
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

AlNiCo: SmartNIC-accelerated Contention-aware
Request Scheduling for Transaction Processing

Junru Li, Youyou Lu, Qing Wang, Jiazhen Lin, Zhe Yang, and Jiwu Shu,
Beijing National Research Center for Information Science and Technology (BNRist)

https://www.usenix.org/conference/atc22/presentation/li-junru

AlNiCo: SmartNIC-accelerated Contention-aware Request Scheduling
for Transaction Processing

Junru Li Youyou Lu∗ Qing Wang Jiazhen Lin Zhe Yang Jiwu Shu

Department of Computer Science and Technology, Tsinghua University
Beijing National Research Center for Information Science and Technology (BNRist)

Abstract
High-performance transaction processing needs to sched-
ule numerous requests from the network. However, such
request scheduling comes with costs of complex informa-
tion gathering and considerable computation. We observe
that emerging SmartNICs pose opportunities for transaction
scheduling with low overhead. In this paper, we propose Al-
NiCo, which leverages SmartNICs to intelligently schedule
incoming transaction requests to CPU cores, minimizing inter-
transaction contention with low latency. AlNiCo describes
the contention according to system states in a way that Smart-
NICs can efficiently process, and co-designs hardware and
software to enable flexible and adaptive scheduling. We im-
plement AlNiCo using FPGA-equipped Innova-2 SmartNICs,
and our evaluation shows that AlNiCo boosts the throughput
by 1.30× ∼ 2.68× and reduces the latency by up to 48.8%.

1 Introduction

Transaction processing is a critical building block for many
applications such as e-commerce and the stock exchange.
Over the last few years, two trends in transaction process-
ing stand out. First, network bandwidth has improved sig-
nificantly, enabling a surge of transaction requests from the
network. Second, modern servers are equipped with numer-
ous CPU cores, providing abundant computing capacity for
transaction processing [1–4]. These two trends together pose a
crucial problem: how to schedule each individual transaction
request to the most appropriate CPU core? Using a sophisti-
cated scheduler for transaction processing can mitigate lots
of inter-transaction contention (i.e., two transactions concur-
rently access the same record, and at least one performs a
write), reducing transaction aborts/blocking and thus boosting
system throughput.

There are two setbacks in realizing efficient transaction
scheduling. First, it is hard to gather necessary information

∗Youyou Lu is the corresponding author (luyouyou@tsinghua.edu.cn).

for scheduling in consideration of cost-efficiency. This is be-
cause the transaction system is intricate: each request contains
a write/read-set with multiple records, and different records
have different degrees of hotness [5–7] and affinities. The hot-
ness and affinity are dynamic: for example, in the live selling
platform of Kuaishou, product popularity changes over time
due to the behavioral uncertainty of users. Second, transaction
scheduling incurs considerable computation overhead. For an
incoming request, to calculate which CPU core it executes
on causes the least contention, the scheduler has to consume
computation cycles that are proportional to the number of
CPU cores and the request’s write/read-set size.

We observe that exploiting emerging SmartNICs [8, 9] can
enable efficient transaction scheduling for two reasons. First,
every transaction request/response flows through NICs, so
they are the natural place to gather information about schedul-
ing. Second, transaction scheduling requires considerable
computation, and SmartNICs are equipped with specialized
programmable hardware (e.g., FPGAs), which is adept in fine-
grained parallelism. Thus, SmartNICs can serve numerous
concurrent scheduling tasks with low latency.

It is non-trivial to design transaction scheduling using
SmartNICs. First, we need to describe inter-transaction con-
tention in a hardware-friendly manner so as to squeeze out the
parallelism capabilities of the specialized hardware in Smart-
NICs. Second, it is impossible for SmartNICs to perform all
scheduling tasks since CPU-side transaction software owns
important information about transaction execution, e.g., the
abort rate, which is indispensable for scheduling. Thus, to
enable effective transaction scheduling, SmartNICs should
cooperate with upper-level transaction software.

We propose AlNiCo, a transaction processing system with
on-NIC request scheduling. At the core of AlNiCo is a
SmartNIC-accelerated contention-aware scheduler; it sched-
ules incoming transaction requests to different CPU cores in-
telligently, minimizing contention between transactions with
low latency.

To describe the inter-transaction contention in a hardware-
friendly manner, we first classify system runtime states into

USENIX Association 2022 USENIX Annual Technical Conference 951

clientsclients

data

clients

data:{A, B, C, …, T, …} data

Contention

Batching & Grouping

(a) (b) (c)

Data Partitioning

txn1txn0

clients

data

(d)

txn0,1

id=Sched(txn)

runtime states

txn2

worker threads
host

NICFPGA

On-path SmartNICs

PCIe switch

NIC FPGA

Off-path SmartNICs

PCIe

network

Txn1:
{A=0, T=1}

Txn0:
{A=1, T=0}

Figure 1: The architectures of networked transaction systems (a-d). (a): A system without scheduling. (b): A system using
the static data partitioning method. (c): A system using the batching-based scheduling method. (d): AlNiCo.

three types: 1) request state, i.e., the set of records accessed
by a request and the associated access modes (read and write);
2) worker state, i.e., the set of requests being executed by the
worker thread on each CPU core; 3) global state, i.e., work-
load characteristics such as hotspots. Then, we encode the
above three types of states into compact vectors and translate
contention calculation into fast vector computation on Smart-
NICs. For an incoming request, to calculate its contention
against different CPU cores, the scheduler compares the re-
quest state and each worker’s worker state, with the global
state as the weight. We optimize the calculation process via
fine-grained parallelism, ensuring low scheduling latency.

To enable adaptive scheduling for time-varying applica-
tions, AlNiCo adopts a feedback mechanism from the upper-
level transaction software to the SmartNICs. Specifically, soft-
ware in AlNiCo periodically samples the global state as the
scheduling guideline and updates the on-NIC scheduler by
flexible hardware/software interfaces. In this way, AlNiCo
can handle dynamic workloads in which hotspots change over
time. In addition, via the generalized feedback mechanism,
AlNiCo can support various concurrency control protocols.

We implement AlNiCo with Mellanox Innova-2 [8], a
SmartNIC equipped with an FPGA. The evaluation shows
that AlNiCo reduces the abort rate by contention-aware
transaction scheduling. AlNiCo boosts the throughput by
1.30× ∼ 2.68× than the original system with various con-
currency control protocols. In addition, compared with ex-
isting static data partitioning methods, AlNiCo can handle
time-varying and skewed workloads; compared with batching-
based scheduling methods, AlNiCo schedules requests in real-
time and renders latency two orders of magnitude lower.

In summary, we make the following contributions:

• A SmartNIC-enabled contention-aware transaction sched-
uler that offers low overhead by exploiting the acceleration
provided by the FPGA.

• AlNiCo, a transaction processing system based on the
scheduler, supporting various concurrency control proto-
cols and time-varying workloads.

• An AlNiCo prototype on real hardware, exhibiting higher
throughput, lower latency, and less abort rate.

2 Background and Motivation

2.1 Contention-aware Scheduling

In an in-memory single-server transaction system, as shown
in Figure 1 (a), the NIC receives transaction requests and dis-
patches them to worker threads. Each transaction request of-
ten includes multiple write/read operations to the in-memory
records. Worker threads execute transactions using various
concurrency control protocols to guarantee transaction isola-
tion. However, concurrent transactions are more likely to be
aborted or blocked when there is contention (i.e., two trans-
actions concurrently access the same record, and at least one
performs a write). Aborts result in costly retries, and blocking
may be cascaded, both of which degrade performance [3].
Therefore, the transaction system needs to minimize con-
tention among concurrent transactions [10–22]. Designing a
contention-aware scheduler that schedules conflicting trans-
actions to the same worker threads is meaningful. However,
there is an accuracy-overhead trade-off in designing it.

Accuracy-overhead trade-off. A high-accuracy scheduler
can assist the majority of requests in selecting an appropriate
(i.e., with less contention) worker thread to execute on. To
achieve such accuracy, the scheduler incurs much computa-
tion overhead. Unlike single-key get/put requests in key-value
stores, transaction requests are more sophisticated, containing
multiple operations (reads, writes, and range queries) to mul-
tiple records. The packet steering method [23, 24] based on
RSS [25] or Flow Director [26], which embeds a single key
in the packet header as the request dispatching information,
is no longer effective for transaction requests. Furthermore,
the records have different degrees of hotness (i.e., a small set
of records are accessed frequently) and affinities (i.e., two
records are often accessed together). The hotness and affinity
are also constantly changing. As a result, contention-aware
scheduling is time-consuming and induces high overhead for
high accuracy.

2.2 Existing Scheduling Methods

We revisit two transaction scheduling methods and show their
choices in the accuracy-overhead trade-off.

952 2022 USENIX Annual Technical Conference USENIX Association

Static data partitioning method. As shown in Figure 1 (b),
recent studies [10–12] maintain a data partition scheme, i.e.,
a mapping from records to worker threads. Clients know the
partition scheme and send transactions directly to worker
threads without scheduling. Then, each worker thread ex-
ecutes the transactions that access records in a single par-
tition sequentially. Further, Jepsen et al. [15, 16] use a pro-
grammable switch to triage transactions belonging to different
data partitions before sending them to the database server.

This method is effective for partitionable workloads where
transactions tend to access records in a single partition be-
cause it has no scheduling overhead under such workloads.
However, this method sacrifices the accuracy for two types
of workloads: Ê workloads that do not have a good parti-
tion scheme and Ë workloads whose record affinities and
degrees of hotness are constantly changing. In the first type
of workloads, many transactions are cross-partition. These
transactions require synchronization between worker threads
to access remote partitions. In the second type of workloads,
the partition scheme needs to be updated to follow workload
changes. Recent studies all use offline computation on work-
load traces to generate the partition scheme; therefore, this
method can not react to the changes in workloads in time and
introduces load imbalance when hotspots change.
Batching-based scheduling method. As shown in Fig-
ure 1 (c), in this method, worker threads collect a batch of
transactions and divide the batch into n groups (n is the
worker thread count), intending to minimize contention be-
tween groups. After that, each worker thread executes a trans-
action group with almost no contention. Specifically, recent
studies on this method [18–21] use a graph partition algo-
rithm that treats transactions as nodes, contention between
them as edges, and transaction groups as sub-graphs.

This method is adaptive and can react to changes in work-
loads. Moreover, it avoids load imbalance by guaranteeing
even grouping (i.e., high accuracy). However, it introduces
high latency for batching (i.e., high overhead). For example,
in a state-of-the-art system, Strife [21], the batch size is 10K,
which adds about 5ms latency for requests. This is insuffer-
able for in-memory transaction systems [22] which usually
have microsecond-level latency.

2.3 Scheduling with SmartNICs
We observe that exploiting emerging SmartNICs (as shown
in Figure 1 (d)) is promising to break the accuracy-overhead
trade-off due to the following two advantages.

First, every transaction request/response flows through the
NIC, so the NIC is the natural place to implement a scheduler,
which can route packets to any worker thread and keep track
of running/queuing transactions on each worker thread. Then,
with this piece of information, NICs have an opportunity
to make accurate and adaptive scheduling decisions. Recent
studies [23,27–29] leverage the NIC as a scheduler to dispatch
key-value requests, addressing the load imbalance or head-of-

line blocking problems. However, they do not take transaction
semantics into consideration.

Second, FPGA-equipped SmartNICs can perform lots of
computation to generate accurate scheduling decisions with
low latency. FPGA-equipped SmartNICs allow users to cus-
tomize network processing logic. Also, the FPGA modules
can reduce scheduling overhead with hardware acceleration
instead of amortizing it by batching transactions. Recent stud-
ies [30–36] also show that packet manipulation processes
with data/pipeline parallelism (i.e., encryption and serializa-
tion) are suitable to be offloaded to the FPGA modules on
SmartNICs. Such offloading can accelerate networking and
relieve the host-side CPU/memory burdens.

FPGA-equipped SmartNICs can be divided into two cate-
gories, on-path and off-path, as shown on the right of Figure 1.
They vary in the connection architecture between the FPGA
and other NIC components. In an on-path SmartNIC, the
FPGA is located between network ports and the NIC ASIC.
In this type of SmartNICs, the FPGA modules need to process
all link-layer network traffic, complicating the FPGA logic.
Contrarily, in an off-path SmartNIC, the NIC ASIC is the
same as that of a standard NIC, and packets are routed to
either the host or the FPGA by an on-board PCIe switch. We
use an off-path SmartNIC, Mellanox Innova-2 [8], so that we
can focus on the scheduling logic while leaving sophisticated
network functions (e.g., reliable delivery and ordering) to the
full-fledged NIC ASIC.

Mellanox Innova-2 [8] has a ConnectX-5 NIC ASIC and
a Xilinx XCKU15P FPGA. It has two 25Gbps ports and
uses PCIe 3.0 ×8 to connect the NIC ASIC, the FPGA,
and the CPU. The CPU communicates with the FPGA via
MMIO (memory-mapped IO) or the FPGA’s DMA engine.
The ConnectX-5 NIC ASIC supports RDMA (remote direct
memory access), through which remote clients can read/write
the server’s memory while bypassing the server’s CPUs.

Challenges of transaction scheduling with SmartNICs. It
is non-trivial to design a transaction scheduler using Smart-
NICs due to the following challenges: 1) The FPGA is adept
in fixed and simple execution flows. We need to describe com-
plicated inter-transaction contention in a hardware-friendly
manner to squeeze out the FPGA’s parallelism capabilities.
2) Worker threads have important information about trans-
action execution, e.g., abort rate, which is indispensable for
scheduling. Thus, to enable effective transaction scheduling,
worker threads should gather this information as feedback
to adjust the scheduler. 3) Transaction systems use various
concurrency control protocols and face various workloads;
however, the FPGA redesign is costly. It is difficult for an
application-specific FPGA-based scheduler to support vari-
ous transaction systems [37, 38]. To be generalized for all
transaction systems, the scheduler design (e.g., request for-
mat, scheduling algorithm, and feedback interfaces) should
not encode any application-specific characteristics.

USENIX Association 2022 USENIX Annual Technical Conference 953

SmartNIC

…

NIC ASIC

…

RPC data

FPGA

RPC features

poll CQ

PCIe

…
RPC reply

Host

network

§3.2

§3.3

feedback

 





 MMIO

DMA

…workers

analyzer

Figure 2: A scheduling-enabled RPC with SmartNICs.

3 AlNiCo

3.1 Overview
To reduce the inter-transaction contention and break
the accuracy-overhead trade-off, we propose AlNiCo, a
SmartNIC-accelerated contention-aware request scheduler.
AlNiCo uses hardware acceleration of the FPGA for low over-
head and provides generalized software feedback interfaces
for high accuracy.

Transaction systems typically provide a stored procedure
interface, where each type of transaction is compiled into
a procedure, and clients issue transactions via remote pro-
cedure calls (RPCs). To achieve request scheduling, Smart-
NICs need to parse the procedure parameters and then de-
tect inter-transaction contention. However, the parameters are
application-specific, including keys that the transaction will
access, the access modes (read/write), the values that the trans-
action will write, and so on. The format of the parameters
also varies across applications.

Therefore, in order to support diverse applications with-
out encoding application-specific properties, we include a
fixed-form header in each request. Clients need to convert the
parameters into the fixed-form header. We call this the request
feature vector. Scheduling also needs the information on run-
ning/queuing transactions in worker threads and workload
characteristics. AlNiCo encodes them in a hardware-friendly
manner and leverages the data and pipeline parallelisms of
the FPGA to make scheduling decisions (§3.2).

We design a scheduling-enabled RPC with SmartNICs
as the communication mechanism between clients and the
server, allowing the FPGA to receive requests and schedule
them. Figure 2 describes its workflow. The server maintains a
data buffer on the host memory and a feature vector buffer on
the FPGA. To issue a transaction, the client sends the data (Ê)
and the feature vector (Ë) to their respective buffers via two
one-sided RDMA writes posted together. AlNiCo’s scheduler
(on the FPGA) polls the feature vector buffers to determine
the arrival of new requests. The scheduler then selects the
most appropriate worker thread based on the request’s feature
vector, the runtime states of worker threads, and the workload
characteristics. After making the scheduling decision, the

scheduler notifies the selected worker thread via writing its
receive completion queue (CQ) (Ì). The CQ entry includes
only the address of request data but not the feature vector.
Since RDMA enforces ordered writes, after reading a new
CQ entry (Í), the worker thread can get the completed data
from the RPC data buffers. The worker thread then executes
the transaction and replies to the client via a normal RDMA
write (Î).

To make the scheduler adaptive to workload changes, Al-
NiCo employs a software feedback mechanism (§3.3). It al-
lows the software to use information about transaction exe-
cution (e.g., records that cause transactions to be aborted) to
guide the scheduler. The feedback interface is generalized
for various concurrency control protocols and different work-
loads. The FPGA fetches the feedback periodically via DMA
reads outside the critical path.

3.2 Accelerated Scheduling on The Hardware
To describe the inter-transaction contention and schedule
transactions in a hardware-friendly manner, we identify three
types of states for scheduling: request state (§3.2.1), worker
state (§3.2.2), and global state (§3.2.3). We then encode the
states into compact vectors and translate the scheduling algo-
rithm into the fast vector computation, which is well-suited
for the FPGA (§3.2.4).

3.2.1 Request state

AlNiCo uses the request state to describe the resources re-
quired by a transaction. Clients embed the complex param-
eters of a transaction request into a request feature vector.
Specifically, each feature vector (~freq) has L elements1. We
use a mapping function to divide all records into L groups.
Each element in the vector represents whether the transaction
will access the corresponding group of records. The mapping
function is the same in all clients. To generate the feature vec-
tor, clients enumerate the keys2 in the request parameters and
set the corresponding elements. Each element can be encoded
into either 1-bit or 2-bit element. A 1-bit element describes
two access modes: no operation and access (read or write).
A 2-bit element describes three access modes: no operation,
read, and write, having better expressibility but consuming
more space. The scheduler can use the feature vectors of re-
quests to estimate whether contention exists between them.
For example, if two requests set the same element in their
feature vectors, these two requests might have contention.
The mapping function for generating feature vectors. The
mapping function is used to select a group for a given key.
Clients use a hash function to calculate a hash value (v) for
each key and use v % L as the group number. Due to hash colli-
sions, clients might map two different keys to the same group.

1All vectors have a length of L in this paper.
2The primary keys of records.

954 2022 USENIX Annual Technical Conference USENIX Association

C
D

F
(%

)
Uniform
random hash
+ R1
+ R1 and R2

Mapping
collision (%)

0

50

100

0 20 40 60 80 100

Figure 3: Mapping collisions of two New-order txns.

To reduce the negative impact of hash collisions, AlNiCo im-
poses two requirements (R) on the mapping function. First,
transaction systems manage records with different seman-
tics in different tables (e.g., the CUSTOMER table and the
ORDER_LINE table in TPC-C) and access records through
〈table_id, key〉. Therefore, clients should map the keys of
different tables into different groups (R1). For example, if
an application has two tables, the mapping function maps
the keys of one table to L2 groups and maps the keys in the
other table to the other L2 groups. Second, because different
tables can have different sizes (i.e., numbers of records), the
number of groups of a table should be proportional to its size
(R2). We test the CDF of the mapping collisions between
New-order transactions in TPC-C, as shown in Figure 3. The
mapping function with these two requirements reduces the
mapping collisions compared with the simple uniform ran-
dom hash. Note that when the table count is large, all tables
should instead share the feature space since there are not
enough elements in the feature vector.
Discussion. There are two corner cases worth discussing
when describing the request state.
How to handle data growth. In our current design, the feature
vector length L and the key-to-feature mapping function are
static at runtime. When the amount of data grows, AlNiCo
does not need to increase L correspondingly in most cases.
This is because the determinant of mapping collisions is the
amount of hot data instead of the data in the entire system;
only a small amount of data is accessed frequently. However,
if changing L or the mapping function is a must (e.g., when
the hotspot size changes significantly), AlNiCo can reload the
on-NIC scheduler with the new configuration (which takes
4.18ms on Innova-2 in our evaluation). In that case, clients
also need to update the new configuration.
How to describe pre-unknown keys. Clients specify most of
the keys of the records that a transaction will access in the
request’s parameters. However, some keys are pre-unknown
and can only be determined through transaction execution. To
describe the required resources for these transactions more
accurately, AlNiCo employs the following two speculative
optimizations. First, for transactions containing range queries,
clients randomly generate the keys in the ranges and set the
corresponding elements of the request feature vector. Second,
for transactions that access records via non-primary keys, the
client maintains a secondary-index cache, which maps each
non-primary key to a set of primary keys, to determine the
records that those transactions will access.

no op read write read & write
request feature vector ~freq 00 10 01 01
worker feature vector ~fw 00 01 11 11

Table 1: Encoding of read and write modes.

3.2.2 Worker state

AlNiCo uses the worker state to describe the resources that
are being or will be accessed by worker threads. Each worker
thread has different running/queuing transactions. Therefore,
a state of the i-th worker thread is the union of the feature
vectors of its running/queuing transactions. We call it the
worker feature vector (~fwi

for the i-th worker). This vector
has the same format as the request feature vector. Further,
to allow worker threads to steer requests actively, AlNiCo
introduces the other worker state, called the worker steering
vector. Each worker thread maintains a steering vector with
1-bit elements (~swi for the i-th worker). Worker threads can
set their steering vectors via the software feedback interface,
which is described in detail in §3.3.2.
How to describe the contention. AlNiCo uses the bitwise
AND (&) operation to describe the contention between a new
request and the running/queuing requests in a worker. When
the element in the feature vector is 1-bit, AlNiCo encodes
request features and worker features in the same way, where
1 represents access (read or write) and 0 represents no opera-
tion. The AND operation between request features and worker
features estimates all concurrent accesses to the same group.
When the element is 2-bit, AlNiCo encodes the access modes
in request features and worker features in different ways, as
shown in Table 1. The result of AND operation between the
request features and the worker features describes read/write
and write/write accesses to the same group as contention.
How to maintain worker feature vectors. The scheduler
maintains a feature vector queue (FVQ) for each worker. The
FVQ stores the feature vectors of the worker’s running/queu-
ing requests (~freq), in the same order as the requests in the
worker’s CQ. The new worker feature vector is recalculated
on adding/deleting an ~freq to/from the worker’s FVQ. Specifi-
cally, for each worker, the scheduler keeps two counter vectors.
A counter vector counts the number of read requests on dif-
ferent groups, and the other vector counts the write requests.
When a request is added/deleted, the scheduler updates the
counter vectors and then converts them to the aforementioned
worker feature vector with the FPGA’s parallelism.

When a request completes, the scheduler needs to remove
its feature vector from the FVQ. One naive method is to let
the worker thread notify the scheduler after executing the
request. However, it requires an additional MMIO operation,
which may slow down the system. AlNiCo designs a lazy
updating mechanism. Specifically, the scheduler will check
the completed requests only when the scheduler pushes a new
request to a worker’s CQ. This can be done efficiently through
the FPGA’s DMA without invoking the CPU.

USENIX Association 2022 USENIX Annual Technical Conference 955

State of Name Format Maintainer
request feature: ~freq vector: 2-bit × L client

worker feature: ~fw vector: 2-bit × L scheduler
steering: ~sw vector: 1-bit × L

worker thread
global weight: ~W vector: 8-bit × L

worker-set table type→ worker set

Table 2: The states used for making scheduling decisions.

3.2.3 Global state

AlNiCo uses the global state to describe workload character-
istics. Real-world applications have skewed access patterns,
where some records are accessed frequently (i.e., hotspots).
These hot records are the main source of contention. There-
fore, in AlNiCo, one of the global states is the weight vector.
Each element in the vector has 8 bits and is the weight of a
group. The element actually represents the total sum hotness
of the keys in a group. To make our scheduler adaptive to
hotspot changes, the weight vector is dynamically updated by
the software, and the feedback interface is detailed in §3.3.1.

The other global state is the worker-set table, which stores
a set of worker threads for each request type. The scheduler
selects a worker only from each request type’s worker set. This
is used to avoid the head-of-line blocking for long-running
requests, which is described in detail in §3.3.3.

3.2.4 Making scheduling decisions

As summarized in Table 2, states are formatted in vectors with
length L, except for the global worker-set table. Therefore, the
scheduler can use fast vector computation to make scheduling
decisions. For each new request, the scheduler performs the
following three steps.
Step#1. The scheduler searches the worker-set table to get
the set of workers for this type of transaction.
Step#2. For each worker, the scheduler calculates a con-
tention rank (rankwi for the i-th worker) between the new
request and the running/queuing requests in the worker. The
contention rank is calculated using the following formula:

rankwi =
(
sign (~freq AND ~fwi

) AND ~swi

)
DOT ~W

Here we assume elements in steering vectors (~swi) are 1.
When each element in feature vector is 2-bit, AlNiCo needs
the sign function to transform the result of (~freq AND ~fwi

) to a
vector with 1-bit elements for later calculations. If the input is
greater than 0, the result of the sign function is 1, otherwise it
is 0. This result ~resi

3 represents the same groups accessed by
the new request (~freq) and the i-th worker’s running/queuing
requests (~fwi

). The contention rank of the i-th worker is the
weighted sum (~W) of ~resi.

3We denote the results of sign (~freq AND ~fwi
) AND ~swi as ~resi.

scheduling decision

L/8…
28 Results

log2
L

8
൝ log2n

൝

൝+ +

+

n
8-bit unit

൝

max()

28 Results…w

res𝒊

ranki max()

max()

8-bit unit …
rank0 rankn-1

Figure 4: Hardware acceleration for scheduling.

Step#3. The scheduler selects the worker with the highest
contention rank among n workers4 to route the request.
Hardware acceleration. We leverage the FPGA to accelerate
the scheduling calculation, including the AND (&) and DOT
PRODUCT (·) to compute the contention rank of each worker,
and the MAX to select a worker with the highest rank.

(1) We leverage the FPGA data parallelism to calculate all
bits simultaneously during the AND operation.

(2) Because each element in ~resi is 1-bit, the DOT PRODUCT
operation between ~resi and ~W is actually a summation op-
eration, which adds a weight value into the sum only if the
corresponding bit in ~resi is 1. We optimize the summation
via a binary tree reduction algorithm. As illustrated in Fig-
ure 4, the reduction algorithm executes the + operation in
parallel using many computation units. Each unit adds two
values in the L inputs, and then the L2 results become new
inputs. It repeats this process until there is only one result left.
This algorithm only needs to execute log2 L times but uses L2
computation units. To save the computation units, we trade
memory consumption. Because the weight vector is period-
ically updated, it is constant for a period. The FPGA stores
the results of the DOT PRODUCT between different ~resi and the
constant ~W in advance. However, ~resi has 2L cases, and it is
impractical to store all results. Therefore, we divide ~resi into
L
8 segments. Each segment includes 8 bits and has 28 = 256
results. There are L8 ×28 results in total, small enough to be
stored in the FPGA’s memory. The FPGA still uses the reduc-
tion algorithm to compute the sum of these segments’ results.
Storing segment result trades the memory for reducing the
number of computation units from L

2 to L
16 .

(3) The MAX operation is to find the highest value among
n values. As shown in Figure 4, the FPGA uses the MAX
reduction algorithm, which requires only log2 n steps.

These hardware optimizations are leveraged to reduce the
overhead of making accurate scheduling decisions.

3.3 Adaptive Feedback from The Software
To make the scheduler adaptive to the changes in workload
characteristics, AlNiCo allows the software to set the follow-
ing three states: the weight vector ~W (§3.3.1), the workers’
steering vectors ~sw (§3.3.2), and the worker-set table (§3.3.3).
AlNiCo provides generalized feedback interfaces to worker
threads and uses a lightweight analyzer thread to update the

4We denote n as the worker count in the following paper.

956 2022 USENIX Annual Technical Conference USENIX Association

1 void hotness_feedback(i: worker id, key){
2 hotness[i][hash(key)]++;
3 }
4

5 void affinity_feedback(group_A, group_B){
6 set_affinity(group_A, group_B)
7 }
8

9 void worker_set_feedback(txn_type, worker_set);
10

11 void update_weight(E: epoch id){ // Sec.3.3.1
12 TP(E) =

∑n−1
i=0 tpi

13 ~hall =
∑n−1

i=0
~hi ×tpi / TP(E)

14 if (E == 0 || TP(E) < (1-c) × TP(E-1))

15 update ~W based on ~hall // normalization

16 next_epoch(): clear tpi and ~hi
17 }
18

19 void update_steering(~w){ // Sec.3.3.2
20 g_groups = [] // the indexes of guideline groups

21 for weight in sorted ~W { // from the highest
22 new_group = weight.index;
23 if no_affinity(new_group, g_groups)
24 g_groups.append(new_group);
25 if (g_groups.size() == n) break;
26 }
27 update steering vectors based on g_groups
28 }

Listing 1: The feedback interfaces and algorithms.

scheduler’s states based on the feedback. Listing 1 shows
the feedback interfaces and the algorithms for translating the
feedback into the states needed by the scheduler.

3.3.1 Hotness feedback

We define the keys that cause contention frequently as the
hotspots in the transaction system, instead of the keys that
are accessed frequently. The hotspots keep changing over
time. AlNiCo requires the software to identify the hotspots in
real-time and update the weight vector correspondingly.
Hotness feedback interface. We provide a hotness feedback
interface as shown in Lines 1-3. Each worker increases the
hotness of a key in its exclusive hotness vector (~hi) without
any coordination with other workers. Different concurrency
control protocols invoke the interface in different situations,
and we divide them into two cases based on the way they
address the contention. First, with OCC and the 2PL that
avoids deadlock by wait-free algorithms, transactions might
get aborted and re-executed. The worker increases the hotness
of the record that causes the abort. Second, with the 2PL
that holds locks sequentially to avoid deadlock, transactions
might be blocked while trying to acquire a lock. Every time a
transaction retries acquiring the lock of a record, the worker
increases the corresponding hotness.
How to update the weight vector. AlNiCo employs an
epoch-based updating approach. The analyzer thread collects
these hotness vectors at the end of each epoch. Further, each
worker measures its throughput (tpi). Then, as shown in Line
13, the analyzer calculates the weighted average (based on
tpi) of workers’ hotness vectors as the global hotness vector
(~hall) and uses it to update the weight vector (Line 15).

When to update the weight vector. AlNiCo updates the
weight vector only when the real hotspots change. When the
system is cold-started (e.g., in epoch 0), requests are randomly
scheduled, and therefore ~hall can reflect the real hotspots.
However, when the system is stable, due to AlNiCo’s effective
scheduling mechanism, those hot keys detected right after the
cold start no longer cause contention, and their degrees of
hotness is low in the new ~hall. In this case, ~W should remain
unchanged to keep the scheduler effective.

The software uses throughput decreases or abort rate in-
creases as the signal of the hotspot changes. Line 14 shows
how to detect changes in hotspots. In this algorithm, we use
the throughput (TP) decreases as the signal. If the throughput
decreases significantly, i.e., TP drops by more than a factor of
c, AlNiCo will store ~hall in a state buffer that can be read by
the NIC via DMA.

When the workload is read-intensive, workers increase the
hotness every time a record is read. The analyzer simply
ignores the workload change signal and always updates the
weight vector at the end of epochs. In this way, AlNiCo helps
worker threads to better leverage cache locality.

3.3.2 Affinity feedback

A contention-aware scheduler not only schedules conflicting
transactions to the same workers but also schedules trans-
actions without contention to different workers to make all
workers busy. To this end, AlNiCo introduces the steering
vectors (~sw) to guide the scheduler. As shown in the formula
in §3.2.4, only if the element in a worker’s steering vector
(~swi) is 1, the corresponding element in its feature vector (~fwi

)
is valid. The key idea is to select n (i.e., worker count) guide-
line groups that have the highest weights and do not have
affinities with each other. AlNiCo assigns different guideline
groups to different workers to achieve the aforementioned
goal. Each worker’s steering vector consists of 1-s for its
assigned guideline group and all non-guideline groups by de-
fault. For other guideline groups, the corresponding element
in the steering vector is 0. In this way, the worker will steer
transactions accessing its guideline group. Therefore, in a
running system, the feature vector of a worker represents the
groups that have affinities with the worker’s guideline group.
Affinity feedback interface. To find the n guideline groups,
AlNiCo needs the affinity characteristics of workloads. We
provide the affinity feedback interface (Lines 5-7) that allows
users to offer the affinity hint for different workloads.
How to update the steering vectors. As shown in Lines 19-
28, the analyzer thread first sorts all groups according to their
weights and enumerates them from the group with the highest
weight. Then, the analyzer thread checks whether the group
has an affinity with the already found guideline groups. If
there is no affinity between them, the group will be labeled as
a new guideline group.

USENIX Association 2022 USENIX Annual Technical Conference 957

3.3.3 Reserving workers for long-running transactions

In real-world workloads, some transactions take a long time to
finish (e.g., analytical transactions) and block the transactions
assigned to the same worker (i.e., head-of-line blocking). For
example, a Delivery transaction accesses about 10 times more
keys than a New-order transaction. We reserve some workers
to handle these long-running transactions, which is similar to
the size-aware request scheduling mechanism [39, 40]. We
provide an interface to set the worker set for different types
of transactions. Our design only sets the worker-set table
on the system startup for workloads that have long-running
transactions.

4 Implementation
We implement AlNiCo on an Innova-2 SmartNIC [8] and use
STO [41], a state-of-the-art transaction processing framework,
as the backend transaction processing module.
The scheduler on the FPGA. We implement two fundamen-
tal drivers for SmartNICs: a PeerDirect driver [42,43] to build
peer-to-peer communication between the NIC ASIC and the
FPGA, and a DMA driver [44] to connect the FPGA and the
host. Innova-2 holds a Xilinx KU15P FPGA. In our implemen-
tation, the feature vector length L is 512, and we encode read-
/write modes to the same bit to save feature space. The clock
frequency is 250MHz. With these configurations, AlNiCo con-
sumes 54 cycles for each request to make the scheduling deci-
sion. AlNiCo updates global states every 1024 requests (every
22ms) in the background, consuming 1184 cycles. Therefore,
we set the epoch size for gathering the feedback in software to
20ms. The implementation consumes 159K (30.48%) LUTs,
157K (15.10%) FFs, and 678.5 (68.95%) BRAMs. We evalu-
ate the computation cycles and resource usage with different
feature vector lengths in §5.6.
The transaction processing module on the host. We choose
STO as our backend transaction processing module because it
implements various CC protocols in the same framework and
is high-performance. To use STO, we locate the contention
handling function in the framework and then add feedback
interface codes to these functions. The parameters of this
feedback interface are the records that triggered the contention
handling function. On the client side, we do not modify the
original request format of the stored procedure, and we only
add the field for the feature vector in the request header. We
use the following four concurrency control (CC) protocols in
the STO framework:
• OCC: it is based on Silo [45], which avoids allocating

global timestamps to improve multi-core scalability.
• TicToc [46]: it is an OCC variant that assigns commit times-

tamps dynamically according to read/write set.
• MVCC: it is based on Cicada [47], which optimizes the

management of the timestamps and multi-version values.
• 2PL [48, 49]: it uses NO_WAIT to avoid deadlock; when a

transaction fails to acquire a lock, it immediately aborts.

All four concurrency control protocols run at the serializable
isolation level. The table indexes use Masstree [50], which
supports range queries.

5 Evaluation

We evaluate AlNiCo under various workloads and seek to
answer the following five questions:
1. How does AlNiCo perform compared with existing trans-

action scheduling methods (§5.2)?
2. How does AlNiCo react to dynamic workloads (§5.3)?
3. Why are SmartNICs necessary for the contention-aware

request scheduling (§5.4) ?
4. How compatible is AlNiCo with various concurrency con-

trol protocols (§5.5) ?
5. What are the overhead and the limitation incurred by the

on-NIC scheduler in AlNiCo (§5.6)?

5.1 Experimental Setup

Experimental environment. We run all experiments on three
machines, one as the server and two as clients.
Hardware settings. Each machine is equipped with two 12-
core Xeon E5-2650 v4 2.20GHz CPU sockets, PCIe 3.0 inter-
faces, and memory of 128GB. The database server is equipped
with a dual-port 25Gbps Innova-2 SmartNIC. Each client is
equipped with one 100Gbps Mellanox ConnectX-5 NIC. They
are connected by a 100Gbps Mellanox switch.
Software settings. Each client thread issues up to 4 transac-
tion requests simultaneously (i.e., the queue depth is 4). We
adjust the number of clients and the number of asynchronous
requests per client to change the test pressure. The server uses
20 cores for worker threads, 2 cores for long-running trans-
actions in TPC-C workloads, and one core for the analyzer
thread and performance measurement. For a fair comparison,
the competitors use the RDMA-based RPC with optimiza-
tions from previous RDMA systems [51–58], and only use
the normal ASIC part of the Innova-2 NIC. We evaluate the
performance of this RPC against our scheduling-enable RPC
in §5.6.

Workloads. We use the following benchmarks:
TPC-C [6] simulates the activity of a wholesale supplier with
five types of transactions. We use the full-mix TPC-C. AlNiCo
reserves two cores for the long-running delivery transactions.
YCSB-T is a transactional extension of YCSB, which is a
popular KV store benchmark [59]. It has 20 tables as many as
the worker threads, and the key space is 100M. Each record
contains an 8-byte key and a 384-byte value [39, 60]. Each
transaction accesses 16 records in a single table, and the keys
are generated according to the Zipf distribution (θ=0.99).
YCSB-HOT is a dynamic workload based on YCSB-T. Dif-
ferent from YCSB-T, it has 100 tables, and 20 tables are hot
at one time. The hot tables are changed every two seconds to

958 2022 USENIX Annual Technical Conference USENIX Association

Th
ro

ug
hp

ut
 (M

op
s/

s) NetSTO StaticPart Strife AlNiCo
(a) (b) (c) (d) (e) (f) (g)

0
0.5
1.0
1.5
2.0

TPC-C (20 wh) TPC-C (20 wh, Zipf) TPC-C (2 wh) YCSB-T (w: 5) YCSB-T (w: 50) YCSB-T (w: 95) YCSB-HOT (w: 50)

Figure 5: Throughput. The wh in TPC-C is the number of warehouses, (a): the low-contention workload, (b): the skewed
workload under Zipf θ=0.99, (c): the high-contention workload. The w in YCSB is the percentage of write operations.

simulate the changes in time-varying applications. Keys are
generated according to the Zipf distribution (θ=1.2).
Competitors. We compare AlNiCo with five systems: a base-
line system without scheduling, two systems using existing
scheduling methods, and two CPU-based versions of AlNiCo.
NetSTO is a baseline system in which clients randomly select
a worker to send transaction requests without scheduling.
StaticPart is a system using the static data partitioning method.
For TPC-C workloads, StaticPart partitions data based on the
warehouse ID [12]. For YCSB-T and YCSB-HOT workloads,
StaticPart partitions data based on the ID of tables.
Strife [21] is a system using the batching-based method. The
batch size is 10K, and the batch waiting time is 5ms, the same
configuration as in Strife’s paper. To support batching, the
queue depth in clients is 1K.
AlNiCo-CPU-2 is a CPU-based version of AlNiCo, which
reserves two dedicated threads to execute the scheduling logic.
Each scheduler thread connects to half of the clients and
communicates with the workers through separated message
queues. The worker/global states are shared by the scheduler
threads and updated with atomic operations.
AlNiCo-CPU-N is the other CPU-based version of AlNiCo. It
co-locates the worker logic and scheduler logic in each thread,
where they multiplex the CPU resource. All threads share
the worker/global states. The client connections are evenly
distributed among threads. Each thread can make scheduling
decisions and delegate requests to others as a scheduler.

5.2 Overall Performance
We first evaluate the peak throughput of NetSTO, StaticPart,
Strife, and AlNiCo with various workloads in Figure 5. Then
we evaluate the latency of different types of transactions under
TPC-C by varying request pressure in Figure 6.
Throughput under TPC-C. We evaluate TPC-C under dif-
ferent levels of contention by varying the number of ware-
houses. We set the warehouse count to 20 and 2 to simulate
low-contention and high-contention scenarios. We also in-
troduce a skewed TPC-C, which has 20 warehouses. In this
skewed TPC-C, clients select the warehouse according to the
Zipf distribution with θ = 0.99. In StaticPart, when the ware-
house count is equal to the worker count (20), each worker
manages an exclusive warehouse, and when the warehouse

count is 2, every 10 workers manage a warehouse. For a
fair comparison, StaticPart, Strife, and AlNiCo all reserve 2
worker threads for long-running transactions. Figure 5 (a)-(c)
show the throughput of TPC-C under these configurations,
and we have the following two observations.

First, in the low-contention workloads (Figure 5 (a)), Stat-
icPart has the highest throughput, outperforming NetSTO,
Strife, and AlNiCo by 1.30×, 1.11×, and 1.06×, respectively.
This is because only 10% of the transactions are cross-
warehouse transactions, and the warehouse count is the same
as the worker count, which is a good case for the static data
partition method. The transaction grouping algorithm in Strife
and the feedback mechanism in AlNiCo cost the CPU re-
sources that are originally used for transaction execution. In
the skewed workloads (Figure 5 (b)), the throughput of Stat-
icPart is only 47% of NetSTO. This is because clients access
hot warehouses while the data partition in StaticPart is static,
which results in load imbalance.

Second, in the high-contention workloads (Figure 5 (c)),
1) AlNiCo improves throughput by 2.46× compared with
NetSTO. This is because the contention-aware scheduling
reduces the contention between the running transactions and
saves the CPU resources to execute more transactions. 2) The
throughput of AlNiCo is 2.41× higher than StaticPart. This is
because the workload is not partitionable and there is still a
lot of contention between concurrent transactions.
Throughput under YCSB-T. Figure 5 (d)-(f) show the
throughput under YCSB-T with different read/write ratios.
We have the following two new observations.

First, all scheduling methods do not have benefits under
the read-intensive workload (Figure 5 (d)). This is because
1) there is less contention for read-intensive transactions; 2)
the throughput of this workload is bound by the bandwidth of
the NIC (i.e., 50Gbps); 1Mops/s throughput in this workload
requires about 45.6Gbps outbound bandwidth to transmit data.

Second, the highest throughput of write-intensive work-
loads (Figure 5 (f)) is bound by the NIC in AlNiCo. However,
NetSTO can not use the full bandwidth because this workload
causes more contention (especially the write-write contention)
than the read-intensive one.
Latency under TPC-C. We evaluate the latency distribution
for New-order transactions and Delivery transactions (long-
running) with varying throughput. Figure 6 shows the median

USENIX Association 2022 USENIX Annual Technical Conference 959

P9
9

La
te

nc
y

(m
s)

0

1

2

3 (b) New-order
 P99

0

1

2

3

0

100

200

300 (c) Delivery
 P50

0

100

200

300

0.5 1.0 2.0

P5
0

La
te

nc
y

(μ
s)

0

50

100
NetSTO StaticPart AlNiCo
(a) New-order
 P50

0

50

100

Total throughput (Mops/s)

0

2

4

6
 (d)
Delivery P99

0

2

4

6

0.5 1.0 2.0

Figure 6: Latency of New-order and Delivery transactions
under TPC-C (2 warehouses).

(P50) and 99th percentile (P99) latency, and we have the
following two observations.

First, as shown in Figure 6, when the throughput is low, the
median latency of New-order in AlNiCo (24.1µs) is higher
than that in NetSTO (23.6µs). This is because the requests
in AlNiCo have extra latency for scheduling logic and two
extra PCIe communication latency for the off-path Smart-
NICs. As the throughput increases, the New-order median
latency in AlNiCo is lower than NetSTO because the reserv-
ing worker threads for long-running transactions prevent them
from blocking other normal transactions.

Second, in NetSTO, before the throughput reaches the peak,
the latency increases faster than in AlNiCo. This is because
the contention blocks transactions or causes them to retry, in-
creasing the latency of the running transactions and blocking
subsequent requests. Under a similar throughput of AlNiCo
(0.78Mops/s) and NetSTO (0.71Mops/s), AlNiCo reduces the
median latency of New-order from 51.8µs to 26.5µs.

In addition, median and P99 latency in Strife exceed 7ms,
larger than the batch waiting time (5ms). In Strife, the median
latency of New-order is between 7.00ms and 19.92ms, and
the P99 latency is between 12.54ms and 25.18ms, which are
not plotted in the figure to avoid obscuring other results. This
is because the end-to-end latency includes the network stack
latency, the batch time, the transaction grouping time, and
the transaction execution time. AlNiCo does not sacrifice the
request latency: at the peak throughput, the P99 tail latency
of the New-order transaction is no more than 1.17ms, and the
median latency is only 72.7µs.

5.3 Dynamic Workloads

We evaluate AlNiCo’s ability to adapt to dynamic workloads
by changing the hot tables in YCSB-HOT. We run YCSB-
HOT with a 50/50 read/write ratio.

Figure 7 shows the throughput over time, from which we
have the following three observations.

Time (100ms)

Th
ro

ug
hp

ut
 (M

op
s/

s)

NetSTO
StaticPart

Strife
AlNiCo

0
0.5
1.0
1.5
2.0

2 4 6 8 1020 22 24 26 28 3040 42 44 46 48 50

Figure 7: YCSB-HOT throughput over time. Hot tables
change every 2s; measuring the throughput every 10ms.

First, AlNiCo takes about 150ms to adapt to the changes
of hot tables. At the beginning of changes, the throughput
drops to the lowest point, even worse than NetSTO. This
is because the weight vector fails to reflect the conflicting
hotspots in the new hot tables. The steering vectors based
on the historical hotspots can not guide the scheduling. Be-
fore adjusting the scheduler to fit the new workloads, AlNiCo
suffers performance jitters. This is because the feedback in
AlNiCo reflects the workload characteristics over time, and
it takes a while to make the characteristics of old hot tables
fade away. Second, Strife reacts more quickly to dynamic
workloads without experiencing throughput degradation. This
is because the results of transaction grouping in Strife are
based on the information in a batch and do not rely on the
historical information of the workloads. However, the medi-
an/P99 latency (at the peak throughput) of AlNiCo and Strife
are 72.6us/1.66ms and 12.21ms/15.23ms, respectively. This is
because Strife introduces extra latency due to batching. Third,
StaticPart performs worse than NetSTO and varies with the
workload changes. This is because the hot tables cause the
load imbalance problem in this static data partition method.

In summary, according to §5.2 and §5.3, the static data
partition methods are the best for the partitionable work-
loads, but they can not handle skewed or dynamic workloads.
The batching-based scheduling methods can handle various
workloads, but they introduce orders of magnitude higher la-
tency for requests. Thanks to SmartNICs, AlNiCo can handle
skewed or dynamic workloads with low latency.

5.4 Comparison with CPU-based AlNiCo
We demonstrate the necessity of SmartNIC-accelerated design
for contention-aware scheduling by comparing it with two
versions of CPU-based AlNiCo.

Figure 8 shows the throughput of CPU-based AlNiCo with
varying worker thread count. The workload is TPC-C with 2
warehouses. We have the following three observations.

First, AlNiCo-CPU-2 brings an improvement in throughput
when the worker thread count is small. However, with more
worker threads, the performance decreases. This is because
two scheduler threads have limited computing resources, and
the scheduling complexity increases linearly with the number
of worker threads. As a result, the CPU can not accelerate the
scheduling computation.

960 2022 USENIX Annual Technical Conference USENIX Association

(a) OCC (b) TicToc

Th
ro

up
ut

pu
t (

M
op

s/
s)

NetSTO
+AlNiCo-CPU-N

+AlNiCo-CPU-2
+AlNiCo

0
0.5
1.0
1.5
2.0

(c) MVCC (d) 2PL

of worker threads

0

0.5

1.0

0 4 8 12 16 20 0 4 8 12 16 20

Figure 8: TPC-C (2 warehouses) throughput with four dif-
ferent concurrency control protocols.

Second, AlNiCo-CPU-N is not as good as AlNiCo-CPU-2
when the worker thread count is small because the scheduling
consumes the workers’ resources. It improves the throughput
compared with NetSTO because its scheduling overhead is
less than the overhead for transaction aborts/blocking. More-
over, its throughput is scalable with the thread count because
the resources for the scheduler increase linearly with the
thread count.

Third, the improvement of the AlNiCo-CPU-N version is
small. The throughput of the scheduler itself is not the bottle-
neck in AlNiCo-CPU-N, but it can not enjoy the acceleration
of the FPGA. The scheduling logic costs lots of CPU re-
sources. AlNiCo speeds up individual request scheduling by
fine-grained parallel computation, and the computation of
multiple requests is pipelined. These provide higher perfor-
mance with less CPU resource cost.

5.5 Generality of AlNiCo

We demonstrate the generality of AlNiCo by changing the
concurrency control protocols in STO. Figure 8 shows the
throughput with varying worker thread count and the four
CC protocols described in §4. The workload is TPC-C with
2 warehouses. Note that, since the 2PL implementation in
STO has performance abnormalities under full-mix TPC-C,
we only evaluate the New-order transactions for 2PL (Fig-
ure 8 (d)). Comparing AlNiCo with NetSTO, we have two
observations:

First, AlNiCo brings performance improvement for these
4 CC protocols. With 20 workers, AlNiCo improves the
throughput by 2.45× (OCC), 1.77× (TicToc), 2.45× (MVCC),
and 2.28× (2PL), respectively. This is because AlNiCo pro-
vides a generalized hotness feedback interface and affinity
feedback interface to generate the worker states and global
states. The feedback mechanism in AlNiCo is generalized for
various concurrency control protocols.

AlNiCo
RDMA-RPC

M
ed

ia
n

la
te

cn
y

 (
μs

)

(b)

0
10
20
30

128
256

512
1K 2K 4K 8K

Th
ro

ug
hp

ut
 (

M
op

s/
s)

(a)

0
2
4
6

128
256

512
1K 2K 4K 8K

Request size (bytes)

Figure 9: RPC throughput (a) and median latency (b) with
varying request sizes.

L=128 L=256 L=512 L=1K L=4K

Accuracy
rate

TPC-C 22.7% 36.7% 59.8% 85.5% 99.9%
YCSB-T 5.2% 6.5% 9.9% 28.4% 84.4%

YCSB-HOT 17.6% 20.7% 29.4% 42.7% 79.8%
Computation cycles 37 37 54 101 N/A
BRAM/LUT/FF(%) 6/2/9 10/3/11 16/5/16 30/10/26 N/A

Table 3: The trade-off of feature vector length L.

Second, 2PL performance is worse than other protocols.
This is because 2PL needs to write shared memory to acquire
the read lock, while the weakness of OCC’s high rollback
overhead is negligible in the in-memory system. MVCC has
the extra overhead of maintaining version information, so it
has lower overall throughput than OCC and TicToc.

5.6 Overhead and Limitation
We evaluate the overhead of AlNiCo and discuss its limitation.
Overhead of clients. The client specifies the request feature
vector when serializing a transaction into a network message.
It takes about 23ns for each key in the transaction parameters.
Overhead of SmartNICs. Figure 9 shows the performance
of RDMA-RPC and AlNiCo under a micro-benchmark, where
the server sends an 8-byte reply to clients immediately as soon
as receiving a request. When the request is less than 2KB, the
IOPS and latency are limited by the on-NIC scheduler. This
is because AlNiCo needs extra bandwidth to send the fea-
ture vector, and the off-path SmartNIC introduces additional
latency.
Overhead of server feedback. The evaluation shows that
AlNiCo uses only 1.2% of the CPU resources for the software
feedback since the FPGA completes most computations for
scheduling. However, the CPU-based AlNiCo (AlNiCo-CPU-
N version) takes 27.7% of the CPU resources (i.e., scheduling
overhead) to make scheduling decisions, which overshadows
the scheduling benefits. This illustrates the need for using
SmartNICs to reduce scheduling overhead.
The trade-off of feature vector length L. Table 3 shows the
trade-off for choosing the feature vector length L, where the
accuracy rate means the proportion of keys detected as the con-
tention that are truly contention. We have two observations.
First, a larger feature vector length L improves the accuracy
rate because it reduces mapping collisions in features. Second,
the scheduler IP core in AlNiCo requires more computation
cycles and FPGA resources, and they increase linearly with

USENIX Association 2022 USENIX Annual Technical Conference 961

C
on

te
nt

io
n

de
te

ct
io

n
 a

cc
ur

ac
y

ra
te

 (%
) (b)

0
20
40
60

0.5 1.0 1.5

AlNiCo
NetSTO

Th
ro

ug
hp

ut
 (

M
op

s/
s)

(a)

1.0

1.5

2.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Zipf θ Zipf θ

Figure 10: YCSB-T (W:50) throughput (a) and contention
detection accuracy rate (b) with varying θ.

the feature vector length L. The theoretical maximum of L is
limited by BRAM resources that are used to receive request
feature vectors and store scheduler runtime states. We can sac-
rifice computation optimization or use on-NIC DDR4 (8GB
in Innova-2) as storage resources to support a larger L.
Limitation. Based on all experiments in this section, we dis-
cuss the following two limitations. 1) AlNiCo can not improve
the performance of uniform workloads. Figure 10 shows the
throughput and the accuracy rate of contention detection with
different θ under YCSB-T(W:50%). We observe that only
when θ is higher than 0.8, the feature vectors can reflect the
contention between requests. This is because, with the more
skewed access pattern, the mapping collisions are fewer, and
the weights of groups are more distinguishing. 2) AlNiCo
can not improve the performance of the workloads whose
throughput is limited by the NIC bandwidth. We focus on
workloads whose throughput is limited by contention because
AlNiCo consumes additional bandwidth for feature vectors.

6 Related Work

In-network scheduling. There have been intensive evolu-
tion efforts in application layer network scheduling, focusing
on core affinity, load balance, head-of-line blocking, and in-
network transaction coordination.
Core affinity. RSS [25] and FlowDirector [26] dispatch pack-
ets based on hashing header fields. MICA [23] uses RSS
to assign single-key KV requests to cores based on the key
hash partitioning for object-level core affinity. RSS++ [61]
achieves dynamic load balance by RSS indirection and
supports stateful flow migration by optimizing state trans-
fers among cores. Different from them, AlNiCo focuses on
contention-aware scheduling for transaction requests.
Load balance. Recent studies [62–64] achieve µs-scale SLOs
through dynamic core scheduling or request scheduling.
Humphries et al. [27] offload Shinjuku [64] to SmartNICs.
RPCValet [28] and R2P2 [65] dispatch stateless RPC by
emulating the theoretically optimal single-queue schedul-
ing policy on NICs and programmable switches, respectively.
RackSched [66] is a rack-level service scheduler with two-
layer (i.e., inter/intra-server) scheduling.
Head-of-line blocking. In Minos [39] and DARC [40], KV
requests for records of different sizes go to different cores to
avoid blocking small requests by long-running requests.

In-network transaction coordination. Recent work offloads
the transaction coordination to programmable switches [67–
69] and client-side SmartNICs [70] to reduce the network
overhead of distributed transactions. AlNiCo focuses on
scheduling single-machine transactions to different CPU
cores.
Transaction scheduling. Recent work for transaction pro-
cessing can be categorized into inter-transaction scheduling
and intra-transaction scheduling. AlNiCo focuses on inter-
transaction scheduling, which schedules each entire transac-
tion to the most appropriate CPU core.
Inter-transaction scheduling. The common principle of
batching-based scheduling methods is to make each group al-
most conflict-free, and they differ in the approaches to residual
conflicts. Calvin [71], LADS [19], and QueCC [18] keep track
of the dependencies between transaction groups and wait for
the completion of dependent transactions. Ding et al. [20]
present a method that retries conflicting transactions at a
higher priority in the next batch. Further, Jepsen et al. [15,16]
use a programmable switch to triage transactions belonging
to different static data partitions before sending them to the
database server.
Intra-transaction scheduling. A series of studies use strategies
including tracking transaction dependencies [72], exploring
the operation commutability [73], reading values from the
write buffer [20], and releasing the lock in advance [74] to
schedule each read/write operation. Polyjuice [75] uses ma-
chine learning models to specify different execution policies
for each operation. Moreover, some studies focus on the order
of locks; QURO [76] allows transactions that are more likely
to block the system to hold locks, while Chiller [77] changes
the lock order to reduce the locking time of hot records. Their
intra-transaction scheduling is complementary to AlNiCo.

7 Conclusion
This paper presents AlNiCo, a transaction system that lever-
ages SmartNICs to intelligently schedule incoming trans-
action requests to CPU cores, minimizing contention with
low latency. AlNiCo describes the contention in a hardware-
friendly manner so that specialized hardware can efficiently
make scheduling decisions, and co-designs hardware and soft-
ware to enable flexible and adaptive scheduling. Evaluation
with real hardware (Innova-2) shows that AlNiCo reduces the
contention between the running transactions and significantly
improves performance.

Acknowledgements
We sincerely thank our shepherd and the anonymous review-
ers for their valuable feedback, which greatly improved this
paper. We also thank Jian Gao, Minhui Xie, Jing Wang, Wen-
hao Lv, Xiaojian Liao,and Jian Chen for their suggestions.
This work is funded by the National Natural Science Founda-
tion of China (Grant No.62022051, 61832011), and Kuaishou.

962 2022 USENIX Annual Technical Conference USENIX Association

References

[1] Tianzheng Wang and Hideaki Kimura. Mostly-
optimistic concurrency control for highly contended dy-
namic workloads on a thousand cores. Proceedings of
the VLDB Endowment, 10(2):49–60, 2016.

[2] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas
Devadas, and Michael Stonebraker. Staring into the
abyss: An evaluation of concurrency control with one
thousand cores. Proc. VLDB Endow., 8(3):209–220,
November 2014.

[3] Mohammad Sadoghi and Spyros Blanas. Transaction
processing on modern hardware. Synthesis Lectures on
Data Management, 14(2):1–138, 2019.

[4] Youmin Chen, Xiangyao Yu, Paraschos Koutris, An-
drea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Jiwu Shu. Plor: General transactions with predictable,
low tail latency. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, SIGMOD-
/PODS ’22, page 19–33, New York, NY, USA, 2022.
Association for Computing Machinery.

[5] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,
and Philippe Cudre-Mauroux. Oltp-bench: An extensi-
ble testbed for benchmarking relational databases. Pro-
ceedings of the VLDB Endowment, 7(4):277–288, 2013.

[6] Standard Specification. TPC BENCHMARKTM C.
1994.

[7] Tianyang Jiang, Guangyan Zhang, Zhiyue Li, and
Weimin Zheng. Aurogon: Taming aborts in all phases
for distributed In-Memory transactions. In 20th USENIX
Conference on File and Storage Technologies (FAST
22), pages 217–232, Santa Clara, CA, February 2022.
USENIX Association.

[8] Mellanox. InnovaTM-2 Flex Open Programmable
SmartNIC.
https://www.mellanox.com/files/doc-2020/
pb-innova-2-flex.pdf, 2020.

[9] Cisco. Cisco Nexus SmartNIC.
https://www.cisco.com/c/en/us/products/
interfaces-modules/nexus-smartnic/index.
html, 2021.

[10] Robert Kallman, Hideaki Kimura, Jonathan Natkins, An-
drew Pavlo, Alexander Rasin, Stanley Zdonik, Evan PC
Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, et al. H-store: a high-performance, distributed
main memory transaction processing system. Proceed-
ings of the VLDB Endowment, 1(2):1496–1499, 2008.

[11] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas,
and Anastasia Ailamaki. Data-oriented transaction exe-
cution. Proceedings of the VLDB Endowment, 3(ARTI-
CLE), 2010.

[12] Carlo Curino, Evan Philip Charles Jones, Yang Zhang,
and Samuel R Madden. Schism: a workload-driven
approach to database replication and partitioning. 2010.

[13] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-
aware automatic database partitioning in shared-nothing,
parallel oltp systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 61–72, 2012.

[14] Abdul Quamar, K. Ashwin Kumar, and Amol Desh-
pande. Sword: Scalable workload-aware data placement
for transactional workloads. In Proceedings of the 16th
International Conference on Extending Database Tech-
nology, EDBT ’13, page 430–441, New York, NY, USA,
2013. Association for Computing Machinery.

[15] Theo Jepsen, Alberto Lerner, Fernando Pedone, Robert
Soulé, and Philippe Cudré-Mauroux. In-network sup-
port for transaction triaging. 2021.

[16] Theo Jepsen. Building blocks for leveraging in-network
computing. PhD thesis, Università della Svizzera ital-
iana, 2020.

[17] Thamir Qadah, Suyash Gupta, and Mohammad Sadoghi.
Q-store: Distributed, multi-partition transactions via
queue-oriented execution and communication. In EDBT,
pages 73–84, 2020.

[18] Thamir M Qadah and Mohammad Sadoghi. Quecc: A
queue-oriented, control-free concurrency architecture.
In Proceedings of the 19th International Middleware
Conference, pages 13–25, 2018.

[19] Chang Yao, Divyakant Agrawal, Gang Chen, Qian Lin,
Beng Chin Ooi, Weng-Fai Wong, and Meihui Zhang. Ex-
ploiting single-threaded model in multi-core in-memory
systems. IEEE Transactions on Knowledge and Data
Engineering, 28(10):2635–2650, 2016.

[20] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improv-
ing optimistic concurrency control through transaction
batching and operation reordering. Proceedings of the
VLDB Endowment, 12(2):169–182, 2018.

[21] Guna Prasaad, Alvin Cheung, and Dan Suciu. Handling
highly contended oltp workloads using fast dynamic par-
titioning. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages
527–542, 2020.

USENIX Association 2022 USENIX Annual Technical Conference 963

https://www.mellanox.com/files/doc-2020/pb-innova-2-flex.pdf
https://www.mellanox.com/files/doc-2020/pb-innova-2-flex.pdf
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html

[22] Yihe Huang, William Qian, Eddie Kohler, Barbara
Liskov, and Liuba Shrira. Opportunities for opti-
mism in contended main-memory multicore transac-
tions. Proceedings of the VLDB Endowment, 13(5):629–
642, 2020.

[23] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

[24] Antoine Kaufmann, Simon Peter, Thomas Anderson,
and Arvind Krishnamurthy. Flexnic: Rethinking net-
work dma. In Proceedings of the 15th USENIX Confer-
ence on Hot Topics in Operating Systems, HOTOS’15,
page 7, USA, 2015. USENIX Association.

[25] Intel. Receive-Side Scaling (RSS).
http://www.intel.com/content/dam/support/
us/en/documents/network/sb/318483001us2.
pdf, 2007.

[26] Intel. Ethernet Flow Director.
https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/
intel-ethernet-flow-director.pdf, 2014.

[27] Jack Tigar Humphries, Kostis Kaffes, David Mazières,
and Christos Kozyrakis. Mind the gap: A case for in-
formed request scheduling at the nic. In Proceedings
of the 18th ACM Workshop on Hot Topics in Networks,
pages 60–68, 2019.

[28] Alexandros Daglis, Mark Sutherland, and Babak Falsafi.
Rpcvalet: Ni-driven tail-aware balancing of µs-scale
rpcs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 35–48, 2019.

[29] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy,
and Kunle Olukotun. Elastic rss: Co-scheduling packets
and cores using programmable nics. In Proceedings
of the 3rd Asia-Pacific Workshop on Networking 2019,
pages 71–77, 2019.

[30] Intel. Infrastructure Processing Units (IPUs).
https://www.intel.com/content/www/us/en/
products/network-io/smartnic.html, 2021.

[31] Jiaxin Lin, Kiran Patel, Brent E Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A high-
performance programmable NIC for multi-tenant net-
works. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 243–
259, 2020.

[32] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling
at line rate. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 44–57, 2016.

[33] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-efficient
microservices on smartnic-accelerated servers. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 363–378, 2019.

[34] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles,
pages 137–152, 2017.

[35] Nikita Lazarev, Neil Adit, Shaojie Xiang, Zhiru Zhang,
and Christina Delimitrou. Dagger: Towards efficient
rpcs in cloud microservices with near-memory recon-
figurable nics. IEEE Computer Architecture Letters,
19(2):134–138, 2020.

[36] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous nic
offloads. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, page
18–35, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[37] Zsolt István. Let’s add transactions to fpga-based key-
value stores! In Proceedings of the 16th International
Workshop on Data Management on New Hardware, Da-
MoN ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[38] Zhaoshi Li, Leibo Liu, Yangdong Deng, Jiawei Wang,
Zhiwei Liu, Shouyi Yin, and Shaojun Wei. Fpga-
accelerated optimistic concurrency control for transac-
tional memory. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’52, page 911–923, New York, NY, USA,
2019. Association for Computing Machinery.

[39] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 79–
94, 2019.

[40] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich,
Marios Kogias, Boon Thau Loo, Linh Thi Xuan Phan,
and Irene Zhang. When idling is ideal: Optimizing

964 2022 USENIX Annual Technical Conference USENIX Association

http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html

tail-latency for heavy-tailed datacenter workloads with
perséphone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 621–637, New York, NY, USA, 2021. Association
for Computing Machinery.

[41] Yihe Huang, Nathaniel Herman, William Qian, Jee-
vana Priya Inala, Eddie Kohler, Lillian Tsai, Barbara
Liskov, and Liuba Shrira. STO: Software Transactional
Objects.
https://github.com/readablesystems/sto/,
2021.

[42] Mellanox. How To Implement PeerDirect Client using
MLNX_OFED.
PeerDirect, 2018.

[43] PCI-SIG. PCI-Express Specification.
https://www.pcisig.com/specifications/
pciexpress/, [n. d.].

[44] Wojciech M Zabołotny. Dma implementations for fpga-
based data acquisition systems. In Photonics Appli-
cations in Astronomy, Communications, Industry, and
High Energy Physics Experiments 2017, volume 10445,
pages 1269–1276. SPIE, 2017.

[45] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[46] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. Tictoc: Time traveling optimistic concur-
rency control. In Proceedings of the 2016 International
Conference on Management of Data, pages 1629–1642,
2016.

[47] Hyeontaek Lim, Michael Kaminsky, and David G An-
dersen. Cicada: Dependably fast multicore in-memory
transactions. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages
21–35, 2017.

[48] Aleksandar Dragojević, Rachid Guerraoui, and Michal
Kapalka. Stretching transactional memory. ACM sig-
plan notices, 44(6):155–165, 2009.

[49] Dixin Tang, Hao Jiang, and Aaron J Elmore. Adaptive
concurrency control: Despite the looking glass, one con-
currency control does not fit all. In CIDR, volume 2,
page 1. Citeseer, 2017.

[50] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196, 2012.

[51] Masoud Hemmatpour, Bartolomeo Montrucchio, Maur-
izio Rebaudengo, and Mohammad Sadoghi. Analyzing
in-memory nosql landscape. IEEE Transactions on
Knowledge and Data Engineering, 34(4):1628–1643,
2022.

[52] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: An rdma-enabled distributed persistent memory file
system. In Proceedings of the 2017 USENIX Conference
on Usenix Annual Technical Conference, USENIX ATC
’17, page 773–785, USA, 2017. USENIX Association.

[53] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 185–201, 2016.

[54] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of the 2016 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC
’16, page 437–450, USA, 2016. USENIX Association.

[55] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
rdma rpc on reliable connection with efficient resource
sharing. In Proceedings of the Fourteenth EuroSys Con-
ference 2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[56] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu,
Junru Li, and Youyou Lu. Th-dpms: Design and im-
plementation of an rdma-enabled distributed persistent
memory storage system. ACM Trans. Storage, 16(4),
oct 2020.

[57] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin
Chen, and Jiwu Shu. Concordia: Distributed shared
memory with In-Network cache coherence. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 277–292. USENIX Association, Febru-
ary 2021.

[58] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
write-optimized distributed b+tree index on disaggre-
gated memory. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD/PODS
’22, page 1033–1048, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[59] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

USENIX Association 2022 USENIX Annual Technical Conference 965

https://github.com/readablesystems/sto/
https://community.mellanox.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed/
https://www.pcisig.com/specifications/pciexpress/
https://www.pcisig.com/specifications/pciexpress/

[60] Zhichao Cao, Siying Dong, Sagar Vemuri, and David
H. C. Du. Characterizing, Modeling, and Benchmark-
ing RocksDB Key-Value Workloads at Facebook, page
209–224. USENIX Association, USA, 2020.

[61] Tom Barbette, Georgios P Katsikas, Gerald Q
Maguire Jr, and Dejan Kostić. RSS++ load and
state-aware receive side scaling. In Proceedings of the
15th International Conference on Emerging Networking
Experiments And Technologies, pages 318–333, 2019.

[62] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 325–341, 2017.

[63] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361–378, 2019.

[64] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345–360, 2019.

[65] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fi-
etz, and Edouard Bugnion. R2p2: Making rpcs first-class
datacenter citizens. In 2019 USENIX Annual Technical
Conference (USENIXATC 19), pages 863–880, 2019.

[66] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. Racksched:
A microsecond-scale scheduler for rack-scale computers.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 1225–1240,
2020.

[67] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a box: Inexpensive coordination
in hardware. In Proceedings of the 13th Usenix Confer-
ence on Networked Systems Design and Implementation,
NSDI’16, page 425–438, USA, 2016. USENIX Associ-
ation.

[68] Theo Jepsen, Leandro Pacheco de Sousa, Masoud
Moshref, Fernando Pedone, and Robert Soulé. Infinite
resources for optimistic concurrency control. In Pro-
ceedings of the 2018 Morning Workshop on In-Network
Computing, NetCompute ’18, page 26–32, New York,
NY, USA, 2018. Association for Computing Machinery.

[69] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 104–120, New York, NY, USA, 2017. Association
for Computing Machinery.

[70] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: Smartnic-
accelerated distributed transactions. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, page 740–755, New York,
NY, USA, 2021. Association for Computing Machinery.

[71] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 1–12, 2012.

[72] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting more concurrency from dis-
tributed transactions. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 479–494, 2014.

[73] Neha Narula, Cody Cutler, Eddie Kohler, and Robert
Morris. Phase reconciliation for contended in-memory
transactions. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages
511–524, 2014.

[74] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. Re-
leasing locks as early as you can: Reducing contention
of hotspots by violating two-phase locking (extended
version). Proceedings of the 2021 ACM SIGMOD Inter-
national Conference on Management of Data, 2021.

[75] Jiachen Wang, Ding Ding, Huan Wang, Conrad Chris-
tensen, Zhaoguo Wang, Haibo Chen, and Jinyang Li.
Polyjuice: High-performance transactions via learned
concurrency control. arXiv preprint arXiv:2105.10329,
2021.

[76] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant
Schoenebeck. Contention-aware lock scheduling for
transactional databases. Proceedings of the VLDB En-
dowment, 11(5):648–662, 2018.

[77] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim
Kraska. Chiller: Contention-centric transaction exe-
cution and data partitioning for modern networks. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 511–526,
2020.

966 2022 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Contention-aware Scheduling
	Existing Scheduling Methods
	Scheduling with SmartNICs

	AlNiCo
	Overview
	Accelerated Scheduling on The Hardware
	Request state
	Worker state
	Global state
	Making scheduling decisions

	Adaptive Feedback from The Software
	Hotness feedback
	Affinity feedback
	Reserving workers for long-running transactions

	Implementation
	Evaluation
	Experimental Setup
	Overall Performance
	Dynamic Workloads
	Comparison with CPU-based AlNiCo
	Generality of AlNiCo
	Overhead and Limitation

	Related Work
	Conclusion

