
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

PetS: A Unified Framework for Parameter-Efficient
Transformers Serving

Zhe Zhou, Peking University; Xuechao Wei, Peking University and Alibaba Group;
Jiejing Zhang, Alibaba Group; Guangyu Sun, Peking University

https://www.usenix.org/conference/atc22/presentation/zhou-zhe

PetS: A Unified Framework for Parameter-Efficient Transformers Serving

Zhe Zhou †

Peking University
Xuechao Wei

Peking University
Alibaba Group

Jiejing Zhang
Alibaba Group

Guangyu Sun *

Peking University

Abstract
Deploying large-scale Transformer models under the con-
ventional pre-train-then-fine-tune paradigm is impractical
for multi-task serving, because a full model copy for each
downstream task must be maintained, quickly exhausting the
storage budget. Recent algorithmic advances in Parameter-
Efficient Transformers (PETs) have shown enormous poten-
tial to mitigate the storage overhead. They share the pre-
trained model among tasks and only fine-tune a small portion
of task-specific parameters. Unfortunately, existing serving
systems neither have flexible PET task management mecha-
nisms nor can efficiently serve queries to different tasks in
batches. Therefore, we propose PetS, the first unified frame-
work for multi-task PETs serving. Specifically, different PET
tasks are expressed by a unified representation in the same
framework, which enables flexible PET task management.
Based on the unified representation, we design a specialized
PET inference engine to batch different tasks’ queries to-
gether and execute them with task-agnostic shared operators
and task-specific PET operators. To further improve system
throughput, we propose a coordinated batching strategy to
deal with arbitrary input queries. We also develop a PET op-
erator scheduling strategy to exploit parallelism between PET
tasks. Comprehensive experiments on Edge/Desktop/Server
GPUs demonstrate that PetS supports up to 26× more con-
current tasks and improves the serving throughput by 1.53×
and 1.63× on Desktop and Server GPUs, respectively.

1 Introduction
Recently, large-scale pre-trained Transformer models have
revolutionized the field of artificial intelligence. Benefited
from the practical pre-train-then-fine-tune paradigm, Trans-
former models such as Bert [9], GPT-2/3 [3,45], Roberta [31],
XLNet [59], T5 [46], and some other variants [28, 29] have
achieved the leading-edge performance on various NLP
(Natural-Language-Processing) tasks, including question-
answering, sentiment-classification, text classification and ma-
chine translation, etc. Besides NLP tasks, some recent works
also apply transformers to computer vision tasks [4, 11, 25,
32, 55, 61], which demonstrate comparable or even superior

†Work done during Zhe Zhou’s internship at Alibaba DAMO Acadamy.
*Corresponding author.

performance against conventional Convolutional Neural Net-
works (CNNs). In brief, Transformers have been recognized
as a milestone of artificial intelligence.

To date, a standard workflow has been shaped to apply
Transformers to real-world applications. As is depicted in
Figure 1, big companies like Google first pre-train the Trans-
former models like Bert [9] and GPT [3, 45] with large-scale
datasets (Step 1©). The unsupervised pre-training usually lasts
for days to months, even trained on TPU clusters [3, 9]. The
pre-trained models with rich task-agnostic knowledge are
provided to application developers, who then fine-tune the
pre-trained models on their private datasets in a supervised
manner (Step 2©). The fine-tuned task-specific models are
finally deployed to cloud or edge servers (Step 4©) to process
different input queries. Such a workflow, however, is faced
with the poor scalability issue in the pervasive multi-task
serving scenarios [18, 19, 34, 40, 48, 53]. Since application
developers fine-tune and maintain a full model copy for each
downstream task, the storage overhead is proportional to the
number of deployed tasks. Considering the enormous pa-
rameters (e.g., several hundred millions to several thousand
millions of parameters) of Transformer models, the storage
overhead will be huge. What is worse, conventional serving
frameworks have to swap in and out models frequently if the
GPU memory cannot hold all the invoked tasks, resulting in
much lower serving throughput. Also, since the input queries
are associated with different models, we cannot inference
them in batches for higher serving throughput [7, 12, 16, 50].

Recent algorithmic advances in Parameter-Efficient Trans-
formers (PETs) have shown enormous potential to solve these
problems partially. They share the pre-trained model weights
among tasks and only fine-tune a small portion of task-specific
parameters for each downstream task [14,20,23,24,41,62,64].
By this means, the storage overhead is substantially mitigated,
while the model accuracy is still comparable or even superior
to the full-model fine-tuning counterparts. These methods,
however, cannot run efficiently with existing Transformers
serving frameworks [12, 37, 56]. On the one hand, due to the
lack of PET task management mechanism and PET-oriented
inference engine, we have to merge PET parameters into the
shared model and still send full model copies to the frame-

USENIX Association 2022 USENIX Annual Technical Conference 489

PIE
Inference *

*

* *

⑤

Full-model
Copies

Task-0

Task-1

Task-2

Conventional
Frameworks

②

PET
Parameters

Task-0

Task-1

Task-2

Model
Architecture

Unsupervised
Pre-training

Large-Scale
Dataset

① Pre-trained
Model

Full-Model
Fine-tuning

Parameter-
Efficient

Fine-tuning

Task-Specific Datasets

Shared
Weight

Model Base

Model Base

Query-0

Query-1

Query-2

Model
Switching

PetS

*

*

+

*

Input
Queries

④

③

<5%

90%

30%

Figure 1: The conventional workflow VS. PetS workflow for developing and deploying Transformer-based applications. 1©:
Large-scale unsupervised pre-training. 2©: Full-model fine-tuning on customized datasets for different tasks. 3©: Parameter-
efficient fine-tuning. 4©: Serving the input queries with conventional frameworks. 5©: Serving the input queries with PetS.

works. Thus, the GPU memory footprint is not mitigated. On
the other hand, queries to different tasks cannot be processed
in batches due to both the inter-task weight differences and
inter-algorithm representation differences.

To take full advantage of parameter-efficient Transform-
ers, in this paper, we propose PetS, a unified framework for
multi-task PETs serving with extraordinary scalability and
performance. To this end, we first express the state-of-the-art
PET algorithms by a unified representation, which decou-
ples any PETs into task-agnostic shared operations and task-
specific PET operations. Based on the unified representation,
we design a PET tasks management mechanism, which en-
ables the service providers to register and load PET tasks
flexibly. We then develop a high-performance PET Inference
Engine (PIE) to batch different tasks’ queries and execute
them with shared operators and light-weighted PET operators,
substantially improving the serving throughput. We also pro-
pose several optimization strategies to improve the system’s
throughput further. To be specific, we propose a Coordinated
Batching strategy to deal with arbitrary input queries (i.e.,
queries with different sequence lengths and PET types). To
exploit parallelism between PET operators, we apply a PET
Operator Scheduling strategy to properly put concurrent PET
operators to different CUDA streams. We comprehensively
evaluate PetS on Edge/Desktop/Server GPU platforms. Com-
pared to conventional frameworks, PetS supports up to 26×
more concurrent Transformer tasks and improves the serv-
ing throughput by 1.53× and 1.63× on Desktop and Server
GPUs, respectively. Therefore, PetS shows great potential to
reduce the service deployment cost and improve the service
quality in multi-task Transformers serving scenarios.

2 Background & Motivations
2.1 Transformer Models
As illustrated in Figure 2, Transformer models are generally
built by stacking several homogeneous Transformer blocks. A
standard Transformer block consists of three key components:

Token Embeddings

“How” “are” “you” “?”

Multi-Head
Attention

…

Block 𝐿

Add & Norm

Add & Norm

FFN

𝑄, 𝐾, 𝑉 = 𝑋 ⋅ 𝑊𝑄,𝑊𝐾 ,𝑊𝑉 + 𝑏

𝑅𝑒𝑠ℎ𝑎𝑝𝑒 𝑄,𝐾, 𝑉

𝑋 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄 ⋅ 𝐾𝑇

𝑑
⋅ 𝑉

𝑋 = 𝑋 ⋅ 𝑊𝑂 + 𝑏

𝑅𝑒𝑠ℎ𝑎𝑝𝑒 𝑋

𝑋 = 𝐺𝐸𝐿𝑈(𝑋 ⋅ 𝑊1 + 𝑏1)

𝑋 = 𝑋 ⋅ 𝑊2 + 𝑏2

Tr
an

sf
o

rm
er

 B
lo

ck

①

②

③

④

⑤

⑥

⑦

Figure 2: Bert Architecture.

Multi-Head Attention (MHA), Feed-Forward Network (FFN)
and Normalization Layers (Norm). For each block, the input
is a sequence of n vectors (tokens), denoted as X ∈ Rn×din ,
where n and din are the sequence length and the input feature
dimension. Three linear projection weights {WQ,WK ,WV} ∈
Rdin×d project the input tensor X to Query, Key and Value
tensors, denoted as {Q, K, V} ∈ Rn×d (Step 1© in Figure 2),
where d represents the hidden feature dimension. The Q,K,V
tensors are split to multiple "Heads" (Step 2©) to perform
softmax-based self-attention respectively (Step 3©). The self-
attention results are then concatenated (Step 4©) and linear-
transformed (Step 5©) to generate the MHA results. After
skip-connection and layer-normalization, the hidden feature
X is then fed into the FFN layer, which computes with two
fully-connected layers (Step 6© and 7©). The GELU activation
function [22] is applied to the first layer’s output. One block’s
output serves as the input of the next block. On top of the last
block, there is usually a classification layer to generate the
final results for a given downstream task.

Traditional neural-networks like CNNs and LSTMs all in-
volve "prior" in their models to enhance the performance (i.e.,
a CNN model assumes the 2D images have spatial locality,
while an LSTM model assumes that the information should be
either remembered or forgotten). In comparison, Transform-
ers have no such priors and learn all the useful information

490 2022 USENIX Annual Technical Conference USENIX Association

Table 1: Comparisons of State-of-the-Art Parameter-Efficient Transformers.
Model Type Adapters [23] MaskBert [64] Diff-Pruning [20] Bitfit [62]

Main Computation.
Pre-trained Parameters

Are Marked Blue + *()

*

… +

*

+

*

+

*

Formula Yt = Xt ·W +b,
Yt = Yt +σ(Yt ·Wdown) ·Wup

Yt = Xt ·(W�Mt)+b Yt = Xt ·(W +δt)+(b+bt) Yt = Xt ·W +bt

Additional Parameters 7.3% 3% 0.5% 3.8%
Leading Tasks in

GLUE Benchmark * STS-B, QQP SST-2 QNLI, MNLI,
CoLA,MRPC

RTE

*Comparisons are based on BERT-large. We reproduce MaskBert on BERT-large, while the other results are obtained from the reported numbers.

purely through unsupervised pre-training. To achieve this, not
only the pre-train datasets are large in scale, the models also
contain enormous parameters to guarantee a high knowledge
capacity. For instance, Bert-base and Bert-large have 110M
and 340M parameters, respectively, while some recent models
even have billions [3,51] or trillions of parameters [13]. The
explosion of such large-scale Transformer models brings both
opportunities and challenges. On the one hand, real-world
tasks get benefited from their superior performance compared
to traditional DNNs. On the other hand, it is challenging to
deploy Transformer models to resource-constrained scenarios
due to the storage/memory capacity limit, especially when
multiple tasks should be served simultaneously.

2.2 Multi-Task Transformers Serving
In real-world scenarios, a server usually runs multiple tasks
(here a task refers to a distinct DNN model) concurrently for
serving different queries [2, 48, 50] (each query invokes at
least one of the DNN models). According to the standard
workflow shown by steps 1©- 2©- 4© in Figure 1, for multi-task
transformers serving, every downstream task has its own fine-
tuned model. That is to say, the storage/memory overhead is
proportional to the number of tasks. In the figure, three tasks
occupy 3× storage. More importantly, all the models should
be buffered in GPU memory for quick response to different
queries. As the number of tasks increases, it will easily exceed
the GPU’s memory. Alternatively, we can swap in and out
models once some tasks are invoked. Such a method, however,
will downgrade the system’s performance due to the consider-
able model swapping overhead [19, 48, 53]. Also, if each task
only has limited input queries, the computation resources will
be under-utilized because of the small batch size.

Although previous serving systems/frameworks like IN-
FaaS [48], Nexus [50], Rafiqi [53], Triton [40], Tensorflow
Serving [18] and many DNN accelerators [2, 6, 17, 26, 27]
have emphasized the multi-task DNN serving ability, to im-
plement multi-task Transformers serving is still challenging.
Reasons are mainly two-folded. First, Transformers usually
contain enormous parameters to guarantee their sufficient
knowledge capacity. Thus, the storage and memory overhead
is much heavier than traditional DNNs, limiting the number
of served tasks. Second, previous multi-task inference frame-

works/accelerators assume that the computation/bandwidth re-
quirements vary among concurrent DNNs. Thus, they execute
computation-bounded and memory-bounded models (or lay-
ers) together to fully utilize the hardware resources. However,
since the Transformer blocks are homogeneous among differ-
ent tasks, there is little room for improving system throughput
by co-locating heterogeneous models.

2.3 Parameter-Efficient Transformers
A potential solution to the multi-task Transformers serv-
ing problem is directly training a multi-task model like
T5 [46]. However, such a method is infeasible in real scenar-
ios since all the application developers have to provide their
private datasets to train such a one-for-all model. Recently,
Parameter-Efficient Transformers (PETs) have emerged as
another promising way to deal with the problem. PETs are
based on the assumption that pre-trained models have learned
rich knowledge from large-scale pre-train datasets [44, 47].
Thus, we can adapt the pre-trained model to downstream tasks
by only fine-tuning a small portion of task-specific parame-
ters rather than the whole model. As illustrated in Figure 1,
through parameter-efficient fine-tuning (Step 2©), only the
PET parameters should be stored for each downstream task.
For example, four representative PETs, namely Adapters [23],
MaskBert [64], Diff-Pruning [20], and Bitfit [62] only use
0.5% to 7.3% additional parameters for each task. However,
they still achieve comparable or even higher accuracy against
the full-model fine-tuning counterparts. We summarize them
in Table 1 and introduce them as follows:
Adapters: Adapters [23] proposes to inject trainable, task-
specific "adapter" modules between some layers of the pre-
trained model, while the pre-trained weights are shared among
tasks. Formally, assume the linear layers in a pre-trained
model compute the hidden feature Yt with input feature Xt
and pre-trained parameters W (weight) and b (bias), namely
Yt = Xt ·W +b, then an adapter module manipulates the hid-
den features with two learnable weights Wdown ∈ Rd×dm and
Wup ∈ Rdm×d , namely Yt = Yt +σ(Yt ·Wdown) ·Wup, where σ

is the activation function. Since the bottleneck dimension
dm << d, the Adapter modules are small in size. Each task
only requires about 7.3% of new parameters (including a
task-specific classification layer).

USENIX Association 2022 USENIX Annual Technical Conference 491

MaskBert: Based on the lottery ticket hypothesis on Bert [5,
43], MaskBert [64] adapts the pre-trained model to down-
stream tasks by learning binary masks for each weight matrix.
As shown in Table 1, for each task, the pre-trained model
(including the classification layer) is frozen. Only the binary
masks with about 5% of zero elements are learned for each
weight matrix. Since the masks are binary, MaskBert only
incurs about a 3% per-task storage overhead. For each linear
layer, the computation is represented as Yt = Xt ·(Mt�W)+b,
where Mt denotes the task-specific mask.
Diff-Pruning: Diff-Pruning [20] also shares the pre-trained
model among tasks and only fine-tunes a small portion of
"difference" for each downstream task. As shown in Table 1,
the orange elements in both weight and bias represent the
fine-tuned "difference", which only incur about 0.5% of new
parameters for each task. During inference, these difference
parameters, denoted as δt and bt , are merged with the pre-
trained model to construct a task-specific model. Thus, the
main computation is Yt = Xt · (W +δt)+(b+bt).
Bitfit: Besides a task-specific classification layer, Bitfit [62]
only fine-tunes the linear and normalization layers’ bias-terms,
which also achieves competitive accuracy on some tasks in
the standard GLUE benchmark [54]. As shown in Table 1, the
linear layers in Bitfit compute with Yt = Xt ·W +bt where bt
is the only task-specific parameter.

There are still many other emerging PET algorithms [14,
24, 33, 41]. Their workflows are similar to at least one of
the above PETs. Therefore, in this paper, we conduct the
discussion mainly based on these four representative PETs.

2.4 Challenges of Multi-Task PETs Serving
When serving T different tasks, PETs reduce the storage over-
head from original T × γ to T ×η+ γ, where γ and η denote
the amount of full-model parameters and PET parameters, re-
spectively. Since η << γ, using PETs can significantly reduce
the storage overhead. However, we notice that the algorithmic
advantages of PETs can hardly translate to real speedup with
conventional Transformers serving frameworks, mainly due
to the following challenges:
Challenge #1: Current frameworks cannot support various
PET algorithms flexibly. We present the leading GLUE tasks
of each PET algorithm in Table 1. As we can see, all PETs
have their advantageous tasks. None of the four PETs can
serve as the one-for-all choice. That is to say, the application
developers tend to choose the best PETs for their downstream
tasks [33]. Therefore, the serving framework has to support
multiple types of PETs. However, current serving frameworks
are not optimized for diverse PETs. They lack the mechanism
to register and manage different PETs flexibly, considering
their distinct algorithmic representations.
Challenge #2: The GPU-memory footprint is still not mit-
igated. To serve PETs like MaskBert and Diff-Pruning us-
ing conventional inference frameworks, we have to merge
the task-specific PET parameters into the shared model. Af-

𝑌𝑡 = 𝜎((𝑋𝑡 ⋅ 𝑊 + 𝑏) ⋅ 𝑊𝑑𝑜𝑤𝑛) ⋅ 𝑊𝑢𝑝

𝑌𝑡 = 𝑋𝑡 ⋅ (𝑀𝑡 ⊙𝑊) + 𝑏

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊 + 𝛿𝑡 + 𝑏 + 𝑏𝑡

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊 + 𝑏𝑡

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊

(a)Original Representations (b)Unified Representation

①:

Dense MVM

− 𝑋𝑡 ⋅ 𝑊 ⊙ ഥ𝑀𝑡

+ 𝑋𝑡 ⋅ 𝛿𝑡

Sparse MVM

②:

③:

④:

+ 𝑏

+ 𝑏

+ 𝑏𝑡

+ 𝑏𝑡

Vadd

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊

𝜎(⋅ 𝑊𝑑𝑜𝑤𝑛)𝑊𝑢𝑝

Dense MVM

+

*
*

…

* *

④

② ③①

PET OperationsShared Operation

+−

𝑋𝑡

𝑊

𝑏

𝑏𝑡

Figure 3: Unified representation of PETs. 1©: Adapters 2©:
MaskBert 3©: Diff-pruning 4©:Bitfit.

ter that, we load the newly constructed models to inference
frameworks for serving. Thus, concurrent tasks still occupy
O(T × γ) GPU memory, limiting the system’s scalability. As
discussed before, we can swap in/out models among tasks to
deal with the GPU capacity issue, which will result in low
throughput due to the model swapping overhead [19, 48, 53].
Challenge #3: It is still hard to improve the system’s serv-
ing throughput, especially when each task only has limited
queries. It is well-known that batched inference is a practical
technique to improve a DNN serving system’s throughput
[7,12,16,50]. However, due to the differences in PET parame-
ters and PET algorithms, conventional frameworks can hardly
batch different tasks’ queries (even though the tasks may be-
long to the same PET algorithm) for higher throughput. Such
a problem will be more prominent when each concurrent task
only has a few queries to process.

3 PetS Framework
To address the challenges outlined above, we propose PetS, a
unified framework for efficient multi-task PETs serving. We
first propose a unified representation to put all PETs into one
framework. Based on this, we develop a flexible PET tasks
management mechanism and a specialized PET Inference
Engine (PIE) that enables both inter-task and inter-algorithm
query-batching. Details are introduced as follows.

3.1 Unified Representation of PETs
As Table 1 shows, state-of-the-art PETs have different algo-
rithmic representations, resulting in a "fragmentation" prob-
lem. We propose a unified representation, which expresses
PETs with task-agnostic and task-specific operations, to help
put them into one framework and enable batched inference.
As illustrated in Figure 3, for each PET, we decouple the
main computation (linear layers) into three operations: (1)
Dense Matrix-Vector-Multiplication (MVM) operation using
shared pre-trained weights. (2) Bias vector addition (Vadd)
using shared or task-specific bias. (3) Sparse/dense MVM op-
erations using task-specific PET parameters. Since all PETs
share the same pre-trained weight matrix W , the first opera-
tion, namely Xt ·W can be batched together. Though the task-

492 2022 USENIX Annual Technical Conference USENIX Association

specific computation with PET parameters cannot be batched
among PETs, it only involves light-weighted operations.

Adapters and Bitfit naturally fit into such a representa-
tion, since the PET operations are already decoupled from
the shareable operations. For Diff-Pruning and MaskBert,
we need to perform some equivalent transformations. As
Figure 3 shows, for Diff-Pruning, the computation concern-
ing the shared weight and "difference" are conducted sepa-
rately. Then the results are added up, namely Xt · (W +δt) =
Xt ·W +Xt · δt . For MaskBert, we use an equivalent trans-
formation: Mt �W = (1−Mt)�W , where Mt denotes the
bit-wise inversion of binary mask Mt . Thus, the original MVM
operation is converted to Xt ·W −Xt · (W �Mt). The W �Mt
term can be treated as the sparse weight differences similar to
Diff-Pruning’s. Since δt and W �Mt are sparse matrices with
high sparsity (typically 95% - 99.5%), these PET operations
can be efficiently computed with sparse kernels. Considering
that the Vadd operations concerning bias terms only have little
overhead, we mainly focus on operations (1) and (3), namely
the sparse and dense MVM operations.

The unified representation brings two main advantages.
First, the queries from different tasks can be batched together
at step (1), regardless of the PET types. Let us consider an
extreme case: assume we have T tasks, each having a single
query. The execution latency is changed from ∑

T−1
i=0 α(1) to

∑
T−1
i=0 βi +α(T), where α(n) denotes the latency of running a

Transformer model (without PET) with a batch of n queries.
βi denotes the latency of PET operations for query i. The
throughout is improved if we have:

T−1

∑
i=0

βi +α(T)<
T−1

∑
i=0

α(1) (1)

The inequality always holds since βi << α(1) (the PET oper-
ations are light-weighted compared to the shared operations)
and α(T) << ∑

T−1
i=0 α(1) (batched inference can greatly re-

duce the average latency [7, 12, 16, 50]).
Second, such a unified representation simplifies the PET

tasks management. Each task can be registered by identifying
its shared model tag, PET type, and PET parameters. The
inference engine can then load these PETs in a unified way.

3.2 Framework Overview
Based on the unified representation, we then present the
PetS serving framework to support the management and
serving of PET tasks. Figure 4 illustrates the proposed
PetS framework. PetS has three main components: a Task
Manager, a Parameter Repository, and a PET Inference
Pipeline. PetS works as follows: ¶: The framework first
registers the PET tasks submitted by developers. For each
PET task, the developers are required to provide the Pre-
trained Model Tag (such as bert-base-cased), PET Param-
eters (in compressed format) and PET Type (e.g., MaskBert).
·: Task Manager registers PET tasks, which assigns a unique
Task_id to each submitted task. The PET parameters and the

PET Serving
PET Inference Pipeline

Pre-train
Model ID
Shadow

Parameters

PET Type

Pre-train
Model ID
Shadow

Parameters

PET Type

Pre-trained
Model Tag

PET
Parameters

PET Type

PET Parameters

Shared Model
Parameters

Register Tasksu

Task Register

Task Loader

Task Manager

Parameter Repository

v
w

<Task_id>
<Input Data>

…

Query 0:

Query 1:

Input Queriesx

Scheduling
Policy

Batch Scheduler

Performance
Model

Inference Engine

PET Task
Scheduler

PET Operator
Library

y

Input
Analyzing

Input
Reformatting

Preprocessing

<Task_id>
<Input Data>

Figure 4: PetS System Overview.

pre-loaded shared model parameters are all stored in the Pa-
rameter Repository (¸). After registration, the PET Inference
Engine (PIE) is responsible for processing the input queries
(¹) through an optimized PET Inference Pipeline (º).

3.3 Managing PET Tasks
One of the key features of PetS is the flexible and efficient
PET task management mechanism, which is powered by the
Task Register and Task Loader modules.
Task Register: The Task Register module registers a PET
task according to the user-provided information denoting
its shared model, task-specific parameters, and PET type.
A triplet <Task_id, Shared_model_tag, PET_type> is
formed to bind each task with its corresponding pre-trained
model and the supported PET type, where the Task_id is
unique to identify each PET task. All these triplets are or-
ganized as a map structure, with the Task_id as the key
and the <Shared_model_tag, PET_type> pair as the value.
Therefore, we can index the metadata of each task given the
Task_id of a query. Once a PET task completes registration,
its PET parameters are stored in the Parameter Repository.
Note that for PETs like MaskBert and Diff-Pruning, the PET
parameters are stored in a compressed format to save storage.
Task Loader: Before a PET task is invoked by the inference
engine, the Task Loader module firstly loads the shared model
parameters if they have not been loaded yet. Otherwise, the
Task Loader indexes the Parameter Repository and accesses
the PET parameters according to the Task_id of each invoked
task. Considering that the PET parameters are small in size
and the shared model only has one copy, all the parameters
can be buffered into the GPU memory for quick invoking.

3.4 PET Inference Pipeline
At the core of PetS framework is the PET Inference Pipeline,
which processes queries with three pipelined steps including
Preprocessing, Batch Scheduling and PET Inference.
3.4.1 Preprocessing
The preprocessing module fetches queries from standard
HTTP/gRPC data plane similar to conventional inference
serving frameworks [18, 40]. Then it analyzes input data

USENIX Association 2022 USENIX Annual Technical Conference 493

enum PET_type {
MaskBert = 0,
Diff_Pruning = 1,
Bitfit = 2,
Adapter = 3};

Batched
Inputs

×





PET_type
= 0

Selector

get_pet_op(pet_type)


get_pet_param(task_id)

𝑀0 𝛿2 𝛿4 𝑊9
…

…





PET_Op
0

PET_Op
1

PET_Op
3

Task_id = 0

Task_id = 2

Task_id = 4

Task_id = 6

Task_id = 6

Task_id = 9

Task_id = 9

Input Tensors

…

Shared
Weight

Lookup Table

PET_type

0

1

Task_id

0

2

……

slice_to()

Figure 5: Base PET inference engine workflow.

and reformats them for the next query-batching step. Firstly,
the input data is classified according to the shared model
(Shared_model_tag). The metadata of each query is ex-
tracted, such as the invoked task’s id, sequence length, PET
type, etc. Some preliminary data preprocessing operations
are then performed according to the extracted metadata, such
as grouping the queries of the same PET task. In order to
improve the performance of sparse PET operations, the input
tensors’ data layout is also reformatted according to the com-
pression format of the corresponding sparse PET parameters.
Finally, the preprocessed input queries together with the ex-
tracted metadata are dispatched to different queues for further
scheduling, according to their targeting shared models.
3.4.2 Batch Scheduler
As discussed before, batching is an effective way to improve
system throughput. Though PetS enables both inter-task and
inter-algorithm batching through the proposed unified repre-
sentation, the heterogeneity of queries in terms of PET type
and sequence length still prevents batching efficiently. The
batch scheduler module is used to overcome the challenge
posed by query heterogeneity. Taking preprocessed queries
as input, the batch scheduler tries to maximize the benefit of
batching PET operators and minimize the padding overhead
of batching shared operators with different sequence length at
the same time. It leverages an accurate performance model to
help make batching decisions. The details of the scheduling
policy will be described in Section 4.1.
3.4.3 PET Inference Engine
PIE Workflow: The batched queries are finally fed into the
PET Inference Engine (PIE). Figure 5 illustrates the base
workflow of PIE. In the Figure, we use different colors to
indicate the queries’ PET types in the batch. For example,
task 0 belongs to MaskBert, while tasks 2,4 belong to Diff-
Pruning. PIE starts the computation of each Transformer layer
as follows: ¶: PIE performs batched GEMM computation
using the input tensor and shared weights W . ·: PIE gets the
PET_type attributes of each query by searching in the lookup
table with its Task_id. The batched inputs are also sliced
into several mini-batches (intra-task batching) according to
the task id. Then PIE gets the PET operators (¸) and PET

Task 0 Task 1 Task 3Task 2 Task 4
Step 1: Intra-Task Batching

Step 2: Inter-Task Batching

M
in

i
B

at
ch

𝛽 − Model

𝛼 − Model

PET-OPs Profiling

Shared-OPs
Profiling

Batch 1Batch 0

B=2, S=34

Batch 2

M
ac

ro
B

at
ch

B=4, S=34

Task 0 Task 1 Task 3Task 2 Task 4

Figure 6: Coordinated Batching Strategy

parameters (¹) according to the obtained PET types. º: PIE
executes the PET operators successively on each sliced mini-
batch. These PET operators are also responsible for adding
the PET results to the shared outputs if needed. Note that the
remaining operations like self-attention are also performed
by PIE but are not shown in the figure.
PET Operator Library: According to the unified rep-
resentation in Figure 3, the PET tasks rely on different
PET operations. MaskBert and Diff-Pruning involve sparse
matrix-matrix multiplication (SpMM) as their PET parame-
ters contain high sparsity. Adapters perform light-weighted
dense GEMM. While Bitfit only requires a Vadd operation.
Therefore, PIE provides an operator library containing high-
performance implementations of both dense and sparse op-
erators. The sparse operators are tuned specifically for the
sparse patterns and parameter sizes of the target models. We
can also implement new PET operators for other emerging
PET algorithms if they can fit into the unified representation.
PET Task Scheduler: During the inference of each layer, the
PET operations of different tasks have no data dependency
and can therefore run in parallel. Given the system allowed
parallelism, e.g., the number of CUDA streams on GPU, the
PET task scheduler schedules the PET operations to utilize the
parallelism as much as possible. The PET operator scheduling
strategy is introduced in Section 4.2.

4 Optimization Strategies

4.1 Coordinated Batching
In real scenarios, the input queries usually have variable se-
quence lengths. If we batch short queries and long queries,
the short ones have to be zero-padded, incurring useless com-
putation. Previous frameworks like TurboTransformers [12]
pay much attention to solve such a problem. However, for
PetS, we have to consider both the shared operations and PET
operations. Therefore, we propose a Coordinated Batching
(CB) strategy to coordinate these two parts during batching.
Problem Formulation: Assume there are R queries, namely
Q = {x0,x1, ...,xR−1} associated with T different tasks. We
divide queries into M batches. For each batch, we use α[N][L]
to denote the shared model latency when batching N queries
with a maximum length of L. In the meantime, a PET operator

494 2022 USENIX Annual Technical Conference USENIX Association

Algorithm 1: Coordinated Batching Strategy
1 Input: Number of tasks T , queries Q = {x0,x1, ...,xR−1}, Shared

Op latency model α, PET Op latency model β;
2 Step 0: Pre-processing
3 Cluster input queries to the same task and generate

Q = {X0,X1, ...,XT−1}, where Xi contains ni queries;
4 Step 1: Intra-task batching
5 for i← 0 until T do
6 Create DP state vector state[ni +1], state[0] = 0;
7 Sort queries in Xi according to the sequence length in an

ascending order;
8 Create split_idx_list[ni +1], pt = get_pet_type(i) ;
9 for j← 1 to ni; min_cost = INF do

10 for k← 1 to j do
11 tmp = state[k−1]+β[pt][j− k+1][Xi[j].len]);
12 if tmp < min_cost then
13 min_cost = tmp, split_idx = k−1;

14 state[j] = min_cost, split_idx_list[j] = split_idx;

15 Split queries into mini-batches MB using split_idx_list;

16 Step 2: Inter-task batching
17 Sort mini-batches according to their max sequence lengths;
18 Create DP state vector state[#mini_batch+1], state[0] = 0;
19 Create sum[#mini_batch+1], sum[i] records the total queries of the

first i mini-batches;
20 for i← 1 to #mini_batch; min_cost = INF do
21 for j← 1 to i do
22 batch_size = sum[i]-sum[j-1];
23 tmp = state[j−1]+α[batch_size][MB[i].max_seq_len]);
24 if tmp < min_cost then
25 min_cost = tmp, split_idx = j−1;

26 state[i] = min_cost,split_idx_list[i] = split_idx;

27 Split mini-batches into macro batches using split_idx_list;
28 Return: The scheduled macro batches

takes β[pt][n][l] seconds to process the PET terms of n queries,
whose PET_type is shortened to pt, and l is the max length
of these n queries. Then, the estimated execution latency is:

Batch_Latency(Bi) = α[Ni][Li]+
ti−1

∑
j=0

β[pti j][ni j][li j]. (2)

In the formula, we use Bi to denote the i-th batch, and assume
there are ti different tasks in the batch. For the j-th task in
batch i, there are ni j queries that shape a mini-batch, which is
processed by a PET operator indexed by pti j. The longest se-
quence length of the ni j queries is li j. Since all the M batches,
namely B = {B0,B1, ...,BM−1} are executed successively, we
can further estimate the total latency as:

Total_Latency(B) =
M−1

∑
i=0

Batch_Latency(Bi)

=
M−1

∑
i=0

α[Ni][Li]+
M−1

∑
i=0

ti−1

∑
j=0

β[pti j][ni j][li j]

(3)

As we can see, the total latency is jointly determined by the
shared and PET operators. To coordinate these two parts, we
propose a two-step Coordinated Batching strategy. As illus-
trated in Figure 6, in the first step, we generate "mini-batches"
for each task (intra-task batching) , which only considers the
effect of batching PET operators using a profiled β-model. In
the second step, we generate "macro-batches" by combining
these mini-batches among tasks (inter-task batching), which

Algorithm 2: PET Operator Scheduling Strategy
1 Input: PET operator set O of a macro-batch, stream set S,

latency model β and bandwidth model ω

2 Output: O to streams assignment Φ(O→ S)
3 I← /0 . operational intensity of O;
4 for o ∈O do
5 op_intensity← (o.FLOPs

β(o))/ω(o);
6 I.append(op_intensity);

7 Sort O in an ascending order according to I;
8 for o ∈O do
9 stream_idx← bo.idx/|S|c;

10 Φ(O[o.idx])← S[stream_idx];

only considers the effect of batching shared operators using
a profiled α-model. In both steps, we sort the queries and
use dynamic programming (DP) to find the optimal splitting
positions with low time-complexity.

Algorithm 1 details this strategy. The queries with the
same task id are firstly clustered and sorted according to the
sequence length. At the first step, we use state[i] to record
the minimum latency of PET operations when batching the
first i queries. We use split_idx_list to record the splitting
positions. Equation 4 shows the Bellman equation:

state[i] = min
0< j≤i

(state[j−1]+β[pti j][i− j+1][li j]) (4)

With the DP algorithm, we divide the queries of each task into
mini-batches. At the second stage, the Bellman equation only
considers the shared operators, whose latency is estimated
by the α model. Instead of scheduling each single query, the
second step schedules the mini-batches:

state[i] = min
0< j≤i

(state[j−1]+α[batch_size][L j]) (5)

Where state[i] records the minimum latency of batching the
first i mini-batches. L j denotes the max sequence length of
the j-th mini-batch. batch_size denotes the number of total
queries from mini-batches i to j. After dynamic programming,
the mini-batches are assigned to multiple macro-batches.

4.2 PET Operator Scheduling
In addition to the coordinated batch scheduling, PET operators
can be executed in parallel to further improve hardware uti-
lization and performance. To achieve the PET-task-level par-
allelism on GPU, PET operators in a macro-batch (as shown
in Figure 6) can be assigned to multiple CUDA streams. How-
ever, naïvely assigning a unique stream to each PET task may
not get the ideal speedup, because if we assign computation-
intensive operators to different streams (or memory-intensive
operators), they can hardly be executed in parallel, since they
are bounded by the same resources. Therefore, we propose
a light-weighted online scheduling strategy to dynamically
assign PET tasks to streams. The scheduling algorithm is
shown in Algorithm 2. The input includes the set of PET
operators to be scheduled, and the set of streams on which the
PET operators execute. The algorithm also requires the PET
latency model β used in Algorithm 1, as well as a bandwidth

USENIX Association 2022 USENIX Annual Technical Conference 495

Table 2: PET data structures and interfaces
Data Structure Interface

PETModel
load_shared_model(model_url)

load_pet_task(pet_type,param_url)

PETLayer load_pet_params(pet_type, pet_layer_param)

model ω generated together with β. The algorithm outputs the
assignment from the PET operator set to the stream set. The
first step (lines 3–6) of Algorithm 2 computes the operational
intensities of all the PET operators. Operational intensity is
a metric to measure the compute to memory access ratio of
an operator [57]. The achieved intensity of an operator is
computed by its FLOPs divided by the utilized bandwidth.
The second step (lines 7–10) then assigns a stream for each
PET operator. The rationale is to put operators with differen-
tiated operational intensities to different streams, in order to
minimize resource conflict between streams.

Though the PET operator level parallelism contradicts the
assumption that the PET operators are executed sequentially
in Coordinated Batching. Experiments in Section 6 demon-
strates that the coordinated batching still works well with
parallel PET execution. Involving a more accurate perfor-
mance model for parallel PET execution can help generate
better scheduling results. We leave this as our future work.

5 Implementation
We implement PetS with a Python front-end to describe
shared model and PET tasks management, and a C++ backend
to perform query scheduling and inference serving.

5.1 PET Description
The description of PET tasks is based on the Hugging-
Face Transformers framework [58]. We extend HuggingFace
Transformers library mainly with two data structures and
three interfaces to manage PET tasks, as shown in Table 2.
PETModel is the base structure to implement a model with
PET tasks. PETLayer is defined in PETModel to describe
PET operations, apart from the shared operations. The first in-
terface of PETModel in Table 2, load_shared_model, loads
the shared parameters as traditional Hugging Face tasks do.
The load_pet_task interface is used to load PET parame-
ters, given PET type and PET parameters URL. It will call
load_pet_params defined in PETLayer to finish the under-
lying load operations for each layer. Users can inherit and
implement these interfaces according to specific tasks.

5.2 Inference Serving
The three modules of the PetS’s PET Inference Pipeline in
Figure 4 are deployed in individual processes to process input
queries in a pipelined manner.
Inference Engine: Inference frameworks compatible with
HuggingFace Transformers library can be plugged into
PetS as its backend engine, such as TurboTransformers [12],
LightSeq [56], FastTransformers [37], etc. Modifications
should be done to support PET operators and the PET Task

Code Listing 1: User Interface
server = PetS() # create a PET server
Register PET tasks
server . register_task ("Adapter", " bert−base", pet_param_url_0)
server . register_task ("MaskBert", " bert−base", pet_param_url_1)
Register other PET tasks ...
Load shared model parameters and PET tasks
server . load_shared_model("bert−base")
server . load_pet_tasks(pet_task_ids)
Fetch queries from input query queue and run inference .
queries = server . fetch (input_query_queue)
results = server . inference (queries)

Table 3: Shared Model Configurations
Bert Type #Layer #Head Hidden Size Inter-Size # Params
DistillBert 6 12 768 3072 66 M
Bert-base 12 12 768 3072 110 M
Bert-large 24 16 1024 4096 340 M

Scheduler. Without loss of generality, PetS implements the
backend inference engine based on TurboTransformers *. It
leverages cuBLAS to compute the shared dense MVM oper-
ators. We leverage a high-performance SpMM implementa-
tion [15] to implement the sparse PET operators.

5.3 User Interfaces
We use a code sample as shown in Code 1 to demonstrate
how users can launch PetS, load models and process queries
with only a few lines of Python code.

After creating a PetS server, it firstly registers PET tasks
through the register_task interface. It will write the user-
provided PET parameters to Parameter Repository and get the
assigned task ids. Then the server loads the shared models by
calling standard HuggingFace Transformers API and loads
PET tasks using the assigned task ids to index the Parameter
Repository. Once fetching a group of queries from the input
query queue, the PetS server runs the PET inference pipeline
and returns the inference results.

Currently, we only implement the four aforementioned PET
algorithms in the PetS framework. A new PET algorithm can
work with PetS as long as it meets two requirements: (1)
The PET operations are separable (with necessary equivalent
transformations) from the shared operations. (2) The sepa-
rated PET operations are light-weighted. Then, to support a
new algorithm, the developers should first identify its PET op-
erations. Then the related functions introduced in this section
should be extended accordingly.

6 Evaluation
6.1 Experimental Setup
Shared Models: We choose Bert-base, Bert-large [9], and
DistillBert [49] as the shared pre-trained models, whose con-
figurations are listed in Table 3. We do not include generative
Transformer models such as GPT-2 [45] because GPT-like
models have not been well-studied by the PET algorithms
discussed above. We leave the evaluation on GPT-like mod-
els as our future work and focus on Bert-like models in this

*https://github.com/Tencent/TurboTransformers

496 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/Tencent/TurboTransformers

0

0.5

1

1.5

2

2.5
Single Task Task=16 Task=32 Task=64

0

0.5

1

1.5

2

2.5
Single Task Task=32 Task=64 Task=128

DistillBert Bert-base Bert-large DistillBert Bert-base Bert-large

GTX-1080 Ti Tesla-V100

{Per-task batch size, sequence length}

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Single Task Task=4 Task=16 Task=32

DistillBert Bert-base Bert-large

Jetson-TX2

N
o

rm
al

iz
ed

Q
P

S

{Per-task batch size, sequence length} {Per-task batch size, sequence length}

2
6

5
3

1
0

4

1
3

2
6

5
3

4 8 1
6

3
1

7

6
4

5

1
2

9
3

1
6

6

3
2

0

7
2

8

6
5

1
3

6

2
7

5

4
8

2

9
8

3

1
9

5
8

2
4

6

5
0

1

1
0

0
5

9
0

1
7

6

3
5

5

Figure 7: Throughput Improvement Evaluation on Multiple Platforms.

Table 4: PET Configurations
PET Type Configuration Main PET Params

Adapter Bottleneck = 64
Wdown and Wup at the
BertOutput, SelfAttenOutput layers.

MaskBert 95% Sparsity∗ Binary masks for all the linear weights.

Diff-Pruning 99.5% Sparsity
Sparse difference concerning linear weights,
bias terms, and the classification layer.

Bitfit N/A
Bias terms of linear / layernorm layers
and a classification layer.

∗ Obtained through equivalent transformation

Table 5: Profiling of Total Supported Tasks
Platform Device

Memory
Shared
Models

DistillBert
SeqS / PetS

Bert-base
SeqS / PetS

Bert-large
SeqS / PetS

Jetson TX2 8GB∗ Supported
Tasks

34 / 504 17 / 180 3 / 12
GTX-1080Ti 11GB 56 / 1336 28 / 588 7 / 126
Tesla-V100 32GB 170 / 4344 85 / 2164 25 / 560
∗ Shared by CPU and GPU

paper. Note that although in Section 2 we mainly use a single
layer for illustration, the evaluations in this section are all
conducted on entire models.
PET Tasks: The configurations of four PET algorithms are
summarized in Table 4. For Adapter, we set the hidden size
(dm) of the adapter modules to 64. For MaskBert and Diff-
Pruning the PET parameters’ sparsity is set to 95% and 99.5%,
respectively (we use the equivalent transformation proposed
in Section 3.1 to obtain the 95% sparsity for MaskBert). For
all PETs, we reproduce the algorithm on HuggingFace Trans-
formers to obtain the trained PET parameters.
Platforms: We evaluate PetS on Edge/Desktop/Server plat-
forms, namely Jetson TX2 (8GB memory, shared by CPU
and GPU), GTX-1080Ti-11GB (Intel Xeon E5-2690 CPU),
and Tesla-V100-32GB (Intel Xeon Golden 5220 CPU, two
sockets). The V100 platform installs CUDA-10.1. The 1080
Ti platform installs CUDA-11.3. The TX2 platform is flashed
with Jetpack 4.4.1 containing CUDA-10.2.

6.2 Main Results
6.2.1 Maximum Number of Supported Tasks
We first demonstrate PetS’s scalability by comparing the max-
imum number of supported tasks with conventional Sequential
Serving Systems (SeqS) [1, 7, 12]. Without loss of generality,
here we use the unmodified TurboTransformers framework
as a representative for SeqS. SeqS loads full-model copy for
each task, while PetS works on light-weighted PET tasks. For
each platform, we load T tasks (for PetS, each task belongs
to a random PET type). If the system can process a batch of

32 randomly-generated queries (each query has a length of
128) without the out-of-memory (OOM) issue, we assume
the system can support at least T tasks. We increase T re-
peatedly to test the limit. The maximum supported tasks are
listed in Table 5. Compared to conventional SeqS systems,
PetS supports 4× (Bert-large on TX2) to 26× (DistillBert
on V100) more concurrent tasks, thanks to the proposed uni-
fied representation and efficient PET tasks managing mech-
anism. Therefore, PetS can substantially save the hardware
cost when deploying multiple Transformer-based applications
to scenarios from edge computing to cloud computing. Also,
it avoids the notoriously slow model swapping [19, 48, 53]
even when hundreds to thousands of tasks are invoked.
6.2.2 Throughput Improvement
As stated before, PetS achieves both inter-task and inter-
algorithm batching through the unified representation and a
specialized PET Inference Engine (PIE). Therefore, we eval-
uate PetS’s throughput (measured in Queries-Per-Second,
QPS) under different situations. As shown in Figure 7, we
load 4~32,16~64 and 32~128 random tasks on TX2, 1080 Ti
and V100 platforms, respectively. For each task, we generate
queries with three fixed shapes. All queries with the same
shape are executed in one batch. We adopt SeqS running a
single task as the baseline. Note that here we do not include
the two optimizations introduced in Section 4 and adopt a
simple fixed-batch policy in the batch scheduling step. We
assume that there are no dependencies between tasks.

As we can see, on the 1080 Ti and V100 platforms,
PetS achieves up to 1.87× and 1.86× higher throughput,
1.53× and 1.63× on average, compared to the single-task
serving baseline. We notice that PetS fail to achieve meaning-
ful speedup than single-task serving on TX2. This is because
TX2 only has limited computation resources (256 CUDA
cores) and therefore can hardly get benefited from batched
inference. Similarly, on 1080 Ti and V100, we observe lower
speedup on Bert-large models than Bert-base/DistillBert. This
is because Bert-large has a larger layer size (see Table 3),
which saturates the GPUs’ computation resources more eas-
ily, diminishing the benefits of batched inference.
6.2.3 Comparison with ParS
Apart from Sequential Serving Systems (SeqS), several previ-
ous serving systems are built to support concurrent execution
of multiple tasks in parallel [18, 40, 48], which belong to the

USENIX Association 2022 USENIX Annual Technical Conference 497

0

0.5

1

1.5

2

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

SeqS ParS PetS

N
o

rm
al

iz
ed

 Q
P

S

of Tasks

O
O

M

O
O

M

O
O

M

O
O

M

{BS,SL}={4,16} {BS,SL}={2,32} {BS,SL}={1,64} {BS,SL}={1,128}

Figure 8: Throughput Comparison with SEQS and PARS.

Parallel Serving System (ParS). We compare PetS’s through-
put over conventional ParS to examine the performance. To
implement ParS, we modify the original TurboTransform-
ers framework and put each task-specific model to a unique
CUDA stream to run all models in parallel. Note that in this
experiment, we adopt Bert-base as the shared model and do
not consider model swapping. All results are collected on the
GTX-1080 Ti platform.

As shown in Figure 8, we evaluate multiple query con-
figurations represented by a pair of per-task batch size and
sequence length ({BS,SL}) to illustrate the PetS’s generality.
We run each query configuration on a different number of
tasks for SeqS, ParS, and PetS. All results are normalized to
the SeqS baseline. When the number of tasks is small (1~4),
PetS cannot outperform ParS. For one thing, PetS has extra
PET operations, as illustrated in Figure 3. For the other, tasks
of ParS run in parallel. Although the shared weight part of
PetS can also utilize parallel hardware, the overhead of PET
operations cannot be offset by the limited parallelism. As the
number of tasks increases, the benefit of PetS begins to mani-
fest. PetS has an average 17.7% speedup over ParS when the
number of tasks reaches 16 on all four configurations. Neither
SeqS nor ParS could run too many concurrent tasks due to
OOM, while PetS is still able to scale to 32 tasks and even
more (refer to Table 5). As we can find in the figure, benefited
from the higher hardware utilization, the QPS of PetS im-
proves with the increased total batch size (i.e., #tasks× BS).
As the number of tasks further increases to 256 or more (not
shown in the figure), the QPS improvement curve will reach
a plateau since a large batch saturates the GPU resources.

6.3 Performance Analysis
6.3.1 Execution Time Breakdown
To figure out why PetS outperforms the baseline systems in
serving throughput, we break down the execution time of both
PetS and SeqS on GTX-1080 Ti. We set two workloads (i.e.,
per-task batch size = 1, sequence length = 64 and per-task
batch = 2, sequence length = 32) and evaluate eight random
tasks with Bert-base and Bert-large models. Therefore, the
two workloads issue 8 and 16 queries each time. As we can
see in Figure 9, PetS speeds up the Non-PET operators (in-
cluding the attention operations and the computation of shared
linear layers) by 2.17× to 3.28×, thanks to the batched ex-
ecution of shared operators. Due to the adoption of SpMM
library, the PET operators only take up 27.4% to 41.3% of
the total execution time. Therefore, the end-to-end execution

0

20

40

60

80

100

SeqS
{1,64}

PetS
{1, 64}

SeqS
{2,32}

PetS
{2,32}

Non-PET Op PET Op

0

10

20

30

40

50

SeqS
{1,64}

PetS
{1, 64}

SeqS
{2,32}

PetS
{2,32}

Non-PET Op PET Op

3.28× 3.20×
41.3%

41.7%

2.21×
2.17×
33.9%

27.4%

Bert-base Bert-large

Pe
r-
qu

er
y
Ti
m
e
(m

s)

Pe
r-
qu

er
y
Ti
m
e
(m

s)

Figure 9: Execution Time Breakdown.

0

2

4

6

8

1 2 4 8 16 32 64

PetS SeqS

OO
M

OO
M

M
em

or
y
Fo
ot
pr
in
t(
GB

)

0

0.5

1

1.5

2

1 2 4 8 16 32 64

PetS SeqS

OO
M

OO
M

M
em

or
y
Fo
ot
pr
in
t(
GB

)

of Tasks # of Tasks

Weight Footprint Data Footprint

Figure 10: GPU Memory Footprint Comparison.

time is still much less than SeqS.
6.3.2 Memory Footprint Breakdown
We also profile the memory footprint of PetS and SeqS on
1080 Ti to understand why PetS has outstanding scalabil-
ity. Taking the configuration of {BS,SL} = {1,128} as an
example, we plot the consumed GPU memory by both model
weights and data under different task numbers in Figure 10.

We can see that a single task has about 0.35GB weight
parameters. The memory consumption of SeqS grows lin-
early with the number of tasks. The weight parameters exceed
11GB for 32 tasks on SeqS, causing OOM on GTX-1080 Ti.
On the contrary, for PetS, only the memory footprint of the
PET parameters, which normally occupies less than 5% of
the shared weight, increases with the number of tasks. As a
result, the total memory footprints of 64 tasks occupy less
than 40% of total GPU memory, demonstrating that PetS can
support much more tasks. Note that the memory footprints
of 16 and 32 tasks are the same, but 64 tasks consume three
times more data memory than 32 tasks. This is because we
use NVIDIA CUB device memory allocator [36] for dynamic
data memory management, and the allocated device memory
is not strictly proportional to data size, but aligned according
to some rounding rules.
6.3.3 Effect of PET Operator Scheduling
In Section 4.2, we introduce a PET Operator Scheduling strat-
egy to properly schedule PET operators to multiple CUDA
streams. To demonstrate the benefits of such a strategy, we
also profile the speedup using Bert-base on GTX-1080 Ti
GPU. We set the sequence length from 4 to 64. For each test
case, we put the same 1024 random queries in the pool and
process them with a batch of 128. As shown in Figure 11,
when 32 tasks are served, increasing the number of streams to
32 brings the optimal performance for all input configurations
and reduces up to 15% of execution latency. However, we
observe that as the number of tasks keeps growing to 64 and
128, using more than two streams even downgrades the per-
formance under the Seq = 4 configuration. The main inferred

498 2022 USENIX Annual Technical Conference USENIX Association

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 4 8 16 32

Seq = 64 Seq = 32 Seq = 16 Seq = 8 Seq = 4

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 4 8 16 32
0.95

1

1.05

1.1

1.15

1.2

1 2 4 8 16 32

of Streams # of Streams # of Streams

No
rm

.S
pe

ed
up

#Task = 64#Task = 128 #Task = 32

Figure 11: PET Operator Scheduling Performance.

reason is that, as the number of tasks increases, each task’s
batch size gets smaller. When the input queries also have
limited sequence lengths (i.e., seq = 4), the execution time
is too short for the GPU’s scheduler to overlap concurrent
streams. Thus, launching too many streams will only incur
non-negligible synchronization overhead.

For PIE, the number of CUDA streams can be dynamically
set before each batch’s inference. Therefore, we can add a rule
to the PET operator scheduler: for tasks with short sequence
lengths and small per-task batch size, we set a small stream
number such as one or two. For tasks with a long sequence
length, we set a large stream number such as 32. We obtain
the threshold on each GPU platform by profiling in advance.

6.4 Performance on Arbitrary Inputs
As stated before, in real-world multi-task serving scenarios,
the input queries usually have variable sequence lengths and
PET types. Naïvely batching these queries may not bring the
ideal throughput. Our proposed Coordinated Batching (CB)
strategy is aimed to improve PetS’s performance on arbitrary
inputs by coordinating shared operations and PET operations
during batching. To evaluate the effect of CB, we test on
workloads with variable sequence lengths and PET types, and
then compare CB with three baseline batching strategies:
Fixed-Sized Batching: We put queries in the pool to fix-sized
batches, regardless of their PET types and sequence lengths.
α-only Batching: We dynamically batch the queries only
using the α model. This strategy is similar to TurboTrans-
formers’ smart batching. To implement the α-only Batching,
we treat every single query as a mini-batch and only conduct
the inter-task batching (step 2) in Figure 6.
β-only Batching: We dynamically batch the queries only
using the β model. That is to say, in Figure 6, only the first
step will be performed. The obtained mini-batches will be
directly sent to PIE for execution.

To simulate real-world cases, we assume that the queries’
lengths obey the Gaussian Distribution. Without loss of gen-
erality, we set the mean value to 32 and set the standard
deviation from 1 to 8. The concurrent tasks are set from 32
to 128. Each task is assigned to a random PET type. For each
case, we put 1024 queries in the query pool. For each query
in the pool, we randomly assign it to a registered task.

As shown in Figure 12, the proposed CB strategy achieves
on average 1.52× and 1.27× speedup over Fixed-Sized Batch-
ing and β-only Batching, respectively. When the std values

7
1

2

7
1

6

7
3

0

6
8

5

6
8

8

7
0

2

5
9

9

6
0

0

6
0

7

5
3

9

5
4

0

5
4

3

0.5

1

1.5

2

128 64 32 128 64 32 128 64 32 128 64 32

Fixed β-Only ɑ-Only CB

Std = 1 Std = 2 Std = 4 Std = 8

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

of Tasks

Figure 12: Comparison of Batching Strategies

are set from 1 to 4, CB also achieves up to 1.14× (1.06×
on average) speedup over α-only Batching. For input queries
with large variance, Coordinated Batching achieves lower
QPS than α-only Batching. We infer that the first step guided
by the β model may put some queries with certain length
difference into one batch, which is acceptable by Step 1. Such
a difference, however, may be amplified in Step 2, since the
shared operators usually take up the majority of total execu-
tion time (see Figure 9). On the contrary, if the input queries
have middle or small variances, the batching of both the two
steps is near-optimal. Therefore, to get the highest perfor-
mance on arbitrary inputs, we can measure the std value of the
queries in the pool and choose to use Coordinated Batching
(for low-std inputs) or α-only Batching (for high-std inputs).

7 Limitations & Future Work
As revealed by the evaluation results, PetS favors the scenar-
ios where the number of tasks is large, while each task has few
input queries. If there are only a few tasks, but each task has
a large batch, using a traditional SeqS framework may also
achieve good throughput. Also, as shown in Figures 8 and 9,
when there are only a few tasks, the overhead of PetS (i.e,
computing PET operators and shared dense operators sepa-
rately) will outweigh the benefits, since the shared operators
cannot achieve enough speedup in these cases to cover the
overhead of PET operators.

Currently, the proof-of-concept PetS implementation only
supports downstream tasks sharing the same pre-trained
model. However, with the increasing of tasks adopting trans-
formers as their backbones, there will be more and more
shared models registered in PetS. The ability to simultane-
ously serve multiple pre-trained models from various task
fields is needed. On the other hand, giant pre-trained mod-
els with trillions of parameters exceeding the capability of
a single GPU have emerged to achieve significant accuracy
gain, such as [13, 52, 63]. Partitioning a single giant model
with PET tasks and different shared models on multiple GPUs
is challenging for PetS. Moreover, for online queries with
latency and cost constraints, how to balance PetS ’s perfor-
mance and QoS should also be taken into consideration. We
leave the model partitioning and QoS-aware query scheduling
as PetS’s future work.

8 Related Work
Parameter-Efficient Transformers: Apart from the four
representative PETs discussed in the paper, there are many

USENIX Association 2022 USENIX Annual Technical Conference 499

other PET variants like AdapterFusion [41], LoRA [24],
LeTs [14] and Prefix-tuning [30], etc. As stated in Section
5.3, these PETs can also work with PetS with some neces-
sary extensions. We also notice that there are some works
trying to put PETs into one framework such as UniPELT [33]
and MAM-Adapter [21]. However, they belong to training
frameworks designed from the user’s angle. Their main goal
is to combine multiple PET techniques into one model to
achieve better accuracy. On the contrary, PetS is designed
from a service provider’s angle. It batches different fine-tuned
tasks provided by users regardless of their PET algorithms
and parameters. Therefore, these techniques are orthogonal to
PetS. Besides, we also notice that Adapter-Hub [42] shares
many ideas with PetS. It provides an easy way to train and
share adapters for different downstream tasks based on Hug-
gingface Transformers. A recent work named OpenDelta [10]
further supports fine-tuning more types of PETs. However,
the two frameworks are mainly designed for algorithm de-
velopers and not optimized for model serving. PetS mainly
focuses on improving the multi-task serving efficiency from
the system implementation and optimization perspectives. We
believe that it will be promising to adopt PetS as the inference
serving backend of these training frameworks.

Inference Serving Systems: As illustrated in Section 6, pre-
vious inference serving systems can be classified as SeqS and
ParS. Rafiqi [53] and Clipper [7] deploy a model in an exclu-
sive container, and introduce caching, batching, and model
selection techniques to reduce model swapping overhead.
Clockwork [19] reduces GPU inference latency variability by
ordering queries based on their service level objectives (SLOs)
and only running one query at a time, while TurboTransform-
ers [12] batches queries to a single model to improve system
throughput. Compared to the SeqS running each model se-
quentially, ParS systems enable concurrent execution of mul-
tiple models. INFaaS [48] proposes to automatically select
models for multiple queries in order to maximize throughput.
NVIDIA’s MPS [39] and recent MIG [38] techniques enable
efficient GPU resource sharing through hardware partition or
full isolation. There exist other systems [8, 40, 60] featured
with GPU sharing techniques.

Transformers Inference Engines: With the prevailing of
Transformers, some inference engines are designed specif-
ically for efficient Transformer inference. FastTransform-
ers [37] and DeepSpeed [35] are two frameworks featured
with multi-GPU inference. LightSeq [56] is a light-weighted
inference engine performing some input-aware optimization
techniques, such as smart batching and padding minimization,
so does the inference engine of TurboTransformers [12].

Leveraging parameter-efficient Transformers, PetS saves
storage, mitigates model swapping overhead and also im-
proves system throughput by co-design and co-optimization
between inference serving system and inference engine.

9 Conclusion
This paper presents PetS, a unified framework for efficient
multi-task Parameter-Efficient Transformers (PETs) serving.
To enable flexible PET task management and high-throughput
serving, we first propose a unified representation to put differ-
ent PETs into the same framework. Then we design a special-
ized PET inference engine to execute different tasks’ queries
in batches. We also propose a coordinated batching strategy
to deal with arbitrary input queries and develop a PET oper-
ator scheduling strategy to exploit parallelism between PET
tasks. Experiments on Edge/Desktop/Server GPUs demon-
strate that PetS can support up to 26× more concurrent tasks
and improves the serving throughput by 1.53× and 1.63× on
Desktop and Server GPUs, respectively.

Acknowledgment
We thank all the reviewers and the shepherd for their valu-
able suggestions. This work is supported by NSF of China
(61832020, 62032001, 92064006), Beijing Academy of Arti-
ficial Intelligence (BAAI), and 111 Project (B18001)

References
[1] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia

Smirni. BATCH: Machine Learning Inference Serving
on Serverless Platforms with Adaptive Batching. In
SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–15, 2020.

[2] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. A
Multi-neural Network Acceleration Architecture. In
2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 940–953.
IEEE, 2020.

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language Models are Few-shot Learners. arXiv
preprint arXiv:2005.14165, 2020.

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-End Object Detection with Trans-
formers. arXiv preprint arXiv:2005.12872, 2020.

[5] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael Carbin.
The Lottery Ticket Hypothesis for Pre-trained Bert Net-
works. arXiv preprint arXiv:2007.12223, 2020.

[6] Yujeong Choi and Minsoo Rhu. Prema: A Predictive
Multi-task Scheduling Algorithm for Preemptible Neu-
ral Processing Units. In 2020 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 220–233. IEEE, 2020.

500 2022 USENIX Annual Technical Conference USENIX Association

[7] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A Low-Latency Online Prediction Serving System. In
Aditya Akella and Jon Howell, editors, 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, Boston, MA, USA, March 27-29,
2017, pages 613–627. USENIX Association, 2017.

[8] Abdul Dakkak, Cheng Li, Simon Garcia De Gonzalo,
Jinjun Xiong, and Wen-Mei W. Hwu. TrIMS: Transpar-
ent and Isolated Model Sharing for Low Latency Deep
LearningInference in Function as a Service Environ-
ments. CoRR, abs/1811.09732, 2018.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. arXiv
preprint arXiv:1810.04805, 2018.

[10] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. Delta tuning:
A comprehensive study of parameter efficient meth-
ods for pre-trained language models. arXiv preprint
arXiv:2203.06904, 2022.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv preprint arXiv:2010.11929,
2020.

[12] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
TurboTransformers: An Efficient GPU Serving System
for Transformer Models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 389–402, 2021.

[13] William Fedus, Barret Zoph, and Noam Shazeer. Switch
Transformers: Scaling to Trillion Parameter Models with
Simple and Efficient Sparsity. CoRR, abs/2101.03961,
2021.

[14] Cheng Fu, Hanxian Huang, Xinyun Chen, Yuandong
Tian, and Jishen Zhao. Learn-to-Share: A Hardware-
friendly Transfer Learning Framework Exploiting Com-
putation and Parameter Sharing. In International Con-
ference on Machine Learning, pages 3469–3479. PMLR,
2021.

[15] Trevor Gale, Matei Zaharia, Cliff Young, and Erich
Elsen. Sparse GPU Kernels for Deep Learning. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–14, 2020.

[16] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low
Latency RNN Inference with Cellular Batching. In
Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys, pages 1–15, 2018.

[17] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim,
Sean Kinzer, Brahmendra Reddy Yatham, Navateja Alla,
Hardik Sharma, Mohammad Alian, Eiman Ebrahimi,
Nam Sung Kim, et al. Planaria: Dynamic Architecture
Fission for Spatial Multi-tenant Acceleration of Deep
Neural Networks. In 2020 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
pages 681–697, 2020.

[18] Google. TensorFlow Serving. https://github.com/
tensorflow/serving, 2021.

[19] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In Proceedings of
the 14th USENIX Conference on Operating Systems
Design and Implementation, pages 443–462, 2020.

[20] Demi Guo, Alexander M Rush, and Yoon Kim.
Parameter-Efficient Transfer Learning with Diff Pruning.
arXiv preprint arXiv:2012.07463, 2020.

[21] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a Unified
View of Parameter-Efficient Transfer Learning. CoRR,
abs/2110.04366, 2021.

[22] Dan Hendrycks and Kevin Gimpel. Gaussian Error Lin-
ear Units (GELUs). arXiv preprint arXiv:1606.08415,
2016.

[23] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-
efficient transfer learning for NLP. In International
Conference on Machine Learning, pages 2790–2799.
PMLR, 2019.

[24] Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Lu Wang, and Weizhu Chen. LoRA:
Low-Rank Adaptation of Large Language Models,
2021.

[25] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Trans-
gan: Two Transformers can Make One Strong Gan.
arXiv preprint arXiv:2102.07074, 1(3), 2021.

[26] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft,
Mark Gottscho, Thomas B Jablin, George Kurian, James
Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten
Lessons from Three Generations Shaped Google’s
TPUv4i: Industrial Product. In 2021 ACM/IEEE 48th

USENIX Association 2022 USENIX Annual Technical Conference 501

 https://github.com/tensorflow/serving
 https://github.com/tensorflow/serving

Annual International Symposium on Computer Architec-
ture (ISCA), pages 1–14. IEEE, 2021.

[27] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer,
Tushar Krishna, Yu-Hsin Chen, and Vikas Chandra.
Heterogeneous Dataflow Accelerators for Multi-DNN
Workloads. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 71–83, 2021.

[28] Zhenzhong Lan, Mingda Chen, Sebastian Good-
man, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A Lite Bert for Self-supervised Learn-
ing of Language Representations. arXiv preprint
arXiv:1909.11942, 2019.

[29] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: De-
noising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension.
In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault, editors, Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics, 2020.

[30] Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimiz-
ing Continuous Prompts for Generation. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors,
Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pages 4582–4597. As-
sociation for Computational Linguistics, 2021.

[31] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A Robustly
Optimized Bert Pretraining Approach. arXiv preprint
arXiv:1907.11692, 2019.

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
Transformer: Hierarchical Vision Transformer Using
Shifted Windows. arXiv preprint arXiv:2103.14030,
2021.

[33] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Ma-
dian Khabsa. UniPELT: A Unified Framework for
Parameter-Efficient Language Model Tuning. CoRR,
abs/2110.07577, 2021.

[34] Daniel Mendoza, Francisco Romero, Qian Li, Neeraja J.
Yadwadkar, and Christos Kozyrakis. Interference-Aware

Scheduling for Inference Serving. In Proceedings of the
1st Workshop on Machine Learning and Systems, page
80–88, 2021.

[35] Microsoft. DeepSpeed for Inferencing Trans-
former based Models. https://www.deepspeed.ai/
tutorials/inference-tutorial/, 2021.

[36] NVIDIA. CUB. https://nvlabs.github.io/
cub/structcub_1_1_caching_device_allocator.
html.

[37] NVIDIA. Fast Transformer. https://github.com/
NVIDIA/FasterTransformer.

[38] NVIDIA. MIG. https://docs.nvidia.com/
datacenter/tesla/mig-user-guide/, 2021.

[39] NVIDIA. MPS. https://docs.nvidia.com/
deploy/mps/index.html, 2021.

[40] NVIDIA. Triton Inference Server.
https://developer.nvidia.com/
nvidia-triton-inference-server, 2021.

[41] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive Task Composition for Transfer Learn-
ing. arXiv preprint arXiv:2005.00247, 2020.

[42] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho,
and Iryna Gurevych. AdapterHub: A framework for
adapting transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 46–54, Online,
October 2020. Association for Computational Linguis-
tics.

[43] Sai Prasanna, Anna Rogers, and Anna Rumshisky.
When Bert Plays the Lottery, All Tickets are Winning.
arXiv preprint arXiv:2005.00561, 2020.

[44] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. Pre-trained Models
for Natural Language Processing: A Survey. Science
China Technological Sciences, pages 1–26, 2020.

[45] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language Models
are Unsupervised Multitask Learners. OpenAI blog,
1(8):9, 2019.

[46] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. arXiv
preprint arXiv:1910.10683, 2019.

502 2022 USENIX Annual Technical Conference USENIX Association

https://www.deepspeed.ai/tutorials/inference-tutorial/
https://www.deepspeed.ai/tutorials/inference-tutorial/
https://nvlabs.github.io/cub/structcub_1_1_caching_device_allocator.html
https://nvlabs.github.io/cub/structcub_1_1_caching_device_allocator.html
https://nvlabs.github.io/cub/structcub_1_1_caching_device_allocator.html
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
 https://developer.nvidia.com/nvidia-triton-inference-server
 https://developer.nvidia.com/nvidia-triton-inference-server

[47] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A
Primer in Bertology: What We Know about How Bert
Works. Transactions of the Association for Computa-
tional Linguistics, 8:842–866, 2020.

[48] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated Model-less
Inference Serving. In Proceedings of the 2021 USENIX
Annual Technical Conference, pages 397–411, 2021.

[49] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. DistilBERT, a Distilled Version of BERT:
Smaller, Faster, Cheaper and Lighter. arXiv preprint
arXiv:1910.01108, 2019.

[50] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A GPU Cluster Engine
for Accelerating DNN-based Video Analysis. In Tim
Brecht and Carey Williamson, editors, Proceedings of
the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP 2019, Huntsville, ON, Canada, October
27-30, 2019, pages 322–337. ACM, 2019.

[51] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[52] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-billion Parameter Lan-
guage Models using Model Parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[53] Sammy Sidhu, Jordon Wing, and Aakash Japi. Rafiqi:
A GPU-Based Deep Learning Model Serving System.
Technical report, University of California, Berkeley,
2020.

[54] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. GLUE:
A Multi-task Benchmark and Analysis Platform for
Natural Language Understanding. arXiv preprint
arXiv:1804.07461, 2018.

[55] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling
Shao. Pyramid Vision Transformer: A Versatile Back-
bone for Dense Prediction without Convolutions. arXiv
preprint arXiv:2102.12122, 2021.

[56] Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan
Wang, and Lei Li. LightSeq: A High Performance
Inference Library for Transformers. arXiv preprint
arXiv:2010.13887, 2020.

[57] Samuel Williams, Andrew Waterman, and David Pat-
terson. Roofline: An Insightful Visual Performance
Model for Multicore Architectures. Commun. ACM,
52(4):65–76, 2009.

[58] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. Transformers: State-of-the-Art Nat-
ural Language Processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45, On-
line, October 2020. Association for Computational Lin-
guistics.

[59] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Russ R Salakhutdinov, and Quoc V Le. Xlnet: Gener-
alized Autoregressive Pretraining for Language Under-
standing. In Advances in neural information processing
systems, pages 5753–5763, 2019.

[60] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-
Grained GPU Sharing Primitives for Deep Learning
Applications. CoRR, abs/1902.04610, 2019.

[61] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun
Shi, Zihang Jiang, Francis EH Tay, Jiashi Feng, and
Shuicheng Yan. Tokens-to-token vit: Training Vision
Transformers from Scratch on Imagenet. arXiv preprint
arXiv:2101.11986, 2021.

[62] Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. BitFit: Simple Parameter-efficient Fine-tuning for
Transformer-based Masked Language-models. arXiv
preprint arXiv:2106.10199, 2021.

[63] Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao,
Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng
Wang, Xiaoda Zhang, Chen Li, Ziyan Gong, Yifan Yao,
Xinjing Huang, Jun Wang, Jianfeng Yu, Qi Guo, Yue
Yu, Yan Zhang, Jin Wang, Hengtao Tao, Dasen Yan,
Zexuan Yi, Fang Peng, Fangqing Jiang, Han Zhang,
Lingfeng Deng, Yehong Zhang, Zhe Lin, Chao Zhang,
Shaojie Zhang, Mingyue Guo, Shanzhi Gu, Gaojun Fan,
Yaowei Wang, Xuefeng Jin, Qun Liu, and Yonghong
Tian. PanGu-α: Large-scale Autoregressive Pretrained
Chinese Language Models with Auto-parallel Computa-
tion. CoRR, abs/2104.12369, 2021.

[64] Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schütze. Masking as an Efficient Alternative to
Finetuning for Pretrained Language Models. arXiv
preprint arXiv:2004.12406, 2020.

USENIX Association 2022 USENIX Annual Technical Conference 503

A Artifact Appendix

Abstract
The artifact contains PetS’s code and its setup&running

descriptions. We provide instructions and click-to-run scripts
for reproducing the main results in this paper.

Scope
This artifact is used for reproducing the main results in

Section 6. Specifically, we produce click-to-run scripts to
reproduce the results of Figures 7,8,9,11,12 and Table 4.

Contents
• Code Base: The code base of the artifact includes the
PetS inference framework. It contains the coordinated
batching and PET operator scheduling components to
demonstrate PetS’s performance optimization strategies.

• Benchmarking Scripts: We provide click-to-run bench-
marking scripts to evaluate PetS’s performance.
The script run_pets_main_results.sh can con-
duct all the main experiments, while you can also
run each experiment individually using other pro-
vided scripts like eval_batching_strategies.sh,
eval_multi_stream.sh, etc.

• Instructions: We provide a detailed README to guide
the environment setup, evaluation and code reuse, etc.

• Reference Results: We provide the experiment results
on two GPU platforms for reference use.

Hosting

The †artifact is archived in Zenodo.

Requirements
• Hardware: The artifact can run on a server or embedded

platform equipped with at least one NVIDIA GPU. We
tested NVIDIA Jetson TX2, GeForce GTX 1080 Ti, and
NVIDIA Tesla V100.

• Compilation and Runtime: The experiments are per-
formed on three platforms with GPUs mentioned above.
The compilers and operating systems on the platforms
are: on platform with 1080 Ti GPU, g++ 7.5.0 and nvcc
11.3, Ubuntu 20.04; Tx2: Jetpack 4.4.1 with CUDA-10.2.
V100: Ubuntu 18.04, CUDA-10.1. g++ 7.5.0.

Many other GPU platforms (e.g., 2080Ti, P100, K80,
etc.) may also be compatible with this artifact. How-
ever, the Ampere architecture (e.g., A100, A6000) is not
currently supported by the sputnik library.

†https://doi.org/10.5281/zenodo.6534753

Evaluation and Expected Results
After setting up the environment, you can run the two-

step evaluation procedure: experiments running and results
validating. The first step generates the performance num-
bers, and the second step draws figures. Please refer to
README.md for detailed evaluation flow. The full evaluation
lasts for about one hour. You can find the plotted results in
the research/reproduced_figures folder.

Known Issues: Some AE reviewers have reported that in
their running environments with V100 GPUs, they failed to
get the same curve as Figure 11 (though Figure 11 is based
on the 1080-ti GPU). We tested two machines with V100
GPUs. One can get even better results (a local machine, driver
version = 510), but the other (an AliCloud instance, driver
version = 460) got worse results than 1080-ti. We infer that
this is due to the hardware and driver differences. The exact
cause is still under investigation.

How to Reuse Beyond Paper
A PET algorithm can work with PetS as long as it meets

two requirements:

• Its PET operations are separable (with necessary
equivalent-transformations) from the shared operations.

• The separated PET operations are light-weighted.

To support a new algorithm, we should first identify its PET
operations. Then three steps are required to add the new PET
algorithm to PetS:

• Step-1. Register a new PET type and implement
the PET operations using Pytorch APIs in python/
turbo_transformers/layers/modeling_pets.py.

• Step-2. Deal with the PET parameters loading. Add new
loading functions in modeling_shared_bert.py and
pet_manager.h, respectively.

• Step-3. Implement the new PET operators in
shadow_op.cpp/shadow_op.h

• Step-4. If the new PET operators should be called at
places that are different from the four PETs in the paper,
you should also modify the bert layers backends, e.g.,
bert_output.cpp

504 2022 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.5281/zenodo.6534753

	Introduction
	Background & Motivations
	Transformer Models
	Multi-Task Transformers Serving
	Parameter-Efficient Transformers
	Challenges of Multi-Task PETs Serving

	PetS Framework
	Unified Representation of PETs
	Framework Overview
	Managing PET Tasks
	PET Inference Pipeline
	Preprocessing
	Batch Scheduler
	PET Inference Engine

	Optimization Strategies
	Coordinated Batching
	PET Operator Scheduling

	Implementation
	PET Description
	Inference Serving
	User Interfaces

	Evaluation
	Experimental Setup
	Main Results
	Maximum Number of Supported Tasks
	Throughput Improvement
	Comparison with ParS

	Performance Analysis
	Execution Time Breakdown
	Memory Footprint Breakdown
	Effect of PET Operator Scheduling

	Performance on Arbitrary Inputs

	Limitations & Future Work
	Related Work
	Conclusion
	Artifact Appendix

