
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Zero Overhead Monitoring for Cloud-native
Infrastructure using RDMA

Zhe Wang, Shanghai Jiao Tong University; Teng Ma, Alibaba Group; Linghe Kong,
Shanghai Jiao Tong University; Zhenzao Wen, Jingxuan Li, Zhuo Song, Yang

Lu, Yong Yang, and Tao Ma, Alibaba Group; Guihai Chen, Shanghai Jiao Tong
University; Wei Cao, Alibaba Group

https://www.usenix.org/conference/atc22/presentation/wang-zhe

Zero Overhead Monitoring for Cloud-native Infrastructure using RDMA

Zhe Wang1, Teng Ma2, Linghe Kong1, Zhenzao Wen2, Jingxuan Li2, Zhuo Song2, Yang Lu2

Yong Yang2, Tao Ma2, Guihai Chen1, Wei Cao2

1Shanghai Jiao Tong University
2Alibaba Group

Abstract
Cloud services have recently undergone a major shift from
monolithic designs to microservices running on the cloud-
native infrastructure, where monitoring systems are widely
deployed to ensure the service level agreement (SLA). Nev-
ertheless, the traditional monitoring system no longer fulfills
the demands of cloud-native monitoring, which is observed
from the practical experience in Alibaba cloud. Specifically,
the monitor occupies resources (e.g., CPU) of the monitored
infrastructure, disturbing services running on it. For example,
enabling monitor causes jitters/declines of online services in
Alibaba’s “double eleven” shopping festival with high loads.
On the other hand, the quality of service (QoS) of monitoring
itself, which is vital to track and ensure SLA, is not guaran-
teed with the high loaded system.

In this paper, we design and implement a novel monitor-
ing system, named ZERO, for cloud-native monitoring. First,
ZERO achieves zero overhead to collect raw metrics from the
monitored hosts using one-sided remote direct memory access
(RDMA) operations, thus avoiding any interferences to cloud
services. Second, ZERO adopts receiver-driven model to col-
lect monitoring metrics with high QoS, where credit-based
flow control and hybrid I/O model are proposed to mitigate
network congestion/interference and CPU bottlenecks. ZERO
has been deployed and evaluated in Alibaba cloud. Deploy-
ment results show that ZERO achieves no CPU occupation at
the monitored host and supports 1∼ 10k hosts with 0.1∼ 1s
sampling interval using single thread for network I/O.

1 Introduction

Recent shifts in the production cloud environment from mono-
lithic designs to microservice-based architecture [33,34] have
made cloud-native infrastructure the cornerstone of cloud
computing services. The cloud-native applications consist of
thousands of single-concern, loosely-coupled microservices
running on containerized platforms [76]. The underlying sys-
tems are treated as disposable and immutable, finally enabling
highly available, flexible and scalable cloud services.

In order to ensure the service level agreement (SLA) [52],
the whole infrastructure is monitored with not only the upper-
layer application metrics, but also the fundamental system
metrics [84]. The novel cloud-native infrastructure, however,
brings new challenges/demands to cloud-native monitoring,
along with two major issues in commercial deployments.

First, traditional monitoring systems [10, 11, 65] occupies
host (physical/virtual machine, PM/VM) resources to col-
lect, process and upload metrics (Figure 1), which inevitably
causes resource contentions with cloud services — enabling
monitors causes jitters/declines of online services in Alibaba
“double eleven” shopping festival (Figure 3). To ensure ser-
vice SLA with resource constraints, the deployed monitor at
the host should have no resource occupation.

Second, the quality of service (QoS) of monitoring itself
is not guaranteed, which fails to support massive metrics
with rapid variations in cloud-native monitoring. The la-
tency/throughput of monitoring jitters severely due to the high
system loads or small CPU quota set by the cloud provider
(Figure 4). However, monitoring system with high QoS is
vital to track and ensure SLA of monitored services [80, 84].

To resolve the limitations of traditional monitoring system
and fulfill the demands of cloud-native monitoring, we design
and implement a novel ZERO monitoring system in this paper.
ZERO proposes a receiver-driven model, which collects raw
metrics from the monitored host via one-sided RDMA opera-
tions, i.e., RDMA read. Based on the ZERO framework, the
monitoring system is expected to achieve no CPU occupation
at the monitored host, low latency and high throughput, finally
avoiding any interferences to services and fulfilling the QoS
requirements of large-scale distributed monitoring.

However, there still exist several challenges to achieve
the above goals. As shown in Figure 1, traditional moni-
tor collects and processes raw metrics from the monitored
processes, then upload metrics to the remote host, which in-
evitably causes CPU occupations. How to manage memory
regions of system/application metrics and expose them to the
remote host, finally achieving zero-overhead monitoring via
RDMA read, is challenging. On the other hand, the remote

USENIX Association 2022 USENIX Annual Technical Conference 639

Microservice Microservice Microservice

TCP/IP
Proxy/Broker

TCP/IP
Proxy/Broker

Controller Analyze Display

Li
nu

x
K

er
ne

l

Device Driver

Network Stack

TCP/UDP

IP layer

Traffic Control

Li
nu

x
K

er
ne

l

Device Driver

Network Stack

TCP/UDP

IP layer

Traffic Control

TCP/IPTCP/IPTCP/IP

Li
nu

x
K

er
ne

l

Device Driver

Network Stack

TCP/UDP

IP layer

Traffic Control

Li
nu

x
K

er
ne

l

Device Driver

Network Stack

TCP/UDP

IP layer

Traffic Control

kernel
stack

Collect

Process
Upload

Host (PM/VM)Host (PM/VM)Host (PM/VM)

Local Agent

Remote
Controller

Collector

RPC Performance jitter

CPU

CPU occupation

RPC

Figure 1: Traditional monitoring System.

monitoring host becomes bottlenecks in the receiver-driven
model, as a tradeoff of offloading local monitoring overhead
to the remote host. The remote host performs RDMA read on
many monitored hosts, resulting in incast problem [85] 1. The
remote host not only collects metrics, but also processes raw
metric for further operations, all of which are CPU intensive.
How to enable large-scale monitoring with network/CPU bot-
tlenecks is challenging as well.

To access raw metrics with no CPU occupation, ZERO
proposes the novel control plane and data plane. For the
ease of clarity, we separate ZERO into local agent and remote
controller (Figure 2). To achieve high scalability in reliable
connection (RC) mode [26, 82], system/application metrics
are managed by one agent and share one queue pair (QP)
connection. In the control plane, ZERO agent provides univer-
sal interfaces for systems/applications to register the memory
regions of their metrics at the RDMA NIC (RNIC). The
metadata of these metrics are recorded at the control region.
ZERO controller can thus acquire metadata of metrics from
the control region as the prerequisite to access raw metrics.
All metrics only need to register once if the metadata is not
updated, after which ZERO agent enters blocking mode. In
the data plane, the memory regions of metrics (data region)
are exposed to the agent process via shared memory, finally to
the remote controller. The ZERO controller can thus perform
RDMA read on the data region directly without involving
memory copies and CPU usages at the monitored host. As
a result, ZERO achieves disposable overhead in the control
plane and zero overhead in the data plane.

To deal with the network/CPU bottlenecks at the controller,
ZERO proposes credit-based flow control (Credit-FC) and hy-
brid I/O model. We observe that the receiver-driven model is

1Incast problem happens when multiple senders transfer data to one
receiver simultaneously.

Microservices

READ

Shared Memory

QP Connection

MicroserviceMicroservice

Shared MemoryShared Memory

CPU Zero
Copy

Blocking

Running

WRITE

Metrics

Control
Plane

CPU
CopyCopyCopyCopyCopy

Data
Plane

Collecting Thread
Credit-FC + Hybrid I/O

QP Connection WRITE

Meta Data

ZERO Controller

Host (PM/VM)

ZERO
Agent

Processing Thread

Register

Persistence + Visualization

Zero
CopyCopyCopyCopyCopyCopy

Shared Memory

Figure 2: ZERO monitoring system.

superior to the traditional sender-driven model (i.e., agent ac-
tively uploads metrics as per heartbeat): i) collecting metrics
on demand to ensure the QoS of monitoring on latency; ii)
limiting the total in-flight data of concurrent flows to avoid net-
work congestion/interference. Accordingly, ZERO proposes
Credit-FC to mitigate the incast problem while fulfilling the
latency/throughput requirements of monitoring. On the other
hand, ZERO introduces hybrid I/O model (a combination of
event driven and busy polling mechanisms) and adopts thread
dispatching to remedy the CPU bottlenecks of collecting and
processing metrics, respectively.

As case studies, we integrate application (Redis [12]) met-
rics, system (kernel/containers [27, 76]) metrics and eBPF [3]
metrics into the ZERO framework to demonstrate its gen-
erality and flexibility. We also share our experience about
building large-scale monitoring system using RDMA.

The major contributions of this paper are summarized as
follows:
• We propose the first zero-overhead monitoring system,

ZERO, to resolve limitations of traditional monitoring sys-
tem in cloud-native monitoring.

• We tackle several challenges of zero-overhead monitoring,
including data plane with no CPU involvement, network
congestion/interference caused by monitoring traffics, and
CPU bottlenecks at the controller.

• We have deployed and evaluated ZERO in Alibaba cloud.
ZERO achieves no CPU occupation at the monitored host
and supports 1∼ 10k hosts with 0.1∼ 1s sampling intervals.
We also share our experience with ZERO.
The paper is organized as following. Section 2 introduces

the background and motivation. Section 3 proposes zero-
overhead monitoring. Section 4 designs and implements
ZERO framework. Section 5 presents case studies. Section 6
evaluates the proposed design. Section 7 introduces the ex-
perience and future work. Section 8 discusses related works
and Section 9 concludes this paper.

640 2022 USENIX Annual Technical Conference USENIX Association

Figure 3: Monitor interfering with services.

2 Background and Motivation

In this section, we further elaborate cloud native monitoring
and the inherent limitations of traditional monitoring system.

2.1 Cloud-Native Monitoring
Monitoring system deployed at the cloud-native infrastructure,
namely, cloud-native monitoring, is indispensable to ensure
the SLA of cloud services. Monitor collects the bottom-layer
system metrics, such as the utilization of physical resources
(CPU, memory, etc.). Based on system metrics, monitor-
ing system performs health checks on the underlying system,
makes early alert and provides suggestions to administra-
tors [18]. Furthermore, by analyzing the historical resource
consumption and performance variations, cloud providers
improve system utilization and lower operational expenses
(OpEx) [27, 28, 41]. On the other hand, the upper-layer ap-
plication metrics, e.g., requests per second of key-value ser-
vice [12,45], directly reflect user activities and functional state
of applications. The monolithic applications are decoupled to
thousands of microservices [33], all of which are monitored
to track and ensure the SLA.

The novel cloud-native applications together with the es-
sential infrastructure bring new challenges/demands to cloud-
native monitoring, along with two major issues in commercial
deployment.

How to avoid monitor interfering with services? Microser-
vices have much stricter requirements of QoS compared with
typical applications [33]. However, the cloud-native environ-
ment is highly resource constrained. For example, Alibaba
cloud adopts mixed deployment of CPU-intensive online ser-
vice [42] and I/O-intensive batch jobs [93] at the same host, to
maximize resource utilization [43, 78] and reduce long-term
capital expenses (CapEx). Microsoft Azure also reports that
80% of VMs only have 1 ∼ 2 vCPU cores [27]. The monitor

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300

 0

 50

 100

R
e

q
u

e
s

t
L

a
te

n
c

y
 (

m
s

)

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

Time (s)

Request Latency
CPU Utilization

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500

 0

 50

 100

R
e

q
u

e
s

t
L

a
te

n
c

y
 (

m
s

)

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

Time (s)

Request Latency
CPU Utilization

Figure 4: Monitoring jitters with high system loads in Netdata
(upper) and Prometheus (bottom).

should have no CPU occupation to avoid contentions with
cloud services.

How to ensure QoS of monitoring? Cloud-native monitor-
ing needs to support massive metrics with rapid variations.
Cloud providers, such as Alibaba, Netflix and Uber, need to
monitor millions of metrics with hundreds to thousands of mi-
croservices [80]. Besides, these application metrics (financial
transactions, social network and e-commerce [67, 94]) and
system metrics (CPU, memory, network [6, 54]) have rapid
variations with a time scale of seconds/milliseconds. To track
and ensure SLA of services, monitoring requires high QoS
from the perspective of latency and throughput.

2.2 Traditional Monitoring System

We next introduce traditional distributed monitoring sys-
tems [10, 51, 65] and elaborate their limitations as the mo-
tivation of ZERO. As shown in Figure 1, multiple collec-
tors acquire application/system metrics via specific interfaces,
meanwhile raw metrics are processed as the final outcomes
(Section 5). After that, the collected metrics are uploaded to
the remote controller for further analysis and visualization.
Each step occupies host CPUs for memory copy, calcula-
tion, network transmission, etc., which inevitably interfer-
ing with services running on the host. On the other hand,
traditional monitor massively relies on the kernel’s TCP/IP
network stack to transmit metrics. However, kernel data pro-
cessing overhead has became the main bottleneck of end-
to-end latency/throughput [90]. State-of-the-art works thus
offload network functionality from kernel to user-space net-
work stack [39, 53, 64] or hardware [35, 44, 70].

We next elaborate the limitations of traditional monitors in
our real deployment. We consider two representative open-

USENIX Association 2022 USENIX Annual Technical Conference 641

sourced monitors, i.e., Netdata [10] and Prometheus [11].
We observed that enabling monitors causes jitters of online
service in Alibaba “double eleven” shopping festival with
high loads. We use Netdata to monitor a high-loaded host
running Redis services with 1s sampling interval. As shown
in Figure 3, monitor process causes jitters of Redis service,
i.e., the throughput declines by 6.25% while tail latency in-
creases by 2× periodically, due to the CPU occupation in each
monitoring cycle. We analyze that reasons for such “interfer-
ence spikes” are two folds. First, the deployment of service
and monitor processes may adopt default CPU scheduling or
specific CPU bonding [48], where contentions happen when
service/monitor processes are scheduled/bonded to the same
CPU core. Second, the CPU utilization keeps on high water
level and exhibits burst natures, especially during sales pro-
motion with high loads. Thus, the duty-cycled monitoring
process with slight CPU occupation (1∼ 5%) already causes
severe interference (Figure 3). The CPU breakup of monitor
shows that the uploading phase occupies 5∼ 10% of the to-
tal CPU utilization while the collecting phase occupies the
majority. On the other hand, the QoS of monitoring is highly
affected by the system load or CPU quota set by the cloud op-
erator. The latency of monitoring increases by more than 10×,
when host CPU is saturated or CPU quota is reached (Fig-
ure 4). Assigning dedicated cores for monitoring may avoid
these problems, however, causes large wastes of resources
and high CapEx. Besides, the monitoring process may be
blocked to request metrics via service interface (Section 5).

3 Zero-overhead Monitoring

To avoid resource contentions with services and ensure QoS of
monitoring, we propose the zero-overhead monitoring system,
namely ZERO, for cloud-native monitoring. ZERO exploits
features of monitoring metrics and RDMA capability in mod-
ern data center. The basic idea is that most of raw metrics
are counters updated at fix memory regions — the remote
controller can thus obtain these metrics by performing RDMA
read on these memory regions — without any CPU involve-
ment at the monitored side. We next elaborate possibilities
and challenges of realizing ZERO.
Metric features. ZERO is based on two features of moni-
toring metrics. First, most of the monitoring metrics are
counters. Systems/applications update these metrics at fixed
memory region after initialization. For instance, the number
of stored/evicted key-value pairs in Redis and the number of
sent/received packets recorded by kernel stack are all counters.
Second, processing of raw metrics is simple algebraic calcu-
lation and can be offloaded to the controller. For example,
Redis exports statistic data on the raw metrics and per-CPU
counters are summed to get the final kernel metrics. These
features are general to system/application metrics and ZERO
can thus support various metrics as an universal framework
(Section 5).

RDMA support. ZERO then leverages one-sided RDMA
operation to read raw metrics/counters, to achieve no
CPU/kernel involvements at the monitored host. RDMA has
been widely used in data centers and provides new character-
istics of low latency (as low as 1 µs), high bandwidth (more
than 100Gbps) and kernel/CPU bypass. RDMA supports
both one-sided and two-sided operations. The one-sided op-
erations directly operate on the remote memory via read and
write without involving the remote server’s CPU. To per-
form one-sided RDMA operations, one needs to register the
memory region (MR) at the RNIC of remote host and acquire
the generated remote protection key (rkey). The two-sided
operations, i.e., send and recv, communicate via an interface
similar to socket. In the following paper, we refer to RDMA
read, write, send and recv as READ, WRITE, SEND and
RECV, respectively. RDMA hosts create queue pairs (QP)
consisting of a send queue and a receive queue, then post
RDMA operations on send/receive queue to communicate
with the remote host. RDMA transport supports reliable or
unreliable connection (RC/UC) and unreliable datagram (UD).
One-to-one connections between QPs are required in RC/UC
mode, whereas one-to-many communication is supported in
UD mode. Different transport types support different subsets
of RDMA operations, and READ operation is only supported
in RC mode.
Challenges. While ZERO is expected to achieve zero-
overhead monitoring, there still exist two challenges to make
the idea practical. First, we observe that most CPU time of
traditional monitor are spent on collecting metrics from sys-
tem/application processes (Section 2.2). ZERO also needs to
eliminates such overheads in its data plane, besides the trans-
mission overheads offloaded to RNIC. Second, controller is
bottlenecked on both network and CPU with large number of
monitored hosts, as all monitoring overheads are offloaded
to the remote controller. With all these challenges, the key
innovation of Zero lies in effectively exploiting one-sided
RDMA and designing the separate control/data plane to re-
alize zero-overhead monitoring. Zero further incorporates
several designs to resolve practical issues (network conges-
tion/interference, scalability) in distributed monitoring.

4 Design and Implementation

In this section, we present the overview of the ZERO frame-
work. We then introduce the design and implementation of
ZERO in details.

4.1 Overview
As shown in Figure 2, ZERO proposes the novel control plane
and data plane to collect raw metrics without CPU involve-
ments at the monitored host. ZERO adopts receiver-driven
model to collect metrics from large number of hosts, and deals
with the network and CPU bottlenecks at the controller.

642 2022 USENIX Annual Technical Conference USENIX Association

type sizeoffsetaddress rkey

addressaddress

addressaddress

addressaddress

addressaddress

addressaddress

addressaddressM
ul

tip
le

 R
E

A
D

s

offset

(a) Inefficient READ.

offsetaddress rkeystructure

addressaddress

addressaddress

data
region

control
region

Tw
o

R
EA

D
s

(b) Efficient READ.

Figure 5: READ w/o (left) or w/ (right) memory management.

The scalability of RDMA-based system is constrained by
the on-chip memory (SRAM) of RNIC [26, 82]. To achieve
high scalability at the controller, all metrics at the host are
managed by one agent and share one QP connection. In the
control plane, ZERO agent provides interface for systems and
applications to register the memory region of their metrics
(data region) at the RNIC. The metadata of metrics (e.g.,
address, rkey) are written into the control region. ZERO con-
troller can thus obtain metadata by reading the control region
and access to raw metrics via reading the data region. The
agent process is blocked unless systems/applications need
to register/update metrics. In the data plane, the memory
region of metrics are exposed to the agent process via shared
memory, finally to the remote controller. The controller per-
forming READ on the data region to acquires metrics, which
achieves zero copy and no CPU involvement at the monitored
host. In the real deployment, the control-plane overhead is
usually disposable — the metrics only need to register once —
then keeps in use or updates after a long time. The data plane
has no CPU occupation as expected.

ZERO supports large-scale monitoring via single controller.
ZERO adopts thread dispatching, where only 1 ∼ 2 threads
are used to collect metrics and the rest cores are used to
process metrics in parallel for further operations, e.g., visual-
ization and persistence. ZERO controller uses receiver-driven
model, i.e., issuing READ requests on the monitored hosts
to collect raw metrics, which is superior to the traditional
sender-driven model. ZERO achieves high monitoring QoS
by posting READ requests on demand and avoids network
congestion/interference by controlling the total in-flight data.
Accordingly, credit-based flow control (Credit-FC) and hy-
brid I/O model are proposed to remedy the incast problem
and CPU bottleneck, respectively.

4.2 ZERO Control Plane and Data plane
We introduce the ZERO control plane and data plane, together
with ZERO framework usage and interface in this subsection.
Control plane. ZERO agent deals with registration requests
from systems/applications, which uses UNIX domain socket
for inter-process communications (IPC). To handle the re-
quest, the MRs of monitoring metrics are registered at the

RNIC and the metadata of MRs (e.g., address, type, size,
rkey) are recorded at the control region (Figure 5a). Note
that the MR is pinned after metrics are registered and will
be released only after metrics expire. ZERO agent registers
the control region at the RNIC and builds a QP connection
with the remote controller in advance. The controller can thus
acquire the metadata of metrics by reading and parsing the
control region, then access raw metrics.

The control plane has disposable overhead. ZERO agent
inevitably occupies host resources to deal with registration re-
quests. However, we observe that the control-plane overhead
is disposable for most of metrics. We divided metrics into
three types according to the practice in Alibaba cloud. First,
metrics of the underlying systems and persistent services, e.g.,
database and storage services [56, 91], are usually immobile
once registered. Second, some services may be dynamically
created/destroyed. For example, e-commerce services are
periodically expanded/shrunk according to the number of
users shopping online [60]. Third, some user requests are
served by ephemeral serverless functions to mitigate the cost
of long-lived services with intermittent activities [25, 33].

Generally, ZERO agent enters into blocking mode with no
CPU occupation (Figure 2). When services change, ZERO
agent resumes to (de)register metrics and update the corre-
sponding control region. For the first two cases, ZERO agent
handles registration requests and updates control regions in-
frequently with negligible overhead. ZERO controller also
only reads control regions once in a long period. In the server-
less case, ZERO agent may frequently (de)register metrics
of serverless functions. ZERO agent further uses WRITE to
write the updated metadata into the remote control region
(Figure 2). ZERO controller can thus obtain raw metrics by
only reading the data region with one RTT. Note that the over-
head of ZERO using WRITE or SEND/RECV is still much
lower than that of the traditional monitor (Section 6.2).
Data plane. To eliminate the overhead of collecting metrics
from multiple processes and avoid frequent memory copies,
ZERO exclusively adopts shared memory in its data plane.
Specifically, ZERO agent uses mmap operations, which are
invoked when registering metrics, to expose MRs of metrics
(data region) to the agent process, finally to the remote con-
troller. The mmap operation takes 4KB page as the basic unit.
However, metrics are not necessarily locating at the page
header (Figure 5). ZERO agent calculates the page header of
metrics to mmap their pages. As shown in Figure 5, ZERO
agent records the page address and page offset in the control
region. To protect data region from being modified by local
agent or malicious remote host, ZERO sets read-only access
to the data region via mmap flags and uses the rkey mechanism
inherently supported by RDMA. ZERO controller obtains raw
metrics by performing READ on the data region.

The data plane has zero overhead. The data plane achieves
zero CPU occupation, zero copy, and no extra memory foot-
print at the monitored host, via the shared memory design.

USENIX Association 2022 USENIX Annual Technical Conference 643

// type one, specifying attributes of variables

struct disk my_disk{

.disk = "sda",

.hash = 0x000f3456, ...

} __attribute__((section(".zero_init"));

//type two, using allocator

struct disk *my_disk = zero_malloc(sizeof(struct disk));

Figure 6: Management interface for two types of metrics.

An alternative solution of copying metrics when updating
causes frequent CPU occupations for memory copies, and
extra memory footprints. Besides, ZERO data plane ensures
the read-write consistency between remote and local mem-
ory. Most of application/system metrics are defined as atomic
variables, which are updated atomically in the shared mem-
ory. The atomic update only needs 1∼3ns in Intel Haswell
architecture [74] — three orders of magnitude lower than that
of RDMA operations (1µs) — the memory consistency is
guaranteed between update and READ. For non-atomic vari-
ables, ZERO uses bit flags to indicate the states of updating.
FaRM [31] and Pilaf [68] use a similar method to ensure data
consistency with READ. ZERO controller will check whether
metrics are read correctly via bit flags and retry in the next
cycle. We eliminate all synchronous locks for zero overhead,
which may cause inconsistency under rare race conditions
while ensuring accuracy for most cases.

Memory management is indispensable. While local host
achieves zero overhead in ZERO data plane, we observe that
simply performing READ on massive metrics cannot achieve
desirable performance. Because metrics are distributed across
the process/kernel space with discrete memory addresses,
ZERO controller needs to read large number of entries in
control region as well as metrics in data region (Figure 5a).
However, the bandwidth of READ falls rapidly and the la-
tency is nearly doubled when the number of MRs increases
from 100 to 10k, due to evictions in the RNIC SRAM [26,82].
ZERO introduces memory management to reduce the number
of MRs and READ requests required to collect massive met-
rics. Specifically, ZERO proposes two memory-management
mechanisms for two types of metrics (Figure 6). First, many
metrics are global variables or data structures. One can mark
these metrics by specifying attributes of variables [13]. The
compiler will distribute these metrics to the same data seg-
ment. Second, metrics are defined as pointers to variables.
ZERO provides a memory allocator for these metrics. Specifi-
cally, the MRs of metrics are allocated with continuous space
via the allocation API. The core idea of both methods is con-
catenating metrics to the same MR to support massive metrics.
Besides, data region is aligned as struct and recorded at the
control region for the ease of memory parsing at the controller.
As shown in Figure 5b, ZERO controller only needs to post
one READ request on the same MR to get a list of metrics.

Framework usage and interface. ZERO can be easily de-
ployed at hosts (PM/VM) with RDMA support. ZERO agent
and controller need to be initiated at the local and remote host
respectively. Systems/applications then invoke agent API
to manage and (de)register their metrics. The agent accom-
plishes all control-plane operations, e.g., mmap, updates of
control region, when handling (de)register requests.

4.3 Scaling-out Monitoring
We next present how to support large-scale monitoring with
single ZERO controller. ZERO proposes credit-based flow
control (Credit-FC) and hybrid I/O model, to avoid network
congestion/interference and remedy CPU bottlenecks respec-
tively. ZERO controller needs to collect and process metrics
from large number of hosts, while fulfilling the monitoring
QoS in latency and throughput. To achieve this goal, the
controller adopts thread dispatching to collect and process
metrics in parallel with individual threads.
Collecting metrics. The controller only assigns 1∼ 2 threads
to collect metrics. ZERO achieves high efficient network I/O
with single thread by posting READ requests then polling
completions on multiple QPs in batch. This is feasible be-
cause both post_send and poll_cq are fast non-block op-
erations. According to our experiment, the batch operations
only add negligible latency (tens of µs).

Receiver-driven model is superior to send-driven model.
Issuing READ on data region turns out a receiver-driven
model to collect metrics from multiple hosts. The receiver-
driven model has two benefits compared with the traditional
sender-driven model. The controller posts READ requests
on demand to meet the target latency or updating frequency
in monitoring. Besides, it also facilitates to avoid network
congestion/interference by limiting the total in-flight data of
concurrent flows. We next intuitively formulate the scale-out
ability of such receiver-driven model. The monitored hosts
have different requirements in terms of updating interval U
and data size S, i.e., controller needs to collect S bytes in
every U seconds for a specific host. Assuming the bandwidth
B of the receiver is fully utilized, the maximum number of
supported hosts n = B×U/S. Our deployment shows that
ZERO supports at least 1k hosts with 128KB metrics and
100ms sampling interval.
Credit-based flow control. Concurrent READ requests gen-
erate burst network traffics, which are transmitted from multi-
ple hosts to the controller simultaneously, resulting in severe
incast problems. ZERO introduces Credit-FC to remedy the
incast problem, which works as follows.

Large-sized READ requests are segmented into fix-sized
fragments with 4KB page size. ZERO chooses such moderate
size due to three considerations: i) page is the basic unit of
shared memory, which can accommodate 1k 32-bit metrics
and fulfill the demands of most services; ii) the number of
READ requests is bounded as the total size of metrics in

644 2022 USENIX Annual Technical Conference USENIX Association

single host is general hundreds of KBs; iii) the small size
facilitates congestion control in severe incast.

Subsequently, credits are used to limit the total in-flight
data of concurrent flows (identified by a QP). Posting READ
requests or polling completion events will consume or regain
credits for the target flow. The state-of-the-art works [44, 70]
adopt bandwidth-delay product based flow control (BDP-FC),
which bounds the in-flight data per flow by the BDP of the
network. However, BDP is large enough to cause congestion
and trigger explicit congestion notification (ECN) packets or
priority-based flow control (PFC) pause frames [95], with
large number of concurrent flows (Figure 11c). ZERO pro-
poses Credit-FC to limit the total in-flight data. Specifically,
the credit of each flow C f is set to T/n, where T is the total
credit and n is the number of concurrent flows. Finally, Credit-
FC effectively avoids triggering ECN/PFC (Section 6.3) and
network interference with service traffics (Section 7).
Hybrid I/O model. To avoid the thread performing network
I/O being saturated, ZERO proposes the hybrid I/O model
incorporating event driven and polling mechanisms, which
is similar to NAPI in Linux [73]. The event-driven I/O can
effectively avoid CPU occupation for busy polling. Each QP
is associated with an event channel to notify a new (first) com-
pletion event. The I/O multiplexing interface, e.g., epoll, is
used to listen the fds of multiple event channels. The collect-
ing thread blocks until completion events are notified from
one or multiple QPs, then polling the in-flight requests of
the corresponding QPs. We observe that the event-driven
model effectively reduces CPU utilization with large number
of in-flight requests (Figure 12b). However, when the mon-
itored data size is too small with only several requests after
segmentation, the epoll syscall and thread blocking incur
high variations in READ latency (Figure 12a). The controller
thus uses busy polling for hosts with small number of re-
quests. In the hybrid I/O model, ZERO assigns two threads to
perform event-driven polling and busy polling, respectively.
Note that both threads share Credit-FC.
Processing metrics. The controller dispatches multiple
threads to processing raw metrics in parallel. Specifically, the
MRs of the collected metrics are placed into the appropriate
queue where each MR can be handled by one of multiple pro-
cessing threads. Each MR concatenated by a list of metrics is
parsed as struct directly according to the metadata recorded
at the control region. The parsed metrics are then processed
by reproducing the same calculations which are originally
performed by the monitored host. Finally, the controller im-
ports processed metrics into InfluxDB [7] for persistence and
uses Grafana [5] for visualization.

5 Case Study

In this section, we present how to integrate application/system
metrics into the ZERO framework using three typical cases of

Redis [12], Linux kernel [81] and eBPF [3].

Redis Case. Redis [14] has been widely deployed in Alibaba
cloud as database, cache, and message broker, providing low-
latency in-memory data structure storage services. Traditional
monitor acquires Redis metrics by requesting INFO interface
of Redis server. Traditional monitor thus occupies the re-
source of Redis server and the host to obtain metrics. As a
comparison, ZERO only needs to register metrics and requires
no resource occupation for collecting metrics. There exist
more than two hundred metrics in each Redis service instance.
The naive implementation is performing READ on these met-
rics one-by-one (see Figure 5a), resulting in high latency and
CPU utilization. To resolve this problem, we use allocation
API (type two) to allocate and structuralize Redis metrics
with continuous memory. As shown in Figure 5b, ZERO only
needs to register and perform READ once for each Redis
instance in our implementation. ZERO controller then parses
metrics as struct according to the memory structure.

Linux Kernel Case. Linux kernel exports system metrics
to user space via proc interface, which creates files under
/proc directory and bonds corresponding kernel functions.
Traditional monitor usually needs to read hundreds of proc
files to get all system metrics, which incurs extra overhead
for user/kernel-space processing. With ZERO framework,
kernel metrics are registered at the ZERO agent then exported
to the ZERO controller directly. We use ZERO to monitor
metrics managed by container namespace for the container-
based services [1]. Kernel metrics are usually implemented
as lock-free per-CPU counters to avoid locking overhead.
ZERO controller needs to READ all replications of metrics
in each CPU core, locating at separate pages. Production
cloud environment adopts fine-grained resource assignment
and isolation, in which more than 90% hosts only have 1∼ 4
CPU cores [27]. ZERO only needs 1∼ 4 requests to obtain
kernel metrics.

eBPF Case. The extend Berkeley Packet Filter (eBPF) [3,66]
is an evolving technology, which can dynamically attach pro-
gram to running kernel for tracing, instructing, and even con-
trolling the kernel code path. eBPF has been widely used in
cloud computing for monitoring [6, 54], networking [38, 83],
virtualization [21, 22] and security [29, 30]. We use eBPF to
monitor traffics and retransmissions of large number of TCP
connections in MaxCompute [32, 93] service. eBPF provides
in-kernel data structure, called map, to enable control and
data messages delivery within kernel or between kernel and
user space. eBPF attaches probes to kernel/application func-
tions at runtime and exports metrics, events and histograms
to eBPF map. User process reads the entry of eBPF map via
syscall. However, reading large number of entries incurs
large overhead due to frequent syscalls. To integrate eBPF
into ZERO framework, eBPF array map is adopted, which
supports mmap operations (from Linux kernel 5.5+) and can
thus export its memory to ZERO agent directly.

USENIX Association 2022 USENIX Annual Technical Conference 645

Name Nodes Hosts OS kernel Intel Xeon CPU code Mellanox NIC Protocol ECN PFC
Cluster1 65 × PMs 1024 × VMs Linux 5.5 E5-2682 (64 cores) 2 × 25GbE ConnectX-4 Lx RoCEv1/2 7 3

Cluster2 9 × PMs 1024 × Containers Linux 3.10 Platinum 8369B (64 cores) 200GbE ConnectX-6 Dx RoCEv1/2 3 3

Table 1: Deployment environment.

6 Evaluation

6.1 Evaluation Setup
In our evaluation, we adopt a multi-phase deployment with
two typical clusters, as summarized in Table 1. Initially, we
deploy Zero in a test environment (Cluster1) with a rational
scale that mimics the production environment for demon-
stration. We next deployed ZERO in a public-cloud envi-
ronment (Cluster2), which covers common cloud services
in production. The deployment scale has continued to grow
according to the feedback of canary testing and the actual
demands of services. In Cluster1, services operates in guest
VMs with 4 vCPU cores. The RNICs are virtualized and
assigned to VMs via passthrough [87]. In Cluster2, services
are deployed in containers running on bare-metal servers [92].
Each VM/container is monitored independently to evaluate
the scalability of ZERO. Note that both configurations are
typical in Alibaba cloud-native platform [15]. We use ZERO
to monitor typical services, e.g., Redis [14], container [1] and
MaxCompute [32, 93].

We evaluate ZERO performance from three aspects:
• CPU Utilization: The CPU utilization is defined as occu-

pied CPU time per second. We use perf tool to measure
the CPU utilization of both ZERO agent and controller. We
verify the CPU involvement of monitor in control plane
and data plane. We also need to concern about the CPU
utilization of ZERO controller for scalability.

• Latency: The latency of ZERO is the time used to READ all
metrics from the monitored host. For traditional monitor,
the latency consists of time used to collect/process all met-
rics and time used to upload all metrics. We verify whether
monitor can meet up the updating frequency of metrics by
latency.

• Throughput: The throughput is the collected bytes per sec-
ond during each monitoring period. We verify whether
monitor can support massive metrics by throughput.

We test the impact of the following parameters on monitor-
ing performance:
• Sampling Interval: The required sampling interval is de-

termined by the updating frequency of metrics. We eval-
uate ZERO with 10 ∼ 1000ms sampling intervals and use
1000ms by default.

• Number of Instances/Connections/Requests: All of three
parameters impact the CPU utilization and data size of
monitoring. The number of service/container instances
varies from 10 to 40, with a default value of 10. The number

Metric Monitor Redis Kernel eBPF
Total

Latency
(ms)

Baseline 0.7∼ 19.3 0.5∼ 1.6 0.8∼ 12.5
ZERO RPC 0.08∼ 0.18 0.14∼ 0.36 0.10∼ 1.02

ZERO 0.05∼ 0.14 0.07∼ 0.23 0.08∼ 0.87

Agent
CPU

Utilization
(%)

Baseline 0.5∼ 45 0.01∼ 4 0.08∼ 6
ZERO RPC 0.01∼ 0.55 0.08∼ 0.9 0.05∼ 0.68

Control
plane 0.05∼ 0.07 0.8∼ 1.5 0.04∼ 0.05
Data
plane 0 0 0

Table 2: Summary of ZERO overhead.

of TCP connections varies from 1k to 16k, with a default
value of 1k. The number of work requests varies from 8 to
128 for a host, with a default value of 32.

• Number of Hosts: One ZERO controller is deployed to mon-
itor multiple hosts running ZERO agent. We increase the
number of hosts (from 64 to 1024) to evaluate the scalability
of ZERO framework.

We use the state-of-the-art monitoring system named Net-
data [10], existing NX monitor in Alibaba cloud, and ZERO
RPC as comparison benchmarks:
• Netdata: Netdata is widely used by cloud providers, e.g.,

Amazon Web Services (AWS) and Microsoft Azure [8].
Netdata integrates application/system metrics in one agent
by requesting application interface or reading proc files
respectively. The agent uploads metrics to the controller as
per heartbeat or the controller acquires metrics via sending
RPC requests to the agent.

• NX: NX is a network monitoring tool deployed in Alibaba
cloud. NX exports network metrics as logs, e.g., info of
TCP connections, then uploads the collected metrics via
log service. We have integrated ZERO framework into the
NX monitor to improve its performance.

• ZERO RPC: ZERO RPC adopts the same data plane to
access raw metrics. However, ZERO RPC is implemented
via SEND/RECV instead of READ. The controller issues
RPC requests to the agent, after which agent returns metrics
as response. We explore design alternations of two-sided
RDMA via ZERO RPC.

6.2 ZERO Overhead
We evaluate the CPU utilization and latency of ZERO in
monitoring Redis, container and MaxCompute services. We
present overall performance and summarize two key observa-
tions, followed by detailed micro-benchmarks for each case.

646 2022 USENIX Annual Technical Conference USENIX Association

(a) Agent CPU vs. Instances. (b) Latency vs. Instances. (c) Agent CPU vs. Intervals. (d) Latency vs. Intervals.

Figure 7: Monitor performance with 10−40 Redis instances and 10−1000ms sampling interval.

(a) Agent CPU vs. Instances. (b) Latency vs. Instances. (c) Agent CPU vs. Intervals. (d) Latency vs. Intervals.

Figure 8: Monitor performance with 10−40 container instances and 10−1000ms sampling interval.

(a) Agent CPU vs. Entries. (b) Latency vs. Entries. (c) Agent CPU vs. Intervals. (d) Latency vs. Intervals.

Figure 9: Monitor performance with 1−16k TCP connections and 10−1000ms sampling interval.

Overall. Table 2 summaries the overhead of ZERO monitor.
We focus on the monitoring latency and the CPU utilization
of ZERO agent. Both Netdata or NX are referred as baselines.
First, ZERO monitor reduces latency by one/two order of mag-
nitudes compared with baselines. Our following breakdown
of total latency reveals that baseline methods spend most of
time to collect metrics from system/application processes.
The TCP-based baselines actively upload metrics and achieve
similar latency in uploading phase as ZERO READ. ZERO
RPC has higher latency than ZERO READ because each RPC
requires at least two RTTs [45, 68]. Second, ZERO agent
achieves disposable overhead in control plane and zero over-
head in data plane. The CPU utilization of ZERO control plane
only increases slightly when registering more MRs, which is
not affected by the sampling interval. The CPU utilization of
ZERO data plane is always zero as expected. On the contrast,

the CPU utilization of baselines reaches very high values with
lower sampling intervals. ZERO RPC eliminates the over-
head of collecting metrics, however, the CPU utilization for
posting SEND/RECV requests and polling completions still
increases with lower sampling intervals. In summary, the
benefit of ZERO to cloud services is enabling higher SLA of
infrastructure, which effectively avoids performance jitters
caused by CPU interference. Zero also improves monitor-
ing performance, which reduces latency by 1∼2 orders of
magnitude and increases throughput by 3∼6× (Section 6.3).

Redis Case. The monitoring performance of Redis case is
shown in Figure 7. Netdata uses single or multiple threads to
collect metrics from multiple Redis instances. With the incre-
ment of service instances, the CPU utilization of single- and
multi-thread Netdata increase from 0.4 ∼ 0.5% to 1.5 ∼ 2%,
which already severely interferes Redis services (Figure 3).

USENIX Association 2022 USENIX Annual Technical Conference 647

(a) Average latency vs. Hosts. (b) Total latency vs. Hosts. (c) Throughput vs. Hosts. (d) Controller CPU vs. Hosts.

Figure 10: Monitor performance with 64−1024 hosts × 128KB data in Cluster1.

(a) Average latency vs. Hosts. (b) Throughput vs. Hosts. (c) Single run with 256 Hosts. (d) Controller CPU vs. Hosts.

Figure 11: Monitor performance with 64−1024 hosts × 128KB data in Cluster2.

With 10× lower sampling interval, the Netdata CPU increases
10×, while the gap of CPU utilization between single- and
multi-thread becomes larger. However, the multi-thread Net-
data achieves 0.7 ∼ 1ms latency (Figures 7b and 7d). Netdata
thus trades off CPU utilization with latency. On the contrary,
ZERO has negligible CPU utilization (< 0.1%) in its control
plane, which is a one-off expense independent of sampling
intervals as shown in Figure 7c. ZERO data plane has zero
CPU overhead denoted by the tiny pillar in Figures 7a and 7c.
ZERO reduces latency by one/two order of magnitudes com-
pared with Netdata, as shown in Figures 7b and 7d.

Linux kernel case. Figure 8 illustrates the performance of
Linux kernel case, where ZERO monitors multiple container
instances. As shown in Figures 8a and 8c, the CPU utilization
of the ZERO data plane is zero. The CPU utilization of ZERO
control plane is high, because of the frequent invocations of
mmap when registering per-CPU kernel metrics. However, the
total CPU time of ZERO control plane is fixed, i.e., 3.4 ∼ 14.7
ms to register 10 ∼ 40 instances. As shown in Fig 8c, the
overhead of ZERO control plane is only 0.8% independent
of sampling intervals, while the Netdata CPU increase to 4%
with 10ms sampling interval. ZERO achieves 0.07 ∼ 0.1ms
latency, which is an order of magnitude lower than that of
Netdata (0.5∼ 1.6ms). ZERO may have higher READ latency
than the uploading latency of Netdata. Because kernel metrics
are per-CPU counters, ZERO controller needs n requests to
obtain n copies of counters in each CPU.

eBPF case. Figure 9 shows the performance of monitoring
TCP connections of with NX, NX-eBPF and ZERO. NX mon-
itor has the highest CPU utilization (1.6 ∼ 59%) and latency

(16 ∼ 250ms), due to its outdated implementation, which
traverses all TCP connections using the kernel tcp_diag in-
terface. NX-eBPF introduces eBPF to low the overhead of
getting TCP info, while ZERO further eliminates the syscall
and memory copy overhead of reading eBPF map. As shown
in Figures 9b and 9d, ZERO performs 40%∼80% lower la-
tency than that of NX. Similar with Redis and Linux kernel
case, the CPU utilization of ZERO data plane is still zero.

6.3 ZERO Scalability
We then evaluate the scalability of ZERO. The controller
adopts receiver-driven model to obtain raw metrics, which
issues TCP-based RPC or READ requests to the agent. The
collecting phase at the monitored host is omitted to compare
the raw performance. The controller adopts busy polling
by default. The ideal result is obtained via ib_read_bw [16].
Our three key observations are summarized as follows.
READ achieves better performance. The TCP-based base-
line achieves much higher average latency compared with
ZERO (Figure 10). The total elapsed time of collecting met-
rics from all hosts is usually 2 ∼ 3× the average latency in
TCP, resulting in low throughput. We analyze that TCP suffers
from low efficient congestion control (CC) [20, 37] and the
processing overhead of kernel stack [24]. Both factors incur
large delay to concurrent RPC requests, resulting in variations
of starting/ending time. On the contrary, ZERO eliminates
the overhead of kernel stack via RDMA. The average latency
and elapsed time of ZERO are nearly equivalent (Figures 10a
and 10b). ZERO also achieves lower CPU compared with the
baseline as shown in Figure 10d.

648 2022 USENIX Annual Technical Conference USENIX Association

(a) Average latency vs. Hosts. (b) Controller CPU vs. Hosts.

Figure 12: Monitor performance with 8−128 WRs × 4KB.

Credit-FC avoids triggering ECN/PFC. In Cluster1, we
evaluate the ZERO performance w/ Credit-FC and BDP-FC,
and w/o any flow control (FC). For tests w/o FC, the controller
posts all requests in the beginning. The BDP-FC adopts
a fixed credit of BDP (16KB with 25GbE bandwidth and
5 ∼ 6µs RTT). Interestingly, PFC pause is not triggered until
256 QPs for ZERO w/o FC, due to the large dynamic buffer
of switches [17] and the high threshold of PFC pause action
(XOFF) [95]. Besides, the RNIC limits the maximum of
outstanding READ requests to 16. Accordingly, the total
credit is set to 8MB = 128×64KB. As shown in Figure 10a,
both Credit-FC and BDP-FC effectively avoid PFC. The gap
between ZERO and ideal is origin from the extra overhead
in monitoring (Figure 10c), e.g., virtualization, initializing
and posting work requests (WRs) for each VM. The 25GbE
bandwidth is still saturated with the Cf ≥ BDP.

In Cluster2, the network has much higher BDP (96KB with
200GbE bandwidth and 4µs RTT) and the ECN is enabled by
default. We observe a large fraction of ECN marked packets
and high latency in BDP-FC (Figure 11a), because the ECN
minimum threshold [95] is set to ∼ 1000KB. Credit-FC still
works with 512/1024 QPs due to the posting and arrival delay
of READ requests with single thread (Section 4.3), where the
build-up buffer should reach 2/4MB with the smallest quota
of 4KB. We observe similar phenomenon with 1024 QPs in
Cluster1. As shown in Figure 11b, Credit-FC only utilizes
half of the 200 GbE bandwidth — because the credit is much
smaller than the BDP of network to avoid congestion/ECN
(4 ∼ 16KB vs. 96KB) — the bottleneck lies in the switch
buffer/threshold instead of end host. The throughput also
degrades rapidly because large number of QPs share RNICs
at both agent and controller.

We next zoom into the difference between Cluster1 and
Cluster2. Cluster1 set much higher PFC threshold than the
ECN threshold in Cluster2, resulting in larger credit to satu-
rate the bandwidth. However, the tradeoff is that the pause
duration occupies ∼ 99% (Figure 10b) when PFC is triggered.
As a comparison, ECN reacts to congestion and recovers
traffic rapidly (Figure 11c). Another benefit of Credit-FC is
reducing the CPU utilization for busy polling via avoiding
network congestion as shown in Figures 10d and 11d.

Hybrid-I/O model is highly CPU efficient. We then evalu-
ate the hybrid-I/O model in Cluster1. We post all requests in
the beginning as the maximum outstanding READ requests
is bounded to 16 by RNIC. As shown in Figure 12b, the CPU
utilization of both epoll and polling increases with large data
size, while epoll achieves lower CPU utilization. To high-
light the gap, we set lower sampling interval to monitor 128
hosts with 256KB data. Results show that the CPU utilization
of epoll and polling are 13.5/40.9% and 20.2/72.6 respec-
tively with 100/10ms interval. However, the event-driven
polling has high performance variations with small number of
requests (Figure 12a), due to epoll syscall and thread block-
ing. With large-sized data, such overhead is averaged across
many in-flight requests. We thus adopt epoll for general cases
(32 ∼ 128 requests) and polling for hosts with small-sized
data (< 32 requests).

7 Experience and Future Work

In this section, we share our experience of building large-scale
monitoring system using RDMA.
Achieving high scalability and availability. The scalability
of RDMA-based distributed systems is limited by the number
of QPs [26,62,82], which are cached in the limited SRAM of
RNIC. Even several works [46, 47] adopt UD to reduce the
number of QPs, ZERO uses READ to bypass the monitored
host, which is only supported in RC mode. ZERO adopts QP
sharing and grouping to remedy the QP constraints. First,
ZERO agent manages all system/application metrics in a host
sharing one QP connection. Second, ZERO controller moni-
tors a group of QPs/hosts in each period, e.g., 64 hosts with
1 ∼ 10ms period, then switches to another group of QPs/hosts
to avoid frequent QP evictions. To achieve high availabil-
ity, each agent will build QP connections with at least three
controllers in the practical deployment. Similar to most dis-
tributed systems, all these controllers run a consensus-based
coordination service [40] to detect failures, and ZERO can
switch to a standby controller seamlessly when the active
controller is down.
Avoiding network interference. In the practical deployment,
monitoring traffics co-exist with service traffics and inevitably
impacts the network performance of services, due to the con-
tentions at both agent and switches. Note that the controller
has no such concerns with dedicated server for monitoring.
Before ZERO, existing deployment adopts several mecha-
nisms for traffic isolation, which inevitably brings other side
effects. For example, a thorough solution is physically iso-
lating traffics of services and monitoring with independent
NICs and links [2]. However, physical isolation incurs large
CapEx and is only suitable to high-priority services neces-
sitating high SLA. Another solution is assigning a separate
and lower-priority queue for monitoring traffics [35]. The
persistent high loads of services may cause starvation of mon-

USENIX Association 2022 USENIX Annual Technical Conference 649

itoring traffics and losses of data in consecutive monitoring
periods. Besides, ZERO built on RDMA is sensitive to such
timeouts, which may cause QP state machine errors [72]. We
thus abandon the traditional method of traffic isolation and
resort to receiver-driven CC to avoid network interference.

ZERO provides a new perspective to mitigate network in-
terference, i.e., limiting the credit of monitoring traffics when
co-existing. Specifically, the controller adopts group switch-
ing with 64 QPs/hosts in each group. The QPs of next group
will be pre-fetched to RNIC SRAM for warming up. The
total credit T in Credit-FC is set to 256KB, which maximally
adds ∼ 20/10µs queuing delay with 100/200GbE bandwidth.
Note that the maximum build-up queue is much less than
256KB due to the posting and arrival delay (Section 6.3). As
a comparison, the traditional send-driven model easily causes
network jitters with burst traffics. Besides, such settings have
a negligible impact on monitoring QoS and single controller
supports 1 ∼ 10k hosts with 0.1 ∼ 1s intervals. The agent
only occupies 0.01∼ 0.1% bandwidth of the monitored host.
Receiver-driven CC. Compared with existing sender-driven
CC, the receiver-driven CC achieves several benefits in mon-
itoring. Existing CC mechanisms, e.g., DCQCN [95] and
TIMELY [69], react to congestion after switch buffer/queue
reach threshold. Besides, they aim to achieve equal bandwidth
sharing across multiple flows, and cannot avoid interference
between service traffics and monitoring traffics. As a compar-
ison, the receiver-driven CC avoids network congestion and
interference in advance by limiting the total in-flight data of
monitoring. On the other hand, existing CC mechanisms, e.g.,
DCQCN and HPCC [57], are complex in deployment and
requires ECN or in-network telemetry (INT) supports from
switches. However, ECN or INT capability are not always
supported, e.g., in Cluster1. The Credit-FC in our deployment
is simple and effective to avoid triggering PFC/ECN.

We also observe several limitations of current Credit-FC.
It only adopts credit without pacing [50] and cannot support
massive concurrent flows with a 4KB transmission fragment.
Besides, it is not a universal CC mechanism for data-center
traffics, which dedicates to avoid network congestion and
interference caused by monitoring traffics in the ZERO frame-
work. In our future work, we will try to resolve these limi-
tations from two aspects. First, we will consider both host
bandwidth and ECN threshold [88] with a combination of
credit- and pacing-based CC, to achieve full bandwidth uti-
lization while avoiding network congestion. Second, we will
explore the universal receiver-driven model in cloud networks,
which has the benefits of CPU offloading via RDMA and more
convenient CC [77].

8 Related Work

One-sided RDMA. In the system area, it is a trend to lever-
age one-sided RDMA operations to bypass the server CPUs.

As pioneering works, Pilaf [68] enables the clients to directly
read data from the server memory via RDMA read. Clients
use CRC64 to search for the inconsistency of data caused
by the possible read-write races on the server. RFP [79, 86]
explores one-sided RDMA to provide another alternative so-
lution for RPC, which uses RDMA read to fetch the response
result. On the other hand, several works [46, 61, 86] explore
how to optimize the raw performance of one-sided RDMA. To
the best of our knowledge, ZERO is the first work to leverage
one-sided RDMA for distributed monitoring.
Monitoring system. There are plenty of works targeting for
the design of monitoring system [65]. Yet, all these works
focus on data analytic [51, 80], tracing bugs [59, 63] and vi-
sualization [71]. Distinct from these works, where monitors
are tightly coupled with the monitored applications and hosts,
ZERO decouples the monitor from the monitored infrastruc-
ture and eliminates the monitoring overhead completely.
Cloud-native monitoring. Netdata [10] enables users to
quickly identify and troubleshoot issues, and make data-
driven decisions according to the pre-built visible dashboards.
Prometheus [11] is an open-sourced monitoring system with
complete ecosystem to extract time series data from the cloud-
native applications, and it focuses on collecting metrics via a
powerful query language called PromQL. Stackdriver [4] is
the logging and monitoring solution of Google, which is inte-
grated tightly into Google Cloud. Likewise, ZERO is deeply
used in the cloud-native ecosystem of Alibaba cloud.

9 Conclusion

We propose the ZERO monitoring system framework, ex-
ploiting one-sided RDMA read for remote monitoring. ZERO
achieves zero-overhead monitoring via the novel control plane
and data plane. ZERO supports large-scale distributed moni-
toring via credit-based FC and hybrid I/O model. ZERO thus
paves the way for integrating RDMA into the monitoring
systems, which desires to benefit from the high performance
of RDMA while avoiding poor scalability. We deploy ZERO
in Alibaba cloud-native platform to evaluate its performance.
The deployment results show that ZERO resolves interference
problem of traditional monitor and easily fulfills both latency
and throughput requirements in cloud-native monitoring.

10 Acknowledgment

We sincerely thank the anonymous shepherd and review-
ers for their insightful comments and feedback. This work
was supported in part by NSFC grant 62141220, 61972253,
U1908212, 72061127001, 62172276, 61972254, the Program
for Professor of Special Appointment (Eastern Scholar) at
Shanghai Institutions of Higher Learning, Alibaba Innova-
tive Research (AIR) Program. Corresponding author: Linghe
Kong (linghe.kong@sjtu.edu.cn).

650 2022 USENIX Annual Technical Conference USENIX Association

References

[1] Alibaba Cloud Container Service for Kubernetes.
https://www.alibabacloud.com/en/product/
kubernetes, Dec. 2020.

[2] Best Practices of ECS Container Network Multi-NIC
Solution. https://www.alibabacloud.com/blog/
593997, Dec. 2020.

[3] Extended Berkeley Packet Filter. https://ebpf.io/,
Dec. 2020.

[4] Google cloud’s operations suite (formerly stack-
driver). https://cloud.google.com/products/
operations, Dec. 2020.

[5] Grafana. https://grafana.com/, Dec. 2020.

[6] Hubble. https://github.com/cilium/hubble, Dec.
2020.

[7] InfluxDB. https://www.influxdata.com/, Dec.
2020.

[8] Install netdata on cloud providers. https:
//learn.netdata.cloud/docs/agent/packaging/
installer/methods/cloud-providers, Dec. 2020.

[9] MaxCompute - Conduct large-scale data warehousing
with MaxCompute. https://www.alibabacloud.
com/product/maxcompute, Dec. 2020.

[10] Netdata - Monitor everything in real time for free with
Netdata. http://www.netdata.cloud, Dec. 2020.

[11] Prometheus - Monitoring system & time series database.
https://prometheus.io/, Dec. 2020.

[12] Redis. https://redis.io/, Dec. 2020.

[13] Specifying Attributes of Variables. https:
//gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Variable-Attributes.html, Dec. 2020.

[14] ApsaraDB for Redis. https://www.alibabacloud.
com/product/apsaradb-for-redis, June. 2021.

[15] Cloud-native applications management. https://www.
alibabacloud.com/en/solutions/container,
June. 2021.

[16] OFED performance test suite. https://github.com/
linux-rdma/perftest, June. 2021.

[17] Packet buffer of switches. https://https://people.
ucsc.edu/~warner/buffer.html, June. 2021.

[18] Giuseppe Aceto, Alessio Botta, Walter De Donato, and
Antonio Pescapè. Cloud monitoring: A survey. Com-
puter Networks, 57(9):2093–2115, 2013.

[19] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In USENIX ATC,
2018.

[20] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In ACM SIGCOMM, 2010.

[21] Nadav Amit and Michael Wei. The design and imple-
mentation of hyperupcalls. In USENIX ATC, 2018.

[22] Ashish Bijlani and Umakishore Ramachandran. Ex-
tension framework for file systems in user space. In
USENIX ATC, 2019.

[23] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with RDMA and caching. Pro-
ceedings of the VLDB Endowment, 11(11):1604–1617,
2018.

[24] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In ACM SIGCOMM,
2021.

[25] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless computing.
Communications of the ACM, 62(12):44–54, 2019.

[26] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on reliable connection with efficient re-
source sharing. In EUROSYS, 2019.

[27] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In SOSP, 2017.

[28] Christina Delimitrou and Christos Kozyrakis. Hcloud:
Resource-efficient provisioning in shared cloud systems.
In ASPLOS, 2016.

[29] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasi-
lakis, Vincent Liu, Boon Thau Loo, and Linh Thi Xuan
Phan. Detecting asymmetric application-layer denial-
of-service attacks in-flight with finelame. In USENIX
ATC, 2019.

[30] Luca Deri, Samuele Sabella, and Simone Mainardi.
Combining system visibility and security using eBPF.
In ITASEC, 2019.

USENIX Association 2022 USENIX Annual Technical Conference 651

https://www.alibabacloud.com/en/product/kubernetes
https://www.alibabacloud.com/en/product/kubernetes
https://www.alibabacloud.com/blog/593997
https://www.alibabacloud.com/blog/593997
https://ebpf.io/
https://cloud.google.com/products/operations
https://cloud.google.com/products/operations
https://grafana.com/
https://github.com/cilium/hubble
https://www.influxdata.com/
https://learn.netdata.cloud/docs/agent/packaging/installer/methods/cloud-providers
https://learn.netdata.cloud/docs/agent/packaging/installer/methods/cloud-providers
https://learn.netdata.cloud/docs/agent/packaging/installer/methods/cloud-providers
https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
http://www.netdata.cloud
https://prometheus.io/
https://redis.io/
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Variable-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Variable-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Variable-Attributes.html
https://www.alibabacloud.com/product/apsaradb-for-redis
https://www.alibabacloud.com/product/apsaradb-for-redis
https://www.alibabacloud.com/en/solutions/container
https://www.alibabacloud.com/en/solutions/container
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://https://people.ucsc.edu/~warner/buffer.html
https://https://people.ucsc.edu/~warner/buffer.html

[31] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote memory.
In USENIX NSDI, 2014.

[32] Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi
Wu, Yang Zhang, James Cheng, Chao Li, and Tao Guan.
Scaling large production clusters with partitioned syn-
chronization. In USENIX ATC, 2021.

[33] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud and edge systems. In
ASPLOS, 2019.

[34] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan
He, Meghna Pancholi, and Christina Delimitrou. Seer:
Leveraging big data to navigate the complexity of perfor-
mance debugging in cloud microservices. In ASPLOS,
2019.

[35] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over commodity ethernet at scale. In ACM
SIGCOMM, 2016.

[36] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. Who limits the
resource efficiency of my datacenter: An analysis of
alibaba datacenter traces. In IEEE/ACM IWQoS, 2019.

[37] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new
TCP-friendly high-speed TCP variant. ACM SIGOPS
operating systems review, 42(5):64–74, 2008.

[38] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The eXpress data path: Fast
programmable packet processing in the operating sys-
tem kernel. In ACM CONEXT, 2018.

[39] Michio Honda, Felipe Huici, Costin Raiciu, Joao Araujo,
and Luigi Rizzo. Rekindling network protocol innova-
tion with user-level stacks. ACM SIGCOMM Computer
Communication Review, 44(2):52–58, 2014.

[40] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX ATC, volume 8,
2010.

[41] Seyyed Ahmad Javadi, Amoghavarsha Suresh, Muham-
mad Wajahat, and Anshul Gandhi. Scavenger: A black-
box batch workload resource manager for improving
utilization in cloud environments. In ACM SOCC, 2019.

[42] Congfeng Jiang, Yitao Qiu, Weisong Shi, Zhefeng Ge,
Jiwei Wang, Shenglei Chen, Christophe Cerin, Zujie
Ren, Guoyao Xu, and Jiangbin Lin. Characterizing co-
located workloads in Alibaba cloud datacenters. IEEE
Transactions on Cloud Computing, 2020.

[43] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt.
Performance modeling for cloud microservice applica-
tions. In ACM/SPEC ICPE, 2019.

[44] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In USENIX
NSDI, 2019.

[45] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for key-value services. In
ACM SIGCOMM, 2014.

[46] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In USENIX ATC, 2016.

[47] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided RDMA datagram RPCs. In USENIX
OSDI, 2016.

[48] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu,
Karthick Rajamani, Alexandre Ferreira, and Aditya
Akella. Iron: Isolating network-based {CPU} in con-
tainer environments. In USENIX NSDI, 2018.

[49] Ricardo Koller and Dan Williams. Will serverless end
the dominance of linux in the cloud? In ACM HOSTOS,
2017.

[50] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for con-
gestion control in the datacenter. In ACM SIGCOMM,
2020.

[51] Mahendra Kutare, Greg Eisenhauer, Chengwei Wang,
Karsten Schwan, Vanish Talwar, and Matthew Wolf.
Monalytics: online monitoring and analytics for manag-
ing large scale data centers. In International Conference
on Autonomic Computing, 2010.

[52] Sándor Laki, Gergő Gombos, Péter Hudoba, Szilveszter
Nádas, Zoltán Kiss, Gergely Pongrácz, and Csaba
Keszei. Scalable per subscriber QoS with core-stateless
scheduling. ACM SIGCOMM Demo, 1:84–86, 2018.

[53] Sándor Laki, Dániel Horpácsi, Péter Vörös, Róbert
Kitlei, Dániel Leskó, and Máté Tejfel. High speed
packet forwarding compiled from protocol independent
data plane specifications. In ACM SIGCOMM, 2016.

652 2022 USENIX Annual Technical Conference USENIX Association

[54] Joshua Levin. Viperprobe: Using eBPF metrics to
improve microservice observability, 2020.

[55] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter sockets can be fast and
compatible. In ACM SIGCOMM, 2019.

[56] Feifei Li. Cloud-native database systems at Alibaba:
Opportunities and challenges. Proceedings of the VLDB
Endowment, 12(12):2263–2272, 2019.

[57] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. HPCC:
High precision congestion control. In ACM SIGCOMM.
2019.

[58] Qixiao Liu and Zhibin Yu. The elasticity and plasticity
in semi-containerized co-locating cloud workload: a
view from alibaba trace. In ACM SOCC, 2018.

[59] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large
system software. In USENIX NSDI, 2020.

[60] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing microservice depen-
dency and performance: Alibaba trace analysis. In ACM
SoCC, 2021.

[61] Teng Ma, Kang Chen, Shaonan Ma, Zhuo Song, and
Yongwei Wu. Thinking more about RDMA memory
semantics. In IEEE International Conference on Cluster
Computing (CLUSTER), 2021.

[62] Teng Ma, Tao Ma, Zhuo Song, Jingxuan Li, Huaixin
Chang, Kang Chen, Hai Jiang, and Yongwei Wu. X-
RDMA: Effective RDMA middleware in large-scale
production environments. In IEEE International Con-
ference on Cluster Computing (CLUSTER), 2019.

[63] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In SOSP, 2015.

[64] Ilias Marinos, Robert NM Watson, and Mark Hand-
ley. Network stack specialization for performance.
ACM SIGCOMM Computer Communication Review,
44(4):175–186, 2014.

[65] Matthew L Massie, Brent N Chun, and David E Culler.
The ganglia distributed monitoring system: design, im-
plementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[66] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A new architecture for user-level packet capture.
In USENIX winter, 1993.

[67] Bradley Miles and Dave Cliff. A cloud-native glob-
ally distributed financial exchange simulator for study-
ing real-world trading-latency issues at planetary scale.
arXiv preprint arXiv:1909.12926, 2019.

[68] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided RDMA reads to build a fast, cpu-efficient
key-value store. In USENIX ATC, 2013.

[69] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. TIMELY: RTT-based congestion control for the
datacenter. In ACM SIGCOMM, 2015.

[70] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for RDMA.
In ACM SIGCOMM, 2018.

[71] Alex Page, Tolga Soyata, Jean-Philippe Couderc,
Mehmet Aktas, Burak Kantarci, and Silvana Andreescu.
Visualization of health monitoring data acquired from
distributed sensors for multiple patients. In IEEE
GLOBECOM, 2015.

[72] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. {RDMA} is turing complete, we just did not
know it yet! In USENIX NSDI, 2022.

[73] Jamal Hadi Salim, Robert Olsson, and Alexey
Kuznetsov. Beyond softnet. In 5th Annual Linux
Showcase & Conference, 2001.

[74] Hermann Schweizer, Maciej Besta, and Torsten Hoefler.
Evaluating the cost of atomic operations on modern
architectures. In IEEE PACT, 2015.

[75] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. Legoos: A disseminated, distributed os for
hardware resource disaggregation. In USENIX OSDI,
2018.

[76] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert Van Renesse,
and Hakim Weatherspoon. X-containers: Breaking
down barriers to improve performance and isolation of
cloud-native containers. In ASPLOS, 2019.

[77] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, et al. 1RMA: Re-Envisioning Remote Memory
Access for Multi-Tenant Datacenters. In ACM SIG-
COMM, 2020.

[78] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F
Wenisch. Softsku: optimizing server architectures for
microservice diversity@ scale. In ISCA, 2019.

USENIX Association 2022 USENIX Annual Technical Conference 653

[79] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. RFP: When RPC is faster than
server-bypass with RDMA. In EUROSYS, 2017.

[80] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus,
Pramod Bhatotia, Ruichuan Chen, Bimal Viswanath,
Lei Jiao, and Christof Fetzer. Sieve: actionable in-
sights from monitored metrics in distributed systems. In
ACM/IFIP/USENIX Middleware Conference, 2017.

[81] Linus Torvalds. The linux edge. Communications of
the ACM, 42(4):38–39, 1999.

[82] Shin-Yeh Tsai and Yiying Zhang. Lite kernel RDMA
support for datacenter applications. In SOSP, 2017.

[83] Marcos AM Vieira, Matheus S Castanho, Racyus DG
Pacífico, Elerson RS Santos, Eduardo PM Câmara
Júnior, and Luiz FM Vieira. Fast packet processing
with eBPF and XDP: Concepts, code, challenges, and
applications. ACM Computing Surveys, 53(1):1–36,
2020.

[84] Hanzhang Wang, Phuong Nguyen, Jun Li, Selcuk Ko-
pru, Gene Zhang, Sanjeev Katariya, and Sami Ben-
Romdhane. Grano: Interactive graph-based root cause
analysis for cloud-native distributed data platform. Pro-
ceedings of the VLDB Endowment, 12(12):1942–1945,
2019.

[85] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yong-
guang Zhang. ICTCP: Incast congestion control for
TCP in data-center networks. IEEE/ACM transactions
on networking, 21(2):345–358, 2012.

[86] Yongwei Wu, Teng Ma, Maomeng Su, Mingxing Zhang,
Kang Chen, and Zhenyu Guo. RF-RPC: Remote
fetching RPC paradigm for RDMA-enabled network.
IEEE Transactions on Parallel and Distributed Systems,
30(7):1657–1671, 2018.

[87] Xin Xu and Bhavesh Davda. A hypervisor approach to
enable live migration with passthrough sr-iov network
devices. ACM SIGOPS Operating Systems Review,
51(1):15–23, 2017.

[88] Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben
Xia, Derui Liu, and Weishan Deng. ACC: Automatic
ECN tuning for high-speed datacenter networks. In
ACM SIGCOMM, 2021.

[89] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Filemr: Rethinking RDMA networking for scalable per-
sistent memory. In USENIX NSDI, 2020.

[90] Kenichi Yasukata, Michio Honda, Douglas Santry, and
Lars Eggert. StackMap: Low-latency networking with
the OS stack and dedicated NICs. In USENIX NSDI,
2016.

[91] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiao-
qiang Peng, Liang Lin, Sheng Wang, Zhe Chen, Feifei
Li, Yue Pan, Fang Zheng, et al. Analyticdb: Real-time
olap database system at alibaba cloud. Proceedings of
the VLDB Endowment, 12(12):2059–2070, 2019.

[92] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang,
Yibin Shen, and Xin Long. High-density multi-tenant
bare-metal cloud. In ASPLOS, 2020.

[93] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong
Tang, and Jie Xu. Fuxi: a fault-tolerant resource man-
agement and job scheduling system at internet scale. In
Proceedings of the VLDB Endowment, volume 7, pages
1393–1404, 2014.

[94] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin
She, Sifan Liu, Rui Gu, Beng Chin Ooi, and Junfeng
Yang. Overload control for scaling wechat microser-
vices. In ACM SOCC, 2018.

[95] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale RDMA de-
ployments. In ACM SIGCOMM, 2015.

654 2022 USENIX Annual Technical Conference USENIX Association

	Introduction
	Zero-overhead Monitoring
	Design and Implementation
	Overview
	Scaling-out Monitoring

	Case Study
	Evaluation
	Evaluation Setup
	Zero Overhead

	Related Work
	Conclusion
	Acknowledgment

