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Abstract
System calls are the main method for applications to re-

quest services from the operating system, but their invocation
incurs considerable overhead, which has been aggravated by
mitigation mechanisms for transient execution attacks. Pro-
posed approaches for reducing system call overhead all break
the semantic equivalence between system calls and regular
function calls (e.g., by making system calls asynchronous),
and so their adoption requires rearchitecting applications.

This paper proposes Privbox, a new approach for
lightweight system calls that maintains the familiar syn-
chronous, function-like system call model. Privbox allows an
application to execute system call-intensive code in a semi-
privileged, sandboxed execution mode, called a “privbox”.
Semi-privileged execution is architecturally similar to the ker-
nel’s privileged execution, which enables faster invocation
of system calls, but the code is sandboxed to ensure that it
cannot use its elevated privileges to compromise the system.
We further propose semi-privileged access prevention (SPAP),
a simple hardware architectural feature that alleviates much
of Privbox’s instrumentation overhead.

We implement Privbox based on Linux and LLVM. Our
evaluation on x86 (Intel Skylake) hardware shows that
Privbox (1) speeds up system call invocation by 2.2×; (2)
can increase throughput of I/O-threaded applications by up
to 1.7×; and (3) can increase the throughput of real-world
workloads such as Redis by up to 7.6% and 11%, without and
with SPAP, respectively.

1 Introduction
System calls are the de-facto method for processes to request
services from the operating system (OS), but they are orders
of magnitude slower than a regular function call. Much of
the overhead stems from switching the processor’s execution
mode between unprivileged user-mode and privileged kernel
execution on system call entry and exit [1]. User-to-kernel
mode switches are further slowed down by the protection
mechanisms [2, 3] recently added to mitigate transient execu-
tion vulnerabilities such as Meltdown [4] and Spectre [5].

Reducing system call overhead has attracted significant
research attention over the years (e.g., [6, 1, 7, 8, 9, 10]), and
the increased overhead imposed by the mitigations of transient
execution vulnerabilities [10] underscores the importance of
addressing the problem. Current approaches, however, break

the semantic equivalence between system calls and regular
function calls. For instance, FlexSC [1] and io_uring [8]
make system calls asynchronous; the io_uring model and
similar models [6, 11, 12] also limit how system calls can be
composed. Consequently, benefitting from these system call
designs requires rearchitecting applications to use the new
system call models.

In this work, we propose Privbox: a new approach for
lightweight system calls that maintains the familiar user-space
programming model of synchronous, function-like system
calls. In our design, an application can demarcate system
call-intensive code and have it execute in a privbox, in which
system call invocation is cheap—e.g., 2.2× faster than a reg-
ular system call on an Intel Skylake CPU. An application
can thus enjoy low-overhead system calls with an unchanged
synchronous system call model and only minor source code
modifications to demarcate privboxed code regions.

Privboxed code runs in a “semi-privileged” mode. Semi-
privileged execution consists of the processor running in priv-
ileged mode with the kernel address space mapped, which
reduces user/kernel system call transition time, similarly
to kernel-mode Linux (KML) [7]. But unlike KML, semi-
privileged privboxed code runs sandboxed, so that it has the
same access as the regular, unprivileged code of its process—
thus it cannot violate OS security.

Our sandbox design is inspired by the software fault iso-
lation approach of NaCl [13, 14], which uses compile-time
instrumentation to generate verifiably safe code. We adapt
NaCl’s instrumentation approach to the circumstances and
environment of semi-privileged privboxed execution. In our
design, source code demarcated for privboxed execution is
instrumented at compile-time to prevent it from reading/writ-
ing arbitrary kernel memory or jumping to arbitrary kernel
code. The kernel verifies the correctness of the instrumenta-
tion before allowing the code to begin its privboxed execution.
The privboxed code then runs natively, without any runtime
environment, but under a custom page table configuration that
blocks it from executing uninstrumented user-mode code.

Unfortunately, the sandbox’s instrumentation slows down
execution of the privboxed code, which reduces the bene-
fit from faster system calls. We identify instrumentation of
memory operations (load and store instructions) as the main
culprit. Motivated by this finding, we propose SPAP (semi-
privileged access prevention), a simple hardware architectural
modification that enables omitting load/store instrumentation
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from privboxed code. With SPAP, privileged mode hardware
execution blocks an instruction from reading/writing a kernel
address if that instruction resides in a user-mode address (as
privboxed instructions do). SPAP’s check can be implemented
analogously to how x86-64 implements its supervisor mode
access prevention (SMAP) [15] feature, which blocks privi-
leged mode execution from accessing user-mode addresses.

We implement Privbox for x86-64 by adding support for
semi-privileged execution to Linux and the musl standard C
library [16], as well as extending LLVM to support generation
of instrumented (sandboxed) code. We evaluate Privbox in
two contexts:

1. Applications that use patterns such as I/O threads and
reactors[17]. These patterns are system call intensive with
little user-space logic, and are therefore less impacted by
instrumentation overhead. We find that such applications
can gain over 1.7× speedup, even without SPAP.

2. Applications that combine I/O and user-space logic.
Specifically, we modify Redis [18], memcached [19], and
SQLite [20] to use Privbox. For simplicity, we compile the
entire application with instrumentation, which gives us a
lower bound on Privbox’s benefit. Using Privbox in these
applications requires little effort (20–30 lines of code) and
yields an improvement of up to 7.6% on today’s hard-
ware without SPAP and up to 11% in a configuration that
approximates performance under SPAP.

Contributions We make the following contributions:

• Privbox design (§ 3). We design Privbox, a new systems
programming mechanism for lightweight system. Privbox
maintains the familiar user-space system call model and its
adoption requires no application source code changes.

• Implementation (§ 4). We implement support for Privbox
for x86-64 in Linux, the musl C library, and LLVM.

• SPAP (§ 5). We propose semi-privileged access preven-
tion, a simple hardware modification that enables omitting
load/store instrumentation from privboxed code.

• Evaluation (§ 7). We show that Privbox improves (1) sys-
tem call overhead by 2.2×; (2) I/O thread execution time
by over 1.7×; and (3) real-world workload throughput by
as much as 7.6% without SPAP and 11% with SPAP.

• Availability. The Privbox implementation and benchmarks
are available at https://github.com/privbox.

2 Background & motivation
Monolithic kernels like Linux rely on hardware privilege
modes to enforce process isolation and to mediate I/O ac-
cess to peripheral devices. The kernel offers a set of system
calls for processes to request services requiring OS mediation,
such as input/output (I/O) to devices, inter-process communi-
cation, and virtual address space modification. System calls

are semantically equivalent to function calls, but are orders
of magnitude slower. This problem has spurred research on
reducing their overhead. These proposals, however, break the
semantic equivalence between system and function calls, so
adopting them requires rearchitecting applications to use a
new system call model. Our goal is thus to address the prob-
lem without changing the system call programming model.

Privilege modes The basic hardware mechanism used to
implement the OS isolation model is the distinction between
unprivileged and privileged processor execution modes. The
kernel runs in privileged mode, which allows full access to
the entire instruction set, including privileged instructions for,
e.g., installing a page table or enabling/disabling interrupts.
Applications run in unprivileged mode, which only allows
execution of non-privileged instructions that cannot circum-
vent OS isolation. Implementation of the execution privilege
modes differs between hardware architectures. In this paper,
we focus on the x86-64 architecture. It defines four hardware
privilege levels, also called rings, numbered 0 to 3 in decreas-
ing order of privilege. Most OSes execute user applications in
ring 3 and the kernel in ring 0. The CPU has a code segment
(CS) register that (indirectly) defines the CPU’s current ring,
also called current privilege level (CPL).

System calls A system call is a mechanism for a controlled
and safe transfer of execution from untrusted unprivileged
code to privileged kernel code. On x86-64, system calls are
implemented by the syscall instruction. This instruction
elevates the CPU’s privilege mode and transfers control to
a pre-determined kernel memory address, called the system
call entry point. The entry point code determines the kernel
function to service the desired call by inspecting certain CPU
registers (determined by a software, OS-specific convention),
executes it, and finally executes a “return to user” instruction
which lowers the CPU’s privilege mode and transfers control
back to the unprivileged code.

System call overhead A system call is semantically equiva-
lent to a function call from an application’s perspective. But
it is orders of magnitude slower, as its invocation/return is a
multi-step procedure in both hardware and software, in which
hardware elevates/lowers its privilege level and saves/restores
certain CPU state, and kernel code saves/restores remaining
CPU state and determines and executes the system call code.

System call overhead is exacerbated by mitigations of hard-
ware microarchitecture vulnerabilities, such as Meltdown [4]
and Spectre [5]. These vulnerabilities involve malicious user
code abusing microarchitectural state shared by the CPU’s
privilege modes to read memory that is not architecturally
accessible to the attacking user code. Mitigation accordingly
involves modifying the relevant CPU state on system call
entry, which adds overhead. For instance, on affected hard-
ware, Linux’s system call entry code flushes the CPU indirect
branch predictor’s state [3] to block Spectre v2 attacks. In
addition, Linux’s page table isolation (PTI) [2] Meltdown mit-
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igation switches page tables during system call entry, which
is a costly operation that also implies a TLB flush on x86-
64. Indeed, our evaluation (§ 7.1) finds that while a standard
system call invocation entry/exit time is 28× slower than a
function call/return, PTI makes it 52× slower. And while
Linux’s software mitigations are not used on recent proces-
sors that mitigate the vulnerabilities in hardware, the hardware
mitigation itself slows down the system call instruction [10].

Reducing system call overhead There are several proposals
to reduce the overhead of system call entry/exit. They gen-
erally achieve this by compromising on the semantic equiva-
lence between system and function calls.

Flexible system calls (FlexSC) [1] makes system calls asyn-
chronous instead of synchronous. It offloads system call exe-
cution to a kernel “syscall thread” associated with the process,
with which the process communicates over a shared-memory
interface, thereby eliminating CPU cycles spent on system
call entry/exit. However, FlexSC requires rearchitecting ap-
plications to use an asynchronous programming style.1 It also
increases CPU usage due to the added threads and polling of
the shared-memory communication structures.

System call overhead can be reduced by batching. The
multi-call approach invokes several system calls with one
kernel entry/exit. Linux includes several multi-calls, such as
preadv, which performs a sequence of seek-followed-by-read
operations. Cassyopia [6] explores compiler optimizations
to batch several system calls together. But since a multi-call
specifies the participating calls up front, it does not support
arbitrary composition of system calls and user-space logic
offered by the standard system call model.

Recent Linux versions offer an io_uring [8] mechanism.
io_uring allows submitting I/O requests through a memory
interface, like FlexSC, but it does not support arbitrary system
calls. Like multi-calls, multiple requests can be submitted
to a submission queue, but the submitted operations can be
of different kinds and interact with different file descriptors.
Overall, io_uring can be viewed as a combination of FlexSC
and batching specialized for I/O, and thus suffers from the
same limitations as those approaches.

Kernel bypasses avoid system call overhead by doing away
with system calls for device access. For instance, DPDK [9]
and SPDK [21] allow applications to interact directly with
networking and storage devices, respectively. But since the
kernel no longer mediates device access, its standard inter-
faces such as sockets or files cannot be used, and user-space
has to implement all the abstractions it requires.

Ward [10] targets overhead related to Spectre and Melt-
down mitigations. It constructs process page tables which do
contain mappings of kernel memory, but only memory that is
safe to expose to that process. At best, Ward reduces system

1FlexSC offers a threading library that makes its asynchronous system
calls transparent to applications, but this library is relevant only for applica-
tions with many user-mode threads.

call overhead to that of the pre-Spectre/Meltdown baseline,
which is still significantly slower than a function call.

BPF for Storage [22] is a recent approach for reducing I/O
path overhead by leveraging Linux’s eBPF subsystem [23],
which is an in-kernel virtual machine that can execute user-
loaded bytecode programs. The idea in BPF for Storage is to
use eBPF programs to bypass kernel layers and avoid system
calls, e.g., by searching an on-disk B+tree inside the kernel
instead of via multiple system calls. However, eBPF is a
severely limiting programming model, as the bytecode must
pass static verification [24] before it can be executed in the
kernel, and verification considerations limit eBPF programs to
be small and to have provably bounded memory and execution
time.

3 Design

Privbox is a new execution model for system call intensive
code. Privbox provides standard synchronous, function-like
system calls but with significantly lower invocation cost. Us-
ing Privbox thus requires no rearchitecting of application
source code, as opposed to, e.g., the asynchronous system
calls provided by FlexSC or io_uring (see § 2). We describe
Privbox in the context of Linux on x86-64 hardware, but its
design can be extended to other monolithic operating systems
and/or hardware architectures.

Privbox provides an interface for executing code sec-
tions (e.g., ELF objects) in a semi-privileged execution
mode (§ 3.1); we refer to such code as being privboxed. In
semi-privileged execution, the processor is in privileged mode
and kernel memory is mapped, which enables fast system call
execution (§ 3.2), but for security, the code runs sandboxed, so
that it has the same access as the process that loads it (§ 3.3).
This sandbox is enforced by compile-time instrumentation
(verified by the kernel) and by virtual memory restrictions.

Privbox and eBPF (§ 2) share some similarity in that both
offer safe execution of user-supplied code in privileged pro-
cessor mode, but the designs have a fundamental difference.
eBPF runs code in kernel context, invoked to handle certain
events, and so eBPF programs must be verified to terminate
and be provided with interfaces for kernel operations. In con-
trast, privboxed code is conceptually process code, just with
faster system calls. It can access the process’ address space,
be scheduled and context switched, and can only interact
with the kernel via the system call interface—in particular,
it invokes the kernel and not vice versa. Privbox is thus a
general-purpose design, whereas eBPF requires customiza-
tion for each new use case (e.g., [22]).

While we focus on the general use case, in which privboxed
code must be isolated from other processes in the system,
some scenarios can use Privbox without sandboxing. One
such example is a workload running by itself on a dedicated
virtual machine. This use case can employ Privbox without
sandboxing, as the privboxed code cannot compromise any-
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main:
fd = open("priv.so")
call priv_code_load(fd)
call priv_code_invoke("privfunc1")

privfunc1:
loop:
fast_syscall ...

call priv_code_return()

Listing 1: Example usage of privcall mechanism.

thing other than itself.

3.1 Execution & usage model
Privbox introduces an operating system interface with the
following system calls:
• Load privboxed code. This method can accept a pointer to

a buffer with machine instructions or a file descriptor of an
ELF object file. Internally, it verifies the code’s safety (§ 3.3)
and relocates it to a dedicated, immutable memory region
from which it will be executed.

• Invoke privboxed code. This method accepts a pointer or
symbol from the loaded ELF file, and begins executing it
in semi-privileged mode. I.e., from the calling application’s
perspective, this method returns only when the privboxed
code returns, as explained next.

• Return from privboxed code. This method can only be called
by privboxed code. It exits semi-privileged execution and
transfers control to the code that invoked it, while making a
return value available.
Listing 1 shows an example program utilizing the above

interface to invoke a function from the ELF object priv.so.

Usage model While an entire application can be privboxed,
Privbox’s sandboxing instrumentation imposes overhead, so
only code sections with a large fraction of cycles spent on
system call entry/exit will benefit from privboxing. Privbox
adoption thus consists of (1) the developer identifying system
call intensive code sections for privboxing; (2) isolating such
code sections into separate build units, which are built with
the required instrumentation (e.g. into ELF objects); and (3)
modifying application source code to load and invoke these
objects as privboxed code at run time. Crucially, a privboxed
code section itself requires no modification: it is simply an-
other object file linked or loaded into the application.

We envision steps (2)–(3) being performed by tools, after
developers demarcate privboxed code sections in the source
code. In this paper, however, we perform them manually. For
manual Privbox adoption, the “low hanging fruits” consist of
applications whose software architecture already separates
system call intensive code from computation code into dis-
tinct modules that communicate via some mechanism (e.g.,
SEDA [25]). Figure 1 depicts such an architecture. Because
these architectures already isolate I/O (or other system call-
heavy) code from other parts of the code, it is straightforward
to surgically apply instrumentation only to that code. This
approach minimizes Privbox’s instrumentation overhead, as
compute heavy parts remain unaffected, while the I/O parts
waste less cycles on system call entry/exit.

IO threads Compute threads
Memory
queues

System calls

Figure 1: Software architecture that separates threads performing
I/O (or system calls) from threads that perform other kinds of logic.

3.2 Semi-privileged execution
Privboxed code runs with the processor in privileged mode
and kernel memory mapped, which enables it to perform a
system call with a function call, without the syscall instruc-
tion, as detailed below. Except for having the ability for fast
system calls, the OS treats privboxed code as user-space (pro-
cess) code and its access is similarly restricted, hence the term
semi-privileged execution. When privboxed code is invoked,
the kernel transfers control to it with a new (ring 0) code
segment (CS). Other than having a different CS value, the
privboxed code runs similarly to unprivileged code—with
interrupts enabled and the same priority, capabilities, and per-
missions. The kernel can preempt its execution at any moment
and re-schedule it, as it would any other process.

Privboxed code runs with a custom page table, which mod-
ifies the standard virtual address space layout in several ways.
Figure 2 shows the baseline layout of user and kernel memory
in Linux. Privbox adds a special privboxed code region to the
user part of the address space. This region is located in the
lower part of the process address space and is unwritable by
the process. After the kernel successfully verifies privboxed
code, it relocates the code to the privboxed code region, from
which it is later executed.

Normally, kernel mode execution has both kernel and user
addresses mapped and accessible, and user mode execution
only has user addresses accessible.2 Privbox’s custom page ta-
ble maps the same memory regions as the process’ page table,
but using different access modes: user memory (excluding the
privboxed code region) is marked not executable (see § 3.3)
and kernel memory is marked accessible and executable, un-
like user mode execution. (Despite kernel memory being

64-bit address space

47-bit address space

User addresses:
0x00000000… 0x00007fff…

Kernel addresses:
0xffff8000… 0xffffffff…

Non-canonical
addresses

47-bit address space

Figure 2: Example of memory map on x86-64 with 48-bit virtual
address space. Lower address spaces are reserved for user program
memory, higher address space are reserved for kernel memory. Ac-
cess to memory at non-canonical addresses generates a trap.

2Without PTI, kernel addresses are still mapped, but their page table
entries have a “supervisor” bit set, which allows access to the pages only
when CPL < 3 (i.e., privileged mode). With PTI, kernel addresses are not
mapped at all.
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mapped accessible, privboxed code cannot directly access
it due to the sandboxing instrumentation (§ 3.3).) Privbox’s
custom page table is implemented by switching the top-level
page table node to one in which the page entries (PTEs) map-
ping the user-space and kernel address ranges have the appro-
priate permissions, i.e., Privbox does not create nor maintain
a copy of the process’ entire page table.

The execution environment of privboxed code enables a
fast implementation of system calls. Privboxed code does not
invoke a system call using the syscall instruction; it invokes
a system call using a standard function call. Privbox provides
a new kernel function that serves as a gate for system call
invocation. This function has similar semantics to system call
entry code: it sets up kernel execution environment (switching
to kernel stack, storing registers) and routes requests to system
call functions based on the system call number provided by
calling code. Crucially, calls to this special function are not
blocked by the sandbox instrumentation, so privboxed code
can branch to it to perform a system call.

Modern x86-64 processors support supervisor mode ac-
cess/execution prevention (SMAP [15]/SMEP), which dis-
allow privileged execution from accessing/executing pages
that are marked as user-space pages in the page table. Be-
cause privboxed code runs in “supervisor mode” but needs to
execute and access user memory, SMAP/SMEP is disabled
during privboxed execution. When privboxed code enters the
kernel (e.g., a system call or interrupt), SMAP is re-enabled
(this costs ≈ 26 cycles) but SMEP remains disabled (because
toggling it costs thousands of cycles). § 6 discusses the secu-
rity implications of this limitation.

A process that starts semi-privileged execution stays in that
mode until it either invokes the “return from privboxed code”
system call or an OS event that would result in non-sandboxed
code execution occurs, such as invocation of an exec system
call to load a new binary into the process address space. In
such cases, the OS terminates the process’ semi-privileged
execution, moving it to standard user-mode execution.

3.3 Sandboxing semi-privileged execution
Privbox must guarantee that a semi-privileged execution (of
privboxed code) cannot perform any operation or memory
access that the regular unprivileged execution of its process
cannot perform. Importantly, this guarantee must also hold
for transient execution of privboxed code (e.g., due to indirect
branch misprediction) [4, 5]. This section describes our design
for enforcing this safety property, which combines run-time
virtual memory restrictions and compile-time instrumentation
whose safety is verified by the kernel. § 6 analyzes the security
of our design.

3.3.1 Sandboxing techniques

Three types of machine instructions can violate our desired
safety property: (1) memory loads and stores, which have

Execution mode:⇒
Accessed memory ⇓

User mode
(CPL=3)

Privbox mode
(CPL=0)

Kernel mode
(CPL=0)

Kernel memory N†/N† N‡/N‡ Y/Y
Privbox code Y/Y Y/Y Y ∗/Y ∗

User memory Y/Y N†/Y Y ∗/Y ∗

† Restricted through page table access controls.
‡ Restricted through instrumentation.
∗ Subject to SMAP/SMEP.

Table 1: Access to memory regions under different execution modes.
Left symbol: instruction fetching, right symbol: data load/store.

potential to access kernel memory; (2) control flow instruc-
tions, which can be used to branch into non-instrumented
code; and (3) privileged instructions, usually reserved to oper-
ating system code. In the following, we describe how Privbox
mitigates each of these risks.

Memory access and control-flow Privbox uses a combi-
nation of compile-time instrumentation and virtual memory
(page table) protection to protect memory accesses. Table 1
summarizes which types of memory (rows) each type of exe-
cution mode (column) is allowed to access (for code execu-
tion/data), and how these restrictions are enforced.

We prevent privboxed code from executing user-space code
outside of the (verified) privboxed code region, taking advan-
tage of the “NX bit” feature of x86-64. On x86-64, each page
table entry (PTE) has a No-Execute (NX) bit. When the NX
bit is set, fetching instructions (code execution) is not permit-
ted from the page(s) mapped by the PTE. Thus, the custom
page table installed for Privbox’s semi-privileged execution
maps user-space addresses outside the privboxed code region
as non-executable.

We use compile-time instrumentation to ensure all other
types of memory accesses are safe. Indirect load/store in-
structions (where the operand is known only at run time) are
instrumented by introducing instructions that “sanitize” the
memory operand, ensuring it does not point to kernel memory.
For Linux on x86-64, we use the fact that clearing the most
significant bit of a virtual address is guaranteed to create ei-
ther a user address or an illegal non-canonical address, whose
access will generate an exception (Figure 2).

Indirect control-flow instructions, such as calls, jumps, and
returns are similarly instrumented, to ensure that privboxed
code does not branch to arbitrary kernel addresses, because the
kernel’s address space is mapped as executable. Our control-
flow instrumentation also ensures that control-flow instruc-
tions can only branch to addresses which are verified when
the code is loaded. Therefore, at run time, privboxed code can
execute only instructions that were checked by the verifier.

Overall, our instrumentation approach guarantees that in-
struction memory operands are never kernel addresses, even
for transient instructions, and thus blocks both non-transient
and transient execution attacks (see § 6).

Privileged instructions We rely on Privbox’s verifier to
check that loaded code does not contain privileged instruc-
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tions. Rejecting code with privileged instructions does not
limit Privbox’s applicability, as compilers do not emit such
instructions unless specifically instructed.

3.3.2 Verification

The kernel verifies that privboxed code is correctly instru-
mented before allowing it to execute. Verification faces a
challenge due to x86-64’s variable-length instructions, which
mean that decoding the same code at different offsets can
yield completely different instruction sequences. It is there-
fore possible that a seemingly benign instruction sequence
would include malicious code at certain offsets [13].

To address this problem, our design relies on code being
packed into chunks, which enables sound disassembly and
verification of any possible execution of the loaded code. We
define a code chunk as an aligned and fixed-length byte se-
quence containing machine instructions that always executes
from its first to last instruction (i.e., a small fixed-size basic
block). For example, 32-byte code chunks are expected to be
32-byte aligned in memory and be exactly 32 bytes long. The
compiler breaks long basic blocks into chunks, using no-op
instructions to pad the created chunks to their desired fixed
length. The compiler adds “sanitizing” instructions which
align targets of control-flow instructions (including returns)
to guarantee that they branch to the beginning of a chunk, i.e.,
to a chunk-aligned address. (See § 4.2.2 for details.)

The verifier deems the loaded code safe by verifying each
code chunk individually. For each chunk, the verifier verifies
that if the chunk contains a control-flow instruction, it is the
last one, and that it is sanitized as described above. This en-
sures verified code can only branch to verified code, keeping
execution inside the sandbox. In addition, the verifier checks
that memory operations are preceded, within the same chunk,
by the instructions sanitizing their address operands and that
the chunk does not contain privileged instructions.

3.3.3 Discussion: Privbox vs. NaCl

Our sandbox design is inspired by Native Client (NaCl) [13,
14]. NaCl enables safe execution of native code downloaded
from a web site inside a web browser at near native speed. The
browser verifies loaded programs and makes sure the loaded
code does not write to, or jump, outside of a sandboxed re-
gion. The sandboxed code is loaded into a memory region
that is gapped by unmapped memory regions on both ends. To
ensure sandboxed code does not write or execute memory out-
side of the sandbox, NaCl relies on “offset-from-known-base”
operations. A base pointer register (immutable by sandboxed
code) points at this memory region. A memory access is al-
lowed only with an offset from base pointer register, which
results in accesses always being either: (1) inside the allowed
memory region; or (2) in the unmapped memory areas.

Privbox’s instrumentation shares some similarities with

NaCl: (1) execution is limited to code running inside the
sandbox; (2) memory stores have to be instrumented (because
kernel memory is accessible); and (3) instructions have to
be aligned in specific manner. In contrast to NaCl, however,
Privbox (1) has no need for a base pointer register—we use
absolute addresses, appropriately sanitized; (2) instruments
memory loads as well, because kernel memory is readable;
and (3) must avoid privileged instructions.

4 Implementation
This section describes our prototype implementation of the
Privbox design in Linux. § 4.1 describes OS and library mod-
ifications and § 4.2 describes the sandboxing compiler. We
do not implement the verifier part of the design (§ 3.3.2), as
it is not required for evaluating performance under Privbox.

4.1 OS & library support
The following describe various parts of our implementation
and their size in lines of code (LOC).

Semi-privileged execution (750 LOC) To implement semi-
privileged execution, we apply the techniques of kernel-mode
Linux (KML [7]) to Linux v5.8 on x86-64. KML is an existing
kernel patch to support execution of an entire application in
kernel mode. It is based on Linux v4.0 (circa 2015), and does
not isolate its in-kernel processes from each other or the kernel
from them.

Linux v5.8 on x86-64 uses “legacy stack switching,” where
the stack is switched by the hardware only on a CPL change
(i.e., an interrupt while user code is executing). However,
Privbox’s semi-privileged execution has CPL = 0 but with
a user stack. This means that an interrupt received during
semi-privileged execution would cause the interrupt handler
to run with the user’s stack, which is problematic because: (1)
the user stack is accessible to user code, which might hijack
execution by modifying the stack frame (from another thread);
(2) writing to the stack might fault (e.g., if the stack pointer
points to an unmapped page), but the page fault would not
change the stack either, crashing the system; and (3) the user’s
stack includes a red zone [26] that must not be written to. We
therefore adjust our Linux version to use x86-64’s interrupt
stack table (IST) for all interrupts and exceptions. With IST,
each exception/interrupt/trap can be configured to switch to a
specific stack.

Call gate (80 LOC) Privbox exposes a system call
gate (§ 3.2), which is a kernel function that serves as the
system call entry point for privboxed code. The gate follows
Linux’s syscall conventions for passing the system call
number and parameters. It is similar to the standard system
call entry code but avoids performing unnecessary steps, such
as modification of page tables and toggling of interrupts. In
particular, Linux’s entry code (with PTI) assumes it is called
from user-space and thus unconditionally switches the page

238    2022 USENIX Annual Technical Conference USENIX Association



table from the user-space to the kernel page table. This is
unnecessary for privboxed code, which already has kernel
memory mapped in its custom page table.

Limitations For implementation simplicity, we inhibit re-
ceipt of signals during semi-privileged execution. This is not a
design limitation, and there are several designs for supporting
signals: (1) ensuring that the signal handler code points to ver-
ified and safe code; or (2) aborting privileged execution (i.e.,
having it return to the code that launched it with an EINTR in-
dication). Importantly, privboxed code can still receive signals
in our prototype using the signalfd [27] mechanism.

Library support (260 LOC) Applications usually invoke
system calls through a C library function, which then invokes
the syscall instruction. We thus create a modified standard
C library, based on the musl C library [16], in which the
library’s system call wrappers use syscall or Privbox’s sys-
tem call gate based on the execution’s CPL. The entire library
is compiled with Privbox’s instrumentation, so that privboxed
code objects can be linked with it.

In this paper, we modify an application to use Privbox
by changing its build environment to link privboxed code
with the above C library. The reason is that current compilers
and linkers do not support linking an entire application with
both the system’s C library and our modified, instrumented C
library, as both export the same symbols and the tools cannot
resolve which library version the application code refers to.
This problem can be solved by adding compiler annotations
for demarcating privboxed code; we leave this to future work.

4.2 Code instrumentation
We implement Privbox’s sandboxing instrumentation by in-
troducing a machine function pass and several other changes
to the x86-64 backend of the LLVM toolchain [28], which
consist of 1200 LOC. Our modified LLVM emits machine
code in which unsafe instructions are replaced with equivalent
but safe instruction sequences (§ 3.3).

Instrumented code is partitioned into fixed-size
chunks (§ 3.3.2). Our implementation uses 32-byte
chunks. The reason is that an x86-64 instruction can be up to
15 bytes long, so a 32-byte chunk can fit at least an instruction
of the privboxed code plus the added instrumentation
instructions that make it safe. (This is the worst case; most
chunks contain more than one instruction.)

When instrumenting an instruction, it is placed in its own
chunk, preceded with the instrumentation instructions, which
is achieved by emitting an alignment directive in the code
(.align). This ensures any instrumentation sequence starts
at beginning of a new chunk.

4.2.1 Load/store instrumentation

Loads/stores are non-branching instructions that access mem-
ory. Their address operand is either static, verifiable at load

time, or dynamic, derived from values of registers. Dynamic
values cannot be verified at load time, so instrumentation is
required to ensure kernel memory is not accessed. Our in-
strumentation “sanitizes” operands by clearing their most sig-
nificant bit (MSB), which ensures it does not point to kernel
memory (§ 3.3).

On x86-64, memory operands are based on four elements:
scale, index, base and displacement. Scale and displace-
ment are scalars while index and base are registers. The
effective address of a memory operand is calculated by:
Displacement +Base+Scale∗ Index. Either the base or in-
dex registers can be omitted and are calculated as zero in such
case. Scale can be 1, 2, 4 or 8. Displacement can be either 1,
2, 4 or 8 bytes long.

The memory operand of an instruction I is sanitized by
the prefixing I with the following instruction sequence: (1)
computing I’s effective address with a load-effective-address
instruction (lea); (2) clearing its MSB with a bit-test-and-
reset instruction (btr); and (3) replacing I’s original memory
operand with one dereferencing the sanitized value. Listing 2
shows this sequence. The btr instruction has a side-effect
of updating the x86-64 EFLAGS register. Our compiler code
therefore checks if the EFLAGS register has meaningful state
at the point of instrumentation, and if so, emits SAVE_EFLAGS
and RESTORE_EFLAGS around the instrumentation sequence.
These are abstract operations implemented by LLVM and
translated to instructions such as sahf/lahf (save/load flags).

A shorter instrumentation sequence is used for memory
operands that specify (1) only one of base or index registers;
and (2) 1/2/4-byte displacement. In this case, the effective
address is sanitized with a single btr instruction (and EFLAGS
save/restore, if needed). Appendix A.1 provides the details.

Similarly to NaCl, we avoid instrumentation of stack load-
s/stores by maintaining and verifying invariants on manipula-
tions of the stack pointer, which guarantee that stack accesses
always target user memory. Appendix A.2 elaborates on han-
dling of stack accesses. This approach greatly reduces the
emitted instrumentation, as stack accesses are very common.

4.2.2 Control-flow instrumentation

Control-flow instructions are instructions that can modify the
instruction pointer (beyond advancing it to next instruction).
As with load/store instructions, we are concerned only with
instructions whose operand is unknown at load time. Control-
flow instructions can compromise safety of semi-privileged
execution by branching to (1) arbitrary kernel code or (2)
privboxed code at the middle of a chunk. The latter is dan-
gerous because the verifier verifies code starting at chunk
boundaries.

Similarly to load/store instrumentation, kernel addresses
are avoided by clearing the MSB of branch targets. Chunk-
unaligned addresses are avoided by clearing the low 5 bits of
the target. While this allows branching to any chunk-aligned
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.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = lea disp(%Idx,scale,%Base)
%Reg2 = btr $63, %Reg1
RESTORE_EFLAGS
OP operand1, (%Reg2)

Listing 2: Instrumentation of
load/store instruction with mem-
ory operand.

.align CHUNK_SIZE
%Reg1 = lea *disp(%Idx,scale,%Base)
%Reg2 = btr $63, %Reg1
%Reg3 = mov *%Reg2
%Reg4 = btr $63, %Reg3
%Reg5 = and $~(CHUNK_SIZE - 1), %Reg4
call *%Reg5
.align CHUNK_SIZE

Listing 3: Instrumentation of
memory-operand call.

.align CHUNK_SIZE
pop %rcx
add $(CHUNK_SIZE - 1), %rcx
and $~(CHUNKS_SIZE - 1), %rcx
btr $63, %rcx
jmp *%rcx

Listing 4: Instrumentation of re-
turn instruction.

.align CHUNK_SIZE
%Reg1 = btr $63, %Reg
%Reg2 = and $~(CHUNK_SIZE - 1), %Reg1
call *%Reg2
.align CHUNK_SIZE

Listing 5: Instrumentation of
register-operand call.

address in user memory, only the privileged code section is
mapped executable in the privboxed code’s page table (§ 3.3).

Return instrumentation A return is equivalent to popping
an address from stack and jumping to it. To ensure a valid des-
tination, we replace each return instruction with an equivalent
but safe sequence that pops the address into a register, clears
its MSB, aligns it to the next 32 bytes, and jumps to the ob-
tained value. Listing 4 details this instrumentation sequence.
Linux’s calling convention specifies that the RCX register is
not preserved on calls, so we explicitly use it to store the
return address. The add (addition) and and (logical AND)
instructions are used to align-up the value in RCX to 32 bytes
(start of next code chunk). The btr (bit-test-and-reset) clears
the MSB.

This instrumentation ensures branching is possible only to
code chunk aligned, non-kernel addresses. While in theory
it is possible to hijack execution by overwriting the return
address (e.g., by buffer overflow), the effects of such hijacking
are very limited. Any address popped from the stack is guaran-
teed to be sanitized before use, so an attacker can only redirect
execution to valid and verified code inside the Privbox code
region or to non-executable memory (either user addresses
or non-canonical). The former one does not pose a threat as
privboxed code is verified as safe, and the latter causes a fault,
effectively stopping the execution.

Call/jump instrumentation Call/jump instructions with an
indirect destination (i.e., non embedded as an instruction-
relative offset) can have their destination stored in one of two
ways: (1) in a register operand and (2) in a memory operand.

Register operands are sanitized similarly to a return (sans
stack pop), as shown in Listing 5. Since a return aligns ad-
dresses before branching, an alignment directive is required
right after a call to push the next instruction to a chunk bound-
ary. The EFLAGS register has to be preserved only in case of
jumps, as the calling convention states that it is not preserved
across calls.

A call/jump with a memory operand is equivalent to a
memory-to-register load followed by a register operand call.
Sanitization is this performed analogously: (1) the memory
operand is sanitized with load/store instrumentation; (2) a
mov instruction is used to load the address into a register; and
(3) the loaded address is sanitized as a register operand call.
Listing 3 shows the generated instruction sequence.

Jumps are similar to calls, except that they have to preserve
the EFLAGS register and aligning the succeeding instruction is
unnecessary, as jumps do not return. Appendix A.3 provides
the details.

4.2.3 Code alignment

The instrumentation described in the previous sections deals
with unsafe instructions, co-locating instrumentation se-
quences within same code chunks, and aligning return sites
of calls. The compiler also makes sure that all branch des-
tinations (functions, basic blocks) are aligned to the chunk
boundary, because indirect branches target addressed with 5
lowest bits cleared. It additionally inserts no-op instructions
before any instruction that would otherwise cross code chunk
boundary, so that it moves to a chunk-aligned address. Com-
bined, these rules partition the emitted code instructions into
fixed-size chunks.

5 SPAP: Hardware support for reducing in-
strumentation overhead

Our analysis of Privbox’s performance (§ 7.3) shows that
load/store instrumentation is responsible for a considerable
part of instrumentation overhead. To address this problem,
we propose semi- privileged access prevention (SPAP), a sim-
ple hardware architectural modification that enables omitting
load/store instrumentation from privboxed code.

SPAP SPAP is a hardware feature that guarantees semi-
privileged (privboxed) code cannot (1) read/write kernel mem-
ory nor (2) indirect branch to kernel memory. Of course, the
CPU has no notion of “kernel memory” or “semi-privileged
execution”—we define kernel memory as any virtual address
mapped by a PTE with the ‘supervisor’ bit set, and semi-
privileged execution as instructions executing in privileged
mode (CPL = 0) but that are located in non-kernel memory
(i.e., a clear ‘supervisor’ bit in the code page’s PTEs).

Assuming SPAP, it is possible to
forgo all load/store instrumentation and

.align 16
%Reg1 = mov *disp(%Idx,scale,%Base)
%Reg2 = and $0xf, %Reg1
call *%Reg2
.align 16

Listing 6: Control-flow only
instrumentation of memory-
operand call.

limit control-flow instrumen-
tation (§ 4.2) only to mask-
ing of jump targets to guaran-
tee their chunk alignment. List-
ing 6 shows the simplified in-
strumentation call instruction
enabled by SPAP (compared to
Listing 3). The code chunk size
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is reduced to 16 bytes, which is enough to fit both the instru-
mented instructions and the required prefixes.

SPAP implementation We argue that SPAP can be imple-
mented analogously to how current x86-64 processors imple-
ment SMAP/SMEP, which block privileged mode execution
from accessing user addresses.3 Restricting privboxed code
data accesses and branching can happen at the same pipeline
stages that enforce SMAP and SMEP, respectively. Listing 7
describes how the hardware can restrict privboxed code’s data
access: other than the CPL and PTE of the accessed page,
which are already required by SMAP, SPAP only depends on
the current instruction’s PTE, which is available in the instruc-
tion TLB. Similarly, Listing 8 shows how SPAP hardware
restricts privboxed branching. The information required is
same as what is needed for the SMEP mechanism, plus the
information of whether the current instruction is an indirect
branch.

Expected overhead We claim that SPAP’s additional access
checks should have little to no effect on the latency of memory
instructions. We base this claim on the overhead observed
from enabling SMAP/SMEP, shown below, and the similarity
of SPAP to them.

We evaluate SMAP overhead (on the platform described
in § 7). We measure average load latency when accessing
differently sized working sets from kernel space, with and
without SMAP. Our test traverses each cache line in the work-
ing set buffer in random order (to prevent prefetching), with
each load depending on the result of the previous one (to pre-
vent the CPU’s out-of-order execution from overlapping load
execution). Preemption is disabled during the test, to ensure
it has exclusive use of the CPU. We measure average cycles
per load (i.e., total number of cycles divided by number of
loads performed). Each test is run 31 times and we report the
average of the last 30 runs.

Figure 3 shows results for working set sizes targeting the
capacity of the CPU’s TLB and L1/L2/L3 caches. We find
that SMAP does not impact performance in a significant way,
as (1) some tests still execute faster with SMAP enabled; and
(2) the variance is greater than the difference between the
configurations.

if (
CPL < 3 and
AccessedPage.S_bit is Set and
CurrInstPage.S_bit is Cleared

):
trap()

Listing 7: Hardware enforce-
ment that semi-privileged execu-
tion loads/stores do not access
kernel memory.

if (
CurrInst is Indirect Branch and
CPL < 3 and
FetchPage.S_bit is Set and
CurrInstPage.S_bit is Cleared

):
trap()

Listing 8: Hardware enforce-
ment that semi-privileged exe-
cution does not indirect branch
to kernel code.

3The idea is to prevent exploits of kernel memory safety bugs that
attempt to, e.g., jump to user-space code [15].
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Figure 3: SMAP overhead on load instructions. Results are normal-
ized to execution with SMAP disabled.

6 Security
We analyze Privbox’s security against architectural and mi-
croarchitectural (transient execution) attacks. Recall that
in privboxed code, every chunk (a 32-byte range at a 32-
byte aligned address) contains a correctly instrumented, non-
privileged instruction sequence of exactly 32 bytes, perhaps
ending with no-ops (see § 3.3.2). This is verified by the kernel.

Semi-privileged execution has the following invariants:

Inv1 The target of any load/store instruction is not a kernel
address. (Enforced by the instrumentation; § 4.2.1.)

Inv2 The target of any control-flow instruction (including
returns) is a 32-byte aligned non-kernel address. (En-
forced by the instrumentation; § 4.2.2.)

Inv3 The privboxed code section is read-only and user-space
addresses outside of it are non-executable during semi-
privileged execution. (Enforced by the virtual memory
permissions; §§ 3.2–3.3.)

For normal (non-transient) instruction execution, Inv2 and
Inv3 imply that semi-privileged execution can run only (instru-
mented) code located in the privboxed region. By Inv1, such
code cannot access kernel memory, and the verifier guarantees
it does not contain privileged instructions. Therefore, if regu-
lar unprivileged execution cannot perform some operation or
memory access, neither can semi-privileged execution.

It remains to analyze transient execution attacks. Generally,
such an attack uses architecturally-incorrect flows (whose
instructions execute but do not subsequently commit) to leak
memory contents via a microarchitectural side-channel [29].
Privbox’s goal is thus to protect kernel memory.

The core observation is that transient execution of a com-
plete instrumented chunk is safe, because it still sanitizes the
operands of any memory operation in the chunk. We there-
fore only need to consider if transient execution can branch
mid-chunk or outside of the privboxed region, either of which
can happen due to indirect branch or return target mispre-
diction. Crucially, we consider any “supervisor mode” tran-
sient execution—both semi-privileged and standard kernel
execution—to cover attacks of privboxed code on the ker-
nel. To this end, we analyze how the branch predictor can be
“trained,” i.e., which targets it observes and may mispredict
execution to later:

We assume any training by user-space execution cannot af-
fect “supervisor mode” execution, due to existing mitigations
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such as Intel’s enhanced indirect branch restricted speculation
(eIBRS) [30] or Arm’s CSV2 [31]. If this assumption does
not hold, then the kernel is vulnerable regardless of Privbox.

We assume kernel execution can only train valid kernel
branch/return targets (and therefore the kernel cannot tran-
siently branch to privboxed code), because if an attacker can
cause the kernel to train arbitrary addresses, they can attack
the kernel regardless of Privbox. This still means that semi-
privileged execution may (transiently) branch to a valid kernel
function, possibly creating a speculative type confusion vul-
nerability [32]. Privbox’s instrumentation can mitigate this
problem (with run-time overhead) using retpolines [33] for
indirect branches.

Finally, by Inv2, semi-privileged execution can only train
non-kernel, chunk-aligned addresses. It might thus train user-
mode addresses outside of the privboxed region. We assume
that instructions from non-executable memory are not ex-
ecuted in transient execution,4 so by Inv3, semi-privileged
execution cannot be exploited by such training. However,
training by semi-privileged can cause subsequent kernel exe-
cution to (transiently) branch to user-space instructions and
execute them, as Privbox disabled SMEP. On current hard-
ware, training by semi-privileged execution can be prevented
from affecting the kernel’s execution using a mechanism such
as Intel’s indirect branch predictor barrier (IBPB) [36] in
the Privbox system call gate, but this will slow down sys-
tem calls in privboxed code. (Our Privbox prototype does
not implement this mitigation.) Future hardware could sup-
port SPAP-like extensions to eIBRS to make predictions of
branches executed from supervisor pages uncontrollable by
branches executed from user-level pages.

We assume SPAP can be implemented so that its re-
strictions apply to both normal and transient execution, as
SMAP/SMEP have this guarantee [34, 35].

Limitation: Disabled SMEP Privbox’s security drawbacks
stem from disabling SMEP for semi-privileged execution
without re-enabling it for kernel execution, as Privbox does
for SMAP. As a result, semi-privileged execution can (1)
exploit pre-existing kernel vulnerabilities that were mitigated
by SMEP and (2) mount transient execution attacks against
the kernel, as explained above. The SMEP limitation can be
addressed by hardware reducing the cost of toggling SMEP.
This should be possible, given that hardware has optimized
SMAP toggling, an action the kernel frequently performs.

7 Evaluation
We evaluate the impact of Privbox on system call latency
(§ 7.1), on system call-intensive I/O threads (§ 7.2), and the
impact of privboxing complete real-world applications (§ 7.3).

4This holds on x86-64, where documentation states that SMEP and
virtual memory execute restrictions apply to transient execution [34, 35].

0 200 400 600 800
Cycles

Syscall (no PTI)
Syscall (PTI)

Call (Privbox)
Call

Kernel entry overhead

Figure 4: Cycles taken to execute a roundtrip to kernel using different
entry methods. Regular call added for reference.

Platform We use a Dell PowerEdge R740 server with a 28-
core Intel Xeon Gold 6132 (Skylake) CPU and 192 GiB of
DRAM. Hyper-Threading is disabled. Due to current cloud
computing trends, virtualized platforms represent the environ-
ments where evaluated workloads usually run. We therefore
use a Linux v5.8 guest in a KVM virtual machine hosted on a
Ubuntu 18.04 host. Reported measurements are averages of
10 executions after a single warmup run; error bars indicate
standard deviation.

7.1 System call latency
We measure the end-to-end latency of invoking a non-existing
system call, which covers user-to-kernel transition, entry code
execution, and kernel-to-user return (with a “bad call” error).
Our benchmark invokes the system call 100 M times and
reports average invocation latency, measured with the CPU’s
cycle counter.

We compare the latency of a regular system call invocation
with and without PTI to the latency of invoking the system
call from within privboxed code. Figure 4 shows that a system
call invocation alone takes about 950 and 510 cycles with and
without PTI, respectively. Invocation from privboxed code
takes on average 425 cycles, 2.2× and 1.2× faster, respec-
tively, than the baseline with and without PTI.

The reason that a privboxed system call invocation is slower
than a regular function call is that while Privbox eliminates
hardware user/kernel transition costs, it must still manage
software-related user/kernel transition steps. For instance,
Privbox’s system call gate (§ 3.2) switches the stack and
saves/restores register state.

7.2 I/O-thread workloads
Here, we characterize the impact of Privbox on an I/O thread-
based application architecture (see § 3.1 and Figure 1). We
benchmark a generic server program that receives requests,
processes them, and returns response. The server is composed
of I/O and compute threads, which are responsible, respec-
tively, for socket operations and the “business logic” of com-
puting responses to incoming requests.

Our benchmark has two tunable parameters: (1) Com-
pute time, the time compute thread spends on each request,
which allows controlling how compute-heavy the workload
is; and (2) I/O size, the number of bytes each for each socket
I/O operation. We use fixed-sized messages, so the I/O size
determines the number of system calls per message, i.e., how
system call-intensive the workload is.
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Figure 5: Privbox impact on an I/O-thread based server. Left: abso-
lute throughput (requests/second), right: throughput normalized to
default Linux (with PTI). Rows describe different compute times.

We compare between Privbox and standard execution with
PTI (default Linux configuration) and without it. When using
Privbox, only the I/O thread code is privboxed (and therefore
compiled with instrumentation). Figure 5 shows the server’s
throughput (requests/second) as we vary the compute time
(across rows) and I/O size (X axis in each row). For large I/O
sizes (above 256 bytes) and compute time (above 5 µs), system
call invocation frequency decreases and so all kernel entry
methods yield similar throughput, as most CPU time is spent
on compute or inside system calls (waiting for I/O). However,
for fast compute and/or high rate of system calls (small I/O
size), Privbox results in up to 1.72× speedup compared to
regular execution with system calls.

7.3 Real-world workloads
This section analyzes the impact of Privbox on several pop-
ular real-world applications: Redis [18], memcached [19],
and SQLite [20]. We modify each application to use Privbox,
which requires changing/adding about 20–30 lines of code
to make the application’s main loop execute privboxed. All
binaries are compiled with -O2 optimizations and linked with
our instrumented musl-1.2.0 C library. Importantly, we com-
pile the entire application with Privbox’s instrumentation,
not only the part that runs privboxed. The reason is that our
Privbox prototype does not support compiling an application
with both instrumented and uninstrumented versions of the
C library (see § 4.1). The upshot is that our results here are
lower bounds of Privbox’s benefit, as we instrument code that
a full Privbox implementation would not.

To analyze instrumentation overhead, we measure each ap-
plication with three instrumentation levels: (1) No instrumen-
tation (noinstr), which shows the benefit from fast system call
invocation; (2) full instrumentation (fullinstr, § 4.2), which
shows Privbox’s benefit (faster system calls, but with instru-
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Figure 6: Redis server under load of redis-benchmark running 2
threads, 50 connections, 1 M requests. Top: throughput (requests/sec-
onds). Bottom: throughput relative to ‘noinstr-nopriv’.

mentation overhead) on current hardware; and (3) control-
flow only instrumentation (brinstr, § 5), which omits load/s-
tore instrumentation, thereby emulating Privbox’s benefit on
hardware with SPAP support.

To analyze the benefit from Privbox’s fast system calls, we
measure each instrumentation level with and without execut-
ing the privboxed code sections in privileged mode (tagged
priv and nopriv, respectively). The speedup of priv over no-
priv quantifies how Privbox’s fast system calls offset instru-
mentation overhead.

Redis Redis [18] is a popular key-value store, often used as
cache, document store, or for publish/subscribe messaging.
We use Redis’ recommended default setup of a single instance
running a single thread, without persistency. We modify Redis’
main loop to execute privboxed. The privboxed loop returns
to user-space once per 10 K iterations to service signals (due
to limitations of our prototype, see § 4.1).

We evaluate Redis using two benchmarks: (1) redis-
benchmark, with which we simulate running various Redis
commands by 50 concurrent clients that send 1 M requests,
and (2) memtier_benchmark [37], a stress tester for NoSQL
databases, which we run with a 10:1 read/write ratio of 32-
byte objects.

Figure 6 shows redis-benchmark throughput of various
Redis commands. Reducing system call overhead offers sig-
nificant benefit: ‘priv’ executions have on average 13% higher
throughput than their ‘nopriv’ variants. While Privbox’s in-
strumentation overhead offsets some of this benefit, over-
all, a Privboxed Redis (‘fullinstr-priv’) obtains up to 7.6%
higher throughput than its baseline (‘noinstr-nopriv’). Had the
CPU supported SPAP (enabling less instrumentation: ‘brinstr-
priv’), the throughput would improve to up 10% higher than
the baseline. Results from memtier_benchmark (Figure 7)
show similar trends, with ‘fullinstr-priv’ and ‘brinstr-priv’
obtaining 6% and 10% higher throughput than the ‘noinstr-
nopriv’ baseline.
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Figure 8: Memcached under load of memtier_benchmark, running 4
threads, 50 clients/thread, 10 K requests/client, no pipelining, 32 byte
objects, 10:1 read/write ratio. Left: throughput (requests/seconds).
Right: throughput relative to ‘noinstr-nopriv’.

Memcached memcached [19] is a distributed object caching
system offering a key-value store interface. Similarly to Redis,
we modify the main loop to execute privboxed, and break out
to user-space once per 10 K iterations.

We evaluate memcached by measuring the throughput ob-
tained by memtier_benchmark, again with a 10:1 read/write
ratio and keys/values of 16/32 bytes, respectively. Figure 8
shows the results, which mirror those of Redis. Specifically,
‘priv’ executions have on average 19% higher throughput than
their ‘nopriv’ variants, which is sufficiently high for Privbox
to outperform the baseline: ‘fullinstr-priv’ and ‘brinstr-priv’
obtain 4.5% and 6.9% higher throughput than the baseline.

SQLite SQLite [20] is a relational database engine. We eval-
uate it using sqlite-bench [38], a tool that measures throughput
of various access patterns: writing/reading of sequential/ran-
dom values in asynchronous/synchronous/batched modes. We
use a RAM filesystem (tmpfs) to store the database files.

Figure 9 shows throughput obtained for each access se-
quence. Many sequences stand to benefit from Privbox’s fast
system calls (evidenced by an average 8% speed up of ‘priv’
over ‘nopriv’ variants), but these benefits are negated by instru-
mentation overhead. However, some patterns (“readrandom”
and “fillseqsync”) do not benefit from fast system calls.

Figure 10 explains the above results. It shows the ratio
between number of system calls invoked to time spent in
user code (i.e., CPU time minus system call execution time).
We find a strong correlation between speedup from fast sys-
tem calls and the system call/user time ratio. For example,
“readrandom” suffers greatly from instrumentation because
SQLite performs read queries using loads/stores (which are
instrumented) without invoking system calls. The “fillseq-
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Figure 9: SQLite throughput. Top: throughput (operations/second).
Bottom: throughput relative to ‘noinstr-nopriv’.
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Figure 9: tests with a high system call to user time ratio show better
speedup from ‘priv’ execution.

batch” sequence, which behaves the same with and without
fast system calls (‘priv’), batches I/O operations and thus per-
forms fewer system calls. Finally, the “fillseqsync” sequence,
which behaves the same for all instrumentation levels and ex-
ecution modes, uses slow synchronous writes and so spends
most of its time waiting, as opposed to running user code or
entering/exiting the kernel.

8 Conclusion & future work

We propose Privbox, a design for speeding up system calls
by sandboxed semi-privileged execution, without changing
the underlying system call programming model. We believe
Privbox can also be useful to improve isolation and fault toler-
ance within the kernel, e.g., by privboxing modules and device
drivers to limit the memory and kernel APIs they access.

Our Privbox prototype uses simple compile-time instru-
mentation which incurs non-negligible overhead, offsetting
some of the benefit from Privbox’s fast system call invocation.
There are several directions for reducing instrumentation over-
head, which we leave to future work: Hardware features such
as Intel’s control-flow enforcement technology (CET [39])
can be useful for reducing control-flow instrumentation. Fi-
nally, a more sophisticated verifier can avoid redundant instru-
mentation (e.g., sanitizing a previously-sanitized register).
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A Instrumentation details

A.1 Special case load/store instrumentation
Listings 9 and 10 detail instrumentation for non stack-relative
operations which have only one of the index/base registers
specified, and displacement is either 1, 2 or 4 bytes long. In
these scenarios, we can ensure any provided address value will
become either a user or a non-canonical address by clearing
bit 60 of the specified (base or index) register. This is sufficient
because neither multiplication (in case of index register) nor
addition of a 4-byte long displacement value will result in a
canonical kernel address with 1s in all 16 most significant
bits.

.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = btr $60, %Base
RESTORE_EFLAGS
OP operand1, disp(,,%Reg1)

Listing 9: Instrumentation of
operand containing base regis-
ter

.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = btr $60, %Idx
RESTORE_EFLAGS
OP operand1, disp(%Reg1,scale,)

Listing 10: Instrumentation of
operand containing index reg-
ister

.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = btr $63, %Reg
%Reg2 = and $~(CHUNK_SIZE - 1),

%Reg1
RESTORE_EFLAGS
jmp *%Reg2

Listing 11: Instrumentation of
register operand jump

.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = lea *disp(%Idx,scale,%Base)
%Reg2 = btr $63, %Reg1
%Reg3 = mov *%Reg2
%Reg4 = btr $63, %Reg3
%Reg5 = and $~(CHUNK_SIZE - 1),

%Reg4
RESTORE_EFLAGS
jmp *%Reg5

Listing 12: Instrumentation of
memory-operand jump

A.2 Stack accesses
Stack-based operations can be considered safe as long as we
ensure that at any point in time, the stack pointer points to
valid user memory. The safety of stack-relative operations is
ensured by maintaining the following invariant:

• When entering semi-privileged execution, the stack
pointer must be set to a known valid value.

• When the stack pointer is set to a specific value, i.e.
copied from another register, the copied value must be
sanitized in a similar manner to an operand of a load/s-
tore instruction (i.e., clear its MSB).

• Each operation modifying/incrementing/decrementing
the stack pointer must change the value by no more than
a page, and must access the memory pointed by the new
stack pointer value unconditionally afterwards (e.g., in
same basic block). This permits operations like push
and pop, as well as operations such as add and sub, as
long as the memory is accessed through the stack pointer
shortly after.

Incrementing/decrementing stack pointer without deref-
erencing can expose the code to an attack where the same
sequence of instructions is used to modify stack pointer
in small increments to an arbitrary value, until it points
to kernel memory. Enforcing a stack access after the
stack pointer changes makes sure that the stack pointer
does not travel over inaccessible memory, such as the
gap between kernel and user memory and the zero page
in user memory, thereby preventing the stack pointer
from overflowing/underflowing into kernel memory.

The above restrictions ensure that stack pointer always
points to user memory, so loads/stores relative to the stack
pointer register can be considered safe, as long as verifier
successfully verifies that the above invariants hold.
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A.3 Jump instructions
Listings 11 and 12 describe instrumentation of register and
memory operand jumps, as mentioned in § 4.2.2.

B Artifact Description

Abstract
Our artifacts include all of the Privbox prototype code, as
well as the scripts and benchmarks used to produce the results
presented in this paper.

Scope
The artifacts can be used to:

• Set up a development and runtime environment for our
prototype (§ 4).

• Run the experiments described in § 7, specifically, to
reproduce results we present in Figures 3–9.

Refer to the artifact’s README (https://github.
com/privbox/devenv/blob/privbox/README.md) for
complete instructions.

Contents
• devenv [40] - a repository containing a README and

scripts to set up a development and evaluation environ-
ment for the Privbox prototype.

• The Privbox prototype, which consists of:

– Linux [41] and musl C library [42] - Operating
system and C library with Privbox support.

– LLVM [43] - LLVM toolchain capable of creating
binaries instrumented for Privbox.

• Benchmarks [44, 45, 46, 47] - programs we used to
evaluate Privbox.

Hosting
Our artifacts are available on Github (https://github.com/
privbox/), as well as archived on Zenodo [40, 48, 41, 43, 45,
42, 47, 44, 46].

Requirements
Evaluation of our artifact requires an Intel x86-64 machine
running Linux (we have used Ubuntu 18.04). Additionally,
we rely on Docker and QEMU/KVM.

• CPU type: Our evaluation uses an Intel Skylake CPU.
While any modern Intel-architecture CPU is suitable,
evaluation results might differ due to microarchitectural
changes.

• Virtualization: Our prototype runs as a KVM-based
virtual machine. In our evaluation, we use a bare-metal
server as a platform. It is possible to use a virtual ma-
chine, as long as it supports nested virtualization. How-
ever, nested virtualization incurs additional overhead that
might affect evaluation results.
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