leads to less than 20% performance overhead. To consider
the performance overhead of zero padding in performance
modeling, we can introduce a threshold, which is an empirical
estimation on the padding overhead. Only when the casting
cost plus this threshold is smaller than performance benefit,
we use FP16 on TC.

The memory overhead of padding is usually less than 1%,
which is very small. This is because in practice, the number of
zero-filled rows or columns via padding is less than 8 and the
number of dimensions requiring padding is typically at most

2, while the total number of rows or columns is hundreds.

5 Implementation

Campo extends the mixed precision graph optimizer and
runtime system in TensorFlow v1.15. Such an extension
includes 235 C++ LOC. The extension is used to de-
cide if an operation should use FP16 based on perfor-
mance modeling. We add APIs CheckAllowListOps and
CheckIfAllowThroughClear to implement the first and
fourth graph traverses. The other two traverses extend the
existing implementation for assigning precision to operations
in TensorFlow. In TensorFlow’s op_kernel module, we add
an API InputShapeTranform to implement input padding
and meet the TC requirements on the input shape. Besides the
above extension, Campo includes graph profiling and perfor-
mance modeling (including offline tools to build performance
models). In total, Campo is written in 2570 LOC.

6 Discussions

Differences between using performance modeling and
static profiling. The static profiling is an alternative approach
to get performance of operations in low precision. Using
static profiling, the user must collect the information on tensor
shapes from operators, and then use the collected information
to run operators in low precision offline. We discuss the dif-
ferences between performance modeling and static profiling
as follows.

There are two differences. First, the static profiling has to
be done for each NN model and is not scalable, while the per-
formance modeling, once built, can generally work for most
NN models. Second, when the number of tensor shapes and
operations in an NN model for profiling is small, the static
profiling is a better solution to get operation performance
in low precision. However, the profiling cost must be small
enough to enable practical deployment of static profiling. In
contrast, the performance modeling does not incur deploy-
ment cost for most of NN models. The performance models
can be repeatedly used for NN models, which amortizes the
model construction cost.

Portable performance modeling. Our performance model-
ing is architecture-dependent, because it collects architecture-
dependent performance events as the model features. This
means that we must build different performance models for
different GPU architectures. How to reduce human efforts to
build performance models remains to be studied. In addition,
it would be interesting to extend Campo to lower precisions
(e.g., INT8 and BF16) using the same methodology in Campo.
We leave them as our future work.

512 2022 USENIX Annual Technical Conference USENIX Association

0

1500

3000

4500

6000

FP32 TF_AMP Campo

sa
m

pl
es

/s

1.28x
1.52x

(a) AlexNet

0

200

400

600

800

FP32 TF_AMP Campo

1.88x
2.34x

(b) ResNet50

0

125

250

375

500

FP32 TF_AMP Campo

(c) Inception3

1.89x
2.30x

0

75

150

225

300

FP32 TF_AMP Campo
(d) Vgg16

1.28x 1.49x

0

1600

3200

4800

6400

FP32 TF_AMP Campo
(f) DCGAN

1.73x
2.12x

be
tt

e 1x
1x 1x

1x
1x

Figure 4: Training throughput with FP32, TF_AMP and Campo on RTX 2080 Ti.

0

3000

6000

9000

12000

FP32 TF_AMP Campo

sa
m

pl
es

/s

0

300

600

900

1200

FP32 TF_AMP Campo

1.87x

2.25x

2.00x

2.47x

(a) AlexNet (b) ResNet50

0

160

320

480

640

FP32 TF_AMP Campo

(c) Inception3

1.91x
2.28x

0

160

320

480

640

FP32 TF_AMP Campo

(d) Vgg16

2.13x
2.50x

0

2100

4200

6300

8400

FP32 TF AMP Campo
(f) DCGAN

1.84x

2.23x

be
t

0

3000

6000

9000

12000

FP32 TF_AMP Campo

sa
m

pl
es

/s

0

300

600

900

1200

FP32 TF_AMP Campo

1.87x
2.25x

2.00x
2.47x

(a) AlexNet (b) ResNet50

0

160

320

480

640

FP32 TF_AMP Campo
(c) Inception3

1.91x
2.28x

0

160

320

480

640

FP32 TF_AMP Campo
(d) Vgg16

2.13x
2.50x

0

2100

4200

6300

8400

FP32 TF_AMP Campo
(f) DCGAN

1.84x
2.23x

be
tt

e

0

16

32

48

64

FP32 TF_AMP Campo
(e) BERT-large

2.47x
3.05x

1x 1x 1x 1x 1x 1x

Figure 5: Training throughput with FP32, TF_AMP and Campo on V100.

Table 2: Hardware configurations

CPU Intel Xeon CPU E5-2648L v4@ 1.80GHz

Main Memory 64 GB DDR4
CPU Cores 2 sockets, 14 cores per socket

GPU NVIDIA GeForce RTX 2080 Ti (Turing)

CUDA Cores 4352 CUDA cores (68 SMs, 1.54GHz)
Tensor Cores 544 tensor cores

L1 Cache 64 KB (per SM)
L2 Cache 5.767 MB

GPU Device Memory 11 GB GDDR6

GPU NVIDIA Tesla V100 (Volta)

CUDA Cores 5376 CUDA cores (84 SMs, 1.53GHz)
Tensor Cores 672 tensor cores

L1 Cache 128 KB (per SM)
L2 Cache 6.144 MB

GPU Device Memory 32 GB HBM2

7 Evaluation

7.1 Experimental Setup
Experimental Platforms and Tools. We use a multicore ma-
chine equipped with two TC-supported GPUs (i.e., Nvidia
GeForce RTX 2080 Ti and V100) and Intel Xeon CPU listed
in Table 2. The two GPUs are attached to the server by PCIe
3.0. We use CUDA 9.0 [18], NVIDIA cuDNN 8.0, and Ubuntu
18.04. We use dlprof [14] and Nvidia Nsight Compute [19]
to collect performance statistics. We measure system power
for GPU, CPU and DRAM by using a collection of industry-
standard tools including NVIDIA System Management Inter-
face [20] and Intel Running Average Power Limit (RAPL)
Interface [21]. We use the number of samples processed per
second and training throughput per Watt as metrics to quan-
tify training throughput and energy efficiency respectively.
Unless indicated otherwise, the reported results are collected
on V100 and all tests use the default GPU setting.

Benchmarking Methodology. We evaluate six NN mod-

0
60

120
180
240

AlexNet ResNet50 Inception3 Vgg16 DCGAN BERT-largeno
. o

f c
as

t n
od

es TF_AMP Campo

0
9

18
27
36

AlexNet ResNet50 Inception3 Vgg16 DCGAN BERT-largeTC
 u

til
iz

at
io

n
(%

) TF_AMP Campo

(a)
Figure 6: The number of cast nodes of NN models trained
with TF_AMP and Campo, respectively.

els including AlexNet [22], Inception3 [23], Vgg16 [24],
ResNet50 [25], DCGAN [26], and BERT-large [6]. We only
evaluate BERT-large on V100 because of the out-of-memory
error on RTX 2080 Ti. For the first four models, Imagenet
is used as the training dataset [27]. For DCGAN and BERT-
large, we use CelebA [28] and SQuAD [29] as the training
dataset, respectively. The training batch size for AlexNet and
other models on GeForce RTX 2080 Ti GPU is 256 and 64
respectively, according to the model configurations in related
work [30]. The training batch size for BERT-large and other
models on V100 is 10 and 256 respectively, according to the
model configurations in related work [31].

We run each NN model training experiment ten times and
then report the average results. We use TensorFlow v1.15 and
its performance optimizer “TF_AMP” for mixed precision
training. TF_AMP is our baseline for performance compar-
ison. TF_AMP in TensorFlow v1.15 is the state-of-the-art
solution and the most recent performance optimizer for mixed
precision training. To preserve small gradient values, we adopt
the automatic loss-scale optimizer in TF_AMP. To evaluate
model accuracy, We test both the Top-1 and Top-5 accuracy
on the ImageNet-1k validation set for AlexNet, ResNet50,
Inception3 and Vgg16, and the celebA validation set for DC-
GAN. For BERT, we test the F1 score on the SQuAD v1.1
validation set.

USENIX Association 2022 USENIX Annual Technical Conference 513

0
60

120
180
240

AlexNet ResNet50 Inception3 Vgg16 DCGAN BERT-largeno
. o

f c
as

t n
od

es TF_AMP Campo

0
9

18
27
36

AlexNet ResNet50 Inception3 Vgg16 DCGAN BERT-largeTC
 u

til
iz

at
io

n
(%

) TF_AMP Campo

(a)

Figure 7: TC utilization of NN models trained with TF_AMP
and Campo, respectively.

7.2 Training Throughput

Figures 4 and 5 show the training throughput of Campo,
TF_AMP, and single precision training (using FP32). To cal-
culate speedup, the throughput of using the single precision
training is used as the baseline.

Using mixed precision training, TF_AMP and Campo
achieve large speedup (1.28x - 3.05x) over FP32 on both
GPUs. Furthermore, Campo outperforms TF_AMP by 20.8%
on average (up to 24.5%) on RTX 2080 Ti, as well as by 20.9%
on average (up to 23.4%) on V100. The performance benefit
of Campo over TF_AMP comes from two perspectives: re-
ducing the number of cast operation nodes in the dataflow
graph and using TC more often, discussed as follows.

7.3 Performance Breakdown

Number of cast operation nodes. Figure 6 quantifies the
number of cast operation nodes. Campo reduces the number
of cast operations nodes for higher performance. Campo uses
27.7% less cast operation nodes on average (up to 31.3%)
than TF_AMP.

TC utilization is defined as the percentage of training time
when TC is busy. Figure 7 shows TC utilization. Campo
increases the utilization of TC by 29.4% on average (up to
37.9%), which indicates that Campo uses TC more often.

Contribution quantification of the graph rewriting and
improving TC utilization. We disable our method of improv-
ing TC utilization but keep the graph rewriting to quantify
its contribution to the performance improvement (compared
with TF_AMP). Then we enable our method of improving
TC utilization along with the graph rewriting to quantify the
contribution of improving TC utilization. Figure 8(a) and Fig-
ure 8(b) show the results on two GPUs. The two figures reveal
that the graph rewriting contributes more than improving TC
utilization: 84.5% of the overall performance improvement
(on average) comes from the graph rewriting.

We also notice that V100 benefits 38.1% more (on average)
from TC, compared with RTX 2080 Ti. This is because of
two reasons. (1) V100 has more computation resource: V100
has 23.5% more tensor cores than RTX 2080 Ti; (2) training
on V100 is able to run 10.4% more operations on TC than
training on RTX 2080 Ti, because higher performance benefits
of using TC on V100 offset casting cost in more operations.

Table 3: Model accuracy of NN models trained with FP32,
TF_AMP and Campo, respectively.

NN models Top-1 Accuracy (%) Top-5 Accuracy (%)
FP32 TF_AMP Campo FP32 TF_AMP Campo

AlexNet 63.39 64.41 64.38 81.24 81.21 81.19
ResNet50 78.77 78.74 78.75 94.86 94.82 94.85
Inception3 78.42 78.45 78.43 90.15 90.16 90.15
Vgg16 71.58 71.6 71.57 88.28 88.25 88.27
DCGAN 80.12 80.16 80.13 92.47 92.46 92.44
BERT-large 91.35 91.36 91.33 N/A

7.4 Training Accuracy
Table 3 reports the model accuracy of six NN models trained
with FP32, TF_AMP and Campo, respectively. We can see
that across NN models, the model training with Campo leads
to no loss in model accuracy compared to TF_AMP, which
closely matches the FP32 training accuracy (the subtle dif-
ferences across FP32, TF_AMP and Campo in accuracy are
within typical bounds of run-to-run variations).

Campo preserves training accuracy, because of two reasons.
(1) Those operations that are numerical unsafe still use FP32.
(2) Campo uses the same effective loss-scaling optimizer as
TF_AMP to preserve small gradients in FP16.

7.5 Prediction Accuracy of Performance Mod-
els

To evaluate the accuracy of the performance models, we use
a metric denoted by M_A as follows.

M_A = 1− 1
n

n

∑
i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ (3)

where n is the number of test cases, and ŷi and yi are the
predicted and measured execution time for the test case i.

We test 150 performance models for 143 operations re-
spectively. For each model, we use 100 different input sizes
as test cases. In total, there are 15000 tests. We report the
modeling accuracy for five common operations, i.e., Cast,
MatMul, Conv2DBackpropFilter, Conv2DBackpropInput
and Conv2D in Figure 9.

In general, the average prediction errors for the five opera-
tions are less than 5%, which demonstrates high prediction
accuracy. Overall, the prediction error for 143 operations is
5.8% on average (and less than 6%).

Handling mis-prediction of performance modeling.
When a mis-prediction happens, there are two possible out-
comes. (1) Based on performance modeling, the operation
is not scheduled to run in FP16, although it should be for
better performance. (2) Based on performance modeling, the
operation is scheduled to run in FP16, although it should not,
because of high casting cost.

For the case (1), mis-prediction does not cause any per-
formance loss, compared with using full precision (i.e., the

514 2022 USENIX Annual Technical Conference USENIX Association

FP32 TF_AMP Campo Speedup (tf) speedup (campo) improv over tf-amp verification speedup of campo
AlexNet 3625.08 4656.31 5527.04 1.284470963 1.524667034 1.524667034 0.187 5527.04 1.524667034
ResNet50 294.97 554.94 690.90 1.881343865 2.342273113 2.342273113 0.245 690.9003 2.342273113
Inception3 192.59 363.94 443.28 1.8897139 2.30167153 2.30167153 0.218 443.2789 2.30167153
Vgg16 179.26 230.18 267.93 1.284056677 1.494641973 1.494641973 0.164 267.9295 1.494641973
DCGAN 3617.63 6256.14 7676.28 1.729345793 2.121907287 2.121907287 0.227 7676.279 2.121907287

2780.65 4808.71 5900.29 0.2082
FP32 TF_AMP Campo Speedup (tf) speedup (campo)

AlexNet 3625.08 4656.31 5527.03997 1.28 1.52
DCGAN 2780.65 4808.71 5900.29 1.73 2.12

FP32 TF_AMP Campo Speedup (tf) speedup (campo)
ResNet50 294.97 554.94 690.9003 1.88 2.34
Inception3 192.59 363.94 443.27892 1.89 2.30
Vgg16 179.26 230.18 267.92952 1.28 1.49

#DIV/0! 2.49
ResNet152 109.46 201.87 248.59 1.84 2.27 0.231436073

FP16
1.319172414 8922 improv over tf-amp

6269 0.187
782 0.227
478 0.245
437 0.218
281 0.164

0.206

FP32 TF_AMP Campo Speedup (tf) speedup (campo) improv over tf-amp verification speedup of campo
AlexNet 4782 8922 10769 1.87 2.25 0.207
DCGAN 3399.43 6269 7585 1.84 2.23 0.21
ResNet50 405 811 998 2.00 2.47 0.231
Inception3 259 494 592 1.91 2.28 0.198
Vgg16 240 511 600 2.13 2.50 0.174
ResNet152 155 305 368 1.97 2.37 0.206

0.204333333

10768.854
7585.49
998.341
591.812
599.914
367.83

Graph rewritingmproving TC utilization speedup graph_op (%) TC_op (%)
AlexNet 0.171 0.016 0.187 1 0.914 0.086 0.170918 0.016082
DCGAN 0.192 0.035 0.227 1 0.847 0.153 0.192269 0.034731

ResNet50 0.220 0.025 0.245 1 0.896 0.104 0.21952 0.02548
Inception3 0.192 0.026 0.218 1 0.882 0.118 0.192276 0.025724

Vgg16 0.151 0.013 0.164 1 0.921 0.079 0.151044 0.012956
ResNet152 0.209 0.022 0.231436 1 0.903 0.097 0.208987 0.022449

avg. 0.023

graph rewriting Improve speedup graph_op (%) TC_op (%)
AlexNet 0.181 0.026 0.874 0.207 1 0.874 0.126 0.180918 0.026082
DCGAN 0.174 0.036 0.828 0.21 1 0.828 0.172 0.17388 0.03612

ResNet50 0.194 0.037 0.841 0.231 1 0.841 0.159 0.194271 0.036729
Inception3 0.164 0.034 0.827 0.198 1 0.827 0.173 0.163746 0.034254

Vgg16 0.151 0.023 0.869 0.174 1 0.869 0.131 0.151206 0.022794
BERT-large 0.171 0.035 0.832 0.206 1 0.832 0.168 0.171392 0.034608

avg. 0.032 0.84516667

0.381389544

0.235294118

Below are the experimental results on V100

rtx 2080 ti

V100

0.00
2000.00
4000.00
6000.00
8000.00

FP32 TF_AMP Campo

im
ag

es
/s

DCGAN

1.73x 2.12x

0%
8%

16%
24%
32%

AlexNet DCGAN ResNet50 Inception3 Vgg16

pe
rf

. i
m

pr
ov

em
en

t Graph rewriting Improving TC utilization

0%
7%

14%
21%
28%

AlexNet DCGAN ResNet50 Inception3 Vgg16 BERT-large

Graph rewriting Improving TC utilization

(a) RTX 2080 Ti (b) V100

Figure 8: Breakdown of the overall performance improvement from graph rewriting and improving TC utilization.

MatMul Conv2D Conv2DBackpropFilter Conv2DBackpropInput
MA (%) 98.53 96.82 97.52 95.48 97.0875

Cast MatMul Conv2DBackpropFilter Conv2D Conv2DBackpropInput
MA (%) 95.27 98.53 97.52 96.82 95.48 96.724

90

92

94

96

98

100

Cast MatMul Conv2DBackpropFilter Conv2D Conv2DBackpropInput

M
_A

 (%
)

Figure 9: Performance prediction accuracy for five operations
based on the operation-specific performance models

Table 4: Average system power consumption of NN models
trained with FP32, TF_AMP and Campo on RTX 2080 Ti and
V100, respectively.

NN Models
Average System Power (W)

RTX 2080 Ti V100
FP32 TF_AMP Campo FP32 TF_AMP Campo

AlexNet 274 268 267 325 319 316
ResNet50 272 265 263 324 313 311
Inception3 273 264 263 326 316 315
Vgg16 273 267 267 324 316 316
DCGAN 275 268 267 327 320 319
BERT-large N/A N/A N/A 332 320 318

original execution). For the case (2), mis-prediction causes
performance loss in that operation. But since the performance
prediction accuracy is high, the performance loss is easily out-
weighed by the performance benefit of correctly using FP16
in other operations. In our evaluation, for each NN model, the
case (2) happens at most 7 times, taking less than 1.5% of all
prediction cases.

No matter whether the case (1) or (2) happens, neither of
them causes any loss in training accuracy of the NN model,
because the performance modeling is never applied to any
numerical-unsafe operation and hence the mis-prediction
never happens to any of them.

7.6 Power Consumption and Energy Efficiency

Power consumption. Table 4 summarizes system power con-
sumption. Using TF_AMP and Campo, the system consumes
less power than using FP32 across NN models by 6 - 13 Watts,
because of the use of power-efficient TC in mixed precision
training. Table 4 also shows that using Campo, the system
consumes less power than using TF_AMP, due to better uti-
lization of TC in Campo.

Energy efficiency. Figure 10 shows the energy efficiency

of NN models trained with FP32, TF_AMP and Campo.
TF_AMP and Campo outperform FP32 by 109.5% and
154.6% on average, respectively, because of the use of reduced
precision and power efficient TC. Compared to TF_AMP,
Campo outperforms TF_AMP by 21.4% on average (up to
24.2%). This improvement comes from the fact that Campo
leads to better performance (see Figure 5) without causing
extra power consumption (see Table 4).

8 Related Work

Mixed precision for NN training. Many research efforts
have been dedicated to achieve more efficient NN training
with mixed precision. Mixed precision training was first in-
troduced by Micikevicius et al [1]. Since then, Nvidia depicts
how to use it with TC [3]. Jia et al. [2] use mixed precision
to improve scalability of synchronized stochastic gradient de-
scent (SGD) optimizers in NN models without losing model
generability. Kuchaiev et al. [32] presents a TensorFlow-based
toolkit for mixed precision training of sequence-to-sequence
models, with an implementation of a wrapper around the stan-
dard TensorFlow performance optimization facility for mixed
precision training. Besides the floating-point based mixed
precision training, Das et al. [4] are the first to propose mixed
precision training of convolutional neural networks using in-
teger operations on ImageNet-1K dataset. Svyatkovskiy et
al. [33] introduce a learning rate schedule for training dis-
tributed deep recurrent neural networks with mixed precision
on GPU clusters. Their schedule facilitates neural network
convergence at up to O(100) workers.

Different from the above efforts, our work reveals the over-
looked performance issues related to casting cost in mixed
precision graph optimization.

Mixed precision for other GPU applications. Mixed pre-
cision has been explored to speed up dense linear system
solvers [34, 35] and WZ factorization [36] in the context of
HPC. Kotipalli et al. [37] present AMPT-GA, an automatic
mixed precision optimization system that automatically se-
lects the optimal data precision to maximize performance
while meeting accuracy constraints for GPU Applications.
However, its evaluation is only limited to an NVIDIA Tesla
P100 GPU machine without TC. Haidar et al. [38] apply
mixed-precision FP16–FP32/FP64 to a high-performance it-
erative refinement solvers and take advantage of TC. Gallo et
al. [39] propose the concept of mixed-precision in-memory

USENIX Association 2022 USENIX Annual Technical Conference 515

0
12
24
36
48

AlexNet DCGAN

FP32 TF_AMP Campo

0.0
0.9
1.8
2.7
3.6

ResNet50 Inception3 Vgg16

sa
m

pl
es

/s
/W

be
tt

er

0
0.05

0.1
0.15

0.2

BERT-large

Figure 10: Energy efficiency of NN models trained with FP32, TF_AMP and Campo.

computing with a combination of a von Neumann machine
and a computational memory unit. Baboulin et al. [40] lever-
age mixed precision to accelerate computations in many dense
and sparse linear algebra algorithms. Lam et al. [41] introduce
a framework that employs binary instrumentation and mod-
ification to build mixed-precision configurations of existing
binaries originally developed for the use of double precision.
In contrast, our work focuses on applying mixed precision to
NN training.

Investigation on the usage of TC. Nvidia TC follows
the IEEE 754 standard [42] and utilizes mixed precision with
matrix multiplication input in FP16 and accumulation in FP32.
Motivated by the benefits of TC, Yan et al. [43] demystify
how TC on Turing GPUs works and implement TC-based
HGEMM on NVIDIA Turing GPUs. Markidis et al. [44]
perform a performance evaluation of TC in mixed precision
as well as three different approaches of programming matrix-
multiply-and-accumulate on TC on V100. Brennan et al. [45]
perform a thorough analysis of the effects of low precision
operations and TC on graph convolutional neural networks.
Abdelfattah et al. [46] explore leveraging TC to implement a
optimized batched Matrix multiplication (HGEMM) in half-
precision arithmetic. Our work is different from these efforts,
as we explore the use of TC in NN training.

9 Conclusions

This paper introduces Campo, a cost-aware performance op-
timization tool for mixed-precision NN training that assigns
the optimal precision (either FP32 or FP16) to training opera-
tions while minimizing the unnecessary casts to maximize the
training performance. Campo is based on our unique observa-
tion that the casting cost to achieve mixed precision training
may offset the performance benefit of using low precision in
mixed precision training. This observation is ignored in the
existing approaches of using mixed precision, which leads to
smaller performance improvement or even performance loss.
We build operation-specific performance models to predict
and quantify the impact of casting cost on the performance
of using low precision. With the performance models, at run-
time Campo employs a cost-aware graph rewriting strategy to
make decisions on which precision should be used for each
operation without losing NN training accuracy. We evalu-
ate Campo with six NN models on Nvidia Turing and Volta
architecture-based GPUs, and show that Campo largely out-
performs TensorFlow.

10 Acknowledgements

We thank anonymous reviewers and our shepherd for their
valuable feedback. This work is partially supported by the
National Science Foundation of China under grants 61972137
and 61772183.

References

[1] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,
et al. Mixed precision training. arXiv preprint
arXiv:1710.03740, 2017.

[2] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,
Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,
Yuanzhou Yang, Liwei Yu, et al. Highly scalable
deep learning training system with mixed-precision:
Training imagenet in four minutes. arXiv preprint
arXiv:1807.11205, 2018.

[3] Nvidia. Nvida’s mixed-precision train-
ing - tensorflow example. https://docs.
nvidia.com/deeplearning/performance/
mixed-precision-training, 2018.

[4] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudi-
gere, Dhiraj Kalamkar, Sasikanth Avancha, Kunal Baner-
jee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat
Kaul, Evangelos Georganas, et al. Mixed precision train-
ing of convolutional neural networks using integer oper-
ations. arXiv preprint arXiv:1802.00930, 2018.

[5] Google. Tensorflow - enable mixed precision
graph rewrite. https://www.tensorflow.org/
versions/r1.15/api_docs/python/tf/train/
experimental/enable_mixed_precision_graph_
rewrite, 2018.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[7] Muthian Sivathanu, Tapan Chugh, Sanjay S Singapuram,
and Lidong Zhou. Astra: Exploiting predictability to

516 2022 USENIX Annual Technical Conference USENIX Association

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite

optimize deep learning. In Proceedings of the Twenty-
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 909–923, 2019.

[8] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason
Lowe-Power, and Venkatesh Akella. Autotm: Automatic
tensor movement in heterogeneous memory systems
using integer linear programming. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 875–890, 2020.

[9] Xufan Zhang, Ziyue Yin, Yang Feng, Qingkai Shi, Jia
Liu, and Zhenyu Chen. Neuralvis: Visualizing and inter-
preting deep learning models. In 2019 34th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 1106–1109. IEEE, 2019.

[10] Jiawen Liu, Dong Li, Gokcen Kestor, and Jeffrey Vetter.
Runtime concurrency control and operation scheduling
for high performance neural network training. In 2019
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 188–199. IEEE, 2019.

[11] Xin He, Jiawen Liu, Zhen Xie, Hao Chen, Guoyang
Chen, Weifeng Zhang, and Dong Li. Enabling energy-
efficient dnn training on hybrid gpu-fpga accelerators.
In Proceedings of the ACM International Conference on
Supercomputing, pages 227–241, 2021.

[12] Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong
Li, and Jishen Zhao. Processing-in-memory for energy-
efficient neural network training: A heterogeneous ap-
proach. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 655–
668. IEEE, 2018.

[13] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Ca-
puchin: Tensor-based gpu memory management for
deep learning. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
891–905, 2020.

[14] Dlprof - nvidia deep learning frameworks documen-
tation. https://docs.nvidia.com/deeplearning/
frameworks/dlprof-user-guide/, 2021.

[15] Marco Tagliasacchi, Beat Gfeller, Félix de Chaumont
Quitry, and Dominik Roblek. Self-supervised audio rep-
resentation learning for mobile devices. arXiv preprint
arXiv:1905.11796, 2019.

[16] Thomas W MacFarland and Jan M Yates. Spearman’s
rank-difference coefficient of correlation. In Introduc-
tion to nonparametric statistics for the biological sci-
ences using R, pages 249–297. Springer, 2016.

[17] Peter Mattson, Christine Cheng, Cody Coleman, Greg
Diamos, Paulius Micikevicius, David Patterson, Han-
lin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
et al. Mlperf training benchmark. arXiv preprint
arXiv:1910.01500, 2019.

[18] Cuda toolkit documentation v9.0. https://
developer.nvidia.com/cuda-toolkit-archive,
2019.

[19] Nvidia nsight compute - nvidia developer doc-
umentation. https://developer.nvidia.com/
nsight-compute, 2021.

[20] Nvidia. Nvidia system management inter-
face. https://developer.nvidia.com/
nvidia-system-management-interface, 2018.

[21] Intel’s runningaverage power limit (rapl) interface.
https://01.org/rapl-power-meter, 2019.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2818–2826, 2016.

[24] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[26] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[27] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. IEEE,
2009.

USENIX Association 2022 USENIX Annual Technical Conference 517

https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://01.org/rapl-power-meter

[28] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV),
December 2015.

[29] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. SQuAD: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 2383–2392, Austin, Texas, November
2016. Association for Computational Linguistics.

[30] Chuan Li. Rtx 2080 ti deep learning benchmarks
with tensorflow. https://lambdalabs.com/blog/
2080-ti-deep-learning-benchmarks/, 2019.

[31] Nvidia data center deep learning product per-
formance. https://developer.nvidia.com/
deep-learning-performance-training-inference,
2020.

[32] Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vitaly
Lavrukhin, Jason Li, Huyen Nguyen, Carl Case, and
Paulius Micikevicius. Mixed-precision training for
nlp and speech recognition with openseq2seq. arXiv
preprint arXiv:1805.10387, 2018.

[33] Alexey Svyatkovskiy, Julian Kates-Harbeck, and
William Tang. Training distributed deep recurrent
neural networks with mixed precision on gpu clusters.
In Proceedings of the Machine Learning on HPC
Environments, pages 1–8. 2017.

[34] Alfredo Buttari, Jack Dongarra, Julie Langou, Julien
Langou, Piotr Luszczek, and Jakub Kurzak. Mixed pre-
cision iterative refinement techniques for the solution of
dense linear systems. The International Journal of High
Performance Computing Applications, 21(4):457–466,
2007.

[35] Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack
Dongarra. Investigating half precision arithmetic to
accelerate dense linear system solvers. In Proceedings
of the 8th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, pages 1–8, 2017.

[36] Beata Bylina and Jarosław Bylina. Mixed precision
iterative refinement techniques for the wz factorization.
In 2013 Federated Conference on Computer Science
and Information Systems, pages 425–431. IEEE, 2013.

[37] Pradeep V Kotipalli, Ranvijay Singh, Paul Wood, Igna-
cio Laguna, and Saurabh Bagchi. Ampt-ga: automatic
mixed precision floating point tuning for gpu applica-
tions. In Proceedings of the ACM International Confer-
ence on Supercomputing, pages 160–170, 2019.

[38] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and
Nicholas J Higham. Harnessing gpu tensor cores for fast
fp16 arithmetic to speed up mixed-precision iterative
refinement solvers. In SC18: International Conference
for High Performance Computing, Networking, Storage
and Analysis, pages 603–613. IEEE, 2018.

[39] Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo
Manica, Heiner Giefers, Tomas Tuma, Costas Bekas,
Alessandro Curioni, and Evangelos Eleftheriou. Mixed-
precision in-memory computing. Nature Electronics,
1(4):246–253, 2018.

[40] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub
Kurzak, Julie Langou, Julien Langou, Piotr Luszczek,
and Stanimire Tomov. Accelerating scientific compu-
tations with mixed precision algorithms. Computer
Physics Communications, 180(12):2526–2533, 2009.

[41] Michael O Lam, Jeffrey K Hollingsworth, Bronis R
de Supinski, and Matthew P LeGendre. Automatically
adapting programs for mixed-precision floating-point
computation. In Proceedings of the 27th international
ACM conference on International conference on super-
computing, pages 369–378, 2013.

[42] Nathan Whitehead and Alex Fit-Florea. Precision &
performance: Floating point and ieee 754 compliance
for nvidia gpus. rn (A+ B), 21(1):18749–19424, 2011.

[43] Da Yan, Wei Wang, and Xiaowen Chu. Demystifying
tensor cores to optimize half-precision matrix multiply.
In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 634–643. IEEE,
2020.

[44] Stefano Markidis, Steven Wei Der Chien, Erwin Laure,
Ivy Bo Peng, and Jeffrey S Vetter. Nvidia tensor core
programmability, performance & precision. In 2018
IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), pages 522–531.
IEEE, 2018.

[45] John Brennan, Stephen Bonner, Amir Atapour-
Abarghouei, Philip T Jackson, Boguslaw Obara, and
Andrew Stephen McGough. Not half bad: Exploring
half-precision in graph convolutional neural networks.
In 2020 IEEE International Conference on Big Data
(Big Data), pages 2725–2734. IEEE, 2020.

[46] Ahmad Abdelfattah, Stanimire Tomov, and Jack Don-
garra. Fast batched matrix multiplication for small sizes
using half-precision arithmetic on gpus. In 2019 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS), pages 111–122. IEEE, 2019.

518 2022 USENIX Annual Technical Conference USENIX Association

https://lambdalabs.com/blog/2080-ti-deep-learning-benchmarks/
https://lambdalabs.com/blog/2080-ti-deep-learning-benchmarks/
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference

	Introduction
	Background
	Mixed Precision Training
	Tensor Core Acceleration

	Observation and Motivation
	Design
	Overview
	Performance Modeling
	Predicting Casting Cost
	Predicting Execution Time of Operation

	Runtime Graph Rewriting
	Usage of Tensor Cores

	Implementation
	Discussions
	Evaluation
	Experimental Setup
	Training Throughput
	Performance Breakdown
	Training Accuracy
	Prediction Accuracy of Performance Models
	Power Consumption and Energy Efficiency

	Related Work
	Conclusions
	Acknowledgements

